WO2016161823A1 - 一种太阳能吸收式过冷压缩复合制冷系统及其制冷方法 - Google Patents

一种太阳能吸收式过冷压缩复合制冷系统及其制冷方法 Download PDF

Info

Publication number
WO2016161823A1
WO2016161823A1 PCT/CN2015/099651 CN2015099651W WO2016161823A1 WO 2016161823 A1 WO2016161823 A1 WO 2016161823A1 CN 2015099651 W CN2015099651 W CN 2015099651W WO 2016161823 A1 WO2016161823 A1 WO 2016161823A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
controller
fluid
solar
pump
Prior art date
Application number
PCT/CN2015/099651
Other languages
English (en)
French (fr)
Inventor
李泽宇
刘金平
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2016161823A1 publication Critical patent/WO2016161823A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B25/00Machines, plants or systems, using a combination of modes of operation covered by two or more of the groups F25B1/00 - F25B23/00
    • F25B25/02Compression-sorption machines, plants, or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • F25B27/002Machines, plants or systems, using particular sources of energy using solar energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices

Definitions

  • the present invention relates to a refrigeration system, and more particularly to a solar absorption type supercooled compression composite refrigeration system and a refrigeration method thereof.
  • Air conditioning energy consumption has become a major factor in the tight summer electricity supply in many large cities in China.
  • air conditioning energy consumption has continued to grow and has accounted for more than 50% of building energy consumption.
  • the huge air-conditioning power consumption is still seriously restricting the further improvement of China's energy-saving emission reduction. Therefore, reducing the energy consumption of air conditioners will effectively alleviate the contradiction of power supply and significantly promote the sustainable development of society and economy.
  • Solar energy is a kind of green clean energy with extremely large resources. Its enthalpy radiation has the same characteristics as the air conditioning cooling load of commercial buildings. Therefore, the application of solar refrigeration technology will significantly reduce the energy consumption of air conditioners and effectively reduce the energy consumption of fossils. Produce huge social and economic benefits.
  • Solar absorption air conditioners are one of solar refrigeration devices that are relatively easy to implement for commercial applications.
  • the solar collector array lighting area is the main factor affecting the system's rated cooling capacity. Since the installation of the collector on the side of the building results in a significant attenuation of its thermal efficiency, the collector can only be installed on the top floor of the building. Except for some small buildings, the total building area is usually larger or even larger than the top floor area, so solar energy absorption air conditioners using solar energy as the only driving energy cannot meet the building cooling load. Therefore, the system needs to be equipped with an auxiliary drive energy device to solve the problem of insufficient driving energy.
  • the auxiliary driving energy sources commonly used in solar air conditioners mainly include heat energy and electric energy. Economic analysis shows that it is feasible to use only solar energy absorption compression composite refrigeration systems that use electrical energy as an auxiliary drive energy, unless there is cheap energy such as industrial waste heat available for recycling and recycling.
  • the solar absorption type supercooled compression composite refrigeration system is a absorption compression composite refrigeration device with high technical feasibility and good work efficiency.
  • the absorption subsystem drives the fluid temperature to have an unsteady characteristic due to changes in solar radiation. When the solar radiation shows a significant attenuation, the temperature of the driving fluid will rapidly decrease and cause the energy consumption of the absorption subsystem to be excessively large, resulting in a long downtime of the absorption subsystem, resulting in a significant reduction in the energy saving effect of the system.
  • the subcooler (same as the suction) Receiving the subsystem evaporator)
  • the temperature will be attenuated synchronously, which can also induce the long-term shutdown phenomenon of the absorption subsystem, and the system energy-saving effect will be attenuated.
  • An object of the present invention is to overcome the above disadvantages and deficiencies of the prior art, and to provide a solar absorption type supercooled compression composite refrigeration system and a refrigeration method thereof.
  • a solar absorption type supercooled compression composite refrigeration system comprising a solar collector 1, a heat storage tank 2, a generator 3, a first condenser 4, a first throttle valve 5, a subcooler 6, and absorption
  • the outlet end of the solar collector 1 is sequentially connected to the heat storage tank 2, the generator 3, the driving fluid pump 13, and the inlet end of the solar collector 1;
  • the generator 3 is sequentially connected to the first condenser 4, the first throttle valve 5, the subcooler 6, the absorber 7, and the solution pump 1
  • the second condenser 9 is sequentially connected to the subcooler 6, the second throttle valve 10, the evaporator 11, and the compressor 12.
