WO2016161569A1 - 一种预警信息的传输装置及方法 - Google Patents

一种预警信息的传输装置及方法 Download PDF

Info

Publication number
WO2016161569A1
WO2016161569A1 PCT/CN2015/076033 CN2015076033W WO2016161569A1 WO 2016161569 A1 WO2016161569 A1 WO 2016161569A1 CN 2015076033 W CN2015076033 W CN 2015076033W WO 2016161569 A1 WO2016161569 A1 WO 2016161569A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
communication device
early warning
warning signal
device belongs
Prior art date
Application number
PCT/CN2015/076033
Other languages
English (en)
French (fr)
Inventor
张祺智
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2015/076033 priority Critical patent/WO2016161569A1/zh
Priority to CN201580071569.XA priority patent/CN107107852B/zh
Publication of WO2016161569A1 publication Critical patent/WO2016161569A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/01Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents
    • B60R21/013Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over
    • B60R21/0132Electrical circuits for triggering passive safety arrangements, e.g. airbags, safety belt tighteners, in case of vehicle accidents or impending vehicle accidents including means for detecting collisions, impending collisions or roll-over responsive to vehicle motion parameters, e.g. to vehicle longitudinal or transversal deceleration or speed value
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a device and method for transmitting early warning information.
  • ASTM The American Society for Testing and Materials
  • ASTM E2213-02 The Institute of Electrical and Electronics Engineers
  • IEEE 802.11a The Institute of Electrical and Electronics Engineers 802.11a could not meet the collision warning application. Therefore, in 2004, ASTM transferred the development of the DSRC standard to the IEEE standard organization, in which the media access control layer (MAC) layer
  • the physical layer (PHY) is developed by the IEEE 802.11 working group, namely IEEE 802.11p.
  • the layer protocol above the MAC layer is developed by the IEEE 1609 working group, namely the WAVE upper layer protocol.
  • each vehicle transmits a data packet according to a carrier Sense Multiple Access with Collision Avoidance (CSMA/CA) protocol competition resource.
  • the data packet of such early warning information is usually It will include the User Equipment Identity (UE ID), location information, and speed information.
  • UE ID User Equipment Identity
  • each UE in the local range uses resources orthogonal to each other to transmit a data packet.
  • Long-term evolution of device to device Long Term Evolution Device to Device (referred to as LTE D2D) has centralized and distributed resource allocation methods.
  • LTE D2D Long-term evolution of device to device
  • LTE D2D Long-term evolution of device to device
  • LTE D2D Long-term evolution of device to device
  • LTE D2D Long-term evolution of device to Device
  • LTE D2D Long-term evolution of device to Device
  • LTE D2D Long-term evolution of device to Device
  • LTE D2D Long-term evolution of device to Device
  • LTE D2D Long-term evolution of device to Device
  • the warning information has high requirements on delay, it is generally considered to be less than 500ms, and the number of resources in the limited bandwidth within 500ms is limited, so when the number of vehicles in the local range is more than the number of resources, Some vehicles will not be able to compete to send resources within 500ms, and they will not be able to inform other vehicles about their situation.
  • LTE D2D distributed resource allocation method provided by the prior art, although each UE can randomly select one resource to transmit data within 500 ms, when there are a large number of UEs in a local range, two or more UEs inevitably appear. Select the same resource to send data.
  • the signals carrying these data interfere with each other at the receiving end, making it difficult for the receiving end UE to successfully decode any of them. Therefore, the receiving vehicle cannot know the warning information sent by the transmitting end vehicle.
  • the UEs in the local area transmit data using resources orthogonal to each other. Thus, there is the same problem as in the above IEEE802.11p.
  • the invention provides a device and a method for transmitting warning information, which are used for improving the stability of communication between a vehicle and a vehicle.
  • a first aspect of the present invention provides an in-vehicle communication device, wherein a vehicle to which the in-vehicle communication device belongs shares an alert resource block with at least one other vehicle, and the at least one other vehicle transmits the first on the alert resource block An early warning signal; the in-vehicle communication device carries a second early warning signal on the early warning resource block for transmitting; wherein the in-vehicle communication device comprises:
  • a receiving module configured to receive the first early warning signal that is carried on the early warning resource block
  • a Doppler shift value generated by the first early warning signal during transmission for indicating a relative speed of any one of the at least one other vehicle and a vehicle to which the in-vehicle communication device belongs; the Doppler a frequency shift value indicating a frequency at which the first early warning signal is transmitted and the first early warning signal The difference in frequency when received;
  • a sending module configured to carry a second early warning signal on the early warning resource block for transmitting
  • the second early warning signal is used to notify any one of the at least one other vehicle, a relative speed of the vehicle to which the in-vehicle communication device belongs and any one of the at least one other vehicle;
  • a detecting module configured to detect a Doppler shift value of the first early warning signal, and obtain any one of the at least one other vehicle and the vehicle according to a Doppler shift value of the first early warning signal The relative speed of the vehicle to which the communication device belongs;
  • the processing module is configured to know that there is a risk of colliding with any one of the at least one other vehicle when the relative speed reaches an early warning threshold.
  • the processing module is specifically configured to determine whether the relative speed reaches the early warning threshold, and if yes, know that the presence and the at least one other vehicle are Any one of the risks of collision.
  • the processing module is further configured to: if the relative speed does not reach the early warning threshold, learn the vehicle The vehicle to which the communication device belongs is in a safe driving state.
  • the receiving module is specifically configured to be used Receiving the first early warning signal that is carried on all time domain resources of the early warning resource block;
  • the sending module is specifically configured to carry the second early warning signal on a time domain resource corresponding to the in-vehicle communication device in the early warning resource block for transmitting.
  • the early warning resource block has a lane with a lane that the vehicle to which the in-vehicle communication device belongs Corresponding relationship.
  • the receiving module is further configured to receive a broadcast message of a roadside unit, where the broadcast message includes the in-vehicle communication device The number of the lane in which the vehicle belongs;
  • the processing module is further configured to select, according to the number, the early warning resource block corresponding to a lane that the vehicle to which the in-vehicle communication device belongs.
  • a second aspect of the present invention provides an in-vehicle communication device, wherein a vehicle to which the in-vehicle communication device belongs shares an alert resource block with at least one other vehicle; wherein the in-vehicle communication device, include:
  • Transceiver module for:
  • a first Doppler shift value generated by the first forward warning signal during transmission is used to indicate a relative speed of the first vehicle and a vehicle to which the in-vehicle communication device belongs;
  • the first vehicle is the at least one Any one of the other vehicles located in front of the vehicle to which the in-vehicle communication device belongs;
  • the first Doppler shift value indicating that the first forward warning signal is transmitted and the first forward warning signal is received The difference in frequency;
  • a second Doppler shift value generated by the first rear warning signal during transmission is used to indicate a relative speed of the second vehicle and the vehicle to which the in-vehicle communication device belongs;
  • the second vehicle is the at least one Any one of the other vehicles located behind the vehicle to which the in-vehicle communication device belongs;
  • the second Doppler shift value indicates that the frequency when the first rear warning signal is transmitted and the first rear warning signal are received The difference in frequency;
  • the second forward warning signal is sent by the first vehicle;
  • the third Doppler frequency shift value generated by the second forward warning signal during transmission is used to indicate the first vehicle and the vehicle a relative speed of the vehicle to which the communication device belongs;
  • the third Doppler shift value indicating a difference between a frequency at which the second forward warning signal is transmitted and a frequency at which the second forward warning signal is received;
  • the second rear warning signal is sent by the second vehicle;
  • the fourth Doppler frequency shift value generated by the second rear warning signal during transmission is used to indicate the second vehicle and the vehicle a relative speed of the vehicle to which the communication device belongs;
  • the fourth Doppler shift value indicates a difference between a frequency at which the second rear warning signal is transmitted and a frequency at which the second rear warning signal is received;
  • a detecting module configured to detect the third Doppler shift value, and obtain a relative speed of the first vehicle and the vehicle to which the in-vehicle communication device belongs according to the third Doppler shift value; and/or, Detection And determining, by the fourth Doppler frequency shift value, a relative speed of the second vehicle and the vehicle to which the in-vehicle communication device belongs according to the fourth Doppler shift value;
  • a processing module configured to: when the relative speed of the first vehicle and the vehicle to which the in-vehicle communication device belongs reaches an early warning threshold, knowing that there is a risk of collision with the first vehicle; and/or, when the second vehicle When the relative speed of the vehicle to which the in-vehicle communication device belongs reaches the warning threshold, it is known that there is a risk of collision with the second vehicle.
  • the second The front warning signal is sent by the tail antenna of the first vehicle; if the first vehicle is any one of at least one other vehicle that moves backwards with the vehicle to which the in-vehicle communication device belongs, the second front An early warning signal is sent for the front antenna of the first vehicle;
  • the second rear warning signal is sent by the front antenna of the second vehicle;
  • the second vehicle is any one of at least one other vehicle that moves in a reverse direction with the vehicle to which the in-vehicle communication device belongs, and the second rear warning signal is transmitted by the rear antenna of the second vehicle.
  • the processing module is specifically configured to determine that the first vehicle and the in-vehicle communication device belong to Whether the relative speed of the vehicle reaches the warning threshold, if so, knowing that there is a risk of collision with the first vehicle; and/or determining whether the relative speed of the second vehicle and the vehicle to which the in-vehicle communication device belongs
  • the early warning threshold if reached, is known to be at risk of colliding with the first vehicle.
  • the transceiver module includes a front antenna and a rear antenna
  • the head antenna is configured to transmit the first forward warning signal on a first time domain resource of the early warning resource block to a front of a vehicle to which the in-vehicle communication device belongs; or, in the early warning resource Receiving, by the time domain resource of the block other than the first time domain resource, the second forward warning signal;
  • the rear antenna is configured to transmit the first rear warning signal on a second time domain resource of the early warning resource block to a rear of a vehicle to which the in-vehicle communication device belongs; or Receiving a second rear warning signal on the time domain resource other than the second time domain resource of the police resource block;
  • the front antenna and the front antenna of the first vehicle sharing the early warning resource block Transmitting, by the first time domain resource, the tail antenna of the first vehicle sharing the second time domain resource of the early warning resource block with the tail antenna of the first vehicle;
  • the front antenna and the front antenna of the second vehicle sharing the early warning resource block Transmitting, by the first time domain resource, the tail antenna of the second vehicle and the second antenna of the second vehicle transmitting the second time domain resource of the early warning resource block;
  • the front antenna and the rear antenna of the first vehicle share the early warning resource block Transmitting, by the first time domain resource, the second rear time domain resource of the early warning resource block is transmitted by the tail antenna and the front antenna of the first vehicle;
  • the front antenna and the rear antenna of the second vehicle share the early warning resource block
  • the first time domain resource is transmitted
  • the tail antenna and the head antenna of the first vehicle share the second time domain resource of the early warning resource block for transmitting.
  • the early warning resource block has a lane with a lane that the vehicle to which the in-vehicle communication device belongs Corresponding relationship.
  • the transceiver module is further configured to receive a broadcast message of a roadside unit, where the broadcast message includes the in-vehicle communication device The number of the lane in which the vehicle belongs;
  • the processing module is further configured to select, according to the number, the early warning resource block corresponding to a lane that the vehicle to which the in-vehicle communication device belongs.
  • a third aspect of the present invention provides an in-vehicle communication device, wherein a vehicle to which the in-vehicle communication device belongs shares an alert resource block with at least one other vehicle, and the at least one other vehicle transmits the first on the alert resource block An early warning signal; the in-vehicle communication device carries a second early warning signal on the early warning resource block for transmitting; wherein the in-vehicle communication device comprises:
  • a receiver configured to receive the first early warning signal that is carried on the early warning resource block
  • a Doppler shift value generated by the first early warning signal during transmission for indicating a relative speed of any one of the at least one other vehicle and a vehicle to which the in-vehicle communication device belongs;
  • the Doppler The frequency shift value indicates a difference between a frequency at which the first early warning signal is transmitted and a frequency at which the first early warning signal is received;
  • a transmitter configured to carry a second early warning signal on the early warning resource block for transmitting
  • the second early warning signal is used to notify any one of the at least one other vehicle, a relative speed of the vehicle to which the in-vehicle communication device belongs and any one of the at least one other vehicle;
  • a processor configured to detect a Doppler shift value of the first early warning signal, and obtain any one of the at least one other vehicle and the vehicle according to a Doppler shift value of the first early warning signal The relative speed of the vehicle to which the communication device belongs; when the relative speed reaches the early warning threshold, it is known that there is a risk of colliding with any of the at least one other vehicle.
  • the processor is specifically configured to determine whether the relative speed reaches the early warning threshold, and if yes, know that the presence and the at least one other vehicle are Any one of the risks of collision.
  • the processor is further configured to: if the relative speed does not reach the early warning threshold, learn the vehicle The vehicle to which the communication device belongs is in a safe driving state.
  • the receiver is specifically configured to be used Receiving a first early warning signal that is carried on all time domain resources of the early warning resource block;
  • the transmitter is specifically configured to carry the second early warning signal on a time domain resource corresponding to the in-vehicle communication device in the early warning resource block for transmitting.
  • the early warning resource block has a lane with a lane that the vehicle to which the in-vehicle communication device belongs Corresponding relationship.
  • the receiver is further configured to receive a broadcast message of a roadside unit, where the broadcast message includes the in-vehicle communication device The number of the lane in which the vehicle belongs;
  • the processor is further configured to select, according to the number, the early warning resource block corresponding to a lane that the vehicle to which the in-vehicle communication device belongs.
  • a fourth aspect of the present invention provides an in-vehicle communication device, wherein the vehicle to which the in-vehicle communication device belongs has a warning resource block shared with at least one other vehicle; wherein the in-vehicle communication device includes:
  • a first Doppler shift value generated by the first forward warning signal during transmission is used to indicate a relative speed of the first vehicle and a vehicle to which the in-vehicle communication device belongs;
  • the first vehicle is the at least one Any one of the other vehicles located in front of the vehicle to which the in-vehicle communication device belongs;
  • the first Doppler shift value indicating that the first forward warning signal is transmitted and the first forward warning signal is received The difference in frequency;
  • a second Doppler shift value generated by the first rear warning signal during transmission is used to indicate a relative speed of the second vehicle and the vehicle to which the in-vehicle communication device belongs;
  • the second vehicle is the at least one Any one of the other vehicles located behind the vehicle to which the in-vehicle communication device belongs;
  • the second Doppler shift value indicates that the frequency when the first rear warning signal is transmitted and the first rear warning signal are received The difference in frequency;
  • the second forward warning signal is sent by the first vehicle;
  • the third Doppler frequency shift value generated by the second forward warning signal during transmission is used to indicate the first vehicle and the vehicle a relative speed of the vehicle to which the communication device belongs;
  • the third Doppler shift value indicating a difference between a frequency at which the second forward warning signal is transmitted and a frequency at which the second forward warning signal is received;
  • the second rear warning signal is sent by the second vehicle;
  • the fourth Doppler frequency shift value generated by the second rear warning signal during transmission is used to indicate the second vehicle and the vehicle a relative speed of the vehicle to which the communication device belongs;
  • the fourth Doppler shift value indicates a difference between a frequency at which the second rear warning signal is transmitted and a frequency at which the second rear warning signal is received;
  • Detecting the third Doppler shift value obtaining a relative speed of the first vehicle and the vehicle to which the in-vehicle communication device belongs according to the third Doppler shift value; and/or detecting the fourth a Doppler shift value, and obtaining, according to the fourth Doppler shift value, a relative speed of the second vehicle and the vehicle to which the in-vehicle communication device belongs;
  • the second The front warning signal is sent by the tail antenna of the first vehicle; if the first vehicle is any one of at least one other vehicle that moves backwards with the vehicle to which the in-vehicle communication device belongs, the second front An early warning signal is sent for the front antenna of the first vehicle;
  • the second rear warning signal is sent by the front antenna of the second vehicle;
  • the second vehicle is any one of at least one other vehicle that moves in a reverse direction with the vehicle to which the in-vehicle communication device belongs, and the second rear warning signal is transmitted by the rear antenna of the second vehicle.
  • the processor is specifically configured to determine that the first vehicle and the in-vehicle communication device belong to Whether the relative speed of the vehicle reaches the warning threshold, if so, knowing that there is a risk of collision with the first vehicle; and/or determining whether the relative speed of the second vehicle and the vehicle to which the in-vehicle communication device belongs
  • the early warning threshold if reached, is known to be at risk of colliding with the first vehicle.
  • the transceiver includes a front antenna and a rear antenna
  • the head antenna is configured to transmit the first forward warning signal on a first time domain resource of the early warning resource block to a front of a vehicle to which the in-vehicle communication device belongs; or, in the early warning resource Receiving a second forward warning on a time domain resource other than the first time domain resource of the block signal;
  • the rear antenna is configured to transmit the first rear warning signal on a second time domain resource of the early warning resource block to a rear of a vehicle to which the in-vehicle communication device belongs; or in the early warning resource block Receiving a second rear warning signal on other time domain resources other than the second time domain resource;
  • the front antenna and the front antenna of the first vehicle sharing the early warning resource block Transmitting, by the first time domain resource, the tail antenna of the first vehicle sharing the second time domain resource of the early warning resource block with the tail antenna of the first vehicle;
  • the front antenna and the front antenna of the second vehicle sharing the early warning resource block Transmitting, by the first time domain resource, the tail antenna of the second vehicle and the second antenna of the second vehicle transmitting the second time domain resource of the early warning resource block;
  • the front antenna and the rear antenna of the first vehicle share the early warning resource block Transmitting, by the first time domain resource, the second rear time domain resource of the early warning resource block is transmitted by the tail antenna and the front antenna of the first vehicle;
  • the front antenna and the rear antenna of the second vehicle share the early warning resource block
  • the first time domain resource is transmitted
  • the tail antenna and the head antenna of the first vehicle share the second time domain resource of the early warning resource block for transmitting.
  • the early warning resource block has a lane with a lane that the vehicle to which the in-vehicle communication device belongs Corresponding relationship.
  • the method further includes:
  • the transceiver is further configured to receive a broadcast message of a roadside unit, where the broadcast message includes a number of a lane in which the vehicle to which the in-vehicle communication device belongs;
  • the processor is further configured to select, according to the number, the early warning resource block corresponding to a lane that the vehicle to which the in-vehicle communication device belongs.
  • a fifth aspect of the present invention provides a method for transmitting warning information, an in-vehicle communication device
  • the vehicular vehicle shares an early warning resource block with at least one other vehicle, and the at least one other vehicle separately transmits a first early warning signal on the early warning resource block;
  • the borne vehicle communication device carries the second early warning signal on the early warning resource block Transmitting;
  • the method for transmitting the warning information is performed by the in-vehicle communication device, including:
  • a Doppler shift value generated by the first early warning signal during transmission for indicating a relative speed of any one of the at least one other vehicle and a vehicle to which the in-vehicle communication device belongs;
  • the Doppler The frequency shift value indicates a difference between a frequency at which the first early warning signal is transmitted and a frequency at which the first early warning signal is received;
  • the in-vehicle communication device carries a second early warning signal on the early warning resource block for transmitting
  • the second early warning signal is used to notify any one of the at least one other vehicle, a relative speed of the vehicle to which the in-vehicle communication device belongs and any one of the at least one other vehicle;
  • the in-vehicle communication device detects a Doppler shift value of the first early warning signal, and obtains any one of the at least one other vehicle and the vehicle according to a Doppler shift value of the first early warning signal The relative speed of the vehicle to which the communication device belongs;
  • the in-vehicle communication device is aware of the risk of colliding with any of the at least one other vehicle.
  • the in-vehicle communication device when the relative speed reaches an early warning threshold, the in-vehicle communication device is aware of the risk of colliding with any one of the at least one other vehicle ,include:
  • the in-vehicle communication device determines whether the relative speed reaches the early warning threshold, and if so, knows that there is a risk of colliding with any of the at least one other vehicle.
  • the in-vehicle communication device learns the vehicle to which the in-vehicle communication device belongs In safe driving.
  • the in-vehicle communication device receives the bearer in The first early warning signal on the early warning resource block includes:
  • the in-vehicle communication device carries the second early warning signal on the early warning resource block for transmitting, including:
  • the in-vehicle communication device transmits the second early warning signal on a time domain resource corresponding to the in-vehicle communication device in the early warning resource block for transmitting.
  • the early warning resource block has a lane with a lane that the vehicle to which the in-vehicle communication device belongs Corresponding relationship.
  • the method further includes:
  • the in-vehicle communication device Receiving, by the in-vehicle communication device, a broadcast message of a roadside unit, the broadcast message including a number of a lane in which the vehicle to which the in-vehicle communication device belongs;
  • the in-vehicle communication device selects the early warning resource block corresponding to a lane in which the vehicle to which the in-vehicle communication device belongs, according to the number.
  • a sixth aspect of the present invention provides a method for transmitting an early warning information, wherein a vehicle to which the in-vehicle communication device belongs and an at least one other vehicle share an early warning resource block, and the method for transmitting the early warning information is performed by the in-vehicle communication device, including:
  • the in-vehicle communication device transmits the first forward warning signal on the first time domain resource of the early warning resource block to the front of the vehicle to which the in-vehicle communication device belongs;
  • a first Doppler shift value generated by the first forward warning signal during transmission is used to indicate a relative speed of the first vehicle and a vehicle to which the in-vehicle communication device belongs;
  • the first vehicle is the at least one Any one of the other vehicles located in front of the vehicle to which the in-vehicle communication device belongs;
  • the first Doppler shift value indicating that the first forward warning signal is transmitted and the first forward warning signal is received The difference in frequency;
  • the in-vehicle communication device transmits a first rear warning signal on a second time domain resource of the early warning resource block to a rear of a vehicle to which the in-vehicle communication device belongs;
  • a second Doppler shift value generated by the first rear warning signal during transmission is used to indicate a relative speed of the second vehicle and the vehicle to which the in-vehicle communication device belongs;
  • the second vehicle is the at least one Any one of the other vehicles located behind the vehicle to which the in-vehicle communication device belongs;
  • the second Doppler shift value indicates that the frequency when the first rear warning signal is transmitted and the first rear warning signal are received The difference in frequency;
  • the in-vehicle communication device receives a second forward warning signal on other time domain resources of the early warning resource block except the first time domain resource;
  • the second forward warning signal is sent by the first vehicle;
  • the third Doppler frequency shift value generated by the second forward warning signal during transmission is used to indicate the first vehicle and the vehicle a relative speed of the vehicle to which the communication device belongs;
  • the third Doppler shift value indicating a difference between a frequency at which the second forward warning signal is transmitted and a frequency at which the second forward warning signal is received;
  • the in-vehicle communication device receives a second rear warning signal on other time domain resources of the early warning resource block except the second time domain resource;
  • the second rear warning signal is sent by the second vehicle;
  • the fourth Doppler frequency shift value generated by the second rear warning signal during transmission is used to indicate the second vehicle and the vehicle a relative speed of the vehicle to which the communication device belongs;
  • the fourth Doppler shift value indicates a difference between a frequency at which the second rear warning signal is transmitted and a frequency at which the second rear warning signal is received;
  • the in-vehicle communication device detects the third Doppler shift value, and obtains a relative speed of the first vehicle and the vehicle to which the in-vehicle communication device belongs according to the third Doppler shift value; and/or, Detecting the fourth Doppler shift value, and obtaining, according to the fourth Doppler shift value, a relative speed of the second vehicle and the vehicle to which the in-vehicle communication device belongs;
  • the second The front warning signal is sent by the tail antenna of the first vehicle; if the first vehicle is any one of at least one other vehicle that moves backwards with the vehicle to which the in-vehicle communication device belongs, the second front An early warning signal is sent for the front antenna of the first vehicle;
  • the second rear warning signal is sent by the front antenna of the second vehicle;
  • the second vehicle is any one of at least one other vehicle that moves in a reverse direction with the vehicle to which the in-vehicle communication device belongs, and the second rear warning signal is transmitted by the rear antenna of the second vehicle.
  • a relative speed of the first vehicle and the vehicle to which the in-vehicle communication device belongs reaches an early warning threshold , knowing that there is a risk of collision with the first vehicle, including:
  • the in-vehicle communication device is aware of the risk of colliding with the second vehicle, including:
  • the in-vehicle communication device includes a front antenna and a rear antenna
  • the head antenna is configured to transmit the first forward warning signal on a first time domain resource of the early warning resource block to a front of a vehicle to which the in-vehicle communication device belongs; or, in the early warning resource Receiving, by the time domain resource of the block other than the first time domain resource, the second forward warning signal;
  • the rear antenna is configured to transmit the first rear warning signal on a second time domain resource of the early warning resource block to a rear of a vehicle to which the in-vehicle communication device belongs; or in the early warning resource block Receiving a second rear warning signal on other time domain resources other than the second time domain resource;
  • the front antenna and the front antenna of the first vehicle sharing the early warning resource block Transmitting, by the first time domain resource, the tail antenna of the first vehicle sharing the second time domain resource of the early warning resource block with the tail antenna of the first vehicle;
  • the front antenna and the front antenna of the second vehicle sharing the early warning resource block Transmitting, by the first time domain resource, the tail antenna of the second vehicle and the second antenna of the second vehicle transmitting the second time domain resource of the early warning resource block;
  • the front antenna and the rear antenna of the first vehicle share the early warning resource block Transmitting a first time domain resource, the tail antenna and a front of the first vehicle
  • the antenna shares the second time domain resource of the early warning resource block for transmitting
  • the front antenna and the rear antenna of the second vehicle share the early warning resource block
  • the first time domain resource is transmitted
  • the tail antenna and the head antenna of the first vehicle share the second time domain resource of the early warning resource block for transmitting.
  • the early warning resource block has a lane with a lane that the vehicle to which the in-vehicle communication device belongs Corresponding relationship.
  • the method further includes:
  • the in-vehicle communication device Receiving, by the in-vehicle communication device, a broadcast message of a roadside unit, the broadcast message including a number of a lane in which the vehicle to which the in-vehicle communication device belongs;
