WO2016157375A1 - Phase shifting circuit and antenna device - Google Patents

Phase shifting circuit and antenna device Download PDF

Info

Publication number
WO2016157375A1
WO2016157375A1 PCT/JP2015/059960 JP2015059960W WO2016157375A1 WO 2016157375 A1 WO2016157375 A1 WO 2016157375A1 JP 2015059960 W JP2015059960 W JP 2015059960W WO 2016157375 A1 WO2016157375 A1 WO 2016157375A1
Authority
WO
WIPO (PCT)
Prior art keywords
dielectric
phase shift
signal
shift circuit
signal conductor
Prior art date
Application number
PCT/JP2015/059960
Other languages
French (fr)
Japanese (ja)
Inventor
誠司 嘉戸
Original Assignee
日立金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立金属株式会社 filed Critical 日立金属株式会社
Priority to PCT/JP2015/059960 priority Critical patent/WO2016157375A1/en
Publication of WO2016157375A1 publication Critical patent/WO2016157375A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters

Definitions

  • the present invention relates to a phase shift circuit and an antenna device.
  • Patent Document 1 As a conventional phase shift circuit.
  • phase shift circuit described in Patent Document 1 a plurality of intersections where the signal conductor and the dielectric overlap along the longitudinal direction of the phase shift circuit are provided, and the dielectric is moved in the longitudinal direction of the phase shift circuit. The area where the signal conductor and the dielectric overlap is changed at the intersection, and the phase of the signal transmitted through the signal conductor is changed.
  • phase shift circuit described in Patent Document 1 has a problem that it is necessary to increase the number of intersections in order to increase the amount of phase shift, and the total length may be increased.
  • the present invention provides a phase shift circuit and an antenna device that can be made compact while being able to increase the amount of phase shift, and that can obtain good VSWR characteristics in a wide frequency band. With the goal.
  • the present invention includes a signal conductor that transmits a signal and a dielectric disposed so as to overlap the signal conductor, and the signal conductor and the dielectric overlap each other.
  • a phase-shift circuit that changes the phase of the signal by changing the area of the part, provided at the input side and output side ends of the signal of the dielectric, wherein the characteristic impedance value is the overlapping part
  • a phase shift circuit having a transformer portion that is larger than a characteristic impedance value of the non-overlapping portion where the signal conductor and the dielectric do not overlap with each other.
  • the present invention also provides an antenna device including the phase shift circuit for the purpose of solving the above-described problems.
  • phase shift circuit and an antenna device that can be made compact while being able to increase the amount of phase shift and that can obtain good VSWR characteristics in a wide frequency band.
  • FIG. 2 is a graph showing a result of simulating VSWR (voltage standing wave ratio) characteristics in the phase shift circuit of FIG. 1.
  • FIG. 2 is a graph showing the result of simulating the relationship between drive amount and phase shift in the phase shift circuit of FIG. 1.
  • (A) is a plan view in which one ground conductor of a phase shift circuit according to a modification of the present invention is omitted, (b) is a cross-sectional view taken along line BB of (a), and (c) is a phase shift of (a). It is a top view at the time of comprising a phase circuit in multistage. It is the top view which abbreviate
  • FIG. 10 is a graph showing a result of simulating a VSWR (voltage standing wave ratio) characteristic in the phase shift circuit of FIG. 9.
  • FIG. 1 is a diagram showing a phase shift circuit according to the present embodiment, in which (a) is a plan view in which one ground conductor is omitted, and (b) is a cross-sectional view.
  • the phase shift circuit 1 includes a signal conductor 2 that transmits a signal, a dielectric 3 that is disposed so as to overlap the signal conductor 2, and a signal conductor of the dielectric 3. 2 and a ground conductor 4 disposed on the opposite side.
  • the signal conductor 2 is made of a plate-like member made of a good electric conductor.