  • the first controller 17 is connected to the driving fluid pump 13, the solution pump 14, and the first temperature sensor 15, respectively.
  • the second controller 18 is connected to the driving fluid pump 13, the frequency converter 19, and the second temperature sensor 16, respectively.
  • the first temperature sensor 15 is disposed at a middle portion of the heat storage tank 2; and the second temperature sensor 16 is disposed at an inlet end of the second throttle valve 10.
  • the first controller 17 includes a relay device.
  • the second controller 18 includes a PID control device.
  • the first temperature sensor 15 and the second temperature sensor 16 are provided with a heat preservation device.
  • the cooling method of the above solar absorption type supercooled compression composite refrigeration system is as follows:
  • the solar collector 1 absorbs solar radiation to increase the temperature of its own working fluid, and then causes the temperature of the fluid in the regenerator tank 2 to rise synchronously by the heat transfer, and the heated fluid flows to the generator 3, and
  • the superheated steam is generated in the generator 3, and the superheated steam is first condensed in the first condenser 4, and enters the subcooler 6 through the first throttle valve 5 to cool the refrigerant (R410A) from the compressor subsystem.
  • Cold then evaporate itself into the absorber 7, absorbed in the absorber 7 by the lithium bromide concentrated solution from the generator 3, transported by the solution pump 14 through the solution heat exchanger 8 into the generator 3, complete the absorption subsystem work cycle ;
  • the refrigerant (R410A) vapor from the evaporator 11 is compressed by the compressor 12 and sent to the second condenser 9 for condensation, and then enters the subcooler 6 and is cooled and supercooled by the low temperature refrigerant from the absorption subsystem.
  • the refrigerant (R410A) leaves the subcooler 6 and enters the evaporator 11 through the second throttle valve 10 for the next working cycle, thereby completing the refrigeration of the solar absorption supercooling compression composite refrigeration system.
  • step (1) a cycle in which the fluid temperature of the regenerator tank 2 drops due to attenuation of solar radiation: when the temperature of the fluid in the regenerator tank 2 decreases due to attenuation of solar radiation, if it is lower than the first
  • the lowest set temperature of the controller 17 is turned off by the relay device to drive the fluid pump 13 and the solution pump 14, and the temperature of the fluid to be stored in the heat storage tank 2 is increased again to exceed the minimum set temperature of the first controller 17, and then activated by the relay device.
  • the circulation step of increasing the temperature of the fluid of the regenerator tank 2 due to the rise of solar radiation When the temperature of the fluid of the regenerator tank 2 increases due to the rise of solar radiation, if it is higher than the highest setting of the first controller 17 The fixed temperature is turned off by the relay device to drive the fluid pump 13 and the solution pump 14, and the temperature of the heat storage tank 2 is lower than the highest set temperature of the first controller 17, and then the fluid pump 13 and the solution pump 14 are activated by the relay device.
  • the drive fluid pump 13 further includes a flow adaptive adjustment step of driving the fluid pump 13:
  • the inlet temperature of the second throttle valve 10 is lowered, and if it is lower than the set temperature of the second controller 18, the frequency of the frequency converter 19 is lowered by the PID control device, thereby reducing Driving the flow rate of the fluid pump 13; the refrigerant vapor generated in the helium generator 3 is synchronously reduced, thereby increasing the inlet temperature of the second throttle valve 10; when the inlet temperature of the second throttle valve 10 is raised again to Setting temperature of the second controller 18 At the same time, the flow adaptive adjustment of the drive fluid pump 13 is completed.
  • the present invention has the following advantages and effects:
  • the present invention overcomes that when solar radiation exhibits significant attenuation, the temperature of the driving fluid will rapidly decrease and cause excessive energy consumption of the absorption subsystem driving, thereby causing long delays in the absorption subsystem, resulting in a large energy saving effect of the system. Reduced technical issues.
  • the present invention also overcomes the fact that when the cooling load of the building is greatly reduced, the temperature of the subcooler (same as the evaporator of the absorption subsystem) will be synchronously attenuated, and the induced absorption subsystem has a long shutdown. , so that the system energy saving effect will not be attenuated.
  • the invention adaptively adjusts the driving fluid temperature and the cooling capacity of the absorption subsystem according to the changing characteristics of the working conditions during the working process, thereby avoiding the phenomenon of crystallization and long turn-off of the absorption subsystem, and effectively improving The energy saving effect of the system for cooling under variable working conditions.
  • FIG. 1 is a schematic structural view of the present invention.