  • the in-vehicle communication device selects the early warning resource block corresponding to a lane in which the vehicle to which the in-vehicle communication device belongs, according to the number.
  • the apparatus and method for transmitting early warning information provided by the embodiment of the present invention, the receiving, by the receiving module, receiving the first early warning signal that is carried on the early warning resource block; and the Doppler frequency generated by the first early warning signal during transmission a shift value for indicating a relative speed of any one of the at least one other vehicle and a vehicle to which the in-vehicle communication device belongs; the Doppler shift value indicating a frequency when the first early warning signal is transmitted The difference between the frequencies when the first early warning signal is received; the sending module carries the second early warning signal on the early warning resource block for transmitting; the second early warning signal is used to notify the at least one other vehicle Any one of the relative speeds of the vehicle to which the in-vehicle communication device belongs and any one of the at least one other vehicle; the detecting module detects a Doppler shift value of the first early warning signal, according to the first warning A Doppler shift value of the signal obtains a relative speed of any one of the at least one other vehicle and a vehicle to which the in
  • the in-vehicle communication device Since all other vehicles in a certain range are transmitting and receiving early warning signals on the same early warning resource block, and the in-vehicle communication device determines whether there is a collision risk, the in-vehicle communication device is obtained by the Doppler frequency shift value. The relative speed of the associated vehicle and any one of the at least one other vehicle determines whether the relative speed reaches the early warning threshold. It does not need to allocate independent resources for each vehicle to send and receive early warning information. Ben The in-vehicle communication device provided by the embodiment of the invention only needs to detect the Doppler frequency shift value of the first early warning signal carried in the foregoing early warning resource block, and can determine whether there is a possibility of collision around the vehicle to which the in-vehicle communication device belongs.
  • the vehicle may determine that there is a risk of collision and promptly provide an early warning to the driver of the vehicle to which the in-vehicle communication device belongs.
  • the in-vehicle communication device determines whether there is a risk of collision risk, at least one other vehicle can share one early warning resource block for transmitting the early warning information, and at least one other vehicle can receive the early warning information carried on the early warning resource block. (ie, the first early warning signal), thereby improving the stability of the early warning information transmission and ensuring driving safety.
  • FIG. 1 is a schematic structural diagram of an in-vehicle communication device according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a mechanism for receiving a first early warning signal according to an embodiment of the present invention
  • FIG. 3 is a schematic diagram of time domain resources according to an embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of another in-vehicle communication device according to an embodiment of the present invention.
  • Figure 5 is a schematic view of a lane scene
  • FIG. 6 is a schematic diagram of time domain allocation according to an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of another in-vehicle communication device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of another in-vehicle communication device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of a method for transmitting early warning information according to an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart diagram of another method for transmitting early warning information according to an embodiment of the present invention.
  • FIG. 11 is a schematic flowchart diagram of another method for transmitting early warning information according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of an in-vehicle communication device having a cellular communication function and a D2D communication function, and the vehicle has a full-duplex antenna in the communication device according to an embodiment of the present invention.
  • the vehicle to which the in-vehicle communication device belongs shares an alert resource block with at least one other vehicle, and the at least one other vehicle respectively transmits a first early warning signal on the early warning resource block;
  • the in-vehicle communication device carries the second early warning signal on The transmitting device performs transmission on the early warning resource block;
  • the in-vehicle communication device includes: a receiving module 100, a sending module 101, a detecting module 102, and a processing module 103;
  • the receiving module 100 is configured to receive the first early warning signal that is carried on the early warning resource block.
  • a Doppler shift value generated by the first early warning signal during transmission for indicating a relative speed of any one of the at least one other vehicle and a vehicle to which the in-vehicle communication device belongs;
  • the Doppler The frequency shift value indicates a difference between a frequency at which the first early warning signal is transmitted and a frequency at which the first early warning signal is received;
  • the sending module 101 is configured to carry a second early warning signal on the early warning resource block for transmitting
  • the second early warning signal is used to notify any one of the at least one other vehicle, a relative speed of the vehicle to which the in-vehicle communication device belongs and any one of the at least one other vehicle;
  • the detecting module 102 is configured to detect a Doppler shift value of the first early warning signal, obtain any one of the at least one other vehicle according to a Doppler shift value of the first early warning signal, and The relative speed of the vehicle to which the in-vehicle communication device belongs;
  • the Doppler shift value means that when the sender of the signal moves in a certain direction at a certain rate, the phase and frequency of the signal change due to the difference in signal propagation path.
  • the first early warning signal generates a first early warning signal during the transmission process due to a difference between the other vehicles transmitting the first early warning signal and the vehicle to which the in-vehicle communication device belongs.
  • Doppler shift value The Doppler shift value of the first early warning signal can reflect the relative speed of any one of the at least one other vehicle and the vehicle to which the in-vehicle communication device belongs. For how to obtain the above relative speed by the Doppler shift value, this is explained in detail below. I won't go into details here.
  • the processing module 103 is configured to know that there is a risk of colliding with any one of the at least one other vehicles when the relative speed reaches an early warning threshold.
  • the relative speed reaches the early warning threshold, it indicates that a certain one of the at least one other vehicle is close to the vehicle to which the in-vehicle communication device belongs, or the relative speed of the two is in two cars.
  • the component in the direction of the line is large and there is a danger of collision.
  • the in-vehicle communication device receives, by the receiving module, the first early warning signal that is carried on the early warning resource block; and the Doppler frequency shift value generated by the first early warning signal during the transmission process, And indicating a relative speed of any one of the at least one other vehicle and the vehicle to which the in-vehicle communication device belongs; the Doppler shift value indicating a frequency at which the first early warning signal is transmitted and the first a difference in frequency when the early warning signal is received; the sending module carries the second early warning signal on the early warning resource block for transmitting; the second early warning signal is used to notify any one of the at least one other vehicle, a relative speed of the vehicle to which the in-vehicle communication device belongs and any one of the at least one other vehicle; the detecting module detects a Doppler shift value of the first early warning signal, and according to the first early warning signal a frequency shift value obtaining a relative speed of any one of the at least one other vehicle and a vehicle to which the in
  • the in-vehicle communication device Since all other vehicles in a certain range are transmitting and receiving early warning signals on the same early warning resource block, and the in-vehicle communication device determines whether there is a collision risk, the in-vehicle communication device is obtained by the Doppler frequency shift value. The relative speed of the associated vehicle and any one of the at least one other vehicle determines whether the relative speed reaches the early warning threshold. It does not need to allocate independent resources for each vehicle to send and receive early warning information.
  • the in-vehicle communication device provided by the embodiment of the present invention only needs to detect the Doppler frequency shift value of the first early warning signal carried in the foregoing early warning resource block, and can determine whether there is a possibility of occurrence around the vehicle to which the in-vehicle communication device belongs.
  • the collision vehicle can determine that there is a collision risk and promptly provide an early warning to the driver of the vehicle to which the in-vehicle communication device belongs.
  • the in-vehicle communication device determines whether there is a risk of collision risk, at least one other vehicle can share one early warning resource block for transmitting the early warning information, and at least one other vehicle can receive the early warning information carried on the early warning resource block. (ie, the first early warning signal), thereby improving the stability of the early warning information transmission and ensuring driving safety.
  • the detecting module 102 is specifically configured to determine whether the relative speed reaches the early warning threshold. If so, it is known that there is a risk of colliding with any one of the at least one other vehicles.
  • the detecting module 102 is further configured to: if the relative speed does not reach the early warning threshold, know that the vehicle to which the in-vehicle communication device belongs is in a safe driving state.
  • the receiving module 100 is configured to receive the first early warning signal that is carried on all time domain resources of the early warning resource block, because the in-vehicle communication device uses a full-duplex antenna.
  • the sending module 101 is specifically configured to carry the second early warning signal on a time domain resource corresponding to the in-vehicle communication device in the early warning resource block for transmitting.
  • the early warning resource block has a one-to-one correspondence with a lane in which the vehicle to which the in-vehicle communication device belongs.
  • the receiving module 100 is further configured to receive a broadcast message of a roadside unit, where the broadcast message includes a number of a lane in which the vehicle to which the in-vehicle communication device belongs;
  • the processing module 103 is further configured to select, according to the number, the early warning resource block corresponding to a lane that the vehicle to which the in-vehicle communication device belongs.
  • the principle of Doppler shift is actually utilized.
  • the Doppler shift is applied to the solution. The implementation is described in detail.
  • the carrier frequency is 5.8 GHz
  • the relative speed of the at least one other vehicle (ie, the adjacent car) relative to the vehicle to which the in-vehicle communication device belongs ie, the vehicle
  • the transmitting module 101 carries the second early warning signal on the early warning resource block for transmission, although the normal subcarrier spacing in the LTE system is 15 kHz, which is greater than 625 Hz.
  • the subcarrier spacing of the physical uplink shared channel Physical Uplink Shared Channel, PUSCH for short
  • the subcarrier spacing of the normal PUSCH is 15 kHz
  • the symbol length [Cyclic Prefix (CP) is not counted). Incoming] is 66.7us
  • PRACH Physical Random Access Channel
  • the sub-carrier spacing of the second early warning signal is 1.25 kHz
  • the symbol length (CP is not counted) is 800 us, and the CP and guard interval can be added for 1 ms.
  • the detection module 102 detects the Doppler shift value of the first early warning signal to obtain relative operating speed information of the vehicle to which the in-vehicle communication device belongs and at least one other vehicle.
  • An example is given here:
  • FIG. 2 is a schematic diagram of a mechanism for receiving a first early warning signal according to an embodiment of the present invention.
  • a transmitter on a left side of FIG. 2 displays a frequency domain position of a first early warning signal transmission.
  • the transmitter is an adjacent car;
  • the receiver is the vehicle to which the in-vehicle communication device belongs, that is, the vehicle;
  • the detection module 102 of the vehicle uses two sets of detection waveforms to correlate the received first warning signal.
  • the detection waveform A is a high shift of the transmission waveform by 625 Hz
  • the detection waveform B is a low shift of the transmission waveform by 625 Hz.
  • the absolute value of the correlation coefficient detected by the detecting module 102 using the detected waveform A is almost the same as the absolute value of the correlation coefficient detected by the detected waveform B (in the absence of noise and In the case of interference, it is the same).
  • the correlation coefficient detected by the detection module 102 using the detection waveform A is 140, and the correlation coefficient detected by the detection module 102 using the detection waveform B is close to zero.
  • the absolute value of the correlation coefficient detected by the detecting module 102 using the detected waveform A is gradually increased, and the detecting module 102 detects using the detected waveform B.
  • the absolute value of the correlation coefficient gradually decreases.
  • the processing module 103 can issue an early warning to the driver.
  • the absolute value of the A detection correlation coefficient/B detection correlation coefficient may be used as the relative operation speed information of the vehicle to which the in-vehicle communication device belongs and the at least one other vehicle.
  • FIG. 3 is a schematic diagram of time domain resources according to an embodiment of the present invention. Referring to FIG. 3, where t1 and t2 are different time domain resources, the method for transmitting the early warning signal may be the same as the foregoing embodiment.
  • the reason for this design is that the head antennas traveling in the same direction do not need to listen to each other; the tail antennas traveling in the same direction do not need to listen to each other; the head antenna of the forward traveling vehicle and the reverse driving The rear antennas of the vehicles do not need to listen to each other; there is no need to listen to each other between the rear antenna of the forward moving vehicle and the front antenna of the forward moving vehicle. So they can be sent at the same time.
  • FIG. 4 is a schematic structural diagram of another in-vehicle communication device having a cellular communication function and a D2D communication function, and the vehicle-mounted communication device includes a half-duplex antenna of a front end and Half-duplex antenna at the rear.
  • the vehicle to which the in-vehicle communication device belongs and the at least one other vehicle share an alarm resource block.
  • the in-vehicle communication device includes: a transceiver module 200, a detection module 201, and a processing module 202;
  • the transceiver module 200 is configured to:
  • a first Doppler shift value generated by the first forward warning signal during transmission is used to indicate a relative speed of the first vehicle and a vehicle to which the in-vehicle communication device belongs;
  • the first vehicle is the at least one Any one of the other vehicles located in front of the vehicle to which the in-vehicle communication device belongs;
  • the first Doppler shift value indicating that the first forward warning signal is transmitted and the first forward warning signal is received The difference in frequency;
  • a second Doppler shift value generated by the first rear warning signal during transmission is used to indicate a relative speed of the second vehicle and the vehicle to which the in-vehicle communication device belongs;
  • the second vehicle is the at least one Any one of the other vehicles located behind the vehicle to which the in-vehicle communication device belongs;
  • the second Doppler shift value indicates that the frequency when the first rear warning signal is transmitted and the first rear warning signal are received The difference in frequency;
  • the second forward warning signal is sent by the first vehicle;
  • the third Doppler frequency shift value generated by the second forward warning signal during transmission is used to indicate the first vehicle and the vehicle a relative speed of the vehicle to which the communication device belongs;
  • the third Doppler shift value indicating a difference between a frequency at which the second forward warning signal is transmitted and a frequency at which the second forward warning signal is received;
  • the second rear warning signal is sent by the second vehicle;
  • the fourth Doppler frequency shift value generated by the second rear warning signal during transmission is used to indicate the second vehicle and the vehicle a relative speed of the vehicle to which the communication device belongs;
  • the fourth Doppler shift value indicates a difference between a frequency at which the second rear warning signal is transmitted and a frequency at which the second rear warning signal is received;
  • the detecting module 201 is configured to detect the third Doppler shift value, and obtain a relative speed of the first vehicle and the vehicle to which the in-vehicle communication device belongs according to the third Doppler shift value; and/or Detecting the fourth Doppler shift value, and obtaining a relative speed of the second vehicle and the vehicle to which the in-vehicle communication device belongs according to the fourth Doppler shift value;
  • the processing module 202 is configured to: when the relative speed of the first vehicle and the vehicle to which the in-vehicle communication device belongs reaches an early warning threshold, know that there is a risk of collision with the first vehicle; and/or, when the second When the relative speed of the vehicle and the vehicle to which the in-vehicle communication device belongs reaches the early warning threshold, it is known that there is a risk of collision with the second vehicle.
  • the in-vehicle communication device transmits the first forward warning signal to the first time domain resource of the early warning resource block to transmit to the front of the vehicle to which the in-vehicle communication device belongs by using the transceiver module; a first Doppler shift value generated by the early warning signal during transmission for indicating a relative speed of the first vehicle and the vehicle to which the in-vehicle communication device belongs; the first vehicle being located in the at least one other vehicle Any one of the vehicles in front of the vehicle to which the in-vehicle communication device belongs; the first Doppler shift value indicates a difference between a frequency at which the first forward warning signal is transmitted and a frequency at which the first forward warning signal is received
  • the transceiver module transmits the first rear warning signal on the second time domain resource of the early warning resource block to the rear of the vehicle to which the in-vehicle communication device belongs; the first rear warning signal is generated during the transmission process.
  • a second Doppler shift value for indicating a relative speed of the second vehicle and the vehicle to which the in-vehicle communication device belongs;
  • the second vehicle is the at least one Any other vehicle located behind the vehicle communication device belongs to a vehicle;
  • the second Doppler shift value indicates a difference between a frequency at which the first rear early warning signal is transmitted and a frequency at which the first rear early warning signal is received;
  • the transceiver module is in the early warning resource block Receiving a second forward warning signal on the other time domain resources other than the first time domain resource; the second forward warning signal is sent by the first vehicle; and the second forward warning signal is generated during transmission a third Doppler shift value for indicating a relative speed of the first vehicle and a vehicle to which the in-vehicle communication device belongs;
  • the third Doppler shift value indicating that the second forward warning signal is transmitted a difference between a frequency of the time and a frequency at which the second forward warning signal is received;
  • the transceiver module receiving a second rear warning
  • the in-vehicle communication device provided by the embodiment of the present invention, when the relative speed of the first vehicle and the vehicle to which the in-vehicle communication device belongs and/or the relative speed of the second vehicle and the vehicle to which the in-vehicle communication device belongs reaches the early warning At the threshold, it is possible to determine that there is a risk of collision and promptly provide an early warning to the driver of the vehicle to which the in-vehicle communication device belongs.
  • the in-vehicle communication device judges whether there is a collision risk condition, all vehicles can share one early warning resource block to transmit the early warning information, and all the vehicles can receive the early warning information carried on the early warning resource block (ie, the first The warning signal) improves the stability of the early warning information transmission and ensures the safety of driving.
  • the first front warning signal and the first rear warning signal transmission mechanism provided by the embodiments of the present invention can ensure that the front antennas in the same direction do not need to each other. Listening; there is no need to listen to each other between the tail antennas traveling in the same direction; the front antenna of the forward moving vehicle and the rear antenna of the reverse driving vehicle do not need to listen to each other; There is no need to listen to each other between the rear antenna of the traveling vehicle and the front antenna of the moving vehicle. So they can be sent at the same time.
  • the second forward warning signal is a tail antenna of the first vehicle Transmitting; if the first vehicle is any one of at least one other vehicle that moves in a reverse direction with the vehicle to which the in-vehicle communication device belongs, the second forward warning signal is sent by the front antenna of the first vehicle ;
  • the second rear warning signal is sent by the front antenna of the second vehicle;
  • the second vehicle is any one of at least one other vehicle that moves in a reverse direction with the vehicle to which the in-vehicle communication device belongs, and the second rear warning signal is transmitted by the rear antenna of the second vehicle.
  • the processing module 202 is configured to determine whether a relative speed of the first vehicle and the vehicle to which the in-vehicle communication device belongs reaches the early warning threshold. If yes, it is known that there is a collision with the first vehicle. And/or determining whether the relative speed of the second vehicle and the vehicle to which the in-vehicle communication device belongs reaches the early warning threshold, and if so, knowing that there is a risk of collision with the first vehicle.
  • the transceiver module 200 includes a front antenna and a tail antenna;
  • the head antenna is configured to transmit the first forward warning signal on a first time domain resource of the early warning resource block to a front of a vehicle to which the in-vehicle communication device belongs; or, in the early warning resource Receiving, by the time domain resource of the block other than the first time domain resource, the second forward warning signal;
  • the rear antenna is configured to transmit the first rear warning signal on a second time domain resource of the early warning resource block to a rear of a vehicle to which the in-vehicle communication device belongs; or in the early warning resource block Receiving a second rear warning signal on other time domain resources other than the second time domain resource;
  • the front antenna and the front antenna of the first vehicle sharing the early warning resource block Transmitting, by the first time domain resource, the tail antenna of the first vehicle sharing the second time domain resource of the early warning resource block with the tail antenna of the first vehicle;
  • the front antenna and the front antenna of the second vehicle sharing the early warning resource block Transmitting, by the first time domain resource, the tail antenna of the second vehicle and the second antenna of the second vehicle transmitting the second time domain resource of the early warning resource block;
  • the front antenna and the rear antenna of the first vehicle share the early warning resource block Transmitting, by the first time domain resource, the second rear time domain resource of the early warning resource block is transmitted by the tail antenna and the front antenna of the first vehicle;
  • the front antenna and the rear antenna of the second vehicle share the early warning resource block
  • the first time domain resource is transmitted
  • the tail antenna and the head antenna of the first vehicle share the second time domain resource of the early warning resource block for transmitting.
  • FIG. 5 is a schematic diagram of a lane scene. Referring to FIG. 5, eight possible lane types may appear at one intersection.
  • FIG. 6 is a schematic diagram of time domain allocation according to an embodiment of the present invention. Referring to FIG. 6, it can be seen that in lane 1, the forward head antenna and the reverse tail antenna share the same time domain resource t1, and the forward tail antenna and The reverse head antenna shares the same time domain resource t2; in lane 2: the forward head antenna and the reverse tail antenna share the same time domain resource t3, and the forward tail antenna and the reverse head antenna share the same time domain resource t4 to This type of push.
  • a cars in different lanes are sent using different time domain resources
  • b each car's head and tail are sent using different time domain resources
  • c reverse vehicles on each lane (referring to the vehicle from the The direction of the tail of the car is different from the direction of the road, regardless of whether the car is driving, parked or reversed, and the front of the forward vehicle is sent with the same time domain resources
  • d the reverse vehicle on each lane The rear of the vehicle is sent with the same time domain resources as the front of the forward vehicle.
  • the vehicle to which the in-vehicle communication device belongs and the at least one other vehicle should belong to the same lane. That is, there are two possibilities: 1. The vehicle to which the in-vehicle communication device belongs belongs to the same lane as the at least one other vehicle that moves in the same direction; 2. The vehicle to which the in-vehicle communication device belongs and at least one other vehicle that moves in the reverse direction The cars belong to the same lane.
  • the early warning resource block has a one-to-one correspondence with a lane in which the vehicle to which the in-vehicle communication device belongs.
  • a roadside unit is disposed along the road, and the roadside unit is configured to send a broadcast message to the passing vehicle;
  • the transceiver module 200 is further configured to receive a broadcast message of a roadside unit, where the broadcast message includes a number of a lane in which the vehicle to which the in-vehicle communication device belongs;
  • the processing module 202 is further configured to select, according to the number, the early warning resource block corresponding to a lane that the vehicle to which the in-vehicle communication device belongs.
  • FIG. 7 is a schematic structural diagram of another in-vehicle communication device according to an embodiment of the present invention.
  • the in-vehicle communication device has the same function as the in-vehicle communication device shown in FIG. 1.
  • the vehicle to which the in-vehicle communication device belongs is shared with at least one other vehicle.
  • An early warning resource block wherein the at least one other vehicle separately transmits a first early warning signal on the early warning resource block; the in-vehicle communication device carries a second early warning signal on the early warning resource block for transmitting;
  • the in-vehicle communication device includes: a receiver 300, a transmitter 301, and a processor 302;
  • the receiver 300 is configured to receive the first early warning signal that is carried on the early warning resource block.
  • a Doppler shift value generated by the first early warning signal during transmission for indicating a relative speed of any one of the at least one other vehicle and a vehicle to which the in-vehicle communication device belongs;
  • the Doppler The frequency shift value indicates a difference between a frequency at which the first early warning signal is transmitted and a frequency at which the first early warning signal is received;
  • a transmitter 301 configured to carry a second early warning signal on the early warning resource block for transmitting
  • the second early warning signal is used to notify any one of the at least one other vehicle, a relative speed of the vehicle to which the in-vehicle communication device belongs and any one of the at least one other vehicle;
  • the processor 302 is configured to detect a Doppler shift value of the first early warning signal, obtain any one of the at least one other vehicle according to a Doppler shift value of the first early warning signal, and The relative speed of the vehicle to which the in-vehicle communication device belongs; when the relative speed reaches the warning threshold, it is known that there is a risk of colliding with any of the at least one other vehicle.
  • the in-vehicle communication device receives, by the receiver, the first early warning signal that is carried on the early warning resource block; the Doppler generated by the first early warning signal during transmission a frequency shift value for indicating a relative speed of any one of the at least one other vehicle and a vehicle to which the in-vehicle communication device belongs; the Doppler shift value indicating a frequency at which the first early warning signal is transmitted a difference from a frequency at which the first early warning signal is received; the transmitter carries a second early warning signal on the early warning resource block for transmitting; the second early warning signal is used to notify the at least one other vehicle Any one of the relative speeds of the vehicle to which the in-vehicle communication device belongs and any one of the at least one other vehicle; the processor detecting a Doppler shift value of the first early warning signal, according to the first A Doppler shift value of the early warning signal obtains a relative speed of any one of the at least one other vehicle and a vehicle to which the in-veh
  • the condition of the in-vehicle communication device is obtained by the Doppler frequency shift value.
  • a relative speed of the vehicle to any one of the at least one other vehicle is determined whether the relative speed reaches the early warning threshold. It does not need to allocate independent resources for each vehicle to send and receive early warning information.
  • the in-vehicle communication device provided by the embodiment of the present invention only needs to detect the Doppler frequency shift value of the first early warning signal carried in the foregoing early warning resource block, and can determine whether there is a possibility of occurrence around the vehicle to which the in-vehicle communication device belongs.
  • the collision vehicle can determine that there is a collision risk and promptly provide an early warning to the driver of the vehicle to which the in-vehicle communication device belongs.
  • the in-vehicle communication device determines whether there is a risk of collision risk, at least one other vehicle can share one early warning resource block for transmitting the early warning information, and at least one other vehicle can receive the early warning information carried on the early warning resource block. (ie, the first early warning signal), thereby improving the stability of the early warning information transmission and ensuring driving safety.
  • the processor 302 is specifically configured to determine whether the relative speed reaches the early warning threshold, and if so, know that there is a risk of colliding with any one of the at least one other vehicles.
  • the processor 302 is further configured to: if the relative speed does not reach the early warning threshold, know that the vehicle to which the in-vehicle communication device belongs is in a safe running state.
  • the receiver 300 is specifically configured to receive a first early warning signal that is carried on all time domain resources of the early warning resource block.
  • the transmitter 301 is specifically configured to carry the second early warning signal on the early warning resource block.
  • the time domain resource corresponding to the in-vehicle communication device is transmitted.
  • the early warning resource block has a one-to-one correspondence with a lane in which the vehicle to which the in-vehicle communication device belongs.
  • the receiver 300 is further configured to receive a broadcast message of a roadside unit, where the broadcast message includes a number of a lane in which the vehicle to which the in-vehicle communication device belongs;
  • the processor 302 is further configured to select, according to the number, the early warning resource block corresponding to a lane that the vehicle to which the in-vehicle communication device belongs.
