WO2016160437A2 - Apparatus for removing solids from trunk sewers - Google Patents
Apparatus for removing solids from trunk sewers Download PDFInfo
- Publication number
- WO2016160437A2 WO2016160437A2 PCT/US2016/023650 US2016023650W WO2016160437A2 WO 2016160437 A2 WO2016160437 A2 WO 2016160437A2 US 2016023650 W US2016023650 W US 2016023650W WO 2016160437 A2 WO2016160437 A2 WO 2016160437A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solids
- clam shell
- water
- sewers
- sewer
- Prior art date
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B9/00—Cleaning hollow articles by methods or apparatus specially adapted thereto
- B08B9/02—Cleaning pipes or tubes or systems of pipes or tubes
- B08B9/027—Cleaning the internal surfaces; Removal of blockages
- B08B9/04—Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes
- B08B9/053—Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes moved along the pipes by a fluid, e.g. by fluid pressure or by suction
- B08B9/055—Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes moved along the pipes by a fluid, e.g. by fluid pressure or by suction the cleaning devices conforming to, or being conformable to, substantially the same cross-section of the pipes, e.g. pigs or moles
- B08B9/0553—Cylindrically shaped pigs
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B08—CLEANING
- B08B—CLEANING IN GENERAL; PREVENTION OF FOULING IN GENERAL
- B08B9/00—Cleaning hollow articles by methods or apparatus specially adapted thereto
- B08B9/02—Cleaning pipes or tubes or systems of pipes or tubes
- B08B9/027—Cleaning the internal surfaces; Removal of blockages
- B08B9/04—Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes
- B08B9/049—Cleaning the internal surfaces; Removal of blockages using cleaning devices introduced into and moved along the pipes having self-contained propelling means for moving the cleaning devices along the pipes, i.e. self-propelled
- B08B9/0495—Nozzles propelled by fluid jets
- B08B9/0497—Nozzles propelled by fluid jets provided with additional mechanical cleaning tools
-
- E—FIXED CONSTRUCTIONS
- E03—WATER SUPPLY; SEWERAGE
- E03F—SEWERS; CESSPOOLS
- E03F9/00—Arrangements or fixed installations methods or devices for cleaning or clearing sewer pipes, e.g. by flushing
-
- E—FIXED CONSTRUCTIONS
- E03—WATER SUPPLY; SEWERAGE
- E03F—SEWERS; CESSPOOLS
- E03F9/00—Arrangements or fixed installations methods or devices for cleaning or clearing sewer pipes, e.g. by flushing
- E03F9/002—Cleaning sewer pipes by mechanical means
-
- E—FIXED CONSTRUCTIONS
- E03—WATER SUPPLY; SEWERAGE
- E03F—SEWERS; CESSPOOLS
- E03F9/00—Arrangements or fixed installations methods or devices for cleaning or clearing sewer pipes, e.g. by flushing
- E03F9/007—Devices providing a flushing surge
Definitions
- the present invention pertains to a new and improved apparatus for removing solids from sewers and, more particularly, the apparatus is a water jet propelled hollow cylindrical body designed to trap solids, so said solids can be mechanically removed from underground pipe lines.
- a was>lc water collection system is the network of sewer pipes that carry wastewater from homes and businesses to a wastewater treatment plant.
- This network of sewer pipes is sized according to Ihe volume of sewer flow carried.
- Large sewer lines are typically called trunk sewers.
- Trunk sewers are typically designed using minimum slopes which fail to maintain velocities necessary to keep solids suspended in the sewer flow. Due to the settling of solids, all sewers must be cleaned periodically to remove solids. If accumulated solids are not removed, organic solids will decompose causing hydrogen sulfide gases to be released. The build-up of accumulated solids can further reduce the capacity of the sewer pipe, which can cause a stoppage or overflow. The high volume of waters conveyed within trunk sewers further complicates removal of submerged solids.
- 5,336,333 discloses a method for cleaning sewers using normal and injected water to suspend solids in a slurry and uses a submersible pump to move this slurry Into a pressurized container.
- this method is limited by the additional mobilization and setup time required due to multiple pieces of equipment including, the submersible pump and several tanks.
- this method requires a large amount of surface work area for the aooociatcd equipment which can impact local residents and traffic.
- this method is more complex in operation due to the multiple components.
- U.S. Pat. No.4,364,141 discloses a sewer cleaning shoe with dam and jet nozzles and U.S. Pat. No. 4,819,314 and U.S. Pat No. 3,080,265 disclose sewer cleaning jet nozzles,
- the present invention is a substantial improvement of prior art and overcomes the one or more problems set forth above.
- it is desirable to provide an apparatus for removing solids from sewers which is designed to be water jet propelled, dislodges solids within pipes, and also easily removes said solids from trunk sewers and like,
- the present invention overcomes many of the shortcomings and limitations of the prior art discussed above and provides an apparatus which can easily travel the length of an underground trunk sewer or pipe line, and when retrieved, removes trapped solids from the pipe and mechanically removes these solids from the trunk sewer or pipe.