  • the invention discloses a solar absorption type supercooled compression composite refrigeration system, comprising: a solar collector 1, a heat storage tank 2, a generator 3, a first condenser 4, a first throttle valve 5, a subcooler 6. Absorber 7, solution heat exchanger 8, second condenser 9, second throttle valve 10, evaporator 11, compressor 12, drive fluid pump 13, solution pump 14, first temperature sensor 15, second Temperature sensor 16, first controller 17, second controller 18, frequency converter 19;
  • the outlet end of the solar collector 1 is sequentially connected to the heat storage tank 2, the generator 3, the driving fluid pump 13, and the inlet end of the solar collector 1; [0035]
  • the generator 3 is sequentially connected to the first condenser 4, the first throttle valve 5, the subcooler 6, the absorber 7, and the solution pump 1
  • the second condenser 9 is sequentially connected to the subcooler 6, the second throttle valve 10, the evaporator 11, and the compressor 12.
  • the first controller 17 is connected to the driving fluid pump 13, the solution pump 14, and the first temperature sensor 15, respectively.
  • the second controller 18 is connected to the driving fluid pump 13, the frequency converter 19, and the second temperature sensor 16, respectively.
  • the first temperature sensor 15 is disposed at a middle portion of the heat storage tank 2; and the second temperature sensor 16 is disposed at an inlet end of the second throttle valve 10.
  • the first controller 17 includes a relay device; the second controller 18 includes a PID control device
  • the first temperature sensor 15 and the second temperature sensor 16 are provided with a heat insulating device.
  • the invention is composed of an absorption refrigeration subsystem and a compression refrigeration subsystem.
  • the absorption refrigeration subsystem can use lithium bromide and water, ammonia and water and other alternative working substances as the working medium, and the working medium of the compression refrigeration subsystem can be selected as R22. , R410A or other alternative refrigerants.
  • the solar collector 1 absorbs solar radiation to increase the temperature of its own working fluid, and then causes the temperature of the fluid in the regenerator tank 2 to rise synchronously by the heat transfer, and the heated fluid flows to the generator 3, and
  • the superheated steam is generated in the generator 3, and the superheated steam is first condensed in the first condenser 4, and enters the subcooler 6 through the first throttle valve 5 to cool the refrigerant (R410A) from the compressor subsystem.
  • Cold then evaporate itself into the absorber 7, absorbed in the absorber 7 by the lithium bromide concentrated solution from the generator 3, transported by the solution pump 14 through the solution heat exchanger 8 into the generator 3, complete the absorption subsystem work cycle ;
  • the refrigerant (R410A) vapor from the evaporator 11 is compressed by the compressor 12 and sent to the second condenser 9 for cooling. After condensing, it enters the subcooler 6 and is cooled and supercooled by the low temperature refrigerant from the absorption subsystem.
  • the refrigerant (R410A) leaves the subcooler 6 and enters the evaporator 11 through the second throttle valve 10 for the next work. The cycle is completed to complete the refrigeration of the solar absorption supercooled compression composite refrigeration system.
  • the circulation step is: when the temperature of the fluid of the regenerator tank 2 is lowered by the attenuation of the solar radiation, if it is lower than the lowest setting of the first controller 17
  • the fixed temperature is turned off by the relay device to drive the fluid pump 13 and the solution pump 14, and the temperature of the fluid to be stored in the heat storage tank 2 is increased again to exceed the minimum set temperature of the first controller 17, and then the fluid pump 13 and the solution are activated by the relay device.
  • Pump 14 ;
  • the circulation step of increasing the temperature of the fluid of the regenerator tank 2 due to the rise of solar radiation when the temperature of the fluid of the regenerator tank 2 increases due to the rise of solar radiation, if it is higher than the highest setting of the first controller 17
  • the fixed temperature is turned off by the relay device to drive the fluid pump 13 and the solution pump 14, and the temperature of the heat storage tank 2 is lower than the highest set temperature of the first controller 17, and then the fluid pump 13 and the solution pump 14 are activated by the relay device.
  • the drive fluid pump 13 further includes a flow adaptive adjustment step of driving the fluid pump 13 as follows:
  • the inlet temperature of the second throttle valve 10 is lowered, and if it is lower than the set temperature of the second controller 18, the frequency of the frequency converter 19 is lowered by the PID control device, thereby reducing Driving the flow rate of the fluid pump 13; the refrigerant vapor generated in the helium generator 3 is synchronously reduced, thereby increasing the inlet temperature of the second throttle valve 10; when the inlet temperature of the second throttle valve 10 is raised again to When the set temperature ⁇ of the second controller 18 is completed, the flow rate adaptive adjustment of the drive fluid pump 13 is completed.
  • the present invention can be preferably implemented.

