WO2016161361A1 - Compositions and methods of targeting mutant k-ras - Google Patents

Compositions and methods of targeting mutant k-ras Download PDF

Info

Publication number
WO2016161361A1
WO2016161361A1 PCT/US2016/025697 US2016025697W WO2016161361A1 WO 2016161361 A1 WO2016161361 A1 WO 2016161361A1 US 2016025697 W US2016025697 W US 2016025697W WO 2016161361 A1 WO2016161361 A1 WO 2016161361A1
Authority
WO
WIPO (PCT)
Prior art keywords
mmol
compound
dmso
alkyl
kras
Prior art date
Application number
PCT/US2016/025697
Other languages
French (fr)
Other versions
WO2016161361A4 (en
Inventor
Shahrooz Rabizadeh
Niazi KAYVAN
Sasha BUZKO
Paul WEINGARTEN
Heather MCFARLANE
Anna JUNCKER-JENSEN
Justin Golovato
Patrick Soon-Shiong
Chunlin Tao
David Ho
Original Assignee
Nantbioscience, Inc.
Nantomics, Llc
Nant Holdings Ip, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nantbioscience, Inc., Nantomics, Llc, Nant Holdings Ip, Llc filed Critical Nantbioscience, Inc.
Priority to AU2016244017A priority Critical patent/AU2016244017B2/en
Priority to CN201680032351.8A priority patent/CN107835812A/en
Priority to US15/563,813 priority patent/US10487078B2/en
Priority to CA2981677A priority patent/CA2981677A1/en
Priority to KR1020177031904A priority patent/KR20170132332A/en
Priority to EP16774366.5A priority patent/EP3277678B1/en
Priority to JP2017552081A priority patent/JP2018511614A/en
Publication of WO2016161361A1 publication Critical patent/WO2016161361A1/en
Publication of WO2016161361A4 publication Critical patent/WO2016161361A4/en
Priority to IL254811A priority patent/IL254811A0/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/04Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings directly linked by a ring-member-to-ring-member bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/41Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with two or more ring hetero atoms, at least one of which being nitrogen, e.g. tetrazole
    • A61K31/425Thiazoles
    • A61K31/427Thiazoles not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/472Non-condensed isoquinolines, e.g. papaverine
    • A61K31/4725Non-condensed isoquinolines, e.g. papaverine containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D277/00Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
    • C07D277/02Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings
    • C07D277/20Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D277/32Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D277/38Nitrogen atoms
    • C07D277/44Acylated amino or imino radicals
    • C07D277/46Acylated amino or imino radicals by carboxylic acids, or sulfur or nitrogen analogues thereof
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/02Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
    • C07D417/12Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/06Peri-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6558Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system
    • C07F9/65583Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing at least two different or differently substituted hetero rings neither condensed among themselves nor condensed with a common carbocyclic ring or ring system each of the hetero rings containing nitrogen as ring hetero atom

Definitions

  • the field of the invention is pharmaceutical compounds, compositions, and methods, and uses thereof in treatment of diseases associated with mutant KRAS proteins.
  • K-Ras (or Ki-Ras or Kirsten-Ras) is a 21 kD member of the Ras family of GTPase proteins and a necessary component in cell signaling. Activated K-Ras typically activates downstream kinases necessary for the propagation of growth factor and other receptors signals (e.g., c-Raf and PI3-kinase). Unfortunately, genetic alterations in the gene encoding K-Ras are associated with development of neoplasias, and the mechanism of activation is relatively well understood.
  • Cancer-associated mutant K-Ras is constitutively active, with prolonged stabilization of its GTP-bound (active) state, and is thus able to constitutively activate downstream effectors such as Raf kinase and phosphoinositide-3 kinase (PI3K). Both of these kinases play important roles in proliferation survival/anti-apoptotic signaling pathways.
  • PI3K phosphoinositide-3 kinase
  • Ras GTPase activating protein Interaction with the Ras GTPase activating protein (RasGAP) is vital to the timely inactivation of K-Ras, resulting in more efficient hydrolysis of GTP to GDP.
  • the conformational changes in K-Ras structure due to the GTP hydrolysis result in the elimination of K-Ras' affinity for effector proteins, thereby inactivating downstream proliferation and anti-death pathways.
  • Cancer-associated mutations in K-Ras have been shown to interact poorly with RasGAP, therefore remaining in the "on" or constitutively active position.
  • Glyl2 glycine-12
  • Glyl 3 Glyl 3
  • glutamine-61 Glyl2
  • Glyl2 the predominant site of mutagenesis (88%).
  • Glyl2 the predominant site of mutagenesis (88%).
  • Glyl2 mutations are defects in the same position, different mutations have their own different characteristics.
  • expression of G 12C is often associated with a reduced response to cisplatin and an increased sensitivity to taxol and pemetrexed
  • G12D mutant typically results in resistance to taxol treatment and sensitivity to sorafenib.
  • the G12V mutant shows a strong sensitivity to cisplatin when compared with the wild type variant and is slightly more resistant to pemetrexed.
  • Such diversity in treatment response is compounding difficulties in finding adequate treatment with drugs that are specific to K-Ras, and also highlight that specific mutant forms of K-Ras may require specific drugs for inhibition of the K-Ras activity.
  • WO2013/155223A1 discloses small molecule inhibitors for G12C mutant forms. While promising, issues with restricted use and potential toxicity may limit compounds presented in the '223 reference. To circumvent mutant specific forms, allosteric inhibitors were proposed (PLOS One October 201 1 , Volume 6, Issue 10, e2571 1). However, that report did not distinguish among different mutant forms.
  • mutant K-Ras plays in various neoplastic disease states, it would be advantageous to be able to identify compounds that bind specifically to the mutant K-Ras protein forms associated with cancer diseases states and/or specific mutant forms, and most preferably to a specific mutant type with little or no binding to the wild type.
  • the inventive subject matter is directed to compounds, compositions, and methods for inhibiting mutant K-Ras, and especially inhibiting G12V and/or G12D mutant K-Ras.
  • the compounds presented herein inhibit G12V and/or G12D mutant K-Ras with high selectivity over other mutant forms and high specificity over wild type K-Ras.
  • X is O or S
  • Ri and R2 are independently H, alkyl, cycloalkyl, heterocycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, alkaryl, haloalkyl, alkoxy, alkylthio, halogen, -OH, -NHC(0)alkyl, or -NHC(0)aryl
  • R 3 is H, C C 4 alkyl, -NHR5, or - OR 6
  • R6 is H, alkyl, haloalkyl, alkenyl, aryl, or heteroaryl
  • R4 and R5 together form an optionally substituted heterocyclic 5-, 6-, or 7-membered ring, or R4 is null when R 5 is -NHC(0)alkyl or -NHC(0)aryl.
  • Ri and R2 are independently H, alkyl, heteroaryl, cycloalkyl, or heterocycloalkyl.
  • Ri may be alkyl or cycloalkyl
  • R2 may be alkyl.
  • X is S
  • R 3 is H or Q-C4 alkyl.
  • the optionally substituted heterocyclic 5-, 6-, or 7- membered ring contains a nitrogen atom, and that the ring further contains an oxo substituent. Therefore, the phenyl group carrying R4 and R 5 may form together with the heterocyclic 5-, 6-, or 7-membered ring a two- or three-ringed structure, including
  • contemplated compounds may have a structure according to Formula II
  • X is O or S
  • Ri and R? are independently H, alkyl, cycloalkyl, heterocycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, alkaryl, haloalkyl, alkoxy, alkylthio, halogen, -OH, -NHC(0)alkyl, or -NHC(0)aryl; wherein R3 is H or C1 -C4 alkyl; and wherein R 7 is H, alkyl, cycloalkyl, heterocycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, alkaryl or alkheteroaryl.
  • contemplated compounds include those in which Ri is alkyl or cycloalkyl, and in which R? is alkyl.
  • it is preferred that at least in some compounds X is S, and/or that R 3 is H.
  • especially preferred compounds will have a structure of Formula III or Formula IV where 3 is H, methyl, or halogen.
  • the inventors contemplate a pharmaceutical composition comprising a pharmaceutically acceptable carrier and one or more compounds as presented above.
  • the compound(s) is/are present at a concentration effective to inhibit K-ras in a mammal when administered to the mammal at a dosage effective to inhibit K-ras in the mammal.
  • the K-ras is a mutant K-ras.
  • especially contemplated composition include those in which the compound preferentially inhibits mutant K-ras G12D relative to mutant K-ras G12V and mutant K-ras G12C.
  • K-ras signaling is mediated by a mutant K-ras.
  • the mutant K-ras is K-ras G12D, and the compound preferentially inhibits mutant K-ras G12D relative to mutant K-ras G12V and mutant K-ras G12C.
  • the inventors therefore also contemplate the use of a compound as presented herein in the manufacture of a medicament to treat a neoplastic disease, and especially where the neoplastic disease is associated with a mutant K-ras ⁇ e.g., K-ras G12D).
  • the compounds in such medicament may have a structure according to Formula II, Formula III, or Formula IV.
  • the inventors also contemplate a method of inhibiting mutant K-ras.
  • Such methods will typically include a step of contacting (in vitro or in vivo) the mutant K-ras with contemplated compounds at a concentration effective to inhibit the mutant K-ras (e.g., where the mutant K-ras is K-ras G12D).
  • a concentration effective to inhibit the mutant K-ras e.g., where the mutant K-ras is K-ras G12D.
  • especially preferred compounds preferentially inhibit mutant K-ras G12D relative to mutant K-ras G12V and mutant K-ras G12C.
  • Suitable concentrations will be effective to reduce downstream signaling with respect to at least one of MEK signaling and ERK signaling.
  • the inventors also contemplate a method of treating a neoplastic disease (e.g., colon cancer, pancreatic cancer, and non-small cell lung cancer) in a mammal in need thereof, wherein such methods comprise a step of administering to the mammal contemplated compounds under a protocol effective to inhibit K-ras in the mammal.
  • a neoplastic disease e.g., colon cancer, pancreatic cancer, and non-small cell lung cancer
  • suitable compound will have a structure according to Formula II, Formula III, or Formula IV, and /or it is contemplated that the step of administering will comprise oral administration or injection.
  • Figure 1 depicts graphs illustrating Ras inhibition of various mutant forms in recombinant cells using G-LISA assay.
  • Figure 2 depicts graphs illustrating Ras inhibition in various cancer cells using G- LISA assay.
  • Figure 3 shows autoradiographs for inhibition of downstream signaling as evidenced by phospohorylation of MEK and Erk in wild type and K-ras mutant (G12D) cells.
  • Figures 4A-4D show selected compounds used in testing for K-Ras inhibition.
  • Figures 5-73 depict additional exemplary compounds according to the inventive subject matter.
  • A comprises an aryl, heteroaryl, or heterocyclic moiety (most typically a substituted phenyl or tetrahydroquinoline), and M is one or more substituents such as an alkyl, a cyclocalkyl, an alkenyl, or halogen.
  • substituted refers to a replacement of an atom or chemical group (e.g., H, NH 2 , or OH) with a functional group
  • functional groups include nucleophilic groups (e.g., -NH 2 , -OH, SH, -NC, etc.), electrophilic groups (e.g., C(0)OR, C(X)OH, etc.), polar groups (e.g., -OH), non-polar groups (e.g., aryl, alkyl, alkenyl, alkynyl, etc.), ionic groups (e.g., ⁇ 3 ⁇ 4 + ), and halogens (e.g., -F, -CI), and all chemically reasonable combinations thereof.
  • nucleophilic groups e.g., -NH 2 , -OH, SH, -NC, etc.
  • electrophilic groups e.g., C(0)OR, C(X)OH, etc.
  • polar groups e.g., -OH
  • the term "functional group” as used herein may refer to a nucleophilic group (e.g., -NH2, -OH, SH, -NC, -CN etc.), an electrophilic group (e.g., C(0)OR, C(X)OH, C(Halogen)OR, etc.), a polar group (e.g., -OH), a non-polar group (e.g., aryl, alkyl, alkenyl, alkynyl, etc.), an ionic group (e.g., NH3+), and a halogen.
  • a nucleophilic group e.g., -NH2, -OH, SH, -NC, -CN etc.
  • an electrophilic group e.g., C(0)OR, C(X)OH, C(Halogen)OR, etc.
  • a polar group e.g., -OH
  • a non-polar group e.g., aryl, alkyl
  • the heterocyclic ring system for Q and X are preferably five-membered heteroaryl systems that may or may not be substituted with one or more substituents. Therefore, and among other suitable heteroaryl systems, especially preferred X and Q group include a thiazole ring, an oxazole ring, am imidazole ring, a trizole ring, a furan ring, and a thophene ring.
  • Q is an oxazole or thiazole
  • Q one or two hydrogen atoms in Q in the oxazole or thiazole are substituted by a Ci-C 4 alkyl moiety, which may be cyclic.
  • especially preferred substituents include methyl, ethyl, trifluoromethyl, propyl, and cyclopropyl for each of the substituents as depicted in the exemplary list of Q moieties having one or two M substituents (here identified as R4 and R5, which may preferably be an alkyl, a cyclocalkyl, an alkenyl, a hydroxy, a trifluoromethyl, or a halogen).
  • X group may vary considerably. However, especially preferred X groups are optionally substituted thiazoles, particularly where the thiazole is substituted with a relatively small substituent ⁇ e.g., methyl, hydroxyl, halogen, etc.)
  • the A group will preferably include an aryl, heteroaryl, or heterocyclic moiety that includes an aromatic portion. Most typically, the A group will therefore comprise a phenyl ring that may be fused with one or more other aromatic, saturated, or unsaturated ring systems, which may or may not include a heteroatom.
  • the substituent is preferably an amine group that may be coupled to an acyl moiety.
  • the A group is a fused ring system
  • at least one of the rings will preferably comprise a phenyl group while the other ring is preferably heterocyclic ring.
  • suitable A groups include those listed below.
  • Coupled to is intended to include both direct coupling (in which two elements that are coupled to each other contact each other) and indirect coupling (in which at least one additional element is located between the two elements). Therefore, the terms “coupled to” and “coupled with” are used synonymously.
  • contemplated compounds may have a structure according to Formula II
  • R3 in such compounds is H or C -C4 alkyl (which may be cyclic), and/or that R 7 is H, alkyl, cycloalkyl, heterocycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, alkaryl or alkheteroaryl.
  • contemplated compounds include those in which Ri is alkyl or cycloalkyl (and especially cyclopropyl), and in which R2 is alkyl (and especially methyl), particularly where X is S, and where R 3 is H.
  • especially preferred compounds will have a structure of Formula III or Formula IV where R3 is H, methyl, or halogen.
  • Certain compounds contemplated herein may comprise one or more asymmetric centers, and therefore exist in different enantiomeric forms. It should be recognized that all enantiomeric forms of contemplated compounds are specifically contemplated herein.
  • the compounds according to the inventive subject matter may also be isotopically-labeled.
  • Certain isotopically-labeled compounds of the inventive subject matter for example those into which 14 C or 3 H is incorporated, may be useful in drug and/or substrate tissue distribution assays.
  • substitution with nonradioactive isotopes ⁇ e.g., 2 H or 13 C) can afford certain therapeutic advantages resulting from greater metabolic stability, for example increased in vivo half-life or reduced dosage requirements and, hence, may be preferred in some circumstances.
  • Contemplated compounds may be prepared as pharmaceutically acceptable salt(s), which especially include salts of acidic or basic groups which may be present in the contemplated compounds.
  • contemplated compounds that are basic in nature may form a wide variety of salts with various inorganic and organic acids.
  • Suitable acids will provide pharmacologically acceptable anions, including chloride, bromide, iodide, nitrate, sulfate, bisulfate, phosphate, acid phosphate, isonicotinate, acetate, lactate, salicylate, citrate, acid citrate, tartrate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucaronate, saccharate, formate, benzoate, glutamate,
  • compounds that are acidic in nature may form base salts with various pharmacologically acceptable cations, and especially suitable cations include alkali metal or alkaline earth metal ions (e.g., sodium and potassium cations).
  • prodrugs may also be prepared as prodrugs, and all known manners and types of prodrugs are considered suitable for use herein, so long as such prodrug will increase the concentration of the drug (or metabolite of the prodrug) at a target organ or target cell.
  • prodrugs particularly include those in which contemplated compounds forms an ester, amide, or disulfide bond with another cleavable moiety.
  • Such moieties may assist in organ or cell-specific delivery of the drug.
  • a carboxyl group can be derivatized to form an amide or alkyl ester, which may include an ether, amine-, and/or carboxylic acid group.
  • Free hydroxy groups may be derivatized using hemisuccinates, phosphate esters, dimethylaminoacetates, and
  • phosphoryloxymethyloxycarbonyls as outlined in D. Fleisher, R. Bong, B. H. Stewart, Advanced Drug Delivery 40 Reviews (1996) 19, 1 15.
  • Carbamate prodrugs of hydroxy and amino groups are also included, as are carbonate prodrugs and sulfate esters of hydroxy groups.
  • Derivatization of hydroxy groups as (acyloxy)methyl and (acyloxy)ethylethers, wherein the acyl group may be an alkyl ester (optionally substituted), or where the acyl group is an amino acid ester are also contemplated (Prodrugs of this type are described in R. P. Robinson et al., J. Medicinal Chemistry (1996) 39:p. l 0).
  • contemplated compounds may be metabolized in a cell or extracellular compartment, and that such metabolites may exhibit the same or different pharmacological effect.
  • contemplated compounds may be phosphorylated and thus be more active than the parent compound.
  • reduction or glycosylation may affect bioavailability of contemplated compounds.
  • contemplated compounds will not only include those as described above, but also include metabolites thereof.
  • contemplated compounds and compositions may be used for all conditions and/or disorders that are associated with a dysregulation and/or dysfunction of K-ras, and especially with a mutant form of K-ras (particularly G12D and/or G12V).
  • contemplated conditions and disorders include various cancers, and especially pancreatic cancer, colon cancer, and non- small cell lung cancer.
  • the present inventive subject matter is directed to various compounds that modulate (e.g., inhibit or reduce) K-ras dependent signaling in a cell, and/or that directly or indirectly affect (mutant) K-ras, GTP binding, and effector protein interaction to so interfere with signal transduction.
  • exemplary compounds will therefore not only include the compounds as discussed above, but also various derivatives that impart one or another advantageous property.
  • contemplated compounds may be formulated for treatment of various diseases associated with dysregulation and/or dysfunction of K-ras or mutant K-ras. Therefore, and among other contemplated uses, the inventors especially contemplate that pharmaceutical compositions comprising contemplated compounds may be effective for the treatment or prevention of K-ras signaling dependent cancers, and especially colon cancer, pancreactic cancer, and non-small cell lung cancer, wherein contemplated pharmaceutical compositions comprise a therapeutically effective amount of contemplated compounds (or pharmaceutically acceptable salt, hydrate, or prodrug thereof), and a pharmaceutically acceptable carrier.
  • contemplated compounds are suitable for use to inhibit K-ras signaling, and/or for the manufacture of a medicament to treat a neoplastic disease that is associated with a mutation in K-ras, especially where the K-ras has a G12D or G12V mutation. Therefore, the inventors also contemplate a method of inhibiting mutant KRAS, comprising a step of contacting the mutant KRAS with a method of inhibiting K-ras or mutant K-ras using contemplated compounds at a concentration effective to inhibit the (mutant) K-ras.
  • the term “inhibit” or “inhibition” in conjunction with K-ras activity means a reduction in activation of downstream signaling components ⁇ e.g., MEK, Erk, etc.) as compared to activity of the same (mutant) K-ras without exposure to the inhibitory compound under otherwise identical conditions.
  • contemplated compounds are included in a composition that is formulated with one or more non-toxic and pharmaceutically acceptable carriers.
  • Preferred pharmaceutical compositions are formulated for oral administration in solid or liquid form, or for parenteral injection.
  • the pharmaceutical compositions according to the inventive subject matter may be administered to humans and other animals using various routes, including oral, rectal, parenteral, intraperitoneal, vaginal, or topical administration.
  • suitable pharmaceutical compositions for injection preferably comprise pharmaceutically acceptable sterile aqueous or nonaqueous solutions, dispersions, emulsions, or suspensions, as well as sterile powders for reconstitution into sterile injectable solutions or dispersions prior to use.
  • suitable aqueous and nonaqueous carriers, diluents, solvents, or vehicles include water, ethanol, polyols ⁇ e.g., glycerol, propylene glycol, polyethylene glycol, etc.), and suitable mixtures thereof, oils, and injectable organic esters ⁇ e.g., ethyl oleate).
  • Contemplated compositions may also contain various inactive ingredients, including preservatives, wetting agents, emulsifying agents, and/or dispersing agents.
  • Sterility may be ensured by inclusion of antibacterial and/or antifungal agents ⁇ e.g., paraben, phenol sorbic acid, chlorobutanol, etc.). Where appropriate, osmotically active agents may be included ⁇ e.g., sugars, sodium chloride, etc.).
  • antibacterial and/or antifungal agents e.g., paraben, phenol sorbic acid, chlorobutanol, etc.
  • osmotically active agents may be included ⁇ e.g., sugars, sodium chloride, etc.).
  • contemplated compositions may be formulated into solid dosage forms for oral administration, and may therefore be capsules, tablets, pills, powders, and granules.
  • contemplated compound are mixed with at least one of a pharmaceutically acceptable excipient or carrier ⁇ e.g., sodium citrate or dicalcium phosphate), a filler or extender ⁇ e.g., starch, lactose, sucrose, glucose, mannitol, or silicic acid), a binder ⁇ e.g., carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidone, sucrose, etc.), a humectant ⁇ e.g., glycerol), a disintegrating agent ⁇ e.g., agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, or sodium carbonate), a solution retarding agent ⁇ e.g., paraffin), an absorption
  • Solid compositions of a similar type may also be employed as fillers in soft and hard- filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like.
  • the solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art.
  • Contemplated compositions may further be formulated to release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner.
  • embedding compositions which can be used include polymeric substances and waxes.
  • Contemplated compounds may also be in micro-encapsulated form, if appropriate, with one or more of the above-mentioned excipients.
  • Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups and elixirs.
  • liquid dosage forms may contain inert diluents commonly used in the art (e.g., water, or other solvent, solubilizing agents), emulsifiers (e.g., ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethyl formamide), oils (and in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.
  • the oral compositions may also include adjuvants such as wetting agents,
  • compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compounds of this invention with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at room temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.
  • suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at room temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound.
  • Compounds according to the inventive subject matter can also be administered in form of liposomes, which may be unilamellar, oligolamellar, or polylamellar. Contemplated compositions in liposome form may further contain stabilizers, preservatives, excipients, etc.
  • Preferred lipids for liposome formation include phospholipids and the phosphatidyl cholines (lecithins), both natural and synthetic. Methods to form liposomes are known in the art. See, for example, Prescott, Ed., Methods in Cell Biology, Volume XIV, Academic Press, New York, N.Y. (1976), p. 33 et seq.
  • contemplated compounds in pharmaceutical compositions may be varied so as to obtain an amount of contemplated compound(s) that is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration.
  • the selected dosage level will depend upon various factors, including the activity of the particular compound, the route of administration, the severity of the condition being treated, and the condition and prior medical history of the patient being treated.
  • single dosage units for administration will typically be between 0.1 mg and lmg, between 1 mg and 50 mg, between 50 mg and 250 mg, between 250 mg-1,000 mg, between 1,000 mg and 5,000 or even higher when administered orally to a mammalian patient.
  • the effective daily dose may be divided into multiple doses for purposes of administration, e.g., two to four separate doses per day.
  • the numerical parameters should be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of some embodiments of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as practicable. The numerical values presented in some
  • embodiments of the invention may contain certain errors necessarily resulting from the standard deviation found in their respective testing measurements.
  • contemplated pharmaceutical compositions may also include additional pharmaceutically active compounds, and especially contemplated additional pharmaceutically active compounds include anti-metabolic and/or antineoplastic agents and/or immunologically active agents, which may act upon cell division, apoptosis, T- cell recognition, NK-cell activity, memory cell formation, checkpoint inhibition, and/or immune stimulation.
  • additional pharmaceutically active compounds may be included in the same pharmaceutical composition, or may be administered separately, and a person of ordinary skill in the art will readily determine schedule and route of suitable co-administration of the additional pharmaceutically active compounds.
  • the sealed tube was microwaved at 120°C for 30 min.
  • the mixture was diluted with tetrahydrofuran (50 mL) and neutralized with IN aq. NaOH solution and then extracted with ethyl acetate (4 x 50 mL).
  • the combined organic layers were dried over anhydrous Na 2 S0 4 and concentrated in vacuo.
  • Step 1 Preparation of furan-2-yl-acetyl chloride: Oxalyl chloride (10.5 mL, 124.22 mmol), was added dropwise to a solution of furan-2-yl-acetic acid (0.500 g, 1.77 mmol) in dichloromethane (40 mL) at 0°C, followed by the addition of DMF (1 drop) and the mixture was stirred overnight (15 hrs). The reaction mixture was concentrated in vacuo and the residue was used without further purification.
  • Step 2 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one was dissolved in 1 : 1 acetonitrile/pyridine mixture (10 nxL/10 mL) and excess triethylamine (4 mL) was added. The mixture was cool under ice-bath and a solution of furan-2-yl-acetyl chloride in acetonitrile (5 mL) was slowly added. The mixture was then stirred at room temperature overnight (15 hrs). The reaction was quenched with water (20 mL) and concentrated to minimum.
  • Step 1 Preparation of lH-tetrazole acid chloride: Thionyl chloride (0.74 mL,
  • Step 2 A solution 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one in pyridine (2 mL) was quickly added to acid chloride under ice-bath. The mixture was vigorously stirred for 10 min and then stirred at room temperature overnight (15 hrs).
  • reaction mixture was quenced with water and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were washed once with sat. NaHCOs, dried over anhydrous Na 2 S0 4 and concentrated in vacuo. The residue was purified by flash chromatography over silica gel using 95 :5 dichloromethane/methanol to give 4-methyl-N-(4-(2-oxo-l ,2,3,4-tetrahydroquinolin-6- yl)thiazol-2-yl)-2-(pyridin-2-ylmethyl)thiazole-5-carboxamide (0.096 g, 51%) as an orangy- brown solid.
  • reaction mixture was quenced with sat. NaHC0 3 and extracted with 8:2 dichloromethane/isopropanol mixture (3 x 20 mL). The combined organic layers were washed once with sat. NaHC0 3 , dried over anhydrous Na 2 S0 4 and concentrated in vacuo.
  • the sealed tube was heated to 50°C for 5 days and the precipitation formed. After cooling, the precipitate was collected by filtration and washed with cold 1 :1 acetonitrile/water to give 2-cyclopropyl-4-methyl-N-(4-(2-oxo-l,2,3,4-tetrahydroquinolin-6- yl)thiazol-2-yl)oxazole-5-carboxamide (0.143 g, 89%) as a beige solid.
  • Viability assays were performed on exemplary compounds and Table 2 below lists exemplary results for selected compounds tested on wild type (Ishikawa) and various K- ras mutants (Pancl-G12D; Pancl0.05-G12D; HCT1 16-G13D). Results are expressed in ⁇ and corresponding structures are shown in Figures4A-4D.
  • Cells are counted and seeded at 1000 cells/36ul medium/well into 384-well microplates. Cells are returned to 37°C C02 incubator for 18hr. Drug is made as 200X in DMSO and diluted into medium to 10X. To each well is added 4ul 10X drug, and plates are returned to the incubator. Final assay DMSO concentration is 0.5%. After 72hr, 8ul CellTiterBlue (Promega) is added to each well. After 3hr, fluorescence (Ex550/Em590) is determined on the Victor Plate Reader (Perkin Elmer). Assay range is determined by DMSO control (100% viability) and lOOuM tamoxifen (0% viability). GI50 values are calculated using Graphpad Prism.
  • Cells are seeded in complete medium into black sided, clear-bottom 384-well microplates at 3000 cells/27ul/well. Plates are returned to 37°C C02 incubator for 18hr. Drug is made as 200X in DMSO and diluted into medium to 10X. To each well is added 4ul 10X test article or controls, and plates are returned to the incubator. Final assay DMSO concentration is 0.5%. After one hour, cells are fixed in formaldehyde, rinsed &
  • the running buffer in all surface plasmon resonance experiments was lOmM HEPES pH 7.4, 150mM NaCl, 0.1% (v/v) Tween-20, ImM MgC12, 8% DMSO.
  • cancer cell lines BxPC-3 K-Ras wild-type
  • Pane 10.05 K-Ras G12D mutant
  • Capan-2 K-Ras G12V
  • Table 5 provides typical results in ⁇ for the selected compounds tested, and the corresponding structures are shown in Figures 4A-4D. As can be seen, certain of the tested compounds had preferential/selective inhibition favoring G12D over wild-type and/or other mutant forms. N/A is result not available
  • Figures 5-73 depict further exemplary compounds according to the inventive subject matter, which can be prepared according to the general synthetic pathways as discussed above.
  • the meaning of "a,” “an,” and “the” includes plural reference unless the context clearly dictates otherwise.
  • the meaning of “in” includes “in” and “on” unless the context clearly dictates otherwise.
  • the recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein.
  • One or more members of a group can be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is herein deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Thiazole And Isothizaole Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

Compounds and compositions are presented that inhibit K-ras, and especially mutant K-ras. Certain compounds preferentially or even selectively inhibit specific forms of mutant K-Ras, and particularly the G12D mutant form.