  • FIG. 8 is a schematic structural diagram of another in-vehicle communication device according to an embodiment of the present invention, which has the same function as the in-vehicle communication device shown in FIG. 4.
  • the in-vehicle communication device includes: a transceiver 400 and a processor. 401;
  • the transceiver 400 is configured to:
  • a first Doppler shift value generated by the first forward warning signal during transmission is used to indicate a relative speed of the first vehicle and a vehicle to which the in-vehicle communication device belongs;
  • the first vehicle is the at least one Any one of the other vehicles located in front of the vehicle to which the in-vehicle communication device belongs;
  • the first Doppler shift value indicating that the first forward warning signal is transmitted and the first forward warning signal is received The difference in frequency;
  • a second Doppler shift value generated by the first rear warning signal during transmission is used to indicate a relative speed of the second vehicle and the vehicle to which the in-vehicle communication device belongs;
  • the second vehicle is the at least one Any one of the other vehicles located behind the vehicle to which the in-vehicle communication device belongs;
  • the second Doppler shift value indicates that the frequency when the first rear warning signal is transmitted and the first rear warning signal are received The difference in frequency;
  • the second forward warning signal is sent by the first vehicle;
  • the third Doppler frequency shift value generated by the second forward warning signal during transmission is used to indicate the first vehicle and the vehicle a relative speed of the vehicle to which the communication device belongs;
  • the third Doppler shift value indicating the second forward a difference between a frequency at which the alarm signal is transmitted and a frequency at which the second forward warning signal is received;
  • the second rear warning signal is sent by the second vehicle;
  • the fourth Doppler frequency shift value generated by the second rear warning signal during transmission is used to indicate the second vehicle and the vehicle a relative speed of the vehicle to which the communication device belongs;
  • the fourth Doppler shift value indicates a difference between a frequency at which the second rear warning signal is transmitted and a frequency at which the second rear warning signal is received;
  • the processor 401 is configured to:
  • Detecting the third Doppler shift value obtaining a relative speed of the first vehicle and the vehicle to which the in-vehicle communication device belongs according to the third Doppler shift value; and/or detecting the fourth a Doppler shift value, and obtaining, according to the fourth Doppler shift value, a relative speed of the second vehicle and the vehicle to which the in-vehicle communication device belongs;
  • the in-vehicle communication device transmits the first forward warning signal to the first time domain resource of the early warning resource block to transmit to the front of the vehicle to which the in-vehicle communication device belongs by using the transceiver; a first Doppler shift value generated by the early warning signal during transmission for indicating a relative speed of the first vehicle and the vehicle to which the in-vehicle communication device belongs; the first vehicle being located in the at least one other vehicle Any one of the vehicles in front of the vehicle to which the in-vehicle communication device belongs; the first Doppler shift value indicates a difference between a frequency at which the first forward warning signal is transmitted and a frequency at which the first forward warning signal is received
  • the transceiver transmits the first rear warning signal on the second time domain resource of the early warning resource block to the rear of the vehicle to which the in-vehicle communication device belongs; the first rear warning signal is generated during the transmission process.
  • a second Doppler shift value for indicating a relative speed of the second vehicle and the vehicle to which the in-vehicle communication device belongs; the second vehicle being the at least one of Any one of the vehicles located behind the vehicle to which the in-vehicle communication device belongs; the second Doppler shift value indicates a frequency at which the first rear warning signal is transmitted and the first rear warning signal is received a difference in frequency; the transceiver receiving a second forward warning signal on a time domain resource other than the first time domain resource of the early warning resource block; the second forward warning a signal sent by the first vehicle; a third Doppler shift value generated by the second forward warning signal during transmission is used to indicate that the first vehicle is opposite to the vehicle to which the in-vehicle communication device belongs Speed; the third Doppler shift value represents a difference between a frequency at which the second forward warning signal is transmitted and a frequency at which the second forward warning signal is received; the transceiver is in the early warning Receiving, by the second time domain resource other than the second time domain resource,
  • the in-vehicle communication device provided by the embodiment of the present invention, when the relative speed of the first vehicle and the vehicle to which the in-vehicle communication device belongs and/or the relative speed of the second vehicle and the vehicle to which the in-vehicle communication device belongs reaches the early warning At the threshold, it is possible to determine that there is a risk of collision and promptly provide an early warning to the driver of the vehicle to which the in-vehicle communication device belongs.
  • the in-vehicle communication device judges whether there is a collision risk condition, all vehicles can share one early warning resource block to transmit the early warning information, and all the vehicles can receive the early warning information carried on the early warning resource block (ie, the first The warning signal) improves the stability of the early warning information transmission and ensures the safety of driving.
  • the first front warning signal and the first rear warning signal transmission mechanism provided by the embodiments of the present invention can ensure that the front antennas in the same direction do not need to each other. Listening; there is no need to listen to each other between the rear antennas of the same direction; the front antenna of the forward moving vehicle and the rear antenna of the reverse driving vehicle do not need to listen to each other; the rear antenna of the forward moving vehicle There is no need to listen to each other between the head antenna of a car that is traveling forward. So they can be sent at the same time.
  • the first vehicle is moving in the same direction as the vehicle to which the in-vehicle communication device belongs And transmitting, by the at least one other vehicle, the second forward warning signal to the tail antenna of the first vehicle; if the first vehicle is at least moving backward with the vehicle to which the in-vehicle communication device belongs In any one of the other vehicles, the second forward warning signal is sent by the front antenna of the first vehicle;
  • the second rear warning signal is sent by the front antenna of the second vehicle;
  • the second vehicle is any one of at least one other vehicle that moves in a reverse direction with the vehicle to which the in-vehicle communication device belongs, and the second rear warning signal is transmitted by the rear antenna of the second vehicle.
  • the processor 401 is specifically configured to determine whether a relative speed of the first vehicle and the vehicle to which the in-vehicle communication device belongs reaches the early warning threshold. If yes, it is known that there is a collision with the first vehicle. And/or determining whether the relative speed of the second vehicle and the vehicle to which the in-vehicle communication device belongs reaches the early warning threshold, and if so, knowing that there is a risk of collision with the first vehicle.
  • the transceiver 400 includes a front antenna and a tail antenna;
  • the head antenna is configured to transmit the first forward warning signal on a first time domain resource of the early warning resource block to a front of a vehicle to which the in-vehicle communication device belongs; or, in the early warning resource Receiving, by the time domain resource of the block other than the first time domain resource, the second forward warning signal;
  • the rear antenna is configured to transmit the first rear warning signal on a second time domain resource of the early warning resource block to a rear of a vehicle to which the in-vehicle communication device belongs; or in the early warning resource block Receiving a second rear warning signal on other time domain resources other than the second time domain resource;
  • the front antenna and the front antenna of the first vehicle sharing the early warning resource block Transmitting, by the first time domain resource, the tail antenna of the first vehicle sharing the second time domain resource of the early warning resource block with the tail antenna of the first vehicle;
  • the front antenna and the front antenna of the second vehicle sharing the early warning resource block The first time domain resource is transmitted, the tail antenna and the tail of the second vehicle.
  • the antenna shares the second time domain resource of the early warning resource block for transmitting;
  • the front antenna and the rear antenna of the first vehicle share the early warning resource block Transmitting, by the first time domain resource, the second rear time domain resource of the early warning resource block is transmitted by the tail antenna and the front antenna of the first vehicle;
  • the front antenna and the rear antenna of the second vehicle share the early warning resource block
  • the first time domain resource is transmitted
  • the tail antenna and the head antenna of the first vehicle share the second time domain resource of the early warning resource block for transmitting.
  • the early warning resource block has a one-to-one correspondence with a lane in which the vehicle to which the in-vehicle communication device belongs.
  • the transceiver 400 is further configured to receive a broadcast message of a roadside unit, where the broadcast message includes a number of a lane in which the vehicle to which the in-vehicle communication device belongs;
  • the processor 401 is further configured to select, according to the number, the early warning resource block corresponding to a lane that the vehicle to which the in-vehicle communication device belongs.
  • FIG. 9 is a schematic flowchart of a method for transmitting early warning information according to an embodiment of the present invention.
  • the execution body of the method is an in-vehicle communication device, and the in-vehicle communication device has a cellular communication function and a D2D communication function, and the vehicle is provided in the communication device. Full duplex antenna.
  • the vehicle to which the in-vehicle communication device belongs shares an alert resource block with at least one other vehicle, the at least one other vehicle respectively transmitting a first early warning signal on the early warning resource block; the in-vehicle communication device carries the second early warning signal on the Transmitting on the early warning resource block; the method for transmitting the early warning information is performed by the in-vehicle communication device.
  • the method includes the following steps:
  • Step 500 The in-vehicle communication device receives the first early warning signal that is carried on the early warning resource block.
  • a Doppler shift value generated by the first early warning signal during transmission for indicating a relative speed of any one of the at least one other vehicle and a vehicle to which the in-vehicle communication device belongs;
  • the Doppler The frequency shift value indicates a difference between a frequency at which the first early warning signal is transmitted and a frequency at which the first early warning signal is received;
  • Step 501 The in-vehicle communication device carries a second early warning signal on the early warning resource block for transmitting.
  • the second early warning signal is used to notify any one of the at least one other vehicle, a relative speed of the vehicle to which the in-vehicle communication device belongs and any one of the at least one other vehicle;
  • Step 502 The in-vehicle communication device detects a Doppler shift value of the first early warning signal, and obtains any one of the at least one other vehicle according to a Doppler shift value of the first early warning signal.
  • Step 503 When the relative speed reaches the early warning threshold, the in-vehicle communication device knows that there is a risk of colliding with any one of the at least one other vehicles.
  • the method for transmitting early warning information receives the first early warning signal carried on the early warning resource block by using an in-vehicle communication device; and the Doppler frequency shift generated by the first early warning signal during transmission a value indicating a relative speed of any one of the at least one other vehicle and a vehicle to which the in-vehicle communication device belongs; the Doppler shift value indicating a frequency and a frequency at which the first early warning signal is transmitted Determining a difference in frequency when the first early warning signal is received; the in-vehicle communication device carries a second early warning signal on the early warning resource block for transmitting; and the second early warning signal is used to notify the at least one other vehicle Any one of the vehicles, the relative speed of the vehicle to which the in-vehicle communication device belongs and any one of the at least one other vehicle; the in-vehicle communication device detecting a Doppler shift value of the first early warning signal, according to The Doppler shift value of the first early warning signal obtains
  • the in-vehicle communication device Since all other vehicles in a certain range are transmitting and receiving early warning signals on the same early warning resource block, and the in-vehicle communication device determines whether there is a collision risk, the in-vehicle communication device is obtained by the Doppler frequency shift value. The relative speed of the associated vehicle and any one of the at least one other vehicle determines whether the relative speed reaches the early warning threshold. It does not need to allocate independent resources for each vehicle to send and receive early warning information.
  • the in-vehicle communication device provided by the embodiment of the present invention only needs to detect the Doppler frequency shift value of the first early warning signal carried in the foregoing early warning resource block, and can determine whether there is a possibility of occurrence around the vehicle to which the in-vehicle communication device belongs.
  • the collision vehicle can determine that there is a collision risk and promptly provide an early warning to the driver of the vehicle to which the in-vehicle communication device belongs.
  • the in-vehicle communication device determines whether there is a risk of collision risk
  • at least one other vehicle can share one early warning resource block for transmitting the warning information, and at least one other vehicle can receive the bearer in the early warning resource block.
  • the early warning information (ie the first early warning signal) improves the stability of the early warning information transmission and ensures the safety of driving.
  • a feasible implementation manner is:
  • the in-vehicle communication device determines whether the relative speed reaches the early warning threshold, and if so, knows that there is a risk of colliding with any of the at least one other vehicle.
  • the relative speed When the relative speed reaches the early warning threshold, it indicates that there is at least one other vehicle around the vehicle to which the in-vehicle communication device belongs, and the relative speed between the two may be in danger of collision.
  • the relative speed does not reach the warning threshold, it indicates that the relative speed of the at least one other vehicle and the vehicle to which the in-vehicle communication device belongs is within a safe range, and the in-vehicle communication device learns the in-vehicle communication device.
  • the belonging vehicle is in a safe driving state.
  • FIG. 10 is a schematic flowchart of another method for transmitting early warning information according to an embodiment of the present invention.
  • Methods include:
  • step 500 One possible implementation of step 500 is:
  • Step 500a The in-vehicle communication device receives the first early warning signal that is carried on all time domain resources of the early warning resource block.
  • step 501 is:
  • Step 501 The in-vehicle communication device carries the second early warning signal on a time domain resource corresponding to the in-vehicle communication device in the early warning resource block for transmitting.
  • the meaning of the step 500a is that the in-vehicle communication device can receive the first early warning signal at any time; and the meaning of the step 501a is that the in-vehicle communication device transmits the second early warning signal by using the early warning resource block in the associated time domain resource.
  • the principle of Doppler shift is actually utilized.
  • the Doppler shift is applied to the solution. The implementation is described in detail.
  • the carrier frequency is 5.8 GHz
  • the relative speed of the at least one other vehicle (ie, the adjacent car) relative to the vehicle to which the in-vehicle communication device belongs ie, the vehicle
  • the second early warning signal is carried on the early warning resource block for transmission, although the normal subcarrier spacing in the LTE system is 15 kHz, which is greater than 625 Hz.
  • the subcarrier spacing of the PUSCH is twice that of 625 Hz: the subcarrier spacing of the normal PUSCH is 15 kHz, the symbol length (CP is not counted) is 66.7 us; the subcarrier spacing of the PRACH is 1.25 kHz, and the symbol length (CP is not included). ) is 800us.
  • the sub-carrier spacing of this second early warning signal is 1.25 kHz, the symbol length (CP is not counted) is 800 us, and the CP and guard interval can be added for 1 ms.
  • step 502 how does the in-vehicle communication device as the receiver detect the Doppler shift value of the first early warning signal, and further, according to the Doppler frequency shift obtained by the first early warning signal, the in-vehicle communication device belongs to There are several ways to achieve the relative speed of the vehicle to at least one other vehicle. An example is given here:
  • the transmitter on the left side of FIG. 2 shows the frequency domain position of the first early warning signal transmission.
  • the transmitter is an adjacent car;
  • the receiver is the vehicle to which the in-vehicle communication device belongs, that is, the vehicle;
  • the detection module of the vehicle uses two sets of detection waveforms to correlate the received first warning signal.
  • the detection waveform A is a high shift of the transmission waveform by 625 Hz
  • the detection waveform B is a low shift of the transmission waveform by 625 Hz.
  • the absolute value of the correlation coefficient detected using the detected waveform A is almost the same as the absolute value of the correlation coefficient detected by the detected waveform B (in the absence of noise) In the case of interference, it is the same).
  • the correlation coefficient detected using the detected waveform A is 140, and the correlation coefficient detected using the detected waveform B is close to zero.
  • the absolute value of the correlation coefficient detected by using the detected waveform A is gradually increased, and the absolute value of the correlation coefficient detected by using the detected waveform B is gradually decreased. small.
  • the warning system of the in-vehicle communication device can issue an early warning to the driver.
  • the absolute value of the A detection correlation coefficient/B detection correlation coefficient may be used as the relative operation speed information of the vehicle to which the in-vehicle communication device belongs and the at least one other vehicle.
  • the transmission method of the early warning signal may be the same as the above embodiment.
  • the reason for this design is that the head antennas traveling in the same direction do not need to listen to each other; the tail antennas traveling in the same direction do not need to listen to each other; the head antenna of the forward traveling vehicle and the reverse driving The rear antennas of the vehicles do not need to listen to each other; there is no need to listen to each other between the rear antenna of the forward moving vehicle and the front antenna of the forward moving vehicle. So they can be sent at the same time.
  • FIG. 11 is a schematic flowchart diagram of another method for transmitting early warning information according to an embodiment of the present invention.
  • the execution body of the method is an in-vehicle communication device, and the in-vehicle communication device has a cellular communication function and a D2D communication function, and The in-vehicle communication device has a half-duplex antenna of a front end and a half-duplex antenna of a rear end.
  • the vehicle to which the in-vehicle communication device belongs shares an alert resource block with at least one other vehicle, and the method for transmitting the warning information is performed by the in-vehicle communication device. Referring to FIG. 11, the method includes the following steps:
  • Step 600 The in-vehicle communication device transmits the first forward warning signal on the first time domain resource of the early warning resource block to the front of the vehicle to which the in-vehicle communication device belongs;
  • the first Doppler frequency shift value generated by the first forward warning signal during transmission is used to indicate a relative speed of the first vehicle and the vehicle to which the in-vehicle communication device belongs;
  • the first vehicle is a Any one of the at least one other vehicle located in front of the vehicle to which the in-vehicle communication device belongs;
  • the first Doppler shift value indicating a frequency at which the first forward warning signal is transmitted and the first forward warning The difference in frequency at which the signal is received;
  • Step 601 The in-vehicle communication device carries the first rear warning signal on the second time domain resource of the early warning resource block, and sends the signal to the rear of the vehicle to which the in-vehicle communication device belongs.
  • the second Doppler shift value generated by the first rear warning signal during the transmission process And indicating a relative speed of the second vehicle and the vehicle to which the in-vehicle communication device belongs;
  • the second vehicle is any one of the at least one other vehicle located behind the vehicle to which the in-vehicle communication device belongs;
  • the Puls frequency shift value indicates a difference between a frequency at which the first rear early warning signal is transmitted and a frequency at which the first rear early warning signal is received;
  • Step 602 The in-vehicle communication device receives a second forward warning signal on other time domain resources of the early warning resource block except the first time domain resource.
  • the second forward warning signal is sent by the first vehicle; and the third Doppler frequency shift value generated by the second forward warning signal during transmission is used to indicate the first vehicle and a relative speed of the vehicle to which the in-vehicle communication device belongs; the third Doppler shift value indicates a difference between a frequency at which the second forward warning signal is transmitted and a frequency at which the second forward warning signal is received ;
  • Step 603 The in-vehicle communication device receives a second rear early warning signal on other time domain resources of the early warning resource block except the second time domain resource.
  • the second rear warning signal is sent by the second vehicle; and the fourth Doppler frequency shift value generated by the second rear warning signal during transmission is used to indicate the second vehicle and a relative speed of the vehicle to which the in-vehicle communication device belongs; the fourth Doppler shift value indicates a difference between a frequency at which the second rear warning signal is transmitted and a frequency at which the second rear warning signal is received ;
  • Step 604 The in-vehicle communication device detects the third Doppler shift value, and obtains a relative speed of the first vehicle and the vehicle to which the in-vehicle communication device belongs according to the third Doppler shift value; and Or detecting the fourth Doppler shift value, and obtaining, according to the fourth Doppler shift value, a relative speed of the second vehicle and the vehicle to which the in-vehicle communication device belongs;
  • Step 605 When the relative speed of the first vehicle and the vehicle to which the in-vehicle communication device belongs reaches an early warning threshold, it is known that there is a risk of collision with the first vehicle; and/or, when the second vehicle and the vehicle When the relative speed of the vehicle to which the in-vehicle communication device belongs reaches the warning threshold, it is known that there is a risk of collision with the second vehicle.
  • the first front warning signal is carried on the first time domain resource of the early warning resource block by the in-vehicle communication device, and is transmitted to the front of the vehicle to which the in-vehicle communication device belongs; a first Doppler shift value generated by the forward warning signal during transmission, for indicating a relative speed of the first vehicle and the vehicle to which the in-vehicle communication device belongs;
  • the vehicle is any one of the at least one other vehicle that is located in front of the vehicle to which the in-vehicle communication device belongs;
  • the first Doppler shift value indicates a frequency at which the first forward warning signal is transmitted and the first a difference in frequency when a front warning signal is received;
  • the in-vehicle communication device transmits a first rear warning signal on a second time domain resource of the early warning resource block to a rear of a vehicle to which the in-vehicle communication device belongs;
  • a second Doppler shift value generated by the first rear warning signal during transmission is used to indicate
  • the in-vehicle communication device provided by the embodiment of the present invention, when the relative speed of the first vehicle and the vehicle to which the in-vehicle communication device belongs and/or the relative speed of the second vehicle and the vehicle to which the in-vehicle communication device belongs reaches the early warning At the threshold, it is possible to determine that there is a risk of collision and promptly provide an early warning to the driver of the vehicle to which the in-vehicle communication device belongs. Obviously, since the above-mentioned in-vehicle communication device judges whether there is a collision risk condition, all vehicles can share one early warning resource block for early warning information. The transmission, and all vehicles can receive the early warning information (ie, the first early warning signal) carried on the early warning resource block, thereby improving the stability of the early warning information transmission and ensuring driving safety.
  • the early warning information ie, the first early warning signal
  • the first front warning signal and the first rear warning signal transmission mechanism provided by the embodiments of the present invention can ensure that the front antennas in the same direction do not need to each other. Listening; there is no need to listen to each other between the rear antennas of the same direction; the front antenna of the forward moving vehicle and the rear antenna of the reverse driving vehicle do not need to listen to each other; the rear antenna of the forward moving vehicle There is no need to listen to each other between the head antenna of a car that is traveling forward. So they can be sent at the same time.
  • the second forward warning signal is a tail antenna of the first vehicle Transmitting; if the first vehicle is any one of at least one other vehicle that moves in a reverse direction with the vehicle to which the in-vehicle communication device belongs, the second forward warning signal is sent by the front antenna of the first vehicle ;
  • the second rear warning signal is sent by the front antenna of the second vehicle;
  • the second vehicle is any one of at least one other vehicle that moves in a reverse direction with the vehicle to which the in-vehicle communication device belongs, and the second rear warning signal is transmitted by the rear antenna of the second vehicle.
  • step 605 two possible implementations of step 605 are:
  • Manner 1 determining whether the relative speed of the first vehicle and the vehicle to which the in-vehicle communication device belongs reaches the early warning threshold, and if so, knowing that there is a risk of collision with the first vehicle; and/or,
  • Manner 2 determining whether the relative speed of the first vehicle and the vehicle to which the in-vehicle communication device belongs reaches the early warning threshold, and if so, knowing that there is a risk of collision with the first vehicle;
  • the in-vehicle communication device comprises a front antenna and a rear antenna;
  • the head antenna is configured to transmit the first forward warning signal on a first time domain resource of the early warning resource block to a front of a vehicle to which the in-vehicle communication device belongs; or, in the early warning resource Receiving, by the time domain resource of the block other than the first time domain resource, the second forward warning signal;
  • the rear antenna is configured to carry the first rear warning signal on the early warning resource block
  • the second time domain resource is transmitted to the rear of the vehicle to which the in-vehicle communication device belongs; or the second rear warning signal is received on the time domain resource of the early warning resource block except the second time domain resource;
  • the front antenna and the front antenna of the first vehicle sharing the early warning resource block Transmitting, by the first time domain resource, the tail antenna of the first vehicle sharing the second time domain resource of the early warning resource block with the tail antenna of the first vehicle;
  • the front antenna and the front antenna of the second vehicle sharing the early warning resource block Transmitting, by the first time domain resource, the tail antenna of the second vehicle and the second antenna of the second vehicle transmitting the second time domain resource of the early warning resource block;
  • the front antenna and the rear antenna of the first vehicle share the early warning resource block Transmitting, by the first time domain resource, the second rear time domain resource of the early warning resource block is transmitted by the tail antenna and the front antenna of the first vehicle;
  • the front antenna and the rear antenna of the second vehicle share the early warning resource block
  • the first time domain resource is transmitted
  • the tail antenna and the head antenna of the first vehicle share the second time domain resource of the early warning resource block for transmitting.
  • the embodiments of the present invention may also number different lanes, wherein the left lane and the straight lane are counted as two lanes even if they partially overlap. Referring to Figure 5, eight possible lane types may appear at an intersection.
  • Different time zones can also be assigned to each lane based on different lanes.
  • the forward head antenna and the reverse tail antenna share the same time domain resource t1
  • the forward tail antenna and the reverse head antenna share the same time domain resource t2
  • lane 2 positive
  • the same time domain resource t3 is shared with the head antenna and the reverse tail antenna, the forward tail antenna and the reverse head antenna share the same time domain resource t4, and so on. That is: a. cars in different lanes are sent using different time domain resources; b. each car's head and tail are sent using different time domain resources; c.
  • reverse vehicles on each lane (referring to the vehicle from the The direction of the tail of the car pointing to the front of the car is different from the direction of the road, regardless of whether the car is driving, parking or reversing, and the front of the forward vehicle is sent with the same time domain resources; d.
  • Reverse vehicles on each lane The rear of the vehicle is sent with the same time domain resources as the front of the forward vehicle.
  • the vehicle to which the in-vehicle communication device belongs and the at least one other vehicle should belong to the same lane. That is, there are two possibilities: 1. The vehicle to which the in-vehicle communication device belongs belongs to the same lane as the at least one other vehicle that moves in the same direction; 2. The vehicle to which the in-vehicle communication device belongs and at least one other vehicle that moves in the reverse direction The same lane.
  • the early warning resource block has a one-to-one correspondence with a lane in which the vehicle to which the in-vehicle communication device belongs.
  • the roadside unit is configured to send a broadcast message to the passing vehicle, where the broadcast message includes a number of a lane in which the vehicle to which the in-vehicle communication device belongs;
  • the in-vehicle communication device selects the early warning resource block corresponding to a lane in which the vehicle to which the in-vehicle communication device belongs, according to the number.
  • the roadside unit can broadcast other road information in addition to the number of the lane in which the belonging vehicle is traveling, for example, in the high-incidence area, the relevant prompt information is added to the broadcast message; the time-frequency corresponding to each lane is The resource information is added to the broadcast message, so that the in-vehicle communication device receives the early warning signal on the corresponding time-frequency resource according to the time-frequency resource information.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Abstract