Abstract

一种太阳能吸收式过冷压缩复合制冷系统及其制冷方法,在该制冷系统中,太阳能集热器(1)与蓄热箱(2)、发生器(3)、驱动流体泵(13)依次相连;发生器(3)与第一冷凝器(4)、第一节流阀(5)、过冷器(6)、吸收器(7)、溶液泵(14)、溶液热交换器(8)依次相连;第二冷凝器(9)与过冷器(6)、第二节流阀(10)、蒸发器(11)、压缩机(12)依次相连;第一温度传感器(15)位于蓄热箱(2)中部位置;第二温度传感器(16)位于第二节流阀(10)进口端;第一控制器(17)分别与驱动流体泵(13)、溶液泵(14)、第一温度传感器(15)相连接,用于接收温度信号并传输控制信号;第二控制器(18)分别与驱动流体泵(13)、变频器(19)、第二温度传感器(16)相连接,用于接收温度信号并传输控制信号。该制冷系统可根据工况变化特性对吸收子系统的驱动流体温度及其制冷量进行自适应调节,有效提高了系统在变工况条件下供冷的节能效果。

Description

说明书 发明名称:一种太阳能吸收式过冷压缩复合制冷系统及其制冷方法 技术领域
[0001] 本发明涉及制冷系统, 尤其涉及一种太阳能吸收式过冷压缩复合制冷系统及其 制冷方法。
背景技术
[0002] 空调能耗已经成为我国许多大城市夏季电力供应紧张的主要因素。 近年, 空调 能耗持续增长并已占建筑能耗的 50%以上。 此外, 巨大的空调耗电量还严重制约 我国节能减排的进一步提高。 因此降低空调能耗将有效缓解电力供应矛盾, 显 著促进社会和经济的可持续发展。 太阳能是一种资源量极其庞大的绿色洁净能 源, 其逐吋辐射量与商业建筑空调冷负荷具有一致性变化特征, 从而太阳能制 冷技术的应用将显著降低空调能耗、 有效减少化石能源消耗量, 产生巨大的社 会和经济效益。
[0003] 太阳能吸收式空调是较易实现商业应用的太阳能制冷装置之一。 当太阳能作为 系统唯一驱动能源吋, 太阳能集热器阵列采光面积是系统额定制冷量的主要影 响因素。 因为将集热器安装于建筑物侧面会导致其热效率出现显著衰减, 故集 热器仅能安装于建筑物顶层。 除部分小型建筑外, 建筑总面积通常大于甚至远 大于其顶层面积, 所以采用太阳能作为唯一驱动能源的太阳能吸收式空调无法 满足建筑冷负荷。 因此系统需要配备辅助驱动能源装置以解决驱动能源不足问 题。 太阳能空调常用的辅助驱动能源主要有热能和电能。 经济性分析表明, 除 非具备可供利用和回收的工业废热等廉价能源, 否则仅有采用电能作为辅助驱 动能源的太阳能吸收压缩复合式制冷系统具有可行性。
[0004] 太阳能吸收式过冷压缩复合制冷系统是一种技术可行性较高、 工作效率较好的 吸收压缩复合制冷装置。 其吸收子系统驱动流体温度因太阳辐射变化也具有非 定常特征。 当太阳辐射出现显著衰减吋, 驱动流体温度将迅速降低并引起吸收 子系统驱动能源消耗过大, 从而使吸收子系统出现长吋间停机, 造成系统节能 效果的大幅降低。 此外, 当建筑实吋冷负荷大幅下降吋, 过冷器 (同吋作为吸 收子系统蒸发器) 温度将同步衰减, 也能诱发吸收子系统出现长吋间停机现象 , 又导致系统节能效果出现衰减。
技术问题
[0005] 本发明的目的在于克服上述现有技术的缺点和不足, 提供一种太阳能吸收式过 冷压缩复合制冷系统及其制冷方法。
问题的解决方案
技术解决方案
[0006] 本发明通过下述技术方案实现:
[0007] 一种太阳能吸收式过冷压缩复合制冷系统, 包括太阳能集热器 1、 蓄热箱 2、 发 生器 3、 第一冷凝器 4、 第一节流阀 5、 过冷器 6、 吸收器 7、 溶液热交换器 8、 第 二冷凝器 9、 第二节流阀 10、 蒸发器 11、 压缩机 12、 驱动流体泵 13、 溶液泵 14、 第一温度传感器 15、 第二温度传感器 16、 第一控制器 17、 第二控制器 18、 变频 器 19;
[0008] 所述太阳能集热器 1出口端依次与蓄热箱 2、 发生器 3、 驱动流体泵 13、 太阳能 集热器 1进口端相连接;
[0009] 所述发生器 3依次与第一冷凝器 4、 第一节流阀 5、 过冷器 6、 吸收器 7、 溶液泵 1
4、 溶液热交换器 8相连接;
[0010] 所述第二冷凝器 9依次与过冷器 6、 第二节流阀 10、 蒸发器 11、 压缩机 12相连接
[0011] 所述第一控制器 17分别与驱动流体泵 13、 溶液泵 14、 第一温度传感器 15相连接
, 用于接收温度信号并传输控制信号;
