WO2016161958A1 - 物理下行控制信道的传输方法以及基站和用户设备 - Google Patents

物理下行控制信道的传输方法以及基站和用户设备 Download PDF

Info

Publication number
WO2016161958A1
WO2016161958A1 PCT/CN2016/078781 CN2016078781W WO2016161958A1 WO 2016161958 A1 WO2016161958 A1 WO 2016161958A1 CN 2016078781 W CN2016078781 W CN 2016078781W WO 2016161958 A1 WO2016161958 A1 WO 2016161958A1
Authority
WO
WIPO (PCT)
Prior art keywords
mpdcch
search space
mtc
prb
base station
Prior art date
Application number
PCT/CN2016/078781
Other languages
English (en)
French (fr)
Inventor
刘仁茂
沈兴亚
蒋琦
Original Assignee
夏普株式会社
刘仁茂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 夏普株式会社, 刘仁茂 filed Critical 夏普株式会社
Priority to US15/565,240 priority Critical patent/US10383131B2/en
Priority to EP16776133.7A priority patent/EP3282614B1/en
Publication of WO2016161958A1 publication Critical patent/WO2016161958A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/04Arrangements for maintaining operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to the field of wireless communication technologies, and more particularly, to a method for transmitting and receiving a physical downlink control channel, a base station, and a user equipment.
  • MTC Machine Type Communication
  • LTE Long Term Evolution
  • MTC is a data communication service that does not require human involvement.
  • Large-scale deployment of MTC user equipment can be used in security, tracking, billing, measurement, and consumer electronics.
  • Applications include video surveillance, supply chain tracking, smart meters, and remote monitoring.
  • MTC requires lower power consumption, supports lower data transmission rates and lower mobility.
  • the current LTE system is mainly aimed at human-to-human communication services. The key to achieving the scale competitive advantage and application prospect of MTC services lies in the fact that LTE networks support low-cost MTC devices.
  • MTC equipment needs to be installed in the basement of the residential building or protected by insulated foil, metal window or thick wall of traditional buildings, compared to conventional equipment terminals (such as mobile phones, tablets, etc.) in LTE networks.
  • the air interface will obviously suffer from more severe penetration losses.
  • 3GPP decided to study the design and performance evaluation of MTC devices with additional 20dB coverage enhancement. It is worth noting that MTC devices located in poor network coverage areas have the following characteristics: very low data transmission rate, very loose latency requirements and limited Mobility.
  • the LTE network can further optimize some signaling and/or channels to better support the MTC service.
  • Non-Patent Document RP-140990 New Work Item.
  • the LTE Rel-13 system needs to support the uplink and downlink 1.4MHz radio frequency bandwidth of the MTC user equipment (User Equipment, UE, hereinafter referred to as the narrowband MTC UE) to work in any system bandwidth (for example, 1.4MHz, 3MHz). , 5MHz, 10MHz, 15MHz, 20MHz, etc.), and provide coverage enhancement for this type of MTC users.
  • the narrowband MTC UE MTC user equipment
  • an enhancement technique is needed to improve the received signal strength of the MTC UE physical channel.
  • the subframe signal binding or repeated transmission is mainly used to improve the received signal strength of the MTC physical channel.
  • the coverage enhancement of the MTC UEs in different geographical locations may be different.
  • the MTC UEs of the same cell may be divided into multiple different coverage enhancement levels, and the number of repeated transmissions required for different coverage enhancement levels is different.
  • the coverage enhancement level can also be indicated by a repetition level.
  • the PRACH of the coverage enhanced MTC UE may be divided into four repetition levels (0, 1, 2, 3) corresponding to coverage enhancements of 0 dB, 5 dB, 10 dB, and 15 dB, respectively.
  • an LTE UE receives a Physical Downlink Shared Channel (PDSCH) through control information carried by a Broadband Physical Downlink Control Channel (PDCCH).
  • the LTE UE receives the UE-specific Enhanced Physical Downlink Control Channel (EPDCCH) through the control information carried by the Broadband Physical Downlink Control Channel (PDCCH), and then can receive the PDSCH through the control information carried by the EPDCCH.
  • the MTC UE of Rel-13 can only work in the bandwidth of 1.4 MHz (corresponding to the bandwidth occupied by 6 physical resource blocks (PRBs)/physical resource block pairs (PRB-pairs)), the wideband PDCCH uses 20M.
  • the MTC UE of Rel-13 cannot receive the PDCCH of the wideband, but can only receive the narrowband PDSCH and EPDCCH (hereinafter, the EPDCCH of the MTC UE for Rel-13) Called MPDCCH). That is to say, the physical downlink control channel (MPDCCH) of the Rel-13 MTC UE can only be located within the bandwidth occupied by six physical resource blocks (PRBs).
  • MPDCCH physical downlink control channel
  • the number of physical resource block pairs (PRB-pairs) that the existing LTE UE can allocate is 2, 4, or 8, and the configurable aggregation level (aggregation) Level) is 1, 2, 4, 8, 16, or 32 (ie, supports 1, 2, 4, 8, 16 or 32 consecutively distributed Enhanced Control Channel Elements (ECCE), respectively), but does not support physical resources.
  • the number of block pairs is 6 and its corresponding aggregation level. Therefore, in order to accommodate the MTC UE operating on a frequency bandwidth of 6 physical resource block (PRB) sizes, a new transmission and reception method suitable for the MPDCCH of the narrowband MTC UE is needed.
  • the present invention is directed to providing a transmission and reception mechanism suitable for a downlink control channel of a narrowband MTC UE, and a base station and user equipment performing the mechanism.
  • an MTC user equipment comprising: a receiving unit, a physical resource block for an MTC physical downlink control channel (MPDCCH) resource set (MPDCCH-PRB-set) configured by higher layer signaling
  • MPDCCH physical downlink control channel
  • MPDCCH-PRB-set MTC physical downlink control channel resource set
  • DCI downlink control information
  • the monitoring of the MPDCCH candidate comprises: attempting to decode each candidate MPDCCH in a monitored downlink control information (DCI) format in the MPDCCH candidate.
  • DCI downlink control information
  • the MPDCCH includes an MPDCCH common search space and a UE-specific search space
  • the MPDCCH resource set is separately configured for the MPDCCH common search space and the UE-specific search space.
  • the MPDCCH resource set is determined according to signaling received from a base station, or is a preset default MPDCCH resource set, or is determined according to a preset default physical resource pair number.
  • the aggregation level is configured separately for the MPDCCH common search space and the user-specific search space.
  • the aggregation level is determined based on signaling received from a base station or is a preset default aggregation level.
  • the repetition level is configured separately for the MPDCCH common search space and the user-specific search space.
  • the repetition level is determined based on signaling received from a base station, or It is a preset default repeat level.
  • a base station supporting an MTC including: a transmitting unit, a physical resource for an MTC physical downlink control channel (MPDCCH) resource set (MPDCCH-PRB-set) configured by high layer signaling
  • MPDCCH physical downlink control channel
  • MPDCCH-PRB-set physical downlink control channel resource set
  • DCI downlink control information
  • the configuration unit presets a default MPDCCH resource set or presets a default physical resource pair number.
  • the configuration unit sets a default aggregation level in advance.
  • the configuration unit sets a default number of MPDCCH candidates.
  • a method for performing in an MTC user equipment comprising: a physical resource block of an MTC physical downlink control channel (MPDCCH) resource set (MPDCCH-PRB-set) configured by higher layer signaling
  • MPDCCH physical downlink control channel
  • MPDCCH-PRB-set MTC physical downlink control channel resource set
  • DCI downlink control information
  • a method performed in a base station supporting MTC comprising: a physical resource of a MTC physical downlink control channel (MPDCCH) resource set (MPDCCH-PRB-set) configured by higher layer signaling
  • MPDCCH physical downlink control channel
  • MPDCCH-PRB-set resource set
  • DCI downlink control information
  • the method further includes: setting a default MPDCCH resource set in advance.
  • the method further comprises: setting a default aggregation level in advance.
  • the method further comprises: setting a default number of MPDCCH candidates.
  • FIG. 1 shows a block diagram of a base station in accordance with an embodiment of the present invention.
  • FIG. 2 shows a block diagram of a user equipment in accordance with an embodiment of the present invention.
  • FIG. 3 illustrates a schematic diagram of an example of separately configuring an MPDCCH physical resource block set for each repetition level, according to an embodiment of the present invention.
  • FIG. 4 shows a schematic diagram of an example of separately configuring an MPDCCH physical resource block pair for each repetition level according to an embodiment of the present invention.
  • FIG. 5 illustrates a schematic diagram of dividing a system bandwidth into a number of frequency subbands (6 PRB-pairs group) in accordance with an embodiment of the present invention.
  • FIG. 6 shows a schematic diagram of an example partitioning of a combination comprising 2, 4, 6 PRB-pairs within a frequency subband, in accordance with an embodiment of the present invention.
  • FIG. 7 illustrates an M/EPDCCH format that can be supported in a system in which an MTC UE and an existing LTE UE exist simultaneously, according to an embodiment of the present invention.
  • FIG. 8 illustrates an MPDCCH format that can be supported in a system supporting only MTC UEs according to an embodiment of the present invention.
  • FIG. 9 is a table showing a relationship between an M/EPDCCH candidate number supporting all users and an aggregation level and a number of physical resource block pairs according to an embodiment of the present invention.
  • FIG. 10 is a table showing the relationship between the number of MPDCCH candidates and the aggregation level and the number of physical resource block pairs in a system supporting only MTC UEs according to the present invention.
  • FIG. 11 shows an example flow diagram of an MPDCCH configuration and transmission method in accordance with an embodiment of the present invention that may be implemented in a communication system supporting MTC.
  • An embodiment of a physical resource configuration for an MPDCCH according to the present invention is specifically described below with an LTE mobile communication system and its subsequent evolved version as an example application environment.
  • the present invention is not limited to the following embodiments, but can be applied to more other wireless communication systems, such as future 5G cellular communication systems.
  • the MPDCCH is a physical downlink control channel that transmits downlink control information for a particular type of user equipment (eg, an MTC UE of Rel 13).
  • a particular type of user equipment eg, an MTC UE of Rel 13.
  • the concept of the resource allocation mechanism for the MPDCCH can be implemented by referring to and modifying the resource allocation specifications for the EPDCCH in the standard 3GPP TS 36.211 V11.3.0 (2013-06) and 3GPP TS 36.213 V11.3.0 (2013-06). The contents of these two standards are incorporated herein by reference. In the following, unless otherwise stated, the terms used herein are also defined herein if they are defined in both standards.
  • Orthogonal Frequency Division Multiplexing is used on the downlink.
  • OFDM divides the system bandwidth into multiple subcarriers and is divided into multiple OFDM symbols on the time axis.
  • a Resource Element covers one OFDM symbol in the time domain and one subcarrier in the frequency domain.
  • the transmission time axis for the downlink can be divided into multiple units of radio frames.
  • Each radio frame has a predetermined duration and can be divided into a plurality of subframes (eg, 10 subframes indexed from 0 to 9).
  • Each subframe contains two slots, each slot including a predetermined number (eg, 7) of OFDM symbols.
  • the available time-frequency physical resources may be divided into physical resource Bloacks (PRBs), and each resource block covers N subcarriers of one slot (for example, typically 12 subcarriers).
  • PRBs physical resource Bloacks
  • a pair of resource blocks in the same frequency domain in one subframe constitutes a resource block pair (PB-pair).
  • the basic resource particle of the MPDCCH is defined as an Enhanced Control Channel Element (ECCE).
  • ECCE consists of multiple Enhanced Resource Element Groups (EREGs).
  • EREG Enhanced resource element group
  • EREG is used to define an enhanced control channel to resource unit (RE) mapping.
  • one PRB-pair may contain 4 Enhanced Control Channel Elements (ECCEs), while in other cases one PRB-pair may contain 2 ECCEs.
  • FIG. 1 shows a block diagram of a base station 100 in accordance with an embodiment of the present invention.
  • the base station 100 supports a wide (e.g., 20M) system bandwidth.
  • the base station 100 includes a configuration unit 110 and a transmitting unit 120.
  • base station 100 may also include other functional units necessary to implement its functions, such as various processors, memories, and the like. However, for the sake of simplicity, Detailed descriptions of these well-known elements are omitted.
  • the configuration unit 110 is configured to configure the MPDCCH.
  • the MPDCCH is a physical downlink control channel for transmitting downlink control information for a narrowband MTC UE.
  • the narrowband MTC UE means that the working bandwidth of the UE is much smaller than the system bandwidth.
  • the user equipment of the machine type communication defined in the foregoing LTE Rel-13 supports the uplink and downlink 1.4 MHz radio frequency bandwidth.
  • the MPDCCH contains scheduling information for the PDSCH of the MTC UE.
  • the MPDCCH may be transmitted in only one subframe, or may be repeated in multiple subframes to enhance the coverage of the channel.
  • the MPDCCH has two search spaces: a common search space and a UE-specific search space.
  • the common search space is used to monitor a Cyclic Redundancy Check (CRC) scrambled by SI-RNTI, P-RNTI, RA-RNTI, C-RNTI, SPS C-RNTI or Temporary C-RNTI.
  • CRC Cyclic Redundancy Check
  • MPDCCH Physical Downlink Control Channel
  • the PDSCH scheduled by the MPDCCH of the common search space mainly carries public information such as system information, paging information, and random access response, or UE-specific configuration information and/or UE before entering the RRC-connected state. Data, etc.