本发明提供一种预警信息的传输装置及方法,车辆共用同一个预警资源块进行预警信号收发,车载通信设备通过多普勒频移值得到该设备所属车辆与至少一个其他车辆中的任意一辆的相对速度,再判断该相对速度是否达到预警阈值。保证每个车辆都能获得预警资源块来进行预警信号的传输,提高了预警信息传输的稳定性,确保了行车安全。

Description

一种预警信息的传输装置及方法 技术领域
本发明涉及无线通信技术领域,尤其涉及一种预警信息的传输装置及方法。
背景技术
美国国家公路交通安全管理局的调查报告显示,80%的公路交通事故是由于驾驶员在事故发生前3秒内的疏忽造成的。近年来,用于碰撞预警的主动安全技术受到人们的广泛重视。即通过提前为驾驶员提供碰撞预警的相关信息,以避免事故的发生。利用现有的蜂窝网络传递预警信号是一种比较直接的研究方向。但是如果所有车辆都时时保持蜂窝网络的连接态,会对蜂窝网络造成大量的负担;如果不能时时保持连接态而是在每次发送预警信号之前都重新接入网络,则会造成很高的时延。因此,在这种情况下车与车直接通信的要求显得日趋强烈。
美国材料与试验协会(American Society for Testing and Materials,简称:ASTM)制定了基于5.9GHz频段的专用短程通信技术(即Dedicated Short Range Communications,简称:DSRC)标准(ASTM E2213-02),其采用了电气和电子工程师协会(Institute of Electrical and Electronics Engineers,简称:IEEE)802.11a作为底层传输技术。但在后续的项目研究中发现IEEE802.11a不能满足碰撞预警应用,因此2004年ASTM将DSRC标准的制定工作转到IEEE标准组织下进行,其中媒体介入控制层(Media Access Control,简称:MAC)层和物理层(PHY)由IEEE802.11工作组制订,即IEEE802.11p,MAC层之上的层协议由IEEE 1609工作组制订,即WAVE上层协议。在IEEE802.11p中,每辆车根据载波侦听多路访问/碰撞避免(Carrier Sense Multiple Access with Collision Avoidance,简称:CSMA/CA)协议竞争资源来发送数据包,这种预警信息的数据包通常会包括用户设备的标识(User Equipment Identity,简称:UE ID)、位置信息以及速度信息等。在这种情况下,局部范围内的每个UE使用彼此正交的资源以发送数据包。在长期演进设备到设备(Long Term Evolution  Device to Device,简称:LTE D2D)中,存在着集中式和分布式两种资源分配方式。在集中式资源分配方式中每个UE由中心控制节点分配一个资源来发送数据包;局部范围内不同的UE会被分配到彼此正交的资源。在分布式资源分配方式中每个UE从资源池中随机选择一个资源来发送预警信息的数据,局部范围内不同的UE在选择资源时有可能碰撞。
但是,对于IEEE802.11p,由于预警信息对时延有很高的要求,一般认为小于500ms,而500ms内有限带宽内的资源数是有限的,所以当局部范围内车辆数多于资源数时,会有一些车辆无法在500ms内竞争到发送资源,也就无法将自己的情况通知其他车辆。对于现有技术提供的LTE D2D分布式资源分配方式,虽然每个UE都可以在500ms内随机选择一个资源来发送数据,但是当局部范围内UE数众多时不可避免的会出现2个以上的UE选择相同的资源发送数据的情况。承载着这些数据的信号在接收端互相干扰,会使接收端UE难以成功解码其中的任何一个。于是接收端车辆无法获知由发送端车辆发送的预警信息。而对于现有技术中提供的LTE D2D集中式资源分配方式,局部范围内的UE使用彼此正交的资源发送数据。这样就存在着与上述IEEE802.11p中同样的问题。
综上所述,当采用现有的预警信息发送机制时,当局部范围内UE数众多时,都会对降低车与车之间的通信稳定性。
发明内容
本发明提供一种预警信息的传输装置及方法,用于提高车与车之间通信的稳定性。
本发明的第一个方面是提供一种车载通信设备,所述车载通信设备所属车辆与至少一个其他车辆共用一个预警资源块,所述至少一个其他车辆分别在所述预警资源块上发送第一预警信号;所述车载通信设备将第二预警信号承载在所述预警资源块上进行发射;其中,所述车载通信设备,包括:
接收模块,用于接收承载在所述预警资源块上的所述第一预警信号;
所述第一预警信号在传输过程中产生的多普勒频移值,用于表示所述至少一个其他车辆中的任意一辆与所述车载通信设备所属车辆的相对速度;所述多普勒频移值表示所述第一预警信号被发送时的频率与所述第一预警信号 被接收时的频率的差值;
发送模块,用于将第二预警信号承载在所述预警资源块上进行发射;
所述第二预警信号用于通知所述至少一个其他车辆中的任意一辆,所述车载通信设备所属车辆与所述至少一个其他车辆中的任意一辆的相对速度;
检测模块,用于检测所述第一预警信号的多普勒频移值,根据所述第一预警信号的多普勒频移值获得所述至少一个其他车辆中的任意一辆与所述车载通信设备所属车辆的相对速度;
处理模块,用于当所述相对速度达到预警阈值时,获知存在与所述至少一个其他车辆中的任意一辆发生碰撞的风险。
结合第一个方面,在第一种可能的实现方式中,所述处理模块,具体用于判断所述相对速度是否达到所述预警阈值,若达到,则获知存在与所述至少一个其他车辆中的任意一辆发生碰撞的风险。
结合第一个方面的第一种可能的实现方式,在第二种可能的实现方式中,所述处理模块,还具体用于若所述相对速度未达到所述预警阈值,则获知所述车载通信设备所属车辆处于安全行驶状态。
结合第一个方面或第一个方面的第一种可能的实现方式或第一个方面的第二种可能的实现方式,在第三种可能的实现方式中,所述接收模块,具体用于接收承载在所述预警资源块的所有时域资源上的所述第一预警信号;
所述发送模块,具体用于将所述第二预警信号承载在所述预警资源块中所述车载通信设备对应的时域资源上进行发射。
结合第一个方面或第一个方面的上述任意一种可能的实现方式,在第四种可能的实现方式中,所述预警资源块与所述车载通信设备所属车辆行驶的车道具有一一对应的关系。
结合第一个方面的第四种可能的实现方式,在第五种可能的实现方式中,所述接收模块,还用于接收路边单元的广播消息,所述广播消息包含所述车载通信设备所属车辆行驶的车道的编号;
所述处理模块,还用于根据所述编号选择与所述车载通信设备所属车辆行驶的车道对应的所述预警资源块。
本发明的第二个方面是提供一种车载通信设备,所述车载通信设备所属车辆与至少一个其他车辆共用一个预警资源块;其中,所述车载通信设备, 包括:
收发模块,用于:
将第一前方预警信号承载在所述预警资源块的第一时域资源上向所述车载通信设备所属车辆的前方发射;
所述第一前方预警信号在传输过程中产生的第一多普勒频移值,用于表示第一车辆与所述车载通信设备所属车辆的相对速度;所述第一车辆为所述至少一个其他车辆中位于所述车载通信设备所属车辆前方的任意一辆;所述第一多普勒频移值表示所述第一前方预警信号被发送时的频率与所述第一前方预警信号被接收时的频率的差值;
将第一后方预警信号承载在所述预警资源块的第二时域资源上向所述车载通信设备所属车辆的后方发射;
所述第一后方预警信号在传输过程中产生的第二多普勒频移值,用于表示第二车辆与所述车载通信设备所属车辆的相对速度;所述第二车辆为所述至少一个其他车辆中位于所述车载通信设备所属车辆后方的任意一辆;所述第二多普勒频移值表示所述第一后方预警信号被发送时的频率与所述第一后方预警信号被接收时的频率的差值;
在所述预警资源块的除第一时域资源之外的其他时域资源上接收第二前方预警信号;
所述第二前方预警信号为所述第一车辆发送的;所述第二前方预警信号在传输过程中产生的第三多普勒频移值,用于表示所述第一车辆与所述车载通信设备所属车辆的相对速度;所述第三多普勒频移值表示所述第二前方预警信号被发送时的频率与所述第二前方预警信号被接收时的频率的差值;
在所述预警资源块的除第二时域资源之外的其他时域资源上接收第二后方预警信号;
所述第二后方预警信号为所述第二车辆发送的;所述第二后方预警信号在传输过程中产生的第四多普勒频移值,用于表示所述第二车辆与所述车载通信设备所属车辆的相对速度;所述第四多普勒频移值表示所述第二后方预警信号被发送时的频率与所述第二后方预警信号被接收时的频率的差值;
检测模块,用于检测所述第三多普勒频移值,根据所述第三多普勒频移值获得所述第一车辆与所述车载通信设备所属车辆的相对速度;和/或,检测 所述第四多普勒频移值,根据所述第四多普勒频移值获得所述第二车辆与所述车载通信设备所属车辆的相对速度;
处理模块,用于当所述第一车辆与所述车载通信设备所属车辆的相对速度达到预警阈值时,获知存在与所述第一车辆发生碰撞的风险;和/或,当所述第二车辆与所述车载通信设备所属车辆的相对速度达到所述预警阈值时,获知存在与所述第二车辆发生碰撞的风险。
结合第二个方面,在第一种可能的实现方式中,若所述第一车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述第二前方预警信号为所述第一车辆的车尾天线发送的;若所述第一车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述第二前方预警信号为所述第一车辆的车头天线发送的;
若所述第二车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述第二后方预警信号为所述第二车辆的车头天线发送的;若所述第二车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述第二后方预警信号为所述第二车辆的车尾天线发送的。
结合第二个方面或第二个方面的第一种可能的实现方式,在第二种可能的实现方式中,所述处理模块,具体用于判断所述第一车辆与所述车载通信设备所属车辆的相对速度是否达到所述预警阈值,若达到,获知存在与所述第一车辆发生碰撞的风险;和/或,判断所述第二车辆与所述车载通信设备所属车辆的相对速度是否达到所述预警阈值,若达到,获知存在与所述第一车辆发生碰撞的风险。
结合第二个方面的第二种可能的实现方式,在第三种可能的实现方式中,所述收发模块包含车头天线和车尾天线;
其中,所述车头天线,用于将所述第一前方预警信号承载在所述预警资源块的第一时域资源上向所述车载通信设备所属车辆的前方发射;或者,在所述预警资源块的除第一时域资源之外的其他时域资源上接收第二前方预警信号;
所述车尾天线,用于将所述第一后方预警信号承载在所述预警资源块的第二时域资源上向所述车载通信设备所属车辆的后方发射;或者,在所述预 警资源块的除第二时域资源之外的其他时域资源上接收第二后方预警信号;
若所述第一车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第一车辆的车头天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第一车辆的车尾天线共用所述预警资源块的第二时域资源进行发射;
若所述第二车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第二车辆的车头天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第二车辆的车尾天线共用所述预警资源块的第二时域资源进行发射;
若所述第一车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第一车辆的车尾天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第一车辆的车头天线共用所述预警资源块的第二时域资源进行发射;
若所述第二车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第二车辆的车尾天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第一车辆的车头天线共用所述预警资源块的第二时域资源进行发射。
结合第二个方面或第二个方面的上述任意一种可能的实现方式,在第四种可能的实现方式中,所述预警资源块与所述车载通信设备所属车辆行驶的车道具有一一对应的关系。
结合第二个方面的第四种可能的实现方式,在第五种可能的实现方式中,所述收发模块,还用于接收路边单元的广播消息,所述广播消息包含所述车载通信设备所属车辆行驶的车道的编号;
所述处理模块,还用于根据所述编号选择与所述车载通信设备所属车辆行驶的车道对应的所述预警资源块。
本发明的第三个方面是提供一种车载通信设备,所述车载通信设备所属车辆与至少一个其他车辆共用一个预警资源块,所述至少一个其他车辆分别在所述预警资源块上发送第一预警信号;所述车载通信设备将第二预警信号承载在所述预警资源块上进行发射;其中,所述车载通信设备,包括:
接收器,用于接收承载在所述预警资源块上的所述第一预警信号;
所述第一预警信号在传输过程中产生的多普勒频移值,用于表示所述至少一个其他车辆中的任意一辆与所述车载通信设备所属车辆的相对速度;所述多普勒频移值表示所述第一预警信号被发送时的频率与所述第一预警信号被接收时的频率的差值;
发射器,用于将第二预警信号承载在所述预警资源块上进行发射;
所述第二预警信号用于通知所述至少一个其他车辆中的任意一辆,所述车载通信设备所属车辆与所述至少一个其他车辆中的任意一辆的相对速度;
处理器,用于检测所述第一预警信号的多普勒频移值,根据所述第一预警信号的多普勒频移值获得所述至少一个其他车辆中的任意一辆与所述车载通信设备所属车辆的相对速度;当所述相对速度达到预警阈值时,获知存在与所述至少一个其他车辆中的任意一辆发生碰撞的风险。
结合第三个方面,在第一种可能的实现方式中,所述处理器,具体用于判断所述相对速度是否达到所述预警阈值,若达到,则获知存在与所述至少一个其他车辆中的任意一辆发生碰撞的风险。
结合第三个方面的第一种可能的实现方式,在第二种可能的实现方式中,所述处理器,还具体用于若所述相对速度未达到所述预警阈值,则获知所述车载通信设备所属车辆处于安全行驶状态。
结合第三个方面或第三个方面的第一种可能的实现方式或第三个方面的第二种可能的实现方式,在第三种可能的实现方式中,所述接收器,具体用于接收承载在所述预警资源块的所有时域资源上的第一预警信号;
所述发射器,具体用于将所述第二预警信号承载在所述预警资源块中所述车载通信设备对应的时域资源上进行发射。
结合第三个方面或第三个方面的上述任意一种可能的实现方式,在第四种可能的实现方式中,所述预警资源块与所述车载通信设备所属车辆行驶的车道具有一一对应的关系。
结合第三个方面的第四种可能的实现方式,在第五种可能的实现方式中,所述接收器,还用于接收路边单元的广播消息,所述广播消息包含所述车载通信设备所属车辆行驶的车道的编号;
所述处理器,还用于根据所述编号选择与所述车载通信设备所属车辆行驶的车道对应的所述预警资源块。
本发明的第四个方面是提供一种车载通信设备,所述车载通信设备所属车辆与至少一个其他车辆共用一个预警资源块;其中,所述车载通信设备,包括:
收发器,用于:
将第一前方预警信号承载在所述预警资源块的第一时域资源上向所述车载通信设备所属车辆的前方发射;
所述第一前方预警信号在传输过程中产生的第一多普勒频移值,用于表示第一车辆与所述车载通信设备所属车辆的相对速度;所述第一车辆为所述至少一个其他车辆中位于所述车载通信设备所属车辆前方的任意一辆;所述第一多普勒频移值表示所述第一前方预警信号被发送时的频率与所述第一前方预警信号被接收时的频率的差值;
将第一后方预警信号承载在所述预警资源块的第二时域资源上向所述车载通信设备所属车辆的后方发射;
所述第一后方预警信号在传输过程中产生的第二多普勒频移值,用于表示第二车辆与所述车载通信设备所属车辆的相对速度;所述第二车辆为所述至少一个其他车辆中位于所述车载通信设备所属车辆后方的任意一辆;所述第二多普勒频移值表示所述第一后方预警信号被发送时的频率与所述第一后方预警信号被接收时的频率的差值;
在所述预警资源块的除第一时域资源之外的其他时域资源上接收第二前方预警信号;
所述第二前方预警信号为所述第一车辆发送的;所述第二前方预警信号在传输过程中产生的第三多普勒频移值,用于表示所述第一车辆与所述车载通信设备所属车辆的相对速度;所述第三多普勒频移值表示所述第二前方预警信号被发送时的频率与所述第二前方预警信号被接收时的频率的差值;
在所述预警资源块的除第二时域资源之外的其他时域资源上接收第二后方预警信号;
所述第二后方预警信号为所述第二车辆发送的;所述第二后方预警信号在传输过程中产生的第四多普勒频移值,用于表示所述第二车辆与所述车载通信设备所属车辆的相对速度;所述第四多普勒频移值表示所述第二后方预警信号被发送时的频率与所述第二后方预警信号被接收时的频率的差值;
处理器,用于:
检测所述第三多普勒频移值,根据所述第三多普勒频移值获得所述第一车辆与所述车载通信设备所属车辆的相对速度;和/或,检测所述第四多普勒频移值,根据所述第四多普勒频移值获得所述第二车辆与所述车载通信设备所属车辆的相对速度;
当所述第一车辆与所述车载通信设备所属车辆的相对速度达到预警阈值时,获知存在与所述第一车辆发生碰撞的风险;和/或,当所述第二车辆与所述车载通信设备所属车辆的相对速度达到所述预警阈值时,获知存在与所述第二车辆发生碰撞的风险。
结合第四个方面,在第一种可能的实现方式中,若所述第一车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述第二前方预警信号为所述第一车辆的车尾天线发送的;若所述第一车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述第二前方预警信号为所述第一车辆的车头天线发送的;
若所述第二车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述第二后方预警信号为所述第二车辆的车头天线发送的;若所述第二车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述第二后方预警信号为所述第二车辆的车尾天线发送的。
结合第四个方面或第四个方面的第一种可能的实现方式,在第二种可能的实现方式中,所述处理器,具体用于判断所述第一车辆与所述车载通信设备所属车辆的相对速度是否达到所述预警阈值,若达到,获知存在与所述第一车辆发生碰撞的风险;和/或,判断所述第二车辆与所述车载通信设备所属车辆的相对速度是否达到所述预警阈值,若达到,获知存在与所述第一车辆发生碰撞的风险。
结合第四个方面的第二种可能的实现方式,在第三种可能的实现方式中,所述收发器包含车头天线和车尾天线;
其中,所述车头天线,用于将所述第一前方预警信号承载在所述预警资源块的第一时域资源上向所述车载通信设备所属车辆的前方发射;或者,在所述预警资源块的除第一时域资源之外的其他时域资源上接收第二前方预警 信号;
所述车尾天线,用于将所述第一后方预警信号承载在所述预警资源块的第二时域资源上向所述车载通信设备所属车辆的后方发射;或者,在所述预警资源块的除第二时域资源之外的其他时域资源上接收第二后方预警信号;
若所述第一车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第一车辆的车头天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第一车辆的车尾天线共用所述预警资源块的第二时域资源进行发射;
若所述第二车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第二车辆的车头天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第二车辆的车尾天线共用所述预警资源块的第二时域资源进行发射;
若所述第一车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第一车辆的车尾天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第一车辆的车头天线共用所述预警资源块的第二时域资源进行发射;
若所述第二车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第二车辆的车尾天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第一车辆的车头天线共用所述预警资源块的第二时域资源进行发射。
结合第四个方面或第四个方面的上述任意一种可能的实现方式,在第四种可能的实现方式中,所述预警资源块与所述车载通信设备所属车辆行驶的车道具有一一对应的关系。
结合第四个方面的第四种可能的实现方式,在第五种可能的实现方式中,还包括:
所述收发器,还用于接收路边单元的广播消息,所述广播消息包含所述车载通信设备所属车辆行驶的车道的编号;
所述处理器,还用于根据所述编号选择与所述车载通信设备所属车辆行驶的车道对应的所述预警资源块。
本发明的第五个方面是提供一种预警信息的传输方法,车载通信设备所 属车辆与至少一个其他车辆共用一个预警资源块,所述至少一个其他车辆分别在所述预警资源块上发送第一预警信号;所述车载通信设备将第二预警信号承载在所述预警资源块上进行发射;所述预警信息的传输方法由所述车载通信设备执行,包括:
车载通信设备接收承载在所述预警资源块上的所述第一预警信号;
所述第一预警信号在传输过程中产生的多普勒频移值,用于表示所述至少一个其他车辆中的任意一辆与所述车载通信设备所属车辆的相对速度;所述多普勒频移值表示所述第一预警信号被发送时的频率与所述第一预警信号被接收时的频率的差值;
所述车载通信设备将第二预警信号承载在所述预警资源块上进行发射;
所述第二预警信号用于通知所述至少一个其他车辆中的任意一辆,所述车载通信设备所属车辆与所述至少一个其他车辆中的任意一辆的相对速度;
所述车载通信设备检测所述第一预警信号的多普勒频移值,根据所述第一预警信号的多普勒频移值获得所述至少一个其他车辆中的任意一辆与所述车载通信设备所属车辆的相对速度;
当所述相对速度达到预警阈值时,则所述车载通信设备获知存在与所述至少一个其他车辆中的任意一辆发生碰撞的风险。
结合第五个方面,在第一种可能的实现方式中,当所述相对速度达到预警阈值时,则所述车载通信设备获知存在与所述至少一个其他车辆中的任意一辆发生碰撞的风险,包括:
所述车载通信设备判断所述相对速度是否达到所述预警阈值,若达到,则获知存在与所述至少一个其他车辆中的任意一辆发生碰撞的风险。
结合第五个方面的第一种可能的实现方式,在第二种可能的实现方式中,若所述相对速度未达到所述预警阈值,则所述车载通信设备获知所述车载通信设备所属车辆处于安全行驶状态。
结合第五个方面或第五个方面的第一种可能的实现方式或第五个方面的第二种可能的实现方式,在第三种可能的实现方式中,所述车载通信设备接收承载在所述预警资源块上的所述第一预警信号,包括:
所述车载通信设备接收承载在所述预警资源块的所有时域资源上的所述第一预警信号;
所述车载通信设备将第二预警信号承载在所述预警资源块上进行发射,包括:
所述车载通信设备将所述第二预警信号承载在所述预警资源块中所述车载通信设备对应的时域资源上进行发射。
结合第五个方面或第五个方面的上述任意一种可能的实现方式,在第四种可能的实现方式中,所述预警资源块与所述车载通信设备所属车辆行驶的车道具有一一对应的关系。
结合第五个方面的第四种可能的实现方式,在第五种可能的实现方式中,还包括:
所述车载通信设备接收路边单元的广播消息,所述广播消息包含所述车载通信设备所属车辆行驶的车道的编号;
所述车载通信设备根据所述编号选择与所述车载通信设备所属车辆行驶的车道对应的所述预警资源块。
本发明的第六个方面是提供一种预警信息的传输方法,车载通信设备所属车辆与至少一个其他车辆共用一个预警资源块,所述预警信息的传输方法由所述车载通信设备执行,包括:
车载通信设备将第一前方预警信号承载在预警资源块的第一时域资源上向所述车载通信设备所属车辆的前方发射;
所述第一前方预警信号在传输过程中产生的第一多普勒频移值,用于表示第一车辆与所述车载通信设备所属车辆的相对速度;所述第一车辆为所述至少一个其他车辆中位于所述车载通信设备所属车辆前方的任意一辆;所述第一多普勒频移值表示所述第一前方预警信号被发送时的频率与所述第一前方预警信号被接收时的频率的差值;
所述车载通信设备将第一后方预警信号承载在所述预警资源块的第二时域资源上向所述车载通信设备所属车辆的后方发射;
所述第一后方预警信号在传输过程中产生的第二多普勒频移值,用于表示第二车辆与所述车载通信设备所属车辆的相对速度;所述第二车辆为所述至少一个其他车辆中位于所述车载通信设备所属车辆后方的任意一辆;所述第二多普勒频移值表示所述第一后方预警信号被发送时的频率与所述第一后方预警信号被接收时的频率的差值;
所述车载通信设备在所述预警资源块的除第一时域资源之外的其他时域资源上接收第二前方预警信号;
所述第二前方预警信号为所述第一车辆发送的;所述第二前方预警信号在传输过程中产生的第三多普勒频移值,用于表示所述第一车辆与所述车载通信设备所属车辆的相对速度;所述第三多普勒频移值表示所述第二前方预警信号被发送时的频率与所述第二前方预警信号被接收时的频率的差值;
所述车载通信设备在所述预警资源块的除第二时域资源之外的其他时域资源上接收第二后方预警信号;
所述第二后方预警信号为所述第二车辆发送的;所述第二后方预警信号在传输过程中产生的第四多普勒频移值,用于表示所述第二车辆与所述车载通信设备所属车辆的相对速度;所述第四多普勒频移值表示所述第二后方预警信号被发送时的频率与所述第二后方预警信号被接收时的频率的差值;
所述车载通信设备检测所述第三多普勒频移值,根据所述第三多普勒频移值获得所述第一车辆与所述车载通信设备所属车辆的相对速度;和/或,检测所述第四多普勒频移值,根据所述第四多普勒频移值获得所述第二车辆与所述车载通信设备所属车辆的相对速度;
当所述第一车辆与所述车载通信设备所属车辆的相对速度达到预警阈值时,获知存在与所述第一车辆发生碰撞的风险;和/或,
当所述第二车辆与所述车载通信设备所属车辆的相对速度达到所述预警阈值时,获知存在与所述第二车辆发生碰撞的风险。
结合第六个方面,在第一种可能的实现方式中,若所述第一车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述第二前方预警信号为所述第一车辆的车尾天线发送的;若所述第一车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述第二前方预警信号为所述第一车辆的车头天线发送的;
若所述第二车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述第二后方预警信号为所述第二车辆的车头天线发送的;若所述第二车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述第二后方预警信号为所述第二车辆的车尾天线发送的。
结合第六个方面或第六个方面的第一种可能的实现方式,在第二种可能的实现方式中,当所述第一车辆与所述车载通信设备所属车辆的相对速度达到预警阈值时,则获知存在与所述第一车辆发生碰撞的风险,包括:
判断所述第一车辆与所述车载通信设备所属车辆的相对速度是否达到所述预警阈值,若达到,获知存在与所述第一车辆发生碰撞的风险;
当所述第二车辆与所述车载通信设备所属车辆的相对速度达到所述预警阈值时,则所述车载通信设备获知存在与所述第二车辆发生碰撞的风险,包括:
判断所述第一车辆与所述车载通信设备所属车辆的相对速度是否达到所述预警阈值,若达到,获知存在与所述第一车辆发生碰撞的风险;
结合第六个方面的第二种可能的实现方式,在第三种可能的实现方式中,所述车载通信设备包含车头天线和车尾天线;
其中,所述车头天线,用于将所述第一前方预警信号承载在所述预警资源块的第一时域资源上向所述车载通信设备所属车辆的前方发射;或者,在所述预警资源块的除第一时域资源之外的其他时域资源上接收第二前方预警信号;
所述车尾天线,用于将所述第一后方预警信号承载在所述预警资源块的第二时域资源上向所述车载通信设备所属车辆的后方发射;或者,在所述预警资源块的除第二时域资源之外的其他时域资源上接收第二后方预警信号;
若所述第一车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第一车辆的车头天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第一车辆的车尾天线共用所述预警资源块的第二时域资源进行发射;