Description

COMPOSITIONS AND METHODS OF TARGETING MUTANT K-RAS
[0001] This application claims the benefit of priority to U.S. provisional application having serial number 62/142974, filed on 03-Apr-15.
Field of the Invention [0002] The field of the invention is pharmaceutical compounds, compositions, and methods, and uses thereof in treatment of diseases associated with mutant KRAS proteins.
Background of the Invention
[0003] The background description includes information that may be useful in understanding the present invention. It is not an admission that any of the information provided herein is prior art or relevant to the presently claimed invention, or that any publication specifically or implicitly referenced is prior art.
[0004] All publications and applications referred to herein are incorporated by reference to the same extent as if each individual publication or patent application were specifically and individually indicated to be incorporated by reference. Where a definition or use of a term in an incorporated reference is inconsistent or contrary to the definition of that term provided herein, the definition of that term provided herein applies and the definition of that term in the reference does not apply.
[0005] K-Ras (or Ki-Ras or Kirsten-Ras) is a 21 kD member of the Ras family of GTPase proteins and a necessary component in cell signaling. Activated K-Ras typically activates downstream kinases necessary for the propagation of growth factor and other receptors signals (e.g., c-Raf and PI3-kinase). Unfortunately, genetic alterations in the gene encoding K-Ras are associated with development of neoplasias, and the mechanism of activation is relatively well understood.
[0006] Cancer-associated mutant K-Ras is constitutively active, with prolonged stabilization of its GTP-bound (active) state, and is thus able to constitutively activate downstream effectors such as Raf kinase and phosphoinositide-3 kinase (PI3K). Both of these kinases play important roles in proliferation survival/anti-apoptotic signaling pathways. These mutations have been implicated in insensitivity to EGFR-targeted anti-cancer therapies as mutations in K-Ras predispose cancer cells to be significantly less responsive to EGFR targeting therapies (e.g., Panitumumab, Cetuximab, etc.). Interaction with the Ras GTPase activating protein (RasGAP) is vital to the timely inactivation of K-Ras, resulting in more efficient hydrolysis of GTP to GDP. The conformational changes in K-Ras structure due to the GTP hydrolysis result in the elimination of K-Ras' affinity for effector proteins, thereby inactivating downstream proliferation and anti-death pathways. Cancer-associated mutations in K-Ras have been shown to interact poorly with RasGAP, therefore remaining in the "on" or constitutively active position.
[0007] Approximately 33% of all human tumors express mutant Ras, and these mutations often stabilize Ras in GTP-bound (active) state. Mutations found in K-Ras associate strongly with pancreatic cancer (90%), biliary tract cancer (33%), colorectal cancer (32%), and lung cancer (20%), among others. Approximately 20-25% of all human tumors harbor an activating mutation in gene encoding K-Ras.
[0008] Examples of cancer-associated mutations are found at glycine-12 (Glyl2), Glyl 3, and glutamine-61 (Gln61), with Glyl2 being the predominant site of mutagenesis (88%). Most notably, while the most common Glyl2 mutations are defects in the same position, different mutations have their own different characteristics. For example, expression of G 12C is often associated with a reduced response to cisplatin and an increased sensitivity to taxol and pemetrexed, whereas the expression of G12D mutant typically results in resistance to taxol treatment and sensitivity to sorafenib. The G12V mutant shows a strong sensitivity to cisplatin when compared with the wild type variant and is slightly more resistant to pemetrexed. Such diversity in treatment response is compounding difficulties in finding adequate treatment with drugs that are specific to K-Ras, and also highlight that specific mutant forms of K-Ras may require specific drugs for inhibition of the K-Ras activity.
[0009] More recently, specific drugs have been proposed to target a particular mutant form of K-Ras. For example, WO2013/155223A1 discloses small molecule inhibitors for G12C mutant forms. While promising, issues with restricted use and potential toxicity may limit compounds presented in the '223 reference. To circumvent mutant specific forms, allosteric inhibitors were proposed (PLOS One October 201 1 , Volume 6, Issue 10, e2571 1). However, that report did not distinguish among different mutant forms. [0010] In view of the important role mutant K-Ras plays in various neoplastic disease states, it would be advantageous to be able to identify compounds that bind specifically to the mutant K-Ras protein forms associated with cancer diseases states and/or specific mutant forms, and most preferably to a specific mutant type with little or no binding to the wild type.
[0011] Thus, even though various forms of inhibitors for K-ras are known in the art, there remains a need for compositions and methods that preferentially or even selectively target mutant K-Ras, and especially a single mutant form.
Summary of The Invention
[0012] The inventive subject matter is directed to compounds, compositions, and methods for inhibiting mutant K-Ras, and especially inhibiting G12V and/or G12D mutant K-Ras. Most preferably, the compounds presented herein inhibit G12V and/or G12D mutant K-Ras with high selectivity over other mutant forms and high specificity over wild type K-Ras.
[0013] In one aspect of the inventive subject matter, a compound having a structure according to Formula I
Figure imgf000005_0001
Formula I [0014] wherein X is O or S, wherein Ri and R2 are independently H, alkyl, cycloalkyl, heterocycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, alkaryl, haloalkyl, alkoxy, alkylthio, halogen, -OH, -NHC(0)alkyl, or -NHC(0)aryl, wherein R3 is H, C C4 alkyl, -NHR5, or - OR6, wherein R6 is H, alkyl, haloalkyl, alkenyl, aryl, or heteroaryl, wherein R4 and R5 together form an optionally substituted heterocyclic 5-, 6-, or 7-membered ring, or R4 is null when R5 is -NHC(0)alkyl or -NHC(0)aryl.
[0015] In further preferred aspects, Ri and R2 are independently H, alkyl, heteroaryl, cycloalkyl, or heterocycloalkyl. For example, Ri may be alkyl or cycloalkyl, and R2 may be alkyl. Most preferably, but not necessarily, X is S, and/or R3 is H or Q-C4 alkyl.
Additionally, it is generally preferred that the optionally substituted heterocyclic 5-, 6-, or 7- membered ring contains a nitrogen atom, and that the ring further contains an oxo substituent. Therefore, the phenyl group carrying R4 and R5 may form together with the heterocyclic 5-, 6-, or 7-membered ring a two- or three-ringed structure, including
Figure imgf000006_0001
[0016] Therefore, and viewed from another perspective, contemplated compounds may have a structure according to Formula II
Figure imgf000006_0002
Formula II
[0017] wherein X is O or S, wherein Ri and R? are independently H, alkyl, cycloalkyl, heterocycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, alkaryl, haloalkyl, alkoxy, alkylthio, halogen, -OH, -NHC(0)alkyl, or -NHC(0)aryl; wherein R3 is H or C1 -C4 alkyl; and wherein R7 is H, alkyl, cycloalkyl, heterocycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, alkaryl or alkheteroaryl. For example, contemplated compounds include those in which Ri is alkyl or cycloalkyl, and in which R? is alkyl. As before, it is preferred that at least in some compounds X is S, and/or that R3 is H.
[0018] For example, especially preferred compounds will have a structure of Formula III or Formula IV where 3 is H, methyl, or halogen.
Figure imgf000007_0001
Formula III Formula IV
[0019] In another aspect of the inventive subject matter, the inventors contemplate a pharmaceutical composition comprising a pharmaceutically acceptable carrier and one or more compounds as presented above. Most preferably, the compound(s) is/are present at a concentration effective to inhibit K-ras in a mammal when administered to the mammal at a dosage effective to inhibit K-ras in the mammal. Moreover, it is generally preferred that the K-ras is a mutant K-ras. For example, especially contemplated composition include those in which the compound preferentially inhibits mutant K-ras G12D relative to mutant K-ras G12V and mutant K-ras G12C. [0020] Consequently, the inventors also contemplate the use of a compound as presented above to inhibit K-ras signaling, and in most preferred uses, the compound has a structure according to Formula II, Formula III, or Formula IV. Thus, it is also contemplated that K-ras signaling is mediated by a mutant K-ras. For example, the mutant K-ras is K-ras G12D, and the compound preferentially inhibits mutant K-ras G12D relative to mutant K-ras G12V and mutant K-ras G12C.
[0021] Viewed from another perspective, the inventors therefore also contemplate the use of a compound as presented herein in the manufacture of a medicament to treat a neoplastic disease, and especially where the neoplastic disease is associated with a mutant K-ras {e.g., K-ras G12D). For example, the compounds in such medicament may have a structure according to Formula II, Formula III, or Formula IV.
[0022] Alternatively, the inventors also contemplate a method of inhibiting mutant K-ras. Such methods will typically include a step of contacting (in vitro or in vivo) the mutant K-ras with contemplated compounds at a concentration effective to inhibit the mutant K-ras (e.g., where the mutant K-ras is K-ras G12D). For example, especially preferred compounds preferentially inhibit mutant K-ras G12D relative to mutant K-ras G12V and mutant K-ras G12C. Suitable concentrations will be effective to reduce downstream signaling with respect to at least one of MEK signaling and ERK signaling. [0023] In yet a further aspect of the inventive subject matter, the inventors also contemplate a method of treating a neoplastic disease (e.g., colon cancer, pancreatic cancer, and non-small cell lung cancer) in a mammal in need thereof, wherein such methods comprise a step of administering to the mammal contemplated compounds under a protocol effective to inhibit K-ras in the mammal. For example, suitable compound will have a structure according to Formula II, Formula III, or Formula IV, and /or it is contemplated that the step of administering will comprise oral administration or injection.
[0024] Various objects, features, aspects and advantages of the inventive subject matter will become more apparent from the following detailed description of preferred embodiments, along with the accompanying drawing figures in which like numerals represent like components.
Brief Description of The Drawing
[0025] Figure 1 depicts graphs illustrating Ras inhibition of various mutant forms in recombinant cells using G-LISA assay.
[0026] Figure 2 depicts graphs illustrating Ras inhibition in various cancer cells using G- LISA assay.
[0027] Figure 3 shows autoradiographs for inhibition of downstream signaling as evidenced by phospohorylation of MEK and Erk in wild type and K-ras mutant (G12D) cells.
[0028] Figures 4A-4D show selected compounds used in testing for K-Ras inhibition. [0029] Figures 5-73 depict additional exemplary compounds according to the inventive subject matter.
Detailed Description
[0030] The inventors have now discovered that certain compounds can be prepared that will preferentially or even selectively inhibit mutant K-ras. Such compounds were found to have a scaffold as schematically illustrated in Formula A
Figure imgf000009_0001
Formula A
where X and Q are independently and typically a five-membered heteroaromatic ring (and most typically an optionally substituted thiazole or oxazole), A comprises an aryl, heteroaryl, or heterocyclic moiety (most typically a substituted phenyl or tetrahydroquinoline), and M is one or more substituents such as an alkyl, a cyclocalkyl, an alkenyl, or halogen.
[0031] The term "substituted" as used herein refers to a replacement of an atom or chemical group (e.g., H, NH2, or OH) with a functional group, and particularly contemplated functional groups include nucleophilic groups (e.g., -NH2, -OH, SH, -NC, etc.), electrophilic groups (e.g., C(0)OR, C(X)OH, etc.), polar groups (e.g., -OH), non-polar groups (e.g., aryl, alkyl, alkenyl, alkynyl, etc.), ionic groups (e.g., Ν¾+), and halogens (e.g., -F, -CI), and all chemically reasonable combinations thereof. Thus, the term "functional group" as used herein may refer to a nucleophilic group (e.g., -NH2, -OH, SH, -NC, -CN etc.), an electrophilic group (e.g., C(0)OR, C(X)OH, C(Halogen)OR, etc.), a polar group (e.g., -OH), a non-polar group (e.g., aryl, alkyl, alkenyl, alkynyl, etc.), an ionic group (e.g., NH3+), and a halogen.
[0032] While not limiting to the inventive subject matter, the inventors discovered that the heterocyclic ring system for Q and X are preferably five-membered heteroaryl systems that may or may not be substituted with one or more substituents. Therefore, and among other suitable heteroaryl systems, especially preferred X and Q group include a thiazole ring, an oxazole ring, am imidazole ring, a trizole ring, a furan ring, and a thophene ring. In still further preferred aspects, and particularly where Q is an oxazole or thiazole, it is preferred that Q one or two hydrogen atoms in Q in the oxazole or thiazole are substituted by a Ci-C4 alkyl moiety, which may be cyclic. Thus, especially preferred substituents include methyl, ethyl, trifluoromethyl, propyl, and cyclopropyl for each of the substituents as depicted in the exemplary list of Q moieties having one or two M substituents (here identified as R4 and R5, which may preferably be an alkyl, a cyclocalkyl, an alkenyl, a hydroxy, a trifluoromethyl, or a halogen).
Figure imgf000010_0001
[0033] Similarly, it should be appreciated that the X group may vary considerably. However, especially preferred X groups are optionally substituted thiazoles, particularly where the thiazole is substituted with a relatively small substituent {e.g., methyl, hydroxyl, halogen, etc.)
[0034] With respect to the A group, it is contemplated that such group will preferably include an aryl, heteroaryl, or heterocyclic moiety that includes an aromatic portion. Most typically, the A group will therefore comprise a phenyl ring that may be fused with one or more other aromatic, saturated, or unsaturated ring systems, which may or may not include a heteroatom. For example, where A is a substituted phenyl ring, the substituent is preferably an amine group that may be coupled to an acyl moiety. On the other hand, where the A group is a fused ring system, at least one of the rings will preferably comprise a phenyl group while the other ring is preferably heterocyclic ring. For example, suitable A groups include those listed below.
Figure imgf000011_0001
[0035] As used herein, and unless the context dictates otherwise, the term "coupled to" is intended to include both direct coupling (in which two elements that are coupled to each other contact each other) and indirect coupling (in which at least one additional element is located between the two elements). Therefore, the terms "coupled to" and "coupled with" are used synonymously.
[0036] Therefore, and where the X group is a thiazole and where the Q group is an oxazole or a thiazole, contemplated compounds may have a structure according to Formula II
Figure imgf000011_0002
Formula II in which X is O or S, and in which Rj and R2 are independently H, alkyl, cycloalkyl, heterocycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, alkaryl, haloalkyl, alkoxy, alkylthio, halogen, -OH, -NHC(0)alkyl, or -NHC(0)aryl. It is preferred that R3 in such compounds is H or C -C4 alkyl (which may be cyclic), and/or that R7 is H, alkyl, cycloalkyl, heterocycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, alkaryl or alkheteroaryl. Most preferably, however, contemplated compounds include those in which Ri is alkyl or cycloalkyl (and especially cyclopropyl), and in which R2 is alkyl (and especially methyl), particularly where X is S, and where R3 is H.
[0037] For example, especially preferred compounds will have a structure of Formula III or Formula IV where R3 is H, methyl, or halogen.
Figure imgf000012_0001
Formula III Formula IV
[0038] Certain compounds contemplated herein may comprise one or more asymmetric centers, and therefore exist in different enantiomeric forms. It should be recognized that all enantiomeric forms of contemplated compounds are specifically contemplated herein.
Similarly, where contemplated compounds exhibit optical activity and/or have stereoisomers, all isomeric forms are contemplated herein. Furthermore, where double bonds distinguish a Z-form from an E-form (or cis- from trans-), both isomers are contemplated.
[0039] Still further, it should be recognized that the compounds according to the inventive subject matter may also be isotopically-labeled. Examples of suitable isotopes 2H, 3H, I3C, 14C, ,5N, , 80, 170, 18F, or 36C1. Certain isotopically-labeled compounds of the inventive subject matter, for example those into which 14C or 3H is incorporated, may be useful in drug and/or substrate tissue distribution assays. On the other hand, substitution with nonradioactive isotopes {e.g., 2H or 13C) can afford certain therapeutic advantages resulting from greater metabolic stability, for example increased in vivo half-life or reduced dosage requirements and, hence, may be preferred in some circumstances.
[0040] Contemplated compounds may be prepared as pharmaceutically acceptable salt(s), which especially include salts of acidic or basic groups which may be present in the contemplated compounds. For example, contemplated compounds that are basic in nature may form a wide variety of salts with various inorganic and organic acids. Suitable acids will provide pharmacologically acceptable anions, including chloride, bromide, iodide, nitrate, sulfate, bisulfate, phosphate, acid phosphate, isonicotinate, acetate, lactate, salicylate, citrate, acid citrate, tartrate, pantothenate, bitartrate, ascorbate, succinate, maleate, gentisinate, fumarate, gluconate, glucaronate, saccharate, formate, benzoate, glutamate,
methanesulfonate, ethanesulfonate, benzenesulfonate, p-toluenesulfonate, and pamoate [Ι, - methylene-bis-(2-hydroxy-3-naphthoate)] anions. Similarly, compounds that are acidic in nature may form base salts with various pharmacologically acceptable cations, and especially suitable cations include alkali metal or alkaline earth metal ions (e.g., sodium and potassium cations).
[0041] It is still further especially contemplated that compounds according to the inventive subject matter may also be prepared as prodrugs, and all known manners and types of prodrugs are considered suitable for use herein, so long as such prodrug will increase the concentration of the drug (or metabolite of the prodrug) at a target organ or target cell. For example, where the compounds have a free amino, amido, hydroxy, thio, or carboxylic group, it is contemplated that such groups can be employed to covalently and releasably bind a moiety that converts the drug into a prodrug. Therefore, prodrugs particularly include those in which contemplated compounds forms an ester, amide, or disulfide bond with another cleavable moiety. Such moieties may assist in organ or cell-specific delivery of the drug. For instance, a carboxyl group can be derivatized to form an amide or alkyl ester, which may include an ether, amine-, and/or carboxylic acid group. Free hydroxy groups may be derivatized using hemisuccinates, phosphate esters, dimethylaminoacetates, and
phosphoryloxymethyloxycarbonyls, as outlined in D. Fleisher, R. Bong, B. H. Stewart, Advanced Drug Delivery 40 Reviews (1996) 19, 1 15. Carbamate prodrugs of hydroxy and amino groups are also included, as are carbonate prodrugs and sulfate esters of hydroxy groups. Derivatization of hydroxy groups as (acyloxy)methyl and (acyloxy)ethylethers, wherein the acyl group may be an alkyl ester (optionally substituted), or where the acyl group is an amino acid ester are also contemplated (Prodrugs of this type are described in R. P. Robinson et al., J. Medicinal Chemistry (1996) 39:p. l 0).
[0042] Still further, it should also be recognized that contemplated compounds may be metabolized in a cell or extracellular compartment, and that such metabolites may exhibit the same or different pharmacological effect. For example, contemplated compounds may be phosphorylated and thus be more active than the parent compound. On the other hand, reduction or glycosylation may affect bioavailability of contemplated compounds.
Consequently, contemplated compounds will not only include those as described above, but also include metabolites thereof.
[0043] Viewed from another perspective, it should be thus be appreciated that contemplated compounds and compositions may be used for all conditions and/or disorders that are associated with a dysregulation and/or dysfunction of K-ras, and especially with a mutant form of K-ras (particularly G12D and/or G12V). For example, contemplated conditions and disorders include various cancers, and especially pancreatic cancer, colon cancer, and non- small cell lung cancer.
[0044] Viewed from yet another perspective, the present inventive subject matter is directed to various compounds that modulate (e.g., inhibit or reduce) K-ras dependent signaling in a cell, and/or that directly or indirectly affect (mutant) K-ras, GTP binding, and effector protein interaction to so interfere with signal transduction. Exemplary compounds will therefore not only include the compounds as discussed above, but also various derivatives that impart one or another advantageous property.