  • the UE-specific search space is used to detect an MPDCCH scrambled by a C-RNTI, an SPS C-RNTI, or a Temporary C-RNTI (Temporary C-RNTI), such as a Cyclic Redundancy Check (CRC).
  • the PDSCH scheduled by the MPDCCH in the UE-specific search space mainly carries UE-specific signaling and/or data and the like.
  • the configuring unit 110 configuring the MPDCCH includes: configuring one or more MPDCCH resource sets (MPDCCH-PRB-sets) for the MTC UE.
  • MPDCCH-PRB-sets MPDCCH resource sets
  • the configuration unit 110 may separately configure one or more MPDCCH resource sets for the MPDCCH common search space and the UE-specific search space.
  • the MPDCCH-PRB-set is a set of physical resource block pairs (PRB-pairs) for transmitting an MPDCCH for an MTC UE.
  • a particular type of UE eg, an MTC UE
  • the number of PRB-pairs of the MPDCCH-PRB-set may be configured by RRC signaling or MAC signaling or a physical broadcast channel or preset.
  • the PRB-pair number of the MPDCCH-PRB-set may be 2, 4 or 6.
  • the value 2 indicates that there are 2 PRB-pairs in the MPDCCH-PRB-set, 4 indicates that there are 4 PRB-pairs in the MPDCCH-PRB-set, and so on. This is different from the design for the EPDCCH resource set. See 3GPP TS 36.211 V11.3.0 (2013-06) and 3GPP TS 36.213 V11.3.0 (2013-06), the number of resource pairs that the existing EPDCCH resource set can include is 2, 4 or 8.
  • the configuration of the MPDCCH resource set can be implemented and indicated in various ways.
  • the MPDCCH resource set can then be defined by configuring multiple cis.
  • the MPDCCH resource set can be configured in two levels.
  • the system bandwidth is divided into a plurality of frequency sub-bands in advance, and each frequency sub-band includes a frequency width of 6 resource block pairs (ie, each sub-band corresponds to a frequency band broadband in which the MTC UE may work).
  • the configuration of the MPDCCH resource set may include: a first stage, selecting one frequency subband from a plurality of frequency subbands corresponding to the system bandwidth; and a second level, selecting, within the selected frequency subband, the MPDCCH resource set.
  • This first level configuration can be implemented, for example, by indexing selected frequency subbands.
  • the second level configuration can be implemented in several ways.
  • the second level configuration may be indicated by a local index of the PRB-pairs constituting the MPDCCH resource set in the frequency subband.
  • the MPDCCH resource set can be defined by a joint parameter including a frequency subband index and a local index of the PRB-pairs.
  • a combination of physical resource block pairs having a physical resource block logarithm of 2, 4, and 6 in size may be pre-defined in the frequency subband, and then the second level configuration may be implemented by selecting one of the combinations.
  • the MPDCCH resource set can be defined by a joint parameter including a frequency subband index and a combined index.
  • the MPDCCH resource set may be defined by a joint parameter including a frequency subband index, a local index of the starting PRB-pair, and a size of the resource set.
  • the two-level configuration can be indicated to the UE by signaling.
  • the first-level sub-band configuration can be pre-configured, while only the second-level configuration is dynamic in the transmission process and the UE needs to be notified, which can alleviate the signaling load in the system.
  • Configuring the MPDCCH by the configuration unit 110 may further include: configuring repetition of the MPDCCH, and the like level.
  • configuration unit 110 may separately configure one or more repetition levels for the MPDCCH common search space and the UE-specific search space.
  • the repetition level level of the MPDCCH of the common search space is level 2
  • the repetition level level of the MPDCCH of the UE-specific search space is level 4.
  • configuration unit 110 may configure one or more repetition levels for the MPDCCH common search space and the UE-specific search space.
  • the same MPDCCH repetition level level can be configured by common configuration signaling for the common search space and the UE-specific search space.
  • the configuration unit 110 may separately configure one or more MPDCCH-PRB-sets for each MPDCCH repetition level (hereinafter, a specific example of the configuration is explained with reference to FIG. 3). Alternatively, the configuration unit 110 may separately configure one or more sets of PRB-pairs corresponding to a certain MPDCCH-PRB-set for each MPDCCH repetition level.
  • the configuration unit 110 may separately configure one or more sets of PRB-pairs for each MPDCCH repetition level (hereinafter, a specific example of the configuration is explained with reference to FIG. 4) without configuring the MPDCCH-PRB-set
  • one or more MPDCCH-PRB-sets may be fixed or predefined for all MPDCCH repetition levels.
  • multiple frequency subbands corresponding to the system bandwidth may be divided into multiple groups in advance, and each frequency subband group is associated with a different repetition level.
  • the frequency subbands assigned to it can only be selected from the set of frequency subbands associated with their repetition level.
  • the configuration unit 110 may separately configure one or more repetition levels for the MPDCCH common search space and the UE-specific search space.
  • configuration unit 110 may configure one or more repetition levels for the MPDCCH common search space and the UE-specific search space.
  • the configuration unit 110 may separately configure one or more MPDCCH-PRB-sets for each MPDCCH repetition level.
  • configuration unit 110 may configure one or more MPDCCH-PRB-sets together for all MPDCCH repetition levels.
  • the configuration unit 110 may separately configure one or more sets of PRB-pairs corresponding to a certain MPDCCH-PRB-set for each MPDCCH repetition level.
  • the configuration unit 110 may collectively configure one or more sets of PRB-pairs corresponding to a certain MPDCCH-PRB-set for all MPDCCH repetition levels.
  • configuration unit 110 may configure only one or more sets of PRB-pairs for each MPDCCH repetition level.
  • the configuration unit 110 may separately configure one or more sets of PRB-pairs for each MPDCCH repetition level, and fix or predefine one or more MPDCCH-PRB-sets for all MPDCCH repetition levels.
  • the configuration unit 110 may jointly configure one or more sets of PRB-pairs for all MPDCCH repetition levels without configuring the MPDCCH-PRB-set.
  • the configuration unit 110 may jointly configure one or more sets of PRB-pairs for all MPDCCH repetition levels, and fixed or pre-define one or more MPDCCH-PRB-sets for all MPDCCH repetition levels.
  • the configuring the unit 110 to configure the MPDCCH may further include: configuring an aggregation level of the MPDCCH.
  • the aggregation level L indicates that L ECCEs are aggregated to transmit downlink control information.
  • the aggregation level of the MPDCCH should include a multiple of 6, for example, 6, 12 And 24.
  • the aggregation levels supported by the embodiments of the present invention are shown with reference to FIGS. 7 and 8.
  • the configuration unit 110 may separately configure one or more aggregation levels for the MPDCCH common search space and the UE-specific search space.
  • configuration unit 110 may separately configure one or more aggregation levels for each MPDCCH repetition level of the MPDCCH common search space.
  • configuration unit 110 may collectively configure one or more aggregation levels for all MPDCCH repetition levels of the MPDCCH common search space.
  • the configuration unit 110 may separately configure one or more aggregation levels for each MPDCCH repetition level of the MPDCCH UE-specific search space.
  • configuration unit 110 may be all of the MPDCCH UE-specific search space
  • the MPDCCH repetition level collectively configures one or more aggregation levels.
  • a default aggregation level can be set for monitoring the MPDCCH.
  • Different default aggregation levels may be set for the MPDCCH common search space and the UE specific search space respectively.
  • a common default aggregation level may be set for the MPDCCH common search space and the UE-specific search space.
  • a default aggregation level can be set individually for each MPDCCH repetition level.
  • a common default aggregation level can be set for all MPDCCH repetition levels.
  • the base station When the base station does not configure an aggregation level for the UE, the base station transmits control information in one of a set of MPDCCH candidates according to a default aggregation level.
  • the default MPDCCH physical resource set can be set.
  • One or more default MPDCCH-PRB-sets may be separately set for each MPDCCH repetition level.
  • one or more default MPDCCH-PRB-sets may be set together for all MPDCCH repetition levels.
  • the default number of physical resource block pairs can be set for monitoring the MPDCCH.
  • Different default physical resource block pairs may be set for the MPDCCH common search space and the UE specific search space respectively.
  • a common default number of physical resource block pairs may be set for the MPDCCH common search space and the UE-specific search space.
  • the default number of physical resource block pairs can be individually set for each MPDCCH repetition level.
  • a common default number of physical resource block pairs can be set for all MPDCCH repetition levels.
  • the base station When the base station does not configure the number of physical resource block pairs for the UE, the base station transmits the MPDCCCH by using the default physical resource block pair number.
  • the configuration unit 110 may determine a set of MPDCCH candidates in the configured MPDCCH resource set according to an aggregation level of the MPDCCH to be transmitted.
  • the set of MPDCCH candidates is defined according to an MPDCCH search space, where one MPDCCH candidate represents an ECCE aggregate that may carry an MPDCCH in the MPDCCH search space.
  • the search space for a certain aggregation level is determined by a group that meets the aggregation level.
  • MPDCCH candidate is defined.
  • the number of MPDCCH candidates at a given aggregation level and MPDCCH resource set size ie, the number of included PRB-pairs
  • the PRB-pairs group for the MPDCCH of the common search space, only the PRB-pairs group may be configured, and the PRB-pairs group has a size of 6 PRB-pairs.
  • the MTC UE blindly checks the MPDCCH in a PRB-pairs group according to different aggregation levels.
  • the aggregation level of the MPDCCH of the common search space may be 1, 2, 4, 6, 12, 24, and the like.
  • One or more PRB-pairs groups can be individually configured for each MPDCCH repetition level. Alternatively, one or more PRB-pairs groups may be co-configured for all MPDCCH repetition levels.
  • the MPDCCH of the UE-specific search space it is first necessary to configure one or more PRB-pairs groups for the MPDCCH of the UE-specific search space, and the size thereof is 6 PRB-pairs.
  • One or more PRB-pairs groups may be separately configured for each MPDCCH repetition level of the UE-specific search space.
  • one or more PRB-pairs groups may be co-configured for the MPDCCH repetition level of all UE-specific search spaces.
  • the MPDCCH configuration may be notified to the MTC UE by the configuration unit 110 in various manners, for example, configuration information indicating the MPDCCH configuration may be delivered through RRC signaling or MAC signaling or a physical broadcast channel or the like. Or the MPDCCH configuration may be preset and is known in advance by both the base station and the MTC UE.
  • the sending unit 120 may send MPDCCH configuration information to the MTC user equipment.
  • the MPDCCH configuration information includes information indicating a configured MPDCCH resource set.
  • the MPDCCH configuration information may include information indicating a repetition level and/or an aggregation level.
  • the MPDCCH configuration information may further include other time domain and/or frequency domain configuration parameters of the MPDCCH, such as a starting subframe of the MPDCCH, an available subframe indication, an ending subframe, a size and a location of the physical resource block, and the like.
  • the sending of the MPDCCH configuration information may be carried by using RRC signaling, MAC signaling, or a physical broadcast channel.
  • the configuration of the MPDCCH resource set is associated with a repetition level.
  • information indicating such MPDCCH resource set configuration is also associated with the repetition level.
  • the transmitting unit 120 may transmit downlink control information for the MTC user equipment in one of the MPDCCH candidates determined by the configuration unit 110.
  • FIG. 2 shows a block diagram of a User Equipment UE 200 in accordance with the present invention.
  • the UE 200 includes a receiving unit 210 and a determining unit 220.
  • the UE 200 also includes other functional units necessary to implement its functions, such as various processors, memories, and the like. However, a detailed description of these well-known elements has been omitted for the sake of brevity.
  • the receiving unit 210 is configured to receive MPDCCH configuration information from the base station.
  • the MPDCCH configuration information may be carried by RRC signaling, MAC signaling, or a physical broadcast channel.
  • the MPDCCH configuration information may include information indicating an MPDCCH resource set.
  • the MPDCCH configuration information may include information indicating a repetition level and/or information indicating an aggregation level. It should be understood that the MPDCCH configuration information may further include other time domain and/or frequency domain configuration parameters of the MPDCCH, such as a starting subframe of the MPDCCH, an available subframe indication, an ending subframe, a size and a location of the physical resource block, and the like.
  • the PRB-pair is globally indexed within the system bandwidth.
  • the information indicating the MPDCCH resource set may include an index indicating each PRB-pair that constitutes the MPDCCH resource set.
  • the system bandwidth is pre-divided into multiple frequency sub-bands.
  • the information indicating the MPDCCH resource set may include information indicating a frequency sub-band and indicating a plurality of resource block pairs constituting the MPDCCH resource set.
  • Information about the distribution in the frequency subband Preferably, in some embodiments, where a combination of physical resource block pairs of physical resource block pairs of a size of 2, 4 or 6 is predefined in the frequency subband, the indication constitutes a plurality of MPDCCH resource sets.
  • the information of the resource block's distribution in the frequency subband includes information indicating one of the combinations.
  • the configuration of the MPDCCH resource set is associated with a repetition level. Accordingly, the information indicating the configuration of such an MPDCCH resource set is also associated with a repetition level.