[0012] 所述第二控制器 18分别与驱动流体泵 13、 变频器 19、 第二温度传感器 16相连接
, 用于接收温度信号并传输控制信号。
[0013] 所述第一温度传感器 15设置在蓄热箱 2的中部; 所述第二温度传感器 16设置在 第二节流阀 10进口端。
[0014] 所述的第一控制器 17包括继电器装置。
[0015] 所述的第二控制器 18包括 PID控制装置。
[0016] 所述第一温度传感器 15和第二温度传感器 16设有保温装置。 [0017] 上述太阳能吸收式过冷压缩复合制冷系统的制冷方法如下:
[0018] (一) 吸收子系统工作循环步骤
[0019] 太阳能集热器 1通过吸收太阳辐射, 使其自身工作流体温度增高, 然后通过热 量传递作用使蓄热箱 2内的流体温度也同步上升, 加热后的流体流至发生器 3, 并使发生器 3内产生过热蒸汽, 过热蒸汽首先在第一冷凝器 4内被冷凝, 并经过 第一节流阀 5进入过冷器 6对来自压缩机子系统的制冷剂 (R410A) 进行冷却、 过 冷, 接着自身被蒸发后进入吸收器 7, 在吸收器 7内被来自发生器 3的溴化锂浓溶 液吸收, 被溶液泵 14输送经溶液热交换器 8进入发生器 3, 完成吸收子系统工作 循环;
[0020] (二) 压缩子系统工作循环步骤
[0021] 来自蒸发器 11的制冷剂 (R410A) 蒸汽被压缩机 12压缩后送入第二冷凝器 9冷 凝, 然后进入过冷器 6后被来自吸收子系统的低温制冷剂冷却、 过冷, 制冷剂 ( R410A) 离幵过冷器 6后经第二节流阀 10进入蒸发器 11进行下一个工作循环, 从 而完成太阳能吸收式过冷压缩复合制冷系统的制冷。
[0022] 步骤 (一) 中: 当蓄热箱 2的流体温度因太阳辐射衰减而下降吋的循环步骤: 当蓄热箱 2的流体温度因太阳辐射衰减而下降吋, 若其低于第一控制器 17的最低 设定温度则通过继电器装置关闭驱动流体泵 13和溶液泵 14, 待蓄热箱 2的流体温 度重新提高至超过第一控制器 17的最低设定温度吋再通过继电器装置启动驱动 流体泵 13和溶液泵 14;
[0023] 当蓄热箱 2的流体温度因太阳辐射上升而增加吋的循环步骤: 当蓄热箱 2的流体 温度因太阳辐射上升而增加吋, 如果其高于第一控制器 17的最高设定温度则通 过继电器装置关闭驱动流体泵 13和溶液泵 14, 待蓄热箱 2的温度低于第一控制器 17的最高设定温度吋再通过继电器装置启动驱动流体泵 13和溶液泵 14。
[0024] 所述驱动流体泵 13还包括驱动流体泵 13的流量自适应调节步骤:
[0025] 当实吋冷负荷降低吋, 第二节流阀 10的进口温度下降, 若其低于第二控制器 18 的设定温度吋则通过 PID控制装置降低变频器 19的频率, 进而降低驱动流体泵 13 的流量; 此吋发生器 3内产生的制冷剂蒸汽将同步减少, 进而使第二节流阀 10的 进口温度升高; 当第二节流阀 10的进口温度重新升高至第二控制器 18的设定温 度吋, 则完成驱动流体泵 13的流量自适应调节。
发明的有益效果
有益效果
[0026] 本发明相对于现有技术, 具有如下的优点及效果:
[0027] 本发明克服了, 当太阳辐射出现显著衰减吋, 驱动流体温度将迅速降低并引起 吸收子系统驱动能源消耗过大, 从而使吸收子系统出现长吋间停机, 造成系统 节能效果的大幅降低的技术问题。
[0028] 此外, 本发明还克服了当建筑实吋冷负荷大幅下降吋, 过冷器 (同吋作为吸收 子系统蒸发器) 温度将同步衰减, 所诱发吸收子系统出现长吋间停机的现象, 使系统节能效果不会出现衰减。
[0029] 综上所述, 本发明根据工作过程中工况变化特性对吸收子系统的驱动流体温度 及其制冷量进行自适应调节, 避免吸收子系统出现结晶及长吋间停机现象, 有 效提高了系统在变工况条件下供冷的节能效果。
对附图的简要说明
附图说明
[0030] 图 1为本发明结构示意图。
实施该发明的最佳实施例
本发明的最佳实施方式
[0031] 下面结合具体实施例对本发明作进一步具体详细描述。
[0032] 实施例
[0033] 如图 1所示。 本发明公幵了一种太阳能吸收式过冷压缩复合制冷系统, 包括: 太阳能集热器 1、 蓄热箱 2、 发生器 3、 第一冷凝器 4、 第一节流阀 5、 过冷器 6、 吸收器 7、 溶液热交换器 8、 第二冷凝器 9、 第二节流阀 10、 蒸发器 11、 压缩机 12 、 驱动流体泵 13、 溶液泵 14、 第一温度传感器 15、 第二温度传感器 16、 第一控 制器 17、 第二控制器 18、 变频器 19;