[0045] Based on the inventors' discovery of biological activity of contemplated compounds, it is generally contemplated that the compounds according to the inventive subject matter may be formulated for treatment of various diseases associated with dysregulation and/or dysfunction of K-ras or mutant K-ras. Therefore, and among other contemplated uses, the inventors especially contemplate that pharmaceutical compositions comprising contemplated compounds may be effective for the treatment or prevention of K-ras signaling dependent cancers, and especially colon cancer, pancreactic cancer, and non-small cell lung cancer, wherein contemplated pharmaceutical compositions comprise a therapeutically effective amount of contemplated compounds (or pharmaceutically acceptable salt, hydrate, or prodrug thereof), and a pharmaceutically acceptable carrier. Therefore, it should be recognized that contemplated compounds are suitable for use to inhibit K-ras signaling, and/or for the manufacture of a medicament to treat a neoplastic disease that is associated with a mutation in K-ras, especially where the K-ras has a G12D or G12V mutation. Therefore, the inventors also contemplate a method of inhibiting mutant KRAS, comprising a step of contacting the mutant KRAS with a method of inhibiting K-ras or mutant K-ras using contemplated compounds at a concentration effective to inhibit the (mutant) K-ras. As used herein, the term "inhibit" or "inhibition" in conjunction with K-ras activity means a reduction in activation of downstream signaling components {e.g., MEK, Erk, etc.) as compared to activity of the same (mutant) K-ras without exposure to the inhibitory compound under otherwise identical conditions.
[0046] It is therefore particularly preferred that contemplated compounds are included in a composition that is formulated with one or more non-toxic and pharmaceutically acceptable carriers. Preferred pharmaceutical compositions are formulated for oral administration in solid or liquid form, or for parenteral injection. Thus, it should be recognized that the pharmaceutical compositions according to the inventive subject matter may be administered to humans and other animals using various routes, including oral, rectal, parenteral, intraperitoneal, vaginal, or topical administration.
[0047] For example, suitable pharmaceutical compositions for injection preferably comprise pharmaceutically acceptable sterile aqueous or nonaqueous solutions, dispersions, emulsions, or suspensions, as well as sterile powders for reconstitution into sterile injectable solutions or dispersions prior to use. Examples of suitable aqueous and nonaqueous carriers, diluents, solvents, or vehicles include water, ethanol, polyols {e.g., glycerol, propylene glycol, polyethylene glycol, etc.), and suitable mixtures thereof, oils, and injectable organic esters {e.g., ethyl oleate). Contemplated compositions may also contain various inactive ingredients, including preservatives, wetting agents, emulsifying agents, and/or dispersing agents.
Sterility may be ensured by inclusion of antibacterial and/or antifungal agents {e.g., paraben, phenol sorbic acid, chlorobutanol, etc.). Where appropriate, osmotically active agents may be included {e.g., sugars, sodium chloride, etc.).
[0048] Alternatively, contemplated compositions may be formulated into solid dosage forms for oral administration, and may therefore be capsules, tablets, pills, powders, and granules. In preferred solid dosage forms, contemplated compound are mixed with at least one of a pharmaceutically acceptable excipient or carrier {e.g., sodium citrate or dicalcium phosphate), a filler or extender {e.g., starch, lactose, sucrose, glucose, mannitol, or silicic acid), a binder {e.g., carboxymethylcellulose, alginates, gelatin, polyvinylpyrrolidone, sucrose, etc.), a humectant {e.g., glycerol), a disintegrating agent {e.g., agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, or sodium carbonate), a solution retarding agent {e.g., paraffin), an absorption accelerator {e.g., quaternary ammonium compound), a wetting agents (e.g., cetyl alcohol and glycerol monostearate), and absorbents (e.g., kaolin, or bentonite clay), and a lubricant (e.g., talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate).
[0049] Solid compositions of a similar type may also be employed as fillers in soft and hard- filled gelatin capsules using such excipients as lactose or milk sugar as well as high molecular weight polyethylene glycols and the like. The solid dosage forms of tablets, dragees, capsules, pills, and granules can be prepared with coatings and shells such as enteric coatings and other coatings well known in the pharmaceutical formulating art. Contemplated compositions may further be formulated to release the active ingredient(s) only, or preferentially, in a certain part of the intestinal tract, optionally, in a delayed manner.
Examples of embedding compositions which can be used include polymeric substances and waxes. Contemplated compounds may also be in micro-encapsulated form, if appropriate, with one or more of the above-mentioned excipients.
[0050] Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, solutions, suspensions, syrups and elixirs. In addition to the active compounds, liquid dosage forms may contain inert diluents commonly used in the art (e.g., water, or other solvent, solubilizing agents), emulsifiers (e.g., ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, dimethyl formamide), oils (and in particular, cottonseed, groundnut, corn, germ, olive, castor, and sesame oils), glycerol, tetrahydrofurfuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof. Besides inert diluents, the oral compositions may also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, and perfuming agents.
[0051] Compositions for rectal or vaginal administration are preferably suppositories which can be prepared by mixing the compounds of this invention with suitable non-irritating excipients or carriers such as cocoa butter, polyethylene glycol or a suppository wax which are solid at room temperature but liquid at body temperature and therefore melt in the rectum or vaginal cavity and release the active compound. Compounds according to the inventive subject matter can also be administered in form of liposomes, which may be unilamellar, oligolamellar, or polylamellar. Contemplated compositions in liposome form may further contain stabilizers, preservatives, excipients, etc. Preferred lipids for liposome formation include phospholipids and the phosphatidyl cholines (lecithins), both natural and synthetic. Methods to form liposomes are known in the art. See, for example, Prescott, Ed., Methods in Cell Biology, Volume XIV, Academic Press, New York, N.Y. (1976), p. 33 et seq.
[0052] Actual dosage levels of contemplated compounds in pharmaceutical compositions according to the inventive subject matter may be varied so as to obtain an amount of contemplated compound(s) that is effective to achieve the desired therapeutic response for a particular patient, composition, and mode of administration. Thus, the selected dosage level will depend upon various factors, including the activity of the particular compound, the route of administration, the severity of the condition being treated, and the condition and prior medical history of the patient being treated. However, it is within the skill of the art to start doses of the compound at levels lower than required to achieve the desired therapeutic effect and to gradually increase the dosage until the desired effect is achieved. Generally, dosage levels of about 0.01 mg/kg to about 0.1 mg/kg, or about 0.1 mg/kg to about 1 mg/kg, or about 1 mg/kg to about 10 mg/kg, or about 10 mg/kg to about 50 mg/kg of body weight per day. Thus, single dosage units for administration will typically be between 0.1 mg and lmg, between 1 mg and 50 mg, between 50 mg and 250 mg, between 250 mg-1,000 mg, between 1,000 mg and 5,000 or even higher when administered orally to a mammalian patient. If desired, it should be appreciated that the effective daily dose may be divided into multiple doses for purposes of administration, e.g., two to four separate doses per day.
[0053] Unless the context dictates the contrary, all ranges set forth herein should be interpreted as being inclusive of their endpoints, and open-ended ranges should be interpreted to include commercially practical values. Similarly, all lists of values should be considered as inclusive of intermediate values unless the context indicates the contrary. In some embodiments, the numbers expressing quantities of ingredients, properties such as concentration, reaction conditions, and so forth, used to describe and claim certain embodiments of the invention are to be understood as being modified in some instances by the term "about." Accordingly, in some embodiments, the numerical parameters set forth in the written description and attached claims are approximations that can vary depending upon the desired properties sought to be obtained by a particular embodiment. In some embodiments, the numerical parameters should be construed in light of the number of reported significant digits and by applying ordinary rounding techniques. Notwithstanding that the numerical ranges and parameters setting forth the broad scope of some embodiments of the invention are approximations, the numerical values set forth in the specific examples are reported as precisely as practicable. The numerical values presented in some
embodiments of the invention may contain certain errors necessarily resulting from the standard deviation found in their respective testing measurements.
[0054] It should still further be appreciated that contemplated pharmaceutical compositions may also include additional pharmaceutically active compounds, and especially contemplated additional pharmaceutically active compounds include anti-metabolic and/or antineoplastic agents and/or immunologically active agents, which may act upon cell division, apoptosis, T- cell recognition, NK-cell activity, memory cell formation, checkpoint inhibition, and/or immune stimulation. Of course, it should be recognized that additional pharmaceutically active compounds may be included in the same pharmaceutical composition, or may be administered separately, and a person of ordinary skill in the art will readily determine schedule and route of suitable co-administration of the additional pharmaceutically active compounds.
Examples
Exemplary Compounds
[0055] The following examples are intended to provide a non-limiting general protocol for the preparation of various intermediates that can be subsequently used to prepare compounds according to the inventive subject matter. Based on the below exemplary protocols, the person of ordinary skill in the art will be readily able to produce similar compounds starting with similar educts. Likewise, the examples provided for biological activities exemplarily set out systems and methods for ascertaining inhibitory activity and preference/selectivity.
[0056] Intermediate 1
Figure imgf000018_0001
[0057] To a 500 mL round-bottomed flask equipped with condenser and argon inlet were added aluminum chloride (7.93 g, 59.45 mmol), carbon disulfide (40 mL), and chloroacetyl chloride (2.30 g, 20.38 mmol) under ice-bath. The mixture was stirred for 15 mins. To the stirring mixture was added 3,4-dihydro-2(H)-quinolinone (2.50 g, 16.99 mmol) in portions over 5 mins. The mixture was stirred for 10 minutes prior to reflux for 2.5 hours. The reaction mixture was cooled and the solvent was decanted off. Then ice and cold water (50 mL) was slowly added while stirred thoroughly. The beige precipitate filtered, washed with water (3 x 50 mL) followed by tetrahydrofuran (2 x 100 mL) and hexanes (1 x 200 mL). The solid was dried under vacuum to give 6-(2-chloroacetyl)-3,4-dihydroquinolin-2(lH)-one (3.44 g, 90%) as a beige solid. ]H NMR (400 MHz, DMSO-d): δ 10.47 (bs, 1H), 7.83 (s, 1H), 7.80 (dd, 1 H, J= 8.8, 1.6 Hz), 6.94 (d, 1H, J= 8.0 Hz), 5.08 (s, 2H), 2.95 (m, 2H), 2.49 (partial masked under d-DMSO, m, 2H). MS (ESI): Calcd. for CnH10ClNO2: 223, found 224 (M+l)+
[0058] Intermediate 2
Figure imgf000019_0001
[0059] 6-(Chloroacetyl)-3,4-dihydroquinolin-2(lH)-one (1.00 g, 4.47 mmol) and thiourea (0.36 g, 4.69 mmol) were suspended in anhydrous ethanol (10 ml) in a sealed tube under argon atmosphere. The sealed tube was microwaved at 120°C for 30 min. The mixture was diluted with tetrahydrofuran (200 mL) and neutralized with IN aq. NaOH solution and then extracted with ethyl acetate (2 x 200 mL). The combined organic layers were dried over anhydrous Na2S04 and concentrated in vacuo. The residue was purified by precipitating in dichloromethane and filtration to give 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)- one (0.920 g, 73%) as a light brown solid. Ή NMR (400 MHz, DMSO-d): 5 10.27 (s, 1H), 8.71 (br s, 2H), 7.61 (s, 1H), 7.55 (dd, 1H, J= 8.8, 2.0 Hz), 7.05 (s, 1H), 6.91 (d, 1H, J= 8.4 Hz), 2.91 (t, 2H, J= 7.6 Hz), 2.48 (partial masked under d-DMSO, m, 2H). MS (ESI): Calcd. for Ci2HnN3OS: 245, found 246 (M+l)+
[0060] Intermediate 3
Figure imgf000019_0002
[0061] 5-Chloroacetyloxidole (2.00 g, 9.54 mmol) and thiourea (0.76 g, 10.02 mmol) were suspended in anhydrous ethanol (15 ml) in a sealed tube under argon atmosphere. The sealed tube was microwaved at 120°C for 35 min. The mixture diluted with tetrahydrofuran (200 mL) and neutralized with IN aq. NaOH solution and then extracted with ethyl acetate (2 x 200 mL). The combined organic layers were dried over anhydrous Na2S04 and concentrated in vacuo. The residue was purified by precipitating in dichloromethane and filtration to give 5-(2-aminothiazol-4-yl)indolin-2-one (2.36 g, 92%) as a light brown solid. Ή NMR (400 MHz, DMSO-d): δ 10.64 (s, 1H), 8.95 (bs, 1H), 7.62 (s, 1H), 7.60 (dd, 1 H, J= 8.4, 1.2 Hz), 7.06 (s, 1H), 6.89 (d, 1H, J= 8.4 Hz). MS (ESI): Calcd. for C„Hi0ClN3OS: 267, found 268 (M+l)+
[0062] Intermediate 4
Figure imgf000020_0001
[0063] Preparation: To a 500 mL round-bottomed flask equipped with condenser and argon inlet were added aluminum chloride (6.30 g, 47.25 mmol), carbon disulfide (35 mL), and chloroacetyl chloride (1.83 g, 16.20 mmol) under ice-bath. The mixture was stirred for 15 mins. The mixture was added 3,4-dihydrocoumarin (2.00 g, 13.50 mmol) in portions over 5 mins. The reaction was stirred for 10 minutes prior to reflux for 2.5 hours. The reaction mixture was cooled and the solvent was decanted off. Then ice and cold water (50 mL) was slowly added while stirred thoroughly. The tan precipitate was collected by filtration and washing thoroughly with water. The crude precipitate was suspended and sonicated in diethyl ether (10 mL) and the resulted fine solid was again collected by filtration and dried under vacuum to give 6-(2-chloroacetyl)chroman-2-one (1.60 g, 53%) as a beige solid. Ή NMR (400 MHz, DMSO-d): δ 7.96 (d, 1H, J= 2.0 Hz), 7.90 (dd, 1H, J = 16.0, 8.8 Hz), 7.21 (d, 1H, J = 8.0 Hz), 5.16 (s, 2H), 3.08 (t, 2H, J= 7.2 Hz), 2.84 (t, 2H, J= 12 Hz). MS (ESI): Calcd. for CnH9C103: 224, found 371 (Unstable).
[0064] Intermediate 5
Figure imgf000020_0002
[0065] To a 500 mL round-bottomed flask equipped with condenser and argon inlet were added aluminum chloride (6.96 g, 52.19 mmol), carbon disulfide (35 mL), and chloroacetyl chloride (2.02 g, 17.89 mmol) under ice-bath. The mixture was stirred for 15 mins. To the stirring mixture was added 2-hydroxylbenzimidazole (2.00 g, 14.91 mmol) in portions over 5 mins. The reaction mixture was stirred for 10 minutes prior to reflux for 2.5 hours. The reaction mixture was cooled and the solvent was decanted off. Then ice and cold water (50 mL) was slowly added while stirred thoroughly. The tan precipitate was collected by filtration and washed thoroughly with water. The precipitate was sonicated in diethyl ether (10 mL) and the resulted fine solid was again collected by filtration. The solid was dried under vacuum to give 5-(2-chloroacetyl)-l,3-dihydro-2H-benzo[i/]imidazol-2-one (2.92 g, 93%) as a beige solid. 1H NMR (400 MHz, DMSO-d): δ 1 1.12 (s, 1 H), 10.96 (s, 1H), 7.67 (dd, 1H, J = 8.8, 2.0 Hz), 7.49 (d, 1H, J= 2.0 Hz), 7.03 (d, 1 H, J= 8.4 Hz), 5.13 (s, 2H). MS (ESI): Calcd. for C9H7CIN2O2: 210, found 390 (Unstable).
[0066] Intermediate 6
Figure imgf000021_0001
[0067] 5-(2-chloroacetyl)-lH-benzo[d]imidazol-2(3H)-one (2.00 g, 9.50 mmol) and thiourea (0.76 g, 9.97 mmol) was suspended in anhydrous ethanol (15 ml) in a sealed tube under argon atmosphere. The sealed tube was microwaved at 120°C for 40 min. The mixture was diluted with tetrahydrofuran (200 mL) and neutralized with IN aq. NaOH solution and then extracted with ethyl acetate (2 x 200 mL). The combined organic layers were dried over anhydrous Na2S04 and concentrated in vacuo. The residue was purified by precipitating in
dichloromethane and filtration to give 5-(2-aminothiazol-4-yl)-l,3-dihydro-2H- benzo[ |imidazol-2-one (1.81 g, 22%) as a tan solid. Ή NMR (400 MHz, DMSO-d): δ 10.67 (s, 1H), 10.64 (s, 1H), 7.40 (dd, 1H, J = 8.4, 1.6 Hz), 7.37 (s, 1H), 7.01 (bs, 2H), 6.88 (d, 1H, d, J= 8.0 Hz), 6.80 (s, 1H). MS (ESI): Calcd. for C11H9N3OS: 231, found 232 (M+l)+
[0068] Intermediate 7
Figure imgf000021_0002
[0069] 6-(2-chloroacetyl)chroman-2-one (1.30 g, 5.79 mmol) and thiourea (0.46 g, 6.08 mmol) was suspended in anhydrous ethanol (12 ml) in a sealed tube under argon atmosphere. The sealed tube was microwaved at 120°C for 35 min. The mixture was diluted with tetrahydrofuran (200 mL) and neutralized with IN aq. NaOH solution and then extracted with ethyl acetate (2 x 200 mL). The combined organic layers were dried over anhydrous a2S04 and concentrated in vacuo. The residue was purified by precipitating in dichloromethane and filtration to give ethyl 3-(5-(2-aminothiazol-4-yl)-2-hydroxyphenyl)propanoate (1.50 g, 89%) as a beige solid. ]H NMR (400 MHz, DMSO-d): 5 9.50 (s, 1H), 7.51 (d, 1H, J= 2.0 Hz), 7.44 (dd, 1H, J = 8.2, 2.0 Hz), 6.96 (bs, 2H), 6.74 (d, 1H, J= 8.0 Hz), 6.70 (s, 1H), 4.03 (q, 2H, J= 7.2 Hz), 2.78 (t, 2H, J= 7.8 Hz), 2.55 (t, 2H, J= 7.8 Hz), 1.51 (t, 3H, J= 7.0 Hz). MS (ESI): Calcd. for C14H16N2O3S: 292, found 293 (M+l)+
[0070] Intermediate 8
Figure imgf000022_0001
[0071] N-[4-(2-Chloroacetyl)phenyl]benzamide (0.241 g, 0.882 mmol) and thiourea (0.071 g, 0.926 mmol) suspended in anhydrous ethanol (5 ml) in a sealed tube under argon atmosphere. The sealed tube was microwaved at 120°C for 30 min. The mixture was diluted with tetrahydrofuran (50 mL) and neutralized with IN aq. NaOH solution and then extracted with ethyl acetate (4 x 50 mL). The combined organic layers were dried over anhydrous Na2S04 and concentrated in vacuo. The residue was purified by precipitating in dichloromethane and filtration to give N-(4-(2-aminothiazol-4-yl)phenyl)benzamide (0.08 g, 33%) as a brown solid. jH NMR (400 MHz, DMSO-d): δ 10.28 (s, 1H), 7.95 (m, 2H), 7.78 (s, 4H), 7.60-7.50 (m, 3H), 7.02 (s, 2H), 6.93 (s, 1H). MS (ESI): Calcd. for C16Hi3N3OS: 295, found 296 (M+l)+
[0072] Intermediate 9
Figure imgf000022_0002
[0073] 6-(2-chloroacetyl)chroman-2-one (0.283 g, 1.26 mmol) and thiourea (0.101 g, 1.32 mmol) was dissolved in anhydrous acetonitrile (10 ml) in a sealed tube under argon atmosphere. The sealed tube was microwaved at 80°C for 30 min. The reaction was quenched with trimethylamine (1 mL), extracted with ethyl acetate (2 x 200 mL) and washed with sat. NaHC03 (2 x 50 mL). The combined organic layers were dried over anhydrous Na2S04 and concentrated in vacuo. The residue was purified by precipitating in
dichloromethane and filtration to give 6-(2-aminothiazol-4-yl)chroman-2-one (0.26 g, 84%) as a tan solid. 1H NMR (400 MHz, DMSO-d): δ 7.10 (d, 1H, J= 2.0 Hz), 7.67 (dd, 1H, J 8.4, 2.0 Hz), 7.04 (m, 2H), 6.96 (s, 1H), 3.01 (t, 2H, J = 7.6 Hz), 2.80 (t, 2H, J = 7.6 Hz). MS (ESI): Calcd. for C^oNaC^S: 246, found 247 (M+l)+
[0074] Intermediate 10
Figure imgf000023_0001
[0075] 4-Chloroacetylacetanilide (1.00 g, 4.72 mmol) and thiourea (0.378 g, 4.96 mmol) suspended in anhydrous ethanol (8 ml) in a sealed tube under argon atmosphere. The sealed tube was microwaved at 120°C for 30 min. The sealed tube was microwaved at 120°C for 40 min. The mixture was diluted with tetrahydrofuran (200 mL) and neutralized with IN aq. NaOH solution and then extracted with ethyl acetate (2 x 200 mL). The combined organic layers were dried over anhydrous Na2S04 and concentrated in vacuo. The residue was purified by precipitating in dichloromethane and filtration to give N-(4-(2-aminothiazol-4- yl)phenyl)acetamide (1.05 g, 95%) as a yellow solid. Ή NMR (400 MHz, DMSO-d): δ 9.95 (s, 1H), 7.70 (d, 2H, J= 8.4 Hz), 7.56 (d, 2H, J= 8.4 Hz), 7.00 (s, 2H), 6.86 (s, 1H), 2.04 (s, 3H). MS (ESI): Calcd. for C„Hi ,N3OS: 233, found 234 (M+l)+
[0076] Intermediate 11
Figure imgf000023_0002
[0077] 6-(2-Chloroacetyl)-l -methyl- l ,2,3,4-tetrahydroquinolin-2-one (0.50 g, 2.10 mmol) and thiourea (0.17 g, 2.21 mmol) suspended in anhydrous ethanol (4 ml) in a sealed tube under argon atmosphere. The sealed tube was microwaved at 120°C for 35 min. The mixture was diluted with tetrahydrofuran (100 mL), neutralized with triethylamine (2 mL), and extracted with ethyl acetate (2 x 200 mL) followed by washing with saturated sodium bicarbonate (2 x 100 mL). The combined organic layers were dried over anhydrous Na2SC>4 and concentrated in vacuo. The residue was purified by precipitating in dichloromethane and filtration to give 6-(2-aminothiazol-4-yl)-l-methyl-3,4-dihydroquinolin-2(lH)-one (0.50 g, 92%) as a vanilla solid. Ή NMR (400 MHz, DMSO-d): δ 7.67 (dd, 1H, J= 8.4, 2.0 Hz), 7.64 (d, 1H, J= 1.6 Hz), 7.06 (d, 1H, J= 8.4 Hz), 7.02 (s, 2H), 6.91 (s, 1H), 3.26 (s, 3H), 2.88 (t, 2H, J = 6.4 Hz), 2.55 (t, 2H, J= 6.8 Hz). MS (ESI): Calcd. for C13H13N3OS: 259, found 260 (M+l)+
[0078] Intermediate 12