- the present invention contemplates a hollow cylindrical body which is propelled through a pipe using the thrust from ejected high pressure water or fluid.
- the first embodiment of the apparatus comprises of a clam shell opening at one end.
- the apparatus is constructed from thin gauges of staiidess steel.
- the clam shell end being the front; the rear of the apparatus is open.
- the clam shell halves are hinged in the middle with short hinges.
- the clam shell is opened and closed through two sliding actuators on opposite sides of the bucket.
- the sliding actuators are cnnnmted at one end to a piston and spring assembly on each side of the bucket and on the other end to the two halves of the clam shell.
- a water jet manifold assembly or like designed to contain, direct, and eject high pressure water or fluid to propel the apparatus, actuate the piston assembly, and dislodge hardened solids.
- the manifold assembly is connected to the piston assemblies and directs high pressure water into the piston assemblies, which forces the clam shell open when the apparatus is under pressure.
- springs attached to the sliding actuator and the rear of the bucket close the clam shell.
- the high pressure water is supplied through a Y - hose assembly connected to the rear of the apparatus on one end and a jet/vac sewer type truck hose on the other.
- the apparatus is lowered into and retrieved from a maintenance hole from the hose and hose reel of the jet/vac truck.
- the high pressure water forces the clam
- the sliding actuator which opens and closes the bucket could be operated using a battery operated linear actuator triggered by water pressure or tension.
- the sliding actuator which opens and closes the bucket could be operated by mechanical means derived from the motion of the apparatus.
- the bucket would have a fixed bullet type front which passes over and/or around solid3, includes a plurality of perforated openings to drain trapped water, but still traps solids inside when retrieved.
- the apparatus would be constructed from mild steel, carbon fiber, aluminum, or similar material.
- the apparatus would be constructed from a mixture of steel, stainless steel, carbon fiber, or aluminum.
- FIG. 1 is a perspective view of the preferred embodiment of the Apparatus for removing solids from sewers with the clam shell in the closed position.
- FIG. 2 is a perspective view of the preferred embodiment of the apparatus for removing solids from sewers with the clam shell in the open position.
- FIG. 3 is a front and rear view of the Apparatus with the clam shell in the closed position and the Y - hose conneotcd to the apparatus.
- FIG. 4 is a cut-away view illustrating the method of use in a flooded trunk sewer using a jet/vac type truck.
- FIG. 5 is a cut-away view illustrating the method in which solids are vacuumed from the apparatus after the apparatus is removed from the pipe containing solids.
- FIG. 6 is a perspective view of the apparatus using a battery operated linear actuator to open and close the clam shell.
- FIG. 7 is a perspective view of the apparatus operating the clam shell using mechanical means.
- FIG. 8 is a perspective view of the apparatus with a fixed bullet nose and a plurality of perforations or holes to drain water.
- the apparatus tor removing solids from sewers 1 is a hollow cylindrical body and in the preferred embodiment constructed from stainless steel.
- the apparatus and clam halves are constructed from thin gauge material and formed into the cylindrical shape.
- the apparatus would be constructed in various sizes depending on the size of the trunk sewer or pipe solids are being removed from and the size of the access to said pipes. As an example, if removing solids from a 610 mm (24") sewer pipe with an equally sized access, the apparatus would be approximately 304 mm (12") to 450 mm (18") in diameter and 762 mm (30") to 915 mm (36”) in length.
- Replaceable wear strips 25 are even spaced around the perimeter of the apparatus and can be made of stainless steel or plastic or other type of material.
- the clam shell opening 2 is considered the front of the apparatus.
- the two clam shell halves open on a hinge 3. Due to the curvature of the bucket, the hinge is fairly short to allow the clam shell 2 to open.
- the clam shell is opened and closed by lateral movement of the sliding actuator 8.
- the sliding actuator 8 travels on round guides 9 which are
- INCORPORATED BY REFERENCE (RULE 20.6) designed to retain the sliding actuator 8 and prevent all motion except lateral travel to open and close the clam shell halves 2.
- the amount of linear travel of sliding actuator 8 is also limited by the guide slots 24 and the round guides 9.
- the sliding actuators are connected to the piston assembly 10, which when pressurized with water forces the clam shell halves 2 open.
- the piston assembly is tubular in shape and has an internal rod and piston assembly 26. When water pressure increases, the piston is extended which opens the clam shell 2. When water pressure decreases, the spring 11 exerts tension on the sliding actuator 8, which closes the clam shell 2.
- a water jet manifold assembly 4 which is tubular in shape and designed lo contain, direct, and eject high pressure water to propel the apparatus.
- the high pressure water is ejected from fixed orifice jets 5 that are threaded into the water jet manifold.
- the force of the water ejected from the jets 7 propels to the apparatus through the trunk sewer or pipe.
- the jete 5 at the top of the bucket are directed and angled in such a manner as to maintain the apparatus in an upright position while traveling through the pipe.
- the angle of the jets 5 are generally in an opposing and downward angle providing the necessary self-righting force 13 in Fig. 2.
