WO2016159093A1 - ワイヤレス受電装置及びワイヤレス電力伝送装置 - Google Patents

ワイヤレス受電装置及びワイヤレス電力伝送装置 Download PDF

Info

Publication number
WO2016159093A1
WO2016159093A1 PCT/JP2016/060415 JP2016060415W WO2016159093A1 WO 2016159093 A1 WO2016159093 A1 WO 2016159093A1 JP 2016060415 W JP2016060415 W JP 2016060415W WO 2016159093 A1 WO2016159093 A1 WO 2016159093A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit
power
power transmission
wireless power
power receiving
Prior art date
Application number
PCT/JP2016/060415
Other languages
English (en)
French (fr)
Inventor
晃大 新崎
正秀 大西
Original Assignee
Tdk株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tdk株式会社 filed Critical Tdk株式会社
Priority to JP2017510111A priority Critical patent/JP6361818B2/ja
Priority to CN201680020194.9A priority patent/CN107431382B/zh
Priority to US15/559,173 priority patent/US10298069B2/en
Priority to DE112016001489.9T priority patent/DE112016001489T5/de
Publication of WO2016159093A1 publication Critical patent/WO2016159093A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/10Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
    • H02J50/12Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • B60L53/122Circuits or methods for driving the primary coil, e.g. supplying electric power to the coil
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H9/00Emergency protective circuit arrangements for limiting excess current or voltage without disconnection
    • H02H9/04Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage
    • H02H9/041Emergency protective circuit arrangements for limiting excess current or voltage without disconnection responsive to excess voltage using a short-circuiting device
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/12Inductive energy transfer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J50/00Circuit arrangements or systems for wireless supply or distribution of electric power
    • H02J50/80Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Definitions