Figure imgf000024_0001
[0079] To a 500 mL round-bottomed flask equipped with condenser and argon inlet were added aluminum chloride (5.79 g, 43.42 mmol), carbon disulfide (40 mL), and chloroacetyl chloride (1.68 g, 14.89 mmol) under ice-bath. The mixture was stirred for 15 mins. To the stirring mixture was added 4,5-dihydro-lH-benzo[ ]azepine-2(3H)-one (2.00 g, 12.41 mmol) in portions over 5 mins. The mixture was stirred for 10 minutes prior to reflux for 2.5 hours. The reaction mixture was cooled and the solvent was decanted off. Then ice and cold water (50 mL) was slowly added while stirred thoroughly. The tan precipitate was collected by filtration and washed thoroughly with water. The precipitate was sonicated in diethyl ether (10 mL) and the resulted fine solid was again collected by filtration. The solid was dried under vacuum to give 7-(2-chloroacetyl)-l ,3,4,5-tetrahydro-2H-benzo[ )]azepin-2-one (2.68 g, 91%) as a beige solid. ]H NMR (400 MHz, DMSO-d): δ 9.90 (s, 1H), 7.90 (d, 1H, J = 2.0 Hz), 7.85 (dd, 1H, J = 8.0, 2.0 Hz), 7.07 (d, 1H, J= 8.4 Hz), 2.76 (t, 2H, J= 7.2 Hz), 2.20 (m, 2H), 2.16 (m, 2H). MS (ESI): Calcd. for Ci2Hi2ClN02: 237, found 238 (M+l)+
[0080] Intermediate 13
Figure imgf000025_0001
[0081] 7-(2-chloroacetyl)-4,5-dihydro-lH-benzo[ )]azepin-2(3H)-one (1.50 g, 6.31 mmol) and thiourea (0.504 g, 6.63 mmol) suspended in anhydrous ethanol (12 ml) in a sealed tube under argon atmosphere. The sealed tube was micro waved at 120°C for 40 min. The mixture was diluted with tetrahydrofuran (200 mL), neutralized with triethylamine (5 mL), and extracted with ethyl acetate (2 x 200 mL) followed by washing with saturated sodium bicarbonate (2 x 200 mL). The combined organic layers were dried over anhydrous Na2S0 and concentrated in vacuo. The residue was purified by precipitating in dichloromethane and filtration to give 7-(2-aminothiazol-4-yl)-l,3,4,5-tetrahydro-2H-benzo[ )]azepin-2-one (1.25 g, 76%) as a tan solid. lU NMR (400 MHz, DMSO-d): δ 9.52 (s, 1H), 7.67 (d, 1H, J = 2.0 Hz), 7.63 (dd, 1H, J= 8.4, 2.0 Hz), 7.02 (s, 2H), 6.93 (m, 2H), 2.70 (t, 2H, J= 7.2 Hz), 2.13 (m, 4H). MS (ESI): Calcd. for C13Hi3N3OS: 259, found 260 (M+l)+
[0082] Intermediate 14
Figure imgf000025_0002
[0083] To a 500 mL round-bottomed flask equipped with condenser and argon inlet were added aluminum chloride (5.33 g, 39.95 mmol), carbon disulfide (40 mL), and chloroacetyl chloride (1.55 g, 13.70 mmol) under ice-bath. The mixture was stirred for 15 mins. To the stirring mixture was added 1 -acetyl- 1,2,3,4-tetrahydroquinoline (2.00 g, 1 1.41 mmol) in portions over 5 mins. The mixture was stirred for 10 minutes prior to reflux for 2.5 hours. The reaction mixture was cooled and the solvent was decanted off. Then ice and cold water (50 mL) was slowly added while stirred thoroughly. The tan precipitate was collected by filtration and washed thoroughly with water. The precipitate was sonicated in diethyl ether (10 mL) and the resulted fine solid was again collected by filtration. The solid was dried under vacuum to give l -(l -acetyl-l ,2,3,4-tetrahydroquinolin-6-yl)-2-chloroethan-l-one (1.79 g, 62%) as a beige solid. lR NMR (400 MHz, DMSO-d): δ 7.76 (m, 3H), 5.14 (s, 2H), 3.72 (t, 2H, J = 6.4 Hz), 2.78 (t, 2H, J= 6.8 Hz), 2.23 (s, 3H), 1.89 (p, 2H, J
(ESI): Calcd. for C,3H14C1N02: 251, found 252 (M+l)+
[0084] Intermediate 15
Figure imgf000026_0001
[0085] l-(l-acetyl-l,2,3,4-tetrahydroquinolin-6-yl)-2-chloroethanone (1.00 g, 3.97 mmol) and thiourea (0.3 18 g, 4.17 mmol) suspended in anhydrous ethanol (10 ml) in a sealed tube under argon atmosphere. The sealed tube was microwaved at 120°C for 35 min. The mixture was diluted with tetrahydrofuran (200 mL) and neutralized with triethylamine (3 mL) and then extracted with ethyl acetate (2 x 200 mL) followed by washing with saturated sodium bicarbonate (2 x 200 mL). The combined organic layers were dried over anhydrous Na2S04 and concentrated in vacuo. The residue was purified by precipitating in 1 :3 dichloromethane/diethyl ether and filtration to give l-(6-(2-aminothiazol-4-yl)-3,4- dihydroquinolin-l (2H)-yl)ethan-l-one (0.47 g, 43%) as a tan solid. !H NMR (400 MHz, DMSO-d): δ 7.58 (m, 2H), 7.95 (bs, 1H, 7.02 (s, 2H), 6.93 (s, 1H), 3.68 (t, 2H, J= 6.4 Hz), 2.72 (t, 2H, J= 6.8 Hz), 2.17 (s, 3H), 1.87 (p, 2H, J= 6.8 Hz). MS (ESI): Calcd. for C14H15N3OS: 273, found 274 (M+l)+
[0086] Intermediate 16
Figure imgf000026_0002
[0087] To a 500 mL round-bottomed flask equipped with condenser and argon inlet were added aluminum chloride (3.15 g, 23.62 mmol), carbon disulfide (25 mL), and chloroacetyl chloride (0.92 g, 8.10 mmol) under ice-bath. The mixture was stirred for 15 mins. To the stirring mixture was added 3,4-dihydro-2(H)-quinolinone (1.00 g, 6.75 mmol) in portions over 5 mins. The mixture was stirred for 10 minutes prior to reflux for 2.5 hours. The reaction mixture was cooled and the solvent was decanted off. Then ice and cold water (25 mL) was slowly added while stirred thoroughly. The beige precipitate filtered, washed with water (3 x 50 mL) followed by tetrahydrofuran (2 x 100 mL) and hexanes (1 x 200 mL). The solid was dried under vacuum to give 6-(2-chloroacetyl)-3,4-dihydroquinazolin-2(lH)-one (1.42 g, 94%) as a beige solid. Ή NMR (400 MHz, DMSO-d): δ 9.50 (s, 1H), 7.78 (dd, 1H, J= 8.8, 1.6 Hz), 7.76 (s, 1H), 7.04 (s, 1H), 6.85 (d, 1H, J = 8.0 Hz), 5.04 (s, 2H), 4.38 (s, 2H). MS (ESI): Calcd. for CioH9ClN202: 224, found 225 (M+l)+
[0088] Intermediate 17
Figure imgf000027_0001
[0089] To a 500 mL round-bottomed flask equipped with condenser and argon inlet were added aluminum chloride (1.35 g, 10.10 mmol), carbon disulfide (15 mL), and chloroacetyl chloride (0.39 g, 3.46 mmol) under ice-bath. The mixture was stirred for 15 mins. To the stirring mixture was added 3,4-dihydro-2(H)-quinolinone (0.50 g, 3.46 mmol) in portions over 5 mins. The mixture was stirred for 10 minutes prior to reflux for 2.5 hours. The reaction mixture was cooled and the solvent was decanted off. Then ice and cold water (10 mL) was slowly added while stirred thoroughly. The beige precipitate filtered, washed with water (3 x 50 mL) followed by tetrahydrofuran (2 x 100 mL) and hexanes (1 x 200 mL). The solid was dried under vacuum to give 8~(2-chloroacetyl)-l ,2,5,6-tetrahydro-4H-pyrrolo[3,2, l- z/]quinolin-4-one (0.71 g, 98%) as a beige solid. lU NMR (400 MHz, DMSO-d): δ 7.74 (s, 2H), 5.07 (s, 2H), 3.99 (t, 2H, J= 8.8 Hz), 3.20 (t, 2H, J= 8.8 Hz), 2.98 (t, 2H, J= 7.6 Hz), 2.60 (t, 2H, J= 7.6 Hz). MS (ESI): Calcd. for Ci3H12ClN02: 249, found 250 (M+l)+
[0090] Intermediate 18
Figure imgf000027_0002
[0091] 6-(2-chloroacetyl)-3,4-dihydroquinazolin-2(lH)-one (0.50 g, 2.23 mmol), thiourea (0.178 g, 2.34 mmol) and triethylamine (0.46 mL, 3.34 mmol) suspended in anhydrous ethanol (12 ml) under argon atmosphere. The sealed tube was microwaved at 120°C for 35 min. The brown precipitate was collected by filtration and washed with cold ethanol. The residue was purified by precipitating in diethyl ether and filtration to give 6-(2-aminothiazol- 4-yl)-3,4-dihydroquinazolin-2(lH)-one (0.529 g, 96%) as a light brown solid. lH NMR (400 MHz, DMSO-d): δ 9.06 (s, 1H), 7.53 (d, 1H, J= 8.4 Hz), 7.50 (s, 1H), 6.97 (s, 2H), 6.81 (s, 1H), 6.77 (s, 1H), 6.73 (d, 1H, J= 8.4 Hz), 4.33 (s, 2H). MS (ESI): Calcd. for CnH10N4OS: 246, found 247 (M+l)+ [0092] Intermediate 19
Figure imgf000028_0001
[0093] 8-(2-chloroacetyl)-5,6-dihydro-lH-pyrrolo[3,2, l -; ]quinolin-4(2H)-one (0.30 g, 1.20 mmol), thiourea (0.10 g, 1.26 mmol) and triethylamine (0.25 mL, 1.80 mmol) suspended in anhydrous ethanol (12 ml) in a sealed tube under argon atmosphere. The sealed tube was microwaved at 120°C for 35 min. The brown precipitate was collected by filtration and washed with cold ethanol. The residue was purified by precipitating in diethyl ether and filtration to give 8-(2-aminothiazol-4-yl)-l,2,5,6-tetrahydro-4H-pyrrolo[3,2, l-z/']quinolin-4- one (0.296 g, 91%) as a brown solid. lU NMR (400 MHz, DMSO-d): δ 7.51 (d, 1H, J= 8.4 Hz), 6.96 (s, 2H), 6.82 (s, 1H), 3.95 (t, 2H, J= 8.8 Hz), 3.14 (t, 2H, J= 8.8 Hz), 2.92 (t, 2H, J = 7.6 Hz), 2.55 (t, 2H, J= 7.6 Hz). MS (ESI): Calcd. for Q4H13N3OS: 271, found 272 (M+l)+
[0094] Intermediate 20
Figure imgf000028_0002
[0095] To a 500 mL round-bottomed flask equipped with condenser and argon inlet were added aluminum chloride (7.10 g, 53.24 mmol), carbon disulfide (60 mL), and chloroacetyl chloride (2.06 g, 18.25 mmol) under ice-bath. The mixture was stirred for 15 mins. To the stirring mixture was added benzanilide (3.00 g, 15.21 mmol) in portions over 5 mins. The mixture was stirred for 10 minutes prior to reflux for 2.5 hours. The reaction mixture was cooled and the solvent was decanted off. Then ice and cold water (100 mL) was slowly added while stirred thoroughly. The beige precipitate filtered and washed with water (3 x 100 mL). The residue was purified by precipitating in diethyl ether and filtration to N-(4-(2- chloroacetyl)phenyl)benzamide (3.75 g, 90%) as a grey solid. Ή NMR (400 MHz, DMSO- d): δ 10.60 (s, 1H), 7.99 (m, 6H), 7.62 (m, 1H), 7.56 (m, 2H), 5.15 (s, 2H). MS (ESI): Calcd. for CisH12ClN02: 273, found 274 (M+l)+ [0096] Intermediate 21
Figure imgf000029_0001
[0097] To a 500 mL round-bottomed flask equipped with condenser and argon inlet were added aluminum chloride (3.17 g, 23.78 mmol), carbon disulfide (20 mL), and 2- chlorobutyryl chloride (85% tech., 1 .53 g, 10.87 mmol) under ice-bath. The mixture was stirred for 15 mins. To the stirring mixture was added 3,4-dihydro-2(H)-quinolinone (1.00 g, 6.79 mmol) in one portion. The mixture was stirred for 10 minutes prior to reflux for 2.5 hours. The reaction mixture was cooled and the solvent was decanted off. Then ice and cold water (30 mL) was slowly added while stirred thoroughly. The beige precipitate filtered, washed with water (3 x 50 mL). The residue was purified by precipitating in diethyl ether and filtration to 6-(2-chlorobutanoyl)-3,4-dihydroquinolin-2(lH)-one (0.81 g, 48%) as a beige solid. lR NMR (400 MHz, DMSO-d): δ 10.30 (s, 1H), 7.47 (s, 1 H), 7.44 (dd, 1 H, J= 8.8, 1.6 Hz), 6.95 (d, 1H, J= 8.0 Hz), 2.97 (t, 1 H, J = 7.2 Hz), 2.91 (t, 2H, J = 7.6 Hz), 2.49 (partial masked under d-DMSO, m, 3H), 2.45 (t, 2H, J= 7.2 Hz). MS (ESI): Calcd. for C,3H,4C1N02: 251 , found 252 (M+l)+
[0098] Intermediate 22
Figure imgf000029_0002
[0099] To a 500 mL round-bottomed flask equipped with condenser and argon inlet were added aluminum chloride (3.17 g, 23.78 mmol), carbon disulfide (20 mL), and 2- chloropropionyl chloride (1.04 g, 8.15 mmol) under ice-bath. The mixture was stirred for 15 mins. To the stirring mixture was added 3,4-dihydro-2(/J)-quinolinone (1.00 g, 6.79 mmol) in one portion. The mixture was stirred for 10 minutes prior to reflux for 2.5 hours. The reaction mixture was cooled and the solvent was decanted off. Then ice and cold water (30 mL) was slowly added while stirred thoroughly. The beige precipitate filtered, washed with water (3 x 50 mL). The residue was purified by precipitating in diethyl ether and filtration to 6-(2-chloropropanoyl)-3,4-dihydroquinolin-2(lH)-one (1.47 g, 91%) as a beige solid. Ή NMR (400 MHz, DMSO-d): δ 10.48 (s, 1H), 7.89-7.84 (m, 2H), 6.96 (d, 1H, J= 8.4 Hz), 5.70 (q, 1H, J= 6.8 Hz), 2.96 (t, 2H, J= 7.6 Hz), 2.50 (partial masked under d-DMSO, m, 2H), 1.59 (2, 3H, J= 6.8 Hz). MS (ESI): Calcd. for C12Hi2ClN02: 237, found 238 (M+l)+
[00100] Intermediate 23
Figure imgf000030_0001
[00101] 6-(2-chloropropanoyl)-3,4-dihydroquinolin-2(lH)-one (1.00 g, 4.21 mmol), thiourea (0.35 g, 4.63 mmol) and triethylamine (0.88 mL, 6.31 mmol) suspended in anhydrous ethanol (12 ml) in a sealed tube under argon atmosphere. The sealed tube was microwaved at 120°C for 45 min. The brown precipitate was collected by filtration and washed with cold ethanol. The residue was purified by precipitating in diethyl ether and filtration to 6-(2-amino-5-methylthiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.92 g, 84%) as a yellow solid. 'H MR (400 MHz, DMSO-d): δ 10.11 (s, 1H), 7.37 (s, 1H), 7.32 (dd, 1H, J= 8.4, 2.0 Hz), 6.84 (d, 1 H, J = 8.0 Hz), 6.70 (s, 2H), 2.89 (t, 2H, J= 7.2 Hz), 2.46 (t, 2H, J= 7.6 Hz), 2.30 (s, 3H). MS (ESI): Calcd. for C13H13N3OS: 259, found 260 (M+l)+
[00102] Intermediate 24
Figure imgf000030_0002
[00103] 6-(2-chlorobutanoyl)-3,4-dihydroquinolin-2(lH)-one (0.80 g, 3.18 mmol), thiourea (0.25 g, 3.34 mmol) and triethylamine (0.66 mL, 4.77 mmol) suspended in anhydrous ethanol (12 ml) in a sealed tube under argon atmosphere. The sealed tube was microwaved at 120°C for 45 min. The brown precipitate was collected by filtration and washed with cold ethanol. The residue was dried loaded onto silica and purified by flash chromatography over silica gel with CH2Cl2:MeOH (95:5) to give 6-(2-amino-5-ethylthiazol- 4-yl)-3,4-dihydroquinolin-2(lH)-one (0.27 g, 29%) as a light brown solid. 1H NMR (400 MHz, DMSO-d): δ 10.1 1 (s, 1H), 7.30 (s, 1H), 7.26 (dd, 1H, J= 8.4, 2.0 Hz), 6.84 (d, 1H, J = 8.0 Hz), 6.72 (s, 2H), 2.89 (m, 2H), 2.71 (q, 2H, J = 8.0 Hz), 2.46 (t, 2H, J= 8.4 Hz), 1.16 (t, 3H, J= 7.6 Hz). MS (ESI): Calcd. for C^H^NaOS: 273, found 274 (M+l)+
[00104] Intermediate 25
Figure imgf000031_0001
[00105] 6-(Chloroacetyl)-3,4-dihydroquinolin-2(lH)-one (0.300 g, 1.34 mmol) and urea (1.61 g, 26.82 mmol) dissolve in anhydrous acetonitrile (30 ml) in a flask under argon atmosphere. The mixture refluxed for 15 days. After cooling, the precipitate was filtered away and the filtrate was extracted with 8:2 dichloromethane/isopropanol (3 x 20 mL) over sat. NaHCC>3 (2 x 50 mL). The combined organic layers were dried over anhydrous Na2S04 and concentrated in vacuo. The residue was purified by flash chromatography over silica gel using 95:5 dichloromethane/methanol to give 6-(2-aminooxazol-4-yl)-3,4-dihydroquinolin- 2(lH)-one (0.058 g, 19%) as a peach solid. Ή NMR (400 MHz, DMSO-d): δ 10.10 (s, 1 H), 7.74 (s, 1H), 7.43(s, 1H), 7.39 (dd, 1H, J= 8.0, 1.6 Hz), 6.82 (d, 1H, J= 8.4 Hz), 6.65 (s, 2H), 2.87 (t, 2H, J= 7.6 Hz), 2.45 (partial masked under d-DMSO, t, 2H, J = 7.2 Hz). MS (ESI): Calcd. for CiaHnNsOs: 229, found 230 (M+l)+
[00106] Intermediate 26
Figure imgf000031_0002
[00107] 6-(Chloroacetyl)-3,4-dihydroquinolin-2(lH)-one (0.500 g, 2.24 mmol) and N- acetylguanidine (0.678 g, 6.71 mmol) suspended in anhydrous acetonitrile (15 ml) in a sealed tube under argon atmosphere. The sealed tube was microwaved at 100°C for 120 min. The precipitate was filtered out and the filtrate residue was purified by flash chromatography over silica gel using 95:5 dichloromethane/methanol to give 6-(l-acetyl-2-amino-lH-imidazol-4- yl)-3,4-dihydroquinolin-2(lH)-one (0.044 g, 7%) as a yellow solid. 'Η NMR (400 MHz, DMSO-d): δ 1 1.52 (s, 1H), 1 1.19 (s, 1H), 10.04 (s, 1H), 8.71 (br s, 2H), 7.51 (s, 1H), 7.46 (dd, 1H, J= 8.4, 1.6 Hz), 7.12(d, 1H, J= 1.6 Hz), 6.79 (d, 1 H, J= 8.0 Hz), 2.87 (m, 2H), 2.45 (m, 2H), 2.06 (s, 3H). MS (ESI): Calcd. for C^H^N^: 270, found 271 (M+l)+
[00108] Intermediate 27
Figure imgf000032_0001
[00109] To a 500 mL round-bottomed flask equipped with condenser and argon inlet were added aluminum chloride (19.02 g, 142.69 mmol), carbon disulfide (100 mL), and dichloroacetyl chloride (7.21 g, 48.92 mmol) under ice-bath. The mixture was stirred for 15 mins. To the stirring mixture was added 3,4-dihydro-2(H)-quinolinone (6.00 g, 40.77 mmol) in one portion. The mixture was stirred for 15 minutes prior to reflux for 3 hours. The reaction mixture was cooled and the solvent was decanted off. Then ice and cold water (250 mL) was slowly added while stirred thoroughly. The beige precipitate filtered and washed with water (3 x 100 mL). The residue was purified by precipitating in diethyl ether and filtration to give 6-(2,2-dichloroacetyl)-3,4-dihydroquinolin-2(lH)-one (9.54 g, 91%) as a light brown solid. Ή NMR (400 MHz, DMSO-d): δ 10.56 (bs, 1H), 7.93 (bs, 1H), 7.90 (dd, 1H, J= 8.4, 1.6 Hz), 7.82 (s, 1H), 6.98 (d, 1H, J= 8.4 Hz), 2.97 (m, 2H), 2.53 (partial masked under d-DMSO, m, 2H). MS (ESI): Calcd. for CiiH9Cl2N02: 258, found 258 (M)+
[00110] Intermediate 28
Figure imgf000032_0002
[00111] 6-(2,2-dichloroacetyl)-3,4-dihydroquinolin-2(lH)-one (1.00 g, 3.87 mmol) and thiourea (0.310 g, 4.07 mmol) suspended in anhydrous acetonitrile (12 ml) in a sealed under argon atmosphere. The sealed tube was heated at 45°C for 4 days. The yellow precipitate was collected by filtration and washed with cold ethanol. The solid was dried in vacuo to give 6-(2-amino-5-chlorothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one hydrochloride (0.90 | 74%) as a yellow solid. Ή NMR (400 MHz, DMSO-d): δ 10.22 (s, 1H), 7.61 (s, 1H), 6.89 (d, 1H, J = 8.4 Hz), 6.30 (bs, 2H), 2.91 (m, 2H), 2.47 (partial masked under d-DMSO, m, 2H). MS (ESI): Calcd. for C12Hi iCl2N3OS: 316, found 280 (M+l - HC1)+ Exemplary Compounds
[00112] Example 1
Figure imgf000033_0001
[00113] Step 1 : Preparation of furan-2-yl-acetyl chloride: Oxalyl chloride (10.5 mL, 124.22 mmol), was added dropwise to a solution of furan-2-yl-acetic acid (0.500 g, 1.77 mmol) in dichloromethane (40 mL) at 0°C, followed by the addition of DMF (1 drop) and the mixture was stirred overnight (15 hrs). The reaction mixture was concentrated in vacuo and the residue was used without further purification.
[00114] Step 2: 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one was dissolved in 1 : 1 acetonitrile/pyridine mixture (10 nxL/10 mL) and excess triethylamine (4 mL) was added. The mixture was cool under ice-bath and a solution of furan-2-yl-acetyl chloride in acetonitrile (5 mL) was slowly added. The mixture was then stirred at room temperature overnight (15 hrs). The reaction was quenched with water (20 mL) and concentrated to minimum. The crude was extracted with 8:2 dichloromethane/isopropanol (2 x 400 mL) mixtures, washed with sat. NH4C1 (2 x 400 mL), and dried over anhydrous Na2S04. The concentrated residue was then purified by flash chromatography over silica with
CH2Cl2/MeOH (95:5). The solid was then sonicated in minimum amount of dichloromethane and the precipitated solid was collected by filtration to give 2-(furan-2-yl)-N-(4-(2-oxo- l,2,3,4-tetrahydroquinolin-6-yl)thiazol-2-yl)acetamide (0.423 g, 68%) as a beige solid. lR NMR (400 MHz, DMSO-d): δ 12.46 (bs, 1H), 10.18 (s, 1H), 7.70 (s, 1H), 7.66 (dd, 1H, J= 8.8, 1.6 Hz), 7.58 (bs, 1H), 7.46 (bs, 1H), 6.88 (d, 1H, J= 8.8 Hz), 6.41 (m, 1H), 6.31 (m, 1H), 3.88 (s, 2H), 2.92 (m, 2H), 2.48 (partial masked under d-DMSO, m, 2H). MS (ESI): Calcd. for ¾Η15Ν3038: 353, found 354 (M+l)+ [00115] Example 2
Figure imgf000034_0001
[00116] To a suspension of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.050 g, 0.203 mmol) and 2,4-dimethylthiazole-5-carboxylic acid (0.035 g, 0.224 mmol), and pyridine (0.06 mL, 0.713 mmol) in acetonitrile (2 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.29 mL, 0.489 mmol). The sealed tube was heated to 48.5°C for 4 days and the precipitation formed. After cooling, the solid was collected by filtration and washed with cold dichloromethane to give 2,4-dimethyl- N-(4-(2-oxo-l ,2,3,4-tetrahydroquinolin-6-yl)thiazol-2-yl)thiazole-5-carboxamide (0.045 g, 58%) as a beige solid. Ή NMR (400 MHz, DMSO-d): δ 12.58 (bs, 1H), 10.18 (s, 1H), 7.74 (s, 1H), 7.69 (dd, 1H, J= 8.4, 1.6 Hz), 7.45 (bs, 1H), 6.88 (d, 1H, J= 8.4 Hz), 2.93 (m, 2H), 2.66 (s, 3H), 2.61 (s, 3H), 2.48 (partial masked under d-DMSO, m, 2H). MS (ESI): Calcd. for Ci8Hi6N402S2: 384, found 385 (M+l)+
[00117] Example 3
Figure imgf000034_0002
[00118] To a suspension of 5-(2-aminothiazol-4-yl)indolin-2-one (0.050 g, 0.203 mmol) and 2,4-dimethylthiazole-5-carboxylic acid (0.035 g, 0.224 mmol), and pyridine (0.06 mL, 0.713 mmol) in acetonitrile (2 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.29 mL, 0.489 mmol). The sealed tube was heated to 48.5°C for 4 days and the precipitation formed. After cooling, the solid was collected by filtration and washed with cold dichloromethane to give 2,4-dimethyl-N-(4-(2-oxoindolin-5- yl)thiazol-2-yl)thiazole-5-carboxamide (0.045 g, 58%) as a beige solid. Ή NMR (400 MHz, DMSO-d): δ 12.53 (bs 1H), 10.48 (s, 1H), 7.77 (m, 2H), 7.48 (s, 1 H), 6.86 (d, 1H, J = Hz), 3.54 (s, 2H), 2.67 (s, 3H), 2.61 (s, 3H). MS (ESI): Calcd. for C17H14N4O2S2: 370, 371 (M+l)+
[00119] Example 4
Figure imgf000035_0001
[00120] To a suspension of 5-(2-aminothiazol-4-yl)-lH-benzo[d]imidazol-2(3H)-one (0.200 g, 0.861 mmol) and 2,4-dimethylthiazole-5-carboxylic acid (0.149 g, 0.947 mmol), and pyridine (0.31 mL, 3.872 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 1.790 mL, 3.012 mmol). The sealed tube was heated to 48.5°C for 4 days. After cooling, the mixture was quenched with water (50 mL) and extracted with 8:2 dichloromethane/isopropanol (2 x 50 mL) followed by washing once with sat. NaHCOs (200 mL). The combined organic layers were dried over anhydrous Na2S04 and concentrated in vacuo. The residue was purified by precipitating in dichloromethane and filtration to give 2,4-dimethyl-N-(4-(2-oxo-2,3-dihydro-lH- benzo[d]imidazol-5-yl)thiazol-2-yl)thiazole-5-carboxamide (0.035 g, 11%) as a beige solid. ]H NMR (400 MHz, DMSO-d): δ 12.55 (bs, 1H), 10.76 (s, 1H), 10.70 (s, 1H), 7.51 (m, 3H), 6.96 (d, 1H, J= 8.4 Hz), 2.67 (s, 3H), 2.61 (s, 3H). MS (ESI): Calcd. for C16H13N502S2: 371, found 372 (M+l )+
[00121] Example 5
Figure imgf000035_0002
[00122] To a suspension of N-(4-(2-aminothiazol-4-yl)phenyl)benzamide (0.041g, 0.138 mmol) and 2,4-dimethylthiazole-5-carboxylic acid (0.024 g, 0.152 mmol), and pyridine (0.01 mL, 0.623 mmol) in acetonitrile (1.5 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.29 mL, 0.485 mmol). The sealed tube was heated to 48.5°C for 4 days. After cooling, the mixture was quenched with water (10 mL) and extracted with 8:2 dichloromethane/isopropanol (2 x 25 mL) followed by washing once with sat. NaHC(¾ (100 mL). The combined organic layers were dried over anhydrous Na2S04 and concentrated in vacuo. The residue was purified by precipitating in