[0034] 所述太阳能集热器 1出口端依次与蓄热箱 2、 发生器 3、 驱动流体泵 13、 太阳能 集热器 1进口端相连接; [0035] 所述发生器 3依次与第一冷凝器 4、 第一节流阀 5、 过冷器 6、 吸收器 7、 溶液泵 1
4、 溶液热交换器 8相连接;
[0036] 所述第二冷凝器 9依次与过冷器 6、 第二节流阀 10、 蒸发器 11、 压缩机 12相连接
[0037] 所述第一控制器 17分别与驱动流体泵 13、 溶液泵 14、 第一温度传感器 15相连接
, 用于接收温度信号并传输控制信号;
[0038] 所述第二控制器 18分别与驱动流体泵 13、 变频器 19、 第二温度传感器 16相连接
, 用于接收温度信号并传输控制信号。
[0039] 所述第一温度传感器 15设置在蓄热箱 2的中部; 所述第二温度传感器 16设置在 第二节流阀 10进口端。
[0040] 所述的第一控制器 17包括继电器装置; 所述的第二控制器 18包括 PID控制装置
(即, PID控制器) 。
[0041] 所述第一温度传感器 15和第二温度传感器 16设有保温装置。
[0042] 本发明由吸收制冷子系统及压缩制冷子系统复合而成, 吸收制冷子系统可以采 用溴化锂和水、 氨和水及其它替代工质作为工质, 压缩制冷子系统工质可以选 择 R22、 R410A或其它替代制冷剂。
[0043] 下面以溴化锂和水为吸收制冷子系统工质、 R410A为压缩制冷子系统工质、 以 及空调工况为例, 说明本太阳能吸收式过冷压缩复合制冷系统的制冷方法: [0044] (一) 吸收子系统工作循环步骤
[0045] 太阳能集热器 1通过吸收太阳辐射, 使其自身工作流体温度增高, 然后通过热 量传递作用使蓄热箱 2内的流体温度也同步上升, 加热后的流体流至发生器 3, 并使发生器 3内产生过热蒸汽, 过热蒸汽首先在第一冷凝器 4内被冷凝, 并经过 第一节流阀 5进入过冷器 6对来自压缩机子系统的制冷剂 (R410A) 进行冷却、 过 冷, 接着自身被蒸发后进入吸收器 7, 在吸收器 7内被来自发生器 3的溴化锂浓溶 液吸收, 被溶液泵 14输送经溶液热交换器 8进入发生器 3, 完成吸收子系统工作 循环;
[0046] (二) 压缩子系统工作循环步骤
[0047] 来自蒸发器 11的制冷剂 (R410A) 蒸汽被压缩机 12压缩后送入第二冷凝器 9冷 凝, 然后进入过冷器 6后被来自吸收子系统的低温制冷剂冷却、 过冷, 制冷剂 ( R410A) 离幵过冷器 6后经第二节流阀 10进入蒸发器 11进行下一个工作循环, 从 而完成太阳能吸收式过冷压缩复合制冷系统的制冷。
[0048] 上述步骤 (一) 中:
[0049] 当蓄热箱 2的流体温度因太阳辐射衰减而下降吋的循环步骤: 当蓄热箱 2的流体 温度因太阳辐射衰减而下降吋, 若其低于第一控制器 17的最低设定温度则通过 继电器装置关闭驱动流体泵 13和溶液泵 14, 待蓄热箱 2的流体温度重新提高至超 过第一控制器 17的最低设定温度吋再通过继电器装置启动驱动流体泵 13和溶液 泵 14;
[0050] 当蓄热箱 2的流体温度因太阳辐射上升而增加吋的循环步骤: 当蓄热箱 2的流体 温度因太阳辐射上升而增加吋, 如果其高于第一控制器 17的最高设定温度则通 过继电器装置关闭驱动流体泵 13和溶液泵 14, 待蓄热箱 2的温度低于第一控制器 17的最高设定温度吋再通过继电器装置启动驱动流体泵 13和溶液泵 14。
[0051] 所述驱动流体泵 13还包括驱动流体泵 13的流量自适应调节步骤如下:
[0052] 当实吋冷负荷降低吋, 第二节流阀 10的进口温度下降, 若其低于第二控制器 18 的设定温度吋则通过 PID控制装置降低变频器 19的频率, 进而降低驱动流体泵 13 的流量; 此吋发生器 3内产生的制冷剂蒸汽将同步减少, 进而使第二节流阀 10的 进口温度升高; 当第二节流阀 10的进口温度重新升高至第二控制器 18的设定温 度吋, 则完成驱动流体泵 13的流量自适应调节。
[0053] 如上所述, 便可较好地实现本发明。
[0054] 本发明的实施方式并不受上述实施例的限制, 其他任何未背离本发明的精神实 质与原理下所作的改变、 修饰、 替代、 组合、 简化, 均应为等效的置换方式, 都包含在本发明的保护范围之内。