- High pressure water is supplied through two threaded hose couplings 6 which are part of the water jet manifold 4.
- FIG.3 high pressure water is supplied through a Y - hose assembly 22 connected to the water jet manifold assembly 4 at the rear of the apparatus using two threaded hose couplings 6.
- a "2 into 1" hose fitting 23 connects the two pieces of hose making the Y - hose assembly.
- the sewer jetting hose IS Fig. 4 from the jet/vac sewer type truck 21 Fig. 4 is connected to the "2 into 1" hose fitting 23.
- the apparatus 1 is shown as it would appear when pressurized with water.
- the piston assembly 10 is connected directly to the water jet manifold assembly 4 by a threaded connection or bolted flange.
- Water pressure from the water jet manifold assembly 4 is provided to the piston assembly through an internal fluid path between the direct connect of the water jet manifold 4 and the piston assembly 10.
- the water pressure from the water jet manifold assembly 4 moves into the piston assembly 10 and the pressure forces the internal ram 26 Fig. 1 to extend, which moves the sliding actuator 8 and forces the clam shell 2 open.
- die apparatus for removmg solids from sewers is shown in the best mode of operation.
- the apparatus for removing solids from sewers is lowered into and retrieved from a maintenance hole 16 from the hose 22 and hose reel 15 of the jet/vac truck 21.
- the apparatus for removing solids from sewers is lowered into the trunk sewer and front positioned to face the desired direction of travel.
- High pressure water is then supplied to the apparatus for removing solids from sewers through the hose 22.
- the water jets propel the apparatus through the trunk sewer or pipe 19.
- the water pressure acts on the piston assembly and forces the clam bucket open.
- the apparatus when the apparatus is travelling into the sewer or pipe 19, the clam shell opening is in the open position allowing solids to be scooped into the apparatus.
- the apparatus makes it easy to remove submerged solids 20 in a trunk sewer 17 or like pipe by using water jet propulsion to travel through the pipe, scooping solids, trapping said solids in the apparatus for
- the pressure switch 27 senses increased pressure in the water jet manifold 4 and signals the battery pack and controller unit 29 to open the clam shell. When pressure decreases, the battery pack and controller unit 29 closes the clam shell.
- the clam shell 2 is opened when the jet force 7 pushes the sliding actuator 8 forward.
- the jet manifold assembly 4 and the sliding actuator 8 are connected and move independent of the rest of the bucket.
- bullet nose 31 is fixed to the apparatus and solids pass around the apparatus.
- trapped water drains from the plurality of perforations or holes 32.
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Public Health (AREA)
- Water Supply & Treatment (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Sewage (AREA)
- Cleaning In General (AREA)
Abstract
A sewer cleaning apparatus which has a hollow cylindrical body propelled by a plurality of water jets with a clam shell opening on the front of the apparatus operated by a plurality of piston assemblies that are attached to the sides of the cylindrical body. The apparatus is propelled by high pressure water ejected from the apparatus in a rearward direction. The high pressure water operates the piston assembly opening the clam shell and provides forward thrust for the apparatus allowing the hollow bucket type object to trap solids inside apparatus.
Description
TITLE
[0001] Apparatus for Removing Solids from Sewers
CROSS-REFERENCES TO RELATED APPLIC A HONS
[0002] Not applicable
FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT STATEMENT
[0003] Not applicable
NAMES U PARTIES TO A JOINT RESEARCH AGREEMENT
[0004] Not applicable
SEQUENCE LISTING
[0005] Not applicable
PRIOR DISCLOSURE STATEMENT
[0006] The current invention has not been previously disclosed. This specification is intended to be a full and clear disclosure of the invention disclosed herein.
INCORPORATED BY REFERENCE (RULE 20.6)
' BACKGROUND OF INVENTION
1. Field of the Invention
[0007] The present invention pertains to a new and improved apparatus for removing solids from sewers and, more particularly, the apparatus is a water jet propelled hollow cylindrical body designed to trap solids, so said solids can be mechanically removed from underground pipe lines.
2. Description of Prior Art
[0008] Various means have been developed to remove solids from trunk sewers, but these methods are difficult, time consiiining, and expensive when compared to the present invention.
[0009] A was>lc water collection system is the network of sewer pipes that carry wastewater from homes and businesses to a wastewater treatment plant. This network of sewer pipes is sized according to Ihe volume of sewer flow carried. Large sewer lines are typically called trunk sewers. Trunk sewers are typically designed using minimum slopes which fail to maintain velocities necessary to keep solids suspended in the sewer flow. Due to the settling of solids, all sewers must be cleaned periodically to remove solids. If accumulated solids are not removed, organic solids will decompose causing hydrogen sulfide gases to be released. The build-up of accumulated solids can further reduce the capacity of the sewer pipe, which can cause a stoppage or overflow. The high volume of waters conveyed within trunk sewers further complicates removal of submerged solids.