dichloromethane and filtration to give N-(4-(4-benzamidophenyl)thiazol-2-yl)-2,4- dimethylthiazole-5-carboxamide (0.029 g, 48%) as a beige solid. !H NMR (400 MHz,
DMSO-d): δ 10.34 (s, 1H), 7.96 (d, 2H, J= 7.2 Hz), 7.89 (m, 4H), 7.57 (m, 4H), 2.67 (s, 3H), 2.62 (s, 3H). MS (ESI): Calcd. for C^H^ iC^: 434, found 435 (M+l)+
[00123] Example 6
Figure imgf000036_0001
[00124] To a suspension of 6-(2-aminothiazol-4-yl)chroman-2-one (0.100 g, 0.406 mmol) and 2,4-dimethylthiazole-5-carboxylic acid (0.070 g, 0.447 mmol), and pyridine (0.15 mL, 1.831 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.95 mL, 1.421 mmol). The sealed tube was heated to 48.5°C for 5 days. After cooling, the mixture was quenched with water (50 mL) and extracted with 8:2 dichloromethane/isopropanol (2 x 50 mL) followed by washing once with sat. NaHCCb (100 mL). The combined organic layers were dried over anhydrous Na2S04 and concentrated in vacuo. The residue was purified by precipitating in 1 :3
dichloromethane/diethyl ether mixture and filtration to give 2,4-dimethyl-N-(4-(2- oxochroman-6-yl)thiazol-2-yl)thiazole-5-carboxamide (0.106 g, 67%) as a beige solid. !H
NMR (400 MHz, DMSO-d): δ 12.59 (bs, 1H), 7.86 (d, 1H, J= 1.6 Hz), 7.82 (dd, 1H, J= 8.4, 1.6 Hz), 7.64 (s, 1H), 7.12 (d, 1H, J= 8.4 Hz), 3.05 (t, 2H, J= 7.2 Hz), 2.83 (t, 2H, J= 7.2 Hz), 2.68 (s, 3H), 2.61 (s, 3H). MS (ESI): Calcd. for CigHis sC^: 385, found 386 (M+l )+ [00125] Example 7
Figure imgf000037_0001
[00126] To a suspension of N-(4-(2-aminothiazol-4-yl)phenyl)acetamide (0.200 g, 0.857 mmol) and 2,4-dimethylthiazole-5-carboxylic acid (0.184 g, 0.943 mmol), and pyridine (0.31 mL, 3.862 mmol) in acetonitrile (8 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 1.79 mL, 3.001 mmol). The sealed tube was heated to 48.5°C for 5 days. After cooling, the mixture was quenched with water (100 mL) and extracted with 8:2 dichloromethane/isopropanol (2 x 100 mL) followed by washing once with sat. NaHC(¾ (200 mL). The combined organic layers were dried over anhydrous Na2S04 and concentrated in vacuo. The residue was purified by precipitating in
dichloromethane and filtration to give N-(4-(4-acetamidophenyl)thiazol-2-yl)-2,4- dimethylthiazole-5-carboxamide (0.141 g, 44%) as a beige solid. lU NMR (400 MHz, DMSO-d): δ 10.02 (s, 1H), 7.84 (d, 2H, J= 8.4 Hz), 7.64 (d, 2H, J= 8.4 Hz), 7.54 (s, 1H), 2.67 (s, 3H), 2.61 (s, 3H), 2.06 (s, 3H). MS (ESI): Calcd. for C17H16 4O2S2: 372, found 373 (M+l)+
[00127] Example 8
Figure imgf000037_0002
[00128] To a suspension of ethyl 3-(5-(2-aminothiazol-4-yl)-2-hydroxyphenyl)propanoate (0.100 g, 0.342 mmol) and 2,4-dimethylthiazole-5-carboxylic acid (0.059 g, 0.376 mmol), and pyridine (0.12 mL, 1.541 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.71 mL, 1.201 mmol). The sealed tube was heated to 48.5°C for 5 days. After cooling, the mixture was quenched with water (50 mL) and extracted with 8:2 dichloromethane/isopropanol (2 x 50 mL) followed by washing once with sat. NaHCC>3 (100 mL). The combined organic layers were dried over anhydrous Na2SC>4 and concentrated in vacuo. The residue was purified by precipitating in 1 :3 dichloromethane/diethyl ether mixture and filtration to give ethyl 3-(5-(2-(2,4- dimethylthiazole-5-carboxamido)thiazol-4-yl)-2-
((hydroxy(propyl)phosphoryl)oxy)phenyl)propanoate (0.028 g, 15%) as an orange solid after dried under high vacuum. Ή NMR (400 MHz, DMSO-d): δ 7.82-7.10 (m, 6H), 4.05 (q, 2H, J= 7.2 Hz), 2.89 (m, 2H), 2.67 (s, 3H), 2.61 (s, 3H), 1.75-1 .30 (m, 6H), 1.16 (t, 3H, J = 7.2 Hz), 0.96 (t, 3H, J = 12 Hz). MS (ESI): Calcd. for C23H28N306PS2: 537, found 538 (M+l)+
[00129] Example 9
Figure imgf000038_0001
[00130] To a suspension of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.100 g, 0.408 mmol) and 2-cyclopropyl-l ,3-thiazole carboxylic acid (0.076 g, 0.448 mmol), and pyridine (0.15 mL, 1.832 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1.432 mmol). The sealed tube was heated to 48.5°C for 4 days and the precipitation formed. After cooling, the the precipitated solid was collected by filtration and washed with cold dichloromethane to give 2-cyclopropyl-N-(4-(2-oxo- 1 ,2,3, 4-tetrahydroquinolin-6-yl)thiazol-2-yl)thiazole-5- carboxamide (0.111 g, 69%) as a beige solid. lR NMR (400 MHz, DMSO-d): δ 12.9 (bs, 1H), 10.19 (s, 1H), 8.65 (s, 1H), 7.75 (s, 1H), 7.70 (dd, 1 H, J= 8.0, 1.6 Hz), 7.51 (s, 1H), 6.89 (1H, d, J= 8.4 Hz), 2.93 (t, 2H, J= 6.8 Hz), 2.49 (partial masked under d-DMSO, m, 2H), 2.07 (s, 1H), 1.19 (m, 2H), 1.08 (m, 2H). MS (ESI): Calcd. for <¾Η16Ν40282: 396, found 397 (M+l)+
[00131] Example 10
Figure imgf000039_0001
[00132] To a suspension of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.100 g, 0.408 mmol) and 2-phenylthiazole-5-carboxylic acid (0.092 g, 0.448 mmol), and pyridine (0.15 mL, 1.832 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1.432 mmol). The sealed tube was heated to 48.5°C for 4 days and the precipitation formed. After cooling, the precipitated solid was collected by filtration and washed with cold dichloromethane to give N-(4-(2-oxo-l,2,3,4-tetrahydroquinolin-6-yl)thiazol-2-yl)-2-phenylthiazole-5-carboxamide (0.156 g, 88%) as a beige solid. 'H NMR (400 MHZ, DMSO-d): δ 13.10 (bs, 1H), 10.20 (s, 1H), 8.93 (s, 1H), 8.05 (m, 2H), 7.77 (s, 1H), 7.72 (dd, 1H, J= 8.0, 1.6 Hz), 7.57 (m, 4H), 6.90 (d, 1 H, J= 8.4 Hz), 2.94 (t, 2H, J= 6.8 Hz), 2.50 (masked under d-DMSO, m, 2H). MS (ESI): Calcd. for C22H16N4O2S2: 432, found 433 (M+l)+
[00133] Example 11
Figure imgf000039_0002
[00134] To a suspension of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.100 g, 0.408 mmol) and 2-cyano-l,3-thiazole-5-carboxylic acid (0.069 g, 0.448 mmol), and pyridine (0.15 mL, 1.832 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1.432 mmol). The sealed tube was heated to 48.5°C for 4 days and the precipitation formed. After cooling, the precipitated solid was collected by filtration and washed with cold dichloromethane to give 2- cyano-N-(4-(2-oxo-] ,2,3,4-tetrahydroquinolin-6-yl)thiazol-2-yl)thiazole-5-carboxamide (0.073 g, 47%) as a yellow solid. ^ NMR (400 MHz, DMSO-d): δ 13.43 (bs, 1 H), 10.21 (s, 1H), 9.03 (s, 1H), 7.75 (s, 1H), 7.71 (dd, 1H, J= 8.0, 1.6 Hz), 7.59 (s, 1H), 6.91 (d, 1H, J= 8.4 Hz), 2.94 (t, 2H, J= 6.8 Hz), 2.50 (masked under d-DMSO, m, 2H). MS (ESI): Calcd. for CivHnNsOsSs: 381, found 382 (M+l)+ [00135] Example 12
Figure imgf000040_0001
[00136] To a suspension of l-(6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-l (2H)- yl)ethanone (0.100 g, 0.366 mmol) and 2,4-dimethylthiazole-5-carboxylic acid (0.063 g, 0.402 mmol), and pyridine (0.13 mL, 1.65 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.76 mL, 1.281 mmol). The sealed tube was heated to 48.5°C for 4 days and the the precipitation formed. After cooling, the solid was collected by filtration and washed with cold dichloromethane to give N-(4-(l-acetyl-l,2,3,4-tetrahydroquinolin-6-yl)thiazol-2-yl)-2,4-dimethylthiazole-5- carboxamide (0.043 g, 29%) as a beige solid. Ή NMR (400 MHz, DMSO-d): δ 12.58 (bs, 1H), 7.75 (s, 1H), 7.70 (dd, 1H, J= 8.0, 1.6 Hz), 7.61 (bs, 2H), 3.70 (t, 2H, J= 6.4 Hz), 2.77 (t, 2H, J = 6.4 Hz), 2.68 (s, 3H), 2.61 (s, 3H), 2.20 (s, 3H0, 1.90 (p, 2H, J= 6.4 Hz). MS (ESI): Calcd. for C20H20N4O2S2: 412, found 413 (M+l)+
[00137] Example 13
Figure imgf000040_0002
[00138] To a suspension of 6-(2-aminothiazol-4-yl)-l-methyl-3,4-dihydroquinolin-2(lH)- one (0.100 g, 0.386 mmol) and 2-cyclopropyl-l ,3-thiazole carboxylic acid (0.067 g, 0.424 mmol), and pyridine (0.14 mL, 1.742 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.80 mL, 1.352 mmol). The sealed tube was heated to 48.5°C for 4 days. After cooling, the mixture was quenched with water (100 mL) and extracted with 8:2 dichloromethane/isopropanol (2 x 100 mL) followed by washing once with sat. NaHC03 (200 mL). The combined organic layers were dried over anhydrous Na2SC>4 and concentrated in vacuo. The residue was purified by precipitating in 1 :3 dichloromethane/diethyl ether mixture and filtration to give 2,4-dimethyl- N-(4-(l-methyl-2-oxo-l,2,3,4-tetrahydroquinolin-6-yl)thiazol-2-yl)thiazole-5-carboxamide (0.059 g, 39%) as a beige solid. Ή NMR (400 MHz, DMSO-d): δ 12.57 (bs, 1H), 7.82 (dd, 1H, J= 8.0, 1.6 Hz), 7.79 (s, 1H), 7.56 (s, 1H), 7.15 (d, 1H, J= 8.4 Hz), 3.28 (s, 3H), 2.92 (t, 2H, J= 6.4 Hz), 2.67 (s, 3H), 2.62 (s, 3H), 2.58 (t, 2H, J= 6.4 Hz). MS (ESI): Calcd. for Ci9H18N402S2: 398, found 399 (M+l)+
[00139] Example 14
Figure imgf000041_0001
[00140] To a suspension of 7-(2-aminothiazol-4-yl)-4,5-dihydro-lH-benzo[ )]azepin- 2(3H)-one (0.100 g, 0.386 mmol) and 2-cyclopropyl-l,3-thiazole carboxylic acid (0.067 g, 0.424 mmol), and pyridine (0.14 mL, 1.742 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.80 mL, 1.352 mmol). The sealed tube was heated to 48.5°C for 4 days. After cooling, the mixture was quenched with water (100 mL) and extracted with 8:2 dichloromethane/isopropanol (2 x 100 mL) followed by washing once with sat. NaHC03 (200 mL). The combined organic layers were dried over anhydrous Na2S04 and concentrated in vacuo. The residue was purified by precipitating in 1 :3 dichloromethane/diethyl ether mixture and filtration to give 2,4-dimethyl- N-(4-(2-oxo-2,3,4,5-tetrahydro-lH-benzo[ >]azepin-7-yl)thiazol-2-yl)thiazole-5-carboxamide (0.060 g, 39%) as a beige solid. lH NMR (400 MHz, DMSO-d): δ 12.59 (bs, 1H), 9.59 (s, 1H), 7.82 (s, 1H), 7.76 (dd, 1H, J= 8.0, 1.6 Hz), 7.59 (s, 1H), 7.01 (d, 1H, J = 8.4 Hz), 2.73 (t, 2H, J = 6.4 Hz), 2.67 (s, 3H), 2.61 (: s, 3H), 2.16 (m, 4H). MS (ESI): Calcd. for
Ci9H18N402S2: 398, found 399 (M+l)+
[00141] Example 15
Figure imgf000042_0001
[00142] To a suspension of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.100 g, 0.408 mmol) and 5-thiazole carboxylic acid (0.058 g, 0.448 mmol), and pyridine (0.15mL, 1.832 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1.431 mmol). The sealed tube was heated to 48.5°C for 4 days and the precipitation formed. After cooling, the solid was collected by filtration and washed with cold dichloromethane to give N-(4-(2-oxo-l ,2,3,4- tetrahydroquinolin-6-yl)thiazol-2-yl)thiazole-5-carboxamide (0.132 g, 91%) as a beige solid. 'H NMR (400 MHz, DMSO-d): δ 13.01 (bs, 1H), 10.19 (s, 1H), 9.38 (s, 1H), 8.93 (s, 1H), 7.75 (s, 1H), 7.71 (dd, 1H, J= 8.4, 1.6 Hz), 7.54 (s, 1H), 6.89 (d, 1H, J= 8.4 Hz), 2.93 (m, 2H), 2.48 (partial masked under d-DMSO, m, 2H). MS (ESI): Calcd. for C^H^C^: 356, found 357 (M+l)+
[00143] Example 16
Figure imgf000042_0002
[00144] To a suspension of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.100 g, 0.408 mmol) and oxazole-5 -carboxylic acid (0.051g, 0.448 mmol), and pyridine (0.15mL, 1.832 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1.431 mmol). The sealed tube was heated to 48.5°C for 4 days and the precipitation formed. After cooling, the solid was collected by filtration and washed with cold dichloromethane to give N-(4-(2-oxo- 1 ,2,3,4- tetrahydroquinolin-6-yl)thiazol-2-yl)oxazole-5-carboxamide (0.121 g, 87%) as a beige solid. ^ NMR (400 MHz, DMSO-d): δ 13.03 (bs, 1 H), 10.18 (s, 1H), 8.72 (s, 1H), 8.29 (s, 1H), 7.75 (s, 1H), 7.71 (dd, 1H, J= 8.4, 1.6 Hz), 7.56 (s, 1H), 6.90 (d, 1H, J= 8.4 Hz), 2.93 (m, 2H), 2.48 (partial masked under d-DMSO, m, 2H). MS (ESI): Calcd. for C16H12N4O3S: 340, found 341 (M+l)+
[00145] Example 17
Figure imgf000043_0001
[00146] To a suspension of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.100 g, 0.408 mmol) and lH-imidazole-4-carboxylic acid (0.050g, 0.448 mmol), and pyridine (0.15mL, 1.832 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1.431 mmol). The sealed tube was heated to 48.5°C for 4 days and the precipitation formed. After cooling, the mixture was quenched with water (10 mL) and extracted with 8:2 dichloromethane/isopropanol (2 x 25 mL) followed by washing once with sat. NaHC03 (100 mL). The combined organic layers were dried over anhydrous Na2S04 and concentrated in vacuo. The residue was purified by precipitating in dichloromethane and filtration to give N-(4-(2-oxo- 1 ,2,3,4- tetrahydroquinolin-6-yl)thiazol-2-yl)-lH-imidazole-5-carboxamide (0.013 g, 10%) as a tan solid. ]H NM (400 MHz, DMSO-d): 5 12.73 (bs, 1H), 1 1.38 (bs, 1H), 10.14 (s, 1H), 8.04 (s, 1H), 7.85 (s, 1H), 7.72 (s, 1H), 7.67 (dd, 1H, J= 8.4, 1.6 Hz), 7.44 (s, 1H), 6.85 (d, 1 H, J = 8.4 Hz), 2.90 (m, 2H), 2.45 (partial masked under d-DMSO, m, 2H). MS (ESI): Calcd. for C16Hi3N502S: 339, found 340 (M+l)+
[00147] Example 18
Figure imgf000044_0001
[00148] To a suspension of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.100 g, 0.408 mmol) and l ,2,4-triazole-3-carboxylic acid (0.05 lg, 0.448 mmol), and pyridine (0.15mL, 1.832 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1.431 mmol). The sealed tube was heated to 48.5°C for 4 days and the precipitation formed. After cooling, the solid was collected by filtration and washed with cold dichloromethane to give N-(4-(2-oxo- 1 ,2,3,4- tetrahydroquinolin-6-yl)thiazol-2-yl)-4H-l,2,4-triazole-3-carboxamide (0.099 g, 71%) as a green solid. !H NMR (400 MHz, DMSO-d): δ 12.35 (bs, 1H), 10.17 (s, 1H), 8.74 (s, 1H), 7.76 (s, 1H), 7.71 (dd, 1H, J= 8.4, 1.6 Hz), 7.56 (s, 1H), 6.89 (d, 1H, J= 8.4 Hz), 2.93 (m, 2H), 2.48 (partial masked under d-DMSO, m, 2H). MS (ESI): Calcd. for Ci5H12 602S: 340, found 341 (M+l)+
[00149] Example 19
Figure imgf000044_0002
[00150] Step 1 : Preparation of lH-tetrazole acid chloride: Thionyl chloride (0.74 mL,
10.191 mmol), was added dropwise to a solution of lH-tetrazole-5-carboxylic acid (0.069 g, 0.612 mmol) in tetrahydrofuran (2 mL) at 0°C, followed by the addition of DMF (1 drop) and the mixture was stirred overnight (15 hrs). The reaction mixture was concentrated in vacuo and the residue was used without further purification. [00151] Step 2: A solution 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one in pyridine (2 mL) was quickly added to acid chloride under ice-bath. The mixture was vigorously stirred for 10 min and then stirred at room temperature overnight (15 hrs). The reaction was quenched with water (20 mL) and concentrated to minimum. The crude mixture was extracted with 8:2 dichloromethane/isopropanol (3 x 20 mL) mixtures, washed with sat. NaHC(¾(2 x 20 mL), and dried over anhydrous Na2S04. The concentrated residue was purified by precipitation in minimum amount of dichloromethane and filtration to give N-(4- (2-oxo-l , 2,3,4-tetrahydroquinolin-6-yl)thiazol-2-yl)-lH-tetrazole-5-carboxamide (0.065 g, 47%) as a greenish-grey solid. Ή NMR (400 MHz, DMSO-d): δ 10.21 (s, 1H), 8.11 (bs, 1H), 7.61 (s, 1H), 7.55 (dd, 1H, J= 8.4, 1.6 Hz), 6.97 (s, 1H), 7.56 (s, 1H), 6.88 (d, 1H, J = 8.4 Hz), 2.90 (m, 2H), 2.47 (partial masked under d-DMSO, m, 2H). MS (ESI): Calcd. for C14H11 7O2S : 341 , found 398 (unstabled, M+56)+
[00152] Example 20
Figure imgf000045_0001
[00153] To a suspension of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.100 g, 0.408 mmol) and 4-cyclopropyl-l,3-thiazole carboxylic acid (0.079 g, 0.469 mmol), and pyridine (0.15mL, 1.832 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1.431 mmol). The sealed tube was heated to 48.5°C for 7 days. After cooling, the mixture was quenched with water (10 mL) and extracted with 8:2 dichloromethane/isopropanol (2 x 25 mL) followed by washing once with sat. NaHCC>3 (100 mL). The combined organic layers were dried over anhydrous Na2S04 and concentrated in vacuo. The crude mixture was purified by precipitation in minium amount of 1 : 1 dichloromethane/diethyl ether mixture. The obtained solid was collected by filtration and washed with cold dichloromethane to give 4- cyclopropyl-N-(4-(2-oxo-l ,2,3,4-tetrahydroquinolin-6-yl)thiazol-2-yl)thiazole-5- carboxamide (0.129 g, 80%) as a green crystalline solid. Ή NMR (400 MHz, DMSO-d): δ
12.76 (bs, 1H), 10.20 (s, 1H), 9.07 (s, 1H), 7.74 (s, 1 H), 7.70 (dd, 1H, J= 8.4, 1 .6 Hz), 7.51 (bs, 1H), 6.89 (d, 1H, J= 8.4 Hz), 2.93 (m, 2H), 2.49 (partial masked under d-DMSO, m, 2H). MS (ESI): Calcd. for 9H16N4O2S2: 396, found 397 (M+l)+ [00154] Example 21
Figure imgf000046_0001
[00155] To a suspension of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.100 g, 0.408 mmol) and 4-(trifluoromethyl)-l,3-thiazole-5-carboxylic acid (0.088 g, 0.448 mmol), and pyridine (0.15mL, 1 .832 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1.431 mmol). The sealed tube was heated to 48.5°C for 7 days. After cooling, the mixture was quenched with water (10 mL) and extracted with 8:2 dichloromethane/isopropanol (2 x 25 mL) followed by washing once with sat. NaHC03 (100 mL). The combined organic layers were dried over anhydrous Na2SC>4 and concentrated in vacuo. The crude mixture was purified by precipitation in minium amount of dichloromethane. The obtained solid was collected by filtration and washed with cold dichloromethane to give N-(4-(2-oxo-l , 2,3,4- tetrahydroquinolin-6-yl)thiazol-2-yl)-4-(trifluoromethyl)thiazole-5-carboxamide (0.155 g, 90%) as a beige solid. lH NMR (400 MHz, DMSO-d): δ 13.35 (bs, 1 H), 10.20 (s, 1 H), 9.36 (s, 1H), 7.73 (s, 1H), 7.68 (dd, 1H, J = 8.4, 1.6 Hz), 7.59 (bs, 1H), 6.89 (d, 1H, J= 8.4 Hz), 2.93 (m, 2H), 2.49 (partial masked under d-DMSO, m, 2H). MS (ESI): Calcd. for
C,7H1 1F3N402S2: 424, found 425 (M+l)+
[00156] Example 22
Figure imgf000046_0002
[00157] To a suspension of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.075 g, 0.306 mmol) and 4-ethyl-l ,3-thiazole carboxylic acid (0.055 g, 0.351 mmol), and pyridine (0.1 lmL, 1.381 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.64 mL, 1.072 mmol). The sealed tube was heated to 50°C for 7 days. After cooling, the mixture was quenched with water (10 mL) and extracted with 8:2 dichloromethane/isopropanol (2 x 25 mL) followed by washing once with sat. NaHCCh (100 mL). The combined organic layers were dried over anhydrous Na2S04 and concentrated in vacuo. The crude mixture was purified by precipitation in minium amount of dichloromethane. The obtained solid was collected by filtration and washed with cold dichloromethane to give 4-ethyl-N-(4-(2-oxo- 1,2,3, 4-tetrahydroquinolin-6-yl)thiazol-2- yl)thiazole-5-carboxamide (0.090 g, 76%) as an off-white solid. Ή NMR (400 MHz, DMSO-d): δ 12.74 (bs, 1H), 10.19 (s, 1H), 9.18 (s, 1H), 7.74 (s, 1H), 7.71 (dd, 1H, J = 8.4, 1.6 Hz), 7.52 (bs, 1H), 6.89 (d, 1H, J= 8.4 Hz), 3.08 (q, 2H, J= 7.2 Hz), 2.93 (t, 2H, J = 7.2 Hz), 2.49 (partial masked under d-DMSO, m, 2H), 1.25 (t, 3H, J = 7.2 Hz). MS (ESI): Calcd. for
Figure imgf000047_0001
384, found 385 (M+l)+
[00158] Example 23
Figure imgf000047_0002
[00159] To a suspension of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinazolin-2(lH)-one
(0.100 g, 0.406 mmol) and 2,4-dimethylhiazole-5-carboxylic acid (0.073 g, 0.467 mmol), and pyridine (0.15mL, 1.832 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1421 mmol). The sealed tube was heated to 50°C for 5 days. After cooling, the mixture was quenched with water (10 mL) and extracted with 8:2 dichloromethane/isopropanol (2 x 25 mL) followed by washing once with sat. NaHC(¾ (100 mL). The combined organic layers were dried over anhydrous Na2S04 and concentrated in vacuo. The crude mixture was purified by precipitation in minium amount of dichloromethane. The obtained solid was collected by filtration and washed with cold dichloromethane to give 2,4-dimethyl-N-(4-(2-oxo-l, 2,3,4- tetrahydroquinazolin-6-yl)thiazol-2-yl)thiazole-5-carboxamide (0.129 g, 82%) as a brown solid. 'H NM (400 MHz, DMSO-d): δ 9.15 (s, 1H), 7.66 (dd, 1H, J= 8.4, 1.6 Hz), 7.64 (s 1H), 7.44 (s, 1H), 6.86 (bs, 1H), 6.81 (d, 1H, J= 8.4 Hz), 4.37 (s, 2H), 2.67 (s, 3H), 2.61 (s, 3H). MS (ESI): Calcd. for C^H^NsC^: 385, found 386 (M+l)+
[00160] Example 24
Figure imgf000048_0001
[00161] To a suspension of 8-(2-aminothiazol-4-yl)-5,6-dihydro-lH-pyrrolo[3,2, l - y]quinolin-4(2H)-one (0.075 g, 0.276 mmol) and 2,4-dimethylhiazole-5-carboxylic acid (0.050 g, 0.318 mmol), and pyridine (0.10 mL, 1.121 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.58 mL, 1.241 mmol). The sealed tube was heated to 50°C for 5 days. After cooling, the mixture was quenched with water (10 mL) and extracted with 8:2 dichloromethane/isopropanol (2 x 25 mL) followed by washing once with sat. NaHC03 (100 mL). The combined organic layers were dried over anhydrous Na2SC>4 and concentrated in vacuo. The obtained solid was collected by filtration and washed with cold dichloromethane to give 2,4-dimethyl-N-(4- (4-oxo-l,2, 5, 6-tetrahydro-4H-pyrrolo[3,2, l-y]quinolin-8-yl)thiazol-2-yl)thiazole-5- carboxamide (0.089 g, 79%) as a yellow solid. Ή NMR (400 MHz, DMSO-d): δ 12.50 (bs, 1H), 7.64 (dd, 1H, J= 8.4, 1.6 Hz), 7.49 (s, 1H), 3.97 (t, 2H, J = 8.8 Hz), 3.18 (t, 2H, J= 8.8 Hz), 2.97 (t, 2H, J= 7.6 Hz), 2.67 (s, 3H), 2.61 (s, 3H), 2.58 (t, 2H, J - 7.6 Hz). MS (ESI): Calcd. for C20H18N4O2S2: 410, found 41 1 (M+l)+
[00162] Example 25
Figure imgf000048_0002
[00163] To a suspension of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.100 g, 0.408 mmol) and 4-phenylthiazole-5-carboxylic acid (0.092 g, 0.448 mmol), and pyridine (0.15mL, 1.832 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1.432 mmol). The sealed tube was heated to 50°C for 6 days. After cooling, the mixture was quenched with water (3 mL) and the precitate was collected by filtration washing with cold 1 : 1 acetonitrile/water mixture. The residue was purified by precipitating in dichloromethane and filtration to give N-(4-(2- oxo-l,2,3,4-tetrahydroquinolin-6-yl)thiazol-2-yl)-4-phenylthiazole-5-carboxamide (0.151 g, 86%) as a yellow solid. 1H NM (400 MHz, DMSO-d): δ 12.82 (bs, 1H), 10.18 (s, 1H), 9.3 l (s, 1 H), 7.69 (m, 3H), 7.64 (dd, 1H, J= 8.4, 2.0 Hz), 7.54 (s, 1H), 7.48-7.38 (m, 3H),
6.87 (d, 1H, J= 8.4 Hz), 2.91 (t, 2H, J = 7.2 Hz), 2.47 (partial masked under d-DMSO, t, 2H, J= 7.2 Hz). MS (ESI): Calcd. for C22H16N402S2: 432, found 433 (M+l)+
[00164] Example 26
Figure imgf000049_0001