  • the signal conductor 2 is composed of two straight portions 2a arranged in parallel and a connecting portion 2b that connects the tip portions of the straight portions 2a (right ends in FIG. 1). As a whole, it is formed in a U-shape rotated 90 ° counterclockwise in plan view.
  • the connecting portion between the straight line portion 2a and the connecting portion 2b has a chamfered shape.
  • a plate-like member made of a good electrical conductor is used as the signal conductor 2, but the signal conductor 2 is not limited to this, and the signal conductor 2 is a wiring pattern formed on both surfaces of a dielectric substrate made of glass epoxy or the like.
  • the signal conductor 2 is a wiring pattern formed on both surfaces of a dielectric substrate made of glass epoxy or the like.
  • a film-like material when used as the dielectric, it may be constituted by a wiring pattern formed on one surface of the film-like substrate.
  • the ground conductor 4 is made of a plate-like member made of a good electrical conductor.
  • the phase shift circuit 4 has a triplate structure in which two ground conductors 4 are provided so as to sandwich the signal conductor 2 from above and below.
  • the ground conductor 4 disposed above the signal conductor 2 (upper side in FIG. 1B) is referred to as a first ground conductor 4a and below the signal conductor 2 (lower side in FIG. 1B).
  • the arranged ground conductor 4 is referred to as a second ground conductor 4b.
  • Fig.1 (a) the top view when the 1st ground conductor 4a is abbreviate
  • the dielectric 3 is made of a rectangular plate-like member in plan view.
  • the material of the dielectric 3 is not particularly limited, but it is desirable to use a material having a dielectric constant as large as possible in order to increase the amount of phase shift.
  • the dielectric 3 includes a first dielectric 3a and a second dielectric 3b that are disposed so as to sandwich the signal conductor 2 from above and below.
  • the first dielectric 3a is disposed between the signal conductor 2 and the first ground conductor 4a
  • the second dielectric 3b is disposed between the signal conductor 2 and the second ground conductor 4b.
  • Both dielectrics 3a and 3b are arranged apart from the signal conductor 2 and the ground conductor 4 so as not to be affected by the electric field formed in the immediate vicinity of the signal conductor 2 and the ground conductor 4. That is, the first dielectric 3a is disposed away from the signal conductor 2 and the first ground conductor 4a, and the second dielectric 3b is disposed away from the signal conductor 2 and the second ground conductor 4b.
  • Both dielectrics 3a and 3b are connected by a connecting member (not shown).
  • the dielectrics 3a and 3b are configured to be movable in the left-right direction in FIG. 1 by a moving mechanism (not shown) such as a DC motor.
  • a portion where the signal conductor 2 and the dielectric 3 overlap in the phase shift circuit 1 is referred to as an overlapping portion 5, and a portion where the signal conductor 2 and the dielectric 3 do not overlap is referred to as a non-overlapping portion 6.
  • the non-overlapping portion 6 is a portion where the signal conductor 2 and the ground conductor 4 face each other with an air layer interposed therebetween.
  • phase shift circuit 1 the phase of the signal transmitted through the signal conductor 2 is changed by moving the dielectric 3 by the moving means and changing the area of the overlapping portion 5 where the signal conductor 2 and the dielectric 3 overlap. It is configured as follows. In the phase shift circuit 1, the phase of the signal is delayed as the area of the overlapping portion 5 is increased, and the phase of the signal is advanced as the area of the overlapping portion 5 is decreased. Therefore, in the case of FIG.
  • the phase of the signal is delayed from the phase at the reference position, and the right side (
  • the phase of the signal can be advanced from the phase at the reference position by moving the dielectric to the tip side of the parallel part 2a and the connection part 2b side).
  • the moving range of the dielectric 3 is set in advance.
  • the phase of the signal is changed by changing the area of the overlapping portion 5 by moving the dielectric 3 within the moving range. It is configured.