  • the determining unit 220 determines one or more MPDCCH resource sets for monitoring the MPDCCH according to the received MPDCCH configuration information, where the number of physical resource block pairs of the MPDCCH resource set is 2, 4, or 6.
  • the determining unit 220 may further determine a group of MPDCCH candidates in the determined MPDCCH resource set according to the aggregation level.
  • the receiving unit 210 may be one or more determined by the determining unit 220.
  • the MPDCCH resource centrally monitors the MPDCCH. Specifically, the receiving unit 210 monitors the MPDCCH in a group of MPDCCH candidates determined by the determining unit 220 to acquire downlink control information for the MTC user equipment. Monitoring a set of MPDCCH candidates means attempting to decode each MPDCCH in the set of MPDCCH candidates in accordance with the monitored Downlink Control Information (DCI) format.
  • DCI Downlink Control Information
  • the MPDCCH of the Rel-13 MTC UE can only be located in a certain 6 PRB-pairs within the bandwidth of the cell system.
  • the number of PRB-pairs of the MPDCCH may be 2, 4 or 6, instead of 2, 4 or 8 PRB-pairs of the existing EPDCCH.
  • the aggregation level of the MPDCCH should include multiples of 6, such as 6, 12, and 24.
  • FIG. 3 shows a schematic diagram of separately configuring an MPDCCH-PRB-set for each repetition level according to an embodiment of the present invention.
  • two MPDCCH-PRB-sets MPDCCH-PRB-set 1 and MPDCCH-PRB-set 2 are configured.
  • MPDCCH-PRB-set 1 is configured for MPDCCH repetition levels 0 and 1;
  • two MPDCCH-PRB-sets are configured for MPDCCH repetition level 2: MPDCCH-PRB-set 1 and MPDCCH- PRB-set 2;
  • MPDCCH-PRB-set 2 is configured for MPDCCH repetition or the like 3.
  • the configuration manner may be RRC signaling or MAC signaling or a physical broadcast channel or preset.
  • one or more MPDCCH-PRB-sets may be configured together for each repetition level.
  • one or more MPDCCH-PRB-sets can be configured for all MPDCC repetition levels by one signaling.
  • FIG. 4 shows a schematic diagram of a PRB-pairs group in which an MPDCCH is separately configured for each repetition level according to an embodiment of the present invention.
  • three PRB-pairs groups were configured: PRB-pairs group 1, PRB-pairs group 2, and PRB-pairs group 3.
  • the three PRB-pairs may belong to the same MPDCCH-PRB-set or belong to different MPDCCH-PRB-sets.
  • PRB-pairs group 1 is configured for MPDCCH repetition levels 0 and 1
  • PRB-pairs group 2 is configured for MPDCCH repetition level 2
  • PRB-pairs group 3 is configured for MPDCCH repetition level 3.
  • the configuration manner may be RRC signaling or MAC signaling or a physical broadcast channel or preset.
  • one or more PRB-pairs groups are configured together for each repetition level. That is, one or more PRB-pairs groups are configured for all MPDCC repetition levels by one signaling.
  • FIG. 5 illustrates dividing a system bandwidth into a number of frequency subbands according to an embodiment of the present invention.
  • Schematic diagram where each frequency sub-band includes 6 PRB-pairs, also known as the 6PRB-pairs group.
  • the MTC UE of Rel-13 can only connect the bandwidth of 6 PRB-pairs.
  • the current LTE system can support system bandwidths of 1.4, 3, 5, 10, 15, and 20 MHz. Therefore, the system bandwidth of the cell can be pre-divided into a number of PRB-pairs groups of 6 PRB-pairs bandwidth. As shown in FIG. 5, the system bandwidth of 20 MHz is divided into 16 PRB-pairs groups, and each group has a size of 6 PRB-pairs.
  • Different PRB-pairs groups can be configured to different MPDCCH repetition levels.
  • the PRB-pairs group with the sequence numbers 0, 4, 8, and 12 is configured to the MPDCCH repetition level 0; the PRB-pairs group with the sequence numbers 1, 5, 9, and 13 is configured to the MPDCCH repetition level 1;
  • the PRB-pairs group with the sequence number 2, 6, 10, and 14 is configured to the MPDCCH repetition level 2; the PRB-pairs group with the sequence numbers 3, 7, 11, and 15 is configured to the MPDCCH repetition level 3.
  • FIG. 6 shows a schematic diagram of an example division of PRB-pairs into a combination comprising 2, 4, 6 PRB-pairs within a PRB-pairs group, in accordance with an embodiment of the present invention.
  • the PRB-pairs in Figure 6 are continuously distributed PRB-pairs.
  • One or more PRB-pairs combinations may be separately configured for the MPDCCH repetition level of each UE specific search space.
  • one or more PRB-pairs combinations may be co-configured for the MPDCCH repetition level of all UE-specific search spaces.
  • FIG. 7 illustrates an MPDCCH/EPDCCH (abbreviated as M/EPDCCH) format that may be supported in a system in which an MTC UE and an existing LTE UE exist simultaneously according to an embodiment of the present invention.
  • M/EPDCCH MPDCCH/EPDCCH
  • the figure introduces a new M/EPDCCH format 5 and modifies the format M/EPDCCH based on the table 6.8A.1-2 of the standard 3GPP TS 36.211 V11.3.0 (2013-06).
  • Format 4 thereby introducing an aggregate (i.e., aggregation levels 6, 12 and 24) that allows 6, 12, 24 ECCEs for transmission of one MPDCCH.
  • case 7 represents a case where one physical resource block pair includes 4 ECCEs
  • case B represents a case where one physical resource block pair includes 2 ECCEs.
  • the centralized transmission indicates that one MPDCCH/EPDCCH is transmitted in an aggregate composed of consecutive ECCEs.
  • the distributed transmission indicates that one MPDCCH/EPDCCH is transmitted in a consortium of discontinuous ECCEs to obtain diversity gain.
  • the number of physical resource block pairs included in the MPDCCH resource set may be 2 or 4 (similar to the case of EPDCCH), and may be 6. Accordingly, aggregation levels 6, 12, and 24 (polymers corresponding to 6, 12, and 24 ECCEs, respectively) can be supported.
  • This Figure 7 applies to both MTC UEs and existing LTE UEs.
  • FIG. 8 illustrates an MPDCCH format that can be supported in a system supporting only MTC UEs according to an embodiment of the present invention.
  • the MPDCCH formats 0, 1, 2, 3, and 4 in FIG. 8 correspond to the M/EPDCCH formats 0, 1, 3, 5, and 4 in FIG. 7, respectively, but only support centralized transmission, and do not support distributed transmission. .
  • the possibility of using 6, 12, 24 ECCEs for MPDCCH transmission is introduced in MPDCCH formats 3 and 4. This is compatible with the working bandwidth of the MTC UE of 1.4M (corresponding to 6 physical resource block pairs).
  • FIG. 9 is a table showing a relationship between an M/EPDCCH candidate number supporting all users and an aggregation level and a number of physical resource block pairs according to an embodiment of the present invention.
  • the figure is obtained by augmenting the table Table 9.1.4-2b of the standard 3GPP TS 36.213 V11.5.0 (2013-06).
  • Figure 9 is applicable to systems that support both MTC UEs and existing LTE UEs.
  • the number of physical resource block pairs used for the MPDCCH L represents the aggregation level L ⁇ ⁇ 1, 2, 4, 8, 12, 16, 24, 32 ⁇ .
  • the aggregation level may be configured by RRC signaling or MAC signaling or a physical broadcast channel or preset.
  • the number of physical resource block pairs may be configured by RRC signaling or MAC signaling or a physical broadcast channel or preset.
  • FIG. 10 is a table showing the relationship between the number of MPDCCH candidates and the aggregation level and the number of physical resource block pairs in a system supporting only MTC UEs according to the present invention. Similar to Figure 9, in Figure 10 Representing the number of physical resource block pairs for the MPDCCH and L represents the aggregation level and L ⁇ ⁇ 1, 2, 4, 8, 12, 16, 24 ⁇ . By looking up FIG. 10, the corresponding number of MPDCCH candidates can be found according to the number of levels of the specified aggregation level and the number of physical resource block pairs.
  • the aggregation level is configured by RRC signaling or MAC signaling or physical broadcast channel or preset.
  • the number of physical resource block pairs is configured by RRC signaling or MAC signaling or a physical broadcast channel or preset. After obtaining the aggregation level and the number of physical resource block pairs, the MTC UE can know the corresponding number of MPDCCH candidates.
  • the MTC communication system may include one or more base stations 100 supporting MTC and one or more user equipment MTC UEs 200 supporting MTC. Although only one base station 100 and one MTC UE 200 are shown in the figure, the present invention may include more base stations and more MTC UEs, and the present invention is not limited in this regard.
  • the base station 100 performs configuration of the MPDCCH for the MTC UE 200. Specifically, in step S1110, the base station 100 configures one or more MPDCCH resource sets for the MTC UE 200 to transmit the MPDCCH.
  • the number of physical resource block pairs of the MPDCCH resource set is 2, 4, or 6.
  • the base station may further configure an MPDCCH aggregation level, and determine a set of MPDCCH candidates in the configured MPDCCH resource set according to the aggregation level.
  • the MPDCCH resource set is separately configured based on each MPDCCH repetition level.
  • the physical resource block pairs in the MPDCCH resource set are separately configured based on each MPDCCH repetition level.
  • the system bandwidth is pre-divided into a plurality of frequency sub-bands, each frequency sub-band comprising a frequency bandwidth of 6 resource block pair sizes.
  • one or more MPDCCH resource sets are configured for the MTC user equipment by selecting one frequency subband from the plurality of frequency subbands, and then selecting from the selected frequency subbands. Multiple resource block pairs of the MPDCCH resource set.
  • the system bandwidth is pre-divided into a plurality of frequency sub-bands, each frequency sub-band comprising a frequency bandwidth of 6 resource block pair sizes. Moreover, a combination of physical resource block pairs of physical resource block pairs of a size of 2, 4 or 6 is predefined in the frequency subband. Then, in step S1110, one or more MPDCCH resource sets are configured for the MTC user equipment by selecting one of the plurality of frequency sub-bands and selecting one of the combinations.
  • step S1120 MPDCCH configuration information is sent to the MTC user equipment, where the MPDCCH configuration information includes information indicating the MPDCCH resource set.
  • the transmission of the MPDCCH configuration information may be carried by RRC signaling, MAC signaling, or a physical broadcast channel.
  • the MPDCCH configuration information is associated with an MPDCCH repetition level.
  • step S1210 the MTC UE receives MPDCCH resource configuration information from the base station.
  • step S1220 the MTC UE determines an MPDCCH configuration according to the received MPDCCH configuration information. Specifically, in step S1220, the MTC UE determines one or more MPDCCH resource sets for monitoring the MPDCCH according to the received MPDCCH configuration information, where the number of physical resource block pairs of the MPDCCH resource set is 2, 4, or 6. Optionally, in step S1220, the MTC UE may further determine a set of MPDCCH candidates in the determined MPDCCH resource set according to the aggregation level, to reduce the number of blind decodings.
  • step S1130 the base station transmits downlink control information for the MTC user equipment in the MPDCCH resource set determined in step S1110 (in particular, in one of a group of MPDCCH candidates determined in step S110).
  • step S1230 the MTC UE monitors the MPDCCH in the MPDCCH resource set determined in step S1220 (in particular, in a group of MPDCCH candidates determined in step S1220) to acquire downlink control information for the MTC user equipment.
  • monitoring the MPDCCH in the candidate of a group of MPDCCHs includes attempting to decode each MPDCCH candidate according to the monitored DCI format in the set of MPDCCH candidates.
  • method 1100 can include more or fewer steps.
  • the method 1100 may further include the step of setting a default MPDCCH resource set in advance.
  • the method 1100 may further include the step of setting a default aggregation level in advance.
  • the method 1100 may further include the step of presetting the size of the default MPDCCH resource set (ie, the number of resource block pairs included).
  • the method 1100 may further include setting a default number of MPDCCH candidates.
  • the method and apparatus of the present invention have been described above in connection with the preferred embodiments. Those skilled in the art will appreciate that the methods shown above are merely exemplary. The method of the present invention is not limited to the steps and sequences shown above.
  • the base stations and user equipment shown above may include more modules, such as modules that may be developed or developed in the future for base stations or UEs, such as various processors, memories, and the like. Many variations and modifications can be made by those skilled in the art in light of the teachings of the illustrated embodiments.
  • the above embodiments of the present invention may be implemented by software, hardware or software and hard. A combination of the two is achieved.
  • various components within the device in the above embodiments may be implemented by various devices including, but not limited to, analog circuit devices, digital circuit devices, digital signal processing (DSP) circuits, programmable processors, dedicated Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), Programmable Logic Devices (CPLDs), and more.
  • DSP digital signal processing
  • ASICs dedicated Integrated Circuits
  • FPGAs Field Programmable Gate Arrays
  • CPLDs Programmable Logic Devices
  • embodiments of the invention disclosed herein may be implemented on a computer program product.
  • the computer program product is a product having a computer readable medium encoded with computer program logic that, when executed on a computing device, provides related operations to implement The above technical solution of the present invention.
  • the computer program logic When executed on at least one processor of a computing system, the computer program logic causes the processor to perform the operations (methods) described in the embodiments of the present invention.
  • Such an arrangement of the present invention is typically provided as software, code and/or other data structures, or such as one or more, that are arranged or encoded on a computer readable medium such as an optical medium (e.g., CD-ROM), floppy disk, or hard disk.
  • Software or firmware or such a configuration may be installed on the computing device such that one or more processors in the computing device perform the technical solutions described in the embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种适合于窄带MTC UE的下行链路控制信道的发送和接收机制,以及执行所述机制的基站和用户设备。根据本发明实施例的方法包括:确定MPDCCH资源集并且根据聚合等级在所确定的MPDCCH资源集中确定一组MPDCCH候选,所述MPDCCH资源集的物理资源块对的数目为2、4或6;以及,在所确定的一组MPDCCH候选中监测MPDCCH,以获取针对所述MTC用户设备的下行控制信息。