[00165] To a suspension of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.100 g, 0.408 mmol) and dimethyl-l,3-oxazole-5-carboxylic acid (0.063 g, 0.448 mmol), and pyridine (0.15mL, 1.832 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1.432 mmol). The sealed tube was heated to 50°C for 6 days. After cooling, the mixture was quenched with water (3 mL) and the precitate was collected by filtration washing with cold 1 : 1
acetonitrile/water mixture. The residue was purified by precipitating in dichloromethane and filtration to give 2,4-dimethyl-N-(4-(2-oxo-l,2,3,4-tetrahydroquinolin-6-yl)thiazol-2- yl)oxazole-5-carboxamide (0.12 g, 83%) as a beige solid. H NMR (400 MHz, DMSO-d): δ 12.38 (bs, 1H), 10.19 (s, 1H), 7.75 (s, 1H), 7.70 (dd, 1H, J= 8.4, 2.0 Hz), 7.52 (s, 1H), 6.89 (d, 1H, J= 8.4 Hz), 2.93 (t, 2H, J = 12 Hz), 2.48 (partial masked under d-DMSO, m, 5H), 2.40 (s, 3H). MS (ESI): Calcd. for CisH^N^S: 368, found 369 (M+l)+
[00166] Example 27
Figure imgf000050_0001
[00167] To a suspension of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinoIin-2(lH)-one (0.100 g, 0.408 mmol) and 2,5-dimethyl-lH-imidazole-4-carboxylic acid (0.063 g, 0.448 mmol), and pyridine (0.15mL, 1.832 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1.432 mmol). The sealed tube was heated to 50°C for 12 days. After cooling, the mixture was quenched with water (3 mL) and extracted with 8:2 dichloromethane/isopropanol (3 x 50 mL) followed by washing with sat. NaHC(¾ (2 x 50 mL). The crude solid was dried loaded onto silica and purified by flash chromatography using 95:5 dichloromethane/methanol to give 2,4-dimethyl- N-(4-(2-oxo-l,2,3,4-tetrahydroquinolin-6-yl)thiazol-2-yl)-lH-imidazole-5-carboxamide (0.07 g, 47%) as a peach solid. !H NMR (400 MHz, DMSO-d): 5 12.34 (bs, 1H), 10.58 (bs, 1H), 10.16 (s, 1H), 7.74 (s, 1H), 7.69 (dd, 1H, J = 8.4, 2.0 Hz), 7.45 (s, 1H), 6.88 (d, 1H, J= 8.4 Hz), 2.93 (t, 2H, J = 7.2 Hz), 2.49 (partial masked under d-DMSO, m, 5H), 2.31 (s, 3H). MS (ESI): Calcd. for C18H,7N502S: 367, found 368 (M+l)+ [00168] Example 28
Figure imgf000050_0002
[00169] To a suspension of 6-(2-amino-5-methylthiazol-4-yl)-3,4-dihydroquinolin-2(lH)- one (0.100 g, 0.386 mmol) and 2,4-dimethylthiazole-5-carboxylic acid (0.067 g, 0.424 mmol), and pyridine (0.14 mL, 1.742 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.80 mL, 1.352 mmol). The sealed tube was heated to 50°C for 6 days. After cooling, the mixture was quenched with water (3 mL) and the precitate was collected by filtration washing with cold 1 : 1 acetonitrile/water mixture. The residue was purified by precipitating in dichloromethane and filtration to give 2,4-dimethyl-N-(5-methyl-4-(2-oxo-l,2,3,4-tetrahydroquinolin-6-yl)thiazol- 2-yl)thiazole-5-carboxamide (0.12 g, 78%) as an off-white solid. !H NMR (400 MHz, DMSO-d): δ 12.38 (bs, 1H), 10.19 (s, 1H), 7.46 (s, 1H), 7.41 (dd, 1H, J= 8.4, 2.0 Hz), 6.92 (d, 1H, J= 8.4 Hz), 2.93 (t, 2H, J = 7.2 Hz), 2.65 (s, 3H), 2.61 (s, 3H), 2.49 (partial masked under d-DMSO, m, 2H), 2.43 (s, 3H). MS (ESI): Calcd. for
Figure imgf000051_0001
398, found 399 (M+l)+
[00170] Example 29
Figure imgf000051_0002
[00171] To a suspension of 6-(2-amino-5-ethylthiazol-4-yl)-3,4-dihydroquinolin-2(lH)- one (0.100 g, 0.367 mmol) and 2,4-dimethylthiazole-5-carboxylic acid (0.063 g, 0.402 mmol), and pyridine (0.13 mL, 1.652 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.76 mL, 1.282 mmol). The sealed tube was heated to 50°C for 6 days. After cooling, the mixture was quenched with water (3 mL) and the precitate was collected by filtration washing with cold 1 : 1
acetonitrile/water mixture. The residue was purified by precipitating in dichloromethane and filtration to give N-(5-ethyl-4-(2-oxo-l,2,3,4-tetrahydroquinolin-6-yl)thiazol-2-yl)-2,4- dimethylthiazole-5-carboxamide (0.11 g, 73%) as a beige solid. ¾ NMR (400 MHz,
DMSO-d): δ 12.22 (bs, 1H), 10.20 (s, 1H), 7.40 (s, 1H), 7.35 (dd, 1H, J= 8.4, 2.0 Hz), 6.92 (d, 1H, J= 8.4 Hz), 2.93 (t, 2H, J = 7.2 Hz), 2.86 (q, 2H, J= 7.6 Hz), 2.65 (s, 3H), 2.61 (s, 3H), 2.49 (partial masked under d-DMSO, m, 2H), 1.25 (t, 3H, J= 7.6 Hz). MS (ESI):
Calcd. for C2oH2oN402S2: 412, found 413 (M+l)+
[00172] Example 30
Figure imgf000052_0001
[00173] To a solution of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.200 g, 0.815 mmol) and benzaldehyde (0.091 g, 0.856 mmol) in dry tetrahydrofuran (20 mL) with glacial acetic acid (1 mL) in a flamed dried flask. The mixture was stirred for 4 hours prior to addition of excess sodium borohydride (0.070 mg, 1.71 mmol). The mixture was then stirred and monitored by LCMS for completion. Then it was quenced with water and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were washed once with sat.
NaHC(¾, dried over anhydrous Na2SC> and concentrated in vacuo. The residue was purified by flash chromatography over silica gel using 95:5 dichloromethane/methanol to give 6-(2- (benzylamino)thiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.099 g, 36%) as a light yellow solid. 1H NMR (400 MHz, DMSO-d): δ 10.10 (s, 1H), 8.12 (t, lH, J = 5.6 Hz), 7.62 (s, 1H), 7.58 (dd, 1H, J = 8.4, 1.6 Hz), 7.42-7.30 (m, 4H), 7.25 (t, 1H, J= 6.8 Hz), 6.88 (s, 1H), 6.82 (d, 1H, J= 8.0 Hz), 4.49 (d, 2H, J= 5.6 Hz), 2.89 (t, 2H, J= 7.8 Hz), 2.45 (t, 2H, J= 7.2 Hz). MS (ESI): Calcd. for Ci9H17N3OS: 335, found 336 (M+l)+ [00174] Example 31
Figure imgf000052_0002
[00175] To a suspension of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.100 g, 0.408 mmol) and benzoic acid (0.055 g, 0.448 mmol), and pyridine (0.15 mL, 1.832 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1.432 mmol). The sealed tube was heated to 50°C for 4 days and the precipitation formed. After cooling, the precipitate was collected by filtration and washed with cold 1 : 1 acetonitrile/water to give N-(4-(2-oxo- 1,2,3,4- tetrahydroquinolin-6-yl)thiazol-2-yl)benzamide (0.116 g, 82%) as a beige solid. Ή NMR (400 MHz, DMSO-d): δ 12.73 (s, 1H), 10.19 (s, 1H), 8.12 (d, 2H, J= 6.8 Hz), 7.77 (s, 1H), 7.72 (dd, 1H, J = 8.4, 1.6 Hz), 7.65 (t, 1H, J= 7.2 Hz), 7.55 (m, 3H), 6.90 (d, 1 H, J= 8.4 Hz), 2.94 (m, 2H), 2.49 (partial masked under d-DMSO, m, 2H). MS (ESI): Calcd. for C19H,5N302S: 349, found 350 (M+l)+
[00176] Example 32
Figure imgf000053_0001
[00177] To a suspension of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.100 g, 0.408 mmol) and pyrimidine-2-carboxylic acid (0.056 g, 0.448 mmol), and pyridine (0.15 mL, 1.832 mmol) in acetonitrile (4 mL) was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1.432 mmol). The sealed tube was heated to 50°C for 4 days and precipitation formed. After cooling, the precipitate was collected by filtration and washed with cold 1 : 1 acetonitrile/water to give N-(4-(2-oxo- 1,2,3,4- tetrahydroquinolin-6-yl)thiazol-2-yl)pyrimidine-2-carboxamide (0.132 g, 93%>) as a greenish- brown solid. 'H NMR (400 MHz, DMSO-d): δ 12.39 (s, 1H), 10.19 (s, 1H), 9.06 (d, 2H, J= 5.6 Hz), 7.78 (m, 2H), 7.72 (dd, 1H, J= 8.8, 2.0 Hz), 7.61 9s, 1H), 6.90 (d, 1H, J= 8.4 Hz), 2.93 (m, 2H), 2.49 (partial masked under d-DMSO, m, 2H). MS (ESI): Calcd. for
CnHisNjOzS: 351, found 352 (M+l)+
[00178] Example 33
Figure imgf000053_0002
[00179] To a suspension of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.100 g, 0.408 mmol) and 4-methylthiazole-5-carboxylic acid (0.064 g, 0.448 mmol), and pyridine (0.15 mL, 1.832 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1.432 mmol). The sealed tube was heated to 50°C for 4 days and the precipitation formed. After cooling, the precipitate was collected by filtration and washed with cold 1 : 1 acetonitrile/water to give 4- methyl-N-(4-(2-oxo-l,2,3,4-tetrahydroquinolin-6-yl)thiazol-2-yl)thiazole-5-carboxamide (0.134 g, 89%) as a biege solid. Ή NMR (400 MHz, DMSO-d): δ 12.71 (bs, 1H), 10.19 (s, 1H), 9.18 (s, 1 H), 7.74 (s, 1H), 7.70 (dd, 1H, J= 8.0, 1.6 Hz), 7.52 (bs, 1H), 6.89 (d, 1 H, J= 8.4 Hz), 2.93 (m, 2H), 2.68 (s, 3H), 2.49 (partial masked under d-DMSO, m, 2H). MS (ESI): Calcd. for CnH^C^: 370, found 371 (M+l)+
[00180] Example 34
Figure imgf000054_0001
[00181] To a suspension of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.100 g, 0.408 mmol) and l,3-dimethythiazole-2-carboxylic (0.071 g, 0.448 mmol), and pyridine (0.15 mL, 1.832 mmol) in acetonitrile (4 mL) in a sealed was added
propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1.432 mmol). The sealed tube was heated to 50°C for 4 days and the precipitation formed. After cooling, the precipitate was collected by filtration and washed with cold 1 : 1 acetonitrile/water to give 4,5- dimethyl-N-(4-(2-oxo-l ,2,3,4-tetrahydroquinolin-6-yl)thiazol-2-yl)thiazole-2-carboxamide (0.062 g, 40%) as a biege solid. 4,5-dimethyl-N-(4-(2-oxo-l,2,3,4-tetrahydroquinolin-6- yl)thiazol-2-yl)thiazole-2-carboxamide existed as a tautomers in HPLC and lH NMR (400 MHz, DMSO-d): δ 12.39 (bs, 0.5 H), 10.95 (bs, 0.5 H), 10.18 (s, 1H), 7.78-7.65 (m, 2H), 7.57 (s, 0.5 H), 7.47 (s, 0.5 H), 6.89 (d, 1H, J= 8.4 Hz), 2.93 (m, 2H), 2.49 (partial masked under d-DMSO, m, 2H). MS (ESI): Calcd. for
Figure imgf000054_0002
384, found 385 (M+l)+
[00182] Example 34
Figure imgf000055_0001
[00183] To a suspension of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.100 g, 0.408 mmol), 2-chloropyrimidine (0.047 g, 0.408 mmol), 4,5- bis(diphenylphosphino)-9,9-dimethyl-xanthene (0.045 g, 0.077 mmol), and potasium carbonate (0.197g, 1.432 mmol) in anhydrous dioxane (4 mL) bubbling with argon in a sealed tube was added palladium(II) acetate (0.017 g, 0.073 mmol). The solution mixture was under continuous argon bubbling for additional 10 min. The sealed tube was then heated at 80°C overnight (15 h). After cooling, the precipitate was collected by filtration and washed with cold tetrahydrofuran followed by water to give 6-(2-(pyrimidin-2- ylamino)thiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.126 g, 95%) as a brown solid. Ή NMR (400 MHz, DMSO-d): δ DMSO-d): δ 11.61 (bs, 1H), 10.15 (s, 1H), 8.57 (d, 2H, J= 4.8 Hz), 7.72 (s, 1H), 7.68 (dd, 1H, J= 8.4, 1.6 Hz), 7.27 (s, 1H), 6.9 (t, 1H, J= 4.8 Hz), 6.87 (d, 1H, J= 8.4 Hz), 2.92 (m, 2H), 2.49 (partial masked under d-DMSO, m, 2H). MS (ESI): Calcd. for C16H13N5OS: 323, found 324 (M)+ [00184] Example 36
Figure imgf000055_0002
[00185] To a suspension of 6-(2-aminooxazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.040 g, 0.175 mmol) and 2,4-dimethylthiazole-5-carboxylic acid (0.030 g, 0.192 mmol), and pyridine (0.06 mL, 0.785 mmol) in acetonitrile (2 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.36 mL, 0.612 mmol). The sealed tube was heated to 50°C for 5 days and the precipitation formed. After cooling, the mixture was quenched with water (10 mL) and extracted with 8:2
dichloromethane/isopropanol (2 x 25 mL) followed by washing once with sat. NaHCCb (100 mL). The combined organic layers were dried over anhydrous Na2S04 and concentrated in vacuo. The residue was purified by pre-TLC with 95:5 dichloromethane/methanol mixture to give 2,4-dimethyl-N-(4-(2-oxo-l ,2,3,4-tetrahydroquinolin-6-yl)oxazol-2-yl)thiazole-5- carboxamide (0.056 g, 87%) as a light brown solid. Ή NMR (400 MHz, DMSO-d): δ 10.15 (s, 1H), 8.26 (s, 1H), 7.52 (s, 1H), 7.48 (dd, 1 H, J= 8.0, 1.6 Hz), 6.98 (s, 1 H), 6.85 (d, 1H, J = 8.0 Hz), 2.88 (m, 2H), 2.62 (s, 3H), 2.53 (s, 3H), 2.44 (partial masked under d-DMSO, m, 2H). MS (ESI): Calcd. for
Figure imgf000056_0001
368, found 369 (M+l)+
[00186] Example 37
Figure imgf000056_0002
[00187] To a solution of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.100 g, 0.408 mmol) and 2,4-dimethylthiazole-5-carboxyaldehyde (0.063 g, 0.448 mmol) in dry dichloromethane (8 mL) with glacial acetic acid (1 mL) in a flamed dried flask. The mixture was stirred for 20 hours prior to addition of excess sodium borohydride (0.070 mg, 1.71 mmol). The reaction mixture was stirred and monitored by LCMS for completion. When completed, the mixture was quenced with water and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were washed once with sat. NaHCO3, dried over anhydrous Na2S04 and concentrated in vacuo. The residue was purified by flash chromatography over silica gel using 95:5 dichloromethane/methanol to give 6-(2-(((2,4-dimethylthiazol-5- yl)methyl)amino)thiazol-4-yl)-3,4-dihydroquinolin-2(17J)-one (0.029 g, 19%) as a yellow solid. 'H MR (400 MHz, DMSO-d): δ 10.12 (s, 1H), 8.08 (t, 1H, J = 5.6 Hz), 7.65 (s, 1H), 7.61 (dd, lH, J = 8.0, 1.6 Hz), 6.92 (s, 1H), 6.84 (d, 1H, J= 8.0 Hz), 4.55 (d, 2H, J= 5.6 Hz), 2.90 (t, 2H, J= 7.8 Hz), 2.52 (s, 3H), 2.45 (partial masked under d-DMSO, m, 2H), 2.35 (s, 3H). MS (ESI): Calcd. for QsH^WSa: 370, found 371 (M+l)+
[00188] Example 38
Figure imgf000057_0001
[00189] To a suspension of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.100 g, 0.408 mmol) and o-toluic (0.061 g, 0.448 mmol), and pyridine (0.15 mL, 1.832 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1.432 mmol). The sealed tube was heated to
50°C for 14 days and the precipitation formed. After cooling, the precipitate was collected by filtration and washed with cold 1 : 1 acetonitrile/water to give 2 -methyl -N-(4-(2-oxo-l, 2,3,4- tetrahydroquinolin-6-yl)thiazol-2-yl)benzamide (0.099 g, 67%) as a beige solid. !H NMR (400 MHz, DMSO-d): δ 12.61 (s, 1H), 10.18 (s, 1H), 7.74 (bs, 1H), 7.69 (dd, 1H, J= 8.4, 2.0 Hz), 7.57 (dd, 1H, J= 7.6, 1.6 Hz), 7.53 (s, 1H), 7.43 (ddd, 1H, J= 7.6, 7.6, 1.6 Hz), 7.31 9m, 2H), 6.89 (d, 1H, J= 8.0 Hz), 2.93 (m, 2H), 2.49 (partial masked under d-DMSO, m, 5H), 2.42 (s, 3H). MS (ESI): Calcd. for C2oH17N302S: 363, found 364 (M+l)+
[00190] Example 39
Figure imgf000057_0002
[00191] To a suspension of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.100 g, 0.408 mmol) and 2,5-dimethylbenzoic acid (0.067 g, 0.448 mmol), and pyridine (0.15 mL, 1.832 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1.432 mmol). The sealed tube was heated to 50°C for 14 days and the precipitation formed. After cooling, the precipitate was collected by filtration and washed with cold 1 : 1 acetonitrile/water to give 2,5-dimethyl-N-(4- (2-oxo-l,2, 3,4-tetrahydroquinolin-6-yl)thiazol-2-yl)benzamide (0.096 g, 62%) as a beige solid. ¾ NMR (400 MHz, DMSO-d): δ 12.53 (s, 1H), 10.18 (s, 1H), 7.74 (bs, 1H), 7.69 (dd, 1 H, J= 8.4, 2.0 Hz), 7.52 (s, 1 H), 7.42 (bs, 1H), 7.25-7.18 (m, 2H), 6.89 (d, 1H, J= 8.0 Hz), 2.93 (m, 2H), 2.49 (partial masked under d-DMSO, m, 2H), 2.37 (s, 3H), 2.32 (s, 3H). MS (ESI): Calcd. for C21H19N3O2S: 377, found 378 (M+l)+
[00192] Example 40
Figure imgf000058_0001
[00193] To a suspension of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.100 g, 0.408 mmol) and 2-(methoxylmethyl)-4-methyl-l ,3-thiazole-5-carboxylic acid (0.084 g, 0.448 mmol), and pyridine (0.15 mL, 1.832 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1.432 mmol). The sealed tube was heated to 50°C for 7 days and the precipitation formed. After cooling, the precipitate was collected by filtration and washed with cold 1 : 1 acetonitrile/water to give 2-(methoxymethyl)-4-methyl-N-(4-(2-oxo-l,2,3,4- tetrahydroquinolin-6-yl)thiazol-2-yl)thiazole-5-carboxamide (0.98 g, 58%) as a light brown solid. 'H NMR (400 MHz, DMSO-d): δ 12.65 (bs, 1H), 10.19 (s, 1 H), 9.18 (s, 1H), 7.74 (s, 1H), 7.69 (dd, 1H, J= 8.0, 1.6 Hz), 7.52 (bs, 1H), 6.89 (d, 1H, J= 8.4 Hz), 4.72 (s, 2H), 3.45 (s, 3H), 2.93 (m, 2H), 2.64 (s, 3H), 2.49 (partial masked under d-DMSO, m, 2H). MS (ESI): Calcd. for C19Hi8N403S2: 414, found 415 (M+l)+
[00194] Example 41
Figure imgf000058_0002
[00195] To a suspension of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one
(0.100 g, 0.408 mmol) and 2-(cyclopropyl)-4-methyl-l,3-thiazole-5-carboxylic acid (0.082 g, 0.448 mmol), and pyridine (0.15 mL, 1.832 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1.432 mmol). The sealed tube was heated to 50°C for 7 days. The reaction mixture was quenced with water and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were washed once with sat. NaHCC>3, dried over anhydrous Na2S04 and concentrated in vacuo. The residue was purified by flash chromatography over silica gel using 95:5
dichloromethane/methanol to give 2-cyclopropyl-4-methyl-N-(4-(2-oxo- 1,2,3,4- tetrahydroquinolin-6-yl)thiazol-2-yl)thiazole-5-carboxamide (0.078 g, 46%) as an orange solid. H NMR (400 MHz, DMSO-d): 5 12.50 (bs, 1H), 10.19 (s, 1H), 7.74 (s, 1H), 7.69 (dd, 1H, J= 8.4, 1.6 Hz), 7.50 (bs, 1H), 6.89 (d, 1H, J = 8.4 Hz), 2.93 (m, 2H), 2.58 (s, 3H), 2.49 (partial masked under d-DMSO, m, 2H), 2.44 (m, 1H), 1.18 (m, 2H), 1.03 (m, 2H). MS (ESI): Calcd. for C2oHi8N402S2: 410, found 41 1 (M+l)+
[00196] Example 42
Figure imgf000059_0001
[00197] To a suspension of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one
(0.100 g, 0.408 mmol) and 4-methyl-2-phenyl-l,3-thiazole-5-carboxylic acid (0.098 g, 0.448 mmol), and pyridine (0.15 mL, 1.832 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1.432 mmol). The sealed tube was heated to 48.5°C for 4 days and the precipitation formed. After cooling, the the precipitate was collected by filtration and washed with with cold 1 :1 acetonitrile/water to give 4-methyl-N-(4-(2-oxo- 1,2,3, 4-tetrahydroquinolin-6-yl)thiazol-2-yl)-2-phenylthiazole- 5-carboxamide (0.151 g, 83%) as a beige solid. ¾ NMR (400 MHz, DMSO-d): δ 12.74 (bs, 1H), 10.20 (s, 1H), 7.98 (m, 2H), 7.75 (bs, 1H), 7.70 (dd, 1H, J= 8.0, 1.6 Hz), 7.59-7.48 (m, 4H), 6.90 (d, 1H, J= 8.4 Hz), 2.94 (m, 2H), 2.73 (s, 3H), 2.50 (masked under d-DMSO, m, 2H). MS (ESI): Calcd. for C23H18N402S2: 446, found 447 (M+l)+
[00198] Example 43
Figure imgf000060_0001
[00199] Example 44
Figure imgf000060_0002
[00200] To a solution of 2,4-dimethyl-N-(4-(2-oxo- 1,2,3, 4-tetrahydroquinolin-6-yl)thiazol- 2-yl)thiazole-5-carboxamide (0.100 g, 0.260 mmol) and benzylbromide (0.058 g, 0.338 mmol) in anhydrous dimethylformamide (4 mL) in a flamed dried flask under argon atmosphere at 0°C was added added sodium hydride (60% in mineral oil, 0.015 g, 0.364 mmol) was added in one portion. The reaction was stirred for 15 min at 0°C prior warm to room temperature. The mixture was stirred overnight. After consumption of starting material, the reaction mixture was quenched with sat. ammonium chloride (25 mL) and extracted with ethyl acetate (2 x 25 mL). The combined organics were washed once with sat. sodium bicarbonate (50 mL) and dried over anhydrous sodium sulfate. The concentrated residue was purified by flash chromatography over silica gel using 95:5
dichloromethane/methanol to give products N-(4-(l -benzyl-2-oxo-l ,2,3,4-tetrahydroquinolin- 6-yl)thiazol-2-yl)-2,4-dimethylthiazole-5-carboxamide (0.021 g, 17%) and N-benzyl-N-(4-( 1 - benzyl-2-oxo-l ,2,3,4-tetrahydroquinolin-6-yl)thiazol-2-yl)-2,4-dimethylthiazole-5- carboxamide (0.027 g, 19%) both as yellow solids.
[00201] 43: ]H NMR (400 MHz, DMSO-d) of N-(4-(l-benzyl-2-oxo-l,2,3,4- tetrahydroquinolin-6-yl)thiazol-2-yl)-2,4-dimethylthiazole-5-carboxamide: δ 12.59 (bs, 1H), 7.79 (d, 1H, J= 2.0 Hz), 7.65 (dd, 1H, J= 8.4, 2.0 Hz), 7.53 (bs, 1H), 7.31 (m, 2H), 7.23 (m, 2H), 7.21 (m, 1H), 6.97 (d, 1H, J = 8.4 Hz), 5.18 (s, 2H), 3.01 (m, 2H), 2.75 (m, 2H), 2.66 (s, 3H), 2.60 (s, 3H). MS (ESI): Calcd. for C25H22N4O2S2: 474, found 475 (M+l)+
[00202] 44: Ή M (400 MHz, DMSO-d) of N-benzyl-N-(4-(l-benzyl-2-oxo-l,2,3,4- tetrahydroquinolin-6-yl)thiazol-2-yl)-2,4-dimethylthiazole-5-carboxamide: δ 7.32 (m, 2H), 7.25-7.17 (m, 7 H), 7.14 (dd, 1H, J = 8.4, 2.0 Hz), 7.02 (s, 1H), 6.87 (m, 2H), 5.35 (s, 2H), 5.18 (s, 2H), 2.90 (m, 2H), 2.72 (m, 2H), 2.59 (s, 3H), 2.56 (s, 3H). MS (ESI): Calcd. for C32H28N4O2S2: 564, found 565 (M+l)+
[00203] Example 45
Figure imgf000061_0001
[00204] To a suspension of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.100 g, 0.408 mmol) and 2-ethyl-4-methyl-l,3-thiazole-5-carboxylic acid (0.077 g, 0.448 mmol), and pyridine (0.15 mL, 1.832 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1.432 mmol). The sealed tube was heated to 50°C for 5 days and the precipitation formed. After cooling, the precipitate was collected by filtration and washed with cold 1 : 1 acetonitrile/water to give 2-ethyl-4-methyl-N-(4-(2-oxo-l,2,3,4-tetrahydroquinolin-6-yl)thiazol-2-yl)thiazole-5- carboxamide (0.094 g, 58%) as a beige solid. !H NMR (400 MHz, DMSO-d): δ 12.56 (bs, 1H), 10.19 (s, 1H), 7.74 (s, 1H), 7.69 (dd, 1H, J= 8.4, 1.6 Hz), 7.51 (bs, 1H), 6.89 (d, 1H, J= 8.4 Hz), 2.99 (q, 2H, J= 7.6 Hz), 2.93 (m, 2H), 2.62 (s, 3H), 2.49 (partial masked under d- DMSO, m, 2H), 1.32 (t, 3H, J= 7.6 Hz). MS (ESI): Calcd. for CigH^C^: 398, found 399 (M+l)+
[00205] Example 46
Figure imgf000062_0001
[00206] To a suspension of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinoIin-2(lH)-one (0.100 g, 0.408 mmol) and 4-methyl-2-(oxolan-3-yl)-l,3-thiazole-5-carboxylic acid (0.096 g, 0.448 mmol), and pyridine (0.15 mL, 1.832 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1.432 mmol). The sealed tube was heated to 50°C for 5 days and the precipitation formed. After cooling, the precipitate was collected by filtration and washed with cold 1 : 1 acetonitrile/water to give 4-methyl-N-(4-(2-oxo-l,2,3,4-tetrahydroquinolin-6-yl)thiazol-2-yl)-2- (tetrahydrofuran-3-yl)thiazole-5-carboxamide (0.1 14 g, 63%) as a light brown solid. ]H NMR (400 MHz, DMSO-d): δ 12.60 (bs, 1H), 10.19 (s, 1H), 7.74 (s, 1H), 7.69 (dd, 1H, J = 8.4, 1.6 Hz), 7.51 (bs, 1H), 6.89 (d, 1H, J= 8.4 Hz), 4.06 (dd, 1H, J= 8.0, 7.2 Hz), 3.92 (m, 1H), 3.86 (m, 1 H), 3.81 (m, 1 H), 2.93 (m, 2H), 2.63 (s, 3H), 2.49 (partial masked under d- DMSO, m, 2H), 2.40 (m, 1H), 2.12 (m, 1H). MS (ESI): Calcd. for C21H20N4O2S2: 440, found 441 (M+l)+ [00207] Example 47
Figure imgf000062_0002