  • the signal input side and output side end portions of the dielectric 3 are portions in the vicinity of the boundary between the overlapping portion 5 and the non-overlapping portion 6 in the dielectric 3, and the signal input side and output side
  • the signal conductor 2 (parallel portion 2 a) is an edge portion of the dielectric 3 in the vicinity of a portion extending from the overlapping portion 5 to the non-overlapping portion 6.
  • the transformer section 7 is formed by processing a part of the dielectric 3.
  • the transformer section 7 is not a part of the dielectric 3 and is separate from the dielectric 3. Handle as a member. That is, a portion where the transformer portion 7 and the signal conductor 2 overlap is not included in the overlap portion 5.
  • a common transformer section 7 is formed on the input side and the output side.
  • the transformer section 7 may be provided separately on the signal input side and the output side.
  • the transformer section 7 is provided on both the first dielectric 3a and the second dielectric 3b, respectively.
  • the transformer section 7 is configured to always be located at the signal input side and output side ends of the dielectric 3 when the dielectric 3 is moved within the set moving range.
  • the transformer section 7 is formed at the end of the dielectric 3 on the extending side of the signal conductor 2, and the phase shift is performed so that the dielectric 3 is moved along the extending direction of the signal conductor 2. Since the circuit 1 is configured, the transformer unit 7 is always located at the signal input side and output side ends of the dielectric 3 even when the dielectric 3 is moved in the horizontal direction in the figure. It will be.
  • the transformer section 7 is set such that the characteristic impedance value is larger than the characteristic impedance value of the overlapping section 5 and smaller than the characteristic impedance value of the non-overlapping section 6.
  • the transformer section 7 is configured to be a ⁇ / 4 transformer corresponding to the center frequency of the signal transmitted by the signal conductor 2. That is, when the wavelength corresponding to the center frequency of the signal transmitted by the signal conductor 2 (effective wavelength in the non-overlapping portion 6) is ⁇ g, the transformer section 7 has a length L along the signal conductor 2 of ⁇ g / 4 and the characteristic impedance value is expressed by the following equation (1).
  • Z (Za ⁇ Zb) 1/2 (1)
  • Za is set so as to satisfy the characteristic impedance of the overlapping portion 5 Zb: the characteristic impedance of the non-overlapping portion 6 is satisfied.
  • the transformer section 7 is configured. That is, in this embodiment, the effective dielectric constant between the signal conductor 2 and the ground conductor 4 in the transformer section 7 is smaller than the effective dielectric constant between the signal conductor 2 and the ground conductor 4 in the overlapping section 5, and the non-overlapping section. 6 is larger than the effective dielectric constant between the signal conductor 2 and the ground conductor 4.
  • the dielectric 3 constituting a part of the transformer section 7, that is, the end of the dielectric 3 formed with a small thickness is referred to as a dielectric layer 7a
  • the gap between the dielectric layer 7a and the ground conductor 4 is referred to as a dielectric layer 7a.
  • the gap portion is referred to as an air layer 7b.
  • the thickness of the dielectric layer 7a that is, the ratio of the thickness of the dielectric layer 7a and the air layer 7b is adjusted so that the value of the characteristic impedance in the transformer section 7 satisfies the above formula (1). Is done. For example, when the characteristic impedance of the overlapping part 5 is 21 ⁇ and the characteristic impedance of the non-overlapping part 6 is 50 ⁇ , the characteristic impedance of the transformer part 7 is set to about 32.4 ⁇ .
  • the transformer section 7 is configured such that the dielectric layer 7a is on the signal conductor 2 side and the air layer 7b is on the ground conductor 4 side.
  • the present invention is not limited to this, and the dielectric layer 7a is not limited thereto. May be disposed on the ground conductor 4 side and the air layer 7b may be disposed on the signal conductor 2 side.
  • the dielectric layer 7a may be formed in the center in the thickness direction, and the air layers 7b may be formed above and below the dielectric layer 7a. You may comprise so that it may arrange
  • FIG. 2 shows the result of simulating the VSWR (voltage standing wave ratio) characteristics in the phase shift circuit 1 of FIG.