[0010] There are several factors which complicate efforts to remove solid materials such as depth of the sewer, the depth of the sewer flow, and size of the access hole into the sewer. Each of these
2
INCORPORATED BY REFERENCE (RULE 20.6)
factors creates additional complications. For example, vacuum systems have a physical limit related to the vertical lift of water using vacuum, which is further complicated when attempting to remove solids submerged under water. Also, many underground pipe lines have access holes which are much smaller than the actual pipe. This limits the use of devices designed to use the water flowing around the device to dislodge and carry solids, because these methods rely on the device to be of a similar size as the pipe being cleaned, thereby making larger pipes very difficult to clean and remove solids from. Further complicating these efforts, larger pipes are also typically at greater depths below the surface. To overcome the limits associated with vacuum,.U.S. Pat. No. 5,336,333 discloses a method for cleaning sewers using normal and injected water to suspend solids in a slurry and uses a submersible pump to move this slurry Into a pressurized container. However, this method is limited by the additional mobilization and setup time required due to multiple pieces of equipment including, the submersible pump and several tanks. Also, this method requires a large amount of surface work area for the aooociatcd equipment which can impact local residents and traffic. Also, this method is more complex in operation due to the multiple components.
[0011] Reference also, U.S. Pat. No. 3,181,192, U.S. Pat. No. 2,454,008, and U.S. Pat. No 2,128,650 which disclose cable operated sewer cleaning buckets. These references of prior art use similar clam shell type buckets, but these devices are pulled through the pipe on cables using surface mounted winches. The use of a cable system requires extensive setup time for multiple pieces of associated equipment, n iutcuauce hole Cable and/or bucket rollers, and require a cable to be run through the sewer.
[0012] Reference also, U.S. Pat. No.4,364,141 discloses a sewer cleaning shoe with dam and jet nozzles and U.S. Pat. No. 4,819,314 and U.S. Pat No. 3,080,265 disclose sewer cleaning jet nozzles,
3
INCORPORATED BY REFERENCE (RULE 20.6)
the aforementioned prior art is limited because dislodged material can only be removed manually using shovels and the like, or through the use of a vacuum apparatus operating under water within the pipe line. As previously mentioned, vacuuming of said material is difficult due to the high water levels typically associated with flowing trunk sewers, so often dislodged solids often cannot be removed.
[0013] The present invention is a substantial improvement of prior art and overcomes the one or more problems set forth above. In this respect, it is desirable to provide an apparatus for removing solids from sewers which is designed to be water jet propelled, dislodges solids within pipes, and also easily removes said solids from trunk sewers and like,
[0014] It is further desirable to provide an apparatus for removing solids from sewers or like which utilizes high preeourc cleaning hose uf a single Jet/vac type truck which greatly reduces setup time involved with cable systems, surface work area required for multiple pieces of equipment, and greatly enhances efficiencies and effectiveness due to these benefits.
[0015] It is further desirable to provide an apparatus for removing solids from sewers or like which is designed to mechanically remove materials without the use of vacuum, which is ineffective in flooded sewers.
[0016] It is further desirable to provide an apparatus for removing solids from sewers or like which cleans and removes solids from a single maintenance hole or access point.
4
INCORPORATED BY REFERENCE (RULE 20.6)
[0017] It is further desirable to provide an apparatus for removing solids from sewers or like which uses the supplied water pressure to control the bucket opening.
[0018] It is further desirable to provide an apparatus for removing solids from sewers or like which is designed to remove materials without the use of centrifugal pumping and the like which simplifies setup and operation as well as reduces costs.
[0019] It is further desirable to provide an apparatus for removing solids from sewers or like which does not require the apparatus to be of a similar size as the pipe from which solids are being removed.
[0020] Therefore, il can be appreciated that there exists a need for new and improved apparatus for removing solids from sewers or like which can be used U> more efficiently and effectively to dislodge solids from pipes and mechanically remove solids from within. In this regard, the present invention substantially fulfills this need.
5
INCORPORATED BY REFERENCE (RULE 20.6)
SUMMARY OF INVENTION
[0021] The present invention overcomes many of the shortcomings and limitations of the prior art discussed above and provides an apparatus which can easily travel the length of an underground trunk sewer or pipe line, and when retrieved, removes trapped solids from the pipe and mechanically removes these solids from the trunk sewer or pipe.
[UU22J To attain this, the present invention contemplates a hollow cylindrical body which is propelled through a pipe using the thrust from ejected high pressure water or fluid. The first embodiment of the apparatus comprises of a clam shell opening at one end. The apparatus is constructed from thin gauges of staiidess steel. The clam shell end being the front; the rear of the apparatus is open. The clam shell halves are hinged in the middle with short hinges. The clam shell is opened and closed through two sliding actuators on opposite sides of the bucket. The sliding actuators are cnnnmted at one end to a piston and spring assembly on each side of the bucket and on the other end to the two halves of the clam shell. At the rear of the bucket is a water jet manifold assembly or like designed to contain, direct, and eject high pressure water or fluid to propel the apparatus, actuate the piston assembly, and dislodge hardened solids. The manifold assembly is connected to the piston assemblies and directs high pressure water into the piston assemblies, which forces the clam shell open when the apparatus is under pressure. When the apparatus is not under pressure, springs attached to the sliding actuator and the rear of the bucket, close the clam shell.