若所述第二车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第二车辆的车头天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第二车辆的车尾天线共用所述预警资源块的第二时域资源进行发射;
若所述第一车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第一车辆的车尾天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第一车辆的车头 天线共用所述预警资源块的第二时域资源进行发射;
若所述第二车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第二车辆的车尾天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第一车辆的车头天线共用所述预警资源块的第二时域资源进行发射。
结合第六个方面或第六个方面的上述任意一种可能的实现方式,在第四种可能的实现方式中,所述预警资源块与所述车载通信设备所属车辆行驶的车道具有一一对应的关系。
结合第六个方面的第四种可能的实现方式,在第五种可能的实现方式中,还包括:
所述车载通信设备接收路边单元的广播消息,所述广播消息包含所述车载通信设备所属车辆行驶的车道的编号;
所述车载通信设备根据所述编号选择与所述车载通信设备所属车辆行驶的车道对应的所述预警资源块。
本发明实施例提供的预警信息的传输装置及方法,通过接收模块接收承载在所述预警资源块上的所述第一预警信号;所述第一预警信号在传输过程中产生的多普勒频移值,用于表示所述至少一个其他车辆中的任意一辆与所述车载通信设备所属车辆的相对速度;所述多普勒频移值表示所述第一预警信号被发送时的频率与所述第一预警信号被接收时的频率的差值;发送模块将第二预警信号承载在所述预警资源块上进行发射;所述第二预警信号用于通知所述至少一个其他车辆中的任意一辆,所述车载通信设备所属车辆与所述至少一个其他车辆中的任意一辆的相对速度;检测模块检测所述第一预警信号的多普勒频移值,根据所述第一预警信号的多普勒频移值获得所述至少一个其他车辆中的任意一辆与所述车载通信设备所属车辆的相对速度;处理模块当所述相对速度达到预警阈值时,获知存在与所述至少一个其他车辆中的任意一辆发生碰撞的风险。由于一定范围内全部的其他车辆都在同一个预警资源块上进行预警信号的收发,并且车载通信设备判断是否存在碰撞风险的条件是:通过所述多普勒频移值得到所述车载通信设备所属车辆与所述至少一个其他车辆中的任意一辆的相对速度,在判断该相对速度是否达到所述预警阈值。其不需要为每个车辆分配独立的资源来进行预警信息的收发。本 发明实施例提供的车载通信设备只需要对承载在上述预警资源块的第一预警信号的多普勒频移值进行检测就可以确定在所述车载通信设备所属车辆的周围是否存在有可能发生碰撞的车辆,当所述相对速度达到所述预警阈值时,既可以确定存在碰撞风险,并及时向所述车载通信设备所属车辆的驾驶员提出预警。显然,由于上述车载通信设备判断是否存在碰撞风险的条件,使得至少一个其他车辆能够共用一个预警资源块进行预警信息的传输,并且至少一个其他车辆都能够接收到承载在预警资源块上的预警信息(即第一预警信号),从而提高了预警信息传输的稳定性,确保了行车安全。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的一种车载通信设备的结构示意图;
图2为本发明实施例提供的一种接收第一预警信号的机制示意图;
图3为本发明实施例提供的时域资源示意图;
图4为本发明实施例提供的另一种车载通信设备的结构示意图;
图5为车道场景示意图;
图6为本发明实施例提供的一种时域分配示意图;
图7为本发明实施例提供的另一种车载通信设备的结构示意图;
图8为本发明实施例提供的另一种车载通信设备的结构示意图;
图9为本发明实施例提供的一种预警信息的传输方法的流程示意图;
图10为本发明实施例提供的另一种预警信息的传输方法的流程示意图;
图11为本发明实施例提供的另一种预警信息的传输方法的流程示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
图1为本发明实施例提供的一种车载通信设备的结构示意图,该车载通信设备具有蜂窝通信功能和D2D通信功能,并且该车在通信设备具备全双工天线。所述车载通信设备所属车辆与至少一个其他车辆共用一个预警资源块,所述至少一个其他车辆分别在所述预警资源块上发送第一预警信号;所述车载通信设备将第二预警信号承载在所述预警资源块上进行发射;参照图1,该车载通信设备包括:接收模块100、发送模块101、检测模块102和处理模块103;
接收模块100,用于接收承载在所述预警资源块上的所述第一预警信号;
所述第一预警信号在传输过程中产生的多普勒频移值,用于表示所述至少一个其他车辆中的任意一辆与所述车载通信设备所属车辆的相对速度;所述多普勒频移值表示所述第一预警信号被发送时的频率与所述第一预警信号被接收时的频率的差值;
发送模块101,用于将第二预警信号承载在所述预警资源块上进行发射;
所述第二预警信号用于通知所述至少一个其他车辆中的任意一辆,所述车载通信设备所属车辆与所述至少一个其他车辆中的任意一辆的相对速度;
检测模块102,用于检测所述第一预警信号的多普勒频移值,根据所述第一预警信号的多普勒频移值获得所述至少一个其他车辆中的任意一辆与所述车载通信设备所属车辆的相对速度;
需要说明的是,多普勒频移值指:当信号的发送方以一定的速率沿某一方向移动时,由于信号传播路程差的原因,会造成该信号相位和频率的变化。对于本方案来说,所述第一预警信号在传输过程中,由于发送该第一预警信号的其他车辆与所述车载通信设备所属车辆之间的路程差,从而产生所述第一预警信号的多普勒频移值。该所述第一预警信号的多普勒频移值能够体现所述至少一个其他车辆中的任意一辆与所述车载通信设备所属车辆的相对速度。对于如何通过多普勒频移值获得上述相对速度,下文进行了详细说明此 处不再赘述。
处理模块103,用于当所述相对速度达到预警阈值时,获知存在与所述至少一个其他车辆中的任意一辆发生碰撞的风险。
需要说明的是,当所述相对速度达到预警阈值时,表明所述至少一个其他车辆中的某辆车与所述车载通信设备所属车辆距离很近,或两者的相对速度在两辆车连线方向上的分量很大,有发生碰撞的危险。
本发明实施例提供的车载通信设备,通过接收模块接收承载在所述预警资源块上的所述第一预警信号;所述第一预警信号在传输过程中产生的多普勒频移值,用于表示所述至少一个其他车辆中的任意一辆与所述车载通信设备所属车辆的相对速度;所述多普勒频移值表示所述第一预警信号被发送时的频率与所述第一预警信号被接收时的频率的差值;发送模块将第二预警信号承载在所述预警资源块上进行发射;所述第二预警信号用于通知所述至少一个其他车辆中的任意一辆,所述车载通信设备所属车辆与所述至少一个其他车辆中的任意一辆的相对速度;检测模块检测所述第一预警信号的多普勒频移值,根据所述第一预警信号的多普勒频移值获得所述至少一个其他车辆中的任意一辆与所述车载通信设备所属车辆的相对速度;处理模块当所述相对速度达到预警阈值时,获知存在与所述至少一个其他车辆中的任意一辆发生碰撞的风险。由于一定范围内全部的其他车辆都在同一个预警资源块上进行预警信号的收发,并且车载通信设备判断是否存在碰撞风险的条件是:通过所述多普勒频移值得到所述车载通信设备所属车辆与所述至少一个其他车辆中的任意一辆的相对速度,在判断该相对速度是否达到所述预警阈值。其不需要为每个车辆分配独立的资源来进行预警信息的收发。本发明实施例提供的车载通信设备只需要对承载在上述预警资源块的第一预警信号的多普勒频移值进行检测就可以确定在所述车载通信设备所属车辆的周围是否存在有可能发生碰撞的车辆,当所述相对速度达到所述预警阈值时,既可以确定存在碰撞风险,并及时向所述车载通信设备所属车辆的驾驶员提出预警。显然,由于上述车载通信设备判断是否存在碰撞风险的条件,使得至少一个其他车辆能够共用一个预警资源块进行预警信息的传输,并且至少一个其他车辆都能够接收到承载在预警资源块上的预警信息(即第一预警信号),从而提高了预警信息传输的稳定性,确保了行车安全。
优选的,所述检测模块102,具体用于判断所述相对速度是否达到所述预警阈值,若达到,则获知存在与所述至少一个其他车辆中的任意一辆发生碰撞的风险。
另外,所述检测模块102,还具体用于若所述相对速度未达到所述预警阈值,则获知所述车载通信设备所属车辆处于安全行驶状态。
进一步的,由于所述车载通信设备采用了全双工天线,所述接收模块100,具体用于接收承载在所述预警资源块的所有时域资源上的所述第一预警信号;
所述发送模块101,具体用于将所述第二预警信号承载在所述预警资源块中所述车载通信设备对应的时域资源上进行发射。
可选的,所述预警资源块与所述车载通信设备所属车辆行驶的车道具有一一对应的关系。
进一步的,所述接收模块100,还用于接收路边单元的广播消息,所述广播消息包含所述车载通信设备所属车辆行驶的车道的编号;
所述处理模块103,还用于根据所述编号选择与所述车载通信设备所属车辆行驶的车道对应的所述预警资源块。
本方案在进行第一预警信号的接收和第二预警信号的发送时,实际利用了多普勒频移的原理,下面针对上述实施例给出的步骤,对于本方案应用多普勒频移的实现方式进行具体说明。
首先,需要说明的是,载波频率为5.8GHz,当所述至少一个其他车辆(即邻车)相对于所述车载通信设备所属车辆(即本车)的相对速度达到116.3794km/h=32.3276m/s,并指向本车时,多普勒频移为:(5.8*10^9)*32.3276/(3*10^8)=625.002;即本车收到邻车的信号频率升高625Hz。
对于发送模块101将第二预警信号承载在所述预警资源块上进行发射,虽然LTE系统中的正常子载波间隔为15kHz,大于625Hz。但是物理上行共享信道(Physical Uplink Shared Channel,简称:PUSCH)的子载波间隔为625Hz的二倍:正常的PUSCH的子载波间隔为15kHz,符号长度[循环前缀(Cyclic Prefix,简称:CP)不计入]为66.7us;物理随机接入信道(Physical Random Access Channel,简称:PRACH)的子载波间隔:1.25kHz,符号长度(CP不计入) 为800us。与PRACH类似,第二预警信号的子载波间隔为1.25kHz,符号长度(CP不计入)为800us,可以加入CP及保护间隔凑足1ms。
可选的,本发明实施例提供的方案,可以使用原LTE的一个资源块(180kHz)作为预警资源块,以发送第二预警信号。则180kHz被分为180k/1.25k=144个子载波。注意到比144小的最大素数是139,所以可以使用长为139的频域ZC(Zadoff-Chu)序列,并在两边加入循环上\下缀。
对检测模块102如何检测所述第一预警信号的多普勒频移值获得所述车载通信设备所属车辆与至少一个其他车辆的相对运行速度信息,有多种实现方法。此处给出一种例子如下:
图2为本发明实施例提供的一种接收第一预警信号的机制示意图,参照图2,其中,图2左侧发射机一侧显示了第一预警信号发送的频域位置。该发射机为邻车;接收机为所述车载通信设备所属车辆,即本车;本车的检测模块102使用二套检测波形对接收到的第一预警信号做相关。其中,检测波形A为发送波形高移625Hz,检测波形B为发送波形低移625Hz。
当本车与作为发射机(邻车)相对速度为0时,检测模块102使用检测波形A检测到的相关系数绝对值与用检测波形B检测到的相关系数绝对值几乎相同(在没有噪声和干扰的情况下,即为相同)。
当正在接近的接收机与发射机之间相对速度为116.3794km/h时,检测模块102使用检测波形A检测到的相关系数为140,检测模块102使用检测波形B检测到的相关系数接近0。
在接收机与发射机相对速度从0逐渐增大到116.3794km/h的过程中,检测模块102使用检测波形A检测到的相关系数绝对值逐渐增大,检测模块102使用检测波形B检测到的相关系数绝对值逐渐减小。
当A检测相关系数/B检测相关系数的绝对值达到2.5db时,相对速度已经达到30km/h,则处理模块103可以向驾驶员发出预警。
其中,可以将A检测相关系数/B检测相关系数的绝对值作为上文所述车载通信设备所属车辆与至少一个其他车辆的相对运行速度信息。
进一步的,还可以为每辆车配置2套半双工天线,分别安装在车头和车尾,分别用于向前/后定向收发预警信号。在单向行车道上,所有正向行驶(包括正向泊车,下同)的车辆的车头天线使用相同的时域资源t1周期性发送; 所有正向行驶所有车辆的车尾天线使用相同的时域资源t2周期性发送;逆向行驶(包括逆向泊车,下同)的车的车头天线使用与正向行驶的车的车尾相同的时域资源t2发送;逆向行驶的车的车尾使用与正向行驶的车的车头相同的时域资源t1发送。图3为本发明实施例提供的时域资源示意图,参照图3,其中t1与t2是不同的时域资源,预警信号的传输方法可以与上述实施例相同。
需要说明的是,这样设计的原因是:同向行驶的车头天线不需要互相侦听;同向行驶的车尾天线之间不需要互相侦听;正向行驶的车的车头天线与逆向行驶的车的车尾天线不需要互相侦听;正向行驶的车的车尾天线与正向行驶的车的车头天线之间不需要互相侦听。所以它们可以彼此同时发送。
基于这样的设计,图4为本发明实施例提供的另一种车载通信设备的结构示意图,该车载通信设备具有蜂窝通信功能和D2D通信功能,并且该车载通信设备具备车头的半双工天线和车尾的半双工天线。所述车载通信设备所属车辆与至少一个其他车辆共用一个预警资源块,参照图4,该车载通信设备,包括:收发模块200、检测模块201和处理模块202;
收发模块200,用于:
将第一前方预警信号承载在所述预警资源块的第一时域资源上向所述车载通信设备所属车辆的前方发射;
所述第一前方预警信号在传输过程中产生的第一多普勒频移值,用于表示第一车辆与所述车载通信设备所属车辆的相对速度;所述第一车辆为所述至少一个其他车辆中位于所述车载通信设备所属车辆前方的任意一辆;所述第一多普勒频移值表示所述第一前方预警信号被发送时的频率与所述第一前方预警信号被接收时的频率的差值;
将第一后方预警信号承载在所述预警资源块的第二时域资源上向所述车载通信设备所属车辆的后方发射;
所述第一后方预警信号在传输过程中产生的第二多普勒频移值,用于表示第二车辆与所述车载通信设备所属车辆的相对速度;所述第二车辆为所述至少一个其他车辆中位于所述车载通信设备所属车辆后方的任意一辆;所述第二多普勒频移值表示所述第一后方预警信号被发送时的频率与所述第一后方预警信号被接收时的频率的差值;
在所述预警资源块的除第一时域资源之外的其他时域资源上接收第二前 方预警信号;
所述第二前方预警信号为所述第一车辆发送的;所述第二前方预警信号在传输过程中产生的第三多普勒频移值,用于表示所述第一车辆与所述车载通信设备所属车辆的相对速度;所述第三多普勒频移值表示所述第二前方预警信号被发送时的频率与所述第二前方预警信号被接收时的频率的差值;
在所述预警资源块的除第二时域资源之外的其他时域资源上接收第二后方预警信号;
所述第二后方预警信号为所述第二车辆发送的;所述第二后方预警信号在传输过程中产生的第四多普勒频移值,用于表示所述第二车辆与所述车载通信设备所属车辆的相对速度;所述第四多普勒频移值表示所述第二后方预警信号被发送时的频率与所述第二后方预警信号被接收时的频率的差值;
检测模块201,用于检测所述第三多普勒频移值,根据所述第三多普勒频移值获得所述第一车辆与所述车载通信设备所属车辆的相对速度;和/或,检测所述第四多普勒频移值,根据所述第四多普勒频移值获得所述第二车辆与所述车载通信设备所属车辆的相对速度;
处理模块202,用于当所述第一车辆与所述车载通信设备所属车辆的相对速度达到预警阈值时,获知存在与所述第一车辆发生碰撞的风险;和/或,当所述第二车辆与所述车载通信设备所属车辆的相对速度达到所述预警阈值时,获知存在与所述第二车辆发生碰撞的风险。
本发明实施例提供的车载通信设备,通过收发模块将第一前方预警信号承载在所述预警资源块的第一时域资源上向所述车载通信设备所属车辆的前方发射;所述第一前方预警信号在传输过程中产生的第一多普勒频移值,用于表示第一车辆与所述车载通信设备所属车辆的相对速度;所述第一车辆为所述至少一个其他车辆中位于所述车载通信设备所属车辆前方的任意一辆;所述第一多普勒频移值表示所述第一前方预警信号被发送时的频率与所述第一前方预警信号被接收时的频率的差值;所述收发模块将第一后方预警信号承载在所述预警资源块的第二时域资源上向所述车载通信设备所属车辆的后方发射;所述第一后方预警信号在传输过程中产生的第二多普勒频移值,用于表示第二车辆与所述车载通信设备所属车辆的相对速度;所述第二车辆为所述至少一个其他车辆中位于所述车载通信设备所属车辆后方的任意一辆; 所述第二多普勒频移值表示所述第一后方预警信号被发送时的频率与所述第一后方预警信号被接收时的频率的差值;所述收发模块在所述预警资源块的除第一时域资源之外的其他时域资源上接收第二前方预警信号;所述第二前方预警信号为所述第一车辆发送的;所述第二前方预警信号在传输过程中产生的第三多普勒频移值,用于表示所述第一车辆与所述车载通信设备所属车辆的相对速度;所述第三多普勒频移值表示所述第二前方预警信号被发送时的频率与所述第二前方预警信号被接收时的频率的差值;所述收发模块在所述预警资源块的除第二时域资源之外的其他时域资源上接收第二后方预警信号;所述第二后方预警信号为所述第二车辆发送的;所述第二后方预警信号在传输过程中产生的第四多普勒频移值,用于表示所述第二车辆与所述车载通信设备所属车辆的相对速度;所述第四多普勒频移值表示所述第二后方预警信号被发送时的频率与所述第二后方预警信号被接收时的频率的差值;检测模块检测所述第三多普勒频移值,根据所述第三多普勒频移值获得所述第一车辆与所述车载通信设备所属车辆的相对速度;和/或,检测所述第四多普勒频移值,根据所述第四多普勒频移值获得所述第二车辆与所述车载通信设备所属车辆的相对速度;当所述第一车辆与所述车载通信设备所属车辆的相对速度达到预警阈值时,处理模块获知存在与所述第一车辆发生碰撞的风险;和/或,当所述第二车辆与所述车载通信设备所属车辆的相对速度达到所述预警阈值时,获知存在与所述第二车辆发生碰撞的风险。本发明实施例提供的车载通信设备,当所述第一车辆与所述车载通信设备所属车辆的相对速度和/或所述第二车辆与所述车载通信设备所属车辆的相对速度达到所述预警阈值时,既可以确定存在碰撞风险,并及时向所述车载通信设备所属车辆的驾驶员提出预警。显然,由于上述车载通信设备判断是否存在碰撞风险的条件,使得全部车辆能够共用一个预警资源块进行预警信息的传输,并且全部车辆都能够接收到承载在预警资源块上的预警信息(即第一预警信号),从而提高了预警信息传输的稳定性,确保了行车安全。
并且,由于车头天线与车尾天线均为半双工天线,所以采用本发明实施例提供的第一前方预警信号与第一后方预警信号的发射机制,可以保证同向行驶的车头天线不需要互相侦听;同向行驶的车尾天线之间不需要互相侦听;正向行驶的车的车头天线与逆向行驶的车的车尾天线不需要互相侦听;正向 行驶的车的车尾天线与正向行驶的车的车头天线之间不需要互相侦听。所以它们可以彼此同时发送。
进一步的,若所述第一车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述第二前方预警信号为所述第一车辆的车尾天线发送的;若所述第一车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述第二前方预警信号为所述第一车辆的车头天线发送的;
若所述第二车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述第二后方预警信号为所述第二车辆的车头天线发送的;若所述第二车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述第二后方预警信号为所述第二车辆的车尾天线发送的。
可选的,所述处理模块202,具体用于判断所述第一车辆与所述车载通信设备所属车辆的相对速度是否达到所述预警阈值,若达到,获知存在与所述第一车辆发生碰撞的风险;和/或,判断所述第二车辆与所述车载通信设备所属车辆的相对速度是否达到所述预警阈值,若达到,获知存在与所述第一车辆发生碰撞的风险。
优选的,为了实现上述发射和接收的机制,所述收发模块200包含车头天线和车尾天线;
其中,所述车头天线,用于将所述第一前方预警信号承载在所述预警资源块的第一时域资源上向所述车载通信设备所属车辆的前方发射;或者,在所述预警资源块的除第一时域资源之外的其他时域资源上接收第二前方预警信号;
所述车尾天线,用于将所述第一后方预警信号承载在所述预警资源块的第二时域资源上向所述车载通信设备所属车辆的后方发射;或者,在所述预警资源块的除第二时域资源之外的其他时域资源上接收第二后方预警信号;
若所述第一车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第一车辆的车头天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第一车辆的车尾天线共用所述预警资源块的第二时域资源进行发射;
若所述第二车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第二车辆的车头天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第二车辆的车尾天线共用所述预警资源块的第二时域资源进行发射;
若所述第一车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第一车辆的车尾天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第一车辆的车头天线共用所述预警资源块的第二时域资源进行发射;
若所述第二车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第二车辆的车尾天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第一车辆的车头天线共用所述预警资源块的第二时域资源进行发射。
进一步的,针对上述实施例和各个可行的实现方式,本发明实施例还可以对不同的车道进行编号,其中左转道与直行道即使有部分重合也算作两条车道。图5为车道场景示意图,参照图5可知,一个十字路口可能出现八种可能的车道类型。
基于不同的车道,还可以为每一个车道分配不同的时域资源。例如,图6为本发明实施例提供的一种时域分配示意图,参照图6可知,车道1中:正向车头天线与逆向车尾天线公用相同的时域资源t1,正向车尾天线与逆向车头天线公用相同的时域资源t2;车道2中:正向车头天线与逆向车尾天线公用相同的时域资源t3,正向车尾天线与逆向车头天线公用相同的时域资源t4,以此类推。即:a、不同车道上的车使用不同的时域资源发送;b、每辆车的车头与车尾使用不同的时域资源发送;c、每条车道上的逆向车辆(指从该车的车尾指向车头的方向与所在道路的方向不同,不管该车在行驶,停泊或是倒车)的车头与正向车辆的车尾使用相同的时域资源发送;d、每条车道上的逆向车辆的车尾与正向车辆的车头使用相同的时域资源发送。
因此,基于上述车道标识与时域资源的分配方式,可知所述车载通信设备所属车辆与所述至少一个其他车辆应属于同一个车道。即存在两种可能:一、所述车载通信设备所属车辆与所述同向移动的至少一个其他车辆属于同一车道;二、所述车载通信设备所属车辆与所述逆向移动的至少一个其他车 辆属于同一车道。
进一步的,为了识别所述车载通信设备所属车辆与所述至少一个其他车辆是否属于同一个车道。首先,所述预警资源块与所述车载通信设备所属车辆行驶的车道具有一一对应的关系。
可选的,在公路沿线设置路边单元,路边单元用于向途经车辆发送广播消息;
所述收发模块200,还用于接收路边单元的广播消息,所述广播消息包含所述车载通信设备所属车辆行驶的车道的编号;
所述处理模块202,还用于根据所述编号选择与所述车载通信设备所属车辆行驶的车道对应的所述预警资源块。
图7为本发明实施例提供的另一种车载通信设备的结构示意图,该车载通信设备具有与图1所示的车载通信设备相同的功能,所述车载通信设备所属车辆与至少一个其他车辆共用一个预警资源块,所述至少一个其他车辆分别在所述预警资源块上发送第一预警信号;所述车载通信设备将第二预警信号承载在所述预警资源块上进行发射;参照图7,该车载通信设备,包括:接收器300、发射器301和处理器302;
接收器300,用于接收承载在所述预警资源块上的所述第一预警信号;
所述第一预警信号在传输过程中产生的多普勒频移值,用于表示所述至少一个其他车辆中的任意一辆与所述车载通信设备所属车辆的相对速度;所述多普勒频移值表示所述第一预警信号被发送时的频率与所述第一预警信号被接收时的频率的差值;
发射器301,用于将第二预警信号承载在所述预警资源块上进行发射;
所述第二预警信号用于通知所述至少一个其他车辆中的任意一辆,所述车载通信设备所属车辆与所述至少一个其他车辆中的任意一辆的相对速度;
处理器302,用于检测所述第一预警信号的多普勒频移值,根据所述第一预警信号的多普勒频移值获得所述至少一个其他车辆中的任意一辆与所述车载通信设备所属车辆的相对速度;当所述相对速度达到预警阈值时,获知存在与所述至少一个其他车辆中的任意一辆发生碰撞的风险。
本发明实施例提供的车载通信设备,通过接收器接收承载在所述预警资源块上的所述第一预警信号;所述第一预警信号在传输过程中产生的多普勒 频移值,用于表示所述至少一个其他车辆中的任意一辆与所述车载通信设备所属车辆的相对速度;所述多普勒频移值表示所述第一预警信号被发送时的频率与所述第一预警信号被接收时的频率的差值;发射器将第二预警信号承载在所述预警资源块上进行发射;所述第二预警信号用于通知所述至少一个其他车辆中的任意一辆,所述车载通信设备所属车辆与所述至少一个其他车辆中的任意一辆的相对速度;处理器检测所述第一预警信号的多普勒频移值,根据所述第一预警信号的多普勒频移值获得所述至少一个其他车辆中的任意一辆与所述车载通信设备所属车辆的相对速度;当所述相对速度达到预警阈值时,获知存在与所述至少一个其他车辆中的任意一辆发生碰撞的风险。由于一定范围内全部的车辆都在同一个预警资源块上进行预警信号的收发,并且车载通信设备判断是否存在碰撞风险的条件是:通过所述多普勒频移值得到所述车载通信设备所属车辆与所述至少一个其他车辆中的任意一辆的相对速度,在判断该相对速度是否达到所述预警阈值。其不需要为每个车辆分配独立的资源来进行预警信息的收发。本发明实施例提供的车载通信设备只需要对承载在上述预警资源块的第一预警信号的多普勒频移值进行检测就可以确定在所述车载通信设备所属车辆的周围是否存在有可能发生碰撞的车辆,当所述相对速度达到所述预警阈值时,既可以确定存在碰撞风险,并及时向所述车载通信设备所属车辆的驾驶员提出预警。显然,由于上述车载通信设备判断是否存在碰撞风险的条件,使得至少一个其他车辆能够共用一个预警资源块进行预警信息的传输,并且至少一个其他车辆都能够接收到承载在预警资源块上的预警信息(即第一预警信号),从而提高了预警信息传输的稳定性,确保了行车安全。
优选的,所述处理器302,具体用于判断所述相对速度是否达到所述预警阈值,若达到,则获知存在与所述至少一个其他车辆中的任意一辆发生碰撞的风险。
另外,所述处理器302,还具体用于若所述相对速度未达到所述预警阈值,则获知所述车载通信设备所属车辆处于安全行驶状态。
进一步的,所述接收器300,具体用于接收承载在所述预警资源块的所有时域资源上的第一预警信号;
所述发射器301,具体用于将所述第二预警信号承载在所述预警资源块 中所述车载通信设备对应的时域资源上进行发射。
可选的,所述预警资源块与所述车载通信设备所属车辆行驶的车道具有一一对应的关系。
进一步的,所述接收器300,还用于接收路边单元的广播消息,所述广播消息包含所述车载通信设备所属车辆行驶的车道的编号;
所述处理器302,还用于根据所述编号选择与所述车载通信设备所属车辆行驶的车道对应的所述预警资源块。
图8为本发明实施例提供的另一种车载通信设备的结构示意图,其与图4所示的车载通信设备具有相同的功能,参照图8,该车载通信设备包括:收发器400和处理器401;
收发器400,用于:
将第一前方预警信号承载在所述预警资源块的第一时域资源上向所述车载通信设备所属车辆的前方发射;