  • the VSWR is 1.2 or less in the frequency range of about 0.8 GHz to 1.07 GHz, the impedance matching is good, and the good in a wide frequency band. It can be seen that the VSWR characteristic is realized.
  • FIG. 3 shows the result of simulating the relationship between the drive amount and the phase in the phase shift circuit 1 of FIG.
  • the driving amount is the amount of movement of the derivative 3 in the left-right direction in FIG.
  • the drive amount and the phase have a substantially linear relationship at least when the phase shift amount is between 90 ° and ⁇ 90 °, and high linearity is obtained. I understand.
  • the antenna device 41 is distributed by an input terminal 42 to which a high-frequency signal is input, a first distribution line 14a that distributes a signal input to the input terminal 42, and a first distribution line 44a.
  • a second distribution line 44b for further distributing the signal
  • a third distribution line 44c for further distributing the signal distributed by the second distribution line 44b
  • an antenna element 43 connected to a terminal portion of the third distribution line 44c, It has.
  • Each distribution line 44a to 44c has a 1-input / 2-output line configuration, and a total of eight antenna elements 43a to 43h are connected to the terminal portion of the third distribution line 44c.
  • the phase shift circuit 1 is provided between the first distribution line 44a and the second distribution line 44b and between the second distribution line 44b and the third distribution line 44c.
  • a total of six phase shift circuits 1a to 1 are provided at two places between the first distribution line 44a and the second distribution line 44b and at four places between the second distribution line 44b and the third distribution line 44c. 1f is provided.
  • Phase shift circuits 1a and 1b provided between the first distribution line 44a and the second distribution line 44b, phase shift circuits 1c and 1d provided between the second distribution line 44b and the third wiring path 44c, and phase shift The circuits 1e and 1f are used as a pair.
  • phase shift circuits 1a, 1c and 1e of the pair advances the phase by a predetermined phase shift amount
  • the other phase shift circuits 1b, 1d and 1f of the pair are the same.
  • the phase is delayed by the amount of phase shift.
  • phase shift circuit 1 of each pair of the phase shift circuits 1a and 1b, the phase shift circuits 1c and 1d, and the phase shift circuits 1e and 1f the phase shift circuit 1 constituting the pair is moved in the moving direction of the dielectric 3.
  • the phase shift circuit 1 constituting the pair is advanced in phase while the other is delayed in phase.
  • a dynamic phase shift circuit was constructed.
  • the antenna device 41 it is possible to adjust the directivity (electric tilt angle) of radio waves radiated from the antenna elements 43a to 43h by changing the phase of the signal by the phase shift circuits 1a to 1f.
  • the number of antenna elements 43 and phase shift circuits 1 is an example. It is not limited to the illustrated one.
  • the characteristic impedance value provided at the signal input side and output side ends of the dielectric 3 is the value of the characteristic impedance of the overlapping portion 5.
  • a transformer section 7 that is larger and smaller than the characteristic impedance value of the non-overlapping section 6 is provided.
  • the transformer unit 7 By providing the transformer unit 7, it is possible to match the impedances of the overlapping portion 5 and the non-overlapping portion 6 having different characteristic impedances, and obtain a good VSWR characteristic in a wide frequency band. Moreover, in the phase shift circuit 1, the linearity of the drive amount and the phase shift amount is high, and the movement control of the dielectric 3 is easy.
  • the phase shift circuit 1 can easily increase the amount of change in the area of the overlapping portion 5, that is, the amount of phase shift, by adjusting the length of the dielectric 3 along the moving direction. Compared to the conventional case where a plurality of intersections are provided along the moving direction of the dielectric 3, the moving distance of the dielectric 3 required to obtain the same area of the overlapping portion 5 is reduced, and the dielectric 3 can be reduced in size in the moving direction.
  • the phase shift circuit 1 can be made compact while being able to increase the amount of phase shift, and can obtain good VSWR characteristics in a wide frequency band. it can.