[0023] The high pressure water is supplied through a Y - hose assembly connected to the rear of the apparatus on one end and a jet/vac sewer type truck hose on the other. The apparatus is lowered into and retrieved from a maintenance hole from the hose and hose reel of the jet/vac truck. When apparatus is being propelled through a trunk sewer or pipe, the high pressure water forces the clam
6
INCORPORATED BY REFERENCE (RULE 20.6)
bucket open. The water jets are directed in a downward, opposing direction so that the bucket stays in an upright position. When the high pressure water is turned off, forward motion of the apparatus stops and the clam shell closes trapping solids inside the bucket. When the apparatus is removed from the trunk sewer, maintenance hole, or pipe the Y - hose assembly is easily pushed to one side so that the solids can be vacuumed from inside the bucket using the jet/vac truck vacuum apparatus.
[0024] In an alternative embodiment, the sliding actuator which opens and closes the bucket could be operated using a battery operated linear actuator triggered by water pressure or tension.
[0025] In an alternative embodiment, the sliding actuator which opens and closes the bucket could be operated by mechanical means derived from the motion of the apparatus.
[0026] In an alternative embodiment, the bucket would have a fixed bullet type front which passes over and/or around solid3, includes a plurality of perforated openings to drain trapped water, but still traps solids inside when retrieved.
[0027] In an alternative embodiment, the apparatus would be constructed from mild steel, carbon fiber, aluminum, or similar material.
[0028] In an alternative embodiment, the apparatus would be constructed from a mixture of steel, stainless steel, carbon fiber, or aluminum.
[0029] There has thus been outlined, the features of the invention in order that the detailed description thereof that follows may be better understood and in order that the present contribution to the art may be better appreciated.
7
INCORPORATED BY REFERENCE (RULE 20.6)
[0030] As such, those skilled in the art will appreciate that the apparatus, upon which this disclosure is based, may readily be utilized for easily removing solids from other structures, areas, or pipes. It is important, therefore, that the claims be regarded as including such equivalent structures, areas or pipes insofar as they do not depart from the spirit and scope of the present invention.
8
INCORPORATED BY REFERENCE (RULE 20.6)
BRIEF DESCRIPTION OF THE DRAWINGS
[0031] The invention will be better understood from the following Detailed Description when considered in connection with the accompanying drawings in which similar reference characters denote similar elements throughout the several views.
[0032] FIG. 1 is a perspective view of the preferred embodiment of the Apparatus for removing solids from sewers with the clam shell in the closed position.
[0033] FIG. 2 is a perspective view of the preferred embodiment of the apparatus for removing solids from sewers with the clam shell in the open position.
[0034] FIG. 3 is a front and rear view of the Apparatus with the clam shell in the closed position and the Y - hose conneotcd to the apparatus.
[0035] FIG. 4 is a cut-away view illustrating the method of use in a flooded trunk sewer using a jet/vac type truck.
[0036] FIG. 5 is a cut-away view illustrating the method in which solids are vacuumed from the apparatus after the apparatus is removed from the pipe containing solids.
[0037] FIG. 6 is a perspective view of the apparatus using a battery operated linear actuator to open and close the clam shell.
9
INCORPORATED BY REFERENCE (RULE 20.6)
[0038] FIG. 7 is a perspective view of the apparatus operating the clam shell using mechanical means.
[0039] FIG. 8 is a perspective view of the apparatus with a fixed bullet nose and a plurality of perforations or holes to drain water.
10
INCORPORATED BY REFERENCE (RULE 20.6)
* DETAILED DESCRIPTION OF THE INVENTION
[0040] For illustration purposes only, the following various embodiments of the apparatus for removing solids from sewers. This invention may, however, be embodied in many different forms and should not construed as limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art.
[0041] Referring to the drawings more particularly by reference numbers wherein like numerals refer to like parts, the numeral 1 in Figs. 1, 2, and 3 identify the apparatus for removing solids from sewers.
[0042] Referring to Fig. I, the apparatus tor removing solids from sewers 1 is a hollow cylindrical body and in the preferred embodiment constructed from stainless steel. The apparatus and clam halves are constructed from thin gauge material and formed into the cylindrical shape. The apparatus would be constructed in various sizes depending on the size of the trunk sewer or pipe solids are being removed from and the size of the access to said pipes. As an example, if removing solids from a 610 mm (24") sewer pipe with an equally sized access, the apparatus would be approximately 304 mm (12") to 450 mm (18") in diameter and 762 mm (30") to 915 mm (36") in length. Replaceable wear strips 25 are even spaced around the perimeter of the apparatus and can be made of stainless steel or plastic or other type of material. The clam shell opening 2 is considered the front of the apparatus. The two clam shell halves open on a hinge 3. Due to the curvature of the bucket, the hinge is fairly short to allow the clam shell 2 to open. The clam shell is opened and closed by lateral movement of the sliding actuator 8. The sliding actuator 8 travels on round guides 9 which are
11
INCORPORATED BY REFERENCE (RULE 20.6)
designed to retain the sliding actuator 8 and prevent all motion except lateral travel to open and close the clam shell halves 2. The amount of linear travel of sliding actuator 8 is also limited by the guide slots 24 and the round guides 9. The sliding actuators are connected to the piston assembly 10, which when pressurized with water forces the clam shell halves 2 open. The piston assembly is tubular in shape and has an internal rod and piston assembly 26. When water pressure increases, the piston is extended which opens the clam shell 2. When water pressure decreases, the spring 11 exerts tension on the sliding actuator 8, which closes the clam shell 2.