Description

物理下行控制信道的传输方法以及基站和用户设备 技术领域
本发明涉及无线通信技术领域,更具体地,本发明涉及物理下行控制信道的发送和接收方法、基站和用户设备。
背景技术
随着移动通信的快速增长和技术的巨大进步,世界将走向一个完全互联互通的网络社会,即任何人或任何东西在任何时间和任何地方都可以获得信息和共享数据。预计到2020年,互联设备的数量将达到500亿部,其中仅有100亿部左右可能是手机和平板电脑,其它的则不是与人对话的机器,而是彼此对话的机器。因此,如何设计系统以支持数量庞大的机器通信设备是一项需要深入研究的课题。
在第三代合作伙伴计划(3GPP)的长期演进项目(Long Term Evolution,LTE)的标准中,将机器对机器的通信称为机器类型通信(Machine Type Communication,MTC)。MTC是一种不需要人为参与的数据通信服务。大规模的MTC用户设备部署,可以用于安全、跟踪、付账、测量以及消费电子等领域,具体涉及的应用包括视频监控、供货链跟踪、智能电表,远程监控等。MTC要求较低的功率消耗,支持较低的数据传输速率和较低的移动性。目前的LTE系统主要是针对人与人的通信服务。而实现MTC服务的规模竞争优势及应用前景的关键在于LTE网络支持低成本的MTC设备。
另外,一些MTC设备需要安装在居民楼地下室或者由绝缘箔片、金属护窗或者传统建筑物的厚墙保护的位置,相比较LTE网络中常规设备终端(如手机,平板电脑等),这些设备的空中接口将明显遭受更严重的穿透损失。3GPP决定研究附加20dB覆盖增强的MTC设备的方案设计与性能评估,值得注意的是,位于糟糕网络覆盖区域的MTC设备具有以下特点:非常低的数据传输速率、非常宽松的延时要求以及有限的移动性。针对以上MTC特点,LTE网络可以进一步优化一些信令和/或信道用以更好地支持MTC业务。
为此,在2014年6月举行的3GPP RAN#64次全会上,提出了一个新的面向Rel-13的低复杂性和覆盖增强的MTC的工作项目(参见非专利文献:RP-140990New Work Item on Even Lower Complexity and Enhanced Coverage LTE UE for MTC,Ericsson,NSN)。在该工作项目的描述中,LTE Rel-13系统需要支持上下行1.4MHz射频带宽的MTC用户设备(User Equipment,UE,以下称为窄带MTC UE)工作在任意的系统带宽(例如1.4MHz、3MHz、5MHz、10MHz、15MHz、20MHz等等)下,并且为该类MTC用户提供覆盖增强功能。在系统设计时,低成本MTC用户和覆盖增强MTC用户要采用统一的设计方案。
对于覆盖增强的MTC UE而言,需要采用增强技术来提高MTC UE物理信道的接收信号强度。在Rel-12MTC的讨论中,主要采用子帧绑定或重复传输的方式来提高MTC物理信道的接收信号强度。处于不同地理位置的MTC UE所需覆盖增强的程度会不一样,可以将同一小区的MTC UEs划分为多个不同覆盖增强等级,不同覆盖增强等级所需重复传输的次数不一样。也可以用重复等级(repetition level)来表示覆盖增强等级。例如,可以将覆盖增强的MTC UE的PRACH划分为4个重复等级(0、1、2、3),分别对应于覆盖增强0dB、5dB、10dB、15dB。
在现有的LTE系统中,LTE UE通过宽带的物理下行控制信道(PDCCH)承载的控制信息来接收物理下行共享信道(PDSCH)。或者,LTE UE通过宽带的物理下行控制信道(PDCCH)承载的控制信息来接收用户特定(UE-specific)的增强物理下行控制信道(EPDCCH),然后可以通过EPDCCH承载的控制信息来接收PDSCH。由于Rel-13的MTC UE只能工作在1.4MHz的频带宽度上(对应于6个物理资源块(PRB)/物理资源块对(PRB-pairs)占用的频带宽度),而宽带的PDCCH使用20M的带宽(对应于100个PRB占用的频带宽度),因此Rel-13的MTC UE不能接收宽带的PDCCH,而只能接收窄带的PDSCH和EPDCCH(下文中,将针对Rel-13的MTC UE的EPDCCH称为MPDCCH)。也就是说Rel-13MTC UE的物理下行控制信道(MPDCCH)只能位于6个物理资源块(PRB)占用的频带宽度内。现有的LTE UE的EPDCCH可配的物理资源块对(PRB-pair)数为2、4或8,可配置的聚合等级(aggregation  level)为1、2、4、8、16或32(即分别支持聚合1、2、4、8、16或32个连续分布的增强的控制信道单元(ECCE)),但是其不支持物理资源块对的数目为6及其对应的聚合等级。因此,为了适应MTC UE工作在6个物理资源块(PRB)大小的频带宽度上,需要一种新的适合于窄带MTC UE的MPDCCH的发送和接收方法。
发明内容
本发明旨在提供一种适合于窄带MTC UE的下行链路控制信道的发送和接收机制,以及执行所述机制的基站和用户设备。
根据本发明的第一方面,提供了一种MTC用户设备,包括:接收单元,用于当高层信令配置的MTC物理下行控制信道(MPDCCH)资源集(MPDCCH-PRB-set)的物理资源块数为6时,以聚合等级24来监测MPDCCH的候选,以获取针对所述MTC用户设备的下行控制信息(DCI),其中,所述MPDCCH的候选是基于每一聚合等级和/或每一重复等级所定义的。
在一些实施例中,监测MPDCCH的候选包括:尝试在所述的MPDCCH的候选中按照被监测的下行控制信息(DCI)格式解码每一候选的MPDCCH。
在一些实施例中,MPDCCH包括MPDCCH公共搜索空间和UE特定的搜索空间,以及所述MPDCCH资源集是针对MPDCCH公共搜索空间和UE特定的搜索空间分别配置的。
在一些实施例中,所述MPDCCH资源集是根据从基站接收的信令确定的,或者是预先设置的默认MPDCCH资源集,或者是根据预先设置的默认的物理资源对数目确定的。
在一些实施例中,所述聚合等级是针对MPDCCH公共搜索空间和用户特定的搜索空间分别配置的。
在一些实施例中,所述聚合等级是根据从基站接收的信令确定的,或者是预先设置的默认聚合等级。
在一些实施例中,所述重复等级是针对MPDCCH公共搜索空间和用户特定的搜索空间分别配置的。
在一些实施例中,所述重复等级是根据从基站接收的信令确定的,或 者是预先设置的默认重复等级。
根据本发明的第二方面,提供了一种支持MTC的基站,包括:发射单元,用于当高层信令配置的MTC物理下行控制信道(MPDCCH)资源集(MPDCCH-PRB-set)的物理资源块数为6时,以聚合等级24在一个MPDCCH候选中发射针对MTC用户设备的下行控制信息(DCI),其中,所述MPDCCH的候选是基于每一聚合等级和/或每一重复等级所定义的。
在一些实施例中,所述配置单元预先设置默认的MPDCCH资源集,或者预先设置默认的物理资源对数目。
在一些实施例中,所述配置单元预先设置默认的聚合等级。
在一些实施例中,所述配置单元设置默认数量的MPDCCH候选。
根据本发明的第三方面,提供了一种在MTC用户设备中执行的方法,包括:当高层信令配置的MTC物理下行控制信道(MPDCCH)资源集(MPDCCH-PRB-set)的物理资源块数为6时,以聚合等级24来监测MPDCCH的候选,以获取针对所述MTC用户设备的下行控制信息(DCI),其中,所述MPDCCH的候选是基于每一聚合等级和/或每一重复等级所定义的。
根据本发明的第四方面,提供了一种在支持MTC的基站中执行的方法,包括:当高层信令配置的MTC物理下行控制信道(MPDCCH)资源集(MPDCCH-PRB-set)的物理资源块数为6时,以聚合等级24在一个MPDCCH候选中发射针对MTC用户设备的下行控制信息(DCI),其中,所述MPDCCH的候选是基于每一聚合等级和/或每一重复等级所定义的。
在一些实施例中,所述方法还包括:预先设置默认的MPDCCH资源集。
在一些实施例中,所述方法还包括:预先设置默认的聚合等级。
在一些实施例中,所述方法还包括:设置默认数量的MPDCCH候选。
附图说明
通过下文结合附图的详细描述,本发明的上述和其它特征将会变得更加明显,其中:
图1示出了根据本发明实施例的基站的框图。
图2示出了根据本发明实施例的用户设备的框图。
图3示出了根据本发明实施例的为每一重复等级单独配置MPDCCH物理资源块集的示例的示意图。
图4示出了根据本发明实施例的为每一重复等级单独配置MPDCCH物理资源块对的示例的示意图。
图5示出了根据本发明实施例的将系统带宽分为若干个频率子带(6PRB-pairs组)的示意图。
图6示出了根据本发明实施例的在一个频率子带内划分包括2,4,6个PRB-pairs的组合的示例分法的示意图。
图7示出了根据本发明实施例的在同时存在MTC UE和现有LTE UE的系统中可以支持的M/EPDCCH格式。
图8示出了根据本发明实施例的在仅支持MTC UE的系统中可以支持的MPDCCH格式。
图9示出了根据本发明实施例的支持所有用户的M/EPDCCH候选数与聚合等级和物理资源块对数目的关系表。
图10示出了根据本发明的在仅支持MTC UE的系统中的MPDCCH候选数与聚合等级和物理资源块对数目的关系表。
图11示出了可在支持MTC的通信系统中实现的根据本发明实施例的MPDCCH配置和传输方法的示例流程图。
在附图中,相同的附图标记指示相同或类似的要素。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细阐述。应当注意,本发明不应局限于下文所述的具体实施方式。另外,为了简便起见,省略了对与本发明没有直接关联的公知技术的详细描述,以防止对本发明的理解造成混淆。
下文以LTE移动通信系统及其后续的演进版本作为示例应用环境,具体描述了根据本发明的用于MPDCCH的物理资源配置的实施方式。然而,需要指出的是,本发明不限于以下实施方式,而是可适用于更多其它的无线通信系统,例如今后的5G蜂窝通信系统。
如前所述,在本文中,MPDCCH是为某一特定类型的用户设备(例如Rel 13的MTC UE)传输下行控制信息的物理下行控制信道。本发明 的用于MPDCCH的资源配置机制的构思可以通过参考和修改标准3GPP TS 36.211V11.3.0(2013-06)和3GPP TS 36.213V11.3.0(2013-06)中关于EPDCCH的资源分配规定来实现。在此通过引用,将这两个标准的内容并入本文。在下文中,除非另有明示,本文中使用的术语如果在这两个标准中有定义,则该定义也适用于本文。