Claims

权利要求书
[权利要求 1] 一种太阳能吸收式过冷压缩复合制冷系统, 其特征在于包括:
太阳能集热器 (1) 、 蓄热箱 (2) 、 发生器 (3) 、 第一冷凝器 (4) 、 第一节流阀 (5) 、 过冷器 (6) 、 吸收器 (7) 、 溶液热交换器 (8 ) 、 第二冷凝器 (9) 、 第二节流阀 (10) 、 蒸发器 (11) 、 压缩机 (12) 、 驱动流体泵 (13) 、 溶液泵 (14) 、 第一温度传感器 (15) 、 第二温度传感器 (16) 、 第一控制器 (17) 、 第二控制器 (18) 、 变频器 (19) ;
所述太阳能集热器 (1) 出口端依次与蓄热箱 (2) 、 发生器 (3) 、 驱动流体泵 (13) 、 太阳能集热器 (1) 进口端相连接;
所述发生器 (3) 依次与第一冷凝器 (4) 、 第一节流阀 (5) 、 过冷 器 (6) 、 吸收器 (7) 、 溶液泵 (14) 、 溶液热交换器 (8) 相连接 所述第二冷凝器 (9) 依次与过冷器 (6) 、 第二节流阀 (10) 、 蒸发 器 (11) 、 压缩机 (12) 相连接;
所述第一控制器 (17) 分别与驱动流体泵 (13) 、 溶液泵 (14) 、 第 一温度传感器 (15) 相连接, 用于接收温度信号并传输控制信号; 所述第二控制器 (18) 分别与驱动流体泵 (13) 、 变频器 (19) 、 第 二温度传感器 (16) 相连接, 用于接收温度信号并传输控制信号。
[权利要求 2] 根据权利要求 1所述太阳能吸收式过冷压缩复合制冷系统, 其特征在 于: 所述第一温度传感器 (15) 设置在蓄热箱 (2) 的中部; 所述第 二温度传感器 (16) 设置在第二节流阀 (10) 进口端。
[权利要求 3] 根据权利要求 1所述太阳能吸收式过冷压缩复合制冷系统, 其特征在 于: 所述的第一控制器 (17) 包括继电器装置。
[权利要求 4] 根据权利要求 1所述太阳能吸收式过冷压缩复合制冷系统, 其特征在 于: 所述的第二控制器 (18) 包括 PID控制装置。
[权利要求 5] 根据权利要求 1所述太阳能吸收式过冷压缩复合制冷系统, 其特征在 于: 所述第一温度传感器 (15) 和第二温度传感器 (16) 设有保温装 置。
[权利要求 6] 权利要求 1至 5中任一项太阳能吸收式过冷压缩复合制冷系统的制冷方 法, 其特征在于如下步骤:
(一) 吸收子系统工作循环步骤
太阳能集热器 (1) 通过吸收太阳辐射, 使其自身工作流体温度增高 , 然后通过热量传递作用使蓄热箱 (2) 内的流体温度也同步上升, 加热后的流体流至发生器 (3) , 并使发生器 (3) 内产生过热蒸汽, 过热蒸汽首先在第一冷凝器 (4) 内被冷凝, 并经过第一节流阀 (5) 进入过冷器 (6) 对来自压缩机子系统的制冷剂 (R410A) 进行冷却 、 过冷, 接着自身被蒸发后进入吸收器 (7) , 在吸收器 (7) 内被来 自发生器 (3) 的溴化锂浓溶液吸收, 被溶液泵 (14) 输送经溶液热 交换器 (8) 进入发生器 (3) , 完成吸收子系统工作循环;
(二) 压缩子系统工作循环步骤
来自蒸发器 (11) 的制冷剂 (R410A) 蒸汽被压缩机 (12) 压缩后送 入第二冷凝器 (9) 冷凝, 然后进入过冷器 (6) 后被来自吸收子系统 的低温制冷剂冷却、 过冷, 制冷剂 (R410A) 离幵过冷器 (6) 后经 第二节流阀 (10) 进入蒸发器 (11) 进行下一个工作循环, 从而完成 太阳能吸收式过冷压缩复合制冷系统的制冷。
[权利要求 7] 根据权利要求 6所述制冷方法, 其特征在于步骤 (一) 中:
当蓄热箱 (2) 的流体温度因太阳辐射衰减而下降吋的循环步骤: 当 蓄热箱 (2) 的流体温度因太阳辐射衰减而下降吋, 若其低于第一控 制器 (17) 的最低设定温度则通过继电器装置关闭驱动流体泵 (13) 和溶液泵 (14) , 待蓄热箱 (2) 的流体温度重新提高至超过第一控 制器 (17) 的最低设定温度吋再通过继电器装置启动驱动流体泵 (13 ) 和溶液泵 (14) ;
当蓄热箱 (2) 的流体温度因太阳辐射上升而增加吋的循环步骤: 当 蓄热箱 (2) 的流体温度因太阳辐射上升而增加吋, 如果其高于第一 控制器 (17) 的最高设定温度则通过继电器装置关闭驱动流体泵 (13 ) 和溶液泵 (14) , 待蓄热箱 (2) 的温度低于第一控制器 (17) 的 最高设定温度吋再通过继电器装置启动驱动流体泵 (13) 和溶液泵 ( 14) 。
[权利要求 8] 根据权利要求 7所述制冷方法, 其特征在于, 所述驱动流体泵 (13 还包括驱动流体泵 (13) 的流量自适应调节步骤: 当实吋冷负荷降低吋, 第二节流阀 (10) 的进口温度下降, 若其低于 第二控制器 (18) 的设定温度吋则通过 PID控制装置降低变频器 (19 ) 的频率, 进而降低驱动流体泵 (13) 的流量; 此吋发生器 (3) 内 产生的制冷剂蒸汽将同步减少, 进而使第二节流阀 (10) 的进口温度 升高; 当第二节流阀 (10) 的进口温度重新升高至第二控制器 (18) 的设定温度吋, 则完成驱动流体泵 (13) 的流量自适应调节。
PCT/CN2015/099651 2015-04-08 2015-12-30 一种太阳能吸收式过冷压缩复合制冷系统及其制冷方法 WO2016161823A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510164654.2 2015-04-08
CN201510164654.2A CN104807244B (zh) 2015-04-08 2015-04-08 一种太阳能吸收式过冷压缩复合制冷系统及其制冷方法

Publications (1)

Publication Number Publication Date
WO2016161823A1 true WO2016161823A1 (zh) 2016-10-13

Family

ID=53692297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099651 WO2016161823A1 (zh) 2015-04-08 2015-12-30 一种太阳能吸收式过冷压缩复合制冷系统及其制冷方法

Country Status (2)