[0043] Referring again to Fig. 1, at the rear of the bucket is a water jet manifold assembly 4 which is tubular in shape and designed lo contain, direct, and eject high pressure water to propel the apparatus. The high pressure water is ejected from fixed orifice jets 5 that are threaded into the water jet manifold. The force of the water ejected from the jets 7 propels to the apparatus through the trunk sewer or pipe. The jete 5 at the top of the bucket are directed and angled in such a manner as to maintain the apparatus in an upright position while traveling through the pipe. The angle of the jets 5 are generally in an opposing and downward angle providing the necessary self-righting force 13 in Fig. 2. High pressure water is supplied through two threaded hose couplings 6 which are part of the water jet manifold 4.
[0044] Referring to Fig.3, high pressure water is supplied through a Y - hose assembly 22 connected to the water jet manifold assembly 4 at the rear of the apparatus using two threaded hose couplings 6. A "2 into 1" hose fitting 23 connects the two pieces of hose making the Y - hose assembly. The sewer jetting hose IS Fig. 4 from the jet/vac sewer type truck 21 Fig. 4 is connected to the "2 into 1" hose fitting 23.
12
INCORPORATED BY REFERENCE (RULE 20.6)
[0045] Referring to Fig. 2, the apparatus 1 is shown as it would appear when pressurized with water. The piston assembly 10 is connected directly to the water jet manifold assembly 4 by a threaded connection or bolted flange. Water pressure from the water jet manifold assembly 4 is provided to the piston assembly through an internal fluid path between the direct connect of the water jet manifold 4 and the piston assembly 10. The water pressure from the water jet manifold assembly 4 moves into the piston assembly 10 and the pressure forces the internal ram 26 Fig. 1 to extend, which moves the sliding actuator 8 and forces the clam shell 2 open. In the open position, tension on the sliding actuator return spring 11 is increased and thus provides the force necessary to close the clam shell 2 when water pressure is decreased. When pressure is decreased, water inside the piston assembly 10 exits the rear of the piston assembly through the internal path between the piston assembly 10 and the water jet manifold 4 and drains out through the water jets 5.
[00Ί ] Referring to Fig. 4, die apparatus for removmg solids from sewers is shown in the best mode of operation. The apparatus for removing solids from sewers is lowered into and retrieved from a maintenance hole 16 from the hose 22 and hose reel 15 of the jet/vac truck 21. The apparatus for removing solids from sewers is lowered into the trunk sewer and front positioned to face the desired direction of travel. High pressure water is then supplied to the apparatus for removing solids from sewers through the hose 22. When high pressure water is supplied to the apparatus for removing solids from sewers the water jets propel the apparatus through the trunk sewer or pipe 19. As high pressure water is supplied, the water pressure acts on the piston assembly and forces the clam bucket open. Thus, when the apparatus is travelling into the sewer or pipe 19, the clam shell opening is in the open position allowing solids to be scooped into the apparatus. Thus the apparatus makes it easy to remove submerged solids 20 in a trunk sewer 17 or like pipe by using water jet propulsion to travel through the pipe, scooping solids, trapping said solids in the apparatus for
13
INCORPORATED BY REFERENCE (RULE 20.6)
mechanical removal. When the high pressure water is turned off or reduced, forward motion of the apparatus stops and the clam shell closes 18. As water pressure is decreased, the spring assembly 11, in Fig. 1 closes the clam shell opening and traps solids inside the apparatus. As a demonstration of the method of use, 19 illustrates the apparatus traveling into the submerged solids 20 and 18 illustrates the retrieval of the solids using the apparatus.
[0047] Referring now to Fig. 5, after the apparatus has been removed from the trunk sewer or pipe, the Y - hose assembly 22 is easily pushed to one side so that the solids can be physically dumped or vacuumed from inside the bucket using the jet/vac truck vacuum apparatus 23.
[0048] Referring now to Fig. 6, the pressure switch 27 senses increased pressure in the water jet manifold 4 and signals the battery pack and controller unit 29 to open the clam shell. When pressure decreases, the battery pack and controller unit 29 closes the clam shell.
[0049] Referring now to Fig. 7, the clam shell 2 is opened when the jet force 7 pushes the sliding actuator 8 forward. In this embodiment, the jet manifold assembly 4 and the sliding actuator 8 are connected and move independent of the rest of the bucket.