在LTE系统中,在下行链路上使用正交频分复用(OFDM)。OFDM将系统带宽分为多个子载波,在时间轴上分为多个OFDM符号。一个资源单元(Resource Element,简称RE)在时域上覆盖一个OFDM符号,在频域上覆盖一个子载波。用于下行链路的传输时间轴可以被划分为多个单位的无线帧。每个无线帧具有预定的持续时间,并且可以划分为多个子帧(例如索引为0到9的10子帧)。每个子帧包含两个时隙,每个时隙包括预定数量的(例如7个)OFDM符号。可用的时频物理资源可以划分为资源块(Physical Resource Bloack,简称PRB),每个资源块覆盖一个时隙的N个子载波(例如典型的为12个子载波)。一个子帧中相同频域上的一对资源块构成一个资源块对(PB-pair)。
在下文的示例中,主要考虑支持MTC的LTE系统,其中系统带宽为20M,而MTC UE工作在1.4M频率带宽上。在该系统中,系统带宽在频域中可以例如分为100个资源块,例如可以通过索引ci来表示,其中i=0,……100。一个物理资源块对在频域上覆盖12个子载波,在时域上覆盖14个OFDM符号,于是一个物理资源块对可以包含168个RE。
与现有EPDCCH类似,将MPDCCH的基本资源粒子限定为增强的控制信道单元(Enhanced Control Channel Element,简称ECCE)。每一个ECCE由多个增强的资源单元组(EREG)所组成。每一个增强的资源单元组(EREG)由多个RE所组成。EREG用于定义增强的控制信道到资源单元(RE)的映射。在一些情形中一个PRB-pair可以包含4个增强的控制信道单元(ECCE),而在另一些情形中一个PRB-pair可以包含2个ECCE。
图1示出了根据本发明实施例的基站100的框图。该基站100支持较宽的(例如20M)的系统带宽。如图所示,基站100包括配置单元110和发送单元120。本领域技术人员应理解,基站100还可以包括实现其功能所必需的其他功能单元,如各种处理器、存储器等。然而为了简便, 省略了这些公知元件的详细描述。
配置单元110用于配置MPDCCH。
如前所述,MPDCCH是为窄带MTC UE传输下行控制信息的物理下行控制信道。窄带MTC UE指该UE的工作带宽远小于系统带宽,例如前文所述的LTE Rel-13中定义的机器类型通信的用户设备,其支持上下行1.4MHz的射频带宽。MPDCCH包含针对MTC UE的PDSCH的调度信息。该MPDCCH可以仅在一个子帧内传输,也可以在多个子帧内重复传输以增强该信道的覆盖范围。MPDCCH有两个搜索空间(search space):公共搜索空间(common search space)和UE特定的搜索空间(UE-specific search space)。公共搜索空间用于监测一个其循环冗余校验(CRC:Cyclic Redundancy Check)被SI-RNTI、P-RNTI、RA-RNTI、C-RNTI、SPS C-RNTI或Temporary C-RNTI等所加扰的MPDCCH。被该公共搜索空间的MPDCCH所调度的PDSCH主要承载:系统信息、寻呼信息和随机接入响应等公共信息,或者UE进入RRC连接(RRC-connected)状态前的UE特定的配置信息和/或数据等。UE特定的搜索空间用于检测一个其循环冗余校验(CRC:Cyclic Redundancy Check)被C-RNTI、SPS C-RNTI或临时C-RNTI(Temporary C-RNTI)等所加扰的MPDCCH。被该UE特定的搜索空间中的MPDCCH所调度的PDSCH主要承载UE特定的信令和/或数据等。
配置单元110配置MPDCCH包括:为MTC UE配置一个或多个MPDCCH资源集(MPDCCH-PRB-sets)。
优选地,配置单元110可以为MPDCCH公共搜索空间和UE特定的搜索空间分别配置一个或多个MPDCCH资源集。
MPDCCH-PRB-set是用于为MTC UE传输MPDCCH的一组物理资源块对(PRB-pairs)。某一特定类型的UE(例如MTC UE)在该组PRB-pairs内监测MPDCCH。MPDCCH-PRB-set的PRB-pair数数目可以通过RRC信令或MAC信令或物理广播信道或预先设置等方式配置。考虑到Rel 13的MTC UE在6个物理资源块对大小的频带宽度内工作,本发明提出MPDCCH-PRB-set的PRB-pair数可以是2、4或6。数值2表示MPDCCH-PRB-set中有2个PRB-pairs,4表示MPDCCH-PRB-set中有4个PRB-pairs,等等。这与针对EPDCCH资源集的设计不相同,参 见3GPP TS 36.211V11.3.0(2013-06)和3GPP TS 36.213V11.3.0(2013-06),现有EPDCCH资源集可以包括的资源对数目是2、4或8。
在本发明中,MPDCCH资源集的配置可以通过多种方式来实现和指示。
在一些实施例中,可以对系统带宽内的所有资源块对进行索引(也称为全局索引例如ci,i=0,……99)。于是MPDCCH资源集可以通过配置多个ci来限定。
备选地,在另一些实施例中,可以对MPDCCH资源集进行两级配置。预先将系统带宽分为多个频率子带,每个频率子带包括6个资源块对大小的频率宽度(即,每个子带对应了MTC UE可能工作的频带宽带)。例如,可以将20M的系统带宽分为16个频率子带,这些频率子带可以通过频率子带索引(例如zj,j=0,……15)来标识。于是对MPDCCH资源集的配置可以包括:第一级,从系统带宽对应的多个频率子带中选择一个频率子带;以及第二级,在选定频率子带内部选择构成该MPDCCH资源集的多个资源块对。该第一级配置可以例如通过选定频率子带的索引来实现。第二级配置可以通过若干方式来实现。例如,可以通过构成MPDCCH资源集的PRB-pairs在该频率子带中的局部索引来指示该第二级配置。相应地,MPDCCH资源集可以通过包含频率子带索引和PRB-pairs的局部索引的联合参数来限定。或者,优选地,可以在频率子带中预先定义物理资源块对数为2、4和6大小的物理资源块对的组合,然后可以通过选择所述组合之一来实现该第二级配置。相应地,MPDCCH资源集可以通过包含频率子带索引和组合索引的联合参数来限定。或者,可选地,可以通过起始PRB-pair在频率子带中的局部索引cli(例如,li=0,……,5)以及资源集包括的PRB-pairs的数目(也即资源集的大小)来限定第二级配置。相应地,MPDCCH资源集可以通过包含频率子带索引、起始PRB-pair的局部索引以及和资源集的大小的联合参数来限定。在该两级配置的情形下,可以通过信令向UE指示这两级配置。或者,针对MTC UE,第一级的子带配置可以预先配置,而在传输过程仅第二级配置是动态的且需要通知UE,这可以减轻系统中的信令负荷。
配置单元110配置MPDCCH还可以包括:配置MPDCCH的重复等 级。例如,配置单元110可以为MPDCCH公共搜索空间和UE特定的搜索空间单独配置一个或多个重复等级。例如:公共搜索空间的MPDCCH的重复等级级数为2级,而UE特定的搜索空间的MPDCCH的重复等级级数为4级等。备选地,配置单元110可以为MPDCCH公共搜索空间和UE特定的搜索空间共同配置一个或多个重复等级。例如,可以为公共搜索空间和UE特定的搜索空间通过共同的配置信令配置同一MPDCCH重复等级级数。
在配置了MPDCCH的重复等级的情况下,配置单元110可以为每一MPDCCH重复等级单独配置一个或多个MPDCCH-PRB-sets(在下文中,参考图3说明了该配置的一个具体示例)。备选地,配置单元110可以为每一MPDCCH重复等级单独配置对应于某一MPDCCH-PRB-set的一组或多组PRB-pairs。
备选地,配置单元110可以为每一MPDCCH重复等级只单独配置一组或多组PRB-pairs(在下文中,参考图4说明了该配置的一个具体示例),而不配置MPDCCH-PRB-set,或者可以为所有的MPDCCH重复等级固定或预定义某一个或多个MPDCCH-PRB-set。
备选地,在上述两级配置的情况下。在第一级配置中,可以预先将系统带宽对应的多个频率子带分为多个组,将每个频率子带组与不同的重复等级相关联。从而对于特定的MPDCCH,分配给其的频率子带仅能从与其重复等级关联的频率子带组中选择。(在下文中,参考图6说明了该配置的一个具体示例)。
配置单元110可以为MPDCCH公共搜索空间和UE特定的搜索空间单独配置一个或多个重复等级。
备选地,配置单元110可以为MPDCCH公共搜索空间和UE特定的搜索空间共同配置一个或多个重复等级。
配置单元110可以为每一MPDCCH重复等级单独配置一个或多个MPDCCH-PRB-set。
备选地,配置单元110可以为所有MPDCCH重复等级共同配置一个或多个MPDCCH-PRB-set。备选地,配置单元110可以为每一MPDCCH重复等级单独配置对应于某一MPDCCH-PRB-set的一组或多组PRB-pairs。
备选地,配置单元110可以为所有MPDCCH重复等级共同配置对应于某一MPDCCH-PRB-set的一组或多组PRB-pairs。
备选地,配置单元110可以为每一MPDCCH重复等级只单独配置一组或多组PRB-pairs。
备选地,配置单元110可以为每一MPDCCH重复等级只单独配置一组或多组PRB-pairs,而为所有的MPDCCH重复等级固定或预定义某一个或多个MPDCCH-PRB-set。
备选地,配置单元110可以为所有MPDCCH重复等级共同配置一组或多组PRB-pairs,而不配置MPDCCH-PRB-set。
备选地,配置单元110可以为所有MPDCCH重复等级共同配置一组或多组PRB-pairs,而为所有的MPDCCH重复等级固定或预定义某一个或多个MPDCCH-PRB-set。
配置单元110配置MPDCCH还可以包括:配置MPDCCH的聚合等级。
与现有EPDCCH类似,对于MPDCCH,多个ECCE能够依据不同的聚合等级(Aggregation Level)聚合在一起以便支持下行控制信息(Downlink Control Information,简称DCI)的传输。聚合等级L表示聚合L个ECCE以传输下行链路控制信息。考虑到MPDCCH资源集包括的资源块对的数目可以是6个,而现有标准不允许EPDCCH资源集包括6个资源块对,本发明提出MPDCCH的聚合等级应该包括6的倍数,例如6、12和24。在下文中,参考图7和图8示出了本发明实施例所支持的聚合等级。