所述第一前方预警信号在传输过程中产生的第一多普勒频移值,用于表示第一车辆与所述车载通信设备所属车辆的相对速度;所述第一车辆为所述至少一个其他车辆中位于所述车载通信设备所属车辆前方的任意一辆;所述第一多普勒频移值表示所述第一前方预警信号被发送时的频率与所述第一前方预警信号被接收时的频率的差值;
将第一后方预警信号承载在所述预警资源块的第二时域资源上向所述车载通信设备所属车辆的后方发射;
所述第一后方预警信号在传输过程中产生的第二多普勒频移值,用于表示第二车辆与所述车载通信设备所属车辆的相对速度;所述第二车辆为所述至少一个其他车辆中位于所述车载通信设备所属车辆后方的任意一辆;所述第二多普勒频移值表示所述第一后方预警信号被发送时的频率与所述第一后方预警信号被接收时的频率的差值;
在所述预警资源块的除第一时域资源之外的其他时域资源上接收第二前方预警信号;
所述第二前方预警信号为所述第一车辆发送的;所述第二前方预警信号在传输过程中产生的第三多普勒频移值,用于表示所述第一车辆与所述车载通信设备所属车辆的相对速度;所述第三多普勒频移值表示所述第二前方预 警信号被发送时的频率与所述第二前方预警信号被接收时的频率的差值;
在所述预警资源块的除第二时域资源之外的其他时域资源上接收第二后方预警信号;
所述第二后方预警信号为所述第二车辆发送的;所述第二后方预警信号在传输过程中产生的第四多普勒频移值,用于表示所述第二车辆与所述车载通信设备所属车辆的相对速度;所述第四多普勒频移值表示所述第二后方预警信号被发送时的频率与所述第二后方预警信号被接收时的频率的差值;
处理器401,用于:
检测所述第三多普勒频移值,根据所述第三多普勒频移值获得所述第一车辆与所述车载通信设备所属车辆的相对速度;和/或,检测所述第四多普勒频移值,根据所述第四多普勒频移值获得所述第二车辆与所述车载通信设备所属车辆的相对速度;
当所述第一车辆与所述车载通信设备所属车辆的相对速度达到预警阈值时,获知存在与所述第一车辆发生碰撞的风险;和/或,当所述第二车辆与所述车载通信设备所属车辆的相对速度达到所述预警阈值时,获知存在与所述第二车辆发生碰撞的风险。
本发明实施例提供的车载通信设备,通过收发器将第一前方预警信号承载在所述预警资源块的第一时域资源上向所述车载通信设备所属车辆的前方发射;所述第一前方预警信号在传输过程中产生的第一多普勒频移值,用于表示第一车辆与所述车载通信设备所属车辆的相对速度;所述第一车辆为所述至少一个其他车辆中位于所述车载通信设备所属车辆前方的任意一辆;所述第一多普勒频移值表示所述第一前方预警信号被发送时的频率与所述第一前方预警信号被接收时的频率的差值;所述收发器将第一后方预警信号承载在所述预警资源块的第二时域资源上向所述车载通信设备所属车辆的后方发射;所述第一后方预警信号在传输过程中产生的第二多普勒频移值,用于表示第二车辆与所述车载通信设备所属车辆的相对速度;所述第二车辆为所述至少一个其他车辆中位于所述车载通信设备所属车辆后方的任意一辆;所述第二多普勒频移值表示所述第一后方预警信号被发送时的频率与所述第一后方预警信号被接收时的频率的差值;所述收发器在所述预警资源块的除第一时域资源之外的其他时域资源上接收第二前方预警信号;所述第二前方预警 信号为所述第一车辆发送的;所述第二前方预警信号在传输过程中产生的第三多普勒频移值,用于表示所述第一车辆与所述车载通信设备所属车辆的相对速度;所述第三多普勒频移值表示所述第二前方预警信号被发送时的频率与所述第二前方预警信号被接收时的频率的差值;所述收发器在所述预警资源块的除第二时域资源之外的其他时域资源上接收第二后方预警信号;所述第二后方预警信号为所述第二车辆发送的;所述第二后方预警信号在传输过程中产生的第四多普勒频移值,用于表示所述第二车辆与所述车载通信设备所属车辆的相对速度;所述第四多普勒频移值表示所述第二后方预警信号被发送时的频率与所述第二后方预警信号被接收时的频率的差值;处理器检测所述第三多普勒频移值,根据所述第三多普勒频移值获得所述第一车辆与所述车载通信设备所属车辆的相对速度;和/或,检测所述第四多普勒频移值,根据所述第四多普勒频移值获得所述第二车辆与所述车载通信设备所属车辆的相对速度;当所述第一车辆与所述车载通信设备所属车辆的相对速度达到预警阈值时,所述处理器获知存在与所述第一车辆发生碰撞的风险;和/或,当所述第二车辆与所述车载通信设备所属车辆的相对速度达到所述预警阈值时,所述处理器获知存在与所述第二车辆发生碰撞的风险。本发明实施例提供的车载通信设备,当所述第一车辆与所述车载通信设备所属车辆的相对速度和/或所述第二车辆与所述车载通信设备所属车辆的相对速度达到所述预警阈值时,既可以确定存在碰撞风险,并及时向所述车载通信设备所属车辆的驾驶员提出预警。显然,由于上述车载通信设备判断是否存在碰撞风险的条件,使得全部车辆能够共用一个预警资源块进行预警信息的传输,并且全部车辆都能够接收到承载在预警资源块上的预警信息(即第一预警信号),从而提高了预警信息传输的稳定性,确保了行车安全。
并且,由于车头天线与车尾天线均为半双工天线,所以采用本发明实施例提供的第一前方预警信号与第一后方预警信号的发射机制,可以保证同向行驶的车头天线不需要互相侦听;同向行驶的车尾天线之间不需要互相侦听;正向行驶的车的车头天线与逆向行驶的车的车尾天线不需要互相侦听;正向行驶的车的车尾天线与正向行驶的车的车头天线之间不需要互相侦听。所以它们可以彼此同时发送。
进一步的,若所述第一车辆为与所述车载通信设备所属车辆同向移动的 至少一个其他车辆中的任意一辆,则所述第二前方预警信号为所述第一车辆的车尾天线发送的;若所述第一车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述第二前方预警信号为所述第一车辆的车头天线发送的;
若所述第二车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述第二后方预警信号为所述第二车辆的车头天线发送的;若所述第二车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述第二后方预警信号为所述第二车辆的车尾天线发送的。
可选的,所述处理器401,具体用于判断所述第一车辆与所述车载通信设备所属车辆的相对速度是否达到所述预警阈值,若达到,获知存在与所述第一车辆发生碰撞的风险;和/或,判断所述第二车辆与所述车载通信设备所属车辆的相对速度是否达到所述预警阈值,若达到,获知存在与所述第一车辆发生碰撞的风险。
优选的,为了实现上述发射和接收的机制,所述收发器400包含车头天线和车尾天线;
其中,所述车头天线,用于将所述第一前方预警信号承载在所述预警资源块的第一时域资源上向所述车载通信设备所属车辆的前方发射;或者,在所述预警资源块的除第一时域资源之外的其他时域资源上接收第二前方预警信号;
所述车尾天线,用于将所述第一后方预警信号承载在所述预警资源块的第二时域资源上向所述车载通信设备所属车辆的后方发射;或者,在所述预警资源块的除第二时域资源之外的其他时域资源上接收第二后方预警信号;
若所述第一车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第一车辆的车头天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第一车辆的车尾天线共用所述预警资源块的第二时域资源进行发射;
若所述第二车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第二车辆的车头天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第二车辆的车尾 天线共用所述预警资源块的第二时域资源进行发射;
若所述第一车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第一车辆的车尾天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第一车辆的车头天线共用所述预警资源块的第二时域资源进行发射;
若所述第二车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第二车辆的车尾天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第一车辆的车头天线共用所述预警资源块的第二时域资源进行发射。
可选的,所述预警资源块与所述车载通信设备所属车辆行驶的车道具有一一对应的关系。
进一步的,所述收发器400,还用于接收路边单元的广播消息,所述广播消息包含所述车载通信设备所属车辆行驶的车道的编号;
所述处理器401,还用于根据所述编号选择与所述车载通信设备所属车辆行驶的车道对应的所述预警资源块。
图9为本发明实施例提供的一种预警信息的传输方法的流程示意图,该方法的执行主体为车载通信设备,该车载通信设备具有蜂窝通信功能和D2D通信功能,并且该车在通信设备具备全双工天线。车载通信设备所属车辆与至少一个其他车辆共用一个预警资源块,所述至少一个其他车辆分别在所述预警资源块上发送第一预警信号;所述车载通信设备将第二预警信号承载在所述预警资源块上进行发射;所述预警信息的传输方法由所述车载通信设备执行,参照图9,该方法包括如下步骤:
步骤500、车载通信设备接收承载在所述预警资源块上的所述第一预警信号;
所述第一预警信号在传输过程中产生的多普勒频移值,用于表示所述至少一个其他车辆中的任意一辆与所述车载通信设备所属车辆的相对速度;所述多普勒频移值表示所述第一预警信号被发送时的频率与所述第一预警信号被接收时的频率的差值;
步骤501、所述车载通信设备将第二预警信号承载在所述预警资源块上进行发射;
所述第二预警信号用于通知所述至少一个其他车辆中的任意一辆,所述车载通信设备所属车辆与所述至少一个其他车辆中的任意一辆的相对速度;
步骤502、所述车载通信设备检测所述第一预警信号的多普勒频移值,根据所述第一预警信号的多普勒频移值获得所述至少一个其他车辆中的任意一辆与所述车载通信设备所属车辆的相对速度;
步骤503、当所述相对速度达到预警阈值时,则所述车载通信设备获知存在与所述至少一个其他车辆中的任意一辆发生碰撞的风险。
本发明实施例提供的预警信息的传输方法,通过车载通信设备接收承载在所述预警资源块上的所述第一预警信号;所述第一预警信号在传输过程中产生的多普勒频移值,用于表示所述至少一个其他车辆中的任意一辆与所述车载通信设备所属车辆的相对速度;所述多普勒频移值表示所述第一预警信号被发送时的频率与所述第一预警信号被接收时的频率的差值;所述车载通信设备将第二预警信号承载在所述预警资源块上进行发射;所述第二预警信号用于通知所述至少一个其他车辆中的任意一辆,所述车载通信设备所属车辆与所述至少一个其他车辆中的任意一辆的相对速度;所述车载通信设备检测所述第一预警信号的多普勒频移值,根据所述第一预警信号的多普勒频移值获得所述至少一个其他车辆中的任意一辆与所述车载通信设备所属车辆的相对速度;当所述相对速度达到预警阈值时,则所述车载通信设备获知存在与所述至少一个其他车辆中的任意一辆发生碰撞的风险。由于一定范围内全部的其他车辆都在同一个预警资源块上进行预警信号的收发,并且车载通信设备判断是否存在碰撞风险的条件是:通过所述多普勒频移值得到所述车载通信设备所属车辆与所述至少一个其他车辆中的任意一辆的相对速度,在判断该相对速度是否达到所述预警阈值。其不需要为每个车辆分配独立的资源来进行预警信息的收发。本发明实施例提供的车载通信设备只需要对承载在上述预警资源块的第一预警信号的多普勒频移值进行检测就可以确定在所述车载通信设备所属车辆的周围是否存在有可能发生碰撞的车辆,当所述相对速度达到所述预警阈值时,既可以确定存在碰撞风险,并及时向所述车载通信设备所属车辆的驾驶员提出预警。显然,由于上述车载通信设备判断是否存在碰撞风险的条件,使得至少一个其他车辆能够共用一个预警资源块进行预警信息的传输,并且至少一个其他车辆都能够接收到承载在预警资源块 上的预警信息(即第一预警信号),从而提高了预警信息传输的稳定性,确保了行车安全。
优选的,对于步骤503,一种可行的实现方式为:
所述车载通信设备判断所述相对速度是否达到所述预警阈值,若达到,则获知存在与所述至少一个其他车辆中的任意一辆发生碰撞的风险。
当相对速度达到所述预警阈值,说明所述车载通信设备所属车辆周围存在至少一个其他车辆,两者之间的相对速度可能存在碰撞的危险。
另外,若所述相对速度未达到所述预警阈值,则说明所述至少一个其他车辆与所述车载通信设备所属车辆相对速度在安全的范围内,则所述车载通信设备获知所述车载通信设备所属车辆处于安全行驶状态。
进一步的,在图9的基础上,图10为本发明实施例提供的另一种预警信息的传输方法的流程示意图,当所述车载通信设备采用了全双工天线时,参照图10,该方法包括:
步骤500的一种可能的实现方式是:
步骤500a、所述车载通信设备接收承载在所述预警资源块的所有时域资源上的所述第一预警信号;
步骤501的一种可能的实现方式是:
步骤501a、所述车载通信设备将所述第二预警信号承载在所述预警资源块中所述车载通信设备对应的时域资源上进行发射。
其中步骤500a的意义在于所述车载通信设备可以随时接收第一预警信号;而步骤501a的意义在于,车载通信设备在所属的时域资源利用所述预警资源块发射所述第二预警信号。
本方案在进行第一预警信号的接收和第二预警信号的发送时,实际利用了多普勒频移的原理,下面针对上述实施例给出的步骤,对于本方案应用多普勒频移的实现方式进行具体说明。
首先,需要说明的是,载波频率为5.8GHz,当所述至少一个其他车辆(即邻车)相对于所述车载通信设备所属车辆(即本车)的相对速度达到116.3794km/h=32.3276m/s,并指向本车时,多普勒频移为:(5.8*10^9)*32.3276/(3*10^8)=625.002;即本车收到邻车的信号频率升高625Hz。
对于步骤501中车载通信设备将第二预警信号承载在所述预警资源块上进行发射,虽然LTE系统中的正常子载波间隔为15kHz,大于625Hz。但是PUSCH的子载波间隔为625Hz的二倍:正常的PUSCH的子载波间隔为15kHz,符号长度(CP不计入)为66.7us;PRACH的子载波间隔:1.25kHz,符号长度(CP不计入)为800us。与PRACH类似,这种第二预警信号的子载波间隔为1.25kHz,符号长度(CP不计入)为800us,可以加入CP及保护间隔凑足1ms。
可选的,本发明实施例提供的方案,可以使用原LTE的一个资源块(180kHz)作为预警资源块,以发送第二预警信号。则180kHz被分为180k/1.25k=144个子载波。注意到比144小的最大素数是139,所以可以使用长为139的频域ZC(Zadoff-Chu)序列,并在两边加入循环上\下缀。
对步骤502中,作为接收机的车载通信设备如何检测所述第一预警信号的多普勒频移值,进而根据获所述第一预警信号的多普勒频移值得所述车载通信设备所属车辆与至少一个其他车辆的相对速度,有多种实现方法。此处给出一种例子如下:
参照图2,其中,图2左侧发射机一侧显示了第一预警信号发送的频域位置。该发射机为邻车;接收机为所述车载通信设备所属车辆,即本车;本车的检测模块使用二套检测波形对接收到的第一预警信号做相关。其中,检测波形A为发送波形高移625Hz,检测波形B为发送波形低移625Hz。
当接收机(本车)与作为发射机(邻车)相对速度为0时,使用检测波形A检测到的相关系数绝对值与用检测波形B检测到的相关系数绝对值几乎相同(在没有噪声和干扰的情况下,即为相同)。
当正在接近的接收机与发射机之间相对速度为116.3794km/h时,使用检测波形A检测到的相关系数为140,使用检测波形B检测到的相关系数接近0。
在接收机与发射机相对速度从0逐渐增大到116.3794km/h的过程中,使用检测波形A检测到的相关系数绝对值逐渐增大,使用检测波形B检测到的相关系数绝对值逐渐减小。
当A检测相关系数/B检测相关系数的绝对值达到2.5db时,相对速度已经达到30km/h,则车载通信设备的预警系统可以向驾驶员发出预警。
其中,可以将A检测相关系数/B检测相关系数的绝对值作为上文所述车载通信设备所属车辆与至少一个其他车辆的相对运行速度信息。
进一步的,还可以为每辆车配置2套半双工天线,分别安装在车头和车尾,分别用于向前/后定向收发预警信号。在单向行车道上,所有正向行驶(包括正向泊车,下同)的车辆的车头天线使用相同的时域资源t1周期性发送;所有正向行驶所有车辆的车尾天线使用相同的时域资源t2周期性发送;逆向行驶(包括逆向泊车,下同)的车的车头天线使用与正向行驶的车的车尾相同的时域资源t2发送;逆向行驶的车的车尾使用与正向行驶的车的车头相同的时域资源t1发送。参照图3,其中t1与t2是不同的时域资源,预警信号的传输方法可以与上述实施例相同。
需要说明的是,这样设计的原因是:同向行驶的车头天线不需要互相侦听;同向行驶的车尾天线之间不需要互相侦听;正向行驶的车的车头天线与逆向行驶的车的车尾天线不需要互相侦听;正向行驶的车的车尾天线与正向行驶的车的车头天线之间不需要互相侦听。所以它们可以彼此同时发送。
基于这样的设计,图11为本发明实施例提供的另一种预警信息的传输方法的流程示意图,该方法的执行主体为车载通信设备,该车载通信设备具有蜂窝通信功能和D2D通信功能,并且该车载通信设备具备车头的半双工天线和车尾的半双工天线。车载通信设备所属车辆与至少一个其他车辆共用一个预警资源块,所述预警信息的传输方法由所述车载通信设备执行,参照图11,该方法包括如下步骤:
步骤600、车载通信设备将第一前方预警信号承载在预警资源块的第一时域资源上向所述车载通信设备所属车辆的前方发射;
具体的,所述第一前方预警信号在传输过程中产生的第一多普勒频移值,用于表示第一车辆与所述车载通信设备所属车辆的相对速度;所述第一车辆为所述至少一个其他车辆中位于所述车载通信设备所属车辆前方的任意一辆;所述第一多普勒频移值表示所述第一前方预警信号被发送时的频率与所述第一前方预警信号被接收时的频率的差值;
步骤601、所述车载通信设备将第一后方预警信号承载在所述预警资源块的第二时域资源上向所述车载通信设备所属车辆的后方发射;
具体的,所述第一后方预警信号在传输过程中产生的第二多普勒频移值, 用于表示第二车辆与所述车载通信设备所属车辆的相对速度;所述第二车辆为所述至少一个其他车辆中位于所述车载通信设备所属车辆后方的任意一辆;所述第二多普勒频移值表示所述第一后方预警信号被发送时的频率与所述第一后方预警信号被接收时的频率的差值;
步骤602、所述车载通信设备在所述预警资源块的除第一时域资源之外的其他时域资源上接收第二前方预警信号;
具体的,所述第二前方预警信号为所述第一车辆发送的;所述第二前方预警信号在传输过程中产生的第三多普勒频移值,用于表示所述第一车辆与所述车载通信设备所属车辆的相对速度;所述第三多普勒频移值表示所述第二前方预警信号被发送时的频率与所述第二前方预警信号被接收时的频率的差值;
步骤603、所述车载通信设备在所述预警资源块的除第二时域资源之外的其他时域资源上接收第二后方预警信号;
具体的,所述第二后方预警信号为所述第二车辆发送的;所述第二后方预警信号在传输过程中产生的第四多普勒频移值,用于表示所述第二车辆与所述车载通信设备所属车辆的相对速度;所述第四多普勒频移值表示所述第二后方预警信号被发送时的频率与所述第二后方预警信号被接收时的频率的差值;
需要说明的是,步骤601至步骤603之间没有必然的先后顺序。
步骤604、所述车载通信设备检测所述第三多普勒频移值,根据所述第三多普勒频移值获得所述第一车辆与所述车载通信设备所属车辆的相对速度;和/或,检测所述第四多普勒频移值,根据所述第四多普勒频移值获得所述第二车辆与所述车载通信设备所属车辆的相对速度;
步骤605、当所述第一车辆与所述车载通信设备所属车辆的相对速度达到预警阈值时,获知存在与所述第一车辆发生碰撞的风险;和/或,当所述第二车辆与所述车载通信设备所属车辆的相对速度达到所述预警阈值时,获知存在与所述第二车辆发生碰撞的风险。
本发明实施例提供的预警信息的传输方法,通过车载通信设备将第一前方预警信号承载在预警资源块的第一时域资源上向所述车载通信设备所属车辆的前方发射;所述第一前方预警信号在传输过程中产生的第一多普勒频移值,用于表示第一车辆与所述车载通信设备所属车辆的相对速度;所述第一 车辆为所述至少一个其他车辆中位于所述车载通信设备所属车辆前方的任意一辆;所述第一多普勒频移值表示所述第一前方预警信号被发送时的频率与所述第一前方预警信号被接收时的频率的差值;所述车载通信设备将第一后方预警信号承载在所述预警资源块的第二时域资源上向所述车载通信设备所属车辆的后方发射;所述第一后方预警信号在传输过程中产生的第二多普勒频移值,用于表示第二车辆与所述车载通信设备所属车辆的相对速度;所述第二车辆为所述至少一个其他车辆中位于所述车载通信设备所属车辆后方的任意一辆;所述第二多普勒频移值表示所述第一后方预警信号被发送时的频率与所述第一后方预警信号被接收时的频率的差值;所述车载通信设备在所述预警资源块的除第一时域资源之外的其他时域资源上接收第二前方预警信号;所述第二前方预警信号为所述第一车辆发送的;所述第二前方预警信号在传输过程中产生的第三多普勒频移值,用于表示所述第一车辆与所述车载通信设备所属车辆的相对速度;所述第三多普勒频移值表示所述第二前方预警信号被发送时的频率与所述第二前方预警信号被接收时的频率的差值;所述车载通信设备在所述预警资源块的除第二时域资源之外的其他时域资源上接收第二后方预警信号;所述第二后方预警信号为所述第二车辆发送的;所述第二后方预警信号在传输过程中产生的第四多普勒频移值,用于表示所述第二车辆与所述车载通信设备所属车辆的相对速度;所述第四多普勒频移值表示所述第二后方预警信号被发送时的频率与所述第二后方预警信号被接收时的频率的差值;所述车载通信设备检测所述第三多普勒频移值,根据所述第三多普勒频移值获得所述第一车辆与所述车载通信设备所属车辆的相对速度;和/或,检测所述第四多普勒频移值,根据所述第四多普勒频移值获得所述第二车辆与所述车载通信设备所属车辆的相对速度;当所述第一车辆与所述车载通信设备所属车辆的相对速度达到预警阈值时,获知存在与所述第一车辆发生碰撞的风险;和/或,当所述第二车辆与所述车载通信设备所属车辆的相对速度达到所述预警阈值时,获知存在与所述第二车辆发生碰撞的风险。本发明实施例提供的车载通信设备,当所述第一车辆与所述车载通信设备所属车辆的相对速度和/或所述第二车辆与所述车载通信设备所属车辆的相对速度达到所述预警阈值时,既可以确定存在碰撞风险,并及时向所述车载通信设备所属车辆的驾驶员提出预警。显然,由于上述车载通信设备判断是否存在碰撞风险的条件,使得全部车辆能够共用一个预警资源块进行预警信息 的传输,并且全部车辆都能够接收到承载在预警资源块上的预警信息(即第一预警信号),从而提高了预警信息传输的稳定性,确保了行车安全。
并且,由于车头天线与车尾天线均为半双工天线,所以采用本发明实施例提供的第一前方预警信号与第一后方预警信号的发射机制,可以保证同向行驶的车头天线不需要互相侦听;同向行驶的车尾天线之间不需要互相侦听;正向行驶的车的车头天线与逆向行驶的车的车尾天线不需要互相侦听;正向行驶的车的车尾天线与正向行驶的车的车头天线之间不需要互相侦听。所以它们可以彼此同时发送。
进一步的,若所述第一车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述第二前方预警信号为所述第一车辆的车尾天线发送的;若所述第一车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述第二前方预警信号为所述第一车辆的车头天线发送的;
若所述第二车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述第二后方预警信号为所述第二车辆的车头天线发送的;若所述第二车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述第二后方预警信号为所述第二车辆的车尾天线发送的。
可选的,步骤605的两种可能的实现方式为:
方式一:判断所述第一车辆与所述车载通信设备所属车辆的相对速度是否达到所述预警阈值,若达到,获知存在与所述第一车辆发生碰撞的风险;和/或,
方式二:判断所述第一车辆与所述车载通信设备所属车辆的相对速度是否达到所述预警阈值,若达到,获知存在与所述第一车辆发生碰撞的风险;
优选的,为了实现上述发射和接收的机制,所述车载通信设备包含车头天线和车尾天线;
其中,所述车头天线,用于将所述第一前方预警信号承载在所述预警资源块的第一时域资源上向所述车载通信设备所属车辆的前方发射;或者,在所述预警资源块的除第一时域资源之外的其他时域资源上接收第二前方预警信号;
所述车尾天线,用于将所述第一后方预警信号承载在所述预警资源块的 第二时域资源上向所述车载通信设备所属车辆的后方发射;或者,在所述预警资源块的除第二时域资源之外的其他时域资源上接收第二后方预警信号;
若所述第一车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第一车辆的车头天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第一车辆的车尾天线共用所述预警资源块的第二时域资源进行发射;
若所述第二车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第二车辆的车头天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第二车辆的车尾天线共用所述预警资源块的第二时域资源进行发射;
若所述第一车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第一车辆的车尾天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第一车辆的车头天线共用所述预警资源块的第二时域资源进行发射;
若所述第二车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第二车辆的车尾天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第一车辆的车头天线共用所述预警资源块的第二时域资源进行发射。
进一步的,针对上述实施例和各个可行的实现方式,本发明实施例还可以对不同的车道进行编号,其中左转道与直行道即使有部分重合也算作两条车道。参照图5可知,一个十字路口可能出现八种可能的车道类型。
基于不同的车道,还可以为每一个车道分配不同的时域资源。例如,参照图6可知,车道1中:正向车头天线与逆向车尾天线公用相同的时域资源t1,正向车尾天线与逆向车头天线公用相同的时域资源t2;车道2中:正向车头天线与逆向车尾天线公用相同的时域资源t3,正向车尾天线与逆向车头天线公用相同的时域资源t4,以此类推。即:a.不同车道上的车使用不同的时域资源发送;b.每辆车的车头与车尾使用不同的时域资源发送;c.每条车道上的逆向车辆(指从该车的车尾指向车头的方向与所在道路的方向不同,不管该车在行驶,停泊或是倒车)的车头与正向车辆的车尾使用相同的时域资源发送;d.每条车道上的逆向车辆的车尾与正向车辆的车头使用相同的时域资源发送。
因此,基于上述车道标识与时域资源的分配方式,可知对于图9至11所示的步骤,其中,所述车载通信设备所属车辆与所述至少一个其他车辆应属于同一个车道。即存在两种可能:一、所述车载通信设备所属车辆与所述同向移动的至少一个其他车辆属于同一车道;二、所述车载通信设备所属车辆与所述逆向移动的至少一个其他车辆属于同一车道。
进一步的,为了识别所述车载通信设备所属车辆与所述至少一个其他车辆是否属于同一个车道。一种可行的是方式为:
首先,所述预警资源块与所述车载通信设备所属车辆行驶的车道具有一一对应的关系。
在公路沿线设置路边单元,路边单元用于向途经车辆发送广播消息,所述广播消息包含所述车载通信设备所属车辆行驶的车道的编号;
所述车载通信设备根据所述编号选择与所述车载通信设备所属车辆行驶的车道对应的所述预警资源块。
显然,路边单元除了广播所属车辆行驶的车道的编号以外,还可以广播其他的道路信息,例如,在事故高发地段,将相关的提示信息加在广播消息中;将每个车道对应的时频资源信息加在广播消息中,以便所述车载通信设备接收到后,根据时频资源信息在对应的时频资源上进行预警信号的收发。
本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存储介质中,该程序在执行时,执行包括上述方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (36)