  • the present invention relates to a wireless power receiving apparatus and a wireless power transmission apparatus.
  • a wireless power transmission device has been proposed as a technique for charging a rechargeable battery of an electric vehicle.
  • the magnetic resonance method is used particularly for the above-described applications.
  • an inverter circuit that converts DC power into AC power and sends the AC power to a power feeding coil, a power feeding coil, and a first capacitor provided in parallel with the power feeding coil AC current received from the power receiving coil and the second LC parallel resonant part formed by the first LC parallel resonant part, the power receiving coil, and the second capacitor provided in parallel with the power receiving coil.
  • a wireless power feeding system having a rectifier circuit that converts electric power into DC power has been proposed.
  • Patent Document 2 proposes a short circuit using a switching element that protects the rectifier circuit from overvoltage.
  • the short circuit disclosed in Patent Document 2 monitors the output voltage of the rectifier circuit, and when a value of the output voltage exceeding a preset reference voltage value is detected, the switching element operates to short the circuit.
  • the circuit elements after the rectifier circuit are protected from overvoltage.
  • a semiconductor element is used as a switching element used in this short circuit.
  • the semiconductor element used as the switching element disclosed in Patent Document 2 has a parasitic capacitance structurally.
  • This parasitic capacitance forms a loop connected to both ends of the power-reception-side resonance circuit in a state where the switching element is off, and reactive power is generated due to current flowing through the parasitic capacitance, resulting in a deterioration of the power factor. There is. In other words, if the same power is to be obtained, a large amount of current must be passed, resulting in power loss.
  • the present invention has been made in view of the above problems, and a wireless power receiving device and a wireless power transmission device that suppress the occurrence of power loss due to reactive power during normal operation while protecting circuit elements when an overvoltage occurs.
  • the purpose is to provide.
  • a wireless power receiving device is a wireless power receiving device that wirelessly receives power from a wireless power transmitting device, and a power receiving coil that wirelessly receives power from a power transmitting side, and a power receiving side resonance connected to the power receiving coil.
  • a power receiving side resonance circuit having a capacitor, a rectification circuit that rectifies the power received by the power receiving coil and outputs the rectified power to a load, a power reception side voltage detection unit that detects an output voltage of the rectification circuit, and an output of the power reception side resonance circuit
  • a short circuit having a switching element connected between the output part of the rectifier circuit and the output part of the rectifier circuit, and a rectifier element inserted between the output part of the power reception side resonance circuit and the switching element, and a power receiving side voltage detection part
  • a control circuit that operates the switching element when the value of the output voltage detected by the controller exceeds a preset reference voltage value.
  • the switching element of the short circuit when the value of the output voltage detected by the power receiving side voltage detection unit exceeds a preset reference voltage value, the switching element of the short circuit is operated. Therefore, both ends of the power receiving coil of the power receiving side resonance circuit are short-circuited. As a result, the generated overvoltage is not output to the subsequent stage from the power reception side resonance circuit, and the circuit elements at the rear stage from the power reception side resonance circuit can be protected.
  • the rectifying element inserted between the output part of the power receiving side resonance circuit and the switching element is provided, the current path to the parasitic capacitance of the switching element is cut off and the discharge of the parasitic capacitance is suppressed. . Thereby, generation
  • the rectifier circuit may include a bridge type circuit in which four diodes are connected in a full bridge, and a smoothing capacitor in which the bridge type circuit is connected in parallel.
  • the utilization efficiency of the power source can be increased.
  • a stop signal for stopping the power transmission operation may be transmitted to the wireless power transmission apparatus at the same time or immediately after the control circuit operates the switching element.
  • the operation of the wireless power transmission device stops when the value of the output voltage detected by the power receiving side voltage detection unit exceeds a preset reference voltage value, the circuit elements of the entire wireless power transmission device are protected. Can do.
  • the operation time of the wireless power transmission device is stopped, the current application time to the short circuit is suppressed, so that the short circuit can be protected.
  • a transformer circuit may be further provided between the output unit of the power receiving side resonance circuit and the input unit of the rectifier circuit.
  • an inductor circuit may be further provided between the output unit of the power receiving side resonance circuit and the input unit of the rectifier circuit. In this case, it is possible to suppress noise during normal operation while protecting circuit elements when an overvoltage occurs.
  • a wireless power transmission device includes the above wireless power receiving device and a wireless power transmission device.
  • ADVANTAGE OF THE INVENTION According to this invention, the wireless power transmission apparatus which suppressed generation
  • the present invention it is possible to provide a wireless power receiving apparatus and a wireless power transmission apparatus that protects circuit elements when an overvoltage occurs and suppresses power loss due to reactive power during normal operation.
  • FIG. 3 is a partially enlarged view of a circuit configuration diagram illustrating a current path by a closed loop of a power receiving side resonance circuit and a short circuit in FIG. 2.
  • FIG. 2 is a partially enlarged view of a circuit configuration diagram showing a current path by a closed loop of a power receiving side resonance circuit and a short circuit in FIG. 1.
  • FIG. 2 is a partially enlarged view of a circuit configuration diagram illustrating a current path when a switching element of a short circuit in FIG. 1 is off.
  • FIG. 2 is a partially enlarged view of a circuit configuration diagram showing a current path when a switching element of a short circuit in FIG. 1 is on. It is a flowchart which shows the protection operation
  • FIG. 8 is a partially enlarged view of a circuit configuration diagram illustrating a current path when a switching element of the rectifier circuit in FIG. 7 is off.
  • FIG. 8 is a partially enlarged view of a circuit configuration diagram illustrating a current path when a switching element of a short circuit in FIG. 7 is on.
  • FIG. 1 is a circuit configuration diagram showing a wireless power transmission device according to a first embodiment of the present invention together with a load.
  • the wireless power transmission device S1 includes a wireless power transmission device 100 and a wireless power reception device 200, as shown in FIG.
  • the wireless power transmission apparatus 100 includes a power source 110, a power conversion circuit 120, and a power transmission side resonance circuit 130.
  • the power supply 110 supplies DC power to the power conversion circuit 120.
  • the power supply 110 is not particularly limited as long as it outputs DC power, and includes a DC power supply obtained by rectifying and smoothing a commercial AC power supply, or a switching power supply device such as a switching converter.
  • the power conversion circuit 120 includes a power conversion unit 121 and a switch drive unit 122.
  • the power conversion circuit 120 has a function of converting DC power supplied from the power source 110 into AC power.
  • the power conversion unit 121 includes a switching circuit in which a plurality of switching elements are bridge-connected.
  • a full bridge type circuit using four switching elements SW1 to SW4 is provided.
  • the switching elements SW1 to SW4 include elements such as a MOS-FET (Metal Oxide Semiconductor-Field Effect Transistor) and an IGBT (Insulated Gate Bipolar Transistor).
  • Each of the switching elements SW1 to SW4 controls on / off of each of the switching elements SW1 to SW4 according to the SW control signals SG1 to SG4 supplied from the switch driving unit 122, so that the input DC power supplied from the power supply 110 is obtained. Convert to AC power.
  • the AC power converted by the power conversion circuit 120 is supplied to a power transmission coil L1 described later.
  • the power transmission side resonance circuit 130 includes a power transmission coil L1 and power transmission side resonance capacitors C10 and C11.
  • the power transmission coil L1 is formed using a litz wire or a single wire obtained by twisting a plurality of thin conductor wires. Examples of the power transmission coil L1 include a planar coil and a solenoid coil.
  • the power transmission coil L1 forms an LC resonance circuit together with the power transmission side resonance capacitors C10 and C11.
  • the power transmission side resonance capacitors C10 and C11 are formed by connecting a plurality of capacitors in series and parallel, and have a function of adjusting the resonance frequency of the LC resonance circuit.
  • the power transmission side resonance capacitor C10 is connected in series to one end of the power transmission coil L1, and the power transmission side resonance capacitor C11 is connected in series to the other end of the power transmission coil L1.
  • capacitors used as the power transmission side resonance capacitors C10 and C11 include ceramic capacitors.
  • the power transmission side resonance capacitors C10 and C11 are connected in series to the power transmission coil L1, but the present invention is not limited thereto.
  • only the power transmission side resonance capacitor C10 is connected to the power transmission coil L1. May be connected in series, and only the power transmission side resonance capacitor C10 may be connected in parallel to the power transmission coil L1, or the power transmission side resonance capacitor C10 may be connected in series to the power transmission coil L1.
  • the capacitor C11 may be connected in parallel.
  • the power transmission coil L1 of the power transmission side resonance circuit 130 configured as described above transmits the AC power converted by the power conversion circuit 120 to the wireless power receiving apparatus 200 described later wirelessly.
  • the wireless power receiving apparatus 200 includes a power receiving side resonance circuit 210, a rectifying circuit 220, a power receiving side voltage detection unit 230, a short circuit 240, and a control circuit 250.
  • the power transmission side resonance circuit 130 of the wireless power transmission device 100 and the power reception side resonance circuit 210 of the wireless power reception device 200 are magnetically coupled and supplied from the power conversion circuit 120 to the power transmission coil L1 of the power transmission side resonance circuit 130.
  • the induced AC power is excited in a receiving coil L2 (described later) of the power receiving side resonance circuit 210 by the near magnetic field effect. That is, the wireless power receiving apparatus 200 receives the power from the wireless power transmitting apparatus 100 wirelessly.
  • the power reception side resonance circuit 210 includes a power reception coil L2 and power reception side resonance capacitors C20 and C21.
  • the power receiving coil L2 is formed using a litz wire or a single wire obtained by twisting a plurality of thin conductor wires. Examples of the power receiving coil L2 include a planar coil and a solenoid coil.
  • the power receiving coil L2 forms an LC resonance circuit together with the power receiving side resonance capacitors C20 and C21.
  • the power receiving side resonance capacitors C20 and C21 are formed by connecting a plurality of capacitors in series and parallel, and have a function of adjusting the resonance frequency of the LC resonance circuit.
  • the power receiving side resonance capacitor C20 is connected in series with one end of the power receiving coil L2, and the power receiving side resonance capacitor C21 is connected in series with the other end of the power receiving coil L2.
  • Examples of the capacitors used as the power receiving side resonance capacitors C20 and C21 include ceramic capacitors.
  • the power receiving side resonance capacitors C20 and C21 are connected in series to the power receiving coil L2.
  • the present invention is not limited to this.
  • only the power receiving side resonance capacitor C20 is connected to the power receiving coil L2. May be connected in series, and only the power reception side resonance capacitor C20 may be connected in parallel to the power reception coil L2, or the power reception side resonance capacitor C20 may be connected in series to the power reception coil L2.
  • the capacitor C21 may be connected in parallel.
  • the power receiving coil L2 of the power receiving side resonance circuit 210 configured as described above receives the AC power from the wireless power transmitting apparatus 100 wirelessly.
  • the rectifier circuit 220 rectifies the power received by the power receiving coil L2 of the power receiving resonance circuit 210 and outputs the rectified power to the load RL.
  • the rectifier circuit 220 includes a bridge type circuit in which four diodes (rectifier elements) D1 to D4 are connected in a full bridge, and a smoothing capacitor C2 connected in parallel to the bridge type circuit. . That is, the rectifier circuit 220 has a function of full-wave rectifying the AC power supplied from the power receiving side resonance circuit 210.
  • one output terminal of the power reception side resonance circuit 210 is connected to the midpoint of the anode of the diode D1 and the cathode of the diode D2, and the power reception side resonance circuit 210 is connected to the midpoint of the anode of the diode D3 and the cathode of the diode D4.
  • the smoothing capacitor C2 smoothes the rectified voltage and generates a DC voltage.
  • the rectifier circuit 220 uses a full-wave rectifier circuit, but is not limited to this, a half-wave rectifier circuit having a smoothing capacitor connected in parallel to one diode and the cathode of the diode, A center tap circuit having two diodes and a smoothing capacitor connected in parallel to the respective cathodes of the two diodes may be configured.
  • the rectifier circuit 220 is composed of a full-wave rectifier circuit, the utilization efficiency of the power source can be increased.
  • the power receiving side voltage detector 230 detects the output voltage of the rectifier circuit 220. More specifically, the output voltage of the rectifier circuit 220 is converted into a low voltage signal using a technique such as voltage division and amplification, and the output voltage is detected using this signal.
  • the power receiving side voltage detection unit 230 compares the preset reference voltage value with the detected output voltage, and when the output voltage exceeds the reference voltage value, transmits the output signal SG5 to the control circuit 250 described later.
  • the short circuit 240 has a function of short-circuiting both ends of the power receiving coil L2 when the output voltage of the rectifier circuit 220 detected by the power receiving side voltage detecting unit 230 exceeds a preset reference voltage value. Specifically, the short circuit 240 has a function of short-circuiting the diode D2 and the diode D4. The short circuit 240 is short-circuited based on the drive signal SG6 transmitted from the control circuit 250.
  • the short circuit 240 includes switching elements SW5 and SW6 and rectifying elements D5 and D6.
  • the switching elements SW5 and SW6 are connected between the output unit of the power receiving resonance circuit 210 and the output unit of the rectifier circuit 220. More specifically, the switching element SW5 is connected in parallel to the diode D4, and the switching element SW6 is connected in parallel to the diode D2.
  • the switching elements SW5 and SW6 have a function of turning on / off in response to a drive signal SG6 from a control circuit 250 described later. That is, when the switching elements SW5 and SW6 are turned on, the diodes D2 and D4 are short-circuited and no voltage is generated in the rectifier circuit 220.
  • the rectifier circuit 220 functions as a full-wave rectifier circuit in which four diodes D1 to D4 are connected in a full bridge.
  • MOS-FETs are used as the switching elements SW5 and SW6.
  • the present invention is not limited to this, and elements such as IGBTs may be used.
  • the rectifying elements D5 and D6 are inserted between the output part of the power receiving side resonance circuit 210 and the switching elements SW5 and SW6.
  • Examples of the rectifying elements D5 and D6 include diodes.
  • the rectifying element D5 is connected in series with the switching element SW5
  • the anode is connected to the input part of the bridge-type circuit, that is, the cathode of the diode D4, and the cathode is connected to the drain of the switching element SW5.
  • the rectifying element D6 is connected in series with the switching element SW6, the anode is connected to the input part of the bridge circuit, that is, the cathode of the diode D2, and the cathode is connected to the drain of the switching element SW6.
  • the control circuit 250 controls the operation of the short circuit 240. Specifically, when the output signal SG5 is received from the power receiving side voltage detection unit 230, the drive signal SG6 is supplied to the switching elements SW5 and SW6, and the switching elements SW5 and SW6 are turned on.
  • FIG. 2 is a circuit configuration diagram showing a conventional wireless power transmission apparatus together with a load.
  • FIG. 3 is a partially enlarged view of a circuit configuration diagram showing a current path by a closed loop of the power receiving side resonance circuit and the short circuit when the switching element of the short circuit in FIG. 2 is OFF.
  • FIG. 4 is a partially enlarged view of a circuit configuration diagram showing a current path by a closed loop of the power receiving side resonance circuit and the short circuit when the switching element of the short circuit in FIG. 1 is OFF.
  • the switching elements SW5, SW6, SW11, and SW12 are equivalent models based on the parallel connection of the parasitic capacitance of the switching element and the switch.
  • the conventional wireless transmission device S ⁇ b> 2 includes a wireless power transmission device 300 and a wireless power reception device 400.
  • the wireless power transmitting apparatus 300 supplies a DC power to the power conversion circuit 320, a power conversion unit 321 that bridge-connects four switching elements SW7 to SW10, and SW control signals SG7 to SG10 to supply the switching element SW7.
  • a switch drive unit 322 that controls the on / off operation of SW10, and includes a power conversion circuit 320 that converts DC power into AC power, a power transmission coil L3, and power transmission side resonance capacitors C30 and C31. Power transmission side resonance circuit 330 for wirelessly transmitting AC power from the.
  • the wireless power receiving apparatus 400 includes a power receiving coil L4 and power receiving side resonance capacitors C40 and C41.
  • the power receiving side resonant circuit 410 receives the AC power wirelessly transmitted from the wireless power transmitting apparatus 300 through the power receiving coil L4, and 4 A rectifier circuit 420 that rectifies received AC power, and a rectifier circuit 420 that includes a bridge type circuit in which two diodes D7 to D10 are connected in a full bridge and a smoothing capacitor C4 connected in parallel to the bridge type circuit;
  • the power receiving side voltage detecting unit 430 that detects the voltage value, the short circuit 440 that short-circuits both ends of the power receiving side resonance circuit 410, and the control circuit 450 that controls the operation of the short circuit 440.
  • the short circuit 440 includes a switching element SW12 connected to the cathode of the diode D8 of the rectifier circuit 420 and a switching element SW11 connected to the cathode of the diode D10, and the control circuit 450 outputs an output signal from the power receiving side voltage detection unit 430.
  • the drive signal SG14 is supplied to the switching elements SW11 and SW12, and the switching elements SW11 and SW12 are turned on.
  • the currents I L and I N flowing from the power receiving side resonance circuit 210 are caused by the diodes D ⁇ b> 5 and D ⁇ b> 6 of the short circuit 240.
  • the path to the switching elements SW5 and SW6 is cut off, and the parasitic capacitance is not discharged. This is equivalent to an open circuit, so that the currents I L and I N do not flow to the switching elements SW5 and SW6. For this reason, generation
  • the resonance frequency shifts due to the parasitic capacitance during normal operation, but in this embodiment, the power receiving side resonance circuit via the parasitic capacitance by the rectifying elements D5 and D6. Since the current path to 210 is cut off, the influence of the parasitic capacitances of the switching elements SW5 and SW6 on the resonance frequency of the power receiving side resonance circuit 210 can be suppressed.
  • FIG. 5A is a diagram illustrating a path of a current flowing through the rectifier circuit and the short circuit when the switching element of the short circuit in FIG. 1 is in an OFF state.
  • FIG. 5b is a diagram illustrating a path of a current flowing through the rectifier circuit and the short circuit when the switching element of the short circuit in FIG. 1 is in an on state.
  • one of the AC current paths flowing through the rectifier circuit 220 is a path that returns from the receiving coil L2 via the diode D1, the smoothing capacitor C2, the load RL, and the diode D4.
  • the other current path is a path for returning from the power receiving coil L2 via the diode D3, the smoothing capacitor C2, the load RL, and the diode D2.
  • one of the current paths of the alternating current flowing through the rectifier circuit 220 is a path that returns from the power receiving coil L2 via the diode D5, the switching element SW5, and the diode D2, and the other current path is the power receiving power.
  • This is a path for returning from the coil L2 via the diode D6, the switching element SW6, and the diode D4.
  • the circuit elements in the subsequent stage from the rectifier circuit 220 can be protected from abnormality.
  • FIG. 6 is a flowchart illustrating a protection operation of the wireless power transmission device according to the first embodiment of the present invention.
  • the power reception side voltage detection unit 230 constantly detects the value of the output voltage of the rectifier circuit 220. Is done. (Step S101)
  • the power receiving side voltage detection unit 230 compares the value of the output voltage detected in step S101 with a preset reference voltage value. (Step S102)
  • Step S101 As a result of comparing the output voltage value detected in step S101 with a preset reference voltage value, if the output voltage value detected in step S101 exceeds the preset reference voltage value (step S102Y), the power receiving side An output signal SG5 is output from the voltage detector 230 to the control circuit 250. (Step S103) On the other hand, as a result of comparing the output voltage value detected in Step S101 with a preset reference voltage value, the output voltage value detected in Step S101 does not exceed the preset reference voltage value ( Step S102N), returning to Step S101, the operations from Step S101 to Step S102 are repeatedly executed.
  • Step S104 when receiving the output signal SG5, the control circuit 250 supplies the drive signal SG6 to the switching elements SW5 and SW6 and controls the switching elements SW5 and SW6 to be turned on.
  • Step S105 Since the diodes D2 and D4 of the rectifier circuit 220 are short-circuited by the switching elements SW5 and SW6, the current path from the power reception side resonance circuit 210 is changed from the diode D5 to the power reception side resonance via the switching element SW5 and the diode D2. There are two paths: a path returning to the circuit 210 and a path returning from the diode D6 to the power receiving side resonance circuit 210 via the switching element SW6 and the diode D4. At this time, since no current flows to the output side of the rectifier circuit 220, circuit elements in the subsequent stage from the rectifier circuit 220 can be protected from abnormality.
  • the switching element SW5 of the short circuit 240 , SW6 is operated. Therefore, the diodes D2 and D4 of the rectifier circuit 220 are short-circuited. As a result, the generated overvoltage is not output to the subsequent stage from the power reception side resonance circuit 210, and the circuit elements subsequent to the power reception side resonance circuit 210 can be protected.
  • the rectifier elements D5 and D6 inserted between the output portion of the power receiving side resonance circuit 210 and the switching elements SW5 and SW6 are provided, the current path to the parasitic capacitance of the switching elements SW5 and SW6 is blocked. At the same time, the discharge of the parasitic capacitance is suppressed. Thereby, generation
  • FIG. 7 is a circuit configuration diagram showing the wireless power transmission device according to the second embodiment of the present invention together with a load.
  • the wireless power transmission device S3 includes the wireless power transmission device 100 and the wireless power reception device 200, similarly to the wireless power transmission device S1 according to the first embodiment.
  • the wireless power transmission device 100 includes a power source 110, a power conversion circuit 120, and a power transmission side resonance circuit 130.
  • the wireless power reception device 200 includes a power reception side resonance circuit 210, a rectifier circuit 220, and a power reception side voltage detection unit. 230, a short circuit 540, and a control circuit 250.
  • the configuration of the power source 110, the power conversion circuit 120, the power transmission side resonance circuit 130, the power reception side resonance circuit 210, the rectifier circuit 220, the power reception side voltage detection unit 230, and the control circuit 250 is the same as that of the wireless power transmission device S1 according to the first embodiment. It is the same.
  • This embodiment is different from the first embodiment in that a short circuit 540 is provided instead of the short circuit 240 of the wireless power transmission device S1 according to the first embodiment.
  • a description will be given focusing on
  • the short circuit 540 has a function of short-circuiting both ends of the power receiving coil L2 when the output voltage of the rectifier circuit 220 detected by the power receiving side voltage detection unit 230 exceeds a preset reference voltage value.
  • the short circuit 540 has a function of short-circuiting the diode D2 and the diode D4.
  • the short circuit 540 is short-circuited based on the drive signal SG6 transmitted from the control circuit 250.
  • the short circuit 540 includes rectifying elements D5 and D6 and a switching element SW13.
  • the configurations of the rectifying elements D5 and D6 are the same as those of the wireless power transmission device S1 according to the first embodiment.
  • the switching element SW13 is connected between the output part of the power reception side resonance circuit 210 and the output part of the rectifier circuit 220. Specifically, the switching element SW13 is connected to the cathodes of the rectifying elements D5 and D6, respectively. In the present embodiment, the switching element SW13 is composed of a MOS-FET. Therefore, the cathode of the rectifying element D5 and the cathode of D6 are connected in parallel to the drain of the switching element SW13.
  • the switching element SW13 has a function of turning on / off in response to the drive signal SG6 from the control circuit 250. That is, when the switching element SW13 is turned on, the diodes D2 and D4 are short-circuited and no voltage is generated in the rectifier circuit 220.
  • the rectifier circuit 220 functions as a full-wave rectifier circuit in which four diodes D1 to D4 are connected in a full bridge.
  • the MOS-FET is used as the switching element SW13.
  • the present invention is not limited to this, and an element such as an IGBT may be used.
  • FIG. 8a is a diagram illustrating a path of a current flowing through the rectifier circuit and the short circuit when the switching element of the short circuit in FIG. 7 is in an OFF state.
  • FIG. 8b is a diagram illustrating a path of a current flowing through the rectifier circuit and the short circuit when the switching element of the short circuit in FIG. 7 is in an on state.
  • one of the current paths of the alternating current flowing through the rectifier circuit 220 is a path that returns from the receiving coil L2 via the diode D1, the smoothing capacitor C2, the load RL, and the diode D4.
  • the other current path is a path for returning from the power receiving coil L2 via the diode D3, the smoothing capacitor C2, the load RL, and the diode D2.
  • the feedback of current to the input portion of the rectifier circuit 220 is blocked by the diodes D5 and D6.
  • the parasitic capacitance of the switching element SW13 can be regarded as equivalent to insulation, so that the parasitic capacitance of the switching element SW13 is discharged. Is not performed, and there is no current path flowing through the switching element SW13. That is, there is no current path flowing from the input portion of the rectifier circuit 220 to the short circuit 540.
  • one of the AC current paths flowing through the rectifier circuit 220 is a path that returns from the power-receiving-side resonance circuit 210 via the diode D5, the switching element SW13, and the diode D2.
  • the other current path is a path that returns from the power receiving side resonance circuit 210 via the diode D6, the switching element SW13, and the diode D4.
  • the circuit elements in the subsequent stage from the rectifier circuit 220 can be protected from abnormality.
  • the switching element SW13 of the short circuit 540 is changed. Make it work. Therefore, both ends of the power receiving coil L2 of the power receiving side resonance circuit 210 are short-circuited. As a result, the generated overvoltage is not output to the subsequent stage from the power reception side resonance circuit 210, and the circuit elements subsequent to the power reception side resonance circuit 210 can be protected.
  • the wireless power transmission device S3 since the number of switching elements constituting the short circuit 540 is one, space saving and simplification of the device can be achieved.
  • FIG. 9 is a circuit configuration diagram showing the wireless power transmission device according to the third embodiment of the present invention together with a load.
  • the wireless power transmission device S4 includes the wireless power transmission device 100 and the wireless power reception device 200, similarly to the wireless power transmission device S1 according to the first embodiment.
  • the wireless power transmission device 100 includes a power source 110, a power conversion circuit 120, and a power transmission side resonance circuit 130.
  • the wireless power reception device 200 includes a power reception side resonance circuit 210, a rectifier circuit 220, and a power reception side voltage detection unit. 230, a short circuit 240, and a control circuit 250.
  • the configuration of the power source 110, the power conversion circuit 120, the power transmission side resonance circuit 130, the power reception side resonance circuit 210, the rectifier circuit 220, the power reception side voltage detection unit 230, and the control circuit 250 is the same as that of the wireless power transmission device S1 according to the first embodiment.
  • a power conversion circuit 620 is provided instead of the power conversion circuit 120 of the wireless power transmission device S1 according to the first embodiment, and the control circuit 250 of the wireless power transmission device S1 according to the first embodiment. Instead, the control circuit 750 is provided. This is different from the first embodiment. Hereinafter, a description will be given focusing on differences from the first embodiment.
  • the power conversion circuit 620 includes a power conversion unit 121, a switch drive unit 122, and a power control unit 123.
  • the configurations of the power conversion unit 121 and the switch driving unit 122 are the same as those of the wireless power transmission device S1 according to the first embodiment.
  • the power control unit 123 has a function of stopping the function of the power conversion circuit 620 and stopping the power transmission operation of the wireless power transmission apparatus 100. Specifically, when a stop signal SG15 supplied from the control circuit 750 of the wireless power receiving apparatus 200 described later is received, the operation of the power conversion unit 121 is stopped.
  • the switch drive unit 122 and the power control unit 123 are configured separately, but either one of them may have both functions.
  • the control circuit 750 controls the operation of the short circuit 240 similarly to the control circuit 250.
  • the power control unit 123 is controlled. Specifically, when the output signal SG5 is received from the power receiving side voltage detection unit 230, the drive signal SG6 is supplied to the switching elements SW5 and SW6, and the switching elements SW5 and SW6 are turned on. A stop signal SG15 is transmitted to the power control unit 123 at the same time or immediately after the drive signal SG6 is supplied to SW5 and SW6, and the power transmission operation of the wireless power transmitting apparatus 100 is controlled to stop.
  • FIG. 10 is a flowchart illustrating a protection operation of the wireless power transmission device according to the third embodiment of the present invention.
  • step S101 to step S105 is the same as that of the first embodiment, and the description is omitted here.
  • the control circuit 750 transmits a stop signal SG15 to the power control unit 123 of the wireless power transmitting apparatus 100 simultaneously or immediately after the switching elements SW5 and SW6 are turned on. (Step S106)
  • Step S107 the power control unit 123 stops the operation of the power conversion circuit 620 and stops the power transmission operation of the wireless power transmitting apparatus 100.
  • the switching element SW5 of the short circuit 240 , SW6 is operated. Therefore, the diodes D2 and D4 of the rectifier circuit 220 are short-circuited. As a result, the generated overvoltage is not output to the subsequent stage from the power reception side resonance circuit 210, and the circuit elements subsequent to the power reception side resonance circuit 210 can be protected.
  • the rectifier elements D5 and D6 inserted between the output portion of the power receiving side resonance circuit 210 and the switching elements SW5 and SW6 are provided, the current path to the parasitic capacitance of the switching elements SW5 and SW6 is blocked. At the same time, the discharge of the parasitic capacitance is suppressed. Thereby, generation
  • a stop signal SG15 for stopping the power transmission operation is transmitted to the wireless power transmission device 100 at the same time or immediately after the control circuit 750 operates the switching elements SW5 and SW6. It is configured. Therefore, when the value of the output voltage detected by the power receiving side voltage detection unit 230 exceeds the preset reference voltage value, the operation of the wireless power transmitting apparatus 100 stops. Therefore, the circuit elements of the entire wireless power transmission device S4 can be protected. Moreover, since the electric current application time to the short circuit 240 is suppressed when the operation
  • FIG. 11 is a circuit block diagram which shows the wireless power receiving apparatus in the wireless power transmission apparatus which concerns on 4th Embodiment of this invention with load.
  • the wireless power transmission device includes a wireless power transmission device 100 and a wireless power reception device 200, similarly to the wireless power transmission device S1 according to the first embodiment.
  • the wireless power transmission device 100 in the wireless power transmission device according to the fourth embodiment is the same as the wireless power transmission device 100 in the wireless power transmission device S1 according to the first embodiment, and a description thereof will be omitted.
  • the wireless power receiving device 200 in the wireless power transmission device according to the fourth embodiment includes a power receiving side resonance circuit 210, a transformer circuit 260, a rectifier circuit 220, a power receiving side voltage detection unit 230, a short circuit 240, and a control circuit 250. And having.
  • the configurations of the power reception side resonance circuit 210, the rectification circuit 220, the power reception side voltage detection unit 230, the short circuit 240, and the control circuit 250 are the same as those of the wireless power transmission device S1 according to the first embodiment.
  • This embodiment is different from the first embodiment in that the wireless power receiving apparatus 200 includes a transformer circuit 260.
  • a description will be given focusing on differences from the first embodiment.
  • the transformer circuit 260 is inserted between the output part of the power reception side resonance circuit 210 and the input part of the rectifier circuit 220.
  • the transformer circuit 260 transforms the voltage output from the power receiving resonance circuit 210 to a desired value and outputs the voltage to the rectifier circuit 220.
  • the transformer circuit 260 is a transformer having a primary winding Lp and a secondary winding Ls.
  • the primary winding Ls and the secondary winding Lp are formed using a litz wire or a single wire obtained by twisting a plurality of thin conductor strands.
  • the primary winding Lp and the secondary winding Ls are magnetically coupled, and the voltage applied to the primary winding Lp by the turn ratio of the primary winding Lp and the secondary winding Ls is 2
  • the voltage applied to the next winding Ls can be changed. That is, the transformer circuit 260 has a function of changing the voltage output from the power receiving resonance circuit 210 to a voltage corresponding to the turn ratio of the primary winding Lp and the secondary winding Ls and outputting the voltage to the rectifier circuit 220.
  • one output end of the power receiving side resonance circuit 210 is connected to one end of the primary winding Lp, and one output end of the power receiving side resonance circuit 210 is connected to the other end of the primary winding Lp.
  • one end of the secondary winding Ls is connected to the midpoint of the anode of the diode D1 and the cathode of the diode D2, and the other end of the secondary winding Ls is connected to the midpoint of the anode of the diode D3 and the cathode of the diode D4. Is done.
  • a transformer circuit 260 is inserted between the output part of the power reception side resonance circuit 210 and the input part of the rectifier circuit 220. Therefore, when the switching elements SW5 and SW6 of the short circuit 240 are in the OFF state, one of the AC current paths flowing through the rectifier circuit 220 is from the power receiving coil L2 to the transformer circuit 260, the diode D1, the smoothing capacitor C2, and the like.
  • the path is a return path via the load RL, the diode D4, and the transformer circuit 260, and the other current path is from the power receiving coil L2 via the transformer circuit 260, the diode D3, the smoothing capacitor C2, the load RL, the diode D2, and the transformer circuit 260. And become a return route.
  • one of the AC current paths flowing through the rectifier circuit 220 is from the power receiving coil L2 to the transformer circuit 260, the diode D5, the switching element SW5, The diode D2 and a path for feedback via the transformer circuit 260 are provided, and the other current path is a path for feedback from the power receiving coil L2 via the transformer circuit 260, the diode D6, the switching element SW6, the diode D4, and the transformer circuit 260. .
  • the wireless power transmission device further includes the transformer circuit 260 between the output unit of the power reception side resonance circuit 210 and the input unit of the rectifier circuit 220. For this reason, it is possible to output a desired voltage / current from one power-receiving-side resonance circuit 210 by changing the transformation ratio of the transformer circuit 260 during normal operation while protecting the circuit elements when an overvoltage occurs.
  • FIG. 12 is a circuit block diagram which shows the wireless power receiving apparatus with the load in the wireless power transmission apparatus which concerns on 5th Embodiment of this invention.
  • the wireless power transmission device includes a wireless power transmission device 100 and a wireless power reception device 200, similarly to the wireless power transmission device according to the fourth embodiment. Since the wireless power transmission device 100 in the wireless power transmission device according to the fifth embodiment is similar to the wireless power transmission device 100 in the wireless power transmission device S1 according to the first embodiment, the description thereof is omitted as in the fourth embodiment.
  • the wireless power receiving apparatus 200 in the wireless power transmission device according to the fourth embodiment includes a power receiving side resonance circuit 210, a transformer circuit 260, a rectifier circuit 220, a power receiving side voltage detection unit 230, a short circuit 640, and a control circuit 250. And having.
  • the configurations of the power reception side resonance circuit 210, the transformer circuit 260, the rectification circuit 220, the power reception side voltage detection unit 230, and the control circuit 250 are the same as those of the wireless power transmission device according to the fourth embodiment.
  • the present embodiment is different from the fourth embodiment in that the wireless power receiving apparatus 200 includes a short circuit 640 instead of the short circuit 240.
  • a description will be given focusing on differences from the fourth embodiment.
  • the short circuit 640 has a function of short-circuiting both ends of the power receiving coil L2 when the output voltage of the rectifier circuit 220 detected by the power receiving side voltage detecting unit 230 exceeds a preset reference voltage value. Specifically, the short circuit 640 has a function of short-circuiting between the power reception side resonance capacitor C20 and the power reception side resonance capacitor C21. The short circuit 640 is short-circuited based on the drive signal SG6 transmitted from the control circuit 250.
  • the short circuit 240 includes switching elements SW14 and SW15 and rectifying elements D11 and D12.
  • the switching elements SW14 and SW15 are connected between the output unit of the power reception side resonance circuit 210 and the output unit of the rectifier circuit 220. More specifically, the switching elements SW ⁇ b> 14 and SW ⁇ b> 15 are connected in parallel between the output unit of the power receiving side resonance circuit 210 and the input unit of the transformer circuit 260, respectively.
  • the switching elements SW14 and SW15 have a function of turning on / off in response to the drive signal SG6 from the control circuit 250. That is, when the switching elements SW14 and SW15 are turned on, both ends of the output part of the power receiving resonance circuit 210 are short-circuited, and no voltage is generated in the rectifier circuit 220.
  • the transformer circuit 260 transforms the voltage output from the power receiving resonance circuit 210 to a desired value and outputs the voltage to the rectifier circuit 220.
  • the rectifier circuit 220 includes four diodes D1. ⁇ D4 functions as a full-wave rectifier circuit with a full bridge connection.
  • MOS-FETs are used as the switching elements SW14 and SW15.
  • the present invention is not limited to this, and elements such as IGBTs may be used.
  • the rectifying elements D11 and D12 are inserted between the output part of the power reception side resonance circuit 210 and the switching elements SW14 and SW15.
  • Examples of the rectifying elements D11 and D12 include diodes.
  • the rectifying element D11 is connected in series with the switching element SW14, the anode is connected to the drain of the switching element SW14, and the cathode is connected to the output part of the power reception side resonance circuit 210, that is, the power reception side resonance capacitor C20. Has been.
  • the rectifying element D12 is connected in series with the switching element SW15, the anode is connected to the output part of the power reception side resonance circuit 210, that is, the power reception side resonance capacitor C20, and the cathode is connected to the drain of the switching element SW15.
  • a short circuit 640 is inserted in parallel between the output part of the power receiving side resonance circuit 210 and the input part of the transformer circuit 260. Therefore, when the switching elements SW14 and SW15 of the short circuit 640 are in the OFF state, one of the current paths of the alternating current flowing through the rectifier circuit 220 is from the power receiving coil L2 to the transformer circuit 260, the diode D1, the smoothing capacitor C2, and the like.
  • the path is a return path via the load RL, the diode D4, and the transformer circuit 260, and the other current path is from the power receiving coil L2 via the transformer circuit 260, the diode D3, the smoothing capacitor C2, the load RL, the diode D2, and the transformer circuit 260.
  • the switching elements SW14 and SW15 of the short circuit 640 are in the ON state, one of the AC current paths flowing through the rectifier circuit 220 is fed back from the power receiving coil L2 via the switching element SW14 and the diode D11.
  • the other current path is a path that returns from the power receiving coil L2 via the diode D12 and the switching element SW15.
  • the wireless power transmission device further includes the transformer circuit 260 between the output unit of the power reception side resonance circuit 210 and the input unit of the rectifier circuit 220. For this reason, it is possible to output a desired voltage / current from one power-receiving-side resonance circuit 210 by changing the transformation ratio of the transformer circuit 260 during normal operation while protecting the circuit elements when an overvoltage occurs. Further, in the wireless power transmission device according to the present embodiment, the short circuit 640 is inserted between the output unit of the power receiving resonance circuit 210 and the input unit of the transformer circuit 260. Circuit elements after the circuit 260 can be protected.
  • FIG. 13 is a circuit block diagram which shows the wireless power receiving apparatus in the wireless power transmission apparatus which concerns on 6th Embodiment of this invention with load.
  • the wireless power transmission device includes a wireless power transmission device 100 and a wireless power reception device 200, similarly to the wireless power transmission device S1 according to the first embodiment.
  • the wireless power transmission device 100 in the wireless power transmission device according to the sixth embodiment is the same as the wireless power transmission device 100 in the wireless power transmission device S1 according to the first embodiment, and thus the description thereof is omitted.
  • the wireless power receiving apparatus 200 in the wireless power transmission device according to the sixth embodiment includes a power receiving side resonance circuit 210, an inductor circuit 270, a rectifier circuit 220, a power receiving side voltage detection unit 230, a short circuit 240, and a control circuit 250. And having.
  • the configurations of the power reception side resonance circuit 210, the rectification circuit 220, the power reception side voltage detection unit 230, the short circuit 240, and the control circuit 250 are the same as those of the wireless power transmission device S1 according to the first embodiment.
  • This embodiment is different from the first embodiment in that the wireless power receiving apparatus 200 includes an inductor circuit 270.
  • the wireless power receiving apparatus 200 includes an inductor circuit 270.
  • the inductor circuit 270 is inserted between the output part of the power receiving side resonance circuit 210 and the input part of the rectifier circuit 220.
  • the inductor circuit 270 includes inductors L5 and L6.
  • the inductors L5 and L6 have a function as a large resistor for a frequency above a certain frequency and a function to remove common mode noise.
  • the inductors L5 and L6 have a function of attenuating or blocking noise superimposed on the output from the power receiving resonance circuit 210 and outputting the noise to the rectifier circuit 220.
  • one end of the inductor L5 is connected to one output end of the power receiving resonance circuit 210, and the other end of the inductor L5 is connected to the midpoint of the anode of the diode D3 and the cathode of the diode D4.
  • one end of the inductor L6 is connected to the other output end of the power receiving side resonance circuit 210, and the other end of the inductor L6 is connected to the midpoint of the anode of the diode D1 and the cathode of the diode D2.
  • the inductors L5 and L6 include a normal mode choke coil for suppressing normal mode noise and a common mode choke coil for suppressing common mode noise.
  • an inductor circuit 270 is inserted between the output part of the power reception side resonance circuit 210 and the input part of the rectifier circuit 220. Therefore, when the switching elements SW5 and SW6 of the short circuit 240 are in the OFF state, one of the AC current paths flowing through the rectifier circuit 220 is from the power receiving coil L2, the inductor L6, the diode D1, the smoothing capacitor C2, and the like. A feedback path is provided via the load RL, the diode D4, and the inductor L5, and the other current path is returned from the power receiving coil L2 via the inductor L5, the diode D3, the smoothing capacitor C2, and the load RL, the diode D2, and the inductor L6. It becomes a route.
  • one of the AC current paths flowing through the rectifier circuit 220 is from the receiving coil L2 to the inductor L5, the diode D5, the switching element SW5, and the diode.
  • D2 is a path that returns via the inductor L6, and the other current path is a path that returns from the power receiving coil L2 via the inductor L6, the diode D6, the switching element SW6, the diode D4, and the inductor L5.
  • the wireless power transmission device further includes the inductor circuit 270 between the output unit of the power receiving resonance circuit 210 and the input unit of the rectifier circuit 220. Therefore, it is possible to suppress noise during normal operation while protecting circuit elements when an overvoltage occurs.
  • the characteristic configuration and function of the wireless power transmission device according to the sixth embodiment described above may be applied to the wireless power transmission devices according to the fourth and fifth embodiments.
  • S1 to S4 ... Wireless power transmission device 100 ... Wireless power transmission device, 110 ... Power source, 120, 620 ... Power conversion circuit, 121 ... Power conversion unit, 122 ... Switch drive unit, 123 ... Power control unit, 130 ... Power transmission side resonance Circuit: 200 ... Wireless power receiving device, 210 ... Power receiving side resonance circuit, 220 ... Rectifier circuit, 230 ... Power receiving side voltage detector, 240, 540, 640 ... Short circuit, 250,750 ... Control circuit, 260 ... Transformer circuit, 270 DESCRIPTION OF SYMBOLS ... Inductor circuit, 300 ... Wireless power transmission apparatus, 310 ... Power supply, 320 ... Power conversion circuit, 321 ... Power conversion part, 322 ...
  • Switch drive part 330 ... Power transmission side resonance circuit, 400 ... Wireless power reception apparatus, 410 ... Power reception side resonance Circuit, 420 ... Rectifier circuit, 430 ... Receiving side voltage detector, 440 ... Short circuit, 450 ... Control circuit, SW1 SW15: switching element, C2, C4: smoothing capacitor, C10, C11, C30, C31 ... power transmission side resonance capacitor, C20, C21, C40, C41 ... power reception side resonance capacitor, L1, L3 ... power transmission coil, L2, L4 ... power reception Coil, Lp ... primary winding, Ls ... secondary winding, L5, L6 ... inductor, D1-D12 ... rectifier (diode), SG1-SG4, SG7-SG10 ... SW control signal, SG5, SG13 ... output signal SG6, SG14 ... drive signal, SG15 ... stop signal.

Abstract

 過電圧が生じた場合に回路素子を保護しつつ、通常動作時において無効電力による損失の発生を抑えたワイヤレス受電装置及びワイヤレス電力伝送装置を提供すること。 ワイヤレス受電装置200は、整流回路220の出力電圧を検知する受電側電圧検知部230と、受電側共振回路210の出力部と整流回路220の出力部との間に接続されたスイッチング素子SW5,SW6と、受電側共振回路210の出力部とスイッチング素子SW5,SW6の間に挿入される整流素子D5,D6と、を有する短絡回路240と、受電側電圧検知部230が検知した出力電圧の値があらかじめ設定された基準電圧値を超えたとき、スイッチング素子SW5,SW6を動作させる制御回路250と、を備える。

Description

ワイヤレス受電装置及びワイヤレス電力伝送装置
 本発明は、ワイヤレス受電装置及びワイヤレス電力伝送装置に関するものである。
 近年、電気自動車の充電池を充電するための技術としてワイヤレス電力伝送装置が提案されている。ワイヤレス電力伝送装置にはいくつかの方式があり、特に上記のような用途には磁気共鳴方式が用いられている。
 このようなワイヤレス電力伝送装置として、たとえば特許文献1では、直流電力を交流電力に変換して給電コイルに送出するインバータ回路と、給電コイル、および、該給電コイルと並列に設けられた第1キャパシタにより形成される、第1のLC並列共振部と、受電コイル、および、該受電コイルと並列に設けられた第2キャパシタにより形成される、第2のLC並列共振部と、受電コイルから受取る交流電力を直流電力に変換する整流回路を有するワイヤレス給電システムが提案されている。
 ところで、ワイヤレス電力伝送装置においては、送電中に過電圧等の異常が生じることがあり、このような異常から回路素子を保護するために保護回路を搭載することが知られている。たとえば、特許文献2では整流回路を過電圧から保護する、スイッチング素子を用いた短絡回路が提案されている。特許文献2に開示されている短絡回路は、整流回路の出力電圧を監視し、あらかじめ設定された基準電圧値を超えた出力電圧の値を検知した時、スイッチング素子が動作して回路を短絡し、過電圧から整流回路以降の回路素子を保護している。この短絡回路に用いられるスイッチング素子は半導体素子が使用されている。
特開2014-033499号公報 特開平11-027870号公報
 しかしながら、特許文献2に開示されているスイッチング素子として利用される半導体素子は構造的に寄生容量を持っている。この寄生容量は、スイッチング素子がオフしている状態では受電側共振回路の両端に接続されるループを構成し、この寄生容量に電流が流れることによって無効電力が生じて力率が悪化するという問題がある。つまり、同じ電力を得ようとすると電流を多く流さなければならないので電力損失が発生する。
 本発明は、上記問題に鑑みてなされたものであり、過電圧が生じた場合に回路素子を保護しつつ、通常動作時における無効電力による電力損失の発生を抑えたワイヤレス受電装置及びワイヤレス電力伝送装置を提供することを目的とする。
 本発明に係るワイヤレス受電装置は、ワイヤレス送電装置からワイヤレスにて電力を受電するワイヤレス受電装置であって、送電側からの電力をワイヤレスに受電する受電コイルと、受電コイルに接続される受電側共振コンデンサと、を有する受電側共振回路と、受電コイルが受電した電力を整流して負荷に出力する整流回路と、整流回路の出力電圧を検知する受電側電圧検知部と、受電側共振回路の出力部と整流回路の出力部との間に接続されるスイッチング素子と、受電側共振回路の出力部とスイッチング素子との間に挿入される整流素子と、を有する短絡回路と、受電側電圧検知部が検知した出力電圧の値があらかじめ設定された基準電圧値を超えたとき、スイッチング素子を動作させる制御回路と、を備えることを特徴とする。
 本発明によれば、受電側電圧検知部が検知した出力電圧の値があらかじめ設定された基準電圧値を超えたとき、短絡回路のスイッチング素子を動作させる。そのため、受電側共振回路の受電コイルの両端が短絡される。その結果、発生した過電圧が受電側共振回路よりも後段へ出力されず、受電側共振回路よりも後段の回路素子を保護することができる。また、受電側共振回路の出力部とスイッチング素子との間に挿入される整流素子を備えるために、スイッチング素子の寄生容量への電流の経路が遮断されるとともに、寄生容量の放電が抑制される。これにより、通常動作時における無効電力による電力損失の発生を抑えることができる。
 好ましくは、整流回路は、4つのダイオードがフルブリッジ接続されたブリッジ型回路と、ブリッジ型回路が並列に接続された平滑コンデンサと、を有するとよい。この場合、電源の利用効率を高めることができる。
 好ましくは、制御回路がスイッチング素子を動作させるのと同時または直後に送電動作を停止させる停止信号をワイヤレス送電装置に送信するように構成するとよい。この場合、受電側電圧検知部が検知した出力電圧の値があらかじめ設定された基準電圧値を超えたとき、ワイヤレス送電装置の動作が停止するため、ワイヤレス電力伝送装置全体の回路素子を保護することができる。また、ワイヤレス送電装置の動作が停止することにより、短絡回路への電流印加時間が抑制されるため、短絡回路を保護できる。
 好ましくは、受電側共振回路の出力部と整流回路の入力部との間に変圧回路をさらに備えるとよい。この場合、過電圧が生じた場合に回路素子を保護しつつ、通常動作時に変圧回路の変圧比を変えることで1つの受電側共振回路から所望の電圧・電流を出力することが可能となる。
 好ましくは、受電側共振回路の出力部と整流回路の入力部との間にインダクタ回路をさらに備えるとよい。この場合、過電圧が生じた場合に回路素子を保護しつつ、通常動作時におけるノイズ抑制が可能となる。
 本発明に係るワイヤレス電力伝送装置は、上記ワイヤレス受電装置と、ワイヤレス送電装置を備えることを特徴とする。本発明によれば、過電圧が生じた場合に回路素子を保護しつつ、通常動作時における無効電力による電力損失の発生を抑えたワイヤレス電力伝送装置を提供することができる。
 本発明によれば、過電圧が生じた場合に回路素子を保護しつつ、通常動作時における無効電力による電力損失の発生を抑えたワイヤレス受電装置及びワイヤレス電力伝送装置を提供することができる。
本発明の第1実施形態に係るワイヤレス電力伝送装置を負荷と共に示す回路構成図である。 従来のワイヤレス電力伝送装置に係るワイヤレス受電装置を負荷と共に示す回路構成図である。 図2における受電側共振回路と短絡回路の閉ループによる電流経路を示す回路構成図の一部拡大図である。 図1における受電側共振回路と短絡回路の閉ループによる電流経路を示す回路構成図の一部拡大図である。 図1における短絡回路のスイッチング素子がオフの場合の電流経路を示す回路構成図の一部拡大図である。 図1における短絡回路のスイッチング素子がオンの場合の電流経路を示す回路構成図の一部拡大図である。 本発明の第1実施形態に係るワイヤレス電力伝送装置の保護動作を示すフローチャートである。 本発明の第2実施形態に係るワイヤレス電力伝送装置を負荷と共に示す回路構成図である。 図7における整流回路のスイッチング素子がオフの場合の電流経路を示す回路構成図の一部拡大図である。 図7における短絡回路のスイッチング素子がオンの場合の電流経路を示す回路構成図の一部拡大図である。 本発明の第3実施形態に係るワイヤレス電力伝送装置を負荷と共に示す回路構成図である。 本発明の第3実施形態に係るワイヤレス電力伝送装置の保護動作を示すフローチャートである。 本発明の第4実施形態に係るワイヤレス電力伝送装置におけるワイヤレス受電装置を負荷と共に示す回路構成図である。 本発明の第5実施形態に係るワイヤレス電力伝送装置におけるワイヤレス受電装置を負荷と共に示す回路構成図である。 本発明の第6実施形態に係るワイヤレス電力伝送装置におけるワイヤレス受電装置を負荷と共に示す回路構成図である。
 本発明を実施するための形態(実施形態)につき、図面を参照しつつ詳細に説明する。なお、説明において、同一要素又は同一機能を有する要素には、同一符号を用いることとし、重複する説明は省略する。
(第1実施形態)
 まず、図1を参照して、本発明の第1実施形態に係るワイヤレス電力伝送装置S1の構成について説明する。図1は、本発明の第1実施形態に係るワイヤレス電力伝送装置を負荷と共に示す回路構成図である。
 ワイヤレス電力伝送装置S1は、図1に示されるように、ワイヤレス送電装置100と、ワイヤレス受電装置200と、を有する。
 ワイヤレス送電装置100は、電源110と、電力変換回路120と、送電側共振回路130と、を有する。電源110は、直流電力を電力変換回路120に供給する。電源110としては、直流電力を出力するものであれば特に制限されず、商用交流電源を整流・平滑した直流電源、あるいはスイッチングコンバータ等のスイッチング電源装置などが挙げられる。
 電力変換回路120は、電力変換部121と、スイッチ駆動部122を有する。この電力変換回路120は、電源110から供給される直流電力を交流電力に変換する機能を有している。より具体的には、電力変換部121としては、複数のスイッチング素子がブリッジ接続されたスイッチング回路から構成される。本実施形態では、4つのスイッチング素子SW1~SW4を用いたフルブリッジ型回路となっている。スイッチング素子SW1~SW4としては、例えば、MOS-FET(Metal Oxide Semiconductor-Field Effect Transistor)やIGBT(Insulated Gate Bipolar Transistor)などの素子が挙げられる。各スイッチング素子SW1~SW4は、スイッチ駆動部122から供給されるSW制御信号SG1~SG4に応じて各スイッチング素子SW1~SW4をオン・オフ制御することにより、電源110から供給される入力直流電力を交流電力に変換する。この電力変換回路120により変換された交流電力は、後述する送電コイルL1に供給される。
 送電側共振回路130は、送電コイルL1と、送電側共振コンデンサC10,C11を有する。送電コイルL1は、複数の細い導体素線を撚りあわせたリッツ線又は単線を用いて形成されている。送電コイルL1としては、平面コイルやソレノイドコイルなどが挙げられる。この送電コイルL1は、送電側共振コンデンサC10,C11とともにLC共振回路を形成している。送電側共振コンデンサC10,C11は複数のコンデンサが直並列に接続されて形成され、LC共振回路の共振周波数を調整する機能を有している。送電側共振コンデンサC10は、送電コイルL1の一方端に直列に接続され、送電側共振コンデンサC11は、送電コイルL1の他方端に直列に接続されている。この送電側共振コンデンサC10,C11として利用されるコンデンサとしてはセラミックコンデンサなどが挙げられる。なお、本実施形態では、送電コイルL1に送電側共振コンデンサC10,C11がそれぞれ直列に接続される構成となっているがこれに限られることなく、例えば、送電コイルL1に送電側共振コンデンサC10のみが直列に接続されていてもよく、送電コイルL1に送電側共振コンデンサC10のみが並列に接続されていてもよく、あるいは、送電コイルL1に送電側共振コンデンサC10が直列に接続され、送電側共振コンデンサC11が並列に接続される構成としてもよい。このように構成される送電側共振回路130の送電コイルL1は、電力変換回路120で変換された交流電力をワイヤレスにて後述するワイヤレス受電装置200に送電する。
 ワイヤレス受電装置200は、受電側共振回路210と、整流回路220と、受電側電圧検知部230と、短絡回路240と、制御回路250を、有する。ここで、ワイヤレス送電装置100の送電側共振回路130とワイヤレス受電装置200の受電側共振回路210は、磁気的に結合しており、電力変換回路120から送電側共振回路130の送電コイルL1に供給された交流電力が近接磁界効果によって受電側共振回路210の後述する受電コイルL2に誘導起電力が励起される。すなわち、ワイヤレス受電装置200は、ワイヤレス送電装置100からの電力をワイヤレスにて受電することとなる。
 受電側共振回路210は、受電コイルL2と、受電側共振コンデンサC20、C21を有する。受電コイルL2は、複数の細い導体素線を撚りあわせたリッツ線又は単線を用いて形成されている。受電コイルL2としては、平面コイルやソレノイドコイルなどが挙げられる。この受電コイルL2は、受電側共振コンデンサC20、C21とともにLC共振回路を形成している。受電側共振コンデンサC20、C21は複数のコンデンサが直並列に接続されて形成され、LC共振回路の共振周波数を調整する機能を有している。受電側共振コンデンサC20は、受電コイルL2の一方端に直列に接続され、受電側共振コンデンサC21は、受電コイルL2の他方端に直列に接続されている。この受電側共振コンデンサC20,C21として利用されるコンデンサとしてはセラミックコンデンサなどが挙げられる。なお、本実施形態では、受電コイルL2に受電側共振コンデンサC20、C21がそれぞれ直列に接続される構成となっているがこれに限られることなく、例えば、受電コイルL2に受電側共振コンデンサC20のみが直列に接続されていてもよく、受電コイルL2に受電側共振コンデンサC20のみが並列に接続されていてもよく、あるいは、受電コイルL2に受電側共振コンデンサC20が直列に接続され、受電側共振コンデンサC21が並列に接続される構成としてもよい。このように構成される受電側共振回路210の受電コイルL2は、ワイヤレス送電装置100からの交流電力をワイヤレスで受電する。
 整流回路220は、受電側共振回路210の受電コイルL2が受電した電力を整流して負荷RLに出力する。本実施形態においては、整流回路220は、4つのダイオード(整流素子)D1~D4がフルブリッジ接続されたブリッジ型回路と、このブリッジ型回路に並列に接続された平滑コンデンサC2から構成されている。すなわち、整流回路220は、受電側共振回路210から供給される交流電力を全波整流する機能を備えている。本実施形態では、ダイオードD1のアノードとダイオードD2のカソードの中点に受電側共振回路210の一方の出力端が接続され、ダイオードD3のアノードとダイオードD4のカソードの中点に受電側共振回路210の他方の出力端が接続されてブリッジ型回路が構成されている。平滑コンデンサC2は、整流された電圧を平滑して直流電圧を生成する。なお、本実施形態では、整流回路220は、全波整流回路を用いているがこれに制限されず、1つのダイオードとダイオードのカソードに並列に接続された平滑コンデンサを有する半波整流回路や、2つのダイオードと2つのダイオードのそれぞれのカソードに並列に接続された平滑コンデンサを有するセンタータップ回路か構成されていても構わない。整流回路220が全波整流回路から構成されている場合、電源の利用効率を高めることができる。
 受電側電圧検知部230は、整流回路220の出力電圧を検知する。より具体的には、整流回路220の出力電圧を分圧・増幅などといった手法を用いて低電圧の信号に変換し、この信号を用いて出力電圧を検知している。受電側電圧検知部230は、あらかじめ設定された基準電圧値と、検知した出力電圧を比較して、出力電圧が基準電圧値を超えると、出力信号SG5を後述する制御回路250に送信する。
 短絡回路240は、受電側電圧検知部230が検知した整流回路220の出力電圧があらかじめ設定された基準電圧値を超えた場合、受電コイルL2の両端を短絡させる機能を有している。具体的には短絡回路240は、ダイオードD2とダイオードD4を短絡させる機能を有している。この短絡回路240は、制御回路250から送信される駆動信号SG6に基づいて、短絡動作が行われる。短絡回路240は、スイッチング素子SW5,SW6と整流素子D5,D6から構成される。
 スイッチング素子SW5,SW6は、受電側共振回路210の出力部と整流回路220の出力部との間に接続されている。より具体的には、スイッチング素子SW5は、ダイオードD4に並列に接続され、スイッチング素子SW6は、ダイオードD2に並列に接続されている。スイッチング素子SW5,SW6は、後述する制御回路250からの駆動信号SG6を受けて、オン・オフする機能を備えている。つまり、スイッチング素子SW5,SW6がオンされると、ダイオードD2,D4が短絡され、整流回路220に電圧が生じなくなる。逆に、スイッチング素子SW5,SW6がオフされると、整流回路220は4つのダイオードD1~D4がフルブリッジ接続された全波整流回路として機能することとなる。なお、本実施形態ではスイッチング素子SW5,SW6としてMOS-FETを用いたが、これに限られることなく、たとえばIGBTなどの素子でもよい。
 整流素子D5,D6は、受電側共振回路210の出力部とスイッチング素子SW5,SW6との間に挿入されている。整流素子D5,D6としては、ダイオードが挙げられる。本実施形態では、整流素子D5は、スイッチング素子SW5と直列接続されており、アノードがブリッジ型回路の入力部、すなわちダイオードD4のカソードに接続され、カソードがスイッチング素子SW5のドレインに接続されている。整流素子D6は、スイッチング素子SW6と直列接続されており、アノードがブリッジ型回路の入力部、すなわちダイオードD2のカソードに接続され、カソードがスイッチング素子SW6のドレインに接続されている。
 制御回路250は、短絡回路240の動作を制御している。具合的には、受電側電圧検知部230からの出力信号SG5を受信すると、スイッチング素子SW5,SW6に駆動信号SG6を供給し、スイッチング素子SW5,SW6をオンするように制御する。
 次に、図2~図4を参照して、本発明の第1実施形態に係るワイヤレス電力伝送装置S1における受電側共振回路210と短絡回路240が構成する閉ループにおける電流経路と従来のワイヤレス電力伝送装置S2における受電側共振回路410と短絡回路440が構成する閉ループの電流経路の違いについて詳細に説明する。図2は、従来のワイヤレス電力伝送装置を負荷とともに示す回路構成図である。図3は、図2における短絡回路のスイッチング素子がオフの場合の受電側共振回路と短絡回路の閉ループによる電流経路を示す回路構成図の一部拡大図である。図4は、図1における短絡回路のスイッチング素子がオフの場合の受電側共振回路と短絡回路の閉ループによる電流経路を示す回路構成図の一部拡大図である。ここで、スイッチング素子SW5,SW6,SW11,SW12は、スイッチング素子の寄生容量とスイッチの並列接続による等価的なモデルを示している。
 まず、従来のワイヤレス電力伝送装置S2の構成について説明する。従来のワイヤレス伝送装置S2は、図2に示されるように、ワイヤレス送電装置300と、ワイヤレス受電装置400と、を有する。ワイヤレス送電装置300は、直流電力を電力変換回路320に供給する電源310と、4つのスイッチング素子SW7~SW10をブリッジ接続した電力変換部321と、SW制御信号SG7~SG10を供給してスイッチング素子SW7~SW10のオン・オフ動作を制御するスイッチ駆動部322から構成され、直流電力を交流電力に変換する電力変換回路320と、送電コイルL3と送電側共振コンデンサC30、C31から構成され、送電コイルL3から交流電力をワイヤレスにて送電する送電側共振回路330を有する。ワイヤレス受電装置400は、受電コイルL4と受電側共振コンデンサC40、C41から構成され、受電コイルL4にてワイヤレス送電装置300からワイヤレスにて送電された交流電力を受電する受電側共振回路410と、4つのダイオードD7~D10がフルブリッジ接続されたブリッジ型回路と、ブリッジ型回路に並列に接続された平滑コンデンサC4とで構成され、受電した交流電力を整流する整流回路420と、整流回路420の出力電圧の値を検知する受電側電圧検知部430と、受電側共振回路410の両端を短絡させる短絡回路440と、短絡回路440の動作を制御する制御回路450を有する。短絡回路440は、整流回路420のダイオードD8のカソードに接続されるスイッチング素子SW12とダイオードD10のカソードに接続されるスイッチング素子SW11から構成され、制御回路450が受電側電圧検知部430からの出力信号SG13を受信するとスイッチング素子SW11,SW12に駆動信号SG14を供給し、スイッチング素子SW11,SW12をオンに制御する。
 図3に示すように、従来のワイヤレス電力伝送装置S2においては、受電側共振回路410から流れる電流I、Iは、電流の流れを遮るものがないことから、スイッチング素子SW11,SW12を経由して再び受電側共振回路410へ帰還する経路となる。このとき、スイッチング素子SW11,SW12の寄生容量に電流が流れることによって無効電力が生じて力率が悪化するという問題がある。つまり、同じ電力を得ようとすると電流を多く流さなければならないので電力損失が発生する。一方、図4に示すように、本発明の第1実施形態に係るワイヤレス電力伝送装置S1においては、受電側共振回路210から流れる電流I、Iは、短絡回路240のダイオードD5,D6によって、スイッチング素子SW5,SW6への経路を遮断され、寄生容量の放電も行われなくなる。これは回路的に開放と等価であり、電流I、Iがスイッチング素子SW5,SW6に流れないようになっている。このため、スイッチング素子SW5,SW6の寄生容量による無効電力の発生を抑えることができる。したがって、通常動作時における無効電力による電力損失の発生を抑えることができる。なお、受電側共振回路が直列共振回路で構成される場合、通常動作時において寄生容量によって共振周波数のズレが生じるが、本実施形態では整流素子D5,D6によって寄生容量を介した受電側共振回路210への電流経路を遮断しているため、スイッチング素子SW5,SW6の寄生容量による受電側共振回路210の共振周波数への影響を抑えることができる。
 続いて、図5aおよび図5bを参照して本発明の第1実施形態に係るワイヤレス電力伝送装置S1における、短絡回路240のスイッチング素子SW5,SW6がオンの場合とオフの場合の電流経路について説明する。図5aは、図1における短絡回路のスイッチング素子がオフ状態のときの整流回路と短絡回路を流れる電流の経路を示した図である。図5bは、図1における短絡回路のスイッチング素子がオン状態のときの整流回路と短絡回路を流れる電流の経路を示した図である。
 まず、スイッチング素子SW5,SW6がオフ状態について説明する。図5aに示されるように、整流回路220を流れる交流電流の電流経路のうち、一方の電流経路は受電コイルL2からダイオードD1、平滑コンデンサC2及び負荷RL、ダイオードD4を経由して帰還する経路となり、他方の電流経路は受電コイルL2からダイオードD3、平滑コンデンサC2及び負荷RL、ダイオードD2を経由して帰還する経路となる。このとき、整流回路220を流れる交流電流の双方の電流経路において、上述したようにダイオードD5,D6の作用により短絡回路240へは電流が流れない。
 続いて、スイッチング素子SW5,SW6がオン状態の場合について説明する。図5bに示されるように、整流回路220を流れる交流電流の電流経路のうち一方は受電コイルL2からダイオードD5、スイッチング素子SW5およびダイオードD2を経由して帰還する経路となり、他方の電流経路は受電コイルL2からダイオードD6、スイッチング素子SW6およびダイオードD4を経由して帰還する経路となる。この場合、整流回路220の出力には電流が流れないため、整流回路220から後段の回路素子を異常から保護することができる。
 次に、図6のフローチャートを参照して、本実施形態に係るワイヤレス電力伝送装置S1の異常時における保護動作について詳細に説明する。図6は、本発明の第1実施形態に係るワイヤレス電力伝送装置の保護動作を示すフローチャートである。
 まず、ワイヤレス電力伝送装置S1において、ワイヤレス送電装置100からワイヤレス受電装置200にワイヤレスにて電力の伝送が開始されると、受電側電圧検知部230によって、整流回路220の出力電圧の値が常時検知される。(ステップS101)
 続いて、受電側電圧検知部230は、ステップS101で検知した出力電圧の値をあらかじめ設定された基準電圧値と比較する。(ステップS102)
 ステップS101で検知した出力電圧の値とあらかじめ設定された基準電圧値を比較した結果、ステップS101で検知した出力電圧の値があらかじめ設定された基準電圧値を超えた場合(ステップS102Y)、受電側電圧検知部230から出力信号SG5が制御回路250に出力される。(ステップS103)一方、ステップS101で検知した出力電圧の値とあらかじめ設定された基準電圧値を比較した結果、ステップS101で検知した出力電圧の値があらかじめ設定された基準電圧値を超えない場合(ステップS102N)、ステップS101に戻り、ステップS101からステップS102の動作が繰り返し実行される。
 続いて、制御回路250は、出力信号SG5を受信すると、スイッチング素子SW5,SW6に駆動信号SG6を供給し、スイッチング素子SW5,SW6がオンするように制御する。(ステップS104)
 続いて、スイッチング素子SW5,SW6がオンに制御されると、整流回路220のダイオードD2、D4は短絡される。(ステップS105)整流回路220のダイオードD2,D4がスイッチング素子SW5,SW6によって短絡されることによって受電側共振回路210からの電流経路がダイオードD5からスイッチング素子SW5、ダイオードD2を経由して受電側共振回路210へ帰還する経路とダイオードD6からスイッチング素子SW6、ダイオードD4を経由して受電側共振回路210に帰還する経路の2つとなる。このとき、整流回路220の出力側には電流が流れないため整流回路220から後段の回路素子を異常から保護することができる。
 以上のように、本実施形態に係るワイヤレス電力伝送装置S1では、受電側電圧検知部230が検知した出力電圧の値があらかじめ設定された基準電圧値を超えたとき、短絡回路240のスイッチング素子SW5,SW6を動作させる。そのため、整流回路220のダイオードD2,D4が短絡される。その結果、発生した過電圧が受電側共振回路210よりも後段へ出力されず、受電側共振回路210よりも後段の回路素子を保護することができる。また、受電側共振回路210の出力部とスイッチング素子SW5,SW6との間に挿入される整流素子D5,D6を備えるために、スイッチング素子SW5,SW6の寄生容量への電流の経路が遮断されるとともに、寄生容量の放電が抑制される。これにより、通常動作時における無効電力による電力損失の発生を抑えることができる。
(第2実施形態)
 次に、図7を参照して、本発明の第2実施形態に係るワイヤレス電力伝送装置S3の構成について説明する。図7は、本発明の第2実施形態に係るワイヤレス電力伝送装置を負荷とともに示す回路構成図である。
 ワイヤレス電力伝送装置S3は、第1実施形態に係るワイヤレス電力伝送装置S1と同様に、ワイヤレス送電装置100と、ワイヤレス受電装置200と、を有する。ワイヤレス送電装置100は、電源110と、電力変換回路120と、送電側共振回路130と、を有し、ワイヤレス受電装置200は、受電側共振回路210と、整流回路220と、受電側電圧検知部230、短絡回路540、制御回路250と、を有する。電源110、電力変換回路120、送電側共振回路130、受電側共振回路210、整流回路220、受電側電圧検知部230、制御回路250の構成は、第1実施形態に係るワイヤレス電力伝送装置S1と同様である。本実施形態では第1実施形態に係るワイヤレス電力伝送装置S1の短絡回路240に代えて、短絡回路540を備えている点において、第1実施形態と相違する。以下、第1実施形態と異なる点を中心に説明する。
 短絡回路540は、短絡回路240と同様に、受電側電圧検知部230が検知した整流回路220の出力電圧があらかじめ設定された基準電圧値を超えた場合、受電コイルL2の両端を短絡させる機能を有している。具体的には短絡回路540は、ダイオードD2とダイオードD4を短絡させる機能を有している。この短絡回路540は、制御回路250から送信される駆動信号SG6に基づいて、短絡動作が行われる。短絡回路540は、図7に示されるように、整流素子D5,D6とスイッチング素子SW13から構成される。なお、整流素子D5,D6の構成は、第1実施形態に係るワイヤレス電力伝送装置S1と同様である。
 スイッチング素子SW13は、受電側共振回路210の出力部と整流回路220の出力部との間に接続されている。具体的には、スイッチング素子SW13は、整流素子D5,D6のカソードにそれぞれ接続されている。本実施形態では、スイッチング素子SW13は、MOS-FETから構成されている。したがって、整流素子D5のカソードとD6のカソードがスイッチング素子SW13のドレインに並列に接続される。スイッチング素子SW13は、制御回路250からの駆動信号SG6を受けて、オン・オフする機能を備えている。つまり、スイッチング素子SW13がオンされると、ダイオードD2,D4が短絡され、整流回路220に電圧が生じなくなる。逆に、スイッチング素子SW13がオフされると、整流回路220は4つのダイオードD1~D4がフルブリッジ接続された全波整流回路として機能することとなる。なお、本実施形態では、スイッチング素子SW13としてMOS-FETを用いたが、これに限られることなく、たとえばIGBTなどの素子でもよい。
 続いて、図8aおよび図8bを参照して、本発明の第2実施形態に係るワイヤレス電力伝送装置S3における、短絡回路540のスイッチング素子SW13がオンの場合とオフの場合の電流経路について説明する。図8aは、図7における短絡回路のスイッチング素子がオフ状態のときの整流回路と短絡回路を流れる電流の経路を示した図である。図8bは、図7における短絡回路のスイッチング素子がオン状態のときの整流回路と短絡回路を流れる電流の経路を示した図である。
 まず、スイッチング素子SW13がオフ状態について説明する。図8aに示されるように、整流回路220を流れる交流電流の電流経路のうち、一方の電流経路は受電コイルL2からダイオードD1、平滑コンデンサC2及び負荷RL、ダイオードD4を経由して帰還する経路となり、他方の電流経路は受電コイルL2からダイオードD3、平滑コンデンサC2及び負荷RL、ダイオードD2を経由して帰還する経路となる。また、短絡回路540の電流経路は、ダイオードD5,D6によって整流回路220の入力部への電流の帰還が遮断される。さらに、スイッチング素子SW13にはダイオードD5,D6によって全波整流された直流電圧が印加されることから、スイッチング素子SW13の寄生容量は絶縁と等価とみなせるため、ことによってスイッチング素子SW13の寄生容量の放電が行われなくなり、スイッチング素子SW13を流れる電流経路も存在しない。つまり、整流回路220の入力部から短絡回路540へ流れる電流経路はないということになる。
 続いて、スイッチング素子SW13がオン状態の場合について説明する。図8bに示されるように、整流回路220を流れる交流電流の電流経路のうち、一方の電流経路は受電側共振回路210からダイオードD5、スイッチング素子SW13およびダイオードD2を経由して帰還する経路となり、他方の電流経路は受電側共振回路210からダイオードD6、スイッチング素子SW13およびダイオードD4を経由して帰還する経路となる。この場合、整流回路220の出力には、電流が流れないため整流回路220から後段の回路素子を異常から保護することができる。
 以上のように、本実施形態に係るワイヤレス電力伝送装置S3では、受電側電圧検知部230が検知した出力電圧の値があらかじめ設定した基準電圧値を超えたとき、短絡回路540のスイッチング素子SW13を動作させる。そのため、受電側共振回路210の受電コイルL2の両端が短絡される。その結果、発生した過電圧が受電側共振回路210よりも後段へ出力されず、受電側共振回路210よりも後段の回路素子を保護することができる。また、受電側共振回路210の出力部とスイッチング素子SW13との間に挿入される整流素子D5,D6を備えるために、スイッチング素子SW5,SW6の寄生容量への電流の経路が遮断されるとともに、寄生容量の放電が抑制される。これにより、通常動作時における無効電力による電力損失の発生を抑えることができる。
 また、本実施形態に係るワイヤレス電力伝送装置S3においては、短絡回路540を構成するスイッチング素子の個数が1つであるため、装置の省スペース化、簡素化を図ることができる。
(第3実施形態)
 次に、図9を参照して、本発明の第3実施形態に係るワイヤレス電力伝送装置S4の構成について説明する。図9は、本発明の第3実施形態に係るワイヤレス電力伝送装置を負荷とともに示す回路構成図である。
 ワイヤレス電力伝送装置S4は、第1実施形態に係るワイヤレス電力伝送装置S1と同様に、ワイヤレス送電装置100と、ワイヤレス受電装置200と、を有する。ワイヤレス送電装置100は、電源110と、電力変換回路120と、送電側共振回路130と、を有し、ワイヤレス受電装置200は、受電側共振回路210と、整流回路220と、受電側電圧検知部230、短絡回路240、制御回路250と、を有する。電源110、電力変換回路120、送電側共振回路130、受電側共振回路210、整流回路220、受電側電圧検知部230、制御回路250の構成は、第1実施形態に係るワイヤレス電力伝送装置S1と同様である。本実施形態では、第1実施形態に係るワイヤレス電力伝送装置S1の電力変換回路120に代えて、電力変換回路620を備えている点、第1実施形態に係るワイヤレス電力伝送装置S1の制御回路250に代えて、制御回路750を備えている点において。第1実施形態と相違する。以下、第1実施形態と異なる点を中心に説明する。
 電力変換回路620は、図9に示されるように、電力変換部121と、スイッチ駆動部122と、電力制御部123と、を有する。電力変換部121、スイッチ駆動部122の構成は、第1実施形態に係るワイヤレス電力伝送装置S1と同様である。
 電力制御部123は、電力変換回路620の機能を停止させ、ワイヤレス送電装置100の送電動作を停止させる機能を有する。具体的には、後述するワイヤレス受電装置200の制御回路750から供給される停止信号SG15を受信すると、電力変換部121の動作を停止させる。なお、本実施形態では、スイッチ駆動部122と電力制御部123を別々の構成としているが、これらはどちらか片方が両方の機能を有してもよい。
 制御回路750は、制御回路250と同様に、短絡回路240の動作を制御している。本実施形態では、上記機能に加えて、電力制御部123を制御する機能を有している。具合的には、受電側電圧検知部230からの出力信号SG5を受信すると、スイッチング素子SW5,SW6に駆動信号SG6を供給し、スイッチング素子SW5,SW6をオンするように制御し、さらに、スイッチング素子SW5,SW6に駆動信号SG6を供給したと同時または直後に停止信号SG15を電力制御部123に送信し、ワイヤレス送電装置100の送電動作を停止するように制御する。
 次に、図10のフローチャートを参照して、本実施形態に係るワイヤレス電力伝送装置S4の異常時における保護動作について詳細に説明する。図10は、本発明の第3実施形態に係るワイヤレス電力伝送装置の保護動作を示すフローチャートである。
 図10において、ステップS101~ステップS105までは第1実施形態と同様の動作のため、ここでは説明を省略する。
 制御回路750は、スイッチング素子SW5,SW6がオンに制御されると同時または直後にワイヤレス送電装置100の電力制御部123に対して停止信号SG15を送信する。(ステップS106)
 続いて、電力制御部123は、停止信号SG15を受信すると電力変換回路620の動作を停止させワイヤレス送電装置100の送電動作を停止させる。(ステップS107)
 以上のように、本実施形態に係るワイヤレス電力伝送装置S4では、受電側電圧検知部230が検知した出力電圧の値があらかじめ設定された基準電圧値を超えたとき、短絡回路240のスイッチング素子SW5,SW6を動作させる。そのため、整流回路220のダイオードD2,D4が短絡される。その結果、発生した過電圧が受電側共振回路210よりも後段へ出力されず、受電側共振回路210よりも後段の回路素子を保護することができる。また、受電側共振回路210の出力部とスイッチング素子SW5,SW6との間に挿入される整流素子D5,D6を備えるために、スイッチング素子SW5,SW6の寄生容量への電流の経路が遮断されるとともに、寄生容量の放電が抑制される。これにより、通常動作時における無効電力による電力損失の発生を抑えることができる。
 さらに、本実施形態に係るワイヤレス電力伝送装置S4においては、制御回路750がスイッチング素子SW5,SW6を動作させるのと同時または直後に送電動作を停止させる停止信号SG15をワイヤレス送電装置100に送信するように構成している。そのため、受電側電圧検知部230が検知した出力電圧の値があらかじめ設定された基準電圧値を超えたとき、ワイヤレス送電装置100の動作が停止する。したがって、ワイヤレス電力伝送装置S4全体の回路素子を保護することができる。また、ワイヤレス送電装置100の動作が停止することにより、短絡回路240への電流印加時間が抑制されるため、短絡回路240を保護できる。
(第4実施形態)
 次に、図11を参照して、本発明の第4実施形態に係るワイヤレス電力伝送装置の構成について説明する。図11は、本発明の第4実施形態に係るワイヤレス電力伝送装置におけるワイヤレス受電装置を負荷とともに示す回路構成図である。
 第4実施形態に係るワイヤレス電力伝送装置は、第1実施形態に係るワイヤレス電力伝送装置S1と同様に、ワイヤレス送電装置100と、ワイヤレス受電装置200と、を有する。ここで、第4実施形態に係るワイヤレス電力伝送装置におけるワイヤレス送電装置100は、第1実施形態に係るワイヤレス電力伝送装置S1におけるワイヤレス送電装置100と同様のため説明は省略する。第4実施形態に係るワイヤレス電力伝送装置におけるワイヤレス受電装置200は、受電側共振回路210と、変圧回路260と、整流回路220と、受電側電圧検知部230と、短絡回路240と、制御回路250と、を有する。受電側共振回路210、整流回路220、受電側電圧検知部230、短絡回路240、制御回路250の構成は、第1実施形態に係るワイヤレス電力伝送装置S1と同様である。本実施形態では、ワイヤレス受電装置200が変圧回路260を備えている点において、第1実施形態と相違する。以下、第1実施形態と異なる点を中心に説明する。
 変圧回路260は、受電側共振回路210の出力部と整流回路220の入力部との間に挿入されている。この変圧回路260は、受電側共振回路210の出力する電圧を所望の値に変圧して整流回路220に出力する。本実施形態においては、変圧回路260は、1次巻線Lpと2次巻線Lsを有するトランスである。1次巻線Lsと2次巻線Lpは、複数の細い導体素線を撚りあわせたリッツ線又は単線を用いて形成されている。ここで、1次巻線Lpと2次巻線Lsは磁気的に結合しており、1次巻線Lpと2次巻線Lsの巻数比により1次巻線Lpに印加される電圧と2次巻線Lsに印加される電圧を変化させることができる。すなわち、変圧回路260は、受電側共振回路210の出力する電圧を1次巻線Lpと2次巻線Lsの巻数比に応じた電圧に変化させ、整流回路220に出力する機能を備えている。本実施形態では、1次巻線Lpの一方端に受電側共振回路210の一方の出力端が接続され、1次巻線Lpの他方端に受電側共振回路210の一方の出力端が接続される。さらに、2次巻線Lsの一方端はダイオードD1のアノードとダイオードD2のカソードの中点に接続され、2次巻線Lsの他方端はダイオードD3のアノードとダイオードD4のカソードの中点に接続される。
 本実施形態では、受電側共振回路210の出力部と整流回路220の入力部との間に変圧回路260が挿入されている。そのため、短絡回路240のスイッチング素子SW5,SW6がオフ状態の場合、整流回路220を流れる交流電流の電流経路のうち、一方の電流経路は受電コイルL2から変圧回路260、ダイオードD1、平滑コンデンサC2及び負荷RL、ダイオードD4、変圧回路260を経由して帰還する経路となり、他方の電流経路は受電コイルL2から変圧回路260、ダイオードD3、平滑コンデンサC2及び負荷RL、ダイオードD2、変圧回路260を経由して帰還する経路となる。また、短絡回路240のスイッチング素子SW5,SW6がオン状態の場合、整流回路220を流れる交流電流の電流経路のうち、一方の電流経路は受電コイルL2から変圧回路260、ダイオードD5、スイッチング素子SW5、ダイオードD2、変圧回路260を経由して帰還する経路となり、他方の電流経路は受電コイルL2から変圧回路260、ダイオードD6、スイッチング素子SW6、ダイオードD4、変圧回路260を経由して帰還する経路となる。
 以上のように、本実施形態に係るワイヤレス電力伝送装置では、受電側共振回路210の出力部と整流回路220の入力部との間に変圧回路260をさらに備えている。そのため、過電圧が生じた場合に回路素子を保護しつつ、通常動作時に変圧回路260の変圧比を変えることで1つの受電側共振回路210から所望の電圧・電流を出力することが可能となる。
(第5実施形態)
 次に、図12を参照して、本発明の第5実施形態に係るワイヤレス電力伝送装置の構成について説明する。図12は、本発明の第5実施形態に係るワイヤレス電力伝送装置におけるワイヤレス受電装置を負荷とともに示す回路構成図である。
 第5実施形態に係るワイヤレス電力伝送装置は、第4実施形態に係るワイヤレス電力伝送装置と同様に、ワイヤレス送電装置100と、ワイヤレス受電装置200と、を有する。第5実施形態に係るワイヤレス電力伝送装置におけるワイヤレス送電装置100は、第4実施形態と同様に、第1実施形態に係るワイヤレス電力伝送装置S1におけるワイヤレス送電装置100と同様のため説明は省略する。第4実施形態に係るワイヤレス電力伝送装置におけるワイヤレス受電装置200は、受電側共振回路210と、変圧回路260と、整流回路220と、受電側電圧検知部230と、短絡回路640と、制御回路250と、を有する。受電側共振回路210、変圧回路260、整流回路220、受電側電圧検知部230、制御回路250の構成は、第4実施形態に係るワイヤレス電力伝送装置と同様である。本実施形態では、ワイヤレス受電装置200が短絡回路240に代えて短絡回路640を備えている点において、第4実施形態と相違する。以下、第4実施形態と異なる点を中心に説明する。
 短絡回路640は、受電側電圧検知部230が検知した整流回路220の出力電圧があらかじめ設定された基準電圧値を超えた場合、受電コイルL2の両端を短絡させる機能を有している。具体的には短絡回路640は、受電側共振コンデンサC20と受電側共振コンデンサC21との間を短絡させる機能を有している。この短絡回路640は、制御回路250から送信される駆動信号SG6に基づいて、短絡動作が行われる。短絡回路240は、スイッチング素子SW14,SW15と整流素子D11,D12から構成される。
 スイッチング素子SW14,SW15は、受電側共振回路210の出力部と整流回路220の出力部との間に接続されている。より具体的には、スイッチング素子SW14,SW15は、それぞれ受電側共振回路210の出力部と変圧回路260の入力部との間に並列に接続されている。スイッチング素子SW14,SW15は、制御回路250からの駆動信号SG6を受けて、オン・オフする機能を備えている。つまり、スイッチング素子SW14,SW15がオンされると、受電側共振回路210の出力部の両端が短絡され、整流回路220に電圧が生じなくなる。逆に、スイッチング素子SW14,S15がオフされると、変圧回路260は受電側共振回路210の出力する電圧を所望の値に変圧して整流回路220に出力し、整流回路220は4つのダイオードD1~D4がフルブリッジ接続された全波整流回路として機能することとなる。なお、本実施形態ではスイッチング素子SW14,SW15としてMOS-FETを用いたが、これに限られることなく、たとえばIGBTなどの素子でもよい。
 整流素子D11,D12は、受電側共振回路210の出力部とスイッチング素子SW14,SW15との間に挿入されている。整流素子D11,D12としては、ダイオードが挙げられる。本実施形態では、整流素子D11は、スイッチング素子SW14と直列接続されており、アノードがスイッチング素子SW14のドレインに接続され、カソードが受電側共振回路210の出力部、すなわち受電側共振コンデンサC20に接続されている。整流素子D12は、スイッチング素子SW15と直列接続されており、アノードが受電側共振回路210の出力部、すなわち受電側共振コンデンサC20に接続され、カソードがスイッチング素子SW15のドレインに接続されている。
 本実施形態では、受電側共振回路210の出力部と変圧回路260の入力部との間に短絡回路640が並列に挿入されている。そのため、短絡回路640のスイッチング素子SW14,SW15がオフ状態の場合、整流回路220を流れる交流電流の電流経路のうち、一方の電流経路は受電コイルL2から変圧回路260、ダイオードD1、平滑コンデンサC2及び負荷RL、ダイオードD4、変圧回路260を経由して帰還する経路となり、他方の電流経路は受電コイルL2から変圧回路260、ダイオードD3、平滑コンデンサC2及び負荷RL、ダイオードD2、変圧回路260を経由して帰還する経路となる。また、短絡回路640のスイッチング素子SW14,SW15がオン状態の場合、整流回路220を流れる交流電流の電流経路のうち、一方の電流経路は受電コイルL2からスイッチング素子SW14、ダイオードD11を経由して帰還する経路となり、他方の電流経路は受電コイルL2からダイオードD12、スイッチング素子SW15を経由して帰還する経路となる。
 以上のように、本実施形態に係るワイヤレス電力伝送装置では、受電側共振回路210の出力部と整流回路220の入力部との間に変圧回路260をさらに備えている。そのため、過電圧が生じた場合に回路素子を保護しつつ、通常動作時に変圧回路260の変圧比を変えることで1つの受電側共振回路210から所望の電圧・電流を出力することが可能となる。また、本実施形態に係るワイヤレス電力伝送装置においては、短絡回路640を受電側共振回路210の出力部と変圧回路260の入力部との間に挿入しているため、過電圧が生じた場合に変圧回路260以降の回路素子を保護することができる。
(第6実施形態)
 次に、図13を参照して、本発明の第6実施形態に係るワイヤレス電力伝送装置の構成について説明する。図13は、本発明の第6実施形態に係るワイヤレス電力伝送装置におけるワイヤレス受電装置を負荷とともに示す回路構成図である。
 第6実施形態に係るワイヤレス電力伝送装置は、第1実施形態に係るワイヤレス電力伝送装置S1と同様に、ワイヤレス送電装置100と、ワイヤレス受電装置200と、を有する。ここで、第6実施形態に係るワイヤレス電力伝送装置におけるワイヤレス送電装置100は、第1実施形態に係るワイヤレス電力伝送装置S1におけるワイヤレス送電装置100と同様のため説明は省略する。第6実施形態に係るワイヤレス電力伝送装置におけるワイヤレス受電装置200は、受電側共振回路210と、インダクタ回路270と、整流回路220と、受電側電圧検知部230と、短絡回路240と、制御回路250と、を有する。受電側共振回路210、整流回路220、受電側電圧検知部230、短絡回路240、制御回路250の構成は、第1実施形態に係るワイヤレス電力伝送装置S1と同様である。本実施形態では、ワイヤレス受電装置200がインダクタ回路270を備えている点において、第1実施形態と相違する。以下、第1実施形態と異なる点を中心に説明する。
 インダクタ回路270は、受電側共振回路210の出力部と整流回路220の入力部との間に挿入されている。本実施形態においては、インダクタ回路270は、インダクタL5,L6を有する。インダクタL5,L6は、ある周波数以上の周波数に対する大きな抵抗としての機能、コモンモードノイズを除去する機能を有する。これにより、インダクタL5,L6は、受電側共振回路210からの出力に重畳するノイズを減衰、または遮断して、整流回路220に出力する機能を備えている。本実施形態では、インダクタL5の一方端は、受電側共振回路210の一方の出力端が接続され、インダクタL5の他方端は、ダイオードD3のアノードとダイオードD4のカソードの中点に接続されている。さらに、インダクタL6の一方端は、受電側共振回路210の他方の出力端が接続され、インダクタL6の他方端は、ダイオードD1のアノードとダイオードD2のカソードの中点に接続されている。インダクタL5,L6としては、ノーマルモードのノイズを抑制させるノーマルモードチョークコイル、コモンモードのノイズを抑制させるコモンモードチョークコイルが挙げられる。
 本実施形態では、受電側共振回路210の出力部と整流回路220の入力部との間にインダクタ回路270が挿入されている。そのため、短絡回路240のスイッチング素子SW5,SW6がオフ状態の場合、整流回路220を流れる交流電流の電流経路のうち、一方の電流経路は受電コイルL2から、インダクタL6、ダイオードD1、平滑コンデンサC2及び負荷RL、ダイオードD4、インダクタL5を経由して帰還する経路となり、他方の電流経路は受電コイルL2からインダクタL5、ダイオードD3、平滑コンデンサC2及び負荷RL、ダイオードD2、インダクタL6を経由して帰還する経路となる。また、短絡回路240のスイッチング素子SW5,SW6がオン状態の場合、整流回路220を流れる交流電流の電流経路のうち、一方の電流経路は受電コイルL2からインダクタL5、ダイオードD5、スイッチング素子SW5、ダイオードD2、インダクタL6を経由して帰還する経路となり、他方の電流経路は受電コイルL2からインダクタL6、ダイオードD6、スイッチング素子SW6、ダイオードD4、インダクタL5を経由して帰還する経路となる。
 以上のように、本実施形態に係るワイヤレス電力伝送装置では、受電側共振回路210の出力部と整流回路220の入力部との間にインダクタ回路270をさらに備えている。そのため、過電圧が生じた場合に回路素子を保護しつつ、通常動作時におけるノイズ抑制が可能となる。
 なお、上述の第6実施形態に係るワイヤレス電力伝送装置における特徴的構成ならびに機能は、第4及び第5実施形態に係るワイヤレス電力伝送装置に適用しても構わない。
 S1~S4…ワイヤレス電力伝送装置、100…ワイヤレス送電装置、110…電源、120,620…電力変換回路、121…電力変換部、122…スイッチ駆動部、123…電力制御部、130…送電側共振回路、200…ワイヤレス受電装置、210…受電側共振回路、220…整流回路、230…受電側電圧検知部、240,540、640…短絡回路、250,750…制御回路、260…変圧回路、270…インダクタ回路、300…ワイヤレス送電装置、310…電源、320…電力変換回路、321…電力変換部、322…スイッチ駆動部、330…送電側共振回路、400…ワイヤレス受電装置、410…受電側共振回路、420…整流回路、430…受電側電圧検知部、440…短絡回路、450…制御回路、SW1~SW15…スイッチング素子、C2,C4…平滑コンデンサ、C10,C11,C30,C31…送電側共振コンデンサ、C20,C21,C40,C41…受電側共振コンデンサ、L1,L3…送電コイル、L2,L4…受電コイル、Lp…1次巻線、Ls…2次巻線、L5,L6…インダクタ、D1~D12…整流素子(ダイオード)、SG1~SG4,SG7~SG10…SW制御信号、SG5,SG13…出力信号、SG6,SG14…駆動信号、SG15…停止信号。

Claims (6)

  1.  ワイヤレス送電装置からワイヤレスにて電力を受電するワイヤレス受電装置であって、
     送電側からの電力をワイヤレスに受電する受電コイルと、前記受電コイルに接続される受電側共振コンデンサと、を有する受電側共振回路と、
     前記受電コイルが受電した電力を整流して負荷に出力する整流回路と、
     前記整流回路の出力電圧を検知する受電側電圧検知部と、
     前記受電側共振回路の出力部と前記整流回路の出力部との間に接続されるスイッチング素子と、前記受電側共振回路の出力部と前記スイッチング素子との間に挿入される整流素子と、を有する短絡回路と、
     前記受電側電圧検知部が検知した出力電圧の値があらかじめ設定された基準電圧値を超えたとき、前記スイッチング素子を動作させる制御回路と、を備えることを特徴とするワイヤレス受電装置。
  2.  前記整流回路は、4つのダイオードがフルブリッジ接続されたブリッジ型回路と、前記ブリッジ型回路が並列に接続された平滑コンデンサと、を有する請求項1に記載のワイヤレス受電装置。
  3.  前記制御回路は、前記スイッチング素子を動作させるのと同時または直後に送電動作を停止させる停止信号をワイヤレス送電装置に送信することを特徴とする請求項1または2に記載のワイヤレス受電装置。
  4.  前記受電側共振回路の出力部と前記整流回路の入力部との間に挿入される変圧回路をさらに備えることを特徴とする請求項1~3のいずれか一項に記載のワイヤレス受電装置。
  5.  前記受電側共振回路の出力部と前記整流回路の入力部との間に挿入されるインダクタ回路をさらに備えることを特徴とする請求項1~4のいずれか一項に記載のワイヤレス受電装置。
  6.  請求項1~5のいずれか一項に記載のワイヤレス受電装置と、ワイヤレス送電装置を備え、前記ワイヤレス送電装置は、受電側に電力をワイヤレスにて送電する送電コイルと、前記送電コイルに接続される送電側共振コンデンサとで構成される送電側共振回路と、入力直流電力を交流電力に変換して前記送電コイルに供給する電力変換回路と、を有することを特徴とするワイヤレス電力伝送装置。
PCT/JP2016/060415 2015-03-31 2016-03-30 ワイヤレス受電装置及びワイヤレス電力伝送装置 WO2016159093A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2017510111A JP6361818B2 (ja) 2015-03-31 2016-03-30 ワイヤレス受電装置及びワイヤレス電力伝送装置
CN201680020194.9A CN107431382B (zh) 2015-03-31 2016-03-30 无线受电装置和无线电力传输装置
US15/559,173 US10298069B2 (en) 2015-03-31 2016-03-30 Wireless power receiving device and wireless power transmission device
DE112016001489.9T DE112016001489T5 (de) 2015-03-31 2016-03-30 Drahtlos-energieempfangsvorrichtung und drahtlosenergieübertragungsvorrichtung

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015073435 2015-03-31
JP2015-073435 2015-03-31

Publications (1)

Publication Number Publication Date
WO2016159093A1 true WO2016159093A1 (ja) 2016-10-06

Family

ID=57005939

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060415 WO2016159093A1 (ja) 2015-03-31 2016-03-30 ワイヤレス受電装置及びワイヤレス電力伝送装置

Country Status (5)

Country Link
US (1) US10298069B2 (ja)
JP (1) JP6361818B2 (ja)
CN (1) CN107431382B (ja)
DE (1) DE112016001489T5 (ja)
WO (1) WO2016159093A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017131004A (ja) * 2016-01-19 2017-07-27 東芝テック株式会社 非接触受電装置
JP2017169274A (ja) * 2016-03-14 2017-09-21 株式会社東芝 受電装置および無線電力伝送システム
JP2018196236A (ja) * 2017-05-17 2018-12-06 富士通株式会社 送電装置、受電装置、ワイヤレス電力伝送システムおよびワイヤレス電力伝送方法
JP2019103386A (ja) * 2017-11-29 2019-06-24 Tdk株式会社 ワイヤレス受電装置及びこれを用いたワイヤレス電力伝送システム
WO2019155820A1 (ja) * 2018-02-07 2019-08-15 オムロン株式会社 非接触給電装置
JP2019176683A (ja) * 2018-03-29 2019-10-10 Tdk株式会社 ワイヤレス受電装置、及びワイヤレス電力伝送システム
WO2020209084A1 (ja) * 2019-04-10 2020-10-15 株式会社デンソー 送電装置、及び受電装置
JP2020174515A (ja) * 2019-04-10 2020-10-22 株式会社Soken 送電装置、及び受電装置
JP2020537482A (ja) * 2017-11-03 2020-12-17 ヒルティ アクチエンゲゼルシャフト 電力増幅器なしで電気エネルギーを伝送するための共振回路
JP2020537483A (ja) * 2017-11-03 2020-12-17 ヒルティ アクチエンゲゼルシャフト 電気エネルギーを伝送するための共振回路
US10903691B2 (en) 2017-11-29 2021-01-26 Tdk Corporation Wireless power receiver and wireless power transmission system using the same

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101739085B1 (ko) * 2015-03-18 2017-05-24 주식회사 맵스 무선 전력 수신기
US10923952B2 (en) * 2015-04-05 2021-02-16 Chargedge, Inc. Secondary-side output boost technique in power converters and wireless power transfer systems
JP7049768B2 (ja) 2016-02-03 2022-04-07 ゼネラル・エレクトリック・カンパニイ ワイヤレス電力伝送システムを保護するための方法およびシステム
SG10201700633QA (en) * 2016-02-03 2017-09-28 Gen Electric System and method for protecting a wireless power transfer system
SG10201707385XA (en) * 2016-09-30 2018-04-27 Gen Electric Over voltage protection for a wireless power transfer system
JP7187135B2 (ja) * 2017-05-16 2022-12-12 ラピスセミコンダクタ株式会社 無線受電装置、無線給電装置、無線電力伝送システム、及び無線受電装置の過大磁界保護方法
JP6638704B2 (ja) * 2017-07-10 2020-01-29 Tdk株式会社 ワイヤレス受電装置、及びワイヤレス電力伝送システム
CN110034539B (zh) * 2018-01-12 2021-06-25 泰达电子股份有限公司 故障保护方法及其适用的无线电能传输装置
JP6904280B2 (ja) * 2018-03-06 2021-07-14 オムロン株式会社 非接触給電装置
JP7283864B2 (ja) * 2018-03-20 2023-05-30 株式会社ダイヘン 受電装置及び受電制御方法
JP6977654B2 (ja) * 2018-03-30 2021-12-08 Tdk株式会社 ワイヤレス受電装置、及びワイヤレス電力伝送システム
JP7031448B2 (ja) * 2018-03-30 2022-03-08 Tdk株式会社 ワイヤレス送電装置、及びワイヤレス電力伝送システム
JP7205169B2 (ja) * 2018-11-01 2023-01-17 オムロン株式会社 非接触給電装置
JP7416790B2 (ja) 2018-11-30 2024-01-17 ワイトリシティ コーポレーション 高電力ワイヤレス電力システムにおける低電力励起のためのシステムと方法
CN111490581A (zh) * 2019-01-28 2020-08-04 北京小米移动软件有限公司 无线充电接收模组、无线充电系统和终端
KR20220011667A (ko) 2019-05-24 2022-01-28 위트리시티 코포레이션 무선 전력 수신기용 보호 회로
JP7383131B2 (ja) 2019-08-26 2023-11-17 ワイトリシティ コーポレーション 無線電力システムのアクティブ整流の制御
US11495995B2 (en) * 2019-09-23 2022-11-08 Stmicroelectronics Asia Pacific Pte Ltd Advanced overvoltage protection strategy for wireless power transfer
US11695270B2 (en) 2020-01-29 2023-07-04 Witricity Corporation Systems and methods for auxiliary power dropout protection
JP7381767B2 (ja) 2020-03-06 2023-11-16 ワイトリシティ コーポレーション ワイヤレス電力システムにおけるアクティブ整流
JP2023156150A (ja) 2022-04-12 2023-10-24 トヨタ自動車株式会社 制御装置、制御方法、プログラム、非接触電力伝送システム
JP2023156841A (ja) 2022-04-13 2023-10-25 トヨタ自動車株式会社 制御装置、制御方法、プログラム、非接触電力伝送システム
DE102023123843A1 (de) 2022-09-26 2024-03-28 Toyota Jidosha Kabushiki Kaisha Leistungsempfangsvorrichtung und kontaktloses leistungsübertragungssystem

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227003A (ja) * 1993-12-15 1995-08-22 Fuji Electric Co Ltd 移動体の無接触給電装置
JPH1127870A (ja) * 1997-07-03 1999-01-29 Toyota Autom Loom Works Ltd 充電方法、充電装置、充電器、及び、車両
JP2006304578A (ja) * 2005-04-25 2006-11-02 Nec Computertechno Ltd スイッチング電源回路及び該スイッチング電源回路における制御方法
JP2013187975A (ja) * 2012-03-07 2013-09-19 Daikin Ind Ltd 駆動装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001145360A (ja) * 1999-11-16 2001-05-25 Hitachi Ltd 力率改善回路,モータ制御装置及び空調機
JP3490051B2 (ja) * 2000-06-27 2004-01-26 オリジン電気株式会社 コンデンサ充電装置及び充電方法
JP2011142748A (ja) * 2010-01-07 2011-07-21 Sony Corp ワイヤレス給電システム
NZ593946A (en) * 2011-07-07 2014-05-30 Powerbyproxi Ltd An inductively coupled power transfer receiver
JP2014033499A (ja) 2012-08-01 2014-02-20 Sharp Corp ワイヤレス給電システム、ワイヤレス給電装置、およびワイヤレス受電装置
KR101601352B1 (ko) * 2012-09-26 2016-03-08 엘지이노텍 주식회사 무선전력 송신장치 및 그의 전력 제어 방법
JP6124336B2 (ja) * 2013-06-12 2017-05-10 東海旅客鉄道株式会社 給電装置
EP2928038A1 (en) * 2014-03-31 2015-10-07 ABB Technology AG Inductive power transfer system and method for operating an inductive power transfer system
KR101739085B1 (ko) * 2015-03-18 2017-05-24 주식회사 맵스 무선 전력 수신기

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07227003A (ja) * 1993-12-15 1995-08-22 Fuji Electric Co Ltd 移動体の無接触給電装置
JPH1127870A (ja) * 1997-07-03 1999-01-29 Toyota Autom Loom Works Ltd 充電方法、充電装置、充電器、及び、車両
JP2006304578A (ja) * 2005-04-25 2006-11-02 Nec Computertechno Ltd スイッチング電源回路及び該スイッチング電源回路における制御方法
JP2013187975A (ja) * 2012-03-07 2013-09-19 Daikin Ind Ltd 駆動装置

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017131004A (ja) * 2016-01-19 2017-07-27 東芝テック株式会社 非接触受電装置
JP2017169274A (ja) * 2016-03-14 2017-09-21 株式会社東芝 受電装置および無線電力伝送システム
JP2018196236A (ja) * 2017-05-17 2018-12-06 富士通株式会社 送電装置、受電装置、ワイヤレス電力伝送システムおよびワイヤレス電力伝送方法
US10998769B2 (en) 2017-05-17 2021-05-04 Fujitsu Limited Power transmission circuitry, power reception circuitry, wireless power transmission system, and wireless power transmission method
US11539245B2 (en) 2017-11-03 2022-12-27 Hilti Aktiengesellschaft Resonant circuit for transmitting electric energy without a power amplifier
JP2020537483A (ja) * 2017-11-03 2020-12-17 ヒルティ アクチエンゲゼルシャフト 電気エネルギーを伝送するための共振回路
JP2020537482A (ja) * 2017-11-03 2020-12-17 ヒルティ アクチエンゲゼルシャフト 電力増幅器なしで電気エネルギーを伝送するための共振回路
US11735955B2 (en) 2017-11-03 2023-08-22 Hilti Aktiengesellschaft Resonant circuit for transmitting electric energy
CN109980791B (zh) * 2017-11-29 2024-01-16 Tdk株式会社 无线受电装置及使用其的无线电力传输系统
JP7139857B2 (ja) 2017-11-29 2022-09-21 Tdk株式会社 ワイヤレス受電装置及びこれを用いたワイヤレス電力伝送システム
CN109980791A (zh) * 2017-11-29 2019-07-05 Tdk株式会社 无线受电装置及使用其的无线电力传输系统
JP2019103386A (ja) * 2017-11-29 2019-06-24 Tdk株式会社 ワイヤレス受電装置及びこれを用いたワイヤレス電力伝送システム
US10903691B2 (en) 2017-11-29 2021-01-26 Tdk Corporation Wireless power receiver and wireless power transmission system using the same
WO2019155820A1 (ja) * 2018-02-07 2019-08-15 オムロン株式会社 非接触給電装置
US11171516B2 (en) 2018-02-07 2021-11-09 Omron Corporation Noncontact power supply apparatus
JP7003708B2 (ja) 2018-02-07 2022-01-21 オムロン株式会社 非接触給電装置
JP2019140736A (ja) * 2018-02-07 2019-08-22 オムロン株式会社 非接触給電装置
JP2019176683A (ja) * 2018-03-29 2019-10-10 Tdk株式会社 ワイヤレス受電装置、及びワイヤレス電力伝送システム
JP7018467B2 (ja) 2019-04-10 2022-02-10 株式会社Soken 送電装置、及び受電装置
JP2020174515A (ja) * 2019-04-10 2020-10-22 株式会社Soken 送電装置、及び受電装置
WO2020209084A1 (ja) * 2019-04-10 2020-10-15 株式会社デンソー 送電装置、及び受電装置

Also Published As

Publication number Publication date
DE112016001489T5 (de) 2018-01-04
CN107431382A (zh) 2017-12-01
JPWO2016159093A1 (ja) 2017-12-28
US10298069B2 (en) 2019-05-21
CN107431382B (zh) 2020-06-05
US20180090995A1 (en) 2018-03-29
JP6361818B2 (ja) 2018-07-25

Similar Documents

Publication Publication Date Title
JP6361818B2 (ja) ワイヤレス受電装置及びワイヤレス電力伝送装置
JP6379660B2 (ja) ワイヤレス受電装置、及び、ワイヤレス電力伝送装置
CN110226282B (zh) Llc谐振转换器
US9774269B2 (en) Bidirectional DC/DC converter
US10903691B2 (en) Wireless power receiver and wireless power transmission system using the same
JP5995139B2 (ja) 双方向dc/dcコンバータ
JP6511224B2 (ja) 電源装置
US6351359B1 (en) Circuit for blocking a semiconductor switching device on overcurrent
KR101278850B1 (ko) 전력 변환 회로
US10063103B2 (en) Contactless power transmission device and power transmission method thereof
JP7139857B2 (ja) ワイヤレス受電装置及びこれを用いたワイヤレス電力伝送システム
US11349344B2 (en) Safe operation in wireless power transmission systems
US20230223856A1 (en) Power conversion apparatus having multiple llc converters and capable of achieving desired output voltage even in changes in load current
JP5070929B2 (ja) 能動フィルタ装置及び電力変換装置
JP2005176535A (ja) スイッチング電源装置
JP4635584B2 (ja) スイッチング電源装置
JP6314734B2 (ja) 電力変換装置
US11374489B2 (en) Hybrid bulk capacitance circuit for AC/DC charger
WO2022080237A1 (ja) 電力変換装置及び電力変換装置の制御方法
JP6617638B2 (ja) ワイヤレス電力伝送システム
JP4729340B2 (ja) 電源回路
JP2008193759A (ja) 車内電力供給システム
JPWO2020012895A1 (ja) Dc−dcコンバータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772974

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15559173

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017510111

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 112016001489

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772974

Country of ref document: EP

Kind code of ref document: A1