配置单元110可以为MPDCCH公共搜索空间和UE特定的搜索空间单独配置一个或多个聚合等级。
备选地,配置单元110可以为MPDCCH公共搜索空间的每一MPDCCH重复等级单独配置一个或多个聚合等级。
备选地,配置单元110可以为MPDCCH公共搜索空间的所有MPDCCH重复等级共同配置一个或多个聚合等级。
备选地,配置单元110可以为MPDCCH UE特定的搜索空间的每一MPDCCH重复等级单独配置一个或多个聚合等级。
备选地,配置单元110可以为MPDCCHUE特定的搜索空间的所有 MPDCCH重复等级共同配置一个或多个聚合等级。
可以设置默认的聚合等级用于监测MPDCCH。
可以为MPDCCH公共搜索空间和UE特定的搜素空间分别设置不同的默认的聚合等级。
备选地,可以为MPDCCH公共搜索空间和UE特定的搜素空间设置共同的默认的聚合等级。
可以为每一MPDCCH重复等级单独设置默认的聚合等级。
备选地,可以为所有MPDCCH重复等级设置共同的默认的聚合等级。
当基站没有为UE配置聚合等级时,基站按照默认的聚合等级在一组MPDCCH的候选中的一个MPDCCCH中发射控制信息。
可以设置默认的MPDCCH物理资源集。
可以为每一MPDCCH重复等级单独设置一个或多个默认的MPDCCH-PRB-set。
备选地,可以为所有MPDCCH重复等级共同设置一个或多个默认的MPDCCH-PRB-set。
可以设置默认的物理资源块对数目用于监测MPDCCH。
可以为MPDCCH公共搜索空间和UE特定的搜素空间分别设置不同的默认的物理资源块对数目。
备选地,可以为MPDCCH公共搜索空间和UE特定的搜素空间设置共同的默认的物理资源块对数目。
可以为每一MPDCCH重复等级单独设置默认的物理资源块对数目。
备选地,可以为所有MPDCCH重复等级设置共同的默认的物理资源块对数目。
当基站没有为UE配置物理资源块对数目时,基站采用默认的物理资源块对数目发送MPDCCCH。
配置单元110可以根据待发送的MPDCCH的聚合等级在所配置的MPDCCH资源集中确定一组MPDCCH候选。所述一组MPDCCH候选是依据MPDCCH搜索空间定义的,其中一个MPDCCH候选表示在该MPDCCH搜索空间中可能承载MPDCCH的ECCE聚合体。在确定了聚合等级的情况下,针对某一聚合等级的搜索空间由符合该聚合等级的一组 MPDCCH候选所定义。在下文中,参考图9和图10示出了在给定聚合等级和MPDCCH资源集大小(即包括的PRB-pairs数目)下的MPDCCH候选数目。
在本发明的一些实施例中,对于公共搜索空间的MPDCCH,可以只配置PRB-pairs组,所述PRB-pairs组的大小为6个PRB-pairs。MTC UE按照不同的聚合等级在一个PRB-pairs组盲检MPDCCH。公共搜索空间的MPDCCH的聚合等级可以为1、2、4、6、12和24等。可以为每一MPDCCH重复等级单独配置一个或多个PRB-pairs组。备选地,可以为所有的MPDCCH重复等级共同配置一个或多个PRB-pairs组。
对于UE特定搜索空间的MPDCCH,首先需要为UE特定搜索空间的MPDCCH配置一个或多个PRB-pairs组,其大小为6个PRB-pairs。可以为UE特定搜索空间的每一MPDCCH重复等级单独配置一个或多个PRB-pairs组。备选地,可以为所有UE特定搜索空间的MPDCCH重复等级共同配置一个或多个PRB-pairs组。其次,还需要在一个PRB-pairs组(其大小为6个PRB-pairs)内配置若干个PRB-pairs(不超过6个)给UE特定搜索空间的MPDCCH。可以限制一个PRB-pairs组内可选的PRB-pairs数为2、4和6。
可通过多种方式向MTC UE通知配置单元110所完成的MPDCCH配置,例如可以通过RRC信令或MAC信令或物理广播信道等来传递指示该MPDCCH配置的配置信息。或者MPDCCH配置可以是预先设置的,并且是基站和MTC UE双方都预先知晓的。
发送单元120可以向MTC用户设备发送MPDCCH配置信息。
该MPDCCH配置信息包含指示所配置的MPDCCH资源集的信息。可选地,该MPDCCH配置信息可以包含指示重复等级和/或聚合等级的信息。应该理解,MPDCCH配置信息还可以包括MPDCCH的其他时域和/或频域配置参数,例如MPDCCH的起始子帧、可用的子帧指示、结束子帧、物理资源块的大小及位置等等。
所述MPDCCH配置信息的发送可以通过RRC信令、MAC信令或物理广播信道来承载的。
在一些实施例中,MPDCCH资源集的配置与重复等级相关联。于是,指示这种MPDCCH资源集配置的信息也与重复等级相关联。
之后,发射单元120可以在配置单元110所确定的一组MPDCCH候选中的一个MPDCCH中发射针对MTC用户设备的下行控制信息。
图2示出了根据本发明的用户设备UE 200的框图。如图所示,UE 200包括接收单元210和确定单元220。本领域技术人员应理解,UE 200还包括实现其功能所必需的其他功能单元,如各种处理器、存储器等。然而为了简便,省略了这些公知元件的详细描述。
接收单元210用于从基站接收MPDCCH配置信息。所述MPDCCH配置信息可以是通过RRC信令、MAC信令或物理广播信道来承载的。所述MPDCCH配置信息可以包含指示MPDCCH资源集的信息。可选地,所述MPDCCH配置信息可以包含指示重复等级的信息和/或指示聚合等级的信息。应该理解,MPDCCH配置信息还可以包括MPDCCH的其他时域和/或频域配置参数,例如MPDCCH的起始子帧、可用的子帧指示、结束子帧、物理资源块的大小及位置等等。
在一些实施例中,PRB-pair在系统带宽内全局索引。所述指示MPDCCH资源集的信息可以包括指示构成所述MPDCCH资源集的各个PRB-pairs的索引。
在一些实施例中,系统带宽被预先分为多个频率子带。如在参考图1已经说明的通过两级配置来配置MPDCCH资源集的情况下,所述指示MPDCCH资源集的信息可以包括指示频率子带的信息以及指示构成MPDCCH资源集的多个资源块对在频率子带中的分布的信息。优选地,在一些实施例中,在频率子带中预先定义了物理资源块对数目为2、4或6大小的物理资源块对的组合的情况下,所述指示构成MPDCCH资源集的多个资源块对在频率子带中的分布的信息包括指示所述组合之一的信息。
如前所述,在一些实施例中,MPDCCH资源集的配置与重复等级相关联。相应地,所述指示这种MPDCCH资源集配置的信息也与重复等级相关联。
确定单元220根据所接收的MPDCCH配置信息确定用于监测MPDCCH的一个或多个MPDCCH资源集,所述MPDCCH资源集的物理资源块对的数目为2、4或6。可选地,确定单元220还可以根据聚合等级在所确定的MPDCCH资源集中确定一组MPDCCH候选。
之后,接收单元210可以在确定单元220所确定的一个或多个 MPDCCH资源集中监测MPDCCH。特别地,接收单元210在确定单元220所确定的一组MPDCCH候选中监测MPDCCH,以获取针对所述MTC用户设备的下行控制信息。监测一组MPDCCH候选意味着尝试在所述的一组MPDCCH候选中按照被监测的下行控制信息(DCI)格式解码每一MPDCCH。
对Rel-13MTC UE而言,它只能接收1.4MHz(或6PRB-pairs)的频带宽度。因此Rel-13MTC UE的MPDCCH只能位于小区系统带宽内的某6PRB-pairs内。MPDCCH的PRB-pairs数可以为2、4或6,而不是已有EPDCCH的2、4或8个PRB-pairs。MPDCCH的聚合等级应该包括6的倍数,例如6、12和24。
图3示出了根据本发明实施例的为每一重复等级单独配置MPDCCH-PRB-set的示意图。如图所示,配置了两个MPDCCH-PRB-set:MPDCCH-PRB-set 1和MPDCCH-PRB-set 2。具体地,在图3的示例中,为MPDCCH重复等级0和1配置了MPDCCH-PRB-set 1;为MPDCCH重复等级2配置了两个MPDCCH-PRB-set:MPDCCH-PRB-set 1和MPDCCH-PRB-set 2;为MPDCCH重复等3配置了MPDCCH-PRB-set 2。其配置方式可以是RRC信令或MAC信令或物理广播信道或预先设置等。
备选地,可以为每一重复等级共同配置一个或多个MPDCCH-PRB-set。该情形下,通过一条信令就可以为所有的MPDCC重复等级配置一个或多个MPDCCH-PRB-set。
图4示出了根据本发明实施例的为每一重复等级单独配置MPDCCH的PRB-pairs组的示意图。如图4所示,配置了三个PRB-pairs组:PRB-pairs组1、PRB-pairs组2和PRB-pairs组3。三个PRB-pairs可以属于同一个MPDCCH-PRB-set或属于不同的MPDCCH-PRB-set。在图4的示例中,为MPDCCH重复等级0和1配置了PRB-pairs组1;为MPDCCH重复等级2配置了PRB-pairs组2;为MPDCCH重复等级3配置了PRB-pairs组3。其配置方式可以是RRC信令或MAC信令或物理广播信道或预先设置等。
备选地,为每一重复等级共同配置一个或多个PRB-pairs组。即通过一条信令为所有的MPDCC重复等级配置一个或多个PRB-pairs组。
图5示出了根据本发明实施例的将系统带宽分为若干个频率子带的 示意图,其中每个频率子带包括6个PRB-pairs,也称为6PRB-pairs组。Rel-13的MTC UE只能接6个PRB-pairs的频带宽度。而目前的LTE系统可以支持的系统带宽为1.4、3、5、10、15和20MHz。因此,可以将小区的系统带宽预先分成若干个6PRB-pairs频带宽度的PRB-pairs组。如图5所示,将20MHz的系统带宽分为16个PRB-pairs组,每组的大小为6个PRB-pairs。可以将不同的PRB-pairs组配置给不同的MPDCCH重复等级。例如,图中,将序号为0,4,8,12的PRB-pairs组配置给MPDCCH重复等级0;将序号为1,5,9,13的PRB-pairs组配置给MPDCCH重复等级1;将序号为2,6,10,14的PRB-pairs组配置给MPDCCH重复等级2;将序号为3,7,11,15的PRB-pairs组配置给MPDCCH重复等级3。