  1. 一种车载通信设备,其特征在于,所述车载通信设备所属车辆与至少一个其他车辆共用一个预警资源块,所述至少一个其他车辆分别在所述预警资源块上发送第一预警信号;所述车载通信设备将第二预警信号承载在所述预警资源块上进行发射;其中,所述车载通信设备,包括:
    接收模块,用于接收承载在所述预警资源块上的所述第一预警信号;
    所述第一预警信号在传输过程中产生的多普勒频移值,用于表示所述至少一个其他车辆中的任意一辆与所述车载通信设备所属车辆的相对速度;所述多普勒频移值表示所述第一预警信号被发送时的频率与所述第一预警信号被接收时的频率的差值;
    发送模块,用于将第二预警信号承载在所述预警资源块上进行发射;
    所述第二预警信号用于通知所述至少一个其他车辆中的任意一辆,所述车载通信设备所属车辆与所述至少一个其他车辆中的任意一辆的相对速度;
    检测模块,用于检测所述第一预警信号的多普勒频移值,根据所述第一预警信号的多普勒频移值获得所述至少一个其他车辆中的任意一辆与所述车载通信设备所属车辆的相对速度;
    处理模块,用于当所述相对速度达到预警阈值时,获知存在与所述至少一个其他车辆中的任意一辆发生碰撞的风险。
  2. 根据权利要求1所述的设备,其特征在于,所述处理模块,具体用于判断所述相对速度是否达到所述预警阈值,若达到,则获知存在与所述至少一个其他车辆中的任意一辆发生碰撞的风险。
  3. 根据权利要求2所述的设备,其特征在于,所述处理模块,还具体用于若所述相对速度未达到所述预警阈值,则获知所述车载通信设备所属车辆处于安全行驶状态。
  4. 根据权利要求1-3任意一项所述的设备,其特征在于,所述接收模块,具体用于接收承载在所述预警资源块的所有时域资源上的所述第一预警信号;
    所述发送模块,具体用于将所述第二预警信号承载在所述预警资源块中所述车载通信设备对应的时域资源上进行发射。
  5. 根据权利要求1-4任意一项所述的设备,其特征在于,所述预警资源 块与所述车载通信设备所属车辆行驶的车道具有一一对应的关系。
  6. 根据权利要求5所述的设备,其特征在于,所述接收模块,还用于接收路边单元的广播消息,所述广播消息包含所述车载通信设备所属车辆行驶的车道的编号;
    所述处理模块,还用于根据所述编号选择与所述车载通信设备所属车辆行驶的车道对应的所述预警资源块。
  7. 一种车载通信设备,其特征在于,所述车载通信设备所属车辆与至少一个其他车辆共用一个预警资源块;其中,所述车载通信设备,包括:
    收发模块,用于:
    将第一前方预警信号承载在所述预警资源块的第一时域资源上向所述车载通信设备所属车辆的前方发射;
    所述第一前方预警信号在传输过程中产生的第一多普勒频移值,用于表示第一车辆与所述车载通信设备所属车辆的相对速度;所述第一车辆为所述至少一个其他车辆中位于所述车载通信设备所属车辆前方的任意一辆;所述第一多普勒频移值表示所述第一前方预警信号被发送时的频率与所述第一前方预警信号被接收时的频率的差值;
    将第一后方预警信号承载在所述预警资源块的第二时域资源上向所述车载通信设备所属车辆的后方发射;
    所述第一后方预警信号在传输过程中产生的第二多普勒频移值,用于表示第二车辆与所述车载通信设备所属车辆的相对速度;所述第二车辆为所述至少一个其他车辆中位于所述车载通信设备所属车辆后方的任意一辆;所述第二多普勒频移值表示所述第一后方预警信号被发送时的频率与所述第一后方预警信号被接收时的频率的差值;
    在所述预警资源块的除第一时域资源之外的其他时域资源上接收第二前方预警信号;
    所述第二前方预警信号为所述第一车辆发送的;所述第二前方预警信号在传输过程中产生的第三多普勒频移值,用于表示所述第一车辆与所述车载通信设备所属车辆的相对速度;所述第三多普勒频移值表示所述第二前方预警信号被发送时的频率与所述第二前方预警信号被接收时的频率的差值;
    在所述预警资源块的除第二时域资源之外的其他时域资源上接收第二后 方预警信号;
    所述第二后方预警信号为所述第二车辆发送的;所述第二后方预警信号在传输过程中产生的第四多普勒频移值,用于表示所述第二车辆与所述车载通信设备所属车辆的相对速度;所述第四多普勒频移值表示所述第二后方预警信号被发送时的频率与所述第二后方预警信号被接收时的频率的差值;
    检测模块,用于检测所述第三多普勒频移值,根据所述第三多普勒频移值获得所述第一车辆与所述车载通信设备所属车辆的相对速度;和/或,检测所述第四多普勒频移值,根据所述第四多普勒频移值获得所述第二车辆与所述车载通信设备所属车辆的相对速度;
    处理模块,用于当所述第一车辆与所述车载通信设备所属车辆的相对速度达到预警阈值时,获知存在与所述第一车辆发生碰撞的风险;和/或,当所述第二车辆与所述车载通信设备所属车辆的相对速度达到所述预警阈值时,获知存在与所述第二车辆发生碰撞的风险。
  8. 根据权利要求7所述的设备,其特征在于,若所述第一车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述第二前方预警信号为所述第一车辆的车尾天线发送的;若所述第一车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述第二前方预警信号为所述第一车辆的车头天线发送的;
    若所述第二车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述第二后方预警信号为所述第二车辆的车头天线发送的;若所述第二车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述第二后方预警信号为所述第二车辆的车尾天线发送的。
  9. 根据权利要求7或8所述的设备,其特征在于,所述处理模块,具体用于判断所述第一车辆与所述车载通信设备所属车辆的相对速度是否达到所述预警阈值,若达到,获知存在与所述第一车辆发生碰撞的风险;和/或,判断所述第二车辆与所述车载通信设备所属车辆的相对速度是否达到所述预警阈值,若达到,获知存在与所述第一车辆发生碰撞的风险。
  10. 根据权利要求9所述的设备,其特征在于,所述收发模块包含车头天线和车尾天线;
    其中,所述车头天线,用于将所述第一前方预警信号承载在所述预警资源块的第一时域资源上向所述车载通信设备所属车辆的前方发射;或者,在所述预警资源块的除第一时域资源之外的其他时域资源上接收第二前方预警信号;
    所述车尾天线,用于将所述第一后方预警信号承载在所述预警资源块的第二时域资源上向所述车载通信设备所属车辆的后方发射;或者,在所述预警资源块的除第二时域资源之外的其他时域资源上接收第二后方预警信号;
    若所述第一车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第一车辆的车头天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第一车辆的车尾天线共用所述预警资源块的第二时域资源进行发射;
    若所述第二车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第二车辆的车头天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第二车辆的车尾天线共用所述预警资源块的第二时域资源进行发射;
    若所述第一车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第一车辆的车尾天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第一车辆的车头天线共用所述预警资源块的第二时域资源进行发射;
    若所述第二车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第二车辆的车尾天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第一车辆的车头天线共用所述预警资源块的第二时域资源进行发射。
  11. 根据权利要求7-10任意一项所述的设备,其特征在于,所述预警资源块与所述车载通信设备所属车辆行驶的车道具有一一对应的关系。
  12. 根据权利要求11所述的设备,其特征在于,还包括:
    所述收发模块,还用于接收路边单元的广播消息,所述广播消息包含所述车载通信设备所属车辆行驶的车道的编号;
    所述处理模块,还用于根据所述编号选择与所述车载通信设备所属车辆行驶的车道对应的所述预警资源块。
  13. 一种车载通信设备,其特征在于,所述车载通信设备所属车辆与至少一个其他车辆共用一个预警资源块,所述至少一个其他车辆分别在所述预警资源块上发送第一预警信号;所述车载通信设备将第二预警信号承载在所述预警资源块上进行发射;其中,所述车载通信设备,包括:
    接收器,用于接收承载在所述预警资源块上的所述第一预警信号;
    所述第一预警信号在传输过程中产生的多普勒频移值,用于表示所述至少一个其他车辆中的任意一辆与所述车载通信设备所属车辆的相对速度;所述多普勒频移值表示所述第一预警信号被发送时的频率与所述第一预警信号被接收时的频率的差值;
    发射器,用于将第二预警信号承载在所述预警资源块上进行发射;
    所述第二预警信号用于通知所述至少一个其他车辆中的任意一辆,所述车载通信设备所属车辆与所述至少一个其他车辆中的任意一辆的相对速度;
    处理器,用于检测所述第一预警信号的多普勒频移值,根据所述第一预警信号的多普勒频移值获得所述至少一个其他车辆中的任意一辆与所述车载通信设备所属车辆的相对速度;当所述相对速度达到预警阈值时,获知存在与所述至少一个其他车辆中的任意一辆发生碰撞的风险。
  14. 根据权利要求13所述的设备,其特征在于,所述处理器,具体用于判断所述相对速度是否达到所述预警阈值,若达到,则获知存在与所述至少一个其他车辆中的任意一辆发生碰撞的风险。
  15. 根据权利要求13所述的设备,其特征在于,所述处理器,还具体用于若所述相对速度未达到所述预警阈值,则获知所述车载通信设备所属车辆处于安全行驶状态。
  16. 根据权利要求13-15任意一项所述的设备,其特征在于,所述接收器,具体用于接收承载在所述预警资源块的所有时域资源上的第一预警信号;
    所述发射器,具体用于将所述第二预警信号承载在所述预警资源块中所述车载通信设备对应的时域资源上进行发射。
  17. 根据权利要求13-16任意一项所述的设备,其特征在于,所述预警资源块与所述车载通信设备所属车辆行驶的车道具有一一对应的关系。
  18. 根据权利要求17所述的设备,其特征在于,所述接收器,还用于接收路边单元的广播消息,所述广播消息包含所述车载通信设备所属车辆行驶 的车道的编号;
    所述处理器,还用于根据所述编号选择与所述车载通信设备所属车辆行驶的车道对应的所述预警资源块。
  19. 一种车载通信设备,其特征在于,所述车载通信设备所属车辆与至少一个其他车辆共用一个预警资源块;其中,所述车载通信设备,包括:
    收发器,用于:
    将第一前方预警信号承载在所述预警资源块的第一时域资源上向所述车载通信设备所属车辆的前方发射;
    所述第一前方预警信号在传输过程中产生的第一多普勒频移值,用于表示第一车辆与所述车载通信设备所属车辆的相对速度;所述第一车辆为所述至少一个其他车辆中位于所述车载通信设备所属车辆前方的任意一辆;所述第一多普勒频移值表示所述第一前方预警信号被发送时的频率与所述第一前方预警信号被接收时的频率的差值;
    将第一后方预警信号承载在所述预警资源块的第二时域资源上向所述车载通信设备所属车辆的后方发射;
    所述第一后方预警信号在传输过程中产生的第二多普勒频移值,用于表示第二车辆与所述车载通信设备所属车辆的相对速度;所述第二车辆为所述至少一个其他车辆中位于所述车载通信设备所属车辆后方的任意一辆;所述第二多普勒频移值表示所述第一后方预警信号被发送时的频率与所述第一后方预警信号被接收时的频率的差值;
    在所述预警资源块的除第一时域资源之外的其他时域资源上接收第二前方预警信号;
    所述第二前方预警信号为所述第一车辆发送的;所述第二前方预警信号在传输过程中产生的第三多普勒频移值,用于表示所述第一车辆与所述车载通信设备所属车辆的相对速度;所述第三多普勒频移值表示所述第二前方预警信号被发送时的频率与所述第二前方预警信号被接收时的频率的差值;
    在所述预警资源块的除第二时域资源之外的其他时域资源上接收第二后方预警信号;
    所述第二后方预警信号为所述第二车辆发送的;所述第二后方预警信号在传输过程中产生的第四多普勒频移值,用于表示所述第二车辆与所述车载 通信设备所属车辆的相对速度;所述第四多普勒频移值表示所述第二后方预警信号被发送时的频率与所述第二后方预警信号被接收时的频率的差值;
    处理器,用于:
    检测所述第三多普勒频移值,根据所述第三多普勒频移值获得所述第一车辆与所述车载通信设备所属车辆的相对速度;和/或,检测所述第四多普勒频移值,根据所述第四多普勒频移值获得所述第二车辆与所述车载通信设备所属车辆的相对速度;
    当所述第一车辆与所述车载通信设备所属车辆的相对速度达到预警阈值时,获知存在与所述第一车辆发生碰撞的风险;和/或,当所述第二车辆与所述车载通信设备所属车辆的相对速度达到所述预警阈值时,获知存在与所述第二车辆发生碰撞的风险。
  20. 根据权利要求19所述的设备,其特征在于,若所述第一车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述第二前方预警信号为所述第一车辆的车尾天线发送的;若所述第一车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述第二前方预警信号为所述第一车辆的车头天线发送的;
    若所述第二车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述第二后方预警信号为所述第二车辆的车头天线发送的;若所述第二车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述第二后方预警信号为所述第二车辆的车尾天线发送的。
  21. 根据权利要求19或20所述的设备,其特征在于,所述处理器,具体用于判断所述第一车辆与所述车载通信设备所属车辆的相对速度是否达到所述预警阈值,若达到,获知存在与所述第一车辆发生碰撞的风险;和/或,判断所述第二车辆与所述车载通信设备所属车辆的相对速度是否达到所述预警阈值,若达到,获知存在与所述第一车辆发生碰撞的风险。
  22. 根据权利要求21所述的设备,其特征在于,所述收发器包含车头天线和车尾天线;
    其中,所述车头天线,用于将所述第一前方预警信号承载在所述预警资源块的第一时域资源上向所述车载通信设备所属车辆的前方发射;或者,在 所述预警资源块的除第一时域资源之外的其他时域资源上接收第二前方预警信号;
    所述车尾天线,用于将所述第一后方预警信号承载在所述预警资源块的第二时域资源上向所述车载通信设备所属车辆的后方发射;或者,在所述预警资源块的除第二时域资源之外的其他时域资源上接收第二后方预警信号;
    若所述第一车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第一车辆的车头天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第一车辆的车尾天线共用所述预警资源块的第二时域资源进行发射;
    若所述第二车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第二车辆的车头天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第二车辆的车尾天线共用所述预警资源块的第二时域资源进行发射;
    若所述第一车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第一车辆的车尾天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第一车辆的车头天线共用所述预警资源块的第二时域资源进行发射;
    若所述第二车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第二车辆的车尾天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第一车辆的车头天线共用所述预警资源块的第二时域资源进行发射。
  23. 根据权利要求19-22任意一项所述的设备,其特征在于,所述预警资源块与所述车载通信设备所属车辆行驶的车道具有一一对应的关系。
  24. 根据权利要求23所述的设备,其特征在于,还包括:
    所述收发器,还用于接收路边单元的广播消息,所述广播消息包含所述车载通信设备所属车辆行驶的车道的编号;
    所述处理器,还用于根据所述编号选择与所述车载通信设备所属车辆行驶的车道对应的所述预警资源块。
  25. 一种预警信息的传输方法,其特征在于,车载通信设备所属车辆与至少一个其他车辆共用一个预警资源块,所述至少一个其他车辆分别在所述 预警资源块上发送第一预警信号;所述车载通信设备将第二预警信号承载在所述预警资源块上进行发射;所述预警信息的传输方法由所述车载通信设备执行,包括:
    车载通信设备接收承载在所述预警资源块上的所述第一预警信号;
    所述第一预警信号在传输过程中产生的多普勒频移值,用于表示所述至少一个其他车辆中的任意一辆与所述车载通信设备所属车辆的相对速度;所述多普勒频移值表示所述第一预警信号被发送时的频率与所述第一预警信号被接收时的频率的差值;
    所述车载通信设备将第二预警信号承载在所述预警资源块上进行发射;
    所述第二预警信号用于通知所述至少一个其他车辆中的任意一辆,所述车载通信设备所属车辆与所述至少一个其他车辆中的任意一辆的相对速度;
    所述车载通信设备检测所述第一预警信号的多普勒频移值,根据所述第一预警信号的多普勒频移值获得所述至少一个其他车辆中的任意一辆与所述车载通信设备所属车辆的相对速度;
    当所述相对速度达到预警阈值时,则所述车载通信设备获知存在与所述至少一个其他车辆中的任意一辆发生碰撞的风险。
  26. 根据权利要求25所述的方法,其特征在于,当所述相对速度达到预警阈值时,则所述车载通信设备获知存在与所述至少一个其他车辆中的任意一辆发生碰撞的风险,包括:
    所述车载通信设备判断所述相对速度是否达到所述预警阈值,若达到,则获知存在与所述至少一个其他车辆中的任意一辆发生碰撞的风险。
  27. 根据权利要求26所述的方法,其特征在于,若所述相对速度未达到所述预警阈值,则所述车载通信设备获知所述车载通信设备所属车辆处于安全行驶状态。
  28. 根据权利要求25-27任意一项所述的方法,其特征在于,所述车载通信设备接收承载在所述预警资源块上的所述第一预警信号,包括:
    所述车载通信设备接收承载在所述预警资源块的所有时域资源上的所述第一预警信号;
    所述车载通信设备将第二预警信号承载在所述预警资源块上进行发射,包括:
    所述车载通信设备将所述第二预警信号承载在所述预警资源块中所述车载通信设备对应的时域资源上进行发射。
  29. 根据权利要求25-28任意一项所述的方法,其特征在于,所述预警资源块与所述车载通信设备所属车辆行驶的车道具有一一对应的关系。
  30. 根据权利要求29所述的方法,其特征在于,还包括:
    所述车载通信设备接收路边单元的广播消息,所述广播消息包含所述车载通信设备所属车辆行驶的车道的编号;
    所述车载通信设备根据所述编号选择与所述车载通信设备所属车辆行驶的车道对应的所述预警资源块。
  31. 一种预警信息的传输方法,其特征在于,车载通信设备所属车辆与至少一个其他车辆共用一个预警资源块,所述预警信息的传输方法由所述车载通信设备执行,包括:
    车载通信设备将第一前方预警信号承载在预警资源块的第一时域资源上向所述车载通信设备所属车辆的前方发射;
    所述第一前方预警信号在传输过程中产生的第一多普勒频移值,用于表示第一车辆与所述车载通信设备所属车辆的相对速度;所述第一车辆为所述至少一个其他车辆中位于所述车载通信设备所属车辆前方的任意一辆;所述第一多普勒频移值表示所述第一前方预警信号被发送时的频率与所述第一前方预警信号被接收时的频率的差值;
    所述车载通信设备将第一后方预警信号承载在所述预警资源块的第二时域资源上向所述车载通信设备所属车辆的后方发射;
    所述第一后方预警信号在传输过程中产生的第二多普勒频移值,用于表示第二车辆与所述车载通信设备所属车辆的相对速度;所述第二车辆为所述至少一个其他车辆中位于所述车载通信设备所属车辆后方的任意一辆;所述第二多普勒频移值表示所述第一后方预警信号被发送时的频率与所述第一后方预警信号被接收时的频率的差值;
    所述车载通信设备在所述预警资源块的除第一时域资源之外的其他时域资源上接收第二前方预警信号;
    所述第二前方预警信号为所述第一车辆发送的;所述第二前方预警信号在传输过程中产生的第三多普勒频移值,用于表示所述第一车辆与所述车载 通信设备所属车辆的相对速度;所述第三多普勒频移值表示所述第二前方预警信号被发送时的频率与所述第二前方预警信号被接收时的频率的差值;
    所述车载通信设备在所述预警资源块的除第二时域资源之外的其他时域资源上接收第二后方预警信号;
    所述第二后方预警信号为所述第二车辆发送的;所述第二后方预警信号在传输过程中产生的第四多普勒频移值,用于表示所述第二车辆与所述车载通信设备所属车辆的相对速度;所述第四多普勒频移值表示所述第二后方预警信号被发送时的频率与所述第二后方预警信号被接收时的频率的差值;
    所述车载通信设备检测所述第三多普勒频移值,根据所述第三多普勒频移值获得所述第一车辆与所述车载通信设备所属车辆的相对速度;和/或,检测所述第四多普勒频移值,根据所述第四多普勒频移值获得所述第二车辆与所述车载通信设备所属车辆的相对速度;
    当所述第一车辆与所述车载通信设备所属车辆的相对速度达到预警阈值时,获知存在与所述第一车辆发生碰撞的风险;和/或,
    当所述第二车辆与所述车载通信设备所属车辆的相对速度达到所述预警阈值时,获知存在与所述第二车辆发生碰撞的风险。
  32. 根据权利要求31所述的方法,其特征在于,若所述第一车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述第二前方预警信号为所述第一车辆的车尾天线发送的;若所述第一车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述第二前方预警信号为所述第一车辆的车头天线发送的;
    若所述第二车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述第二后方预警信号为所述第二车辆的车头天线发送的;若所述第二车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述第二后方预警信号为所述第二车辆的车尾天线发送的。
  33. 根据权利要求31或32所述的方法,其特征在于,当所述第一车辆与所述车载通信设备所属车辆的相对速度达到预警阈值时,则获知存在与所述第一车辆发生碰撞的风险,包括:
    判断所述第一车辆与所述车载通信设备所属车辆的相对速度是否达到所 述预警阈值,若达到,获知存在与所述第一车辆发生碰撞的风险;
    当所述第二车辆与所述车载通信设备所属车辆的相对速度达到所述预警阈值时,则所述车载通信设备获知存在与所述第二车辆发生碰撞的风险,包括:
    判断所述第一车辆与所述车载通信设备所属车辆的相对速度是否达到所述预警阈值,若达到,获知存在与所述第一车辆发生碰撞的风险;
  34. 根据权利要求33所述的方法,其特征在于,所述车载通信设备包含车头天线和车尾天线;
    其中,所述车头天线,用于将所述第一前方预警信号承载在所述预警资源块的第一时域资源上向所述车载通信设备所属车辆的前方发射;或者,在所述预警资源块的除第一时域资源之外的其他时域资源上接收第二前方预警信号;
    所述车尾天线,用于将所述第一后方预警信号承载在所述预警资源块的第二时域资源上向所述车载通信设备所属车辆的后方发射;或者,在所述预警资源块的除第二时域资源之外的其他时域资源上接收第二后方预警信号;
    若所述第一车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第一车辆的车头天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第一车辆的车尾天线共用所述预警资源块的第二时域资源进行发射;
    若所述第二车辆为与所述车载通信设备所属车辆同向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第二车辆的车头天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第二车辆的车尾天线共用所述预警资源块的第二时域资源进行发射;
    若所述第一车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第一车辆的车尾天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第一车辆的车头天线共用所述预警资源块的第二时域资源进行发射;
    若所述第二车辆为与所述车载通信设备所属车辆逆向移动的至少一个其他车辆中的任意一辆,则所述车头天线与所述第二车辆的车尾天线共用所述预警资源块的第一时域资源进行发射,所述车尾天线与所述第一车辆的车头 天线共用所述预警资源块的第二时域资源进行发射。
  35. 根据权利要求31-34任意一项所述的方法,其特征在于,所述预警资源块与所述车载通信设备所属车辆行驶的车道具有一一对应的关系。
  36. 根据权利要求35所述的方法,其特征在于,还包括:
    所述车载通信设备接收路边单元的广播消息,所述广播消息包含所述车载通信设备所属车辆行驶的车道的编号;
    所述车载通信设备根据所述编号选择与所述车载通信设备所属车辆行驶的车道对应的所述预警资源块。
PCT/CN2015/076033 2015-04-08 2015-04-08 一种预警信息的传输装置及方法 WO2016161569A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2015/076033 WO2016161569A1 (zh) 2015-04-08 2015-04-08 一种预警信息的传输装置及方法
CN201580071569.XA CN107107852B (zh) 2015-04-08 2015-04-08 一种预警信息的传输装置及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/076033 WO2016161569A1 (zh) 2015-04-08 2015-04-08 一种预警信息的传输装置及方法