[00208] To a suspension of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.100 g, 0.408 mmol) and 4-methyl-2-(pyridin-2-ylmethy)-l,3-thiazole-5-carboxylic acid (0.105 g, 0.448 mmol), and pyridine (0.15 mL, 1.832 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1.432 mmol). The sealed tube was heated to 50°C for 5 days. The reaction mixture was quenced with water and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were washed once with sat. NaHCOs, dried over anhydrous Na2S04 and concentrated in vacuo. The residue was purified by flash chromatography over silica gel using 95 :5 dichloromethane/methanol to give 4-methyl-N-(4-(2-oxo-l ,2,3,4-tetrahydroquinolin-6- yl)thiazol-2-yl)-2-(pyridin-2-ylmethyl)thiazole-5-carboxamide (0.096 g, 51%) as an orangy- brown solid. JH NMR (400 MHz, DMSO-d): δ 12.57 (bs, 1H), 10.19 (s, 1H), 8.57 (dd, 1H, J = 4.8, 0.8 Hz), 7.81 (ddd, 1H, J = 8.0, 8.0, 2.0 Hz), 7.73 (s, 1H), 7.68 (dd, 1H, J= 8.4, 1.6 Hz), 7.50 (bs, lH), 7.47 (d, 1H, J= 8.0 Hz), 7.33 (ddd, 1H, J= 7.6, 4.8, 1.6 Hz), 6.88 (d, 1H, J = 8.4 Hz), 4.50 (s, 2H), 2.92 (m, 2H), 2.61 (s, 3H), 2.48 (partial masked under d-DMSO, m, 2H). MS (ESI): Calcd. for C23H,9 502S2: 461, found 462 (M+l)+
[00209] Example 48
Figure imgf000063_0001
[00210] To a suspension of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.100 g, 0.408 mmol) and 2-(lH-imidazol-l-yl)-4-methythiazole-5-carboxylic acid (0.938 g, 0.448 mmol), and pyridine (0.15 mL, 1.832 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1.432 mmol). The sealed tube was heated to 50°C for 5 days and the precipitation formed. After cooling, the precipitate was collected by filtration and washed with cold 1 : 1 acetonitrile/water to give 2-(lH-imidazol-l -yl)-4-methyl-N-(4-(2-oxo-l,2,3,4-tetrahydroquinolin-6-yl)thiazol- 2-yl)thiazole-5-carboxamide (0.140 g, 79%) as a yellowish-brown solid. Ή NMR (400
MHz, DMSO-d): δ 12.8 1 (bs, 1H), 10.21 (s, 1H), 8.48 (s, 1H), 7.87 (s, 1H), 7.74 (s, 1H), 7.68 (dd, 1H, J= 8.4, 1.6 Hz), 7.48 (bs, 1H), 7.21 (s, 1H), 6.90 (d, 1H, J= 8.4 Hz), 2.93 (m, 2H), 2.49 (partial masked under d-DMSO, m, 2H). MS (ESI): Calcd. for C2oH16 602S2: 436, found 437 (M+l)+ [00211] Example 49
Figure imgf000064_0001
[00212] To a suspension of 6-(2-aminothiazol-4-y])-3,4-dihydroquinolin-2(lH)-one (0.100 g, 0.408 mmol) and 4-methyI-2-morpholinothiazole-5-carboxylic acid (0.102 g, 0.448 mmol), and pyridine (0.15 mL, 1.832 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1.432 mmol). The sealed tube was heated to 50°C for 5 days. The reaction mixture was quenced with sat. NaHCC>3 and extracted with ethyl acetate (3 x 20 mL). The combined organic layers were washed once with sat. NaHCC>3, dried over anhydrous Na2S04 and concentrated in vacuo. The residue was purified by flash chromatography over silica gel using 95:5
dichloromethane/methanol to give 4-methyl-2-morpholino-N-(4-(2-oxo-l , 2,3,4- tetrahydroquinolin-6-yl)thiazol-2-yl)thiazole-5-carboxamide (0.046 g, 25%) as a yellow solid. 'H NMR (400 MHz, DMSO-d): δ 12.03 (bs, 1H), 10.18 (s, 1H), 7.73 (s, 1H), 7.68 (dd, 1H, J= 8.4, 1.6 Hz), 7.45 (bs, 1H), 6.88 (d, 1H, J = 8.4 Hz), 3.72 (m, 4H), 2.47 (m, 4H), 2.48 (partial masked under d-DMSO, m, 2H). MS (ESI): Calcd. for C2]H2,N503S2: 455, found 456 (M+1)+
[00213] Example 50
Figure imgf000064_0002
[00214] To a suspension of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.100 g, 0.408 mmol) and 2-(2-methoxyethoxyl)-4-methylthiazole-5-carboxylic acid (0.97 g, 0.448 mmol), and pyridine (0.15 mL, 1.832 mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1.432 mmol). The sealed tube was heated to 50°C for 5 days. The reaction mixture was quenced with sat. NaHC03 and extracted with 8:2 dichloromethane/isopropanol mixture (3 x 20 mL). The combined organic layers were washed once with sat. NaHC03, dried over anhydrous Na2S04 and concentrated in vacuo. The residue was purified by flash chromatography over silica gel using 95:5 dichloromethane/methanol to give 2-(2-methoxyethoxy)-4-methyl-N-(4- (2-oxo-l,2,3,4-tetrahydroquinolin-6-yl)thiazol-2-yl)thiazole-5-carboxamide (0.102 g, 57%) as a white solid. Ή NMR (400 MHz, DMSO-d): δ 12.41 (bs, 1H), 10.19 (s, 1H), 7.73 (s,
1 H), 7.68 (dd, 1H, J= 8.4, 1.6 Hz), 7.48 (bs, 1H), 6.88 (d, 1 H, J = 8.4 Hz), 4.54 (m, 2H), 3.69 (m, 2H), 3.31 (s, 3H), 2.93 (m, 2H), 2.55 (s, 3H), 2.48 (partial masked under d-DMSO, m, 2H). MS (ESI): Calcd. for C20H20N4O4S2: 444, found 445 (M+l)+
[00215] Example 51
Figure imgf000065_0001
[00216] To a suspension of 6-(2-aminothiazol-4-yl)-3,4-dihydroquinolin-2(lH)-one (0.200 g, 0.816 mmol) and ({[(tert-butoxyl)carbonyl]amino}-methyl-l,3-thiazole-5- carboxylic acid (0.233 g, 0.856 mmol), and pyridine (0.30 mL, 3.670 mmol) in acetonitrile (8 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 1.70 mL, 2.851 mmol). The sealed tube was heated to 50°C for 5 days. The reaction mixture was quenced with sat. NaHC03 and extracted with 8:2 dichloromethane/isopropanol mixture (3 x 20 mL). The combined organic layers were washed once with sat. NaHC03, dried over anhydrous Na2S04 and concentrated in vacuo. The residue was purified by flash chromatography over silica gel using 95:5 dichloromethane/methanol to give tert-butyl ((4- methyl-5-((4-(2-oxo-l,2,3,4-tetrahydroquinolin-6-yl)thiazol-2-yl)carbamoyl)thiazol-2- yl)methyl)carbamate (0.291 g, 72%) as a yellow solid. Ή NMR (400 MHz, DMSO-d): δ 12.61 (bs, 1H), 10.19 (s, 1 H), 7.85 (m, 1 H), 7.74 (s, 1H), 7.69 (dd, 1H, J= 8.0, 1.6 Hz), 7.51 (bs, 1H), 6.89 (d, 1 H, J = 8.0 Hz), 4.38 (d, 2H, J= 6.0 Hz), 2.93 (m, 2H), 2.62 (s, 3H), 2.49 (partial masked under d-DMSO, m, 2H), 1.43 (s, 9H). MS (ESI): Calcd. for C^H^NsC^: 499, found 500 (M+l)+
[00217] Example 52
Figure imgf000066_0001
[00218] To a suspension of 6-(2-amino-5-chlorothiazol-4-yl)-3,4-dihydroquinolin-2(lH)- one hydrochloride (0.200 g, 0.633 mmol) and 2,4-dimethyl-l,3-thiazole-5-carboxylic acid (0.109 g, 0.696 mmol), and pyridine (0.28 mL, 3.481 mmol) in acetonitrile (8 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 1.32 mL, 2.21 1 mmol). The sealed tube was heated to 50°C for 5 days and the precipitation formed. After cooling, the precipitate was collected by filtration and washed with cold 1 : 1 acetonitrile/water to give N-(5-chloro-4-(2-oxo-l ,2,3,4-tetrahydroquinolin-6-yl)thiazol-2-yl)- 2,4-dimethylthiazole-5-carboxamide (0.098 g, 33%) as a reddish pink solid. Ή NMR (400 MHz, DMSO-d): δ 12.86 (bs, 1H), 10.26 (s, 1 H), 7.72 (s, 1H), 7.69 (dd, 1H, J= 8.4, 1.6 Hz), 6.94 (d, 1H, J= 8.4 Hz), 2.94 (m, 2H), 2.68 (s, 3H), 2.61 (s, 3H), 2.49 (partial masked under d-DMSO, m, 2H). MS (ESI): Calcd. for
Figure imgf000066_0002
418, found 419 (M+l)+
[00219] Example 53
Figure imgf000066_0003
[00220] To a suspension of 6-(2-amino-5-chlorothiazol-4-yl)-3,4-dihydroquinolin-2(lH)- one hydrochloride (0.100 g, 0.408 mmol) and 2-cyclopropyl-4-methyl-l,3-oxazole-5- carboxylic acid (0.072 g, 0.428 mmol), and pyridine (0.15 mL, 1.831 mmol) in acetonitrile (4 mL) in a sealed was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1.431 mmol). The sealed tube was heated to 50°C for 5 days and the precipitation formed. After cooling, the precipitate was collected by filtration and washed with cold 1 :1 acetonitrile/water to give 2-cyclopropyl-4-methyl-N-(4-(2-oxo-l,2,3,4-tetrahydroquinolin-6- yl)thiazol-2-yl)oxazole-5-carboxamide (0.143 g, 89%) as a beige solid. lU NMR (400 MHz, DMSO-d): δ 12.52 (bs, 1H), 10.19 (s, 1H), 7.75 (s, 1H), 7.71 (dd, 1H, J= 8.4, 1.6 Hz), 7.52 (s, 1H), 6.89 (d, 1 H, J= 8.4 Hz), 2.93 (m, 2H), 2.49 (partial masked under d-DMSO, m, 2H), 2.39 (s, 3H), 2.14 (m, 1H), 1.25 (m, 2H), 1.12 (m, 2H). MS (ESI): Calcd. for C2oHi8N403S: 394, found 395 (M+l)+
[00221] Example 54
Figure imgf000067_0001
[00222] To a suspension of 6-(2-amino-5-chlorothiazol-4-yl)-3,4-dihydroquinolin-2(lH)- one hydrochloride (0.100 g, 0.408 mmol) and 4-methyl-2-(propan-2-yl)-l,3-thiazole-5- carboxylic acid (0.083 g, 0.448 mmol), and pyridine (0.15 mL, 1.831mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1.431 mmol). The sealed tube was heated to 50°C for 5 days and the precipitation formed. After cooling, the precipitate was collected by filtration and washed with cold 1 : 1 acetonitrile/water to give 2-isopropyl-4-methyl-N-(4-(2-oxo-l , 2,3,4- tetrahydroquinolin-6-yl)thiazol-2-yl)thiazole-5-carboxamide (0.104 g, 62%) as a beige solid. Ή NMR (400 MHz, DMSO-d): δ 12.56 (bs, 1H), 10.19 (s, 1H), 7.74 (s, 1 H), 7.69 (dd, 1H, J = 8.4, 1.6 Hz), 7.51 (s, 1H), 6.89 (d, 1H, J= 8.4 Hz), 3.29 (m, 1 H), 2.93 (m, 2H), 2.62 (s, 3H), 2.49 (partial masked under d-DMSO, m, 2H), 1.36 (s, 3H), 1.34 (s, 3H). MS (ESI): Calcd. for CaoHsoW^: 412, found 413 (M+l)+
[00223] Example 55
Figure imgf000068_0001
[00224] To a suspension of 6-(2-amino-5-chlorothiazol-4-yl)-3,4-dihydroquinolin-2(lH)- one hydrochloride (0.100 g, 0.408 mmol) and 2-cyclopentyl-4-methyl-l,3-thiazole-5- carboxylic acid (0.095 g, 0.448 mmol), and pyridine (0.15 mL, 1.831mmol) in acetonitrile (4 mL) in a sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1.431 mmol). The sealed tube was heated to 50°C for 5 days and the precipitation formed. After cooling, the precipitate was collected by filtration and washed with cold 1 : 1 acetonitrile/water to give 2-cyclopentyl-4-methyl-N-(4-(2-oxo- 1,2,3,4- tetrahydroquinolin-6-yl)thiazol-2-yl)thiazole-5-carboxamide (0.143g, 80%) as a beige solid. !H NMR (400 MHz, DMSO-d): δ 12.53 (bs, 1H), 10.19 (s, 1H), 7.74 (s, 1H), 7.69 (dd, 1H, J = 8.4, 1.6 Hz), 7.50 (bs, 1 H), 6.89 (d, 1H, J= 8.4 Hz), 3.44 (m, 1H), 2.93 (m, 2H), 2.62 (s, 3H), 2.49 (partial masked under d-DMSO, m, 2H), 2.12 (m, 2H), 1.77 (m, 4H), 1.67 (m, 2H). MS (ESI): Calcd. for C22H22 402S2: 438, found 439 (M+l)+
[00225] Example 56
Figure imgf000068_0002
[00226] To a suspension of 6-(2-amino-5-chlorothiazol-4-yl)-3,4-dihydroquinolin-2(lH)- one hydrochloride (0.100 g, 0.408 mmol) and 2-cyclohexyl-4-methyl-l,3-thiazole-5- carboxylic acid (0.101 g, 0.448 mmol), and pyridine (0.15 mL, 1.831mmol) in acetonitrile (4 mL) the sealed tube was added propylphosphonic anhydride solution (50 wt% in ethyl acetate, 0.85 mL, 1.431 mmol). The sealed tube was heated to 50°C for 5 days and the precipitation formed. After cooling, the precipitate was collected by filtration and washed with cold 1 : 1 acetonitrile/water to give 2-cyclohexyl-4-methyl-N-(4-(2-oxo- 1,2,3,4- tetrahydroquinolin-6-yl)thiazol-2-yl)thiazole-5-carboxamide (0.149 g, 81%) as a beige solid. 1H NMR (400 MHz, DMSO-d): δ 12.54 (bs, 1H), 10.19 (s, 1H), 7.74 (s, 1H), 7.69 (dd, 1H, J = 8.4, 1.6 Hz), 7.51 (bs, 1H), 6.89 (d, 1H, J= 8.4 Hz), 2.99 (m, 1H), 2.93 (m, 2H), 2.62 (s, 3H), 2.49 (partial masked under d-DMSO, m, 2H), 2.06 (m, 2H), 1.78 (m, 4H), 1.55-1.31 (m, 4H), 1.27 (m, 1H). MS (ESI): Calcd. for CssH^C^: 452, found 453 (M+l)+
[00227] Example 57
Figure imgf000069_0001
[00228] te -Butyl ((4-methyl-5-((4-(2-oxo-l,2,3,4-tetrahydroquinolin-6-yl)thiazol-2- yl)carbamoyl)thiazol-2-yl)methyl)carbamate (0.100 g, 0.200 mmol) was suspended 6 mL of 4M hydrogen chloride solution in dioxane in sealed flask. The mixture was stirred for 6 hours at room temperature. The reaction mixture was concentrated in vacuo. The HCl salt was dissolved in minimum amount of methanol and quenched with sat. sodium bicarbonate. The mixture was extracted with 8:2 dichloromethane/isopropanol (6 x 10 mL). The combined organic layers were washed once with sat. NaHCCb, dried over anhydrous Na2S04 and concentrated in vacuo, to give 2-(aminomethyl)-4-methyl-N-(4-(2-oxo- 1,2,3,4- tetrahydroquinolin-6-yl)thiazol-2-yl)thiazole-5-carboxamide (0.060 g, 75%) as an orange solid. !H NMR (400 MHz, DMSO-d): δ acylic NH (not observed), 10.18 (s, 1H), 7.85 (m, 1H), 7.74 (s, 1H), 7.69 (dd, 1H, J= 8.0, 1.6 Hz), 7.45 (s, 1H), 6.89 (d, 1H, J = 8.0 Hz), 4.03 (s, 2H), 2.93 (m, 2H), 2.62 (s, 3H), 2.49 (partial masked under d-DMSO, m, 2H), 1.23 (bs, 2H). MS (ESI): Calcd. for CiSH17N502S2: 399, found 400 (M+l)+
Biological Activities of Selected Compounds
[00229] Activity of exemplary compounds according to the inventive subject matter was tested for wild type, K-ras G12D, and K-ras G12V following standard G-LISA protocol as further described below, and the IC50 (μΜ) results are shown in Table 1 while compound formulae are depicted in Figures4A-4D.
Figure imgf000070_0001
Table 1
[00230] 293Η cells were seeded in 6-wells at 0.6x106 cells per well and transfected next day with 5 μg of Ras wild-type, or G12C, G12D or G12V mutant DNA plasmid vector using transfection reagent Lipofectamine 3000. Next day cells were treated with 3.125-50 μΜ of Ras compounds for 1 hour. Wild-type transfected cells were subsequently treated with 100 ng/ml EGF for 2 minutes. Cells were washed once in ice-cold PBS, lysed in complete lysis buffer on ice, and processed by G-LISA according to Cytoskeleton protocol. [00231] Viability assays were performed on exemplary compounds and Table 2 below lists exemplary results for selected compounds tested on wild type (Ishikawa) and various K- ras mutants (Pancl-G12D; Pancl0.05-G12D; HCT1 16-G13D). Results are expressed in μΜ and corresponding structures are shown in Figures4A-4D.
Figure imgf000071_0001
Table 2
[00232] Cells are counted and seeded at 1000 cells/36ul medium/well into 384-well microplates. Cells are returned to 37°C C02 incubator for 18hr. Drug is made as 200X in DMSO and diluted into medium to 10X. To each well is added 4ul 10X drug, and plates are returned to the incubator. Final assay DMSO concentration is 0.5%. After 72hr, 8ul CellTiterBlue (Promega) is added to each well. After 3hr, fluorescence (Ex550/Em590) is determined on the Victor Plate Reader (Perkin Elmer). Assay range is determined by DMSO control (100% viability) and lOOuM tamoxifen (0% viability). GI50 values are calculated using Graphpad Prism.
[00233] In-cell phosphorylation assays for Erk and Akt were performed on various of the compounds and exemplary results are shown in Table 3 below using Panel and Pancl0.05 cell lines for G12D K-ras mutants. Results are expressed in μΜ and corresponding structures are shown in Figures 4A-4D.
Figure imgf000071_0002
Figure imgf000072_0001
[00234] Cells are seeded in complete medium into black sided, clear-bottom 384-well microplates at 3000 cells/27ul/well. Plates are returned to 37°C C02 incubator for 18hr. Drug is made as 200X in DMSO and diluted into medium to 10X. To each well is added 4ul 10X test article or controls, and plates are returned to the incubator. Final assay DMSO concentration is 0.5%. After one hour, cells are fixed in formaldehyde, rinsed &
permeabilized with triton X-100, and blocked with BSA/Goat serum blocking solution.
Primary phospho-Akt and phospho-ERK antibodies are added and plates are incubated overnight at 4°C. Plates are rinsed with Tween-20 wash buffer and secondary antibody (Goat anti-rabbit, Thermofisher) is added. After 2 hours, plates are rinsed in Tween-20 wash buffer, and then PBS. Plates are imaged on the Celigo (Nexcelom) and cellular fluorescence is quantitated. Full inhibition of phospho-Akt is achieved with luM BEZ235 (Sellekchem), while full inhibition of phospho-ERK is achieved with luM MEK Inhibitor II Calbiochem). EC50 values are calculated using Graphpad Prism. [00235] Selected compounds were also tested for selective binding to wild type and mutant forms of K-ras in the active and non-active state using surface plasmon resonance, and exemplary results are shown in Table 4.
Figure imgf000072_0002
Figure imgf000073_0001
[00236] The running buffer in all surface plasmon resonance experiments was lOmM HEPES pH 7.4, 150mM NaCl, 0.1% (v/v) Tween-20, ImM MgC12, 8% DMSO.
Experiments were carried out on the SensiQ Pioneer optical biosensor. The flow rate was set at 50μΕ/ηιίη and the temperature was 25°C. kRAS protein was immobilized to the Nickel- NTA charged surface of the SensiQ HisCap chip (sensiqtech.com) giving a yield of 4000RU. Small molecules were prepared in 100% DMSO and further diluted to 8% DMSO in running buffer. The small molecules were injected using the Taylor diffusion gradient injection mode (OneStep®, see e.g., Evaluation of Taylor dispersion injections: Determining kinetic/affinity interaction constants and diffusion coefficients in label-free biosensing, John G. Quinn, Analytical Biochemistry (201 1)). Buffer blanks were injected for double referencing purposes. Data processing and model fitting were performed using Qdat.
[00237] In-cell selectivity of the compounds presented herein against a specific K-ras mutant form can also be tested as shown in the following exemplary experiment. 293H cells were seeded in 6-wells and transfected next day with 5 μg of Ras wild-type, or G12C, G12D or G12V mutant DNA plasmid vector. Next day cells were treated with 3.125-50 μΜ of Ras compounds for 1 hour. Wild-type transfected cells were subsequently treated with 100 ng/ml EGF for 2 minutes. Cells were washed once in ice-cold PBS, lysed in complete lysis buffer on ice, and processed by G-LISA according to Cytoskeleton protocol. Figure 1 depicts exemplary results. As is readily apparent, the tested compound A0837 (identical with 4562 of Figures 4A-4D) had pronounced selectivity towards the G12D mutant form and exhibited also a lower IC50 as compared to the wild type.
[00238] To verify the results in specific cancer cell lines, cancer cell lines BxPC-3 (K-Ras wild-type), Pane 10.05 (K-Ras G12D mutant), and Capan-2 (K-Ras G12V) were treated with 3.1 to 25 μΜ of Ras compound A0837 for 1 hour before stimulation with 100 ng/ml EGF for 2 minutes. Cells were washed once in ice-cold PBS, lysed in complete lysis buffer on ice, and processed by G-LISA according to Cytoskeleton protocol. As can be clearly seen in Figure 2, the tested compound had clear selectivity towards K-ras mutant G12D, which is consistent with the other results presented above. [00239] The effect of contemplated compounds on cell signaling was tested in wild type and K-ras G12D mutant cells as follows: Cancer cell lines BxPC-3 (K-Ras wild-type), and Pancl0.05 (K-Ras G12D mutant) were serum-starved O/N before treatment with 3.1 to 25 μΜ of Ras compound A0837 for 1 hour before stimulation with 100 ng/ml EGF for 5 minutes. Cells were washed once in ice-cold PBS, lysed in complete lysis buffer on ice, and processed by SDS-PAGE under reducing conditions for the detection of pMEK and pErk. Membranes were stripped and re-probed for total MEK Erk. Figure 3 shows the results of such experiment, establishing that the tested compound inhibited signaling downstream of Ras in the mutant cell line but not in the K-Ras wild type cell line.
[00240] In still further experiments, the inventors tested selected compounds in a G-LISA assay to compare IC50 values for wild-type and various mutant K-Ras (G12D, G12V) using the following general protocol: 293H cells were seeded in 6-wells at 0.6x106 cells per well and transfected next day with 5 μg of Ras wild-type, or G12C, G12D or G12V mutant DNA plasmid vector using transfection reagent Lipofectamine 3000. Next day cells were treated with 3.125-50 μΜ of Ras compounds for 1 hour. Wild-type transfected cells were subsequently treated with 100 ng/ml EGF for 2 minutes. Cells were washed once in ice-cold PBS, lysed in complete lysis buffer on ice, and processed by G-LISA according to
Cytoskeleton protocol.
[00241] Table 5 provides typical results in μΜ for the selected compounds tested, and the corresponding structures are shown in Figures 4A-4D. As can be seen, certain of the tested compounds had preferential/selective inhibition favoring G12D over wild-type and/or other mutant forms. N/A is result not available
Figure imgf000075_0001
[00242] Figures 5-73 depict further exemplary compounds according to the inventive subject matter, which can be prepared according to the general synthetic pathways as discussed above. [00243] As used in the description herein and throughout the claims that follow, the meaning of "a," "an," and "the" includes plural reference unless the context clearly dictates otherwise. Also, as used in the description herein, the meaning of "in" includes "in" and "on" unless the context clearly dictates otherwise. [00244] The recitation of ranges of values herein is merely intended to serve as a shorthand method of referring individually to each separate value falling within the range. Unless otherwise indicated herein, each individual value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g. "such as") provided with respect to certain embodiments herein is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention otherwise claimed. No language in the specification should be construed as indicating any non-claimed element essential to the practice of the invention. [00245] Groupings of alternative elements or embodiments of the invention disclosed herein are not to be construed as limitations. Each group member can be referred to and claimed individually or in any combination with other members of the group or other elements found herein. One or more members of a group can be included in, or deleted from, a group for reasons of convenience and/or patentability. When any such inclusion or deletion occurs, the specification is herein deemed to contain the group as modified thus fulfilling the written description of all Markush groups used in the appended claims.
[00246] It should be apparent to those skilled in the art that many more modifications besides those already described are possible without departing from the inventive concepts herein. The inventive subject matter, therefore, is not to be restricted except in the scope of the appended claims. Moreover, in interpreting both the specification and the claims, all terms should be interpreted in the broadest possible manner consistent with the context. In particular, the terms "comprises" and "comprising" should be interpreted as referring to elements, components, or steps in a non-exclusive manner, indicating that the referenced elements, components, or steps may be present, or utilized, or combined with other elements, components, or steps that are not expressly referenced. Where the specification claims refers to at least one of something selected from the group consisting of A, B, C .... and N, the text should be interpreted as requiring only one element from the group, not A plus N, or B plus N, etc.