图6示出了根据本发明实施例的在一个PRB-pairs组内将PRB-pairs分为包括2,4,6个PRB-pairs的组合的示例分法的示意图。图6中的PRB-pairs为连续分布的PRB-pairs。图6中共有6种组合:2个PRB-pairs的组合为3种;4个PRB-pairs的组合为2种;6个PRB-pairs的组合为1种。可以用3bits来指示具体为6种组合中的哪种。可以为每一UE特定搜索空间的MPDCCH重复等级单独配置一种或多种PRB-pairs组合。备选地,可以为所有UE特定搜索空间的MPDCCH重复等级共同配置一种或多种PRB-pairs组合。
图7示出了根据本发明实施例的在同时存在MTC UE和现有LTE UE的系统中可以支持的MPDCCH/EPDCCH(简写为M/EPDCCH)格式。如图7所示,该图在标准3GPP TS 36.211V11.3.0(2013-06)的表6.8A.1-2的基础上引入了一种新的M/EPDCCH格式5并且修改了格式M/EPDCCH格式4,从而引入了允许由6、12、24个ECCEs构成的聚合体(也即聚合等级6,12和24)用于一个MPDCCH的传输。图7中的情形A表示一个物理资源块对包括4个ECCE的情形,而情形B表示一个物理资源块对包括2个ECCE的情形。集中式传输表示一个MPDCCH/EPDCCH在连续的ECCE构成的聚合体中传输。分布式传输表示一个MPDCCH/EPDCCH在不连续的ECCE构成的集合体中传输,以获得分集增益。
在使用图7所示的M/EPDCH格式的情况下,对于MPDCCH的传 输,MPDCCH资源集包括的物理资源块对的数目可以为2或4(与EPDCCH的情形类似),而且可以为6。相应地,可以支持聚合级别6、12、24(分别对应6、12、24个ECCEs构成的聚合体)。该图7适用于MTC UE和已有的LTE UE。
图8示出了根据本发明实施例的在仅支持MTC UE的系统中可以支持的MPDCCH格式。图8中的MPDCCH格式0,1,2,3和4分别与图7中的M/EPDCCH格式0,1,3,5和4相对应,但是仅支持集中式传输,而不支持分布式传输。由图8可以看出,在MPDCCH格式3和4中引入了将6、12、24个ECCEs用于MPDCCH的传输的可能。这与MTC UE的工作带宽1.4M(对应于6个物理资源块对)相适应。
图9示出了根据本发明实施例的支持所有用户的M/EPDCCH候选数与聚合等级和物理资源块对数目的关系表。该图通过对由标准3GPP TS 36.213V11.5.0(2013-06)的表Table 9.1.4-2b扩充而得到。与表Table 9.1.4-2b相比,图9增加了聚合等级L=6、12、24的列和
Figure PCTCN2016078781-appb-000001
为6个物理资源块对的行。在图9中示出了在指定的聚合等级和
Figure PCTCN2016078781-appb-000002
下,对应的MPDCCH候选数。图9适用于同时支持MTC UE和现有LTE UE的系统。在图9中,
Figure PCTCN2016078781-appb-000003
表示用于MPDCCH的物理资源块对的数目
Figure PCTCN2016078781-appb-000004
Figure PCTCN2016078781-appb-000005
L表示聚合等级L∈{1,2,4,8,12,16,24,32}。通过查找图9,根据指定的聚合等级的级数和物理资源块对的数目可以查到对应的MPDCCH候选数。聚合等级可以通过RRC信令或MAC信令或物理广播信道或预先设置等方式配置。物理资源块对的数目可以通过RRC信令或MAC信令或物理广播信道或预先设置等方式配置。MTC UE获得聚合等级和物理资源块对数目后,就能知道其相应的MPDCCH候选数。
图10示出了根据本发明的在仅支持MTC UE的系统中的MPDCCH候选数与聚合等级和物理资源块对数目的关系表。与图9类似,在图10中
Figure PCTCN2016078781-appb-000006
表示用于MPDCCH的物理资源块对的数目且
Figure PCTCN2016078781-appb-000007
L表示聚合等级且L∈{1,2,4,8,12,16,24}。通过查找图10,根据指定的聚合等级的级数和物理资源块对的数目可以查到对应的MPDCCH候选数。聚合等级通过RRC信令或MAC信令或物理广播信道或预先设置等方式配置。物理资源块对的数目通过RRC信令或MAC 信令或物理广播信道或预先设置等方式配置。MTC UE获得聚合等级和物理资源块对数目后,就能知道其相应的MPDCCH候选数。
图11示出了可在支持MTC的通信系统中实现的根据本发明实施例的MPDCCH配置和传输方法的示例流程图。该MTC通信系统可以包括一个或多个支持MTC的基站100以及一个或多个支持MTC的用户设备MTC UE 200。尽管图中仅示出了一个基站100和一个MTC UE 200,但是本发明可以包括更多个基站和更多个MTC UE,本发明在这方面不受限制。
如图所示,在步骤S1110中,基站100执行针对MTC UE 200的MPDCCH的配置。具体地,在步骤S1110中,基站100为MTC UE 200配置一个或多个MPDCCH资源集以供发送MPDCCH。所述MPDCCH资源集的物理资源块对的数目为2、4或6。可选地,在步骤S1110中,基站还可以配置MPDCCH聚合等级,以及根据聚合等级在所配置的MPDCCH资源集中确定一组MPDCCH候选。
在一些实施例中,MPDCCH资源集是基于每一MPDCCH重复等级单独配置的。而在另一些实施例中,MPDCCH资源集中的物理资源块对是基于每一MPDCCH重复等级单独配置的。
在一些实施例中,系统带宽被预先分为多个频率子带,每个频率子带包括6个资源块对大小的频率带宽。于是,在步骤S1110中通过下述方式为MTC用户设备配置一个或多个MPDCCH资源集:从所述多个频率子带中选择一个频率子带,然后从所选定的频率子带中选择构成MPDCCH资源集的多个资源块对。
在一些实施例中,系统带宽被预先分为多个频率子带,每个频率子带包括6个资源块对大小的频率带宽。而且,在频率子带中预先定义了物理资源块对数目为2、4或6大小的物理资源块对的组合。于是,在步骤S1110中,通过下述方式为MTC用户设备配置一个或多个MPDCCH资源集:选择所述多个频率子带之一,以及选择所述组合之一。
在步骤S1120中,向MTC用户设备发送MPDCCH配置信息,所述MPDCCH配置信息包含指示所述MPDCCH资源集的信息。MPDCCH配置信息的发送可以通过RRC信令、MAC信令或物理广播信道来承载的。
在一些实施例中,所述MPDCCH配置信息与MPDCCH重复等级相关联。
在步骤S1210中,MTC UE从基站接收MPDCCH资源配置信息。
在步骤S1220中,MTC UE根据所接收的MPDCCH配置信息确定MPDCCH配置。具体地,在步骤S1220中,MTC UE根据所接收的MPDCCH配置信息确定用于监测MPDCCH的一个或多个MPDCCH资源集,所述MPDCCH资源集的物理资源块对的数目为2、4或6。可选地,在步骤S1220中,MTCUE还可以根据聚合等级在所确定的MPDCCH资源集中确定一组MPDCCH候选,以减少盲解码的次数。
在步骤S1130中,基站在步骤S1110中所确定的MPDCCH资源集中(特别地,在步骤S110中确定的一组MPDCCH候选中的一个MPDCCH中)发射针对MTC用户设备的下行控制信息。
在步骤S1230中,MTC UE在步骤S1220中确定的MPDCCH资源集中(特别地,在步骤S1220中确定的一组MPDCCH候选中)监测MPDCCH,以获取针对所述MTC用户设备的下行控制信息。具体地,在一组MPDCCH的候选中监测MPDCCH包括:尝试在所述的一组MPDCCH候选中按照被监测的DCI格式解码每一MPDCCH候选。
应该理解,方法1100可以包括更多或者更少的步骤。例如,可选地,方法1100还可以包括预先设置默认的MPDCCH资源集的步骤。可选地,方法1100还可以包括预先设置默认的聚合等级的步骤。可选地,方法1100还可以包括预先设置默认的MPDCCH资源集的大小(即包括的资源块对的数目)的步骤。可选地,方法1100还可以包括设置默认数量的MPDCCH候选。
基站100和MTC UE 200在MPDCCH的配置和传输过程中的操作已经在上文中参考图1-图10进行详述,在此不再对方法1100进一步详述。
上文已经结合优选实施例对本发明的方法和涉及的设备进行了描述。本领域技术人员可以理解,上面示出的方法仅是示例性的。本发明的方法并不局限于上面示出的步骤和顺序。上面示出的基站和用户设备可以包括更多的模块,例如还可以包括可以开发的或者将来开发的可用于基站或UE的模块等等,如各种处理器、存储器等。本领域技术人员根据所示实施例的教导可以进行许多变化和修改。
应该理解,本发明的上述实施例可以通过软件、硬件或者软件和硬 件两者的结合来实现。例如,上述实施例中的设备内部的各种组件可以通过多种器件来实现,这些器件包括但不限于:模拟电路器件、数字电路器件、数字信号处理(DSP)电路、可编程处理器、专用集成电路(ASIC)、现场可编程门阵列(FPGA)、可编程逻辑器件(CPLD),等等。
此外,这里所公开的本发明的实施例可以在计算机程序产品上实现。更具体地,该计算机程序产品是如下的一种产品:具有计算机可读介质,计算机可读介质上编码有计算机程序逻辑,当在计算设备上执行时,该计算机程序逻辑提供相关的操作以实现本发明的上述技术方案。当在计算系统的至少一个处理器上执行时,计算机程序逻辑使得处理器执行本发明实施例所述的操作(方法)。本发明的这种设置典型地提供为设置或编码在例如光介质(例如CD-ROM)、软盘或硬盘等的计算机可读介质上的软件、代码和/或其他数据结构、或者诸如一个或多个ROM或RAM或PROM芯片上的固件或微代码的其他介质、或一个或多个模块中的可下载的软件图像、共享数据库等。软件或固件或这种配置可安装在计算设备上,以使得计算设备中的一个或多个处理器执行本发明实施例所描述的技术方案。
尽管以上已经结合本发明的优选实施例示出了本发明,但是本领域的技术人员将会理解,在不脱离本发明的精神和范围的情形中,可以对本发明进行各种修改、替换和改变。因此,本发明不应由上述实施例来限定,而应由所附权利要求及其等价物来限定。