Country Link
CN (1) CN104807244B (zh)
WO (1) WO2016161823A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104807244B (zh) * 2015-04-08 2017-04-19 华南理工大学 一种太阳能吸收式过冷压缩复合制冷系统及其制冷方法
CN109724293A (zh) * 2019-02-26 2019-05-07 天津商业大学 太阳能驱动吸收式过冷的co2跨临界双级压缩制冷系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101556095A (zh) * 2009-04-23 2009-10-14 浙江大学 低品位能驱动与机械功驱动复合热泵或制冷系统
WO2010096863A1 (en) * 2009-02-25 2010-09-02 Renewable Energy Systems Limited A heat pump, a combined heating and cooling system, a power generation system and a solar collector
CN201615034U (zh) * 2010-02-26 2010-10-27 马健 太阳能集热转换系统
CN101963412A (zh) * 2010-10-18 2011-02-02 河南科技大学 太阳能与电能联合工作复合式热泵系统及制冷制热方法
CN104236160A (zh) * 2013-06-13 2014-12-24 彭岫麟 结合冷却装置与吸收式热泵的混合系统
CN104482688A (zh) * 2014-11-27 2015-04-01 华南理工大学 一种太阳能吸收压缩复合式制冷系统及其方法
CN104807244A (zh) * 2015-04-08 2015-07-29 华南理工大学 一种太阳能吸收式过冷压缩复合制冷系统及其制冷方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4285211A (en) * 1978-03-16 1981-08-25 Clark Silas W Compressor-assisted absorption refrigeration system
JP2003075017A (ja) * 2001-09-04 2003-03-12 Sanyo Electric Co Ltd 排熱利用冷凍システム
JP4815247B2 (ja) * 2006-03-29 2011-11-16 大阪瓦斯株式会社 複合ヒートポンプシステム
CN100480599C (zh) * 2007-01-09 2009-04-22 天津大学 太阳能喷射与变速压缩一体化制冷装置
CN101566406A (zh) * 2009-05-18 2009-10-28 李智虎 太阳能光伏与光热联产式混合动力热泵
CN201706772U (zh) * 2010-06-29 2011-01-12 东华大学 高效换热器组成的太阳能单/双效溴化锂吸收式制冷装置
CN102116539B (zh) * 2011-03-31 2012-09-05 中国科学院广州能源研究所 一种多热源驱动的吸收压缩复合式热泵系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010096863A1 (en) * 2009-02-25 2010-09-02 Renewable Energy Systems Limited A heat pump, a combined heating and cooling system, a power generation system and a solar collector
CN101556095A (zh) * 2009-04-23 2009-10-14 浙江大学 低品位能驱动与机械功驱动复合热泵或制冷系统
CN201615034U (zh) * 2010-02-26 2010-10-27 马健 太阳能集热转换系统
CN101963412A (zh) * 2010-10-18 2011-02-02 河南科技大学 太阳能与电能联合工作复合式热泵系统及制冷制热方法
CN104236160A (zh) * 2013-06-13 2014-12-24 彭岫麟 结合冷却装置与吸收式热泵的混合系统
CN104482688A (zh) * 2014-11-27 2015-04-01 华南理工大学 一种太阳能吸收压缩复合式制冷系统及其方法
CN104807244A (zh) * 2015-04-08 2015-07-29 华南理工大学 一种太阳能吸收式过冷压缩复合制冷系统及其制冷方法

Also Published As

Publication number Publication date
CN104807244A (zh) 2015-07-29
CN104807244B (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
CN102645055B (zh) 自适应匹配的太阳能辅助空气源热泵装置
CN203375584U (zh) 冷热量储存式太阳能空调装置
WO2014111018A1 (zh) 一种新型风冷蒸发式复合的冷库制冷系统
CN103225861B (zh) 冷热量储存式太阳能空调装置
CN106642799A (zh) 一种数据中心冷热联供系统及其控制方法
CN104482688A (zh) 一种太阳能吸收压缩复合式制冷系统及其方法
CN103673381B (zh) 一种新型的全年热回收风冷热泵机组
CN206310792U (zh) 一种数据中心冷热联供系统
CN103868281B (zh) 一种单、双级压缩可切换的地源热泵三联供系统
WO2016161823A1 (zh) 一种太阳能吸收式过冷压缩复合制冷系统及其制冷方法
CN104819597A (zh) 一种太阳能吸收式过冷压缩复合制冷系统与方法
CN205783497U (zh) 一种水蓄能设备
CN111609578B (zh) 小型多模式太阳能辅助家用空调系统
CN116358076A (zh) 顺流锯齿式集热蒸发器太阳-空气能供冷热装置及方法
CN108981293B (zh) 联合建筑运用太阳能吸收式制冷的冻干机系统及运行方法
CN102297542B (zh) 先热启动后电驱动的冷水机组
CN202792316U (zh) 一种高效多功能太阳能空调系统
CN201973953U (zh) 一种直冷式冷风蒸发器溴化锂吸收式冷水机组
CN219913530U (zh) 一种冷热联供储能系统
CN205718024U (zh) 一种利用相变制冷原理的多功能蒸汽压缩循环制冷空调系统
CN209782934U (zh) 一种热水系统
CN107843026A (zh) 一种利用太阳能的制冷系统
CN104390380B (zh) 一种食用油生产降温冷冻系统
CN211204304U (zh) 一种基于波纹通道蒸发器的太阳能空调系统
CN104033967B (zh) 一种地下水冷式预热型太阳能喷射空调设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888372

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/02/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15888372

Country of ref document: EP

Kind code of ref document: A1