[0050] Referring now to Fig. 8, bullet nose 31 is fixed to the apparatus and solids pass around the apparatus. When the apparatus is retrieved, trapped water drains from the plurality of perforations or holes 32.
14
INCORPORATED BY REFERENCE (RULE 20.6)
Claims
1. An apparatus for removing solids from sewers comprising of:
a hollow cylindrical body propelled by a plurality of high pressure water jets, which provides forward thrust; a clam shell opening at the front of the apparatus of operated by a plurality of piston assemblies to open and close a clam shell opening on the front of the apparatus based on water pressure.
2. An apparatus as in claim 1, wherein the clam shell is operated using a battery operated linear actuator triggered by water pressure or tension.
3. An apparatus as is claim 1, wherein the clam shell is operated through any mechanical means derived from the motion of the apparatus.
4. An apparatus as is claim 1, wherein, the clam shell opening is substituted by any trap opening is used to allow solids to pass into the cylindrical body, then retain said solids when retrieved and hoisted from maintenance hole or access point.
5. An apparatus as in claim 1, wherein the clam shell opening is substituted by fixed opening in the front of the apparatus designed to allow solids to pass into the apparatus yet retain said solids when retrieved and hoisted from maintenance hole or access point.
6. An apparatus for removing solids from a trunk sewer or pipe comprising of: any apparatus propelled by water jets, using any means to mechanically trap and remove solids from a pipe line.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16773760.0A EP3277894A4 (en) | 2015-03-30 | 2016-03-23 | Apparatus for removing solids from trunk sewers |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US14/672,902 | 2015-03-30 | ||
US14/672,902 US9744572B2 (en) | 2015-03-30 | 2015-03-30 | Apparatus for removing solids from sewers |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2016160437A2 true WO2016160437A2 (en) | 2016-10-06 |
WO2016160437A3 WO2016160437A3 (en) | 2017-01-19 |
Family
ID=57007226
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2016/023650 WO2016160437A2 (en) | 2015-03-30 | 2016-03-23 | Apparatus for removing solids from trunk sewers |
Country Status (3)
Country | Link |
---|---|
US (1) | US9744572B2 (en) |
EP (1) | EP3277894A4 (en) |
WO (1) | WO2016160437A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110508573A (en) * | 2019-08-31 | 2019-11-29 | 南京灵雀智能制造有限公司 | A kind of robot cleaning device of quick descaling |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10927539B2 (en) | 2018-03-02 | 2021-02-23 | Jeffrey L. Iwasaki-Higbee | Method and apparatus for cleaning large pipes, such as storm drain conduits |
FI129741B (en) * | 2020-04-07 | 2022-08-15 | Picote Solutions Oy Ltd | Sanitizing device and system comprising the same |
CN111519747B (en) * | 2020-04-30 | 2021-03-23 | 中国电建集团华东勘测设计研究院有限公司 | River channel hidden culvert sludge collector and jet assembly |
CN111533343B (en) * | 2020-05-12 | 2021-01-01 | 上海市政工程设计研究总院(集团)有限公司 | Telescopic arm type water purifying and dredging device |
US11253883B1 (en) | 2021-06-09 | 2022-02-22 | Russell R. Gohl | Cavity cleaning and coating system |
US11535321B1 (en) * | 2022-08-24 | 2022-12-27 | Russell R. Gohl | Trailer system |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2128650A (en) | 1936-08-13 | 1938-08-30 | Champion Corp | Sewer cleaner |
US2454008A (en) | 1947-01-31 | 1948-11-16 | Pittsburgh Pipe Cleaner Compan | Sewer cleaning bucket for passing around sheaves |
US3080265A (en) | 1959-10-28 | 1963-03-05 | Oskar Maasberg Fa | Process and apparatus for cleaning waste-disposal systems |
US3181192A (en) | 1963-03-22 | 1965-05-04 | Chester A Truman | Bucket for sewer cleaning |
US4364141A (en) | 1980-06-13 | 1982-12-21 | Thames Water Authority | Sewer cleaning shoe with dam and jet nozzles |
GB2147970A (en) | 1983-09-23 | 1985-05-22 | Water Res Centre | Removing debris from ducts |
US4819314A (en) | 1987-01-22 | 1989-04-11 | The Pullman Peabody Company | Jet nozzles |
US5336333A (en) | 1990-11-01 | 1994-08-09 | Sheppard Sheron R | Method for cleaning waste collection systems |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1344249A (en) * | 1919-01-08 | 1920-06-22 | William H Stewart | Sewer-cleaning apparatus |
FR1329450A (en) * | 1962-07-24 | 1963-06-07 | Mahdrescherwerk Weimar Veb | Hydraulic clamshell for loading devices |
US3387877A (en) * | 1967-05-15 | 1968-06-11 | Constantines Christodolu | Retrieving tool |
GB1342502A (en) * | 1972-04-21 | 1974-01-03 | Leslie Ltd George | Method of and apparatus for removing sludge from large conduits |