Publications (1)

Publication Number Publication Date
WO2016161569A1 true WO2016161569A1 (zh) 2016-10-13

Family

ID=57071710

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/076033 WO2016161569A1 (zh) 2015-04-08 2015-04-08 一种预警信息的传输装置及方法

Country Status (2)

Country Link
CN (1) CN107107852B (zh)
WO (1) WO2016161569A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115631586B (zh) * 2022-09-05 2023-07-07 北京顺圆和合科技有限公司 一种基于多普勒雷达技术的智能安全预警仪

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102840862A (zh) * 2012-08-10 2012-12-26 乔东江 车辆位置信息的发射和获取方法、装置及协同导航设备
WO2013013728A1 (en) * 2011-07-26 2013-01-31 Rigas Tehniska Universitate Device for safe passing of motor vehicle over level crossings using satellite navigation systems
CN103810904A (zh) * 2014-03-12 2014-05-21 哈尔滨工业大学 基于vanet的高速公路行车安全预警系统及预警方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4400634B2 (ja) * 2007-02-28 2010-01-20 トヨタ自動車株式会社 衝突予測装置
CN101407199A (zh) * 2008-10-28 2009-04-15 湖北汽车工业学院 一种车辆碰撞预警方法及装置
CN101645204A (zh) * 2009-07-30 2010-02-10 杨迎春 车辆间避险通信装置及其数据处理方法
JP5729416B2 (ja) * 2013-04-26 2015-06-03 株式会社デンソー 衝突判定装置、および衝突緩和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013013728A1 (en) * 2011-07-26 2013-01-31 Rigas Tehniska Universitate Device for safe passing of motor vehicle over level crossings using satellite navigation systems
CN102840862A (zh) * 2012-08-10 2012-12-26 乔东江 车辆位置信息的发射和获取方法、装置及协同导航设备
CN103810904A (zh) * 2014-03-12 2014-05-21 哈尔滨工业大学 基于vanet的高速公路行车安全预警系统及预警方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KHAIRNAR, V.D. ET AL.: "Performance of Vehicle-to-Vehicle Communication Using IEEE 802.11p in Vehicular Ad-hoc Network Environment", INTERNATIONAL JOURNAL OF NETWORK SECURITY & ITS APPLICATIONS (IJNSA, vol. 2, no. 5, 31 March 2013 (2013-03-31), pages 143 - 170, XP055215111 *

Also Published As

Publication number Publication date
CN107107852A (zh) 2017-08-29
CN107107852B (zh) 2019-05-28

Similar Documents

Publication Publication Date Title
JP6642724B2 (ja) ビークルツーエブリシング通信システムにおける送信衝突の検出及び対処のための方法及び装置
Temel et al. Vehicle-to-barrier communication during real-world vehicle crash tests
Zou et al. A near collision free reservation based MAC protocol for VANETs
KR102135259B1 (ko) 자율주행시스템에서 응급차량을 위한 주차차량을 이동시키는 방법 및 이를 위한 장치
JP5542618B2 (ja) 車両環境に関連するメッセージをブロードキャストするための方法
TWI287514B (en) Inter-vehicle communication and warning apparatus
KR20190096864A (ko) 자율주행시스템에서 군집주행의 제어방법
KR101594561B1 (ko) Csma/ca 프로토콜에 기초한 통신 네트워크에서의 혼잡 제어
CN110692276A (zh) 在无线通信系统中通过共享上行链路资源和侧链路资源执行装置到装置通信的方法及装置
KR20190100107A (ko) 자율 주행 시스템에서 차량의 무선 통신을 위한 방법 및 장치
US8731570B2 (en) Method and apparatus for allocating connection identifier in wireless communication system
JP5089506B2 (ja) 無線通信装置
WO2016015287A1 (zh) 一种车辆广播信息的发送装置及方法
KR20210097471A (ko) 차량용 네트워크 보안 방법 및 네트워크 보안을 위한 방화벽을 제공하는 차량
WO2015118406A2 (en) Requesting resources for device-to-device (d2d) communication
KR20230022424A (ko) 지능적인 빔 예측 방법
KR102227287B1 (ko) 자율주행시스템에서 차량의 멀티안테나 제어방법 및 이를 위한 장치
Deng et al. Implementing distributed TDMA using relative distance in vehicular networks
US11039286B2 (en) V2V interaction/V2IOT communication method and device
KR20190106844A (ko) 입력 신호 우선 순위에 따른 자율 주행 제어 방법 및 이를 이용한 자율 주행 시스템
WO2016161569A1 (zh) 一种预警信息的传输装置及方法
Lee et al. Reducing collision probability in sensing-based SPS algorithm for V2X sidelink communications
CN103997786B (zh) 一种基于csma/ca的低时延多跳广播通信方法
WO2017008291A1 (zh) 一种确定传输资源的方法及相关设备
CN113365247B (zh) 一种面向异构网络场景下自动驾驶编队的低延时、高可靠消息广播方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15888126

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15888126

Country of ref document: EP

Kind code of ref document: A1