Claims

CLAIMS What is claimed is:
1. A compound having a structure according to Formula I
Figure imgf000078_0001
Formula I
wherein X is O or S; and
wherein Ri and R2 are independently selected from the group consisting of H, alkyl, cycloalkyl, heterocycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, alkaryl, haloalkyl, alkoxy, alkylthio, halogen, -OH, -NHC(0)alkyl, and -NHC(0)aryl; wherein R3 is selected from the group consisting of H, Q-Q alkyl, -NHR6, or -OR6, wherein R6 is H, alkyl, haloalkyl, alkenyl, aryl, or heteroaryl; wherein R4 and R5 together form an optionally substituted heterocyclic 5-, 6-, or 7- membered ring, or R4 is null when R5 is -NHC(0)alkyl or -NHC(0)aryl.
2. The compound of claim 1 wherein Rx and R2 are independently selected from the group consisting of H, alkyl, heteroaryl, cycloalkyl, and heterocycloalkyl.
3. The compound of claim 1 wherein Rt is alkyl or cycloalkyl, and wherein R2 is alkyl.
4. The compound of any one of the preceding claims wherein X is S.
5. The compound of any one of the preceding claims wherein R3 is H or C1-C4 alkyl.
6. The compound of any one of the preceding claims wherein the optionally substituted heterocyclic 5-, 6-, or 7-membered ring contains a nitrogen atom, and wherein the ring further contains an oxo substituent.
7. The compound of any one of the preceding claims wherein the optionally substituted heterocyclic 5-, 6-, or 7-membered ring is selected form the group consisting of
Figure imgf000079_0001
8. The compound of claim 1 having a structure according to Formula II
Figure imgf000079_0002
Formula II
wherein X is O or S; and
wherein Rj and R2 are independently selected from the group consisting of H, alkyl, cycloalkyl, heterocycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, alkaryl, haloalkyl, alkoxy, alkylthio, halogen, -OH, -NHC(0)alkyl, and -NHC(0)aryl; wherein R3 is H or Q-C4 alkyl; and
wherein R7 is H, alkyl, cycloalkyl, heterocycloalkyl, alkenyl, alkynyl, aryl, heteroaryl, alkaryl or alkheteroaryl.
9. The compound of claim 8 wherein Rj is alkyl or cycloalkyl, and wherein R2 is alkyl.
10. The compound of claim 8 or claim 9 wherein X is S.
1 1. The compound of any one of claims 8-10 wherein R3 is H.
12. The compound of claim 1 having a structure of Formula III or Formula IV wherein R3 is H, methyl, or halogen
Figure imgf000080_0001
Formula III Formula IV
13. A pharmaceutical composition comprising a pharmaceutically acceptable carrier and the compound of any one of claims 1-12.
14. The pharmaceutical composition of claim 13 wherein the compound is present in a concentration effective to inhibit KRAS in a mammal when administered to the mammal at a dosage effective to inhibit KRAS in the mammal.
15. The pharmaceutical composition of claim 14 wherein the KRAS is a mutant KRAS.
16. The pharmaceutical composition of claim 15 wherein the compound preferentially inhibits mutant KRAS G12D relative to mutant KRAS G12V and mutant KRAS G12C.
17. Use of a compound of any one of claims 1-12 to inhibit KRAS signaling.
18. The use of claim 17 wherein the compound has a structure according to Formula II.
19. The use of claim 17 wherein the compound has a structure according to Formula III or Formula IV.
20. The use of claim 17 wherein the KRAS signaling is mediated by a mutant KRAS.
21. The use of claim 20 wherein the mutant KRAS is KRAS G12D, and wherein the compound preferentially inhibits mutant KRAS G12D relative to mutant KRAS G12V and mutant KRAS G12C.
22. Use of a compound of any one of claims 1- 12 in the manufacture of a medicament to treat a neoplastic disease.
23. The use of claim 22 wherein the neoplastic disease is associated with a mutant KRAS.
24. The use of claim 23 wherein the mutant KRAS is KRAS G12D.
25. The use of claim 23 wherein the compound has a structure according to Formula II.
26. The use of claim 23 wherein the compound has a structure according to Formula III or Formula IV.
27. A method of inhibiting mutant KRAS, comprising a step of contacting the mutant KRAS with a compound of any one of claims 1-12 at a concentration effective to inhibit the mutant KRAS.
28. The method of claim 27 wherein the mutant KRAS is KRAS G12D.
29. The method of claim 27 wherein the compound preferentially inhibits mutant KRAS G12D relative to mutant KRAS G12V and mutant KRAS G12C.
30. The method of claim 27 wherein the step of contacting is performed while the mutant KRAS is in a cell.
31. The method of claim 31 wherein the concentration is effective to reduce downstream signaling with respect to at least one of MEK signaling and ERK signaling.
32. A method of treating a neoplastic disease in a mammal in need thereof, comprising a step of administering to the mammal a compound of any one of claims 1 -12 under a protocol effective to inhibit KRAS in the mammal.
33. The method of claim 32 wherein the compound has a structure according to Formula II.
34. The method of claim 32 wherein the compound has a structure according to Formula III or Formula IV.
35. The method of claim 32 wherein the step of administering comprises oral administration or injection.
36. The method of claim 32 wherein the neoplastic disease is colon cancer, pancreatic cancer, and non -small cell lung cancer.
PCT/US2016/025697 2015-04-03 2016-04-01 Compositions and methods of targeting mutant k-ras WO2016161361A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
AU2016244017A AU2016244017B2 (en) 2015-04-03 2016-04-01 Compositions and methods of targeting mutant K-ras
CN201680032351.8A CN107835812A (en) 2015-04-03 2016-04-01 Target mutant K RAS composition and method
US15/563,813 US10487078B2 (en) 2015-04-03 2016-04-01 Compositions and methods of targeting mutant K-RAS
CA2981677A CA2981677A1 (en) 2015-04-03 2016-04-01 Compositions and methods of targeting mutant k-ras
KR1020177031904A KR20170132332A (en) 2015-04-03 2016-04-01 Mutant K-RAS Target Methods and Compositions
EP16774366.5A EP3277678B1 (en) 2015-04-03 2016-04-01 Compositions and methods of targeting mutant k-ras
JP2017552081A JP2018511614A (en) 2015-04-03 2016-04-01 Compositions and methods targeting mutant K-RAS
IL254811A IL254811A0 (en) 2015-04-03 2017-10-01 Compositions and methods of targeting mutant k-ras

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562142974P 2015-04-03 2015-04-03
US62/142,974 2015-04-03

Publications (2)

Publication Number Publication Date
WO2016161361A1 true WO2016161361A1 (en) 2016-10-06
WO2016161361A4 WO2016161361A4 (en) 2016-12-22

Family

ID=57004653

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/025697 WO2016161361A1 (en) 2015-04-03 2016-04-01 Compositions and methods of targeting mutant k-ras

Country Status (9)

Country Link
US (1) US10487078B2 (en)
EP (1) EP3277678B1 (en)
JP (1) JP2018511614A (en)
KR (1) KR20170132332A (en)
CN (1) CN107835812A (en)
AU (1) AU2016244017B2 (en)
CA (1) CA2981677A1 (en)
IL (1) IL254811A0 (en)
WO (1) WO2016161361A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016179558A1 (en) 2015-05-06 2016-11-10 The Regents Of The University Of California K-ras modulators
WO2018195439A3 (en) * 2017-04-20 2018-11-29 The Regents Of The University Of California K-ras modulators
WO2018237084A1 (en) * 2017-06-21 2018-12-27 SHY Therapeutics LLC Compounds that interact with the ras superfamily for the treatment of cancers, inflammatory diseases, rasopathies, and fibrotic disease
WO2019093502A1 (en) * 2017-11-09 2019-05-16 国立大学法人 東京医科歯科大学 Inhibitor of the expression of cancer-promoting factors, screening method for active ingredient thereof, expression cassette useful in said method, diagnostic drug, and diagnostic method
US10344026B2 (en) * 2017-01-18 2019-07-09 Nantbio, Inc. Compositions and methods of targeting mutant K-ras
JP2020505395A (en) * 2017-01-26 2020-02-20 アラクセス ファーマ エルエルシー Fused N-heterocyclic compounds and methods of use
JP2020512981A (en) * 2017-03-31 2020-04-30 カーザ グローバル,リミティド ライアビリティ カンパニー Compositions and methods containing substituted 2-aminoimidazoles
US10870657B2 (en) 2015-12-22 2020-12-22 SHY Therapeutics LLC Compounds for the treatment of cancer and inflammatory disease
WO2021211864A1 (en) * 2020-04-16 2021-10-21 Incyte Corporation Fused tricyclic kras inhibitors
WO2022075653A1 (en) * 2020-10-08 2022-04-14 부산대학교 산학협력단 Mutant kras-targeting peptide and use thereof
US11358959B2 (en) 2017-01-26 2022-06-14 Araxes Pharma Llc Benzothiophene and benzothiazole compounds and methods of use thereof
US11639346B2 (en) 2017-05-25 2023-05-02 Araxes Pharma Llc Quinazoline derivatives as modulators of mutant KRAS, HRAS or NRAS
US11739102B2 (en) 2020-05-13 2023-08-29 Incyte Corporation Fused pyrimidine compounds as KRAS inhibitors
WO2024040131A1 (en) 2022-08-17 2024-02-22 Treeline Biosciences, Inc. Pyridopyrimidine kras inhibitors
US11939328B2 (en) 2021-10-14 2024-03-26 Incyte Corporation Quinoline compounds as inhibitors of KRAS

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JOP20190272A1 (en) * 2017-05-22 2019-11-21 Amgen Inc Kras g12c inhibitors and methods of using the same
WO2020033413A2 (en) * 2018-08-07 2020-02-13 Tosk, Inc. Modulators of ras gtpase
WO2020159942A1 (en) 2019-01-29 2020-08-06 Tosk, Inc. Pyrazolopyrimidine modulators of ras gtpase
KR102222693B1 (en) * 2019-04-04 2021-03-04 금정제약 주식회사 Novel uses of H-REV107 derived peptide
CN115124524A (en) * 2021-03-26 2022-09-30 浙江海正药业股份有限公司 Tricyclic derivative and preparation method and application thereof
KR20230016158A (en) * 2021-07-22 2023-02-01 국립암센터 KRAS mutation specific inhibitor and composition for preventing or treating cancer comprising the same

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009121535A2 (en) * 2008-04-01 2009-10-08 Universita`Degli Studi Di Milano - Bicocca Antiproliferative compounds and therapeutic uses thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1090021A (en) * 1912-10-26 1914-03-10 Charles M Burton Rotary engine.
US1288357A (en) * 1915-06-28 1918-12-17 American Automatic Soda Fountain Company Soda-water-dispensing apparatus.
SI2714668T1 (en) 2011-05-23 2017-06-30 Merck Patent Gmbh Thiazole derivatives
US20130297426A1 (en) 2012-04-10 2013-11-07 Bazaarvoice, Inc. Insertion of user-generated content (ugc) into advertisements based on contributor attributes
WO2014063167A1 (en) * 2012-10-19 2014-04-24 The Broad Institute, Inc. Thiazole-based inhibitors of scavenger receptor bi
CN103784450B (en) 2012-10-31 2016-01-13 复旦大学 Suppress micromolecular compound and the medicinal usage thereof of Src nonreceptor tyrosine kinase
US10344026B2 (en) 2017-01-18 2019-07-09 Nantbio, Inc. Compositions and methods of targeting mutant K-ras

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009121535A2 (en) * 2008-04-01 2009-10-08 Universita`Degli Studi Di Milano - Bicocca Antiproliferative compounds and therapeutic uses thereof

Non-Patent Citations (7)

* Cited by examiner, † Cited by third party
Title
DATABASE Registry [O] 1 May 2011 (2011-05-01), XP055487001, Database accession no. 1288357-24-3 *
DATABASE Registry [O] 15 November 2011 (2011-11-15), XP055487012, Database accession no. 1294872-06-2 *
DATABASE Registry [O] 24 September 2014 (2014-09-24), XP055487006, Database accession no. 1625469-37-5 *
DATABASE Registry [O] 25 December 2008 (2008-12-25), XP055486986, Database accession no. 1090021-13-8 *
DATABASE Registry [O] 25 December 2008 (2008-12-25), XP055486989, Database accession no. 1356747-40-4 *
DATABASE Registry [O] 26 May 2011 (2011-05-26), Database accession no. 1374548-72-8 *
See also references of EP3277678A4 *

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016179558A1 (en) 2015-05-06 2016-11-10 The Regents Of The University Of California K-ras modulators
US11541044B2 (en) 2015-05-06 2023-01-03 The Regents Of The University Of California K-Ras modulators
US10857140B2 (en) 2015-05-06 2020-12-08 The Regents Of The University Of California K-Ras modulators
EP3291813A4 (en) * 2015-05-06 2019-01-02 The Regents of The University of California K-ras modulators
AU2016258192B2 (en) * 2015-05-06 2021-07-29 Leidos Biomedical Research, Inc. K-Ras modulators
US11560390B2 (en) 2015-12-22 2023-01-24 SHY Therapeutics LLC Compounds for the treatment of cancer and inflammatory disease
US10870657B2 (en) 2015-12-22 2020-12-22 SHY Therapeutics LLC Compounds for the treatment of cancer and inflammatory disease
US10344026B2 (en) * 2017-01-18 2019-07-09 Nantbio, Inc. Compositions and methods of targeting mutant K-ras
JP2020505395A (en) * 2017-01-26 2020-02-20 アラクセス ファーマ エルエルシー Fused N-heterocyclic compounds and methods of use
US11358959B2 (en) 2017-01-26 2022-06-14 Araxes Pharma Llc Benzothiophene and benzothiazole compounds and methods of use thereof
JP2020512981A (en) * 2017-03-31 2020-04-30 カーザ グローバル,リミティド ライアビリティ カンパニー Compositions and methods containing substituted 2-aminoimidazoles
US11339140B2 (en) 2017-03-31 2022-05-24 Curza Global, Llc Compositions and methods comprising substituted 2-aminoimidazoles
CN110785414A (en) * 2017-04-20 2020-02-11 加利福尼亚大学董事会 K-Ras modulators
JP2020517600A (en) * 2017-04-20 2020-06-18 ザ・リージエンツ・オブ・ザ・ユニバーシテイー・オブ・カリフオルニア K-Ras modulator
WO2018195439A3 (en) * 2017-04-20 2018-11-29 The Regents Of The University Of California K-ras modulators
US11358940B2 (en) 2017-04-20 2022-06-14 The Regents Of The University Of California K-Ras modulators
US11639346B2 (en) 2017-05-25 2023-05-02 Araxes Pharma Llc Quinazoline derivatives as modulators of mutant KRAS, HRAS or NRAS
US10588894B2 (en) 2017-06-21 2020-03-17 SHY Therapeutics LLC Compounds that interact with the Ras superfamily for the treatment of cancers, inflammatory diseases, rasopathies, and fibrotic disease
US11541041B1 (en) 2017-06-21 2023-01-03 SHY Therapeutics LLC Compounds that interact with the Ras superfamily for the treatment of cancers, inflammatory diseases, Rasopathies, and fibrotic disease
WO2018237084A1 (en) * 2017-06-21 2018-12-27 SHY Therapeutics LLC Compounds that interact with the ras superfamily for the treatment of cancers, inflammatory diseases, rasopathies, and fibrotic disease
US11213515B1 (en) 2017-06-21 2022-01-04 SHY Therapeutics LLC Compounds that interact with the Ras superfamily for the treatment of cancers, inflammatory diseases, rasopathies, and fibrotic disease
US11026930B1 (en) 2017-06-21 2021-06-08 SHY Therapeutics LLC Compounds that interact with the Ras superfamily for the treatment of cancers, inflammatory diseases, rasopathies, and fibrotic disease
US11000515B2 (en) 2017-06-21 2021-05-11 SHY Therapeutics LLC Compounds that interact with the Ras superfamily for the treatment of cancers, inflammatory diseases, rasopathies, and fibrotic disease
US10940139B2 (en) 2017-06-21 2021-03-09 SHY Therapeutics LLC Compounds that interact with the Ras superfamily for the treatment of cancers, inflammatory diseases, rasopathies, and fibrotic disease
US10933054B2 (en) 2017-06-21 2021-03-02 SHY Therapeutics LLC Compounds that interact with the Ras superfamily for the treatment of cancers, inflammatory diseases, rasopathies, and fibrotic disease
WO2019093502A1 (en) * 2017-11-09 2019-05-16 国立大学法人 東京医科歯科大学 Inhibitor of the expression of cancer-promoting factors, screening method for active ingredient thereof, expression cassette useful in said method, diagnostic drug, and diagnostic method
JPWO2019093502A1 (en) * 2017-11-09 2021-02-25 国立大学法人 東京医科歯科大学 Cancer promoter expression inhibitor, screening method for its active ingredient, expression cassette, diagnostic agent, and diagnostic method useful for the method.
JP7376873B2 (en) 2017-11-09 2023-11-09 国立大学法人 東京医科歯科大学 Cancer-promoting factor expression inhibitor, method for screening its active ingredient, expression cassette useful for the method, diagnostic agent, and diagnostic method
WO2021211864A1 (en) * 2020-04-16 2021-10-21 Incyte Corporation Fused tricyclic kras inhibitors
US11739102B2 (en) 2020-05-13 2023-08-29 Incyte Corporation Fused pyrimidine compounds as KRAS inhibitors
WO2022075653A1 (en) * 2020-10-08 2022-04-14 부산대학교 산학협력단 Mutant kras-targeting peptide and use thereof
US11939328B2 (en) 2021-10-14 2024-03-26 Incyte Corporation Quinoline compounds as inhibitors of KRAS
WO2024040131A1 (en) 2022-08-17 2024-02-22 Treeline Biosciences, Inc. Pyridopyrimidine kras inhibitors

Also Published As

Publication number Publication date
AU2016244017B2 (en) 2020-07-23
CA2981677A1 (en) 2016-10-06
EP3277678B1 (en) 2020-03-18
AU2016244017A1 (en) 2017-10-26
EP3277678A4 (en) 2018-08-15
US10487078B2 (en) 2019-11-26
IL254811A0 (en) 2017-12-31
KR20170132332A (en) 2017-12-01
JP2018511614A (en) 2018-04-26
US20180086752A1 (en) 2018-03-29
WO2016161361A4 (en) 2016-12-22
CN107835812A (en) 2018-03-23
EP3277678A1 (en) 2018-02-07

Similar Documents

Publication Publication Date Title
AU2016244017B2 (en) Compositions and methods of targeting mutant K-ras
US10344026B2 (en) Compositions and methods of targeting mutant K-ras
JP2021020957A (en) Methods to induce targeted protein degradation through bifunctional molecules
Ali et al. Synthesis and antimicrobial activity of some new 1, 3-thiazoles, 1, 3, 4-thiadiazoles, 1, 2, 4-triazoles and 1, 3-thiazines incorporating acridine and 1, 2, 3, 4-tetrahydroacridine moieties
JP2019503362A (en) Cyanopyrrolidine derivatives as inhibitors of DUB
KR102530580B1 (en) Therapeutic compounds as inhibitors of the orexin-1 receptor
KR101893627B1 (en) Thiazole derivatives
AU2013356241A1 (en) Treatment of cancer with heterocyclic inhibitors of glutaminase
AU2009219154A1 (en) Protein kinase modulators
AU2013343104A1 (en) Heteroaromatic compounds and their use as dopamine D1 ligands
JP2007523957A (en) New chemical compounds
US8314085B2 (en) Agent for overcoming resistance to anti-cancer agent
WO2014001464A1 (en) Bifluorodioxalane-amino-benzimidazole kinase inhibitors for the treatment of cancer, autoimmuneinflammation and cns disorders
AU2016360245A1 (en) Octahydropyrrolo [3, 4-c] pyrrole derivatives and uses thereof
EP3600287A1 (en) Inhibitors of kinase networks and uses thereof
AU2020256301A1 (en) Fused bicyclic compounds for the treatment of disease
CA3203205A1 (en) Pharmaceutical combinations of sos1 inhibitors for treating and/or preventing cancer
TW201623264A (en) Sulfonamide compounds as voltage gated sodium channel modulators
US20200071316A1 (en) Activators of the retinoic acid inducible gene &#34;rig-i&#34; pathway and methods of use thereof
MX2014008155A (en) Thienopyrimidine compounds.
MA Eldebss et al. Novel Benzo [d] imidazole-based heterocycles as broad spectrum anti-viral agents: design, synthesis and exploration of molecular basis of action
EP3373931A1 (en) Heterocyclic compounds for the treatment of disease
Pédeboscq et al. Synthesis and evaluation of apoptosis induction of thienopyrimidine compounds on KRAS and BRAF mutated colorectal cancer cell lines
WO2023109751A1 (en) Pyrimidine or pyridine derivative and medicinal use thereof
Hussein et al. Biological evaluation of some novel thiazole, thiazolo [3, 2-a] pyridine and thiazolo [3', 2': 1, 6] pyridine rerivatives containing diphenyl moiety as antimicrobial agents

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16774366

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 254811

Country of ref document: IL

ENP Entry into the national phase

Ref document number: 2981677

Country of ref document: CA

Ref document number: 2017552081

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15563813

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016244017

Country of ref document: AU

Date of ref document: 20160401

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177031904

Country of ref document: KR

Kind code of ref document: A