GB8922329D0 (en) * | 1989-10-04 | 1989-11-22 | Tate Pipe Lining Processes Lim | Apparatus and method for clearing sewers |
US5435854A (en) * | 1990-08-10 | 1995-07-25 | Pipeline Sewer Services, Inc. | Pipe cleaning modules and systems and methods for their use |
US5129957A (en) * | 1990-11-01 | 1992-07-14 | Ray Harvey Company, Inc. | Method for cleaning sewers |
US20060179603A1 (en) * | 2005-02-14 | 2006-08-17 | Polston Henry B | Apparatus for cleaning pipes having pumping and vacuuming capability |
US7993469B1 (en) * | 2005-11-15 | 2011-08-09 | Redzone Robotics, Inc. | Sensor based micro-cleaning of buried infrastructure |
AU2009260178B2 (en) * | 2008-06-16 | 2012-07-26 | Warren Phillip Drew | Linearly adjustable device |
US8974604B2 (en) * | 2010-06-17 | 2015-03-10 | Slawko Morris Baziuk | Sewer cleaning method |
-
2015
- 2015-03-30 US US14/672,902 patent/US9744572B2/en active Active
-
2016
- 2016-03-23 WO PCT/US2016/023650 patent/WO2016160437A2/en active Application Filing
- 2016-03-23 EP EP16773760.0A patent/EP3277894A4/en not_active Withdrawn
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2128650A (en) | 1936-08-13 | 1938-08-30 | Champion Corp | Sewer cleaner |
US2454008A (en) | 1947-01-31 | 1948-11-16 | Pittsburgh Pipe Cleaner Compan | Sewer cleaning bucket for passing around sheaves |
US3080265A (en) | 1959-10-28 | 1963-03-05 | Oskar Maasberg Fa | Process and apparatus for cleaning waste-disposal systems |
US3181192A (en) | 1963-03-22 | 1965-05-04 | Chester A Truman | Bucket for sewer cleaning |
US4364141A (en) | 1980-06-13 | 1982-12-21 | Thames Water Authority | Sewer cleaning shoe with dam and jet nozzles |
GB2147970A (en) | 1983-09-23 | 1985-05-22 | Water Res Centre | Removing debris from ducts |
US4819314A (en) | 1987-01-22 | 1989-04-11 | The Pullman Peabody Company | Jet nozzles |
US5336333A (en) | 1990-11-01 | 1994-08-09 | Sheppard Sheron R | Method for cleaning waste collection systems |
Non-Patent Citations (1)
Title |
---|
See also references of EP3277894A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110508573A (en) * | 2019-08-31 | 2019-11-29 | 南京灵雀智能制造有限公司 | A kind of robot cleaning device of quick descaling |
Also Published As
Publication number | Publication date |
---|---|
EP3277894A4 (en) | 2019-01-16 |
US9744572B2 (en) | 2017-08-29 |
US20160288176A1 (en) | 2016-10-06 |
EP3277894A2 (en) | 2018-02-07 |
WO2016160437A3 (en) | 2017-01-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9744572B2 (en) | Apparatus for removing solids from sewers | |
US10954661B2 (en) | Apparatus for cleaning pipes having pumping and vacuuming capability | |
US4337096A (en) | Method and implement for cleaning drains | |
US5341539A (en) | Apparatus for cleaning waste collection system | |
US20180009011A1 (en) | Dripless expanding tubes for combination truck | |
JP2019504222A (en) | Injection trench drilling system | |
US4992000A (en) | Underwater trenching system | |
US6966132B1 (en) | Method and device for moving subsea rocks and sediments | |
KR20060083097A (en) | Washing apparatus to remove a scale being the inside of a water supply and drainage | |
EP3647496B1 (en) | System for cleaning heterogeneous sludge deposited in hydraulic facilities | |
EP3969670B1 (en) | Dredging method and apparatus | |
KR100690956B1 (en) | Dredging construction method of pipe using water pressure | |
US10018016B2 (en) | Wireline fluid blasting tool and method | |
NL2014578B1 (en) | A pile driving assembly and a follower. | |
NL2014307B1 (en) | Submersible vehicle for providing a trench in a subsea bottom. | |
JP2005220598A (en) | Equipment for cleaning accumulated sediment on bottom of river | |
KR101387699B1 (en) | Drain sludge dredging and recycling equipment, dredging and recycling method using it | |
KR101853357B1 (en) | Moving apparatus in horizontal water intake pipe | |
EP1083297A2 (en) | Apparatus for freeing an object underground, and the application of such apparatus | |
CN115075738B (en) | Integrated drill rod cleaning tool and using method thereof | |
KR101365184B1 (en) | Apparatus for burying cable line simultaneously with excavating submarine surface | |
CN114607035A (en) | Pipeline dredging equipment for hydraulic engineering and using method | |
JP2021014728A (en) | Drift object transfer device | |
NL9500528A (en) | Method of removing sediment deposits | |
JP2002174094A (en) | Earth removing device and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16773760 Country of ref document: EP Kind code of ref document: A2 |
|
REEP | Request for entry into the european phase |
Ref document number: 2016773760 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16773760 Country of ref document: EP Kind code of ref document: A2 |