Claims (30)

  1. 一种机器类型通信“MTC”用户设备,包括:
    接收单元,用于当高层信令配置的MTC物理下行控制信道(MPDCCH)资源集(MPDCCH-PRB-set)的物理资源块数为6时,以聚合等级24来监测MPDCCH的候选,以获取针对所述MTC用户设备的下行控制信息(DCI),其中,
    所述MPDCCH的候选是基于每一聚合等级和/或每一重复等级所定义的。
  2. 根据权利要求1所述的用户设备,其中:
    监测MPDCCH的候选包括:尝试在所述的MPDCCH的候选中按照被监测的下行控制信息(DCI)格式解码每一候选的MPDCCH。
  3. 根据权利要求1所述的用户设备,其中,MPDCCH包括MPDCCH公共搜索空间和UE特定的搜索空间,以及所述MPDCCH资源集是针对MPDCCH公共搜索空间和UE特定的搜索空间分别配置的。
  4. 根据权利要求1所述的用户设备,其中,所述MPDCCH资源集是根据从基站接收的信令确定的,或者是预先设置的默认MPDCCH资源集,或者是根据预先设置的默认的物理资源对数目确定的。
  5. 根据权利要求1所述的用户设备,其中,
    所述聚合等级是针对MPDCCH公共搜索空间和用户特定的搜索空间分别配置的。
  6. 根据权利要求1所述的用户设备,其中,
    所述聚合等级是根据从基站接收的信令确定的,或者是预先设置的默认聚合等级。
  7. 根据权利要求1所述的用户设备,其中,
    所述重复等级是针对MPDCCH公共搜索空间和用户特定的搜索空间分别配置的。
  8. 根据权利要求1所述的用户设备,其中,
    所述重复等级是根据从基站接收的信令确定的,或者是预先设置的默认重复等级。
  9. 一种支持机器类型通信“MTC”的基站,包括:
    发射单元,用于当高层信令配置的MTC物理下行控制信道(MPDCCH) 资源集(MPDCCH-PRB-set)的物理资源块数为6时,以聚合等级24在一个MPDCCH候选中发射针对MTC用户设备的下行控制信息(DCI),
    其中,
    所述MPDCCH的候选是基于每一聚合等级和/或每一重复等级所定义的。
  10. 根据权利要求9所述的基站,其中:
    MPDCCH包括MPDCCH公共搜索空间和UE特定的搜索空间,以及所述MPDCCH资源集(MPDCCH-PRB-set)是针对MPDCCH公共搜索空间和UE特定的搜索空间分别配置的。
  11. 根据权利要求9所述的基站,其中,
    所述配置单元预先设置默认的MPDCCH资源集,或者预先设置默认的物理资源对数目。
  12. 根据权利要求9所述的基站,其中,
    所述聚合等级是针对MPDCCH公共搜索空间和用户特定的搜索空间分别配置的。
  13. 根据权利要求9所述的基站,其中,
    所述配置单元预先设置默认的聚合等级。
  14. 根据权利要求9所述的基站,其中,
    所述重复等级是针对MPDCCH公共搜索空间和用户特定的搜索空间分别配置的。
  15. 根据权利要求9所述的基站,其中,
    所述重复等级是根据从基站接收的信令确定的,或者是预先设置的默认重复等级。
  16. 一种在机器类型通信“MTC”用户设备中执行的方法,包括:
    当高层信令配置的MTC物理下行控制信道(MPDCCH)资源集(MPDCCH-PRB-set)的物理资源块数为6时,以聚合等级24来监测MPDCCH的候选,以获取针对所述MTC用户设备的下行控制信息(DCI),其中,
    所述MPDCCH的候选是基于每一聚合等级和/或每一重复等级所定义的。
  17. 根据权利要求16所述的方法,其中:
    监测MPDCCH的候选包括:尝试在所述的MPDCCH的候选中按照被监测的下行控制信息(DCI)格式解码每一候选的MPDCCH。
  18. 根据权利要求16所述的方法,其中,MPDCCH包括MPDCCH公共搜索空间和UE特定的搜索空间,以及所述MPDCCH资源集是针对MPDCCH公共搜索空间和UE特定的搜索空间分别配置的。
  19. 根据权利要求16所述的方法,其中,所述MPDCCH资源集是根据从基站接收的信令确定的,或者是预先设置的默认MPDCCH资源集,或者是根据预先设置的默认的物理资源对数目确定的。
  20. 根据权利要求16所述的方法,其中,
    所述聚合等级是针对MPDCCH公共搜索空间和用户特定的搜索空间分别配置的。
  21. 根据权利要求16所述的方法,其中,
    所述聚合等级是根据从基站接收的信令确定的,或者是预先设置的默认聚合等级。
  22. 根据权利要求16所述的方法,其中,
    所述重复等级是针对MPDCCH公共搜索空间和用户特定的搜索空间分别配置的。
  23. 根据权利要求16所述的方法,其中,
    所述重复等级是根据从基站接收的信令确定的,或者是预先设置的默认重复等级。
  24. 一种在支持机器类型通信“MTC”的基站中执行的方法,包括:
    当高层信令配置的MTC物理下行控制信道(MPDCCH)资源集(MPDCCH-PRB-set)的物理资源块数为6时,以聚合等级24在一个MPDCCH候选中发射针对MTC用户设备的下行控制信息(DCI),
    其中,
    所述MPDCCH的候选是基于每一聚合等级和/或每一重复等级所定义的。
  25. 根据权利要求24所述的方法,其中:
    MPDCCH包括MPDCCH公共搜索空间和UE特定的搜索空间,以及所述MPDCCH资源集(MPDCCH-PRB-set)是针对MPDCCH公共搜索空间和UE特定的搜索空间分别配置的。
  26. 根据权利要求24所述的方法,还包括:
    预先设置默认的MPDCCH资源集,或者预先设置默认的物理资源对数目。
  27. 根据权利要求24所述的方法,其中,
    所述聚合等级是针对MPDCCH公共搜索空间和用户特定的搜索空间分别配置的。
  28. 根据权利要求24所述的方法,还包括:
    预先设置默认的聚合等级。
  29. 根据权利要求24所述的方法,其中,
    所述重复等级是针对MPDCCH公共搜索空间和用户特定的搜索空间分别配置的。
  30. 根据权利要求24所述的方法,其中,
    所述重复等级是根据从基站接收的信令确定的,或者是预先设置的默认重复等级。
PCT/CN2016/078781 2015-04-10 2016-04-08 物理下行控制信道的传输方法以及基站和用户设备 WO2016161958A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/565,240 US10383131B2 (en) 2015-04-10 2016-04-08 Transmission method for physical downlink control channel, base station, and user equipment
EP16776133.7A EP3282614B1 (en) 2015-04-10 2016-04-08 Transmission method for physical downlink control channel, base station, and user equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510169442.3 2015-04-10
CN201510169442.3A CN106160979B (zh) 2015-04-10 2015-04-10 物理下行控制信道的传输方法以及基站和用户设备

Publications (1)

Publication Number Publication Date
WO2016161958A1 true WO2016161958A1 (zh) 2016-10-13

Family

ID=57073040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/078781 WO2016161958A1 (zh) 2015-04-10 2016-04-08 物理下行控制信道的传输方法以及基站和用户设备

Country Status (4)

Country Link
US (1) US10383131B2 (zh)
EP (1) EP3282614B1 (zh)
CN (1) CN106160979B (zh)
WO (1) WO2016161958A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3567951A4 (en) * 2017-01-26 2019-12-25 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR PROCESSING DOWNLINK CONTROL INFORMATION

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016175486A1 (ko) * 2015-04-29 2016-11-03 엘지전자 주식회사 하향링크 제어 채널을 수신하는 방법 및 lc 기기
CN106455069B (zh) * 2015-08-11 2022-02-01 中兴通讯股份有限公司 一种下行控制信道的发送和接收方法、装置
CN108141850B (zh) * 2015-09-25 2022-09-27 索尼公司 用于无线电信系统的终端装置、基站及其操作方法
CN107733627B (zh) 2016-08-12 2020-12-01 株式会社Kt 用于针对NB-IoT终端发送或接收多播控制信道的方法和装置
CN107734691B (zh) 2016-08-12 2021-12-14 株式会社Kt 用于针对NB-IoT终端发送或接收多播控制信道的方法和装置
CN107733626B (zh) 2016-08-12 2021-02-19 株式会社Kt 用于针对bl/ce用户终端发送或接收多播控制信道的方法和装置
CN107734648B (zh) * 2016-08-12 2021-12-10 株式会社Kt 用于针对bl/ce终端发送或接收多播控制信道的方法和装置
US10499416B2 (en) * 2017-01-10 2019-12-03 Qualcomm Incorporated Downlink channel rate matching of synchronization signal block transmissions in a new radio wireless communication system
CA3050339C (en) * 2017-01-18 2021-09-21 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Method for transmitting downlink control information, terminal device and network device
CN109152038B (zh) * 2017-06-16 2020-10-23 华为技术有限公司 一种确定控制信道资源集合的方法及设备
WO2019157685A1 (zh) * 2018-02-13 2019-08-22 华为技术有限公司 一种物理上行共享信道pusch传输方法及装置
US11057166B2 (en) 2018-02-16 2021-07-06 Qualcomm Incorporated Virtual search spaces for beam indication
US20210282123A1 (en) * 2018-07-25 2021-09-09 Sony Corporation Base station, user equipment, circuitry and method
WO2020087493A1 (en) * 2018-11-02 2020-05-07 Qualcomm Incorporated MPDCCH TRANSMISSION IN LTE CONTROL REGION FOR eMTC
CN111294150B (zh) * 2019-07-05 2021-02-05 北京紫光展锐通信技术有限公司 物理下行控制信道盲检方法及用户设备、可读存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013104119A1 (en) * 2012-01-11 2013-07-18 Renesas Mobile Corporation Control channel design for low bandwidth users
CN104025485A (zh) * 2011-11-09 2014-09-03 Lg电子株式会社 用于监控控制信道的方法和无线装置
CN104104467A (zh) * 2013-04-03 2014-10-15 中兴通讯股份有限公司 下行数据的传输、传输处理方法及装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102573094B (zh) * 2012-01-17 2015-04-08 电信科学技术研究院 一种传输dci的方法及装置
CN104348580A (zh) * 2013-08-06 2015-02-11 夏普株式会社 下行物理信道的发送和接收方法以及基站和用户设备
US10306618B2 (en) * 2015-03-05 2019-05-28 Lg Electronics Inc. Method and wireless device for receiving downlink control channel
US20160270038A1 (en) * 2015-03-11 2016-09-15 Samsung Electronics Co., Ltd Transmissions of downlink control channels for low cost ues

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104025485A (zh) * 2011-11-09 2014-09-03 Lg电子株式会社 用于监控控制信道的方法和无线装置
WO2013104119A1 (en) * 2012-01-11 2013-07-18 Renesas Mobile Corporation Control channel design for low bandwidth users
CN104104467A (zh) * 2013-04-03 2014-10-15 中兴通讯股份有限公司 下行数据的传输、传输处理方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3282614A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3567951A4 (en) * 2017-01-26 2019-12-25 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR PROCESSING DOWNLINK CONTROL INFORMATION
US11044614B2 (en) 2017-01-26 2021-06-22 Huawei Technologies Co., Ltd. Downlink control information processing method and apparatus

Also Published As

Publication number Publication date
EP3282614A1 (en) 2018-02-14
US20180084561A1 (en) 2018-03-22
CN106160979B (zh) 2020-11-10
US10383131B2 (en) 2019-08-13
CN106160979A (zh) 2016-11-23
EP3282614B1 (en) 2020-12-09
EP3282614A4 (en) 2018-11-14

Similar Documents

Publication Publication Date Title
WO2016161957A1 (zh) 物理下行控制信道的资源配置方法以及基站和用户设备
WO2016161958A1 (zh) 物理下行控制信道的传输方法以及基站和用户设备
TWI728328B (zh) 新無線電系統實體下行鏈路控制通道設計方法及使用者設備
US10667272B2 (en) Determining mechanism of physical shared channel parameters, base station, and user equipment
WO2016107518A1 (zh) 寻呼消息的接收/发送方法及相关网络节点和用户设备
EP3002983B1 (en) Control information transmission method, user equipment, and base station
WO2015103952A1 (zh) 物理信道配置方法以及基站和用户设备
CN105337712B (zh) 用于配置物理信道起始符号的方法以及基站和用户设备
WO2016019862A1 (zh) 基站、用户设备及相关方法
WO2016107520A1 (zh) 针对寻呼消息的资源分配方法及网络节点和用户设备
CN107371240B (zh) 基站、用户设备和相关方法
CN105611646B (zh) 基站、用户设备及其方法
CN107294684B (zh) 配置非锚物理资源块的方法和基站、确定非锚物理资源块位置的方法和用户设备
WO2017118394A1 (zh) 上行参考信号传输方法和接收方法、以及用户设备和基站
WO2017114350A1 (zh) 窄带物联网物理下行信道的复用方法、基站和用户设备
CN106954262B (zh) 上行传输资源分配方法、基站和用户设备
WO2017118398A1 (zh) 上行传输子载波带宽指示方法和选择方法、以及基站和用户设备
WO2017114349A1 (zh) 解调参考信令的资源配置方法、基站和用户设备
CN111465109B (zh) 一种被用于无线通信的用户设备、基站中的方法和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16776133

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15565240

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016776133

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE