WO2016158979A1 - Active energy ray-curable resin composition and article - Google Patents

Active energy ray-curable resin composition and article Download PDF

Info

Publication number
WO2016158979A1
WO2016158979A1 PCT/JP2016/060182 JP2016060182W WO2016158979A1 WO 2016158979 A1 WO2016158979 A1 WO 2016158979A1 JP 2016060182 W JP2016060182 W JP 2016060182W WO 2016158979 A1 WO2016158979 A1 WO 2016158979A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymerizable component
mass
meth
acrylate
resin composition
Prior art date
Application number
PCT/JP2016/060182
Other languages
French (fr)
Japanese (ja)
Inventor
大谷 剛
祐介 中井
哲哉 地紙
Original Assignee
三菱レイヨン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱レイヨン株式会社 filed Critical 三菱レイヨン株式会社
Priority to JP2016522083A priority Critical patent/JPWO2016158979A1/en
Publication of WO2016158979A1 publication Critical patent/WO2016158979A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/46Polymerisation initiated by wave energy or particle radiation
    • C08F2/48Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light
    • C08F2/50Polymerisation initiated by wave energy or particle radiation by ultraviolet or visible light with sensitising agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F290/00Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups
    • C08F290/02Macromolecular compounds obtained by polymerising monomers on to polymers modified by introduction of aliphatic unsaturated end or side groups on to polymers modified by introduction of unsaturated end groups
    • C08F290/06Polymers provided for in subclass C08G
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/18Coatings for keeping optical surfaces clean, e.g. hydrophobic or photo-catalytic films

Definitions

  • the present invention relates to an active energy ray-curable resin composition suitable for forming a fine unevenness (nano unevenness) structure, an imprinting raw material containing the active energy ray-curable resin composition, and the active energy ray-curable resin.
  • the present invention relates to an article having a fine concavo-convex structure formed using a composition.
  • a fine concavo-convex structure in which nano-sized fine irregularities are regularly arranged on the surface exhibits antireflection performance due to a continuous change in refractive index.
  • Such a fine concavo-convex structure is generally called a moth-eye structure. It is also known that this fine concavo-convex structure exhibits the same effect as the super water-repellent performance (lotus effect) exhibited by a lotus leaf having a fine concavo-convex structure.
  • the following method has been proposed: (I) a method of transferring a fine concavo-convex structure onto the surface of a thermoplastic resin molded article by injection molding or press molding a thermoplastic resin using a stamper having an inverted structure of the fine concavo-convex structure on the surface; (Ii) An active energy ray-curable resin composition is filled between a stamper having a reverse structure of a fine concavo-convex structure on the surface and a transparent substrate, cured by irradiation with active energy rays, and then the stamper is peeled off.
  • the method (ii) is preferable in consideration of the transferability of the fine relief structure and the degree of freedom of the surface composition.
  • This method is particularly suitable when a belt-shaped or roll-shaped stamper capable of continuous production is used, and is a method with excellent productivity.
  • the fine concavo-convex structure exhibits good antireflection performance when adjacent convex portions or concave portions of the fine concavo-convex portions have an interval equal to or shorter than the wavelength of visible light.
  • the fine concavo-convex structure having such a structure is inferior in scratch resistance as compared with a molded article having a smooth surface and subjected to an abrasion resistance treatment with a hard coat or the like, and has a problem in durability during use. .
  • the cured product of the resin composition used for the production of the fine concavo-convex structure is not sufficiently robust, a phenomenon in which the protrusions tend to come close to each other when being released from the mold or due to heat.
  • a resin composition for forming a fine concavo-convex structure has been proposed.
  • Patent Document 1 discloses that a fine concavo-convex structure having a convex portion (concave portion) interval equal to or less than the wavelength of visible light is prepared using a silica particle packed in a close packing as a template, and a resin composition for forming this fine concavo-convex structure Describes an ultraviolet curable resin composition containing a polyfunctional monomer having many double bonds per molecular weight, such as trimethylolpropane tri (meth) acrylate.
  • a polyfunctional monomer having many double bonds per molecular weight such as trimethylolpropane tri (meth) acrylate.
  • Patent Document 2 discloses a film having a hard coat layer having fine irregularities, and this hard coat layer preferably exhibits a hardness of “H” or higher in a pencil hardness test according to JISK5400, and UV curable resin compositions containing polyfunctional monomers having a large number of double bonds per molecular weight, such as dipentaerythritol hexaacrylate, dipentaerythritol pentaacrylate, pentaerythritol tetraacrylate, etc. are described as resins for forming the hard coat layer. ing.
  • a resin composition preferable for forming a fine relief structure (1) A photocurable resin composition comprising an acrylate oligomer such as urethane acrylate and a release agent as essential components (Patent Document 3); (2) A photocurable resin composition comprising a (meth) acrylate such as ethoxylated bisphenol A di (meth) acrylate, a reactive diluent such as N-vinylpyrrolidone, a photopolymerization initiator, and a fluorosurfactant.
  • a photocurable resin composition comprising an acrylate oligomer such as urethane acrylate and a release agent as essential components (Patent Document 3); (2) A photocurable resin composition comprising a (meth) acrylate such as ethoxylated bisphenol A di (meth) acrylate, a reactive diluent such as N-vinylpyrrolidone, a photopolymerization initiator, and a fluorosurfactant
  • Patent Document 4 and (3) UV curable resin composition comprising a polyfunctional (meth) acrylate such as trimethylolpropane tri (meth) acrylate, a photopolymerization initiator and a leveling agent such as polyether-modified silicone oil ( Patent Document 1).
  • a polyfunctional (meth) acrylate such as trimethylolpropane tri (meth) acrylate
  • a photopolymerization initiator and a leveling agent such as polyether-modified silicone oil
  • each of the fine concavo-convex structures described in Patent Documents 1 and 2 is a cured product having a high crosslink density and a high elastic modulus, but does not necessarily satisfy the scratch resistance.
  • the antireflection performance may be impaired due to breakage or bending of the fine protrusions particularly in the case of a fine concavo-convex structure. Applications will be limited. Further, in these fine concavo-convex structures, the surface of the fine concavo-convex structure does not exhibit sufficient water repellency.
  • silicone compounds and fluorine compounds that exhibit water repellency are common polyfunctional (meth) acrylates and urethane (meth) acrylates used in active energy ray-curable resin compositions.
  • the application to a hard coat where transparency is required and transparency is required is limited.
  • the main object of the present invention is to provide an article having high water repellency and scratch resistance with an antireflection function by a fine uneven structure, and a high water repellency and scratch resistance with an antireflection function by a fine uneven structure. It is in providing the active energy ray-curable resin composition which can form the hardened
  • An article having a plurality of convex portions on the surface The plurality of convex portions have an average interval between adjacent convex portions of 400 nm or less,
  • the plurality of convex portions are made of a cured product of an active energy ray-curable resin composition,
  • the water contact angle of the part having the plurality of convex portions of the article is 80 degrees or more
  • the active energy ray-curable resinous composition includes a polymerizable component (P), a photopolymerization initiator (E), and an internal release agent (F).
  • P polymerizable component
  • E photopolymerization initiator
  • F internal release agent
  • a monoalkyl phosphate and Articles comprising at least one of dialkyl phosphates are provided.
  • An active energy ray-curable resin composition for forming a fine concavo-convex structure having a plurality of convex portions on the surface having an average interval between adjacent convex portions of 400 nm or less by an imprint method
  • the active energy ray-curable resin composition contains at least a polymerizable component (P), a photopolymerization initiator (E), and an internal release agent (F), Alkanediol di (meth) which is an esterified product of an alkanediol having 6 or more carbon atoms and (meth) acrylic acid as the polymerizable component (A) with respect to 100% by mass of the total amount of the polymerizable component (P).
  • an active energy ray-curable resin composition in which the internal release agent (F) contains at least one of a monoalkyl phosphate and a dialkyl phosphate.
  • An article comprising a cured product of the above active energy ray-curable resin composition, and having a fine concavo-convex structure on the surface having a plurality of convex portions on the surface having an average interval between adjacent convex portions of 400 nm or less, An article in which the contact angle of water on the surface of the fine concavo-convex structure is 80 degrees or more is provided.
  • an article having high water repellency and scratch resistance along with an antireflection function due to a fine concavo-convex structure, and a high water repellency and scratch resistance along with an antireflection function due to a fine concavo-convex structure An active energy ray-curable resin composition capable of forming a cured product that can be easily peeled off from a stamper can be provided.
  • the active energy ray-curable resin composition (X) includes a polymerizable component (P), a photopolymerization initiator (E), and an internal release agent (F), and an active energy ray is added thereto. By irradiating, the polymerization reaction proceeds and cures.
  • This active energy ray-curable resin composition contains, as an internal release agent (F), at least one of phosphoric acid monoester and phosphoric acid diester as an essential component.
  • the polymerizable component (P) preferably contains at least one of silicone (meth) acrylate and alkyl (meth) acrylate as the polymerizable component (B).
  • the polymerizable component (P) has a SP value (solubility parameter) calculated by the Fedors method of 19.6 with respect to 100% by mass of the total amount of the polymerizable component (P) as the polymerizable component (A). It is preferable to contain the following polymerizable components in an amount of 50% by mass to 100% by mass.
  • the polymerizable component (P) preferably contains, as the polymerizable component (A), an alkanediol di (meth) acrylate that is an esterified product of an alkanediol having 6 or more carbon atoms and (meth) acrylic acid.
  • the SP value calculated by the Fedors method of alkanediol di (meth) acrylate is more preferably 19.6 or less.
  • the polymerizable component (P) preferably includes the polymerizable component (A) described above and a polymerizable component (B) that is at least one of silicone (meth) acrylate and alkyl (meth) acrylate.
  • the polymerizable component (P) preferably further contains a polymerizable component (C) which is a polyfunctional (meth) acrylate having 3 or more (meth) acryloyl groups in the molecule,
  • the polymerizable component (D) can be included.
  • this active energy ray curable resin composition may contain another component (G) as needed.
  • the surface of the cured product of the active energy ray-curable resin composition (X) has a fine concavo-convex structure
  • At least one of monoalkyl phosphate and dialkyl phosphate is included as the internal mold release agent (F).
  • the content of the internal release agent (F) can be set in the range of 0.01 to 2.0 parts by mass with respect to 100 parts by mass of the total amount of the polymerizable component (P). From the viewpoint of obtaining a sufficient release effect, 0.05 part by mass or more is preferable, and 0.1 part by mass or more is more preferable.
  • the internal release agent (F) may be separated or precipitated from the active energy ray-curable resin composition, or the active energy ray-curable resin composition.
  • the internal mold release agent (F) may bleed from the cured product.
  • the content of the internal release agent (F) is preferably 2.0 parts by mass or less, and more preferably 1.0 part by mass or less.
  • the content of the photopolymerization initiator (E) can be set in the range of 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the polymerizable component (P).
  • the content of the polymerizable component (A) is 50 to 99.5% by mass
  • the content of the polymerizable component (B) is preferably 0.5 to 50% by mass.
  • the polymerizable component (P) further contains a polymerizable component (C)
  • the content of the polymerizable component (A) is 50 to 89.5% by mass
  • the content of the polymerizable component (B) is 0.5 to 40% by mass
  • the content of the polymerizable component (C) is preferably 10 to 49.5% by mass.
  • the phosphoric acid monoester of the polymerizable component (B) is preferably a non-oxyalkylenated silicone (meth) acrylate.
  • the alkyl (meth) acrylate of the polymerizable component (B) is preferably an alkyl (meth) acrylate having an alkyl group having 8 to 22 carbon atoms.
  • the content of the polymerizable component having a polyoxyalkylene skeleton is preferably less than 10% by mass, and more preferably 5% by mass or less.
  • the content of the polymerizable component having an alicyclic structure is preferably less than 17% by mass and more preferably 10% by mass or less with respect to 100% by mass of the total amount of the polymerizable component (P). .
  • an imprinting raw material containing the active energy ray-curable resin composition can be provided.
  • an article containing a cured product of the above active energy ray-curable resin composition can be provided.
  • the cured resin layer formed on the base material can be included.
  • it can have the fine concavo-convex structure which consists of a some convex part on the surface of this hardened
  • the average interval between adjacent convex portions is preferably 400 nm or less.
  • the contact angle of water on the surface of the fine concavo-convex structure is preferably 80 degrees or more, and more preferably 135 degrees or more.
  • the article according to the embodiment of the present invention can be applied to a display member, an antireflection article, and a water repellent film.
  • the internal mold release agent (F) contains at least one of phosphoric acid monoester and phosphoric acid diester.
  • an internal mold release agent to be added to the active energy ray-curable resin composition in a method of using an anodized porous alumina as a stamper and curing the active energy ray-curable resin composition to transfer the fine uneven structure to the cured product It has been known to use phosphate ester compounds. Further, among the phosphoric acid ester compounds, it has been known that a (poly) oxyalkylene alkyl phosphoric acid compound and a phosphoric acid triester compound is excellent in releasability.
  • the active energy ray-curable resin composition having a polymerizable component (A) which is alkanediol di (meth) acrylate as a main component and a small content of oxyalkylene skeleton component is used as an internal mold release agent (poly).
  • a polymerizable component (A) which is alkanediol di (meth) acrylate as a main component and a small content of oxyalkylene skeleton component is used as an internal mold release agent (poly).
  • an oxyalkylene alkyl phosphate compound and a phosphate triester compound are used, the peel strength from the stamper after curing is large, and the effect of a water repellency imparting component such as a polymerizable component (B) is also obtained.
  • the present inventors have found as a new problem that it cannot be fully exhibited.
  • the obtained article having a fine concavo-convex structure preferably has a water contact angle of the surface of the fine concavo-convex structure of 80 degrees or more, more preferably 100 degrees or more, and further preferably 130 degrees or more, 135 degrees or more is particularly preferable.
  • the phosphoric acid monoester and / or phosphoric acid diester has a hydroxyl group as compared with the phosphoric acid triester, it is considered that the adsorbing power to the stamper surface made of anodized porous alumina is excellent.
  • the surface of anodized porous alumina is considered to contain not only pure aluminum oxide but also aluminum hydroxide and aluminum oxide hydrate, and phosphoric acid monoester and / or phosphorus
  • the hydroxyl group of the acid diester is considered to have a strong interaction with aluminum hydroxide and aluminum oxide, but the detailed mechanism is not clear.
  • monoalkyl phosphates and / or dialkyl phosphates have a high hydrophobicity because they do not have an oxyalkylene skeleton, making the stamper surface more hydrophobic. it can.
  • the surface of the stamper becomes hydrophobic and the surface free energy decreasing, the surface of the fine concavo-convex structure obtained as a cured product of the active energy ray-curable resin composition (X) formed using the stamper is also hydrophobic. It is easy to become.
  • the repellent properties contained in the active energy ray-curable resin composition (X) are present.
  • the hydrophobic functional group of the aqueous imparting component is oriented on the stamper side, and the surface of the fine uneven structure obtained as a cured product of the active energy ray-curable resin composition (X) becomes hydrophobic.
  • the alkyl group has a carbon number of, for example, 1 to 20, preferably 6 to 20, more preferably 8 to 18 can be used.
  • the internal mold release agent (F) Commercially available products of the internal mold release agent (F) include, for example, trade names manufactured by Nikko Chemicals: DDP-2, DDP-4, DDP-6, DDP-8, DDP-10, and products manufactured by Johoku Chemical Industry Co., Ltd. Name: JP-512, JP-513, JAMP-8, JAMP-12, product name manufactured by Daihachi Chemical Industry: AP-8, AP-10, MP-10, product name manufactured by SC Organic Chemicals: Phoslex Series: A-8, A-10, A-12, A-13, A-18, A-18D, A-180L, and the like.
  • monoalkyl phosphate and / or dialkyl phosphate trade names manufactured by Johoku Chemical Industry Co., Ltd .: JP-512, JP-513, JAMP-8, JAMP-12, Daihachi Chemical Industry Co., Ltd.
  • the polymerizable component (A) has an effect of improving scratch resistance, weather resistance, and substrate adhesion to the cured product of the active energy ray-curable resin composition according to the embodiment of the present invention.
  • the substrate adhesion is effective for polycarbonate resins and acrylic resins.
  • the compatibility improvement of active energy ray curable resin composition and the effect of low viscosity can also be acquired.
  • the polymerizable component (A) a polymerizable component having an SP value calculated by the Fedors method of 19.6 or less is preferable.
  • the SP value exceeds 19.6
  • the compatibility between the polymerizable component (A) and the above-mentioned internal mold release agent (F) and the polymerizable component other than the polymerizable component (A) is decreased, and is obtained.
  • the cured product may become cloudy.
  • cured material can be made hydrophobic by using a component with SP value 19.6 or less.
  • alkanediol di (meth) acrylate can be used as the polymerizable component (A).
  • carbon number of alkanediol which is a raw material of alkanediol di (meth) acrylate 7 or more are more preferable, 8 or more are further more preferable, and 9 or more are especially preferable. If the carbon number of the alkane part is too small, the cured product of the active energy ray-curable resin composition becomes too hard, and the fine uneven structure becomes brittle and easily damaged. On the other hand, when the carbon number of the alkane part is too large, the alkanediol di (meth) acrylate has crystallinity and the handleability may be significantly reduced.
  • the carbon number of the alkanediol as the raw material for the polymerizable component (A) is preferably 12 or less, and more preferably 10 or less.
  • the alkane part may have a linear structure or a branched structure, or a mixture of both. By giving a branched structure, the crystallinity can be lowered, and it becomes liquid even at a low temperature, and the handleability can be improved.
  • the cycloalkane structure has an effect of increasing the glass transition temperature of the cured product and hardening it.
  • polymerizable component (A) examples include, for example, 1,6-hexanediol di (meth) acrylate, 1,7-heptanediol di (meth) acrylate, 1,8-octanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, 1,12-dodecanediol di (meth) acrylate, 1,16-hexadecanediol di (meth) acrylate acrylate, batyl Alcohol di (meth) acrylate, 3-methyl 1,5-pentanediol di (meth) acrylate, 2-methyl-1,8-octanediol di (meth) acrylate, 2-ethyl-2-butyl-propanediol di ( Meth) acrylate, dimer diol di (
  • the content ratio of the polymerizable component (A) can be set in the range of 50 to 100% by mass in the total amount of 100% by mass of the polymerizable component (P). 60 mass% or more is further more preferable from the point which acquires more sufficient addition effect. From the viewpoint of obtaining the effect of the other polymerizable component while obtaining the sufficient effect of the polymerizable component (A), the content of the polymerizable component (A) is preferably 90% by mass or less, and more preferably 85% by mass or less. . If the content of the polymerizable component (A) is 50% by mass or more, in the cured product, it is possible to obtain excellent effects such as scratch resistance, weather resistance, and substrate adhesion. In the resin composition, The effect of lowering the viscosity and improving the compatibility with other polymerizable components such as the polymerizable component (B) can be expected.
  • the polymerizable component (B) has an effect of imparting water repellency and antifouling properties and improving scratch resistance to the cured product of the active energy ray-curable resin composition according to the embodiment of the present invention. In addition, there is a case where it plays an auxiliary role with respect to improvement of releasability.
  • Polymerizable component (B) is silicone (meth) acrylate and / or alkyl (meth) acrylate.
  • silicone (meth) acrylate and alkyl (meth) acrylate will be described separately.
  • Silicone (meth) acrylate is (meth) acrylate having a silicone skeleton.
  • silicone (meth) acrylate suitable for the present invention will be specifically described with some examples.
  • silicone (meth) acrylate examples include silicone (meth) acrylate having a propyl (meth) acrylate structure at both terminals and / or one terminal represented by the following formula 1.
  • the weight average molecular weight of the silicone (meth) acrylate represented by the formula (1) is preferably about 500 to 2,000.
  • Examples of commercially available products of such polymerizable component (B) include, for example, product names of “Silaplane (registered trademark)” series manufactured by JNC: FM-0711, FM-0721, FM-0725, FM-7711, FM-7721, FM-7725, product names manufactured by Shin-Etsu Chemical Co., Ltd .: X-22-2445, X-22-174ASX, X-22-174BX, X-22-174DX, KF-2012, X-22-2426 X-22-2475, X-22-164, X-22-164AS, X-22-164A, X-22-164B, X-22-164C, X-22-164E, manufactured by Toray Dow Corning Product name: BY16-152C, etc.
  • silicone (meth) acrylate examples include silicone epoxy (meth) acrylate represented by the following formula (2).
  • Examples of commercially available products of silicone (meth) acrylate represented by the formula (2) include product names of “Tego (registered trademark) series” manufactured by Evonik Japan Co., Ltd .: Rad2011, Rad2100, Rad2500, and the like.
  • silicone (meth) acrylates include (meth) acrylates in which both ends of polydimethylsiloxane are modified with EO and / or PO.
  • Examples of commercially available products include product names manufactured by Shin-Etsu Chemical Co., Ltd .: X-22-1602, product names manufactured by Big Chemie Japan, Inc .: BYK-UV3500, BYK-UV3530, and product names manufactured by Evonik Japan: "Tego” (registered trademark) series: Rad2200N, Rad2250, Rad2300, product name manufactured by Daicel Ornex Co., Ltd .: EBECRYL 350, and the like.
  • the above “EO modification” means ethylene oxide modification
  • PO modification means propylene oxide modification.
  • silicone (meth) acrylate examples include urethane (meth) acrylate and / or polyester (meth) acrylate having a silicone skeleton, for example, polyester-modified polydimethylsiloxane having a (meth) acryloyl group, polydimethylsiloxane Examples thereof include urethane (meth) acrylate having a structure.
  • examples of commercially available products include BYK-UV3570, product name manufactured by Big Chemie Japan, and product names manufactured by Miwon Specialty Chemical: “Miramer (registered trademark)” series: SIU100, SIU1000, SIU2400, SIP900, and the like. It is done.
  • Examples of commercially available products of silicone (meth) acrylates other than those mentioned above include BYK-UV3505, 3530, 3575, and 3576 manufactured by BYK-Chemie Japan, and EBECRYL 1360 manufactured by Daicel Ornex. .
  • silicone (meth) acrylates used as the polymerizable component (B) mentioned above silicone (meth) acrylate represented by formula (1), silicone (meth) acrylate represented by formula (2), and BYK- Those selected from UV3570 are preferable in terms of water repellency, scratch resistance and weather resistance.
  • the silicone (meth) acrylate shown in (1) is preferably used from the viewpoint of imparting super water repellency.
  • Silicone (meth) acrylate having an oxyalkylene structure has good compatibility but may be inferior in terms of weather resistance. Therefore, from the viewpoint of weather resistance, a non-oxyalkylenated silicone (meth) acrylate having no oxyalkylene skeleton is preferable as the polymerizable component (B).
  • the alkyl (meth) acrylate used as the polymerizable component (B) preferably has a relatively long alkyl group from the viewpoint of improving the water repellency and scratch resistance of the cured product.
  • the alkyl group preferably has 8 to 22 carbon atoms, more preferably 12 to 18 carbon atoms.
  • the alkyl group may be linear or branched. If the alkyl group is too long, the crystallinity increases and handling in a liquid state becomes difficult, and if it is too short, volatility may be a problem.
  • alkyl (meth) acrylate examples include (iso) octyl (meth) acrylate, (iso) decyl (meth) acrylate, (iso) lauryl (meth) acrylate, (iso) cetyl (meth) acrylate, ( Examples include iso) stearyl (meth) acrylate and (iso) behenyl (meth) acrylate. Among these, isostearyl (meth) acrylate is particularly preferable in terms of imparting water repellency and handling.
  • the content ratio of the polymerizable component (B) can be set in the range of 0.5 to 50% by mass in 100% by mass of the total amount of the polymerizable component (P). 1 mass% or more is more preferable from the point which acquires sufficient addition effect. If the addition amount of the polymerizable component (B) is too large, the physical properties of the cured product may be lowered, and the scratch resistance may be lowered. Therefore, the content of the polymerizable component (B) is preferably 40% by mass or less, more preferably 20% by mass or less, and particularly preferably 10% by mass or less.
  • the polymerizable component (B) When the content of the polymerizable component (B) is 0.5% by mass or more, for example, the polymerizable component (A) is 50 to 99.5% by mass, the polymerizable component (B) is 0.5 to 50% by mass,
  • the polymerizable component (C) can be set to 0 to 49.5 mass%, the polymerizable component (A) is 50 to 89.5 mass%, the polymerizable component (B) is 0.5 to 40 mass%, the polymerizable component ( C) It can be set to 10 to 49.5% by mass.
  • the content of the polymerizable component (B) is 1% by mass or more, for example, the polymerizable component (A) is 50 to 99% by mass, the polymerizable component (B) is 1 to 50% by mass, the polymerizable component (C) 0
  • the polymerizable component (A) can be set to 50 to 89% by mass, the polymerizable component (B) 1 to 40% by mass, and the polymerizable component (C) 10 to 49% by mass.
  • the polymerizable component (C) is a polyfunctional (meth) acrylate having 3 or more (meth) acryloyl groups).
  • the polymerizable component (C) can impart hardness to the cured product as the number of (meth) acryloyl groups per molecular weight increases.
  • those having a smaller molecular weight and those having a methyl group in the molecule are excellent in compatibility with other polymerizable components such as the polymerizable component (B).
  • those having a polyether structure may have poor compatibility with other polymerizable components such as the polymerizable component (B) and weather resistance.
  • polymerizable component (C) examples include, for example, trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, (poly) glycerin (poly) acrylate, Pentaerythritol (tri) tetraacrylate, pentaerythritol (tri) tetramethacrylate, dipentaerythritol (penta) hexaacrylate, dipentaerythritol (penta) hexamethacrylate, polypentaerythritol poly (meth) acrylate, and their EO modifications, PO-modified or caprolactone-modified (meth) acrylate, and tri- or more functional urethane (meth) acrylate, tri- or more functional epoxy (meth) acrylate, tri- or more functional polymer
  • trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol (tri) tetraacrylate, and pentaerythritol (tri) tetramethacrylate are polymerizable components. From the viewpoint of compatibility with (B) and scratch resistance. Further, EO-modified products and PO-modified products are concerned in terms of weather resistance, so caprolactone-modified products are preferable in terms of weather resistance.
  • (tri) tetra in the names of specific examples of the polymerizable component (C) means a tribody, a tetrabody or a mixture thereof
  • (penta) hexa means a pentabody, a hexabody. Or a mixture thereof.
  • pentaerythritol (tri) tetraacrylate means pentaerythritol triacrylate (tri), pentaerythritol tetraacrylate (tetra), or a mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate.
  • dipentaerythritol (penta) hexaacrylate is dipentaerythritol pentaacrylate (penta), dipentaerythritol hexaacrylate (hexa), or a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate. Means.
  • the content ratio of the polymerizable component (C) can be set in a range of 0 to 50% by mass in 100% by mass of the total amount of the polymerizable component (P). From the viewpoint of obtaining a sufficient addition effect, 5% by mass or more is preferable, and 10% by mass or more is more preferable.
  • 5% by mass or more is preferable, and 10% by mass or more is more preferable.
  • cured material will be sufficient by the problem of compatibility with other polymeric components, such as polymeric component (B). It may become impossible to maintain.
  • the content of the polymerizable component (C) can be set to 49.5% by mass or less, preferably 30% by mass or less, and preferably 25% by mass or less from the viewpoint of sufficiently securing the content of other polymerizable components. Is more preferable.
  • the other polymerizable component (D) has a polymerizable functional group having copolymerizability with other polymerizable components in the polymerizable component (P), and the polymerizable components (A), (B), It does not belong to (C).
  • the polymerizable functional group of the polymerizable component (D) is preferably radically polymerizable, and examples thereof include a methacryloyl group, an acryloyl group, an acrylamide group, a vinyl ether group, and a vinyl group.
  • Examples of functions that can be imparted with the polymerizable component (D) include substrate adhesion, dilution, water repellency, hydrophilicity, antistatic properties, slipperiness, leveling properties, scratch resistance, weather resistance, and light emission. Properties, fluorescence, color developability, conductivity, refractive index adjustment, and antioxidant.
  • Examples of the monofunctional polymerizable component (D) include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate, Alkyl (meth) acrylates such as 2-ethylhexyl (meth) acrylate and lauryl (meth) acrylate; benzyl (meth) acrylate; isobornyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, adamantyl (meth) acrylate, dicyclopenta (Meth) acrylate having an alicyclic structure such as nyl (meth) acrylate and dicyclopentenyl (meth) acrylate; and having an amino group such as dimethylaminoethyl (meth) acrylate and dimethylaminopropy
  • 1,2,2,6,6-pentamethyl-4-piperidyl (meth) acrylate, 2,2,6 , 6-Tetramethyl-4-piperidyl (meth) acrylate, 2-tert-butyl acrylate-6- (3-tert-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl, 2-acrylate [1- (2-hydroxy-3,5-di-tertiary pen Ruphenyl) ethyl] -4,6-di-tertiarypentylphenyl, 3- (2H-1,2,3-benzotriazol-2-yl) -4-hydroxyphenethyl methacrylate, 3,3,4,4 , 5,5,6,6,7,7,8,8,8-tridecafluorooctyl (meth) acrylate and the like.
  • the bifunctional polymerizable component (D) includes all the bifunctional polymerizable components not included in the polymerizable component (A) and the polymerizable component (B).
  • Examples of such a bifunctional polymerizable component (D) include 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,5-pentanediol di (meta).
  • neopentyl glycol di (meth) acrylate diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dipropylene glycol di ( (Meth) acrylate, tripropylene glycol di (meth) acrylate, alkoxylated alkanediol di (meth) acrylate, alkoxylated bisphenol A di (meth) acrylate, hydroxypivalate neopentyl glycol (Meth) acrylate, caprolactone-modified hydroxypivalic acid neopentyl glycol di (meth) acrylate, alkoxylated neopentyl glycol di (meth) acrylate, polycarbonate diol di (meth) acrylate, (hydrogenated) polybutadiene-terminated (meth)
  • the content of the polymerizable component (D) is not particularly limited as long as it does not inhibit the functions of the polymerizable component (A), the polymerizable component (B), and the polymerizable component (C). , 0 to 50% by mass, preferably 0 to 30% by mass, more preferably 0 to 10% by mass.
  • the content of the polymerizable component having a polyoxyalkylene skeleton is preferably less than 10% by mass relative to 100% by mass of the total amount of the polymerizable component.
  • the polymerizable component having a polyoxyalkylene skeleton is contained in an amount of 10 parts by mass or more, the cured product of the active energy ray-curable composition becomes hydrophilic, and the article having a fine uneven structure may not exhibit sufficient water repellency. In addition, the scratch resistance and weather resistance may be reduced.
  • the content of the polymerizable component having a polyoxyalkylene skeleton is preferably 8% by mass or less and more preferably 6% by mass or less with respect to 100% by mass of the total amount of the polymerizable component.
  • content of the polymerization component of the component which has an alicyclic structure is less than 17 mass% with respect to 100 mass% of polymerizable components (P).
  • the polymerizable component having an alicyclic structure is contained in an amount of 17% by mass or more, the Tg of the cured product is increased, and when a fine concavo-convex structure is formed, the convex part forming the concavo-convex becomes brittle and the scratch resistance is reduced. There is a fear.
  • the content of the polymerizable component having an alicyclic structure is preferably 10% by mass or less, more preferably 5% by mass or less, and more preferably 0% by mass with respect to 100% by mass of the total amount of the polymerizable component. More preferably it is.
  • the photopolymerization initiator (E) is a compound that generates a radical that is cleaved by irradiating active energy rays to initiate a polymerization reaction.
  • active energy ray ultraviolet rays are preferable from the viewpoint of apparatus cost and productivity.
  • Examples of the photopolymerization initiator (E) that generates radicals by ultraviolet rays include benzophenone, 4,4-bis (diethylamino) benzophenone, 2,4,6-trimethylbenzophenone, methyl orthobenzoylbenzoate, 4-phenylbenzophenone, t -Butylanthraquinone, 2-ethylanthraquinone, thioxanthones (2,4-diethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, etc.), acetophenones (diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropane) -1-one, benzyldimethyl ketal, 1-hydroxycyclohexyl-phenyl ketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2- Methylamino-1- (4-
  • photopolymerization initiator (E) one type may be used alone, or two or more types may be used in combination. When using together, it is preferable to use together 2 or more types from which absorption wavelength differs. Moreover, you may use together thermal polymerization initiators, such as persulfate (potassium persulfate, ammonium persulfate, etc.), peroxides (benzoyl peroxide, etc.), an azo initiator, as needed.
  • the content of the photopolymerization initiator (E) is preferably 0.01 to 10 parts by mass with respect to a total of 100 parts by mass of the polymerizable components (P) contained in the active energy ray-curable resin composition (X). 0.1 to 5 parts by mass is more preferable, and 0.2 to 3 parts by mass is even more preferable.
  • a photoinitiator (E) hardening of active energy ray-curable resin composition (X) may not be completed, and the mechanical physical property of the article
  • the unreacted photopolymerization initiator (E) remains in the cured product, which acts as a plasticizer, lowers the elastic modulus of the cured product, and is scratch resistant. Sexuality may be impaired. Moreover, it may cause coloring.
  • the other component (G) is a component added as necessary, and is a component other than the polymerizable component (P), the photopolymerization initiator (E), and the internal release agent (F).
  • Other components (G) are flame retardant aids, plasticizers, surfactants, antistatic agents, antioxidants, light stabilizers, polymerization inhibitors, ultraviolet absorbers, fillers, adhesion promoters, colorants. , Reinforcing agents, inorganic fillers, impact modifiers and the like.
  • an oligomer or polymer that does not have a radical polymerizable functional group, a trace amount of an organic solvent, or the like may be included.
  • polymerization inhibitor examples include hydroquinone (HQ) and hydroquinone monomethyl ether (MEHQ) as hydroquinone polymerization inhibitors, and 2,2′-methylene-bis (4-methyl-6-tert) as phenol polymerization inhibitors.
  • HQ hydroquinone
  • MEHQ hydroquinone monomethyl ether
  • 2,2′-methylene-bis (4-methyl-6-tert) 2,2′-methylene-bis (4-methyl-6-tert) as phenol polymerization inhibitors.
  • HQ hydroquinone
  • MEHQ hydroquinone monomethyl ether
  • 2,2′-methylene-bis (4-methyl-6-tert) examples of the polymerization inhibitors.
  • HQ hydroquinone
  • MEHQ hydroquinone monomethyl ether
  • BHT 2,6-ditertiary butyl-p-cresol
  • 4,4'-thiobis [ethylene (oxy) (carbonyl) (ethylene)] bis [2 , 6-bis (1,1-dimethylethyl
  • phenothiazine polymerization inhibitor examples include phenothiazine, bis ( ⁇ -methylbenzyl) phenothiazine, 3,7-dioctylphenothiazine, bis ( ⁇ , ⁇ -dimethylbenzyl) phenothiazine, and the like.
  • phenol polymerization inhibitors such as BHT can also be used as antioxidants.
  • antioxidants examples include hindered phenol-based, benzimidazole-based, phosphorus-based, sulfur-based and hindered amine-based antioxidants.
  • examples of commercially available products include “IRGANOX” (registered trademark) series manufactured by BASF.
  • Examples of the light stabilizer include hindered amine antioxidants.
  • Examples of the primary antioxidant that is a hindered amine-based radical scavenger include the following. Product name: Chimassorb 2020FDL, Chimassorb 944FDL, Tinuvin 622SF, Uvinul 5050H, Tinuvin 144, Tinuvin 765, Tinuvin 770DF, Tinuvin 4050FF.
  • ultraviolet absorbers examples include benzophenone, benzotriazole, hindered amine, benzoate, and triazine.
  • examples of commercially available products include BASF Corporation brand names: Tinuvin 400 and Tinuvin 479, and Kyodo Pharmaceutical Co., Ltd. brand names: Viosorb110.
  • the resin composition (X) When the resin composition (X) according to the embodiment of the present invention is cured by forming a fine concavo-convex structure with a stamper, the resin composition (X) may have an appropriate viscosity from the viewpoint of easy flow into the fine concavo-convex structure on the surface of the stamper. preferable.
  • the viscosity of the resin composition measured with a rotary B-type viscometer at 25 ° C. is preferably 10,000 mPa ⁇ s or less, more preferably 5000 mPa ⁇ s or less, and still more preferably 2000 mPa ⁇ s or less.
  • the viscosity at 25 degreeC is 10,000 mPa * s or more
  • the resin composition can contact a stamper by making it the viscosity of the said range by heating, it can use suitably.
  • the viscosity of the resin composition at 70 ° C. with a rotary B-type viscometer is preferably 5000 mPa ⁇ s or less, and more preferably 2000 mPa ⁇ s or less.
  • the viscosity of a resin composition is 10 mPa * s or more, a contact with a stamper is possible and the hardened
  • the viscosity of the resin composition can be adjusted by selecting the type and content of the monomer to be contained or using a viscosity modifier. Specifically, when a large amount of a monomer containing a functional group having a molecular interaction such as a hydrogen bond or a chemical structure is used, the viscosity of the resin composition increases. Further, when a large amount of a low molecular weight monomer having no intermolecular interaction is used, the viscosity of the resin composition becomes low.
  • the resin composition (X) according to the embodiment of the present invention has a relatively low viscosity, the obtained cured product can have an appropriate hardness.
  • the stamper can be peeled favorably, the formed fine uneven structure is maintained, the scratch resistance is high, and a cured product exhibiting excellent water repellency can be obtained.
  • the resin composition (X) according to the embodiment of the present invention can be polymerized and cured to form a molded product.
  • a fine concavo-convex structure having a fine concavo-convex structure on the surface is extremely useful.
  • an article using such a fine concavo-convex structure for example, an article having a base material and a cured resin layer (fine concavo-convex structure) having a fine concavo-convex structure on the surface is given. Can do.
  • FIG. 1 shows a schematic cross-sectional view of an example of an article using such a fine concavo-convex structure.
  • An article 10 having a fine concavo-convex structure shown in FIG. 1 (a) is formed on an active energy ray-curable resin composition according to an embodiment of the present invention on a base material 11 (a coating layer 15 formed on the base material 11).
  • a cured resin layer (surface layer) 12 obtained by curing X) is laminated.
  • the surface of the cured resin layer 12 has a fine uneven structure.
  • conical convex portions 13 are formed at substantially equal intervals w1.
  • the shape of the convex portion 13 is preferably a shape in which a cross-sectional area in a cross section perpendicular to the height direction (a surface parallel to the base material plane) continuously increases from the apex side of the convex portion to the base material side.
  • the refractive index can be increased continuously, the fluctuation of the reflectance due to wavelength (wavelength dependence) is suppressed, the scattering of visible light is suppressed, and a fine concavo-convex structure with low reflectance is formed. it can.
  • the contact angle of water in the part which has a several convex part is 80 degree
  • the interval w1 between the convex portions is preferably a distance of not more than the wavelength of visible light (specifically, 400 to 780 nm). If the interval w1 between the convex portions is 400 nm or less, the scattering of visible light can be suppressed, and the antireflection film can be suitably used for optical applications.
  • w1 is more preferably from 50 to 400 nm, further preferably from 50 to 250 nm, particularly preferably from 80 to 200 nm.
  • the height of the convex portion (depth of the concave portion), that is, the vertical distance d1 between the bottom 14a of the concave portion and the top portion 13a of the convex portion (hereinafter referred to as “the height of the convex portion” or “d1” unless otherwise specified).
  • the height of the convex portion Is preferably set to such a depth that the reflectance can be prevented from varying with the wavelength. Specifically, 60 nm or more is preferable, 90 nm or more is more preferable, 150 nm or more is further preferable, and 180 nm or more is particularly preferable.
  • d1 is around 150 nm, the reflectance of light in the wavelength region of 550 nm that is most easily recognized by humans can be minimized.
  • d1 When d1 is 150 nm or more, the higher the d1 is, the higher the maximum reflectance and the lowest reflectance in the visible light region are. The difference in reflectance is reduced. For this reason, if d1 is 150 nm or more, the wavelength dependency of the reflected light is reduced, and the difference in visual color is not recognized.
  • the interval w1 and the height d1 of the convex portions are measured values obtained by measurement in an image with an acceleration voltage of 3.00 kV using a field emission scanning electron microscope (trade name: JSM-7400F, manufactured by JEOL Ltd.). Arithmetic mean values can be employed.
  • the convex portion 13 may have a bell shape as shown in FIG.
  • a truncated cone shape can be adopted as a shape in which the cross-sectional area in the vertical plane continuously increases from the apex side of the convex portion to the base material side.
  • the fine concavo-convex structure is preferably a structure in which protrusions (convex portions) such as a substantially conical shape and a pyramid shape are regularly arranged.
  • the shape of the convex part is a shape in which the cross-sectional area of the cross section perpendicular to the height direction (surface parallel to the base material plane) continuously decreases from the base material side toward the top, that is, in the height direction of the convex part.
  • the cross-sectional shape along the shape is preferably a triangle, trapezoid, bell shape or the like.
  • the fine uneven structure is not limited to the embodiment shown in FIG.
  • the fine concavo-convex structure may be formed on the surface of the cured resin layer (fine concavo-convex structure). For example, one side or both sides of the base material, or the whole surface or part (location where transparency and super water repellency are required).
  • a cured resin layer can be provided on the outer surface of the cured resin layer, and a fine uneven structure can be formed on the outer surface of the cured resin layer.
  • the average interval w1 between the convex portions is preferably not more than the wavelength of visible light, that is, not more than 400 nm, more preferably 50 to 400 nm, still more preferably 50 to 250 nm, and particularly preferably 80 to 200 nm.
  • the average interval w1 between the convex portions is measured by measuring 50 intervals between the adjacent convex portions (distance from the center of the convex portion to the center of the adjacent convex portion) in the electron microscope image, and arithmetically averaging these measured values. The value obtained in this way is adopted.
  • the height d1 of the convex portion is preferably 80 nm or more, more preferably 120 nm or more, and particularly preferably 150 nm or more, particularly when w1 is in the above range, particularly in the vicinity of 100 nm. If d1 is 80 nm or more, the reflectance is sufficiently reduced, and the variation of the reflectance due to the wavelength, that is, the wavelength dependence of the reflectance is small. In view of good scratch resistance of the fine concavo-convex structure, d1 is preferably 500 nm or less, more preferably 400 nm or less, and particularly preferably 300 nm or less.
  • the height d1 of the convex portion is the height along the direction perpendicular to the substrate plane between the topmost portion of the convex portion and the bottommost portion of the concave portion existing between the convex portions in the 30000 times image of the electron microscope. 50 points are measured, and a value obtained by arithmetically averaging these measured values is adopted.
  • the aspect ratio of the protrusions (the height d1 of the protrusions / the average interval w1 between the protrusions) is preferably 0.3 or more, more preferably 0.5 or more, and 0.7 or more from the viewpoint of sufficiently suppressing the reflectance. Is particularly preferred. In view of good scratch resistance, the aspect ratio is preferably 6 or less, more preferably 4 or less, and particularly preferably 2 or less.
  • the difference in refractive index between the cured resin layer and the substrate is preferably within 0.2, more preferably within 0.1, and particularly preferably within 0.05. If the refractive index difference is within 0.2, reflection at the interface between the cured resin layer and the substrate can be suppressed.
  • the thickness of the fine concavo-convex structure layer can be set, for example, in the range of 0.5 to 100 ⁇ m, preferably in the range of 1 to 50 ⁇ m.
  • the substrate may be any material as long as it can support a cured resin layer having a fine concavo-convex structure.
  • the fine concavo-convex structure when applied to a display member, it is transparent, that is, transmits light. Those are preferred.
  • the material constituting the transparent substrate examples include synthetic polymers such as methyl methacrylate (co) polymer, polycarbonate, styrene (co) polymer, methyl methacrylate-styrene copolymer, cellulose diacetate, cellulose triacetate, Semi-synthetic polymers such as cellulose acetate butyrate; polyesters such as polyethylene terephthalate and polylactic acid, polyamide, polyimide, polyether sulfone, polysulfone, polyethylene, polypropylene, polymethylpentene, polyvinyl chloride, polyvinyl acetal, polyether ketone, Examples thereof include polyurethane, composites of these polymers (composites of polymethyl methacrylate and polylactic acid, composites of polymethyl methacrylate and polyvinyl chloride, etc.), and transparent inorganic materials such as glass.
  • synthetic polymers such as methyl methacrylate (co) polymer, polycarbonate, styrene (co)
  • the shape of the substrate may be any of a sheet shape, a film shape, and the like.
  • the method for producing the substrate is not particularly limited, and for example, those produced by any production method such as injection molding, extrusion molding, and cast molding can be used.
  • the surface of the transparent substrate may be subjected to coating or corona treatment for the purpose of improving properties such as adhesion, antistatic properties, scratch resistance, and weather resistance.
  • Such a fine concavo-convex structure can be applied as an antireflection film and can have high scratch resistance. Further, by selecting the composition type of the resin composition (X) and controlling the composition ratio, in addition to high scratch resistance, it is possible to obtain a contaminant removal effect such as excellent fingerprint removability for the cured product. .
  • a resin composition is disposed between a stamper on which an inverted structure of a fine concavo-convex structure is formed and a substrate, and the resin composition is irradiated by active energy ray irradiation.
  • the method (1) is particularly preferable from the viewpoint of the transferability of the fine relief structure and the degree of freedom of the surface composition. This method is particularly suitable when a belt-shaped roll stamper capable of continuous production is used, and is an excellent method of productivity.
  • the stamper has an inverted structure of the fine uneven structure formed on the surface of the fine uneven structure on the surface.
  • the material of the stamper include metals (including those having an oxide film formed on the surface), quartz, glass, resin, ceramics, and the like.
  • the shape of the stamper include a roll shape, a circular tube shape, a flat plate shape, and a sheet shape.
  • the method for forming the inverted structure of the fine concavo-convex structure on the stamper is not particularly limited, and specific examples thereof include an electron beam lithography method and a laser beam interference method.
  • an appropriate photoresist film is applied on an appropriate support substrate, exposed to light such as an ultraviolet laser, an electron beam, or X-ray, and developed to obtain a mold having a reversal fine uneven structure, and this mold Can also be used as a stamper.
  • the support substrate can be selectively etched by dry etching through a photoresist film patterned by exposure and development, and the photoresist film is removed to form an inverted fine concavo-convex structure directly on the support substrate itself. Is possible.
  • anodized porous alumina can be used as a stamper.
  • a pore structure having a diameter of 20 to 200 nm formed by anodizing an aluminum substrate with oxalic acid, sulfuric acid, phosphoric acid or the like as an electrolyte at a predetermined voltage may be used as a stamper.
  • the oxide film is once removed and then anodized again, so that very highly ordered pores can be self-organized. Can be formed.
  • the second anodic oxidation step by combining the anodic oxidation treatment and the hole diameter enlargement treatment, it is possible to form a fine concavo-convex structure whose cross section is not a rectangle but a triangle or a bell shape. Further, the angle of the innermost portion of the pore can be sharpened by appropriately adjusting the time and conditions of the anodizing treatment and the pore diameter expanding treatment.
  • a replica mold may be produced from an original mold having a fine concavo-convex structure by an electroforming method or the like and used as a stamper.
  • the shape of the stamper itself is not particularly limited, and may be, for example, a flat plate shape, a belt shape, or a roll shape.
  • the fine concavo-convex structure can be transferred continuously, and the productivity can be further increased.
  • a resin composition (X) is supplied and distributed between such a stamper and a base material.
  • the resin composition is pressed into the molding cavity by pressing the stamper and the substrate in a state where the resin composition is arranged between the stamper and the substrate. Can be injected.
  • the resin composition After disposing the resin composition between the stamper and the substrate, the resin composition is irradiated with active energy rays and polymerized and cured.
  • active energy rays As a method of polymerization curing, a curing treatment by ultraviolet irradiation is preferable.
  • the lamp for irradiating ultraviolet rays for example, a high-pressure mercury lamp, a metal halide lamp, a fusion lamp that is an electrodeless lamp, or a UV-LED can be used.
  • the integrated light quantity is preferably 400 ⁇ 4000mJ / cm 2, more preferably 400 ⁇ 2000mJ / cm 2.
  • the resin composition can be sufficiently cured to suppress the scratch resistance from being insufficiently cured.
  • the irradiation intensity is not particularly limited, but it is preferable to suppress the output to a level that does not cause deterioration of the substrate.
  • the stamper After the polymerization and curing of the resin composition, the stamper is peeled off to obtain a fine concavo-convex structure which is a cured product having a fine concavo-convex structure.
  • the fine concavo-convex structure obtained in this way has a high scratch resistance because the fine concavo-convex structure of the stamper is transferred to the surface in a relationship between a key and a keyhole. Moreover, it has water repellency and can also have the effect of preventing the adhesion of contaminants.
  • Such a fine concavo-convex structure can exhibit excellent antireflection performance due to a continuous change in refractive index, and is suitable as an antireflection film or an antireflection film for a three-dimensional molded product.
  • Such a fine concavo-convex structure is suitable as a display member of an image display device such as a liquid crystal display device, a plasma display panel, an electroluminescence display, or a cathode ray tube display device such as a computer, a television set, or a mobile phone.
  • a fine concavo-convex structure can be used by being attached to the surface of a transparent member such as a lens, a show window, or a spectacle lens.
  • the present invention can also be applied to optical applications such as optical waveguides, relief holograms, lenses, and polarization separation elements, and cell culture sheet applications.
  • it can be applied to building materials such as mirrors and windows, in-vehicle applications such as door mirror films and window films, and ship bottom materials by utilizing water repellency.
  • stamper As the stamper used for producing the fine concavo-convex structure, one made of anodized porous alumina is useful as described above. Hereinafter, a method of forming a plurality of fine pores having a predetermined shape on the surface of an aluminum substrate by anodic oxidation as a stamper manufacturing method will be described with reference to the process chart of FIG.
  • Step (a) is a step of forming an oxide film on the surface of the aluminum substrate by anodizing the aluminum substrate 30 in an electrolytic solution under a constant voltage.
  • the aluminum base material preferably uses aluminum having a purity of 99% or more, more preferably has a purity of 99.5% or more, and further preferably has a purity of 99.8% or more.
  • the purity of aluminum is high, when anodized, it is difficult to form a concavo-convex structure having a size that scatters visible light due to segregation of impurities, and pores formed by anodization are regularly formed.
  • the shape of the aluminum substrate may be a desired shape such as a roll shape, a tubular shape, a flat plate shape, or a sheet shape, and is preferably a roll shape when the fine concavo-convex structure is obtained as a continuous film or sheet.
  • the aluminum base material may be attached with oil used when processing into a predetermined shape, it is preferable to degrease in advance and smooth the surface by electrolytic polishing (etching). .
  • the electrolytic solution sulfuric acid, oxalic acid, phosphoric acid or the like can be used.
  • the concentration of oxalic acid is preferably 0.7 M or less.
  • the current value can be kept low, and a dense oxide film can be formed.
  • the formation voltage is preferably 30 to 60V.
  • the formation voltage is 30 to 60 V, an anodized porous alumina layer in which pores are formed with a regularity of about 100 nm can be formed. Regardless of whether the formation voltage is higher or lower than this range, the regularity of the formed pores tends to decrease.
  • the temperature of the electrolytic solution is preferably 60 ° C. or lower, and more preferably 45 ° C. or lower. When the temperature of the electrolytic solution is 60 ° C. or lower, the generation of so-called “burn” is suppressed, and the pores are broken or the surface is melted to form irregular pores.
  • the concentration of sulfuric acid is preferably 0.7 M or less.
  • the concentration of sulfuric acid is 0.7 M or less, the current value can be kept low and an oxide film having a dense structure can be formed.
  • the formation voltage is preferably 25-30V.
  • the formation voltage is 25 to 30 V, an anodized porous alumina layer in which pores are formed with regularity having a period of about 63 nm can be formed. Regardless of whether the formation voltage is higher or lower than this range, the regularity of the formed pores tends to decrease.
  • the temperature of the electrolytic solution is preferably 30 ° C. or less, and more preferably 20 ° C. or less. If the temperature of the electrolytic solution is 30 ° C. or lower, the occurrence of so-called “burn” is suppressed, and the pores are broken or the surface is melted to form irregular pores.
  • Step (b) is a step of removing the oxide film and forming anodized pore generation points on the surface of the aluminum base so as to correspond to the pores 31 formed in the oxide film in step (a). It is. That is, when the oxide film 32 formed in the step (a) is removed, a recess 33 is formed on the surface of the aluminum base material at a position corresponding to the pore 31 portion.
  • the regularly arranged pores can be generated by using the recesses 33 as the anodizing pore generation points.
  • a solution that does not dissolve aluminum but selectively dissolves the oxide film is used. Examples of such a solution include a chromic acid / phosphoric acid mixed solution.
  • Step (c) is a step of forming pores by anodizing the aluminum substrate again and forming an oxide film at the pore generation points. That is, the aluminum substrate 30 from which the oxide film has been removed in the step (b) is anodized again to form an oxide film 34 having columnar pores 35. Anodization can be performed under the same conditions as in step (a). Deeper pores can be obtained as the anodic oxidation time is lengthened.
  • Step (d) is a step of expanding the diameter of the pores. That is, the anodized aluminum substrate is dipped in a solution that dissolves the oxide film to expand the diameter of the pores 35 (hereinafter referred to as “pore diameter expansion process”).
  • the solution for dissolving the oxide film for example, an about 5% by mass phosphoric acid aqueous solution can be used. Since the pore diameter can be increased as the time for the pore diameter expansion process is lengthened, the processing time is set according to the target shape.
  • Step (e) is a step of anodizing the aluminum base material after the pore diameter expansion treatment again.
  • the depth of the pores 35 is expanded as the oxide film 34 becomes thicker.
  • Anodization can be performed under the same conditions as in step (a) (and step (c)). The longer the anodic oxidation time, the deeper the pores can be formed.
  • Step (f) is a step in which the step (d) and the step (e) are repeated, and the diameter expansion and expansion of the pores 35 are repeated.
  • an oxide film 34 having pores 35 whose diameter continuously decreases from the opening in the depth direction is formed, and as a result, anodized alumina having a plurality of fine pores is formed on the aluminum substrate.
  • the stamper 20 formed on the surface can be obtained.
  • the end of step (f) preferably ends with step (d).
  • the total number of repetitions of the step (f) is preferably 3 times or more, and more preferably 5 times or more. If the number of repetitions is 3 times or more, it is possible to form pores whose diameter changes continuously, and to form a cured product having a surface of a moth-eye structure that can reduce the reflectance by such a stamper. Can do.
  • the shape of the pore 35 is an inverted structure of a fine uneven structure formed on the surface of the article, and specifically includes a substantially conical shape, a pyramid shape, a cylindrical shape, etc., such as a conical shape, a pyramid shape, etc.
  • a shape in which the pore cross-sectional area in the direction orthogonal to the depth direction continuously decreases from the outermost surface in the depth direction is preferable.
  • the average interval between the pores 35 is preferably not more than the wavelength of visible light, that is, not more than 400 nm, and more preferably not less than 20 nm.
  • the average interval between the pores the interval between adjacent pores in the electron microscope image (distance from the center of the pore to the center of the adjacent pore) is measured at 50 points, and the average value of these values is adopted. .
  • the depth of the pores 35 is preferably from 80 to 500 nm, more preferably from 120 to 400 nm, even more preferably from 150 to 300 nm, and particularly in the range where the average interval is about 100 nm.
  • 50 points of the distance between the bottom and top of the pores in an electron microscope 30000 times image are measured, and an average value of these values is adopted.
  • the aspect ratio (depth / average interval) of the pores 35 is preferably 0.8 to 5.0, more preferably 1.2 to 4.0, and still more preferably 1.5 to 3.0.
  • the surface of the stamper on which the fine uneven structure is formed may be treated with a release agent.
  • the release agent include silicone resins, fluororesins, fluorine compounds, and phosphate esters, and phosphate esters are particularly preferable.
  • Commercially available products include AXEL brand names: Mold With INT-1856, Nikko Chemicals brand names: TDP-10, TDP-8, TDP-6, TDP-2, DDP-10, DDP-8, DDP-6, DDP-4, DDP-2, TLP-4, TCP-5, DLP-10, trade names manufactured by Johoku Chemical Industry Co., Ltd .: JP-506H, JP-512, JP-513, JAMP-8, JAMP -12, product names manufactured by Daihachi Chemical Industry Co., Ltd .: AP-8, AP-10, MP-10, product names manufactured by SC Organic Chemical Co., Ltd .: Phoslex series: A-8, A-10, A-12, A -13, A-18, A-18D, A-180L, and the
  • the article having a fine concavo-convex structure formed on the surface using the stamper produced as described above has a cured resin layer 12 formed on the surface of the substrate 11, for example, as shown in FIG.
  • the cured resin layer 12 has a fine concavo-convex structure having a plurality of convex portions 13 formed from a cured resin obtained by bringing a resin composition into contact with the above stamper and curing.
  • the imprinting raw material of the present invention is not particularly limited as long as it contains the resin composition of the present invention, and the resin composition can be used as it is, but depending on the intended molded product, It is also possible to contain various additives.
  • the raw material for imprinting can also be used for molding a cured product by UV curing or further heat curing using a stamper. It is also possible to use a method in which a stamper is pressed against a resin composition that has been semi-cured by heating, the shape is transferred, peeled off from the stamper, and completely cured by heat or UV.
  • the resin composition can also be used as a raw material for forming a cured film on various substrates, and can form a coated film as a coating material and irradiate active energy rays to form a cured product. it can.
  • An article having a fine concavo-convex structure on its surface can be continuously produced, for example, using a production apparatus shown in FIG.
  • the manufacturing apparatus shown in FIG. 3 is provided with a roll-shaped stamper 41 having a reverse structure (not shown) having a fine concavo-convex structure on the surface, and a tank 43 for storing a resin composition.
  • the resin composition is supplied from the tank 43 between the roll-shaped stamper 41 and the base material 42 of the translucent band-shaped film that moves along the surface of the roll-shaped stamper 41.
  • the base material 42 and the resin composition are sandwiched between the roll stamper 41 and the nip roll 46 whose nip pressure is adjusted by the pneumatic cylinder 45, and the resin composition is interposed between the base material 42 and the roll stamper 41.
  • the concave portion of the fine uneven structure of the roll-shaped stamper 41 is filled.
  • An active energy ray irradiation device 48 is installed below the roll-shaped stamper 41, and the resin composition is irradiated with active energy rays through the base material 42 so that the resin composition can be cured. Thereby, the cured resin layer 44 to which the fine uneven structure on the surface of the roll-shaped stamper 41 is transferred is formed. Thereafter, the continuous article (fine concavo-convex structure) 40 in which the cured resin layer 44 having a fine concavo-convex structure formed on the surface and the base material 42 is integrated is peeled from the roll stamper 41 by the peeling roll 47.
  • the active energy ray irradiation device 48 a high-pressure mercury lamp, a metal halide lamp or the like is preferable.
  • the amount of light irradiation energy is preferably 100 to 10,000 mJ / cm 2 .
  • acrylic resin, polycarbonate, styrene resin, polyester, cellulose resin (such as triacetyl cellulose), polyolefin, alicyclic polyolefin, or the like can be used.
  • An article having a fine concavo-convex structure according to an embodiment of the present invention has high scratch resistance of the fine concavo-convex structure and excellent water repellency. Therefore, the anti-reflective article (anti-reflective film, anti-reflective film, etc.), optical waveguide, relief Development of applications as optical articles such as holograms, lenses, polarization separation elements, and water repellent films can be expected, and is particularly suitable for applications as antireflection articles and water repellent films.
  • antireflection articles include antireflection films and antireflection films provided on the surfaces of image display devices (liquid crystal display devices, plasma display panels, electroluminescence displays, cathode tube display devices, etc.), lenses, show windows, and glasses. And an antireflection sheet.
  • image display devices liquid crystal display devices, plasma display panels, electroluminescence displays, cathode tube display devices, etc.
  • lenses show windows, and glasses.
  • an antireflection sheet When used in an image display device, an antireflection film may be directly attached to the image display surface, an antireflection film may be directly formed on the surface of a member constituting the image display surface, or an antireflection film is formed on the front plate. May be formed.
  • the water repellent film it can be used as a drip-preventing film for automobile door mirrors and windows, or as a snow-preventing film. Moreover, the effect of improving the light transmittance and the effect of imparting antifouling property due to water repellency can be used simultaneously by using it for a transparent base material used outdoors such as solar cells and glass for building materials.
  • Appearance evaluation was performed by attaching an article to one side of a 2.0 mm thick black acrylic plate (product name: Acrylite, manufactured by Mitsubishi Rayon Co., Ltd.) did.
  • the above transfer operation was repeated for one stamper, and the peeling force from the stamper was measured when the number of transfers was 200.
  • the peel force is measured by taking the stamper as the adherend and the cured resin layer and the base material (PET film) as an adhesive tape when releasing the cured sample (cured resin layer on the PET film) from the stamper. Then, a 90 ° peel test according to JISZ0237 was performed, and the peel force at the time of releasing from the stamper was measured.
  • stamper pores A vertical section of a part of a stamper made of anodized porous alumina was deposited by Pt for 1 minute, and observed with a field emission scanning electron microscope (manufactured by JEOL Ltd., product name: JSM-7400F) at an acceleration voltage of 3.00 kV. The interval (period) of the matching pores and the depth of the pores were measured. Specifically, 10 points were measured for each, and the average value was taken as the measured value.
  • stamper for transfer of fine relief structure A ⁇ 65 mm aluminum disk having a purity of 99.99% by mass and an electropolished thickness of 2 mm was used as the aluminum substrate.
  • the obtained mold was immersed in a 0.1% by weight aqueous solution of a release agent (trade name: TDP-8, manufactured by Nikko Chemicals) for 10 minutes, and then pulled up and air-dried overnight to perform a release treatment.
  • a release agent trade name: TDP-8, manufactured by Nikko Chemicals
  • the polymerizable component (A), polymerizable component (B), polymerizable component (C), and other polymerizable components contained in the active energy ray-curable resin composition (X) used in Examples and Comparative Examples ( D), photopolymerization initiator (E), other components (G), and internal release agent (F) are as shown in Table 1 below.
  • Example 1 Resins having the compositions shown in Table 2 were prepared as the active energy ray-curable resin composition (X). A few drops of this active energy ray-curable resin composition were dropped on the surface of a stamper for transferring a fine concavo-convex structure and covered with a PET film (Toyobo, product name: A4300, thickness: 50 ⁇ m) while spreading. Thereafter, the resin composition is cured by irradiating ultraviolet rays from the film side using an electrodeless UV lamp (manufactured by Heraeus Co., Ltd., D bulb) so that the integrated light amount measured at a wavelength of 365 nm is 1000 mJ / cm 2. I let you.
  • an electrodeless UV lamp manufactured by Heraeus Co., Ltd., D bulb
  • the cured resin layer together with the PET film was released from the stamper to obtain an article having a fine concavo-convex structure on the surface with an average interval w1: 100 nm of protrusions and a height d1: 200 nm.
  • the evaluation results are shown in Table 2.
  • Example 2 Except for changing the active energy ray-curable resin composition (X) to that shown in Table 2, an article having a fine concavo-convex structure on the surface was prepared and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 2.
  • Examples 1 to 4 have a sufficiently low peeling force from the stamper due to the effect of the internal mold release agent (F), and are excellent in mold release properties.
  • the water contact angle is large and the water repellency is also high.
  • Comparative Examples 1 and 2 since the internal mold release agent (F) is not included, the peeling force from the stamper is high, and the contact angle on the surface of the obtained fine concavo-convex structure is also low.
  • Example 1 when Example 1 is compared with Comparative Example 1 and Comparative Example 2, the polymerizable component (A), the polymerizable component (B), the polymerizable component (C), and the photopolymerization initiator (E) are All have the same composition, and the difference lies in the presence or absence of the internal mold release agent (F) and other components (G).
  • Example 1 containing 0.5 w% of JP-513 as an internal release agent (F), the peeling force at the time of 200 times transfer was sufficiently low as 5 [N / m], and the water contact angle was 142 [°]. It is super water repellent.
  • Comparative Example 1 and Comparative Example 2 each containing the phosphoric acid triesters TOP and TDP-2 not only have a high peel force but also a low water contact angle.
  • Comparative Example 3 is a resin composition that does not contain a polymerizable component (A) and contains a large amount of an oxyethylene group-containing component (component (D)) as a polymerizable component. It can be seen that not only becomes higher, but also the water contact angle becomes very low. Therefore, it turns out that an internal mold release agent (F) exhibits the especially outstanding effect in combination with a polymeric component (A) and a polymeric component (B).
  • Articles having a fine concavo-convex structure on the surface according to an embodiment of the present invention include antireflection articles (antireflection films, antireflection films, etc.), super water repellent articles (super water repellent films, antifouling films, etc.), optical waveguides, reliefs Development of applications as optical articles such as holograms, lenses, polarization separation elements, and cell culture sheets can be expected, and is particularly suitable for applications as antireflection articles and super water-repellent articles.
  • antireflection articles include antireflection films and antireflection films provided on the surfaces of image display devices (liquid crystal display devices, plasma display panels, electroluminescence displays, cathode tube display devices, etc.), lenses, show windows, and glasses. And an antireflection sheet.
  • image display devices liquid crystal display devices, plasma display panels, electroluminescence displays, cathode tube display devices, etc.
  • lenses show windows, and glasses.
  • an antireflection sheet examples of antireflection articles include antireflection films and antireflection films provided on the surfaces of image display devices (liquid crystal display devices, plasma display panels, electroluminescence displays, cathode tube display devices, etc.), lenses, show windows, and glasses. And an antireflection sheet.
  • Examples of the super water-repellent article include films for mirrors (door mirrors, etc.) for transportation equipment such as automobiles, films for building materials such as water-reform films, window films, and the like.
  • Laminate article with fine uneven structure
  • Base material 12 Surface layer (cured resin layer) 13, 13b Convex part 13a Convex part apex 14 Concave part 14a Concave base point 15 Coating layer W1 Distance between adjacent convex parts d1 Vertical distance from the concavity base point to the convex part apex 20 Stamper 30 Aluminum substrate 31 Pore 32 Oxide film 33 Pore generation point 34 Oxide film 35 Pore 40 Article having fine uneven structure 41 Roll stamper 42 Base material 43 Tank 44 Cured resin layer 45 Pneumatic cylinder 46 Nip roll 47 Peeling roll 48 Active energy ray irradiation device

Abstract

An article having multiple projections on the surface thereof, wherein the average distance between adjacent any two projections in the multiple projections is 400 nm or less, each of the multiple projections is formed from a cured product of an active energy ray-curable resin composition, the water contact angle of a multiple-protrusions-formed region in the article is 80 degrees or more, the active energy ray-curable resin composition comprises a polymerizable component (P), a photopolymerization initiator (E) and an internal mold release agent (F), and the internal mold release agent (F) comprises a monoalkylphosphate and/or a dialkylphosphate.

Description

活性エネルギー線硬化性樹脂組成物及び物品Active energy ray-curable resin composition and article
 本発明は、微細凹凸(ナノ凹凸)構造体の形成に好適な活性エネルギー線硬化性樹脂組成物、この活性エネルギー線硬化性樹脂組成物を含むインプリント用原料、及びこの活性エネルギー線硬化性樹脂組成物を用いて形成した微細凹凸構造を有する物品に関する。 The present invention relates to an active energy ray-curable resin composition suitable for forming a fine unevenness (nano unevenness) structure, an imprinting raw material containing the active energy ray-curable resin composition, and the active energy ray-curable resin. The present invention relates to an article having a fine concavo-convex structure formed using a composition.
 表面にナノサイズの微細な凹凸が規則的に配置されている微細凹凸構造体は、連続的な屈折率の変化によって反射防止性能を発現することが知られている。このような微細凹凸構造は一般的にモスアイ構造と呼ばれる。また、この微細凹凸構造は、微細な凹凸構造を備えたハスの葉が示す超撥水性能(ロータス効果)と同様の効果を発現することも知られている。 It is known that a fine concavo-convex structure in which nano-sized fine irregularities are regularly arranged on the surface exhibits antireflection performance due to a continuous change in refractive index. Such a fine concavo-convex structure is generally called a moth-eye structure. It is also known that this fine concavo-convex structure exhibits the same effect as the super water-repellent performance (lotus effect) exhibited by a lotus leaf having a fine concavo-convex structure.
 微細凹凸構造を表面に有する物品の製造方法としては、例えば、下記方法が提案されている:
(i)微細凹凸構造の反転構造を表面に有するスタンパを用い、熱可塑性樹脂を射出成形又はプレス成形して、熱可塑性樹脂成形体の表面に微細凹凸構造を転写する方法;
(ii)微細凹凸構造の反転構造を表面に有するスタンパと透明基材との間に、活性エネルギー線硬化性樹脂組成物を充填し、活性エネルギー線の照射によって硬化させた後、スタンパを剥離して、硬化物に微細凹凸構造を転写する方法;及び
(iii)前記スタンパと透明基材との間に、活性エネルギー線硬化性樹脂組成物を充填した後、スタンパを剥離して、活性エネルギー線硬化性樹脂組成物に微細凹凸構造を転写し、その後、活性エネルギー線の照射によって活性エネルギー線硬化性樹脂組成物を硬化させる方法。
As a method for producing an article having a fine concavo-convex structure on the surface, for example, the following method has been proposed:
(I) a method of transferring a fine concavo-convex structure onto the surface of a thermoplastic resin molded article by injection molding or press molding a thermoplastic resin using a stamper having an inverted structure of the fine concavo-convex structure on the surface;
(Ii) An active energy ray-curable resin composition is filled between a stamper having a reverse structure of a fine concavo-convex structure on the surface and a transparent substrate, cured by irradiation with active energy rays, and then the stamper is peeled off. And (iii) filling the active energy ray-curable resin composition between the stamper and the transparent substrate, and then peeling the stamper to obtain an active energy ray. A method of transferring a fine concavo-convex structure to a curable resin composition and then curing the active energy ray-curable resin composition by irradiation with active energy rays.
 これらの中でも、微細凹凸構造の転写性、表面組成の自由度を考慮すると、(ii)の方法が好適である。この方法は、連続生産が可能なベルト状やロール状のスタンパを用いる場合に特に好適であり、生産性に優れた方法である。 Among these, the method (ii) is preferable in consideration of the transferability of the fine relief structure and the degree of freedom of the surface composition. This method is particularly suitable when a belt-shaped or roll-shaped stamper capable of continuous production is used, and is a method with excellent productivity.
 微細凹凸構造が良好な反射防止性能を発現するのは、微細凹凸の隣り合う凸部又は凹部が可視光の波長以下の間隔である場合である。しかし、このような構造を有する微細凹凸構造体は、表面が平滑な、ハードコートなどで耐摩耗性処理をした成形体に比べて耐擦傷性に劣り、使用中の耐久性に問題があった。また、微細凹凸構造体の作製に使用した樹脂組成物の硬化物が十分に堅牢でないと、鋳型から離型する際や熱によって、突起同士が寄り添う現象が起き易い。 The fine concavo-convex structure exhibits good antireflection performance when adjacent convex portions or concave portions of the fine concavo-convex portions have an interval equal to or shorter than the wavelength of visible light. However, the fine concavo-convex structure having such a structure is inferior in scratch resistance as compared with a molded article having a smooth surface and subjected to an abrasion resistance treatment with a hard coat or the like, and has a problem in durability during use. . Moreover, if the cured product of the resin composition used for the production of the fine concavo-convex structure is not sufficiently robust, a phenomenon in which the protrusions tend to come close to each other when being released from the mold or due to heat.
 そこで、耐久性や強度の高い微細凹凸構造を形成するため、活性エネルギー線の照射により樹脂組成物を硬化させる際にスタンパの反転微細凹凸構造を転写して微細凹凸構造を形成した微細凹凸構造体や、微細凹凸構造を形成するための樹脂組成物が提案されている。 Therefore, in order to form a fine concavo-convex structure with high durability and strength, a fine concavo-convex structure formed by transferring the inverted fine concavo-convex structure of the stamper to form a fine concavo-convex structure when the resin composition is cured by irradiation with active energy rays. In addition, a resin composition for forming a fine concavo-convex structure has been proposed.
 例えば特許文献1には、最密充填されたシリカ微粒子を鋳型として可視光の波長以下の凸部(凹部)間隔を有する微細凹凸構造を作製することや、この微細凹凸構造を形成する樹脂組成物として、トリメチロールプロパントリ(メタ)アクリレート等の分子量当りの二重結合が多い多官能モノマーを含む紫外線硬化性樹脂組成物が記載されている。 For example, Patent Document 1 discloses that a fine concavo-convex structure having a convex portion (concave portion) interval equal to or less than the wavelength of visible light is prepared using a silica particle packed in a close packing as a template, and a resin composition for forming this fine concavo-convex structure Describes an ultraviolet curable resin composition containing a polyfunctional monomer having many double bonds per molecular weight, such as trimethylolpropane tri (meth) acrylate.
 また、特許文献2には、微細凹凸を有するハードコート層を有するフィルムが開示され、このハードコート層はJISK5400に準じた鉛筆硬度試験で「H」以上の硬度を示すことが好ましいこと、そしてそのハードコート層を形成する樹脂として、ジペンタエリスリトールヘキサアクリレート、ジペンタエリスリトールペンタアクリレート、ペンタエリスリトールテトラアクリレート等の分子量当りの二重結合数が多い多官能モノマーを含む紫外線硬化性樹脂組成物が記載されている。 Patent Document 2 discloses a film having a hard coat layer having fine irregularities, and this hard coat layer preferably exhibits a hardness of “H” or higher in a pencil hardness test according to JISK5400, and UV curable resin compositions containing polyfunctional monomers having a large number of double bonds per molecular weight, such as dipentaerythritol hexaacrylate, dipentaerythritol pentaacrylate, pentaerythritol tetraacrylate, etc. are described as resins for forming the hard coat layer. ing.
 また、微細凹凸構造を形成するのに好ましい樹脂組成物として、以下のものが知られている:
 (1)ウレタンアクリレート等のアクリレートオリゴマーと離型剤を必須成分とする光硬化性樹脂組成物(特許文献3);
 (2)エトキシ化ビスフェノールAジ(メタ)アクリレート等の(メタ)アクリレート、N-ビニルピロリドン等の反応性希釈剤、光重合開始剤及びフッ素系界面活性剤から構成される光硬化性樹脂組成物(特許文献4);及び
 (3)トリメチロールプロパントリ(メタ)アクリレート等の多官能(メタ)アクリレート、光重合開始剤及びポリエーテル変性シリコーンオイル等のレベリング剤を含む紫外線硬化性樹脂組成物(特許文献1)。
Moreover, the following are known as a resin composition preferable for forming a fine relief structure:
(1) A photocurable resin composition comprising an acrylate oligomer such as urethane acrylate and a release agent as essential components (Patent Document 3);
(2) A photocurable resin composition comprising a (meth) acrylate such as ethoxylated bisphenol A di (meth) acrylate, a reactive diluent such as N-vinylpyrrolidone, a photopolymerization initiator, and a fluorosurfactant. (Patent Document 4); and (3) UV curable resin composition comprising a polyfunctional (meth) acrylate such as trimethylolpropane tri (meth) acrylate, a photopolymerization initiator and a leveling agent such as polyether-modified silicone oil ( Patent Document 1).
特開2000-71290号公報JP 2000-71290 A 特開2002-107501号公報JP 2002-107501 A 特許第4156415号公報Japanese Patent No. 4156415 特開2007-84625号公報JP 2007-84625 A
 しかしながら、特許文献1、2に記載の微細凹凸構造体は、いずれも架橋密度の高い弾性率の高い硬化物であるが、必ずしも耐擦傷性を満足させるものではない。また、鉛筆硬度試験で「H」以上の硬度を示す硬化樹脂であっても、特に微細凹凸構造体の場合は微細突起が折れたり曲がったりして反射防止性能が損なわれる場合があり、その使用用途が限定されてしまう。また、これら微細凹凸構造体は、微細凹凸構造表面が十分な撥水性を発揮するものではない。 However, each of the fine concavo-convex structures described in Patent Documents 1 and 2 is a cured product having a high crosslink density and a high elastic modulus, but does not necessarily satisfy the scratch resistance. In addition, even in the case of a cured resin showing a hardness of “H” or higher in the pencil hardness test, the antireflection performance may be impaired due to breakage or bending of the fine protrusions particularly in the case of a fine concavo-convex structure. Applications will be limited. Further, in these fine concavo-convex structures, the surface of the fine concavo-convex structure does not exhibit sufficient water repellency.
 一方、樹脂成形体に撥水性を付与するために、シリコーン化合物やフッ素化合物を用いる方法が知られている。しかし、一般的にシリコーン化合物やフッ素化合物で撥水性を発揮するようなものは、活性エネルギー線硬化性樹脂組成物に使用される一般的な多官能(メタ)アクリレートやウレタン(メタ)アクリレートなどとの相溶性が低く、透明性が求められるハードコートへの適用は限定される。また、本願発明者らの検討の結果、微細凹凸構造表面に撥水性を付与できる樹脂組成物を用いた場合、スタンパからの剥離力が大きく、成形体の連続生産が難しいことが明らかになった。 On the other hand, in order to impart water repellency to the resin molding, a method using a silicone compound or a fluorine compound is known. However, in general, silicone compounds and fluorine compounds that exhibit water repellency are common polyfunctional (meth) acrylates and urethane (meth) acrylates used in active energy ray-curable resin compositions. The application to a hard coat where transparency is required and transparency is required is limited. In addition, as a result of the study by the present inventors, it was found that when a resin composition capable of imparting water repellency to the surface of the fine concavo-convex structure was used, the peel force from the stamper was large and continuous production of the molded product was difficult. .
 本発明の主な目的は、微細凹凸構造による反射防止機能と共に、高い撥水性と耐擦傷性を有する物品、及び微細凹凸構造による反射防止機能と共に、高い撥水性と耐擦傷性を有し、スタンパからの剥離が容易な硬化物を形成できる活性エネルギー線硬化性樹脂組成物を提供することにある。 The main object of the present invention is to provide an article having high water repellency and scratch resistance with an antireflection function by a fine uneven structure, and a high water repellency and scratch resistance with an antireflection function by a fine uneven structure. It is in providing the active energy ray-curable resin composition which can form the hardened | cured material which can peel from easily.
 本発明の一態様によれば、
 複数の凸部を表面に有する物品であって、
 前記複数の凸部は、隣り合う凸部同士の平均間隔が400nm以下であり、
 前記複数の凸部は、活性エネルギー線硬化性樹脂組成物の硬化物からなり、
 前記物品の前記複数の凸部を有する部分の水接触角度が80度以上であり、
 前記活性エネルギー線硬化樹脂性組成物は、重合性成分(P)と光重合開始剤(E)と内部離型剤(F)を含み、前記内部離型剤(F)として、モノアルキルホスフェート及びジアルキルホスフェートの少なくとも一方を含む、物品が提供される。
According to one aspect of the invention,
An article having a plurality of convex portions on the surface,
The plurality of convex portions have an average interval between adjacent convex portions of 400 nm or less,
The plurality of convex portions are made of a cured product of an active energy ray-curable resin composition,
The water contact angle of the part having the plurality of convex portions of the article is 80 degrees or more,
The active energy ray-curable resinous composition includes a polymerizable component (P), a photopolymerization initiator (E), and an internal release agent (F). As the internal release agent (F), a monoalkyl phosphate and Articles comprising at least one of dialkyl phosphates are provided.
 本発明の他の態様によれば、
 隣り合う凸部同士の平均間隔が400nm以下である複数の凸部を表面に有する微細凹凸構造をインプリント法により形成するための活性エネルギー線硬化性樹脂組成物であって、
 前記活性エネルギー線硬化性樹脂組成物が、少なくとも重合性成分(P)と光重合開始剤(E)と内部離型剤(F)を含み、
 前記重合性成分(P)の全体量100質量%に対して、重合性成分(A)として、炭素数6以上のアルカンジオールと(メタ)アクリル酸とのエステル化物であるアルカンジオールジ(メタ)アクリレートを50質量%以上100質量%以下含有し、
 前記重合性成分(P)の全体量100質量%に対して、脂環構造を有する重合性成分の含有量が17質量%未満であり、
 内部離型剤(F)が、モノアルキルホスフェート及びジアルキルホスフェートの少なくとも一方を含む、活性エネルギー線硬化性樹脂組成物が提供される。
According to another aspect of the invention,
An active energy ray-curable resin composition for forming a fine concavo-convex structure having a plurality of convex portions on the surface having an average interval between adjacent convex portions of 400 nm or less by an imprint method,
The active energy ray-curable resin composition contains at least a polymerizable component (P), a photopolymerization initiator (E), and an internal release agent (F),
Alkanediol di (meth) which is an esterified product of an alkanediol having 6 or more carbon atoms and (meth) acrylic acid as the polymerizable component (A) with respect to 100% by mass of the total amount of the polymerizable component (P). Containing 50% by mass or more and 100% by mass or less of acrylate,
The content of the polymerizable component having an alicyclic structure is less than 17% by mass with respect to 100% by mass of the total amount of the polymerizable component (P),
There is provided an active energy ray-curable resin composition in which the internal release agent (F) contains at least one of a monoalkyl phosphate and a dialkyl phosphate.
 本発明の他の態様によれば、
 上記の活性エネルギー線硬化性樹脂組成物の硬化物からなり、隣り合う凸部同士の平均間隔が400nm以下である複数の凸部を表面に有する微細凹凸構造を表面に有する物品であって、
 前記微細凹凸構造の表面における水の接触角度が80度以上である物品が提供される。
According to another aspect of the invention,
An article comprising a cured product of the above active energy ray-curable resin composition, and having a fine concavo-convex structure on the surface having a plurality of convex portions on the surface having an average interval between adjacent convex portions of 400 nm or less,
An article in which the contact angle of water on the surface of the fine concavo-convex structure is 80 degrees or more is provided.
 本発明の実施形態によれば、微細凹凸構造による反射防止機能と共に、高い撥水性と耐擦傷性を有する物品、及び微細凹凸構造による反射防止機能と共に、高い撥水性と耐擦傷性を有し、スタンパからの剥離が容易な硬化物を形成できる活性エネルギー線硬化性樹脂組成物を提供することができる。 According to the embodiment of the present invention, an article having high water repellency and scratch resistance along with an antireflection function due to a fine concavo-convex structure, and a high water repellency and scratch resistance along with an antireflection function due to a fine concavo-convex structure, An active energy ray-curable resin composition capable of forming a cured product that can be easily peeled off from a stamper can be provided.
本発明の実施形態による微細凹凸構造を有する物品を示す模式断面図である。It is a schematic cross section which shows the article | item which has the fine concavo-convex structure by embodiment of this invention. 本発明の実施形態による物品の微細凹凸構造の形成に用いるスタンパの製造工程を示す図である。It is a figure which shows the manufacturing process of the stamper used for formation of the fine uneven structure of the articles | goods by embodiment of this invention. 本発明の実施形態による微細凹凸構造を有する物品の製造装置の一例を示す構成図である。It is a block diagram which shows an example of the manufacturing apparatus of the articles | goods which have the fine concavo-convex structure by embodiment of this invention.
 本発明の実施形態による活性エネルギー線硬化性樹脂組成物(X)は、重合性成分(P)と光重合開始剤(E)と内部離型剤(F)を含み、これに活性エネルギー線を照射することにより、重合反応が進行し、硬化するものである。 The active energy ray-curable resin composition (X) according to the embodiment of the present invention includes a polymerizable component (P), a photopolymerization initiator (E), and an internal release agent (F), and an active energy ray is added thereto. By irradiating, the polymerization reaction proceeds and cures.
 この活性エネルギー線硬化性樹脂組成物は、内部離型剤(F)として、リン酸モノエステル及びリン酸ジエステルの少なくとも一方を必須成分として含む。 This active energy ray-curable resin composition contains, as an internal release agent (F), at least one of phosphoric acid monoester and phosphoric acid diester as an essential component.
 重合性成分(P)は、重合性成分(B)として、シリコーン(メタ)アクリレート及びアルキル(メタ)アクリレートの少なくとも一方を含むことが好ましい。 The polymerizable component (P) preferably contains at least one of silicone (meth) acrylate and alkyl (meth) acrylate as the polymerizable component (B).
 また、重合性成分(P)は、重合性成分(A)として、重合性成分(P)の全体量100質量%に対して、Fedors法により計算されるSP値(solubility parameter)が19.6以下の重合性成分を50質量%以上100質量%以下含有することが好ましい。また、重合性成分(P)は、重合性成分(A)として、炭素数6以上のアルカンジオールと(メタ)アクリル酸とのエステル化物であるアルカンジオールジ(メタ)アクリレート含むことが好ましく、このアルカンジオールジ(メタ)アクリレートのFedors法により計算されるSP値が19.6以下であることがより好ましい。また、重合性成分(P)は、前述の重合性成分(A)と、シリコーン(メタ)アクリレート及びアルキル(メタ)アクリレートの少なくとも一方である重合性成分(B)を含むことが好ましい。 In addition, the polymerizable component (P) has a SP value (solubility parameter) calculated by the Fedors method of 19.6 with respect to 100% by mass of the total amount of the polymerizable component (P) as the polymerizable component (A). It is preferable to contain the following polymerizable components in an amount of 50% by mass to 100% by mass. The polymerizable component (P) preferably contains, as the polymerizable component (A), an alkanediol di (meth) acrylate that is an esterified product of an alkanediol having 6 or more carbon atoms and (meth) acrylic acid. The SP value calculated by the Fedors method of alkanediol di (meth) acrylate is more preferably 19.6 or less. The polymerizable component (P) preferably includes the polymerizable component (A) described above and a polymerizable component (B) that is at least one of silicone (meth) acrylate and alkyl (meth) acrylate.
 重合性成分(P)は、さらに、分子内に3個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレートである重合性成分(C)を含むことが好ましく、必要に応じて、その他の重合性成分(D)を含むことができる。また、この活性エネルギー線硬化性樹脂組成物は、必要に応じてその他の成分(G)を含んでもよい。 The polymerizable component (P) preferably further contains a polymerizable component (C) which is a polyfunctional (meth) acrylate having 3 or more (meth) acryloyl groups in the molecule, The polymerizable component (D) can be included. Moreover, this active energy ray curable resin composition may contain another component (G) as needed.
 活性エネルギー線硬化性樹脂組成物(X)の硬化物の表面が微細凹凸構造を有する場合、重合性成分(P)の組成を調整して硬化物を適切な硬さにすることが重要である。硬化物が硬すぎると微細凹凸構造表面の耐擦傷性が低くなる傾向がある。一方、硬化物が柔らかすぎると微細凹凸構造が維持しにくくなり、複数の凸部同士が合一してしまう場合がある。 When the surface of the cured product of the active energy ray-curable resin composition (X) has a fine concavo-convex structure, it is important to adjust the composition of the polymerizable component (P) so that the cured product has an appropriate hardness. . If the cured product is too hard, the scratch resistance on the surface of the fine concavo-convex structure tends to be low. On the other hand, if the cured product is too soft, it is difficult to maintain the fine concavo-convex structure, and the plurality of convex portions may be united.
 内部離型剤(F)として、モノアルキルホスフェート及びジアルキルホスフェートの少なくとも一方を含むことが好ましい。 It is preferable that at least one of monoalkyl phosphate and dialkyl phosphate is included as the internal mold release agent (F).
 内部離型剤(F)の含有率は、重合性成分(P)の全体量100質量部に対して、0.01~2.0質量部の範囲に設定することができる。十分な離型効果を得る点から、0.05質量部以上が好ましく、0.1質量部以上がより好ましい。内部離型剤(F)の含有率が大きすぎると、活性エネルギー線硬化性樹脂組成物から内部離型剤(F)が分離したり析出したりする場合や、活性エネルギー線硬化性樹脂組成物の硬化物から内部離型剤(F)がブリードする場合がある。内部離型剤(F)の含有率は、2.0質量部以下が好ましく、1.0質量部以下がより好ましい。 The content of the internal release agent (F) can be set in the range of 0.01 to 2.0 parts by mass with respect to 100 parts by mass of the total amount of the polymerizable component (P). From the viewpoint of obtaining a sufficient release effect, 0.05 part by mass or more is preferable, and 0.1 part by mass or more is more preferable. When the content of the internal release agent (F) is too large, the internal release agent (F) may be separated or precipitated from the active energy ray-curable resin composition, or the active energy ray-curable resin composition. The internal mold release agent (F) may bleed from the cured product. The content of the internal release agent (F) is preferably 2.0 parts by mass or less, and more preferably 1.0 part by mass or less.
 光重合開始剤(E)の含有率は、重合性成分(P)の全体量100質量部に対して、0.01~10質量部の範囲に設定することができる。 The content of the photopolymerization initiator (E) can be set in the range of 0.01 to 10 parts by mass with respect to 100 parts by mass of the total amount of the polymerizable component (P).
 重合性成分(P)の全体量100質量%に対して、
 重合性成分(A)の含有率が50~99.5質量%であり、
 重合性成分(B)の含有率が0.5~50質量%であることが好ましい。
With respect to 100% by mass of the total amount of the polymerizable component (P),
The content of the polymerizable component (A) is 50 to 99.5% by mass,
The content of the polymerizable component (B) is preferably 0.5 to 50% by mass.
 重合性成分(P)がさらに重合性成分(C)を含む場合は、
 重合性成分(P)の全体量100質量%に対して、
 重合性成分(A)の含有率が50~89.5質量%であり、
 重合性成分(B)の含有率が0.5~40質量%であり、
 重合性成分(C)の含有率が10~49.5質量%であることが好ましい。
When the polymerizable component (P) further contains a polymerizable component (C),
With respect to 100% by mass of the total amount of the polymerizable component (P),
The content of the polymerizable component (A) is 50 to 89.5% by mass,
The content of the polymerizable component (B) is 0.5 to 40% by mass,
The content of the polymerizable component (C) is preferably 10 to 49.5% by mass.
 重合性成分(B)のリン酸モノエステルは、非オキシアルキレン化シリコーン(メタ)アクリレートであることが好ましい。また、重合性成分(B)のアルキル(メタ)アクリレートは、アルキル基の炭素数が8~22のアルキル(メタ)アクリレートであることが好ましい。 The phosphoric acid monoester of the polymerizable component (B) is preferably a non-oxyalkylenated silicone (meth) acrylate. The alkyl (meth) acrylate of the polymerizable component (B) is preferably an alkyl (meth) acrylate having an alkyl group having 8 to 22 carbon atoms.
 重合性成分(P)の全体量100質量%に対して、
 ポリオキシアルキレン骨格を有する重合性成分の含有率が10質量%未満であることが好ましく、5質量%以下であることがより好ましい。また、重合性成分(P)の全体量100質量%に対して、脂環構造を有する重合性成分の含有量が17質量%未満であることが好ましく、10質量%以下であることがさらに好ましい。
With respect to 100% by mass of the total amount of the polymerizable component (P),
The content of the polymerizable component having a polyoxyalkylene skeleton is preferably less than 10% by mass, and more preferably 5% by mass or less. The content of the polymerizable component having an alicyclic structure is preferably less than 17% by mass and more preferably 10% by mass or less with respect to 100% by mass of the total amount of the polymerizable component (P). .
 本発明の他の実施形態によれば、上記の活性エネルギー線硬化性樹脂組成物を含むインプリント用原料を提供できる。 According to another embodiment of the present invention, an imprinting raw material containing the active energy ray-curable resin composition can be provided.
 本発明の他の実施形態によれば、上記の活性エネルギー線硬化性樹脂組成物の硬化物を含む物品を提供できる。この硬化物として、基材上に形成された硬化樹脂層を含むことができる。また、この硬化物の表面に複数の凸部からなる微細凹凸構造を有することができる。この微細凹凸構造においては、隣り合う凸部同士の平均間隔が400nm以下が好ましい。また、微細凹凸構造の表面における水の接触角度が80度以上であることが好ましく、135度以上がより好ましい。 According to another embodiment of the present invention, an article containing a cured product of the above active energy ray-curable resin composition can be provided. As this hardened | cured material, the cured resin layer formed on the base material can be included. Moreover, it can have the fine concavo-convex structure which consists of a some convex part on the surface of this hardened | cured material. In this fine concavo-convex structure, the average interval between adjacent convex portions is preferably 400 nm or less. Further, the contact angle of water on the surface of the fine concavo-convex structure is preferably 80 degrees or more, and more preferably 135 degrees or more.
 本発明の実施形態による物品は、ディスプレイ部材、反射防止物品、撥水フィルムに適用できる。 The article according to the embodiment of the present invention can be applied to a display member, an antireflection article, and a water repellent film.
 以下、本発明の好適な実施の形態についてさらに説明する。 Hereinafter, preferred embodiments of the present invention will be further described.
 [内部離型剤(F)]
 内部離型剤(F)は、リン酸モノエステル及びリン酸ジエステルの少なくとも一方を含む。
[Internal release agent (F)]
The internal mold release agent (F) contains at least one of phosphoric acid monoester and phosphoric acid diester.
 陽極酸化ポーラスアルミナをスタンパとして使用し、活性エネルギー線硬化性樹脂組成物を硬化させて硬化物に微細凹凸構造を転写する方法において、活性エネルギー線硬化性樹脂組成物に添加する内部離型剤としてリン酸エステル化合物を使用することが知られていた。さらに、リン酸エステル化合物の中でも、(ポリ)オキシアルキレンアルキルリン酸化合物であって且つリン酸トリエステル化合物であるものが離型性に優れることが知られていた。 As an internal mold release agent to be added to the active energy ray-curable resin composition in a method of using an anodized porous alumina as a stamper and curing the active energy ray-curable resin composition to transfer the fine uneven structure to the cured product It has been known to use phosphate ester compounds. Further, among the phosphoric acid ester compounds, it has been known that a (poly) oxyalkylene alkyl phosphoric acid compound and a phosphoric acid triester compound is excellent in releasability.
 しかし、アルカンジオールジ(メタ)アクリレートである重合性成分(A)が主成分であり、オキシアルキレン骨格成分の含有量が少ない活性エネルギー線硬化性樹脂組成物は、内部離型剤として(ポリ)オキシアルキレンアルキルリン酸化合物であって且つリン酸トリエステル化合物であるものを使用すると、硬化後のスタンパからの剥離力が大きく、また重合性成分(B)のような撥水性付与成分の効果も十分に発揮されないことを、本発明者らは新たな課題として見出した。 However, the active energy ray-curable resin composition having a polymerizable component (A) which is alkanediol di (meth) acrylate as a main component and a small content of oxyalkylene skeleton component is used as an internal mold release agent (poly). When an oxyalkylene alkyl phosphate compound and a phosphate triester compound are used, the peel strength from the stamper after curing is large, and the effect of a water repellency imparting component such as a polymerizable component (B) is also obtained. The present inventors have found as a new problem that it cannot be fully exhibited.
 そこで、本発明者らは鋭意検討を進めた結果、リン酸モノエステル及び/又はリン酸ジエステルを含む内部離型剤(F)を用いることが有効であり、リン酸物モノエステルとしてモノアルキルホスフェートが特に有効であり、リン酸ジエステルとしてジアルキルホスフェートが特に有効であることを見出した。この内部離型剤(F)を用いることで、活性エネルギー線硬化性樹脂組成物(X)の硬化物をスタンパから離型する際の剥離力を十分小さくすることができ、得られた微細凹凸構造を表面に有する物品は、優れた撥水性能を発揮することができる。得られた微細凹凸構造を有する物品は、微細凹凸構造の表面の水接触角度が80度以上であることが好ましく、100度以上であることがより好ましく、130度以上であることがさらに好ましく、135度以上が特に好ましい。 Thus, as a result of intensive studies, the present inventors have found that it is effective to use an internal mold release agent (F) containing a phosphoric acid monoester and / or a phosphoric acid diester, and a monoalkyl phosphate as the phosphoric acid monoester. Has been found to be particularly effective and dialkyl phosphates are particularly effective as phosphoric diesters. By using this internal mold release agent (F), the peeling force when releasing the cured product of the active energy ray-curable resin composition (X) from the stamper can be sufficiently reduced, and the resulting fine unevenness An article having a structure on the surface can exhibit excellent water repellency. The obtained article having a fine concavo-convex structure preferably has a water contact angle of the surface of the fine concavo-convex structure of 80 degrees or more, more preferably 100 degrees or more, and further preferably 130 degrees or more, 135 degrees or more is particularly preferable.
 リン酸モノエステル及び/又はリン酸ジエステルは、リン酸トリエステルと比較すると、水酸基を有することから、陽極酸化ポーラスアルミナからなるスタンパ表面に対する吸着力が優れていることが考えられる。具体的には、陽極酸化ポーラスアルミナの表面は、純粋な酸化アルミニウムのみではなく、水酸化アルミニウムや酸化アルミニウムの水和物が存在していると考えられており、リン酸モノエステル及び/又はリン酸ジエステルの水酸基が、水酸化アルミニウムや酸化アルミニウムと強い相互作用を持っていると考えられるが、詳細な機構は明らかではない。 Since the phosphoric acid monoester and / or phosphoric acid diester has a hydroxyl group as compared with the phosphoric acid triester, it is considered that the adsorbing power to the stamper surface made of anodized porous alumina is excellent. Specifically, the surface of anodized porous alumina is considered to contain not only pure aluminum oxide but also aluminum hydroxide and aluminum oxide hydrate, and phosphoric acid monoester and / or phosphorus The hydroxyl group of the acid diester is considered to have a strong interaction with aluminum hydroxide and aluminum oxide, but the detailed mechanism is not clear.
 また、リン酸モノエステル及び/又はリン酸ジエステルの中でも、モノアルキルホスフェート及び/又はジアルキルホスフェートは、オキシアルキレン骨格を有さないために疎水性が高く、スタンパの表面をより疎水性にすることができる。スタンパ表面が疎水性になって表面自由エネルギーが下がった結果、そのスタンパを使用して形成した、活性エネルギー線硬化性樹脂組成物(X)の硬化物として得られる微細凹凸構造の表面も疎水性になりやすい。具体的には、スタンパ表面の表面自由エネルギーが十分に低いことで、活性エネルギー線硬化性樹脂組成物(X)とスタンパが接触すると、活性エネルギー線硬化性樹脂組成物(X)に含まれる撥水性付与成分の疎水性官能基がスタンパ側に配向し、活性エネルギー線硬化性樹脂組成物(X)の硬化物として得られる微細凹凸構造の表面が疎水性になる。 Further, among phosphoric acid monoesters and / or phosphoric acid diesters, monoalkyl phosphates and / or dialkyl phosphates have a high hydrophobicity because they do not have an oxyalkylene skeleton, making the stamper surface more hydrophobic. it can. As a result of the surface of the stamper becoming hydrophobic and the surface free energy decreasing, the surface of the fine concavo-convex structure obtained as a cured product of the active energy ray-curable resin composition (X) formed using the stamper is also hydrophobic. It is easy to become. Specifically, since the surface free energy of the stamper surface is sufficiently low, when the active energy ray-curable resin composition (X) and the stamper come into contact, the repellent properties contained in the active energy ray-curable resin composition (X) are present. The hydrophobic functional group of the aqueous imparting component is oriented on the stamper side, and the surface of the fine uneven structure obtained as a cured product of the active energy ray-curable resin composition (X) becomes hydrophobic.
 モノアルキルホスフェート及びジアルキルホスフェートとしては、アルキル基の炭素数が例えば1~20、好ましくは6~20、より好ましくは8~18の範囲にあるものを用いることができる。 As the monoalkyl phosphate and dialkyl phosphate, those in which the alkyl group has a carbon number of, for example, 1 to 20, preferably 6 to 20, more preferably 8 to 18 can be used.
 内部離型剤(F)の市販品としては、例えば、日光ケミカルズ社製の商品名:DDP-2、DDP-4、DDP-6、DDP-8、DDP-10、城北化学工業社製の商品名:JP-512、JP-513、JAMP-8、JAMP-12、大八化学工業社製の製品名:AP-8、AP-10、MP-10、SC有機化学社製の製品名:Phoslexシリーズ:A-8、A-10、A-12、A-13、A-18、A-18D、A-180L、などが挙げられる。 Commercially available products of the internal mold release agent (F) include, for example, trade names manufactured by Nikko Chemicals: DDP-2, DDP-4, DDP-6, DDP-8, DDP-10, and products manufactured by Johoku Chemical Industry Co., Ltd. Name: JP-512, JP-513, JAMP-8, JAMP-12, product name manufactured by Daihachi Chemical Industry: AP-8, AP-10, MP-10, product name manufactured by SC Organic Chemicals: Phoslex Series: A-8, A-10, A-12, A-13, A-18, A-18D, A-180L, and the like.
 これらの中でも、モノアルキルホスフェート及び/又はジアルキルホスフェートである、城北化学工業社製の商品名:JP-512、JP-513、JAMP-8、JAMP-12、大八化学工業社製の製品名:AP-8、AP-10、MP-10、SC有機化学社製の製品名:Phoslexシリーズ:A-8、A-10、A-12、A-13、A-18、A-18D、A-180L、などが好ましい。 Among these, monoalkyl phosphate and / or dialkyl phosphate, trade names manufactured by Johoku Chemical Industry Co., Ltd .: JP-512, JP-513, JAMP-8, JAMP-12, Daihachi Chemical Industry Co., Ltd. Product names manufactured by AP-8, AP-10, MP-10, SC Organic Chemical Co., Ltd .: Phoslex series: A-8, A-10, A-12, A-13, A-18, A-18D, A- 180L is preferable.
 [重合性成分(A)]
 重合性成分(A)は、本発明の実施形態による活性エネルギー線硬化性樹脂組成物の硬化物に対して、耐擦傷性向上、耐候性向上、基材密着性向上の効果がある。例えば、基材密着性に関しては、ポリカーボネート樹脂やアクリル樹脂に有効である。また、活性エネルギー線硬化性樹脂組成物の相溶性向上や低粘度化の効果を得ることもできる。
[Polymerizable component (A)]
The polymerizable component (A) has an effect of improving scratch resistance, weather resistance, and substrate adhesion to the cured product of the active energy ray-curable resin composition according to the embodiment of the present invention. For example, the substrate adhesion is effective for polycarbonate resins and acrylic resins. Moreover, the compatibility improvement of active energy ray curable resin composition and the effect of low viscosity can also be acquired.
 重合性成分(A)としては、Fedors法により計算されるSP値が19.6以下である重合性成分が好ましい。SP値が19.6を超えると、重合性成分(A)と、前述の内部離型剤(F)や、重合性成分(A)以外の重合性成分との相溶性が低下し、得られる硬化物が白濁してしまう恐れがある。また、SP値が19.6以下の成分を用いることで、硬化物の表面を疎水性とすることができる。重合性成分(A)としては、アルカンジオールジ(メタ)アクリレートを用いることができる。アルカンジオールジ(メタ)アクリレートの原料であるアルカンジオールの炭素数は、6以上が好ましく、7以上がより好ましく、8以上がさらに好ましく、9以上が特に好ましい。アルカン部の炭素数が小さすぎると活性エネルギー線硬化性樹脂組成物の硬化物が硬くなりすぎてしまい、微細凹凸構造が脆くなって傷付きやすくなる。一方、アルカン部の炭素数が大きすぎると、アルカンジオールジ(メタ)アクリレートが結晶性を持ち、取扱い性が著しく低下する場合がある。そのため、重合性成分(A)の原料であるアルカンジオールの炭素数は、12以下が好ましく、10以下がより好ましい。また、アルカン部は直鎖構造でも分岐構造でもよく、両者の混合物でも良い。分岐構造を持たせることで結晶性を下げることができ、低温でも液状になり、取扱い性を向上させることができる。また、シクロアルカン構造は硬化物のガラス転移温度を上昇させ、硬くする効果がある。 As the polymerizable component (A), a polymerizable component having an SP value calculated by the Fedors method of 19.6 or less is preferable. When the SP value exceeds 19.6, the compatibility between the polymerizable component (A) and the above-mentioned internal mold release agent (F) and the polymerizable component other than the polymerizable component (A) is decreased, and is obtained. The cured product may become cloudy. Moreover, the surface of hardened | cured material can be made hydrophobic by using a component with SP value 19.6 or less. As the polymerizable component (A), alkanediol di (meth) acrylate can be used. 6 or more are preferable, as for carbon number of alkanediol which is a raw material of alkanediol di (meth) acrylate, 7 or more are more preferable, 8 or more are further more preferable, and 9 or more are especially preferable. If the carbon number of the alkane part is too small, the cured product of the active energy ray-curable resin composition becomes too hard, and the fine uneven structure becomes brittle and easily damaged. On the other hand, when the carbon number of the alkane part is too large, the alkanediol di (meth) acrylate has crystallinity and the handleability may be significantly reduced. Therefore, the carbon number of the alkanediol as the raw material for the polymerizable component (A) is preferably 12 or less, and more preferably 10 or less. Further, the alkane part may have a linear structure or a branched structure, or a mixture of both. By giving a branched structure, the crystallinity can be lowered, and it becomes liquid even at a low temperature, and the handleability can be improved. In addition, the cycloalkane structure has an effect of increasing the glass transition temperature of the cured product and hardening it.
 重合性成分(A)の具体例としては、例えば、1,6-ヘキサンジオールジ(メタ)アクリレート、1,7-ヘプタンジオールジ(メタ)アクリレート、1,8-オクタンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、1,10-デカンジオールジ(メタ)アクリレート、1,12-ドデカンジオールジ(メタ)アクリレート、1,16-ヘキサデカンジオールジ(メタ)アクリレートアクリレート、バチルアルコールジ(メタ)アクリレート、3-メチル1,5-ペンタンジオールジ(メタ)アクリレート、2-メチル-1,8-オクタンジオールジ(メタ)アクリレート、2-エチル-2-ブチル-プロパンジオールジ(メタ)アクリレート、ダイマージオールジ(メタ)アクリレート、などが挙げられる。これらは1種を単独で使用しても良く、2種以上を併用しても良い。 Specific examples of the polymerizable component (A) include, for example, 1,6-hexanediol di (meth) acrylate, 1,7-heptanediol di (meth) acrylate, 1,8-octanediol di (meth) acrylate, 1,9-nonanediol di (meth) acrylate, 1,10-decanediol di (meth) acrylate, 1,12-dodecanediol di (meth) acrylate, 1,16-hexadecanediol di (meth) acrylate acrylate, batyl Alcohol di (meth) acrylate, 3-methyl 1,5-pentanediol di (meth) acrylate, 2-methyl-1,8-octanediol di (meth) acrylate, 2-ethyl-2-butyl-propanediol di ( Meth) acrylate, dimer diol di (meth) acrylate, etc. It is below. These may be used alone or in combination of two or more.
 重合性成分(A)の含有割合は、重合性成分(P)の全体量100質量%のうち、50~100質量%の範囲に設定することができる。より十分な添加効果を得る点から、60質量%以上がさらに好ましい。重合性成分(A)による十分な効果を得ながら他の重合性成分による効果を得る観点から、重合性成分(A)の含有割合は、90質量%以下が好ましく、85質量%以下がより好ましい。重合性成分(A)の含有割合が50質量%以上であれば、硬化物において、優れた耐擦傷性、耐候性、基材密着性、といった効果を得ることができ、樹脂組成物においては、低粘度化や重合性成分(B)等の他の重合性成分との相溶性向上の効果が期待できる。 The content ratio of the polymerizable component (A) can be set in the range of 50 to 100% by mass in the total amount of 100% by mass of the polymerizable component (P). 60 mass% or more is further more preferable from the point which acquires more sufficient addition effect. From the viewpoint of obtaining the effect of the other polymerizable component while obtaining the sufficient effect of the polymerizable component (A), the content of the polymerizable component (A) is preferably 90% by mass or less, and more preferably 85% by mass or less. . If the content of the polymerizable component (A) is 50% by mass or more, in the cured product, it is possible to obtain excellent effects such as scratch resistance, weather resistance, and substrate adhesion. In the resin composition, The effect of lowering the viscosity and improving the compatibility with other polymerizable components such as the polymerizable component (B) can be expected.
 [重合性成分(B)]
 重合性成分(B)は、本発明の実施形態による活性エネルギー線硬化性樹脂組成物の硬化物に対して、撥水性や防汚性の付与や耐擦傷性向上の効果がある。また、離型性向上に関して補助的役割を担う場合がある。
[Polymerizable component (B)]
The polymerizable component (B) has an effect of imparting water repellency and antifouling properties and improving scratch resistance to the cured product of the active energy ray-curable resin composition according to the embodiment of the present invention. In addition, there is a case where it plays an auxiliary role with respect to improvement of releasability.
 重合性成分(B)はシリコーン(メタ)アクリレート及び/又はアルキル(メタ)アクリレートである。以下、シリコーン(メタ)アクリレートとアルキル(メタ)アクリレートをそれぞれ分けて説明する。 Polymerizable component (B) is silicone (meth) acrylate and / or alkyl (meth) acrylate. Hereinafter, silicone (meth) acrylate and alkyl (meth) acrylate will be described separately.
 (シリコーン(メタ)アクリレート)
 シリコーン(メタ)アクリレートは、シリコーン骨格を有する(メタ)アクリレートである。以下、本発明に好適なシリコーン(メタ)アクリレートについていくつか例を挙げて具体的に説明する。
(Silicone (meth) acrylate)
Silicone (meth) acrylate is (meth) acrylate having a silicone skeleton. Hereinafter, the silicone (meth) acrylate suitable for the present invention will be specifically described with some examples.
 シリコーン(メタ)アクリレートとしては、例えば、下記式1で示される、両末端及び/又は片末端にプロピル(メタ)アクリレート構造を有するシリコーン(メタ)アクリレートが挙げられる。 Examples of the silicone (meth) acrylate include silicone (meth) acrylate having a propyl (meth) acrylate structure at both terminals and / or one terminal represented by the following formula 1.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 式(1)で表されるシリコーン(メタ)アクリレートは、分子量が大きすぎると重合性成分(A)等の他の重合性成分との相溶性が低下する傾向がある。一方、分子量が小さすぎると撥水性や耐擦傷性向上の効果が得られにくくなる。そのため、式(1)で表されるシリコーン(メタ)アクリレートの重量平均分子量は500~2000程度が好ましい。 If the molecular weight of the silicone (meth) acrylate represented by the formula (1) is too large, the compatibility with other polymerizable components such as the polymerizable component (A) tends to decrease. On the other hand, if the molecular weight is too small, it is difficult to obtain the effect of improving water repellency and scratch resistance. Therefore, the weight average molecular weight of the silicone (meth) acrylate represented by the formula (1) is preferably about 500 to 2,000.
 このような重合性成分(B)の市販品としては、例えば、JNC社製の「サイラプレーン(登録商標)」シリーズの製品名:FM-0711、FM-0721、FM-0725、FM-7711、FM-7721、FM-7725、信越化学工業社製の製品名:X-22-2445、X-22-174ASX、X-22-174BX、X-22-174DX、KF-2012、X-22-2426、X-22-2475、X-22-164、X-22-164AS、X-22-164A、X-22-164B、X-22-164C、X-22-164E、東レ・ダウコーニング社製の製品名:BY16-152C、などが挙げられる。 Examples of commercially available products of such polymerizable component (B) include, for example, product names of “Silaplane (registered trademark)” series manufactured by JNC: FM-0711, FM-0721, FM-0725, FM-7711, FM-7721, FM-7725, product names manufactured by Shin-Etsu Chemical Co., Ltd .: X-22-2445, X-22-174ASX, X-22-174BX, X-22-174DX, KF-2012, X-22-2426 X-22-2475, X-22-164, X-22-164AS, X-22-164A, X-22-164B, X-22-164C, X-22-164E, manufactured by Toray Dow Corning Product name: BY16-152C, etc.
 他にシリコーン(メタ)アクリレートとしては、例えば、下記式(2)で示される、シリコーンエポキシ(メタ)アクリレートが挙げられる。 Other examples of the silicone (meth) acrylate include silicone epoxy (meth) acrylate represented by the following formula (2).
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
 式(2)で示されるシリコーン(メタ)アクリレートの市販品としては、例えば、エボニック・ジャパン社製の「Tego(登録商標)シリーズ」の製品名:Rad2011、Rad2100、Rad2500、などが挙げられる。 Examples of commercially available products of silicone (meth) acrylate represented by the formula (2) include product names of “Tego (registered trademark) series” manufactured by Evonik Japan Co., Ltd .: Rad2011, Rad2100, Rad2500, and the like.
 他のシリコーン(メタ)アクリレートとしては、ポリジメチルシロキサンの両末端をEO及び/又はPO変性した(メタ)アクリレートが挙げられる。その市販品としては、例えば、信越化学工業社製の製品名:X-22-1602、ビックケミー・ジャパン社製の製品名:BYK-UV3500、BYK-UV3530、エボニック・ジャパン社製の製品名:「Tego」(登録商標)シリーズ:Rad2200N、Rad2250、Rad2300、ダイセル・オルネクス社製の製品名:EBECRYL 350、などが挙げられる。上記の「EO変性」はエチレンオキサイド変性を意味し、「PO変性」はプロピレンオキサイド変性を意味する。 Other silicone (meth) acrylates include (meth) acrylates in which both ends of polydimethylsiloxane are modified with EO and / or PO. Examples of commercially available products include product names manufactured by Shin-Etsu Chemical Co., Ltd .: X-22-1602, product names manufactured by Big Chemie Japan, Inc .: BYK-UV3500, BYK-UV3530, and product names manufactured by Evonik Japan: "Tego" (registered trademark) series: Rad2200N, Rad2250, Rad2300, product name manufactured by Daicel Ornex Co., Ltd .: EBECRYL 350, and the like. The above “EO modification” means ethylene oxide modification, and “PO modification” means propylene oxide modification.
 他にシリコーン(メタ)アクリレートとしては、ウレタン(メタ)アクリレート及び/又はポリエステル(メタ)アクリレートであって且つシリコーン骨格を有するもの、例えば(メタ)アクリロイル基を有するポリエステル変性ポリジメチルシロキサン、ポリジメチルシロキサン構造を有するウレタン(メタ)アクリレートが挙げられる。その市販品としては、例えば、ビックケミー・ジャパン社製の製品名:BYK-UV3570、Miwon Speciality Chemical社製の製品名:「Miramer(登録商標)」シリーズ:SIU100、SIU1000、SIU2400、SIP900、などが挙げられる。 Other examples of the silicone (meth) acrylate include urethane (meth) acrylate and / or polyester (meth) acrylate having a silicone skeleton, for example, polyester-modified polydimethylsiloxane having a (meth) acryloyl group, polydimethylsiloxane Examples thereof include urethane (meth) acrylate having a structure. Examples of commercially available products include BYK-UV3570, product name manufactured by Big Chemie Japan, and product names manufactured by Miwon Specialty Chemical: “Miramer (registered trademark)” series: SIU100, SIU1000, SIU2400, SIP900, and the like. It is done.
 上記以外のシリコーン(メタ)アクリレートの市販品としては、例えば、ビックケミー・ジャパン社製の製品名:BYK-UV3505、3530、3575、3576、ダイセル・オルネクス社製の製品名:EBECRYL 1360などが挙げられる。 Examples of commercially available products of silicone (meth) acrylates other than those mentioned above include BYK-UV3505, 3530, 3575, and 3576 manufactured by BYK-Chemie Japan, and EBECRYL 1360 manufactured by Daicel Ornex. .
 以上で挙げた重合性成分(B)として用いるシリコーン(メタ)アクリレートの中では、式(1)で示したシリコーン(メタ)アクリレート、式(2)で示したシリコーン(メタ)アクリレート、及びBYK-UV3570から選択されるものが、撥水性、耐擦傷性、耐候性の点で好ましい。特に超撥水性を付与する点で、(1)で示したシリコーン(メタ)アクリレートを使用することが好ましい。 Among the silicone (meth) acrylates used as the polymerizable component (B) mentioned above, silicone (meth) acrylate represented by formula (1), silicone (meth) acrylate represented by formula (2), and BYK- Those selected from UV3570 are preferable in terms of water repellency, scratch resistance and weather resistance. In particular, the silicone (meth) acrylate shown in (1) is preferably used from the viewpoint of imparting super water repellency.
 オキシアルキレン構造を有するシリコーン(メタ)アクリレートは相溶性が良好な反面、耐候性の点で劣る結果となる場合がある。そのため、耐候性の点からは、重合性成分(B)として、オキシアルキレン骨格を有さない非オキシアルキレン化シリコーン(メタ)アクリレートが好ましい。 Silicone (meth) acrylate having an oxyalkylene structure has good compatibility but may be inferior in terms of weather resistance. Therefore, from the viewpoint of weather resistance, a non-oxyalkylenated silicone (meth) acrylate having no oxyalkylene skeleton is preferable as the polymerizable component (B).
 (アルキル(メタ)アクリレート)
 重合性成分(B)として用いるアルキル(メタ)アクリレートは、硬化物の撥水性と耐擦傷性を向上させる点から、アルキル基が比較的長いものが好ましい。具体的には、アルキル基の炭素数は8~22が好ましく、12~18がより好ましい。アルキル基は直鎖でも分岐でも良い。アルキル基は長すぎると結晶性が高まって液状での取り扱いが困難になり、短すぎると揮発性が問題になる場合がある。アルキル(メタ)アクリレートの具体的な例としては、(イソ)オクチル(メタ)アクリレート、(イソ)デシル(メタ)アクリレート、(イソ)ラウリル(メタ)アクリレート、(イソ)セチル(メタ)アクリレート、(イソ)ステアリル(メタ)アクリレート、(イソ)ベヘニル(メタ)アクリレート等が挙げられる。これらの中では、撥水性付与と取扱い性の点で、イソステアリル(メタ)アクリレートが特に好ましい。
(Alkyl (meth) acrylate)
The alkyl (meth) acrylate used as the polymerizable component (B) preferably has a relatively long alkyl group from the viewpoint of improving the water repellency and scratch resistance of the cured product. Specifically, the alkyl group preferably has 8 to 22 carbon atoms, more preferably 12 to 18 carbon atoms. The alkyl group may be linear or branched. If the alkyl group is too long, the crystallinity increases and handling in a liquid state becomes difficult, and if it is too short, volatility may be a problem. Specific examples of the alkyl (meth) acrylate include (iso) octyl (meth) acrylate, (iso) decyl (meth) acrylate, (iso) lauryl (meth) acrylate, (iso) cetyl (meth) acrylate, ( Examples include iso) stearyl (meth) acrylate and (iso) behenyl (meth) acrylate. Among these, isostearyl (meth) acrylate is particularly preferable in terms of imparting water repellency and handling.
 重合性成分(B)の含有割合は、重合性成分(P)の全体量100質量%のうち、0.5~50質量%の範囲に設定することができる。十分な添加効果を得る点から、1質量%以上がより好ましい。重合性成分(B)の添加量が多すぎると硬化物の物性が低下して耐擦傷性が低下する場合がある。そのため、重合性成分(B)の含有割合は、40質量%以下が好ましく、20質量%以下がより好ましく、10質量%以下が特に好ましい。 The content ratio of the polymerizable component (B) can be set in the range of 0.5 to 50% by mass in 100% by mass of the total amount of the polymerizable component (P). 1 mass% or more is more preferable from the point which acquires sufficient addition effect. If the addition amount of the polymerizable component (B) is too large, the physical properties of the cured product may be lowered, and the scratch resistance may be lowered. Therefore, the content of the polymerizable component (B) is preferably 40% by mass or less, more preferably 20% by mass or less, and particularly preferably 10% by mass or less.
 重合性成分(B)の含有割合が0.5質量%以上の場合、例えば、重合性成分(A)50~99.5質量%、重合性成分(B)0.5~50質量%、重合性成分(C)0~49.5質量%に設定でき、また、重合性成分(A)50~89.5質量%、重合性成分(B)0.5~40質量%、重合性成分(C)10~49.5質量%に設定できる。 When the content of the polymerizable component (B) is 0.5% by mass or more, for example, the polymerizable component (A) is 50 to 99.5% by mass, the polymerizable component (B) is 0.5 to 50% by mass, The polymerizable component (C) can be set to 0 to 49.5 mass%, the polymerizable component (A) is 50 to 89.5 mass%, the polymerizable component (B) is 0.5 to 40 mass%, the polymerizable component ( C) It can be set to 10 to 49.5% by mass.
 重合性成分(B)の含有割合が1質量%以上の場合、例えば、重合性成分(A)50~99質量%、重合性成分(B)1~50質量%、重合性成分(C)0~49質量%に設定でき、また、重合性成分(A)50~89質量%、重合性成分(B)1~40質量%、重合性成分(C)10~49質量%に設定できる。 When the content of the polymerizable component (B) is 1% by mass or more, for example, the polymerizable component (A) is 50 to 99% by mass, the polymerizable component (B) is 1 to 50% by mass, the polymerizable component (C) 0 The polymerizable component (A) can be set to 50 to 89% by mass, the polymerizable component (B) 1 to 40% by mass, and the polymerizable component (C) 10 to 49% by mass.
 [重合性成分(C)]
 重合性成分(C)は、3個以上の(メタ)アクリロイル基)を有する多官能(メタ)アクリレートである。重合性成分(C)により、活性エネルギー線硬化性樹脂組成物の硬化物の硬さを調節でき、耐擦傷性を向上させることができる。重合性成分(C)は、分子量あたりの(メタ)アクリロイル基の数が多いほど硬化物に硬さを付与できる。また、分子量がより小さいものや分子内にメチル基を有するものが重合性成分(B)等の他の重合性成分との相溶性に優れる。逆に、ポリエーテル構造を有するものは重合性成分(B)等の他の重合性成分との相溶性や耐候性が劣る場合がある。
[Polymerizable component (C)]
The polymerizable component (C) is a polyfunctional (meth) acrylate having 3 or more (meth) acryloyl groups). By the polymerizable component (C), the hardness of the cured product of the active energy ray-curable resin composition can be adjusted, and the scratch resistance can be improved. The polymerizable component (C) can impart hardness to the cured product as the number of (meth) acryloyl groups per molecular weight increases. In addition, those having a smaller molecular weight and those having a methyl group in the molecule are excellent in compatibility with other polymerizable components such as the polymerizable component (B). Conversely, those having a polyether structure may have poor compatibility with other polymerizable components such as the polymerizable component (B) and weather resistance.
 重合性成分(C)の具体例としては、例えば、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、(ポリ)グリセリン(ポリ)アクリレート、ペンタエリスリトール(トリ)テトラアクリレート、ペンタエリスリトール(トリ)テトラメタアクリレート、ジペンタエリスリトール(ペンタ)ヘキサアクリレート、ジペンタエリスリトール(ペンタ)ヘキサメタクリレート、ポリペンタエリスリトールポリ(メタ)アクリレート、及びこれらのEO変性、PO変性又はカプロラクトン変性(メタ)アクリレート、並びに3官能以上のウレタン(メタ)アクリレート、3官能以上のエポキシ(メタ)アクリレート、3官能以上のポリエステル(メタ)アクリレート、などが挙げられる。
 これらの中でも、トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトール(トリ)テトラアクリレート、ペンタエリスリトール(トリ)テトラメタクリレートが重合性成分(B)との相溶性や耐擦傷性の点で好ましい。
 また、EO変性物及びPO変性物は耐候性の点で懸念があるため、耐候性の点ではカプロラクトン変性物が好ましい。
Specific examples of the polymerizable component (C) include, for example, trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, (poly) glycerin (poly) acrylate, Pentaerythritol (tri) tetraacrylate, pentaerythritol (tri) tetramethacrylate, dipentaerythritol (penta) hexaacrylate, dipentaerythritol (penta) hexamethacrylate, polypentaerythritol poly (meth) acrylate, and their EO modifications, PO-modified or caprolactone-modified (meth) acrylate, and tri- or more functional urethane (meth) acrylate, tri- or more functional epoxy (meth) acrylate, tri- or more functional polymer Ester (meth) acrylate, and the like.
Among these, trimethylolpropane tri (meth) acrylate, ditrimethylolpropane tri (meth) acrylate, ditrimethylolpropane tetra (meth) acrylate, pentaerythritol (tri) tetraacrylate, and pentaerythritol (tri) tetramethacrylate are polymerizable components. From the viewpoint of compatibility with (B) and scratch resistance.
Further, EO-modified products and PO-modified products are worried in terms of weather resistance, so caprolactone-modified products are preferable in terms of weather resistance.
 ここで、重合性成分(C)の具体例の名称中の「(トリ)テトラ」は、トリ体、テトラ体又はこれらの混合物を意味し、「(ペンタ)ヘキサ」は、ペンタ体、ヘキサ体又はこれらの混合物を意味する。
 例えば、「ペンタエリスリトール(トリ)テトラアクリレート」は、ペンタエリスリトールトリアクリレート(トリ体)、ペンタエリスリトールテトラアクリレート(テトラ体)、ペンタエリスリトールトリアクリレートとペンタエリスリトールテトラアクリレートとの混合物を意味する。
 同様に、「ジペンタエリスリトール(ペンタ)ヘキサアクリレート」は、ジペンタエリスリトールペンタアクリレート(ペンタ体)、ジペンタエリスリトールヘキサアクリレート(ヘキサ体)、又はジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートとの混合物を意味する。
Here, “(tri) tetra” in the names of specific examples of the polymerizable component (C) means a tribody, a tetrabody or a mixture thereof, and “(penta) hexa” means a pentabody, a hexabody. Or a mixture thereof.
For example, “pentaerythritol (tri) tetraacrylate” means pentaerythritol triacrylate (tri), pentaerythritol tetraacrylate (tetra), or a mixture of pentaerythritol triacrylate and pentaerythritol tetraacrylate.
Similarly, “dipentaerythritol (penta) hexaacrylate” is dipentaerythritol pentaacrylate (penta), dipentaerythritol hexaacrylate (hexa), or a mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate. Means.
 重合性成分(C)の含有割合は、重合性成分(P)の全体量100質量%のうち、0~50質量%の範囲に設定することができる。十分な添加効果を得る点から、5質量%以上が好ましく、10質量%以上がより好ましい。重合性成分(C)の添加量が多すぎると、重合性成分(B)等の他の重合性成分との相溶性の問題で活性エネルギー線硬化性樹脂組成物およびその硬化物の透明性を維持できなくなる場合がある。また、他の重合性成分の含有量を十分に確保する点から、重合性成分(C)の含有割合は、49.5質量%以下に設定でき、30質量%以下が好ましく、25質量%以下がより好ましい。 The content ratio of the polymerizable component (C) can be set in a range of 0 to 50% by mass in 100% by mass of the total amount of the polymerizable component (P). From the viewpoint of obtaining a sufficient addition effect, 5% by mass or more is preferable, and 10% by mass or more is more preferable. When there is too much addition amount of polymeric component (C), transparency of an active energy ray-curable resin composition and its hardened | cured material will be sufficient by the problem of compatibility with other polymeric components, such as polymeric component (B). It may become impossible to maintain. In addition, the content of the polymerizable component (C) can be set to 49.5% by mass or less, preferably 30% by mass or less, and preferably 25% by mass or less from the viewpoint of sufficiently securing the content of other polymerizable components. Is more preferable.
 [重合性成分(D)]
 その他の重合性成分(D)は、重合性成分(P)中の他の重合性成分との共重合性を有する重合性官能基を有し、且つ重合性成分(A)、(B)、(C)に属さないものである。重合性成分(D)が有する重合性の官能基はラジカル重合性のものが好ましく、例えば、メタクリロイル基、アクリロイル基、アクリルアミド基、ビニルエーテル基、ビニル基等を挙げることができる。重合性成分(D)で付与することができる機能としては、例えば、基材密着性、希釈性、撥水性、親水性、帯電防止性、滑り性、レベリング性、耐擦傷性、耐候性、発光性、蛍光性、発色性、導電性、屈折率調整、酸化防止などが挙げられる。
[Polymerizable component (D)]
The other polymerizable component (D) has a polymerizable functional group having copolymerizability with other polymerizable components in the polymerizable component (P), and the polymerizable components (A), (B), It does not belong to (C). The polymerizable functional group of the polymerizable component (D) is preferably radically polymerizable, and examples thereof include a methacryloyl group, an acryloyl group, an acrylamide group, a vinyl ether group, and a vinyl group. Examples of functions that can be imparted with the polymerizable component (D) include substrate adhesion, dilution, water repellency, hydrophilicity, antistatic properties, slipperiness, leveling properties, scratch resistance, weather resistance, and light emission. Properties, fluorescence, color developability, conductivity, refractive index adjustment, and antioxidant.
 単官能の重合性成分(D)としては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-ブチル(メタ)アクリレート、i-ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート等のアルキル(メタ)アクリレート;ベンジル(メタ)アクリレート;イソボルニル(メタ)アクリレート、テトラヒドロフルフリル(メタ)アクリレート、アダマンチル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート等の脂環構造を有する(メタ)アクリレート;ジメチルアミノエチル(メタ)アクリレート、ジメチルアミノプロピル(メタ)アクリレート等のアミノ基を有する(メタ)アクリレート;ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート等の水酸基を有する(メタ)アクリレート;(メタ)アクリロイルモルホリン、N,N-ジメチル(メタ)アクリルアミド等の(メタ)アクリルアミド誘導体;2-ビニルピリジン、4-ビニルピリジン、N-ビニルピロリドン、N-ビニルホルムアミド、酢酸ビニル等、1,2,2,6,6-ペンタメチル-4-ピペリジル=(メタ)アクリレート、2,2,6,6-テトラメチル-4-ピペリジル(メタ)アクリレート、アクリル酸2-ターシャリーブチル-6-(3-ターシャリーブチル-2-ヒドロキシ-5-メチルベンジル)-4-メチルフェニル、アクリル酸2-[1-(2-ヒドロキシ-3,5-ジ-ターシャリーペンチルフェニル)エチル]-4,6-ジ-ターシャリーペンチルフェニル、3-(2H-1,2,3-ベンゾトリアゾール-2-イル)-4-ヒドロキシフェネチル=メタクリラート、3,3,4,4,5,5,6,6,7,7,8,8,8-トリデカフルオロオクチル(メタ)アクリレート等のフッ素を含有する(メタ)アクリレートを挙げることができる。 Examples of the monofunctional polymerizable component (D) include methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, i-butyl (meth) acrylate, t-butyl (meth) acrylate, Alkyl (meth) acrylates such as 2-ethylhexyl (meth) acrylate and lauryl (meth) acrylate; benzyl (meth) acrylate; isobornyl (meth) acrylate, tetrahydrofurfuryl (meth) acrylate, adamantyl (meth) acrylate, dicyclopenta (Meth) acrylate having an alicyclic structure such as nyl (meth) acrylate and dicyclopentenyl (meth) acrylate; and having an amino group such as dimethylaminoethyl (meth) acrylate and dimethylaminopropyl (meth) acrylate ( ) Acrylate; (meth) acrylate having a hydroxyl group such as hydroxyethyl (meth) acrylate and hydroxypropyl (meth) acrylate; (meth) acrylamide derivatives such as (meth) acryloylmorpholine and N, N-dimethyl (meth) acrylamide; 2-vinylpyridine, 4-vinylpyridine, N-vinylpyrrolidone, N-vinylformamide, vinyl acetate, etc. 1,2,2,6,6-pentamethyl-4-piperidyl = (meth) acrylate, 2,2,6 , 6-Tetramethyl-4-piperidyl (meth) acrylate, 2-tert-butyl acrylate-6- (3-tert-butyl-2-hydroxy-5-methylbenzyl) -4-methylphenyl, 2-acrylate [1- (2-hydroxy-3,5-di-tertiary pen Ruphenyl) ethyl] -4,6-di-tertiarypentylphenyl, 3- (2H-1,2,3-benzotriazol-2-yl) -4-hydroxyphenethyl methacrylate, 3,3,4,4 , 5,5,6,6,7,7,8,8,8-tridecafluorooctyl (meth) acrylate and the like.
 2官能の重合性成分(D)は、重合性成分(A)と重合性成分(B)に含まれない2官能の重合性成分を全て含む。このような2官能の重合性成分(D)としては、例えば、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、アルコキシ化アルカンジオールジ(メタ)アクリレート、アルコキシ化ビスフェノールAジ(メタ)アクリレート、ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、カプロラクトン変性ヒドロキシピバリン酸ネオペンチルグリコールジ(メタ)アクリレート、アルコキシ化ネオペンチルグリコールジ(メタ)アクリレート、ポリカーボネートジオールジ(メタ)アクリレート、(水添)ポリブタジエン末端(メタ)アクリレート、2官能のウレタン(メタ)アクリレート、2官能のエポキシ(メタ)アクリレート、2官能のポリエステル(メタ)アクリレート、フッ素を含有する2官能の(メタ)アクリレート、などが挙げられる。 The bifunctional polymerizable component (D) includes all the bifunctional polymerizable components not included in the polymerizable component (A) and the polymerizable component (B). Examples of such a bifunctional polymerizable component (D) include 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and 1,5-pentanediol di (meta). ) Acrylate, neopentyl glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, polyethylene glycol di (meth) acrylate, dipropylene glycol di ( (Meth) acrylate, tripropylene glycol di (meth) acrylate, alkoxylated alkanediol di (meth) acrylate, alkoxylated bisphenol A di (meth) acrylate, hydroxypivalate neopentyl glycol (Meth) acrylate, caprolactone-modified hydroxypivalic acid neopentyl glycol di (meth) acrylate, alkoxylated neopentyl glycol di (meth) acrylate, polycarbonate diol di (meth) acrylate, (hydrogenated) polybutadiene-terminated (meth) acrylate, 2 Examples include functional urethane (meth) acrylate, bifunctional epoxy (meth) acrylate, bifunctional polyester (meth) acrylate, and bifunctional (meth) acrylate containing fluorine.
 重合性成分(D)の含有割合は、重合性成分(A)、重合性成分(B)、重合性成分(C)の機能を阻害しない範囲であれば特に制限されるものではないが、例えば、0~50質量%の範囲に設定することができ、0~30質量%が好ましく、0~10質量%がより好ましい。 The content of the polymerizable component (D) is not particularly limited as long as it does not inhibit the functions of the polymerizable component (A), the polymerizable component (B), and the polymerizable component (C). , 0 to 50% by mass, preferably 0 to 30% by mass, more preferably 0 to 10% by mass.
 重合性成分(P)は、重合性成分の全体量100質量%に対して、ポリオキシアルキレン骨格を有する重合性成分の含有量が10質量%未満であることが好ましい。ポリオキシアルキレン骨格を有する重合性成分を10質量部以上含有すると、活性エネルギー線硬化性組成物の硬化物が親水性となり、微細凹凸構造を有する物品が十分な撥水性を発揮できない恐れがあり、また耐擦傷性や耐候性が低下してしまう恐れがある。ポリオキシアルキレン骨格を有する重合性成分の含有量は、重合性成分の全体量100質量%に対して8質量%以下であることが好ましく、6質量%以下であることがより好ましい。 In the polymerizable component (P), the content of the polymerizable component having a polyoxyalkylene skeleton is preferably less than 10% by mass relative to 100% by mass of the total amount of the polymerizable component. When the polymerizable component having a polyoxyalkylene skeleton is contained in an amount of 10 parts by mass or more, the cured product of the active energy ray-curable composition becomes hydrophilic, and the article having a fine uneven structure may not exhibit sufficient water repellency. In addition, the scratch resistance and weather resistance may be reduced. The content of the polymerizable component having a polyoxyalkylene skeleton is preferably 8% by mass or less and more preferably 6% by mass or less with respect to 100% by mass of the total amount of the polymerizable component.
 また、重合性成分(P)は、重合性成分の全体量100質量%に対して、脂環構造を有する成分の重合成分の含有量が17質量%未満であることが好ましい。脂環構造を有する重合性成分を17質量%以上含有すると、硬化物のTgが上昇し、微細凹凸構造を形成した場合に凹凸を形成する凸部が脆くなり、耐擦傷性が低下してしまう恐れがある。脂環構造を有する重合性成分の含有量は、重合性成分の全体量100質量%に対して10質量%以下であることが好ましく、5質量%以下であることがより好ましく、0質量%であることがさらに好ましい。 Moreover, it is preferable that content of the polymerization component of the component which has an alicyclic structure is less than 17 mass% with respect to 100 mass% of polymerizable components (P). When the polymerizable component having an alicyclic structure is contained in an amount of 17% by mass or more, the Tg of the cured product is increased, and when a fine concavo-convex structure is formed, the convex part forming the concavo-convex becomes brittle and the scratch resistance is reduced. There is a fear. The content of the polymerizable component having an alicyclic structure is preferably 10% by mass or less, more preferably 5% by mass or less, and more preferably 0% by mass with respect to 100% by mass of the total amount of the polymerizable component. More preferably it is.
 [光重合開始剤(E)]
 光重合開始剤(E)は、活性エネルギー線を照射することで開裂し、重合反応を開始させるラジカルを発生する化合物である。活性エネルギー線としては、装置コストや生産性の点から、紫外線が好ましい。
[Photoinitiator (E)]
The photopolymerization initiator (E) is a compound that generates a radical that is cleaved by irradiating active energy rays to initiate a polymerization reaction. As the active energy ray, ultraviolet rays are preferable from the viewpoint of apparatus cost and productivity.
 紫外線によってラジカルを発生する光重合開始剤(E)としては、例えば、ベンゾフェノン、4,4-ビス(ジエチルアミノ)ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、メチルオルソベンゾイルベンゾエート、4-フェニルベンゾフェノン、t-ブチルアントラキノン、2-エチルアントラキノン、チオキサントン類(2,4-ジエチルチオキサントン、イソプロピルチオキサントン、2,4-ジクロロチオキサントン等)、アセトフェノン類(ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン等)、ベンゾインエーテル類(ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等)、アシルホスフィンオキシド類(2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチルペンチルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-フェニルホスフィンオキシド等)、メチルベンゾイルホルメート、1,7-ビスアクリジニルヘプタン、9-フェニルアクリジン等が挙げられる。 Examples of the photopolymerization initiator (E) that generates radicals by ultraviolet rays include benzophenone, 4,4-bis (diethylamino) benzophenone, 2,4,6-trimethylbenzophenone, methyl orthobenzoylbenzoate, 4-phenylbenzophenone, t -Butylanthraquinone, 2-ethylanthraquinone, thioxanthones (2,4-diethylthioxanthone, isopropylthioxanthone, 2,4-dichlorothioxanthone, etc.), acetophenones (diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropane) -1-one, benzyldimethyl ketal, 1-hydroxycyclohexyl-phenyl ketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propan-1-one, 2-benzyl-2- Methylamino-1- (4-morpholinophenyl) -butanone), benzoin ethers (benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether, etc.), acylphosphine oxides (2,4,6-trimethyl) Benzoyldiphenylphosphine oxide, bis (2,6-dimethoxybenzoyl) -2,4,4-trimethylpentylphosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, etc.), methylbenzoylformate, , 7-bisacridinyl heptane, 9-phenylacridine and the like.
 光重合開始剤(E)は、1種を単独で用いてもよく、2種以上を併用してもよい。併用する場合は、吸収波長の異なる2種以上を併用することが好ましい。また、必要に応じて、過硫酸塩(過硫酸カリウム、過硫酸アンモニウム等)、過酸化物(ベンゾイルパーオキシド等)、アゾ系開始剤等の熱重合開始剤を併用してもよい。 As the photopolymerization initiator (E), one type may be used alone, or two or more types may be used in combination. When using together, it is preferable to use together 2 or more types from which absorption wavelength differs. Moreover, you may use together thermal polymerization initiators, such as persulfate (potassium persulfate, ammonium persulfate, etc.), peroxides (benzoyl peroxide, etc.), an azo initiator, as needed.
 光重合開始剤(E)の含有率は、活性エネルギー線硬化性樹脂組成物(X)が含む重合性成分(P)の合計100質量部に対して、0.01~10質量部が好ましく、0.1~5質量部がより好ましく、0.2~3質量部がさらに好ましい。光重合開始剤(E)の含有量が少なすぎると、活性エネルギー線硬化性樹脂組成物(X)の硬化が完結せず、微細凹凸構造を表面に有する物品の機械物性を損なう場合がある。光重合開始剤(E)の含有量が多すぎると、硬化物内に未反応の光重合開始剤(E)が残り、可塑剤として働いてしまい、硬化物の弾性率を低下させ、耐擦傷性を損なう場合もある。また、着色の原因となる場合もある。 The content of the photopolymerization initiator (E) is preferably 0.01 to 10 parts by mass with respect to a total of 100 parts by mass of the polymerizable components (P) contained in the active energy ray-curable resin composition (X). 0.1 to 5 parts by mass is more preferable, and 0.2 to 3 parts by mass is even more preferable. When there is too little content of a photoinitiator (E), hardening of active energy ray-curable resin composition (X) may not be completed, and the mechanical physical property of the article | item which has a fine concavo-convex structure on the surface may be impaired. If the content of the photopolymerization initiator (E) is too large, the unreacted photopolymerization initiator (E) remains in the cured product, which acts as a plasticizer, lowers the elastic modulus of the cured product, and is scratch resistant. Sexuality may be impaired. Moreover, it may cause coloring.
 [その他の成分(G)]
 その他の成分(G)は、必要に応じて添加される成分で、上記の重合性成分(P)、光重合開始剤(E)、内部離型剤(F)以外の成分である。その他の成分(G)は、難燃助剤、可塑剤、界面活性剤、帯電防止剤、酸化防止剤、光安定剤、重合禁止剤、紫外線吸収剤、充填剤、密着性付与剤、着色剤、強化剤、無機フィラー、耐衝撃性改質剤などを含む。その他、ラジカル重合性の官能基を有さないオリゴマーやポリマー、微量の有機溶媒等を含んでいてもよい。また、内部離型剤(F)以外の離型性付与成分を併用しても良い。
[Other components (G)]
The other component (G) is a component added as necessary, and is a component other than the polymerizable component (P), the photopolymerization initiator (E), and the internal release agent (F). Other components (G) are flame retardant aids, plasticizers, surfactants, antistatic agents, antioxidants, light stabilizers, polymerization inhibitors, ultraviolet absorbers, fillers, adhesion promoters, colorants. , Reinforcing agents, inorganic fillers, impact modifiers and the like. In addition, an oligomer or polymer that does not have a radical polymerizable functional group, a trace amount of an organic solvent, or the like may be included. Moreover, you may use together mold release provision components other than an internal mold release agent (F).
 重合禁止剤としては、例えば、ヒドロキノン系重合禁止剤として、ヒドロキノン(HQ)、ハイドロキノンモノメチルエーテル(MEHQ)、フェノール系重合禁止剤として、2,2’-メチレン-ビス(4-メチル-6-tert-ブチルフェノール)、カテコール、ピクリン酸、ターシャリーブチルカテコール、2,6-ジターシャリーブチル-p-クレゾール(BHT)、4,4’-チオビス[エチレン(オキシ)(カルボニル)(エチレン)]ビス[2,6-ビス(1,1-ジメチルエチル)フェノール]、などが挙げられる。フェノチアジン系重合禁止剤としては、フェノチアジン、ビス(α-メチルベンジル)フェノチアジン、3,7-ジオクチルフェノチアジン、ビス(α,α-ジメチルベンジル)フェノチアジン、等が挙げられる。ここで挙げた重合禁止剤のうち、BHTなどのフェノール系重合禁止剤は、酸化防止剤としても使用することができる。 Examples of the polymerization inhibitor include hydroquinone (HQ) and hydroquinone monomethyl ether (MEHQ) as hydroquinone polymerization inhibitors, and 2,2′-methylene-bis (4-methyl-6-tert) as phenol polymerization inhibitors. -Butylphenol), catechol, picric acid, tertiary butyl catechol, 2,6-ditertiary butyl-p-cresol (BHT), 4,4'-thiobis [ethylene (oxy) (carbonyl) (ethylene)] bis [2 , 6-bis (1,1-dimethylethyl) phenol], and the like. Examples of the phenothiazine polymerization inhibitor include phenothiazine, bis (α-methylbenzyl) phenothiazine, 3,7-dioctylphenothiazine, bis (α, α-dimethylbenzyl) phenothiazine, and the like. Among the polymerization inhibitors mentioned here, phenol polymerization inhibitors such as BHT can also be used as antioxidants.
 酸化防止剤としては、例えば、ヒンダードフェノール系、ベンズイミダゾール系、リン系、イオウ系、ヒンダードアミン系などの酸化防止剤が挙げられる。市販品としては、BASF社製の「IRGANOX」(登録商標)シリーズなどが挙げられる。 Examples of the antioxidant include hindered phenol-based, benzimidazole-based, phosphorus-based, sulfur-based and hindered amine-based antioxidants. Examples of commercially available products include “IRGANOX” (registered trademark) series manufactured by BASF.
 光安定剤としては、例えば、ヒンダードアミン系の酸化防止剤が挙げられる。ヒンダードアミン系のラジカル補足剤である1次酸化防止剤としては、例えば、下記のものが挙げられる。BASF社製、商品名:Chimassorb 2020FDL,Chimassorb 944FDL,Tinuvin 622SF,Uvinul 5050H,Tinuvin 144,Tinuvin 765,Tinuvin 770DF,Tinuvin4050FF。 Examples of the light stabilizer include hindered amine antioxidants. Examples of the primary antioxidant that is a hindered amine-based radical scavenger include the following. Product name: Chimassorb 2020FDL, Chimassorb 944FDL, Tinuvin 622SF, Uvinul 5050H, Tinuvin 144, Tinuvin 765, Tinuvin 770DF, Tinuvin 4050FF.
 紫外線吸収剤としては、例えば、ベンゾフェノン系、ベンゾトリアゾール系、ヒンダードアミン系、ベンゾエート系、トリアジン系などが挙げられる。市販品としては、BASF社製の商品名:チヌビン400、チヌビン479、共同薬品(株)製の商品名:Viosorb110等が挙げられる。 Examples of ultraviolet absorbers include benzophenone, benzotriazole, hindered amine, benzoate, and triazine. Examples of commercially available products include BASF Corporation brand names: Tinuvin 400 and Tinuvin 479, and Kyodo Pharmaceutical Co., Ltd. brand names: Viosorb110.
 [樹脂組成物の粘度]
 本発明の実施形態による樹脂組成物(X)は、スタンパにより微細凹凸構造を形成して硬化させる場合、スタンパの表面の微細凹凸構造への流れ込みやすさの点から、適度な粘度を有することが好ましい。25℃における回転式B型粘度計で測定した、樹脂組成物の粘度は10000mPa・s以下が好ましく、より好ましくは5000mPa・s以下であり、更に好ましくは2000mPa・s以下である。なお、樹脂組成物が、25℃における粘度が10000mPa・s以上であっても、加温により上記範囲の粘度とすることによりスタンパに接触可能であるならば、好適に用いることができる。この場合、樹脂組成物の70℃における回転式B型粘度計での粘度が、5000mPa・s以下であることが好ましく、2000mPa・s以下であることがより好ましい。また、樹脂組成物の粘度が10mPa・s以上であれば、スタンパとの接触が可能であり、微細凹凸構造を表面に有する硬化物を形成することができる。
[Viscosity of resin composition]
When the resin composition (X) according to the embodiment of the present invention is cured by forming a fine concavo-convex structure with a stamper, the resin composition (X) may have an appropriate viscosity from the viewpoint of easy flow into the fine concavo-convex structure on the surface of the stamper. preferable. The viscosity of the resin composition measured with a rotary B-type viscometer at 25 ° C. is preferably 10,000 mPa · s or less, more preferably 5000 mPa · s or less, and still more preferably 2000 mPa · s or less. In addition, even if the viscosity at 25 degreeC is 10,000 mPa * s or more, if the resin composition can contact a stamper by making it the viscosity of the said range by heating, it can use suitably. In this case, the viscosity of the resin composition at 70 ° C. with a rotary B-type viscometer is preferably 5000 mPa · s or less, and more preferably 2000 mPa · s or less. Moreover, if the viscosity of a resin composition is 10 mPa * s or more, a contact with a stamper is possible and the hardened | cured material which has a fine concavo-convex structure on the surface can be formed.
 樹脂組成物の粘度の調整には、含有させるモノマーの種類や含有量を選択したり、粘度調整剤を用いて調整することができる。具体的には、水素結合等の分子間相互作用を有する官能基や化学構造を含むモノマーを多量に用いると、樹脂組成物の粘度は高くなる。また、分子間相互作用のない低分子量のモノマーを多量に用いると、樹脂組成物の粘度は低くなる。 The viscosity of the resin composition can be adjusted by selecting the type and content of the monomer to be contained or using a viscosity modifier. Specifically, when a large amount of a monomer containing a functional group having a molecular interaction such as a hydrogen bond or a chemical structure is used, the viscosity of the resin composition increases. Further, when a large amount of a low molecular weight monomer having no intermolecular interaction is used, the viscosity of the resin composition becomes low.
 本発明の実施形態による樹脂組成物(X)は、粘度が比較的低いにもかかわらず、得られる硬化物は適度な硬度を有することができる。その結果、スタンパの剥離を良好に行うことができ、且つ形成された微細凹凸構造が維持され、耐擦傷性が高く、しかも、すぐれた撥水性を発揮する硬化物を得ることができる。 Although the resin composition (X) according to the embodiment of the present invention has a relatively low viscosity, the obtained cured product can have an appropriate hardness. As a result, the stamper can be peeled favorably, the formed fine uneven structure is maintained, the scratch resistance is high, and a cured product exhibiting excellent water repellency can be obtained.
 [成形品(微細凹凸構造体)/微細凹凸構造を有する物品]
 本発明の実施形態による樹脂組成物(X)は、重合及び硬化させて成形品とすることができる。そのような成形品として、特に微細凹凸構造を表面に有する微細凹凸構造体は極めて有用である。このような微細凹凸構造体を用いた物品(微細凹凸構造を有する物品)としては、例えば、基材と、表面に微細凹凸構造を有する硬化樹脂層(微細凹凸構造体)を有するものを挙げることができる。
[Molded product (fine uneven structure) / article having fine uneven structure]
The resin composition (X) according to the embodiment of the present invention can be polymerized and cured to form a molded product. As such a molded article, a fine concavo-convex structure having a fine concavo-convex structure on the surface is extremely useful. As an article using such a fine concavo-convex structure (article having a fine concavo-convex structure), for example, an article having a base material and a cured resin layer (fine concavo-convex structure) having a fine concavo-convex structure on the surface is given. Can do.
 このような微細凹凸構造体を用いた物品の一例の模式断面図を図1に示す。 FIG. 1 shows a schematic cross-sectional view of an example of an article using such a fine concavo-convex structure.
 図1(a)に示す微細凹凸構造を有する物品10は、基材11(基材11上に形成されたコーティング層15)上に、本発明の実施形態による活性エネルギー線硬化性樹脂組成物(X)を硬化させた硬化樹脂層(表層)12が積層されたものである。硬化樹脂層12の表面は、微細凹凸構造を有する。この微細凹凸構造においては、円錐状の凸部13(凹部14)がほぼ等間隔w1で形成されている。凸部13の形状は、高さ方向に垂直な断面(基材平面と平行な面)における断面積が、凸部の頂点側から基材側に、連続的に増大する形状であることが好ましい。このような形状により、屈折率を連続的に増大させることができ、波長による反射率の変動(波長依存性)を抑制し、可視光の散乱を抑えて、低反射率の微細凹凸構造を形成できる。また、本発明の実施形態による樹脂組成物(X)を用いて形成された、微細凹凸構造を有する物品は、複数の凸部を有する部分における水の接触角度が80度以上である。 An article 10 having a fine concavo-convex structure shown in FIG. 1 (a) is formed on an active energy ray-curable resin composition according to an embodiment of the present invention on a base material 11 (a coating layer 15 formed on the base material 11). A cured resin layer (surface layer) 12 obtained by curing X) is laminated. The surface of the cured resin layer 12 has a fine uneven structure. In this fine concavo-convex structure, conical convex portions 13 (concave portions 14) are formed at substantially equal intervals w1. The shape of the convex portion 13 is preferably a shape in which a cross-sectional area in a cross section perpendicular to the height direction (a surface parallel to the base material plane) continuously increases from the apex side of the convex portion to the base material side. . With such a shape, the refractive index can be increased continuously, the fluctuation of the reflectance due to wavelength (wavelength dependence) is suppressed, the scattering of visible light is suppressed, and a fine concavo-convex structure with low reflectance is formed. it can. Moreover, as for the article | item which has the fine grooving | roughness structure formed using resin composition (X) by embodiment of this invention, the contact angle of water in the part which has a several convex part is 80 degree | times or more.
 微細凹凸構造において、凸部(凹部)の間隔w1は、可視光の波長(具体的には、400~780nm)以下の距離とすることが好ましい。凸部の間隔w1が400nm以下であれば、可視光の散乱を抑制でき、反射防止膜として光学用途に好適に使用できる。w1は、50~400nmがより好ましく、50~250nmがさらに好ましく、80~200nmが特に好ましい。 In the fine concavo-convex structure, the interval w1 between the convex portions (concave portions) is preferably a distance of not more than the wavelength of visible light (specifically, 400 to 780 nm). If the interval w1 between the convex portions is 400 nm or less, the scattering of visible light can be suppressed, and the antireflection film can be suitably used for optical applications. w1 is more preferably from 50 to 400 nm, further preferably from 50 to 250 nm, particularly preferably from 80 to 200 nm.
 また、凸部の高さ(凹部の深さ)、すなわち、凹部の底点14aと凸部の頂部13aとの垂直距離d1(以下、特に断らない限り「凸部の高さ」又は「d1」という)は、波長により反射率が変動するのを抑制できる深さとすることが好ましい。具体的には、60nm以上が好ましく、90nm以上がより好ましく、150nm以上が更に好ましく、180nm以上が特に好ましい。d1が150nm近傍では、人が一番認識しやすい550nmの波長域光の反射率を最も低くすることができ、d1が150nm以上になると、d1が高いほど、可視光域における最高反射率と最低反射率の差が小さくなる。このため、d1が150nm以上であれば、反射光の波長依存性が小さくなり、目視での色味の相違は認識されなくなる。 Further, the height of the convex portion (depth of the concave portion), that is, the vertical distance d1 between the bottom 14a of the concave portion and the top portion 13a of the convex portion (hereinafter referred to as “the height of the convex portion” or “d1” unless otherwise specified). Is preferably set to such a depth that the reflectance can be prevented from varying with the wavelength. Specifically, 60 nm or more is preferable, 90 nm or more is more preferable, 150 nm or more is further preferable, and 180 nm or more is particularly preferable. When d1 is around 150 nm, the reflectance of light in the wavelength region of 550 nm that is most easily recognized by humans can be minimized. When d1 is 150 nm or more, the higher the d1 is, the higher the maximum reflectance and the lowest reflectance in the visible light region are. The difference in reflectance is reduced. For this reason, if d1 is 150 nm or more, the wavelength dependency of the reflected light is reduced, and the difference in visual color is not recognized.
 ここで凸部の間隔w1及び高さd1は、電界放出形走査電子顕微鏡(商品名:JSM-7400F、日本電子(株)製)による加速電圧3.00kVの画像における測定により得られる測定値の算術平均値を採用することができる。 Here, the interval w1 and the height d1 of the convex portions are measured values obtained by measurement in an image with an acceleration voltage of 3.00 kV using a field emission scanning electron microscope (trade name: JSM-7400F, manufactured by JEOL Ltd.). Arithmetic mean values can be employed.
 また、凸部13は、図1(b)に示すような、釣鐘状であってもよい。その他、垂直面における断面積が、凸部の頂点側から基材側に、連続的に増大する形状として、例えば円錐台状を採用することができる。 Further, the convex portion 13 may have a bell shape as shown in FIG. In addition, for example, a truncated cone shape can be adopted as a shape in which the cross-sectional area in the vertical plane continuously increases from the apex side of the convex portion to the base material side.
 微細凹凸構造としては、略円錐形状、角錐形状等の突起(凸部)が規則的に配列した構造が好ましい。凸部の形状は、高さ方向に垂直な断面(基材平面と平行な面)の断面積が基材側から頂部に向かって連続的に減少する形状、すなわち、凸部の高さ方向に沿った断面形状が、三角形、台形、釣鐘型等の形状が好ましい。 The fine concavo-convex structure is preferably a structure in which protrusions (convex portions) such as a substantially conical shape and a pyramid shape are regularly arranged. The shape of the convex part is a shape in which the cross-sectional area of the cross section perpendicular to the height direction (surface parallel to the base material plane) continuously decreases from the base material side toward the top, that is, in the height direction of the convex part. The cross-sectional shape along the shape is preferably a triangle, trapezoid, bell shape or the like.
 微細凹凸構造は図1に示す実施形態に限定されるものではない。微細凹凸構造は、硬化樹脂層(微細凹凸構造体)の表面に形成されていればよく、例えば、基材の片面又は両面、あるいは全面又は一部(透明性、超撥水性の必要な個所)に硬化樹脂層を設け、この硬化樹脂層の外側表面に微細凹凸構造が形成されたものを提供できる。 The fine uneven structure is not limited to the embodiment shown in FIG. The fine concavo-convex structure may be formed on the surface of the cured resin layer (fine concavo-convex structure). For example, one side or both sides of the base material, or the whole surface or part (location where transparency and super water repellency are required). A cured resin layer can be provided on the outer surface of the cured resin layer, and a fine uneven structure can be formed on the outer surface of the cured resin layer.
 このような微細凹凸構造として、凸部間の間隔が可視光の波長以下であるモスアイ構造が好ましく、硬化物の表面のモスアイ構造は、空気の屈折率から硬化物(凸部の根元部分)の屈折率へと連続的に屈折率を増大させることにより、有効な反射防止手段となる。凸部間の平均間隔w1は、前述の通り、可視光の波長以下、すなわち400nm以下が好ましく、50~400nmがより好ましく、50~250nmがさらに好ましく、80~200nmが特に好ましい。 As such a fine concavo-convex structure, a moth-eye structure in which the interval between the convex portions is equal to or less than the wavelength of visible light is preferable, and the moth-eye structure on the surface of the cured product is determined from the refractive index of air. By continuously increasing the refractive index to the refractive index, it becomes an effective antireflection means. As described above, the average interval w1 between the convex portions is preferably not more than the wavelength of visible light, that is, not more than 400 nm, more preferably 50 to 400 nm, still more preferably 50 to 250 nm, and particularly preferably 80 to 200 nm.
 凸部間の平均間隔w1は、電子顕微鏡画像において、隣接する凸部間の間隔(凸部の中心から隣接する凸部の中心までの距離)を50点測定し、これらの測定値を算術平均して求めた値を採用する。 The average interval w1 between the convex portions is measured by measuring 50 intervals between the adjacent convex portions (distance from the center of the convex portion to the center of the adjacent convex portion) in the electron microscope image, and arithmetically averaging these measured values. The value obtained in this way is adopted.
 凸部の高さd1は、w1が上記の範囲にある場合、特に100nm付近である場合は、80nm以上が好ましく、120nm以上がより好ましく、150nm以上が特に好ましい。d1が80nm以上であれば、反射率の充分な低減を図り、かつ、波長による反射率の変動、すなわち、反射率の波長依存性が少ない。微細凹凸構造の耐擦傷性が良好となる点から、d1は500nm以下が好ましく、400nm以下がよりこのましく、300nm以下が特に好ましい。 The height d1 of the convex portion is preferably 80 nm or more, more preferably 120 nm or more, and particularly preferably 150 nm or more, particularly when w1 is in the above range, particularly in the vicinity of 100 nm. If d1 is 80 nm or more, the reflectance is sufficiently reduced, and the variation of the reflectance due to the wavelength, that is, the wavelength dependence of the reflectance is small. In view of good scratch resistance of the fine concavo-convex structure, d1 is preferably 500 nm or less, more preferably 400 nm or less, and particularly preferably 300 nm or less.
 凸部の高さd1は、電子顕微鏡の30000倍画像において、凸部の最頂部と、凸部間に存在する凹部の最底部との間の、基材平面に垂直方向に沿った高さを50点測定し、これらの測定値を算術平均して求めた値を採用する。 The height d1 of the convex portion is the height along the direction perpendicular to the substrate plane between the topmost portion of the convex portion and the bottommost portion of the concave portion existing between the convex portions in the 30000 times image of the electron microscope. 50 points are measured, and a value obtained by arithmetically averaging these measured values is adopted.
 凸部のアスペクト比(凸部の高さd1/凸部間の平均間隔w1)は、反射率を十分に抑える点から0.3以上が好ましく、0.5以上がより好ましく、0.7以上が特に好ましい。耐擦傷性が良好となる点から、このアスペクト比は6以下が好ましく、4以下がより好ましく、2以下が特に好ましい。 The aspect ratio of the protrusions (the height d1 of the protrusions / the average interval w1 between the protrusions) is preferably 0.3 or more, more preferably 0.5 or more, and 0.7 or more from the viewpoint of sufficiently suppressing the reflectance. Is particularly preferred. In view of good scratch resistance, the aspect ratio is preferably 6 or less, more preferably 4 or less, and particularly preferably 2 or less.
 硬化樹脂層と基材はその屈折率の差が0.2以内であることが好ましく、0.1以内がより好ましく、0.05以内が特に好ましい。屈折率差が0.2以内であれば、硬化樹脂層と基材との界面における反射を抑制することができる。 The difference in refractive index between the cured resin layer and the substrate is preferably within 0.2, more preferably within 0.1, and particularly preferably within 0.05. If the refractive index difference is within 0.2, reflection at the interface between the cured resin layer and the substrate can be suppressed.
 微細凹凸構造層の厚みは、例えば0.5~100μmの範囲、好ましくは1~50μmの範囲に設定できる。 The thickness of the fine concavo-convex structure layer can be set, for example, in the range of 0.5 to 100 μm, preferably in the range of 1 to 50 μm.
 基材としては、微細凹凸構造を有する硬化樹脂層を支持可能なものであれば、いずれであってもよいが、微細凹凸構造体をディスプレイ部材に適用する場合、透明な、すなわち光を透過するものが好ましい。透明な基材を構成する材料としては、例えば、メチルメタクリレート(共)重合体、ポリカーボネート、スチレン(共)重合体、メチルメタクリレート-スチレン共重合体等の合成高分子、セルロースジアセテート、セルローストリアセテート、セルロースアセテートブチレート等の半合成高分子;ポリエチレンテレフタレート、ポリ乳酸等のポリエステル、ポリアミド、ポリイミド、ポリエーテルスルフォン、ポリスルフォン、ポリエチレン、ポリプロピレン、ポリメチルペンテン、ポリ塩化ビニル、ポリビニルアセタール、ポリエーテルケトン、ポリウレタン、それら高分子の複合物(ポリメチルメタクリレートとポリ乳酸の複合物、ポリメチルメタクリレートとポリ塩化ビニルの複合物等)、ガラス等の透明無機材料が挙げられる。 The substrate may be any material as long as it can support a cured resin layer having a fine concavo-convex structure. However, when the fine concavo-convex structure is applied to a display member, it is transparent, that is, transmits light. Those are preferred. Examples of the material constituting the transparent substrate include synthetic polymers such as methyl methacrylate (co) polymer, polycarbonate, styrene (co) polymer, methyl methacrylate-styrene copolymer, cellulose diacetate, cellulose triacetate, Semi-synthetic polymers such as cellulose acetate butyrate; polyesters such as polyethylene terephthalate and polylactic acid, polyamide, polyimide, polyether sulfone, polysulfone, polyethylene, polypropylene, polymethylpentene, polyvinyl chloride, polyvinyl acetal, polyether ketone, Examples thereof include polyurethane, composites of these polymers (composites of polymethyl methacrylate and polylactic acid, composites of polymethyl methacrylate and polyvinyl chloride, etc.), and transparent inorganic materials such as glass.
 基材の形状はシート状、フィルム状等のいずれであってもよい。基材の製造方法も特に限定されず、例えば、射出成形、押し出し成形、キャスト成形等、いずれの製法により製造されたものを使用することができる。また、密着性、帯電防止性、耐擦傷性、耐候性等の特性の改良を目的として、透明基材の表面に、コーティングやコロナ処理が施されていてもよい。 The shape of the substrate may be any of a sheet shape, a film shape, and the like. The method for producing the substrate is not particularly limited, and for example, those produced by any production method such as injection molding, extrusion molding, and cast molding can be used. In addition, the surface of the transparent substrate may be subjected to coating or corona treatment for the purpose of improving properties such as adhesion, antistatic properties, scratch resistance, and weather resistance.
 このような微細凹凸構造体は、反射防止膜として適用することができ、高い耐擦傷性を有することができる。また、樹脂組成物(X)の組成種の選択や組成比の制御によって、その硬化物について、高い耐擦傷性に加えて、優れた指紋除去性等の汚染物の除去効果を得ることができる。 Such a fine concavo-convex structure can be applied as an antireflection film and can have high scratch resistance. Further, by selecting the composition type of the resin composition (X) and controlling the composition ratio, in addition to high scratch resistance, it is possible to obtain a contaminant removal effect such as excellent fingerprint removability for the cured product. .
 [微細凹凸構造体の製造方法]
 微細凹凸構造体の製造方法としては、例えば、(1)微細凹凸構造の反転構造が形成されたスタンパと基材との間に樹脂組成物を配し、活性エネルギー線の照射により樹脂組成物を硬化して、スタンパの凹凸形状を転写し、その後スタンパを剥離する方法、(2)樹脂組成物にスタンパの凹凸形状を転写してからスタンパを剥離し、その後活性エネルギー線を照射して樹脂組成物を硬化する方法等が挙げられる。これらの中でも、微細凹凸構造の転写性、表面組成の自由度の点から、(1)の方法が特に好ましい。この方法は、連続生産が可能なベルト状ロール状のスタンパを用いる場合に特に好適であり、生産性に優れた方法である。
[Production method of fine uneven structure]
As a method for producing a fine concavo-convex structure, for example, (1) a resin composition is disposed between a stamper on which an inverted structure of a fine concavo-convex structure is formed and a substrate, and the resin composition is irradiated by active energy ray irradiation. A method of curing, transferring the uneven shape of the stamper, and then peeling the stamper. (2) Transferring the uneven shape of the stamper to the resin composition, peeling the stamper, and then irradiating the active energy rays to the resin composition And a method of curing the product. Among these, the method (1) is particularly preferable from the viewpoint of the transferability of the fine relief structure and the degree of freedom of the surface composition. This method is particularly suitable when a belt-shaped roll stamper capable of continuous production is used, and is an excellent method of productivity.
 (スタンパ)
 スタンパは、微細凹凸構造体の表面に形成する微細凹凸構造の反転構造を表面に有するものである。スタンパの材料としては、金属(表面に酸化皮膜が形成されたものを含む。)、石英、ガラス、樹脂、セラミックス等が挙げられる。スタンパの形状としては、ロール状、円管状、平板状、シート状等が挙げられる。
(Stamper)
The stamper has an inverted structure of the fine uneven structure formed on the surface of the fine uneven structure on the surface. Examples of the material of the stamper include metals (including those having an oxide film formed on the surface), quartz, glass, resin, ceramics, and the like. Examples of the shape of the stamper include a roll shape, a circular tube shape, a flat plate shape, and a sheet shape.
 スタンパに微細凹凸構造の反転構造を形成する方法は、特に限定されず、その具体例としては、電子ビームリソグラフィー法、レーザー光干渉法が挙げられる。例えば、適当な支持基板上に適当なフォトレジスト膜を塗布し、紫外線レーザー、電子線、X線等の光で露光し、現像することによって反転微細凹凸構造を形成した型を得て、この型をそのままスタンパとして使用することもできる。また、露光・現像によりパターニングされたフォトレジスト膜を介して支持基板をドライエッチングにより選択的にエッチングして、フォトレジスト膜を除去することで支持基板そのものに直接反転微細凹凸構造を形成することも可能である。 The method for forming the inverted structure of the fine concavo-convex structure on the stamper is not particularly limited, and specific examples thereof include an electron beam lithography method and a laser beam interference method. For example, an appropriate photoresist film is applied on an appropriate support substrate, exposed to light such as an ultraviolet laser, an electron beam, or X-ray, and developed to obtain a mold having a reversal fine uneven structure, and this mold Can also be used as a stamper. In addition, the support substrate can be selectively etched by dry etching through a photoresist film patterned by exposure and development, and the photoresist film is removed to form an inverted fine concavo-convex structure directly on the support substrate itself. Is possible.
 また、その他の方法として、陽極酸化ポーラスアルミナを、スタンパとして利用することも可能である。例えば、アルミニウム基材をシュウ酸、硫酸、リン酸等を電解液として所定の電圧にて陽極酸化することにより形成される20~200nm径の細孔構造をスタンパとして利用してもよい。この方法によれば、高純度アルミニウム基材を定電圧で長時間陽極酸化した後、一旦酸化皮膜を除去し、再び陽極酸化することで、非常に高規則性の細孔を自己組織化的に形成できる。さらに、二回目に陽極酸化する工程で、陽極酸化処理と孔径拡大処理を組み合わせることで、断面が矩形でなく三角形や釣鐘型である微細凹凸構造も形成可能となる。また、陽極酸化処理と孔径拡大処理の時間や条件を適宜調節することで、細孔最奥部の角度を鋭くすることも可能である。 As another method, anodized porous alumina can be used as a stamper. For example, a pore structure having a diameter of 20 to 200 nm formed by anodizing an aluminum substrate with oxalic acid, sulfuric acid, phosphoric acid or the like as an electrolyte at a predetermined voltage may be used as a stamper. According to this method, after anodizing a high-purity aluminum substrate for a long time at a constant voltage, the oxide film is once removed and then anodized again, so that very highly ordered pores can be self-organized. Can be formed. Further, in the second anodic oxidation step, by combining the anodic oxidation treatment and the hole diameter enlargement treatment, it is possible to form a fine concavo-convex structure whose cross section is not a rectangle but a triangle or a bell shape. Further, the angle of the innermost portion of the pore can be sharpened by appropriately adjusting the time and conditions of the anodizing treatment and the pore diameter expanding treatment.
 さらに、その他の方法として、微細凹凸構造を有する原型から電鋳法等で複製型を作製し、これをスタンパとして使用してもよい。 Furthermore, as another method, a replica mold may be produced from an original mold having a fine concavo-convex structure by an electroforming method or the like and used as a stamper.
 スタンパそのものの形状は特に限定されず、例えば、平板状、ベルト状、ロール状のいずれでもよい。特に、ベルト状やロール状にすれば、連続的に微細凹凸構造を転写でき、生産性をより高めることができる。 The shape of the stamper itself is not particularly limited, and may be, for example, a flat plate shape, a belt shape, or a roll shape. In particular, if a belt shape or a roll shape is used, the fine concavo-convex structure can be transferred continuously, and the productivity can be further increased.
 (樹脂組成物(X)の供給と硬化工程)
 このようなスタンパと基材との間に、樹脂組成物(X)を供給し配値する。スタンパと基材間に樹脂組成物を配置する方法としては、例えば、スタンパと基材間に樹脂組成物を配置した状態でスタンパと基材とを押圧することで、成型キャビティーへ樹脂組成物を注入することができる。
(Supply of resin composition (X) and curing step)
A resin composition (X) is supplied and distributed between such a stamper and a base material. As a method of arranging the resin composition between the stamper and the substrate, for example, the resin composition is pressed into the molding cavity by pressing the stamper and the substrate in a state where the resin composition is arranged between the stamper and the substrate. Can be injected.
 スタンパと基材間に樹脂組成物を配置した後、樹脂組成物に活性エネルギー線を照射して重合硬化する。重合硬化の方法としては、紫外線照射による硬化処理が好ましい。紫外線を照射するランプとしては、例えば、高圧水銀灯、メタルハライドランプ、無電極ランプであるフュージョンランプ、UV-LEDを用いることができる。 After disposing the resin composition between the stamper and the substrate, the resin composition is irradiated with active energy rays and polymerized and cured. As a method of polymerization curing, a curing treatment by ultraviolet irradiation is preferable. As the lamp for irradiating ultraviolet rays, for example, a high-pressure mercury lamp, a metal halide lamp, a fusion lamp that is an electrodeless lamp, or a UV-LED can be used.
 紫外線の照射量は、重合開始剤の吸収波長や含有量に応じて決定すればよい。通常、その積算光量は、400~4000mJ/cmが好ましく、400~2000mJ/cmがより好ましい。積算光量が400mJ/cm以上であれば、樹脂組成物を十分硬化させて硬化不足に因る耐擦傷性低下を抑制することができる。また、積算光量が4000mJ/cm以下に設定することは、硬化物の着色や基材の劣化を防止する点で好ましい。照射強度も特に制限されないが、基材の劣化等を招かない程度の出力に抑えることが好ましい。 What is necessary is just to determine the irradiation amount of an ultraviolet-ray according to the absorption wavelength and content of a polymerization initiator. Normally, the integrated light quantity is preferably 400 ~ 4000mJ / cm 2, more preferably 400 ~ 2000mJ / cm 2. When the integrated light quantity is 400 mJ / cm 2 or more, the resin composition can be sufficiently cured to suppress the scratch resistance from being insufficiently cured. Moreover, it is preferable to set the integrated light quantity to 4000 mJ / cm 2 or less from the viewpoint of preventing coloring of the cured product and deterioration of the base material. The irradiation intensity is not particularly limited, but it is preferable to suppress the output to a level that does not cause deterioration of the substrate.
 樹脂組成物の重合硬化後、スタンパを剥離して、微細凹凸構造を有する硬化物である微細凹凸構造体を得ることができる。 After the polymerization and curing of the resin composition, the stamper is peeled off to obtain a fine concavo-convex structure which is a cured product having a fine concavo-convex structure.
 [微細凹凸構造体の用途]
 このようにして得られる微細凹凸構造体は、その表面にスタンパの微細凹凸構造が鍵と鍵穴の関係で転写され、高い耐擦傷性を備えている。また、撥水性を有し、汚染物の付着防止効果を兼ね備えることができる。このような微細凹凸構造体は、連続的な屈折率の変化によって優れた反射防止性能を発現でき、反射防止フィルムや、立体形状の成形品の反射防止膜として好適である。
[Uses of fine uneven structures]
The fine concavo-convex structure obtained in this way has a high scratch resistance because the fine concavo-convex structure of the stamper is transferred to the surface in a relationship between a key and a keyhole. Moreover, it has water repellency and can also have the effect of preventing the adhesion of contaminants. Such a fine concavo-convex structure can exhibit excellent antireflection performance due to a continuous change in refractive index, and is suitable as an antireflection film or an antireflection film for a three-dimensional molded product.
 このような微細凹凸構造体は、コンピュータ、テレビ、携帯電話等の、液晶表示装置、プラズマディスプレイパネル、エレクトロルミネッセンスディスプレイ、陰極管表示装置のような画像表示装置のディスプレイ部材として好適である。また、レンズ、ショーウィンドウ、眼鏡レンズ等の透明部材の表面に、微細凹凸構造体を貼り付けて使用することができる。その他、光導波路、レリーフホログラム、レンズ、偏光分離素子などの光学用途や、細胞培養シートの用途にも適用できる。また、撥水性を活かしてミラーや窓などの建材、ドアミラー用フィルムやウィンドウ用フィルムなどの車載用途、船底材料などに適用できる。 Such a fine concavo-convex structure is suitable as a display member of an image display device such as a liquid crystal display device, a plasma display panel, an electroluminescence display, or a cathode ray tube display device such as a computer, a television set, or a mobile phone. In addition, a fine concavo-convex structure can be used by being attached to the surface of a transparent member such as a lens, a show window, or a spectacle lens. In addition, the present invention can also be applied to optical applications such as optical waveguides, relief holograms, lenses, and polarization separation elements, and cell culture sheet applications. In addition, it can be applied to building materials such as mirrors and windows, in-vehicle applications such as door mirror films and window films, and ship bottom materials by utilizing water repellency.
 [スタンパの作製方法]
 微細凹凸構造体の作製に用いられるスタンパとしては、前述の通り、陽極酸化ポーラスアルミナで作製されたものが有用である。以下に、スタンパの作製方法として、アルミニウム基板の表面に、所定形状の複数の微細細孔を陽極酸化により形成する方法を、図2の工程図を用いて説明する。
[Production method of stamper]
As the stamper used for producing the fine concavo-convex structure, one made of anodized porous alumina is useful as described above. Hereinafter, a method of forming a plurality of fine pores having a predetermined shape on the surface of an aluminum substrate by anodic oxidation as a stamper manufacturing method will be described with reference to the process chart of FIG.
 工程(a)
 工程(a)は、アルミニウム基材30を、定電圧下、電解液中で陽極酸化して、アルミニウム基材の表面に酸化皮膜を形成する工程である。
Step (a)
Step (a) is a step of forming an oxide film on the surface of the aluminum substrate by anodizing the aluminum substrate 30 in an electrolytic solution under a constant voltage.
 アルミニウム基材は、純度99%以上のアルミニウムを用いることが好ましく、より好ましくは純度99.5%以上、更に好ましくは純度99.8%以上である。アルミニウムの純度が高いと、陽極酸化したとき、不純物の偏析による可視光を散乱する大きさの凹凸構造が形成され難く、また、陽極酸化で形成される細孔が規則的に形成される。アルミニウム基材の形状は、ロール状、円管状、平板状、シート状等の所望の形状でよく、微細凹凸構造体を連続的なフィルムやシートとして得る場合はロール状とすることが好ましい。 The aluminum base material preferably uses aluminum having a purity of 99% or more, more preferably has a purity of 99.5% or more, and further preferably has a purity of 99.8% or more. When the purity of aluminum is high, when anodized, it is difficult to form a concavo-convex structure having a size that scatters visible light due to segregation of impurities, and pores formed by anodization are regularly formed. The shape of the aluminum substrate may be a desired shape such as a roll shape, a tubular shape, a flat plate shape, or a sheet shape, and is preferably a roll shape when the fine concavo-convex structure is obtained as a continuous film or sheet.
 アルミニウム基材は、所定の形状に加工する際に用いた油が付着していることがあるため、予め脱脂処理をし、電解研磨処理(エッチング処理)により、表面を平滑にしておくことが好ましい。 Since the aluminum base material may be attached with oil used when processing into a predetermined shape, it is preferable to degrease in advance and smooth the surface by electrolytic polishing (etching). .
 このような表面処理アルミニウム基材を陽極酸化すると、細孔31を有する酸化皮膜32が形成される。 When such a surface-treated aluminum base material is anodized, an oxide film 32 having pores 31 is formed.
 電解液として、硫酸、シュウ酸、リン酸等を用いることができる。電解液としてシュウ酸を用いる場合、シュウ酸の濃度は0.7M以下が好ましい。シュウ酸の濃度が0.7M以下であると、電流値を低く抑え、緻密な組織の酸化皮膜を形成できる。化成電圧は30~60Vが好ましい。化成電圧が30~60Vであると、周期100nm程度の規則性で細孔が形成された陽極酸化ポーラスアルミナ層が形成できる。化成電圧がこの範囲より高くても低くても形成される細孔の規則性が低下する傾向がある。電解液の温度は、60℃以下が好ましく、45℃以下がより好ましい。電解液の温度が60℃以下であれば、いわゆる「ヤケ」の発生を抑制し、細孔が壊れたり、表面が溶けて不規則な細孔が形成されるのが抑制される。 As the electrolytic solution, sulfuric acid, oxalic acid, phosphoric acid or the like can be used. When oxalic acid is used as the electrolytic solution, the concentration of oxalic acid is preferably 0.7 M or less. When the concentration of oxalic acid is 0.7 M or less, the current value can be kept low, and a dense oxide film can be formed. The formation voltage is preferably 30 to 60V. When the formation voltage is 30 to 60 V, an anodized porous alumina layer in which pores are formed with a regularity of about 100 nm can be formed. Regardless of whether the formation voltage is higher or lower than this range, the regularity of the formed pores tends to decrease. The temperature of the electrolytic solution is preferably 60 ° C. or lower, and more preferably 45 ° C. or lower. When the temperature of the electrolytic solution is 60 ° C. or lower, the generation of so-called “burn” is suppressed, and the pores are broken or the surface is melted to form irregular pores.
 また、電解液として硫酸を用いる場合、硫酸の濃度は0.7M以下が好ましい。硫酸の濃度は0.7M以下であると、電流値を低く抑え、緻密な組織の酸化皮膜を形成できる。化成電圧は25~30Vが好ましい。化成電圧が25~30Vであると、周期が63nm程度の規則性で細孔が形成された陽極酸化ポーラスアルミナ層が形成できる。化成電圧がこの範囲より高くても低くても形成される細孔の規則性が低下する傾向がある。電解液の温度は、30℃以下が好ましく、20℃以下がより好ましい。電解液の温度が30℃以下であれば、いわゆる「ヤケ」の発生を抑制し、細孔が壊れたり、表面が溶けて不規則な細孔が形成されるのが抑制される。 In addition, when sulfuric acid is used as the electrolytic solution, the concentration of sulfuric acid is preferably 0.7 M or less. When the concentration of sulfuric acid is 0.7 M or less, the current value can be kept low and an oxide film having a dense structure can be formed. The formation voltage is preferably 25-30V. When the formation voltage is 25 to 30 V, an anodized porous alumina layer in which pores are formed with regularity having a period of about 63 nm can be formed. Regardless of whether the formation voltage is higher or lower than this range, the regularity of the formed pores tends to decrease. The temperature of the electrolytic solution is preferably 30 ° C. or less, and more preferably 20 ° C. or less. If the temperature of the electrolytic solution is 30 ° C. or lower, the occurrence of so-called “burn” is suppressed, and the pores are broken or the surface is melted to form irregular pores.
 工程(b)
 工程(b)は、酸化皮膜を除去して、工程(a)において酸化皮膜に形成された細孔31部分に対応するようにアルミニウム基材の表面に陽極酸化の細孔発生点を形成する工程である。すなわち、工程(a)で形成された酸化皮膜32を除去すると、細孔31部分に対応する位置のアルミニウム基材表面に凹部33が形成されている。
Step (b)
Step (b) is a step of removing the oxide film and forming anodized pore generation points on the surface of the aluminum base so as to correspond to the pores 31 formed in the oxide film in step (a). It is. That is, when the oxide film 32 formed in the step (a) is removed, a recess 33 is formed on the surface of the aluminum base material at a position corresponding to the pore 31 portion.
 この凹部33を陽極酸化の細孔発生点にすることにより規則的に配列した細孔を発生させることができる。酸化皮膜の除去には、アルミニウムを溶解せず、酸化皮膜を選択的に溶解する溶液を用いる。このような溶液としては、例えば、クロム酸/リン酸混合液等がある。 The regularly arranged pores can be generated by using the recesses 33 as the anodizing pore generation points. For removing the oxide film, a solution that does not dissolve aluminum but selectively dissolves the oxide film is used. Examples of such a solution include a chromic acid / phosphoric acid mixed solution.
 工程(c)
 工程(c)は、アルミニウム基材を再度陽極酸化し、細孔発生点に酸化皮膜を形成することにより、細孔を形成する工程である。すなわち、工程(b)において酸化皮膜を除去したアルミニウム基材30を再度陽極酸化して、円柱状の細孔35を有する酸化皮膜34を形成する。陽極酸化は、工程(a)と同様の条件で行うことができる。陽極酸化の時間を長くするほど深い細孔を得ることができる。
Step (c)
Step (c) is a step of forming pores by anodizing the aluminum substrate again and forming an oxide film at the pore generation points. That is, the aluminum substrate 30 from which the oxide film has been removed in the step (b) is anodized again to form an oxide film 34 having columnar pores 35. Anodization can be performed under the same conditions as in step (a). Deeper pores can be obtained as the anodic oxidation time is lengthened.
 工程(d)
 工程(d)は、細孔の径を拡大させる工程である。すなわち、再度陽極酸化したアルミニウム基材を、酸化皮膜を溶解する溶液に浸漬して細孔35の径を拡大させる(以下「細孔径拡大処理」という)。
Step (d)
Step (d) is a step of expanding the diameter of the pores. That is, the anodized aluminum substrate is dipped in a solution that dissolves the oxide film to expand the diameter of the pores 35 (hereinafter referred to as “pore diameter expansion process”).
 酸化皮膜を溶解する溶液として、例えば、5質量%程度のリン酸水溶液等を用いることができる。細孔径拡大処理の時間を長くするほど、細孔径を拡大することができるので、目的とする形状に応じて、処理時間を設定する。 As the solution for dissolving the oxide film, for example, an about 5% by mass phosphoric acid aqueous solution can be used. Since the pore diameter can be increased as the time for the pore diameter expansion process is lengthened, the processing time is set according to the target shape.
 工程(e)
 工程(e)は、細孔径拡大処理後のアルミニウム基材を再び陽極酸化する工程である。アルミニウム基材を再び陽極酸化すると、酸化皮膜34が厚くなるのに伴い、細孔35の深さが伸張される。なお、陽極酸化は工程(a)(及び工程(c))と同様の条件で行うことができる。陽極酸化の時間を長くするほど細孔を深く形成できる。
Step (e)
Step (e) is a step of anodizing the aluminum base material after the pore diameter expansion treatment again. When the aluminum substrate is anodized again, the depth of the pores 35 is expanded as the oxide film 34 becomes thicker. Anodization can be performed under the same conditions as in step (a) (and step (c)). The longer the anodic oxidation time, the deeper the pores can be formed.
 工程(f)
 工程(f)は、工程(d)と工程(e)を繰り返し行い、細孔35の径拡大と伸張を反復する工程である。この工程により、直径が開口部から深さ方向に連続的に減少する形状の細孔35を有する酸化皮膜34が形成され、その結果、複数の微細細孔を有する陽極酸化アルミナがアルミニウム基材の表面に形成されたスタンパ20を得ることができる。工程(f)の最後は工程(d)で終わることが好ましい。
Step (f)
The step (f) is a step in which the step (d) and the step (e) are repeated, and the diameter expansion and expansion of the pores 35 are repeated. By this step, an oxide film 34 having pores 35 whose diameter continuously decreases from the opening in the depth direction is formed, and as a result, anodized alumina having a plurality of fine pores is formed on the aluminum substrate. The stamper 20 formed on the surface can be obtained. The end of step (f) preferably ends with step (d).
 工程(f)の繰り返し回数は、合計で3回以上が好ましく、5回以上がより好ましい。繰り返し回数が3回以上であれば、連続的に直径が変化する細孔を形成することができ、このようなスタンパにより、反射率を低減させ得るモスアイ構造の表面を有する硬化物を形成することができる。 The total number of repetitions of the step (f) is preferably 3 times or more, and more preferably 5 times or more. If the number of repetitions is 3 times or more, it is possible to form pores whose diameter changes continuously, and to form a cured product having a surface of a moth-eye structure that can reduce the reflectance by such a stamper. Can do.
 細孔35の形状としては、物品の表面に形成する微細凹凸構造の反転構造であって、具体的には、略円錐形状、角錐形状、円柱形状等が挙げられ、円錐形状、角錐形状等のように、深さ方向と直交する方向の細孔断面積が最表面から深さ方向に連続的に減少する形状が好ましい。 The shape of the pore 35 is an inverted structure of a fine uneven structure formed on the surface of the article, and specifically includes a substantially conical shape, a pyramid shape, a cylindrical shape, etc., such as a conical shape, a pyramid shape, etc. Thus, a shape in which the pore cross-sectional area in the direction orthogonal to the depth direction continuously decreases from the outermost surface in the depth direction is preferable.
 細孔35間の平均間隔は、可視光の波長以下、すなわち400nm以下であることが好ましく、また、20nm以上が好ましい。細孔間の平均間隔は、電子顕微鏡画像における隣接する細孔間の間隔(細孔の中心から隣接する細孔の中心までの距離)を50点測定し、これらの値の平均値を採用する。 The average interval between the pores 35 is preferably not more than the wavelength of visible light, that is, not more than 400 nm, and more preferably not less than 20 nm. For the average interval between the pores, the interval between adjacent pores in the electron microscope image (distance from the center of the pore to the center of the adjacent pore) is measured at 50 points, and the average value of these values is adopted. .
 細孔35の深さは、80~500nmが好ましく、120~400nmがより好ましく、150~300nmが更に好ましく、特に平均間隔が100nm程度の場合は、このような範囲にあることが望ましい。細孔の深さは、電子顕微鏡30000倍画像における、細孔の最底部と頂部間の距離を50点測定し、これらの値の平均値を採用する。 The depth of the pores 35 is preferably from 80 to 500 nm, more preferably from 120 to 400 nm, even more preferably from 150 to 300 nm, and particularly in the range where the average interval is about 100 nm. For the depth of the pores, 50 points of the distance between the bottom and top of the pores in an electron microscope 30000 times image are measured, and an average value of these values is adopted.
 細孔35のアスペクト比(深さ/平均間隔)は、0.8~5.0が好ましく、1.2~4.0がより好ましく、1.5~3.0が更に好ましい。 The aspect ratio (depth / average interval) of the pores 35 is preferably 0.8 to 5.0, more preferably 1.2 to 4.0, and still more preferably 1.5 to 3.0.
 スタンパの微細凹凸構造が形成された側の表面を離型剤で処理してもよい。離型剤としては、シリコーン樹脂、フッ素樹脂、フッ素化合物、リン酸エステル等が挙げられ、リン酸エステルが特に好ましい。市販品としては、アクセル社製の商品名:モールドウイズINT-1856、日光ケミカルズ社製の商品名:TDP-10、TDP-8、TDP-6、TDP-2、DDP-10、DDP-8、DDP-6、DDP-4、DDP-2、TLP-4、TCP-5、DLP-10、城北化学工業社製の商品名:JP-506H、JP-512、JP-513、JAMP-8、JAMP-12、大八化学工業社製の製品名:AP-8、AP-10、MP-10、SC有機化学社製の商品名:Phoslexシリーズ:A-8、A-10、A-12、A-13、A-18、A-18D、A-180L、などが挙げられる。 The surface of the stamper on which the fine uneven structure is formed may be treated with a release agent. Examples of the release agent include silicone resins, fluororesins, fluorine compounds, and phosphate esters, and phosphate esters are particularly preferable. Commercially available products include AXEL brand names: Mold With INT-1856, Nikko Chemicals brand names: TDP-10, TDP-8, TDP-6, TDP-2, DDP-10, DDP-8, DDP-6, DDP-4, DDP-2, TLP-4, TCP-5, DLP-10, trade names manufactured by Johoku Chemical Industry Co., Ltd .: JP-506H, JP-512, JP-513, JAMP-8, JAMP -12, product names manufactured by Daihachi Chemical Industry Co., Ltd .: AP-8, AP-10, MP-10, product names manufactured by SC Organic Chemical Co., Ltd .: Phoslex series: A-8, A-10, A-12, A -13, A-18, A-18D, A-180L, and the like.
 上記で作製したスタンパを用いて形成された微細凹凸構造を表面に有する物品は、例えば図1(a)に示すように、基材11の表面に形成された硬化樹脂層12を有する。硬化樹脂層12は、樹脂組成物を上記のスタンパと接触させ硬化させた樹脂硬化物から形成された複数の凸部13を有する微細凹凸構造を有している。 The article having a fine concavo-convex structure formed on the surface using the stamper produced as described above has a cured resin layer 12 formed on the surface of the substrate 11, for example, as shown in FIG. The cured resin layer 12 has a fine concavo-convex structure having a plurality of convex portions 13 formed from a cured resin obtained by bringing a resin composition into contact with the above stamper and curing.
 [インプリント用原料など]
 本発明のインプリント用原料は、本発明の樹脂組成物を含むものであれば、特に制限されるものではなく、樹脂組成物をそのまま用いることができるが、目的とする成形品に応じて、各種添加剤を含有させることも可能である。
[Raw materials for imprints, etc.]
The imprinting raw material of the present invention is not particularly limited as long as it contains the resin composition of the present invention, and the resin composition can be used as it is, but depending on the intended molded product, It is also possible to contain various additives.
 インプリント用原料は、スタンパを用いて、UV硬化或いは、さらに加熱硬化による硬化物の成形に使用することもできる。加熱などによって半硬化させた状態の樹脂組成物にスタンパを押し当て、形状転写した後にスタンパから剥がし、熱やUVによって完全に硬化させる、という方法を用いることもできる。 The raw material for imprinting can also be used for molding a cured product by UV curing or further heat curing using a stamper. It is also possible to use a method in which a stamper is pressed against a resin composition that has been semi-cured by heating, the shape is transferred, peeled off from the stamper, and completely cured by heat or UV.
 上記樹脂組成物は、その他、種々の基材上に硬化被膜を形成する原料として使用することもでき、コーティング材として塗膜を形成し、活性エネルギー線を照射して硬化物を形成することもできる。 In addition, the resin composition can also be used as a raw material for forming a cured film on various substrates, and can form a coated film as a coating material and irradiate active energy rays to form a cured product. it can.
 [微細凹凸構造を有する物品の連続的製造方法]
 微細凹凸構造を表面に有する物品は、例えば、図3に示す製造装置を用いて、連続的に製造することができる。
[Continuous Manufacturing Method for Articles with Fine Uneven Structure]
An article having a fine concavo-convex structure on its surface can be continuously produced, for example, using a production apparatus shown in FIG.
 図3に示す製造装置には、表面に微細凹凸構造の反転構造(図示略)を有するロール状スタンパ41と、樹脂組成物を収納するタンク43とが設けられている。ロール状スタンパ41の回転と共にその表面に沿って移動する透光性の帯状フィルムの基材42とロール状スタンパ41との間に、タンク43から樹脂組成物が供給される。ロール状スタンパ41と、空気圧シリンダ45によってニップ圧が調整されたニップロール46との間に、基材42及び樹脂組成物が挟まれ、樹脂組成物は、基材42とロール状スタンパ41との間で均一に行きわたると同時に、ロール状スタンパ41の微細凹凸構造の凹部内を充填する。ロール状スタンパ41の下方には活性エネルギー線照射装置48が設置され、基材42を通して樹脂組成物に活性エネルギー線が照射され、樹脂組成物を硬化できるようになっている。これにより、ロール状スタンパ41の表面の微細凹凸構造が転写された硬化樹脂層44が形成される。その後、剥離ロール47により、表面に微細凹凸構造が形成された硬化樹脂層44と基材42が一体化された連続した物品(微細凹凸構造体)40がロール状スタンパ41から剥離される。 The manufacturing apparatus shown in FIG. 3 is provided with a roll-shaped stamper 41 having a reverse structure (not shown) having a fine concavo-convex structure on the surface, and a tank 43 for storing a resin composition. The resin composition is supplied from the tank 43 between the roll-shaped stamper 41 and the base material 42 of the translucent band-shaped film that moves along the surface of the roll-shaped stamper 41. The base material 42 and the resin composition are sandwiched between the roll stamper 41 and the nip roll 46 whose nip pressure is adjusted by the pneumatic cylinder 45, and the resin composition is interposed between the base material 42 and the roll stamper 41. At the same time, the concave portion of the fine uneven structure of the roll-shaped stamper 41 is filled. An active energy ray irradiation device 48 is installed below the roll-shaped stamper 41, and the resin composition is irradiated with active energy rays through the base material 42 so that the resin composition can be cured. Thereby, the cured resin layer 44 to which the fine uneven structure on the surface of the roll-shaped stamper 41 is transferred is formed. Thereafter, the continuous article (fine concavo-convex structure) 40 in which the cured resin layer 44 having a fine concavo-convex structure formed on the surface and the base material 42 is integrated is peeled from the roll stamper 41 by the peeling roll 47.
 活性エネルギー線照射装置48としては、高圧水銀ランプ、メタルハライドランプ等が好ましく、この場合の光照射エネルギー量は、100~10000mJ/cmが好ましい。基材42の材質としては、アクリル系樹脂、ポリカーボネート、スチレン系樹脂、ポリエステル、セルロース系樹脂(トリアセチルセルロース等)、ポリオレフィン、脂環式ポリオレフィン等を用いることができる。 As the active energy ray irradiation device 48, a high-pressure mercury lamp, a metal halide lamp or the like is preferable. In this case, the amount of light irradiation energy is preferably 100 to 10,000 mJ / cm 2 . As the material of the base material 42, acrylic resin, polycarbonate, styrene resin, polyester, cellulose resin (such as triacetyl cellulose), polyolefin, alicyclic polyolefin, or the like can be used.
 [微細凹凸構造を有する物品の用途]
 本発明の実施形態による微細凹凸構造を有する物品は、微細凹凸構造の耐擦傷性が高く、優れた撥水性を有するため、反射防止物品(反射防止フィルム、反射防止膜等)、光導波路、レリーフホログラム、レンズ、偏光分離素子等の光学物品、また撥水フィルム、としての用途展開が期待でき、特に反射防止物品と撥水フィルムとしての用途に適している。
[Uses of articles with fine concavo-convex structure]
An article having a fine concavo-convex structure according to an embodiment of the present invention has high scratch resistance of the fine concavo-convex structure and excellent water repellency. Therefore, the anti-reflective article (anti-reflective film, anti-reflective film, etc.), optical waveguide, relief Development of applications as optical articles such as holograms, lenses, polarization separation elements, and water repellent films can be expected, and is particularly suitable for applications as antireflection articles and water repellent films.
 反射防止物品としては、例えば、画像表示装置(液晶表示装置、プラズマディスプレイパネル、エレクトロルミネッセンスディスプレイ、陰極管表示装置等)、レンズ、ショーウィンドウ、眼鏡等の表面に設けられる反射防止膜、反射防止フィルム、反射防止シート等が挙げられる。画像表示装置に用いる場合は、画像表示面に反射防止フィルムを直接貼り付けてもよく、画像表示面を構成する部材の表面に反射防止膜を直接形成してもよく、前面板に反射防止膜を形成してもよい。 Examples of antireflection articles include antireflection films and antireflection films provided on the surfaces of image display devices (liquid crystal display devices, plasma display panels, electroluminescence displays, cathode tube display devices, etc.), lenses, show windows, and glasses. And an antireflection sheet. When used in an image display device, an antireflection film may be directly attached to the image display surface, an antireflection film may be directly formed on the surface of a member constituting the image display surface, or an antireflection film is formed on the front plate. May be formed.
 撥水フィルムとしては、自動車用ドアミラーやウィンドウ類の着滴防止フィルム、あるいは着雪防止フィルムとして使用することができる。また、太陽電池や建材用ガラスなどの屋外で使用する透明基材に使用することで光透過率向上の効果と撥水性による防汚性付与の効果を同時に利用できる。 As the water repellent film, it can be used as a drip-preventing film for automobile door mirrors and windows, or as a snow-preventing film. Moreover, the effect of improving the light transmittance and the effect of imparting antifouling property due to water repellency can be used simultaneously by using it for a transparent base material used outdoors such as solar cells and glass for building materials.
 以下、実施例により本発明をさらに詳細に説明する。先ず、評価方法及びスタンパの製造例を説明する。 Hereinafter, the present invention will be described in more detail with reference to examples. First, an evaluation method and an example of manufacturing a stamper will be described.
 [評価方法]
 [1.硬化性液の外観]
 硬化性液(活性エネルギー線硬化性樹脂組成物)の外観は、透明なガラス瓶(容量20mL)に硬化性液を10mL入れ、室温23℃の条件下で蛍光灯にかざして濁りが無いかを目視で観察し、以下の指標により評価した。
 ○:全く濁りが無く、透明である。
 ×:濁りがある。
[Evaluation methods]
[1. Appearance of curable liquid]
As for the appearance of the curable liquid (active energy ray curable resin composition), 10 mL of the curable liquid is put in a transparent glass bottle (capacity 20 mL), and it is visually observed whether it is turbid by holding it over a fluorescent lamp at a room temperature of 23 ° C. And evaluated by the following indices.
○: No turbidity and transparency.
X: There is turbidity.
 [2.耐擦傷性]
 磨耗試験機(新東科学社製、製品名:HEiDON TRIBOGEAR TYPE-30S)を用い、物品の表面に置かれた2cm角にカットしたスチールウール(日本スチールウール社製、製品名:ボンスター#0000)に100g(25gf/cm2=0.245N/cm2)の荷重をかけ、往復距離:30mm、ヘッドスピード:平均100mm/秒にて10回往復させ、物品の表面の外観を評価した。外観評価に際しては、2.0mm厚の黒色アクリル板(三菱レイヨン社製、製品名:アクリライト)の片面に物品を貼り付け、屋内で蛍光灯にかざして目視で観察し、以下の指標により評価した。
 A:擦傷部分の中で確認できる傷が10本未満である。
 B:擦傷部分の中で確認できる傷が10本以上50本未満である。
 C:擦傷部分の中で確認できる傷が50本以上。もしくは擦傷部分が白く曇って見える。
[2. Scratch resistance]
Steel wool (made by Nippon Steel Wool Co., Ltd., product name: Bonster # 0000) placed on the surface of the article using an abrasion tester (manufactured by Shinto Kagaku Co., Ltd., product name: HEiDON TRIBOGEAR TYPE-30S). A load of 100 g (25 gf / cm 2 = 0.245 N / cm 2 ) was applied to the sample, and the product was reciprocated 10 times at a reciprocating distance of 30 mm and a head speed of 100 mm / sec on average to evaluate the appearance of the surface of the article. Appearance evaluation was performed by attaching an article to one side of a 2.0 mm thick black acrylic plate (product name: Acrylite, manufactured by Mitsubishi Rayon Co., Ltd.) did.
A: There are less than 10 scratches that can be confirmed in the scratched portion.
B: There are 10 or more and less than 50 scratches that can be confirmed in the scratched portion.
C: 50 or more scratches that can be confirmed in the scratched part. Or the scratched part appears white and cloudy.
 [3.連続転写性試験]
 スタンパの微細凹凸構造が形成された側に10μLの活性エネルギー線硬化性樹脂組成物を滴下し、ポリエチレンテレフタレートフィルム(以下「PETフェルム」と記す。)を被せた後、50Nの荷重を印加した。その後、UV照射機(高圧水銀ランプ、積算光量1100mJ/cm)によって紫外線を照射して、樹脂組成物を硬化させた。ついで、PETフィルムごと硬化樹脂層をスタンパから離型することによりPETフィルムの表面に微細凹凸構造を転写した物品を得た。以上の転写作業を1つのスタンパに対して繰り返し行い、転写回数が200回目の時にスタンパからの剥離力を測定した。剥離力の測定は、スタンパから硬化後のサンプル(PETフィルム上の硬化樹脂層)を離型する際に、スタンパを被着体、硬化樹脂層と基材(PETフィルム)を粘着テープに見立てて、JISZ0237に準拠する90°剥離試験を行い、スタンパからの離型時の剥離力を測定した。
[3. Continuous transferability test]
10 μL of the active energy ray-curable resin composition was dropped onto the side of the stamper on which the fine concavo-convex structure was formed, a polyethylene terephthalate film (hereinafter referred to as “PET ferm”) was covered, and then a load of 50 N was applied. Thereafter, the resin composition was cured by irradiating ultraviolet rays with a UV irradiator (high pressure mercury lamp, integrated light quantity 1100 mJ / cm 2 ). Subsequently, the cured resin layer was released from the stamper together with the PET film to obtain an article having the fine uneven structure transferred to the surface of the PET film. The above transfer operation was repeated for one stamper, and the peeling force from the stamper was measured when the number of transfers was 200. The peel force is measured by taking the stamper as the adherend and the cured resin layer and the base material (PET film) as an adhesive tape when releasing the cured sample (cured resin layer on the PET film) from the stamper. Then, a 90 ° peel test according to JISZ0237 was performed, and the peel force at the time of releasing from the stamper was measured.
 [4.水接触角]
 自動接触角計(協和界面科学社製、製品名:DM-501)を用い、物品の表面にイオン交換水を1μL滴下し、接触角を測定した。接触角の測定は3点で実施し、その平均値を採用した。
[4. Water contact angle]
Using an automatic contact angle meter (manufactured by Kyowa Interface Science Co., Ltd., product name: DM-501), 1 μL of ion-exchanged water was dropped on the surface of the article, and the contact angle was measured. The contact angle was measured at three points, and the average value was adopted.
 [5.スタンパの細孔の測定]
 陽極酸化ポーラスアルミナからなるスタンパの一部の縦断面を1分間Pt蒸着し、電界放出形走査電子顕微鏡(日本電子社製、製品名:JSM-7400F)により加速電圧3.00kVで観察し、隣り合う細孔の間隔(周期)及び細孔の深さを測定した。具体的にはそれぞれ10点ずつ測定し、その平均値を測定値とした。
[5. Measurement of stamper pores]
A vertical section of a part of a stamper made of anodized porous alumina was deposited by Pt for 1 minute, and observed with a field emission scanning electron microscope (manufactured by JEOL Ltd., product name: JSM-7400F) at an acceleration voltage of 3.00 kV. The interval (period) of the matching pores and the depth of the pores were measured. Specifically, 10 points were measured for each, and the average value was taken as the measured value.
 [微細凹凸構造転写用スタンパの作製]
 純度99.99質量%、電解研磨した厚さ2mmのφ65mmアルミニウム円盤をアルミニウム基材として用いた。
[Preparation of stamper for transfer of fine relief structure]
A φ65 mm aluminum disk having a purity of 99.99% by mass and an electropolished thickness of 2 mm was used as the aluminum substrate.
 工程(a):
 このアルミニウム円盤について、0.3Mシュウ酸水溶液中で、直流40V、温度16℃の条件で6時間陽極酸化を行った。
 工程(b):
 酸化皮膜が形成されたアルミニウム円盤を、6質量%リン酸/1.8質量%クロム酸混合水溶液に3時間浸漬して、酸化皮膜を除去した。
 工程(c):
 酸化皮膜を除去したアルミニウム円盤について、0.3Mシュウ酸水溶液中、直流40V、温度16℃の条件で30秒間陽極酸化を行った。
Step (a):
This aluminum disk was anodized in a 0.3 M oxalic acid aqueous solution for 6 hours under the conditions of a direct current of 40 V and a temperature of 16 ° C.
Step (b):
The aluminum disk on which the oxide film was formed was immersed in a 6% by mass phosphoric acid / 1.8% by mass chromic acid mixed aqueous solution for 3 hours to remove the oxide film.
Step (c):
The aluminum disk from which the oxide film was removed was anodized for 30 seconds in a 0.3 M aqueous oxalic acid solution under the conditions of a direct current of 40 V and a temperature of 16 ° C.
 工程(d):
 酸化皮膜が形成されたアルミニウム円盤を、32℃の5質量%リン酸水溶液に8分間浸漬して、細孔径拡大処理を行った。
 工程(e):
 この処理後のアルミニウム円盤について、0.3Mシュウ酸水溶液中、直流40V、温度16℃の条件で30秒間陽極酸化を行った。
Step (d):
The aluminum disk on which the oxide film was formed was immersed in a 5% by mass phosphoric acid aqueous solution at 32 ° C. for 8 minutes to carry out pore diameter expansion treatment.
Step (e):
The aluminum disc after this treatment was anodized in a 0.3 M oxalic acid aqueous solution for 30 seconds under the conditions of a direct current of 40 V and a temperature of 16 ° C.
 工程(f):
 前記工程(d)および工程(e)を合計で5回繰り返し、細孔の平均間隔(周期):100nm、深さ:200nmの略円錐形状の細孔を有する陽極酸化アルミナが表面に形成されたモールド(スタンパ)を得た。
Step (f):
The step (d) and the step (e) were repeated 5 times in total, and anodized alumina having substantially conical pores with an average pore interval (period): 100 nm and a depth: 200 nm was formed on the surface. A mold (stamper) was obtained.
 得られたモールドを、離型剤(商品名:TDP-8、日光ケミカルズ社製)の0.1質量%水溶液に10分間浸漬し、引き上げて一晩風乾することにより離型処理を施した。 The obtained mold was immersed in a 0.1% by weight aqueous solution of a release agent (trade name: TDP-8, manufactured by Nikko Chemicals) for 10 minutes, and then pulled up and air-dried overnight to perform a release treatment.
 [活性エネルギー線硬化性樹脂組成物(X)]
 実施例及び比較例で用いた、活性エネルギー線硬化性樹脂組成物(X)に含まれる重合性成分(A)、重合性成分(B)、重合性成分(C)、その他の重合性成分(D)、光重合開始剤(E)、その他の成分(G)、内部離型剤(F)は、下記の表1のとおりである。
[Active energy ray-curable resin composition (X)]
The polymerizable component (A), polymerizable component (B), polymerizable component (C), and other polymerizable components contained in the active energy ray-curable resin composition (X) used in Examples and Comparative Examples ( D), photopolymerization initiator (E), other components (G), and internal release agent (F) are as shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 [実施例1]
 活性エネルギー線硬化性樹脂組成物(X)として、表2に示す組成の樹脂を調製した。この活性エネルギー線硬化性樹脂組成物を微細凹凸構造転写用スタンパの表面に数滴垂らし、PETフィルム(東洋紡社製、製品名:A4300、厚さ:50μm)で押し広げながら被覆した。その後、フィルム側から無電極タイプのUVランプ(ヘレウス社製、Dバルブ)を用いて365nmの波長で測定した積算光量が1000mJ/cmになるように紫外線を照射して、樹脂組成物を硬化させた。PETフィルムごと硬化樹脂層をスタンパから離型して、凸部の平均間隔w1:100nm、高さd1:200nmの微細凹凸構造を表面に有する物品を得た。評価結果を表2に示す。
[Example 1]
Resins having the compositions shown in Table 2 were prepared as the active energy ray-curable resin composition (X). A few drops of this active energy ray-curable resin composition were dropped on the surface of a stamper for transferring a fine concavo-convex structure and covered with a PET film (Toyobo, product name: A4300, thickness: 50 μm) while spreading. Thereafter, the resin composition is cured by irradiating ultraviolet rays from the film side using an electrodeless UV lamp (manufactured by Heraeus Co., Ltd., D bulb) so that the integrated light amount measured at a wavelength of 365 nm is 1000 mJ / cm 2. I let you. The cured resin layer together with the PET film was released from the stamper to obtain an article having a fine concavo-convex structure on the surface with an average interval w1: 100 nm of protrusions and a height d1: 200 nm. The evaluation results are shown in Table 2.
 [実施例2~4]
 活性エネルギー線硬化性樹脂組成物(X)を表2に示したものに変更した以外は、実施例1と同様に、微細凹凸構造を表面に有する物品を作製し、評価した。評価結果を表2に示す。
[Examples 2 to 4]
Except for changing the active energy ray-curable resin composition (X) to that shown in Table 2, an article having a fine concavo-convex structure on the surface was prepared and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 2.
 [比較例1~3]
 活性エネルギー線硬化性樹脂組成物(X)を表2に示したものに変更した以外は、実施例1と同様に、微細凹凸構造を表面に有する物品を作製し、評価した。評価結果を表2に示す。
[Comparative Examples 1 to 3]
Except for changing the active energy ray-curable resin composition (X) to that shown in Table 2, an article having a fine concavo-convex structure on the surface was prepared and evaluated in the same manner as in Example 1. The evaluation results are shown in Table 2.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 [評価結果/実施例と比較例の対比]
 表2から、実施例1~4は、内部離型剤(F)の効果でスタンパからの剥離力が十分に低く、離型性に優れることがわかる。また、実施例1~4は、得られた微細凹凸構造を表面に有する物品の耐擦傷性が優れていることに加えて、水接触角が大きく、撥水性も高いことがわかる。一方、比較例1及び2では、内部離型剤(F)を含まないため、スタンパからの剥離力が高く、得られた微細凹凸構造表面の接触角も低くなっている。
[Evaluation results / comparison between examples and comparative examples]
From Table 2, it can be seen that Examples 1 to 4 have a sufficiently low peeling force from the stamper due to the effect of the internal mold release agent (F), and are excellent in mold release properties. In addition, in Examples 1 to 4, in addition to the excellent scratch resistance of the articles having the fine concavo-convex structure obtained on the surface, it can be seen that the water contact angle is large and the water repellency is also high. On the other hand, in Comparative Examples 1 and 2, since the internal mold release agent (F) is not included, the peeling force from the stamper is high, and the contact angle on the surface of the obtained fine concavo-convex structure is also low.
 具体的には、実施例1と比較例1、比較例2とを対比すると、重合性成分(A)、重合性成分(B)、重合性成分(C)、光重合開始剤(E)は全て同じ組成であり、違いは内部離型剤(F)及びその他の成分(G)の有無にある。内部離型剤(F)であるJP-513を0.5w%含む実施例1では200回転写時の剥離力が5[N/m]と十分に低く、水接触角も142[°]で超撥水になっている。一方、リン酸トリエステルであるTOPとTDP-2をそれぞれ含む比較例1と比較例2では、剥離力が高くなるだけでなく、水接触角も低くなっていることが分かる。 Specifically, when Example 1 is compared with Comparative Example 1 and Comparative Example 2, the polymerizable component (A), the polymerizable component (B), the polymerizable component (C), and the photopolymerization initiator (E) are All have the same composition, and the difference lies in the presence or absence of the internal mold release agent (F) and other components (G). In Example 1 containing 0.5 w% of JP-513 as an internal release agent (F), the peeling force at the time of 200 times transfer was sufficiently low as 5 [N / m], and the water contact angle was 142 [°]. It is super water repellent. On the other hand, it can be seen that Comparative Example 1 and Comparative Example 2 each containing the phosphoric acid triesters TOP and TDP-2 not only have a high peel force but also a low water contact angle.
 比較例3は、重合性成分(A)を含まず、重合性成分としてオキシエチレン基含有成分(成分(D))を多く含む樹脂組成物の場合であるが、実施例と比較して剥離力が高くなるだけでなく、水接触角も非常に低くなっていることが分かる。よって、内部離型剤(F)は、重合性成分(A)や重合性成分(B)との組み合わせにおいて特に優れた効果を発揮することが分かる。 Comparative Example 3 is a resin composition that does not contain a polymerizable component (A) and contains a large amount of an oxyethylene group-containing component (component (D)) as a polymerizable component. It can be seen that not only becomes higher, but also the water contact angle becomes very low. Therefore, it turns out that an internal mold release agent (F) exhibits the especially outstanding effect in combination with a polymeric component (A) and a polymeric component (B).
 本発明の実施形態による微細凹凸構造を表面に有する物品は、反射防止物品(反射防止フィルム、反射防止膜等)、超撥水物品(超撥水フィルム、防汚フィルム等)、光導波路、レリーフホログラム、レンズ、偏光分離素子等の光学物品、細胞培養シートとしての用途展開が期待でき、特に反射防止物品および超撥水物品としての用途に適している。 Articles having a fine concavo-convex structure on the surface according to an embodiment of the present invention include antireflection articles (antireflection films, antireflection films, etc.), super water repellent articles (super water repellent films, antifouling films, etc.), optical waveguides, reliefs Development of applications as optical articles such as holograms, lenses, polarization separation elements, and cell culture sheets can be expected, and is particularly suitable for applications as antireflection articles and super water-repellent articles.
 反射防止物品としては、例えば、画像表示装置(液晶表示装置、プラズマディスプレイパネル、エレクトロルミネッセンスディスプレイ、陰極管表示装置等)、レンズ、ショーウィンドウ、眼鏡等の表面に設けられる反射防止膜、反射防止フィルム、反射防止シート等が挙げられる。 Examples of antireflection articles include antireflection films and antireflection films provided on the surfaces of image display devices (liquid crystal display devices, plasma display panels, electroluminescence displays, cathode tube display devices, etc.), lenses, show windows, and glasses. And an antireflection sheet.
 超撥水物品としては、例えば、自動車等の輸送機器のミラー(ドアミラー等)用のフィルム、水回り用リフォームフィルム、ウィンドウフィルム等の建材用のフィルムが挙げられる。 Examples of the super water-repellent article include films for mirrors (door mirrors, etc.) for transportation equipment such as automobiles, films for building materials such as water-reform films, window films, and the like.
 10 積層体(微細凹凸構造を有する物品)
 11 基材
 12 表層(樹脂硬化層)
 13、13b 凸部
 13a 凸部の頂点
 14 凹部
 14a 凹部の底点
 15 コーティング層
 W1 隣り合う凸部の間隔
 d1 凹部の底点から凸部の頂点までの垂直距離
 20 スタンパ
 30 アルミニウム基材
 31 細孔
 32 酸化皮膜
 33 細孔発生点
 34 酸化皮膜
 35 細孔
 40 微細凹凸構造を有する物品
 41 ロール状スタンパ
 42 基材
 43 タンク
 44 硬化樹脂層
 45 空気圧シリンダ
 46 ニップロール
 47 剥離ロール
 48 活性エネルギー線照射装置
10 Laminate (article with fine uneven structure)
11 Base material 12 Surface layer (cured resin layer)
13, 13b Convex part 13a Convex part apex 14 Concave part 14a Concave base point 15 Coating layer W1 Distance between adjacent convex parts d1 Vertical distance from the concavity base point to the convex part apex 20 Stamper 30 Aluminum substrate 31 Pore 32 Oxide film 33 Pore generation point 34 Oxide film 35 Pore 40 Article having fine uneven structure 41 Roll stamper 42 Base material 43 Tank 44 Cured resin layer 45 Pneumatic cylinder 46 Nip roll 47 Peeling roll 48 Active energy ray irradiation device

Claims (20)

  1.  複数の凸部を表面に有する物品であって、
     前記複数の凸部は、隣り合う凸部同士の平均間隔が400nm以下であり、
     前記複数の凸部は、活性エネルギー線硬化性樹脂組成物の硬化物からなり、
     前記物品の前記複数の凸部を有する部分の水接触角度が80度以上であり、
     前記活性エネルギー線硬化樹脂性組成物は、重合性成分(P)と光重合開始剤(E)と内部離型剤(F)を含み、前記内部離型剤(F)として、モノアルキルホスフェート及びジアルキルホスフェートの少なくとも一方を含む、物品。
    An article having a plurality of convex portions on the surface,
    The plurality of convex portions have an average interval between adjacent convex portions of 400 nm or less,
    The plurality of convex portions are made of a cured product of an active energy ray-curable resin composition,
    The water contact angle of the part having the plurality of convex portions of the article is 80 degrees or more,
    The active energy ray-curable resinous composition includes a polymerizable component (P), a photopolymerization initiator (E), and an internal release agent (F). As the internal release agent (F), a monoalkyl phosphate and An article comprising at least one of dialkyl phosphates.
  2.  前記重合性成分(P)が、該重合性成分(P)の全体量100質量%に対して、Fedors法により計算されるSP値が19.6以下の重合性成分(A)を50質量%以上100質量%以下含有する、請求項1に記載の物品。 The polymerizable component (P) is 50% by mass of the polymerizable component (A) having an SP value calculated by the Fedors method of 19.6 or less with respect to 100% by mass of the total amount of the polymerizable component (P). The article according to claim 1, which is contained in an amount of 100 mass% or less.
  3.  前記重合性成分(A)が、炭素数6以上のアルカンジオールと(メタ)アクリル酸とのエステル化物であるアルカンジオールジ(メタ)アクリレートである、請求項2記載の物品。 The article according to claim 2, wherein the polymerizable component (A) is an alkanediol di (meth) acrylate which is an esterified product of an alkanediol having 6 or more carbon atoms and (meth) acrylic acid.
  4.  前記重合性成分(P)が、重合性成分(B)として、シリコーン(メタ)アクリレート及びアルキル(メタ)アクリレートの少なくとも一方をさらに含む、請求項3に記載の物品。 The article according to claim 3, wherein the polymerizable component (P) further contains at least one of silicone (meth) acrylate and alkyl (meth) acrylate as the polymerizable component (B).
  5.  重合性成分(P)の全体量100質量%に対して、
     重合性成分(A)の含有率が50~99.5質量%であり、
     重合性成分(B)の含有率が0.5~50質量%である、請求項4に記載の物品。
    With respect to 100% by mass of the total amount of the polymerizable component (P),
    The content of the polymerizable component (A) is 50 to 99.5% by mass,
    The article according to claim 4, wherein the content of the polymerizable component (B) is 0.5 to 50% by mass.
  6.  さらに、重合性成分(C)として、分子内に3個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレートを含み、
     重合性成分(P)の全体量100質量%に対して、
     重合性成分(A)の含有率が50~89.5質量%であり、
     重合性成分(B)の含有率が0.5~40質量%であり、
     重合性成分(C)の含有率が10~49.5質量%である、請求項5に記載の物品。
    Furthermore, the polymerizable component (C) includes a polyfunctional (meth) acrylate having 3 or more (meth) acryloyl groups in the molecule,
    With respect to 100% by mass of the total amount of the polymerizable component (P),
    The content of the polymerizable component (A) is 50 to 89.5% by mass,
    The content of the polymerizable component (B) is 0.5 to 40% by mass,
    The article according to claim 5, wherein the content of the polymerizable component (C) is 10 to 49.5% by mass.
  7.  前記シリコーン(メタ)アクリレートが、非オキシアルキレン化シリコーン(メタ)アクリレートである、請求項4に記載の物品。 The article according to claim 4, wherein the silicone (meth) acrylate is non-oxyalkylenated silicone (meth) acrylate.
  8.  内部離型剤(F)の含有率は、重合性成分(P)の全体量100質量部に対して、0.01~2.0質量部である、請求項1に記載の物品。 The article according to claim 1, wherein the content of the internal release agent (F) is 0.01 to 2.0 parts by mass with respect to 100 parts by mass of the total amount of the polymerizable component (P).
  9.  前記重合性成分(P)の全体量100質量%に対して、
     ポリオキシアルキレン骨格を有する重合性成分の含有率が10質量%未満である、請求項1に記載の物品。
    With respect to 100% by mass of the total amount of the polymerizable component (P),
    The article according to claim 1, wherein the content of the polymerizable component having a polyoxyalkylene skeleton is less than 10% by mass.
  10.  前記重合性成分(P)の全体量100質量%に対して、脂環構造を有する重合性成分の含有量が17質量%未満である、請求項1記載の物品。 The article according to claim 1, wherein the content of the polymerizable component having an alicyclic structure is less than 17% by mass with respect to 100% by mass of the total amount of the polymerizable component (P).
  11.  前記物品の前記複数の凸部を有する部分の水接触角度が135度以上である、請求項1記載の物品。 The article according to claim 1, wherein a water contact angle of a portion having the plurality of convex portions of the article is 135 degrees or more.
  12.  隣り合う凸部同士の平均間隔が400nm以下である複数の凸部を表面に有する微細凹凸構造をインプリント法により形成するための活性エネルギー線硬化性樹脂組成物であって、
     前記活性エネルギー線硬化性樹脂組成物が、少なくとも重合性成分(P)と光重合開始剤(E)と内部離型剤(F)を含み、
     前記重合性成分(P)の全体量100質量%に対して、重合性成分(A)として、炭素数6以上のアルカンジオールと(メタ)アクリル酸とのエステル化物であるアルカンジオールジ(メタ)アクリレートを50質量%以上100質量%以下含有し、
     前記重合性成分(P)の全体量100質量%に対して、脂環構造を有する重合性成分の含有量が17質量%未満であり、
     内部離型剤(F)が、モノアルキルホスフェート及びジアルキルホスフェートの少なくとも一方を含む、活性エネルギー線硬化性樹脂組成物。
    An active energy ray-curable resin composition for forming a fine concavo-convex structure having a plurality of convex portions on the surface having an average interval between adjacent convex portions of 400 nm or less by an imprint method,
    The active energy ray-curable resin composition contains at least a polymerizable component (P), a photopolymerization initiator (E), and an internal release agent (F),
    Alkanediol di (meth) which is an esterified product of an alkanediol having 6 or more carbon atoms and (meth) acrylic acid as the polymerizable component (A) with respect to 100% by mass of the total amount of the polymerizable component (P). Containing 50% by mass or more and 100% by mass or less of acrylate,
    The content of the polymerizable component having an alicyclic structure is less than 17% by mass with respect to 100% by mass of the total amount of the polymerizable component (P),
    The active energy ray-curable resin composition, wherein the internal mold release agent (F) contains at least one of a monoalkyl phosphate and a dialkyl phosphate.
  13.  重合性成分(P)の全体量100質量%に対して、
     ポリオキシアルキレン骨格を有する重合性成分の含有率が10質量%未満である、請求項12に記載の活性エネルギー線硬化性樹脂組成物。
    With respect to 100% by mass of the total amount of the polymerizable component (P),
    The active energy ray-curable resin composition according to claim 12, wherein the content of the polymerizable component having a polyoxyalkylene skeleton is less than 10% by mass.
  14.  重合性成分(P)が、重合性成分(B)として、シリコーン(メタ)アクリレート及びアルキル(メタ)アクリレートの少なくとも一方をさらに含む、請求項12に記載の活性エネルギー線硬化性樹脂組成物。 The active energy ray-curable resin composition according to claim 12, wherein the polymerizable component (P) further contains at least one of silicone (meth) acrylate and alkyl (meth) acrylate as the polymerizable component (B).
  15.  重合性成分(P)の全体量100質量%に対して、
     重合性成分(A)の含有率が50~99.5質量%であり、
     重合性成分(B)の含有率が0.5~50質量%である、請求項14に記載の活性エネルギー線硬化性樹脂組成物。
    With respect to 100% by mass of the total amount of the polymerizable component (P),
    The content of the polymerizable component (A) is 50 to 99.5% by mass,
    The active energy ray-curable resin composition according to claim 14, wherein the content of the polymerizable component (B) is 0.5 to 50% by mass.
  16.  さらに、重合性成分(C)として、分子内に3個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレートを含み、
     重合性成分(P)の全体量100質量%に対して、
     重合性成分(A)の含有率が50~89.5質量%であり、
     重合性成分(B)の含有率が0.5~40質量%であり、
     重合性成分(C)の含有率が10~49.5質量%である、請求項15に記載の活性エネルギー線硬化性樹脂組成物。
    Furthermore, the polymerizable component (C) includes a polyfunctional (meth) acrylate having 3 or more (meth) acryloyl groups in the molecule,
    With respect to 100% by mass of the total amount of the polymerizable component (P),
    The content of the polymerizable component (A) is 50 to 89.5% by mass,
    The content of the polymerizable component (B) is 0.5 to 40% by mass,
    The active energy ray-curable resin composition according to claim 15, wherein the content of the polymerizable component (C) is 10 to 49.5 mass%.
  17.  前記シリコーン(メタ)アクリレートが、非オキシアルキレン化シリコーン(メタ)アクリレートである、請求項14に記載の活性エネルギー線硬化性樹脂組成物。 The active energy ray-curable resin composition according to claim 14, wherein the silicone (meth) acrylate is non-oxyalkylenated silicone (meth) acrylate.
  18.  前記アルキル(メタ)アクリレートが、アルキル基の炭素数が8~22のアルキル(メタ)アクリレートである、請求項14に記載の活性エネルギー線硬化性樹脂組成物。 The active energy ray-curable resin composition according to claim 14, wherein the alkyl (meth) acrylate is an alkyl (meth) acrylate having an alkyl group having 8 to 22 carbon atoms.
  19.  内部離型剤(F)の含有率は、重合性成分(P)の全体量100質量部に対して、0.01~2.0質量部である、請求項12に記載の活性エネルギー線硬化性樹脂組成物。 The active energy ray curing according to claim 12, wherein the content of the internal release agent (F) is 0.01 to 2.0 parts by mass with respect to 100 parts by mass of the total amount of the polymerizable component (P). Resin composition.
  20.  請求項12記載の活性エネルギー線硬化性樹脂組成物の硬化物からなり、隣り合う凸部同士の平均間隔が400nm以下である複数の凸部を表面に有する微細凹凸構造を表面に有する物品であって、
     前記微細凹凸構造の表面における水の接触角度が80度以上である物品。
    13. An article comprising a cured product of the active energy ray-curable resin composition according to claim 12, and having a fine concavo-convex structure on the surface, the surface having a plurality of convex portions having an average interval between adjacent convex portions of 400 nm or less. And
    An article in which the contact angle of water on the surface of the fine concavo-convex structure is 80 degrees or more.
PCT/JP2016/060182 2015-03-30 2016-03-29 Active energy ray-curable resin composition and article WO2016158979A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016522083A JPWO2016158979A1 (en) 2015-03-30 2016-03-29 Active energy ray-curable resin composition and article

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-069043 2015-03-30
JP2015069043 2015-03-30

Publications (1)

Publication Number Publication Date
WO2016158979A1 true WO2016158979A1 (en) 2016-10-06

Family

ID=57005984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/060182 WO2016158979A1 (en) 2015-03-30 2016-03-29 Active energy ray-curable resin composition and article

Country Status (3)

Country Link
JP (1) JPWO2016158979A1 (en)
TW (1) TW201641577A (en)
WO (1) WO2016158979A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020050207A1 (en) * 2018-09-07 2020-03-12 富士フイルム株式会社 Curable composition for imprinting, pattern production method, semiconductor element production method, and cured article
JPWO2019188882A1 (en) * 2018-03-27 2021-02-25 富士フイルム株式会社 Curable composition for imprint, mold release agent, cured product, pattern forming method and lithography method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060240218A1 (en) * 2005-04-26 2006-10-26 Nanosys, Inc. Paintable nonofiber coatings
WO2012091129A1 (en) * 2010-12-28 2012-07-05 三菱レイヨン株式会社 Method for producing light-transmitting film, active energy ray-curable composition, and light-transmitting film
WO2012105539A1 (en) * 2011-01-31 2012-08-09 三菱レイヨン株式会社 Active-energy-ray-curable composition, and process for production of transparent film having fine uneven structure on surface thereof
JP2014077040A (en) * 2012-10-10 2014-05-01 Mitsubishi Rayon Co Ltd Active energy ray-curable composition and fine uneven structure using the same
JP2015214101A (en) * 2014-05-12 2015-12-03 三菱レイヨン株式会社 Mold for nanoimprint and method for manufacturing the same, molded product having fine rugged structure, and aluminum base material used as mold for nanoimprint

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060240218A1 (en) * 2005-04-26 2006-10-26 Nanosys, Inc. Paintable nonofiber coatings
WO2012091129A1 (en) * 2010-12-28 2012-07-05 三菱レイヨン株式会社 Method for producing light-transmitting film, active energy ray-curable composition, and light-transmitting film
WO2012105539A1 (en) * 2011-01-31 2012-08-09 三菱レイヨン株式会社 Active-energy-ray-curable composition, and process for production of transparent film having fine uneven structure on surface thereof
JP2014077040A (en) * 2012-10-10 2014-05-01 Mitsubishi Rayon Co Ltd Active energy ray-curable composition and fine uneven structure using the same
JP2015214101A (en) * 2014-05-12 2015-12-03 三菱レイヨン株式会社 Mold for nanoimprint and method for manufacturing the same, molded product having fine rugged structure, and aluminum base material used as mold for nanoimprint

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2019188882A1 (en) * 2018-03-27 2021-02-25 富士フイルム株式会社 Curable composition for imprint, mold release agent, cured product, pattern forming method and lithography method
JP7057421B2 (en) 2018-03-27 2022-04-19 富士フイルム株式会社 Curable composition for imprint, mold release agent, cured product, pattern forming method and lithography method
TWI799550B (en) * 2018-03-27 2023-04-21 日商富士軟片股份有限公司 Curable composition for imprint, release agent, cured product, pattern forming method and lithography method
WO2020050207A1 (en) * 2018-09-07 2020-03-12 富士フイルム株式会社 Curable composition for imprinting, pattern production method, semiconductor element production method, and cured article
JPWO2020050207A1 (en) * 2018-09-07 2021-09-16 富士フイルム株式会社 Curable composition for imprint, pattern manufacturing method, semiconductor device manufacturing method and cured product
JP7047109B2 (en) 2018-09-07 2022-04-04 富士フイルム株式会社 Curable composition for imprint, pattern manufacturing method, semiconductor device manufacturing method and cured product

Also Published As

Publication number Publication date
JPWO2016158979A1 (en) 2018-01-25
TW201641577A (en) 2016-12-01

Similar Documents

Publication Publication Date Title
JP5260790B2 (en) Active energy ray-curable resin composition, fine concavo-convex structure, and method for producing fine concavo-convex structure
JP5716868B2 (en) Laminated structure, method for manufacturing the same, and article
JP4990414B2 (en) Method for producing article having fine concavo-convex structure on surface, mold release treatment method, and active energy ray curable resin composition for mold surface release treatment
JP6451321B2 (en) Optical article and manufacturing method thereof
JP5958338B2 (en) Fine uneven structure, water-repellent article, mold, and method for producing fine uneven structure
JP6686284B2 (en) Article containing cured product of active energy ray curable resin composition
WO2014065136A1 (en) Layered structure and method for manufacturing same, and article
JP5648632B2 (en) Active energy ray-curable resin composition, nano uneven structure using the same, method for producing the same, and water-repellent article provided with nano uneven structure
WO2013005769A1 (en) Article having fine concavo-convex structure on surface, and image display device provided therewith
JP2014005341A (en) Article having fine uneven structure on surface
JP5876977B2 (en) Active energy ray-curable resin composition, nano uneven structure using the same, method for producing the same, and water-repellent article provided with nano uneven structure
JP2015054402A (en) Laminated structure, method for producing the same, and antireflection article
JP2012224709A (en) Active energy ray-curable resin composition, and nano convex/concave structure and water-repellent article using the same
JP2016210150A (en) Laminate, production method thereof and article
WO2016158979A1 (en) Active energy ray-curable resin composition and article
JP2014077040A (en) Active energy ray-curable composition and fine uneven structure using the same
JP2014016453A (en) Article with fine rugged structure and active energy ray-curable resin composition
JP2017160295A (en) Active energy ray-curable resin composition, raw material for imprint, and molded article
JP2014076556A (en) Article having fine rugged structure, and method for producing the article
JP2016221914A (en) Laminate and picture display unit
JP2013033136A (en) Fine asperity structure and antireflection article having the same

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016522083

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16772860

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16772860

Country of ref document: EP

Kind code of ref document: A1