  • the transformer section 7 constitutes a ⁇ / 4 transformer corresponding to the center frequency of the signal, the design and adjustment of the transformer section 7 are easy.
  • phase shift circuit 1 is configured so that when the dielectric 3 is moved within the moving range, it is always positioned at the signal input side and output side ends of the dielectric 3. Therefore, regardless of the position of the dielectric 3, it is possible to match the impedance between the overlapping portion 5 and the non-overlapping portion 6 and obtain good VSWR characteristics.
  • a phase shift circuit 51 shown in FIG. 5A includes a low dielectric constant layer 52 made of a dielectric having a dielectric constant lower than that of the dielectric layer 7a in the air layer 7b in the phase shift circuit 1 of FIG. It is a thing. Even when the air layer 7 b is the low dielectric constant layer 52 as in the phase shift circuit 51, the transformer section 7 constitutes a ⁇ / 4 transformer as a whole, and the like between the overlapping section 5 and the non-overlapping section 6. As long as the condition for matching the impedance of the phase shift circuit 1 is satisfied, the same effect as the phase shift circuit 1 of FIG. 1 can be obtained.
  • a phase shift circuit 55 shown in FIG. 5 (b) is a circuit in which the entire transformer section 7 is made of a dielectric having a lower dielectric constant than that of the dielectric 3 in the phase shift circuit 1 of FIG. Also in this case, the phase shift circuit 1 of FIG. 1 can be used as long as the conditions for matching the impedance between the overlapping portion 5 and the non-overlapping portion 6 are satisfied, such as the transformer portion 7 constituting a ⁇ / 4 transformer as a whole. Similar effects can be obtained.
  • the phase shift circuit 61 shown in FIG. 6 increases the maximum area of the overlapping portion 5 where the signal conductor 2 and the dielectric 3 overlap each other by forming the signal conductor 2 in a meander shape in the phase shift circuit 1 of FIG. It is intended. That is, according to the phase shift circuit 61, the amount of phase shift can be further increased. Further, according to the phase shift circuit 61, a large amount of phase shift can be realized even if the moving distance of the dielectric 3 is reduced, so that the size of the dielectric 3 in the moving direction can be further reduced.
  • the signal conductor 2 is folded three times, and the signal conductor 2 is configured in an M shape that is rotated by 90 ° in a substantially clockwise direction as a whole.
  • the number of times of folding the signal conductor 2 is not particularly limited.
  • the dielectric 3 is formed in a triangular shape (isosceles triangular shape) having a side 72 parallel to the signal conductor 2 and two sides 73 and 74 that obliquely intersect the signal conductor 2.
  • the transformer section 7 is formed along two sides 73 and 74 that intersect the signal conductor 2.
  • the position of the transformer section 7 that overlaps the signal conductor 2 changes with the movement of the dielectric 3, so that at least a portion that intersects the signal conductor 2 within the movement range of the dielectric 3.
  • transformer section 7 It is necessary to form the transformer section 7 along the sides 73 and 74 of the current.
  • the transformer section 7 is formed so that the length L along the signal conductor 2 is constant, and is formed in a parallelogram shape as a whole.
  • the signal conductor 2 is formed in a meander shape, and a plurality of dielectrics 3 are connected in the moving direction, that is, a plurality of phase shift circuits 71 are connected, so that a multistage phase shift is achieved. It is also possible to configure the circuit 75 and increase the amount of phase shift.
  • the phase shift circuit 81 shown in FIG. 8 is obtained by integrating a 1-input 2-output distribution wiring and a differential phase shift circuit.
  • the phase shift circuit 81 includes one input signal conductor 82, two output signal conductors 83, 84, and the derivative 3 disposed so as to overlap the signal conductors 82, 83, 84. ing.
  • the two output signal conductors 83 and 84 are integrally formed in a straight line, and the input signal conductor 82 is connected to the signal conductor 83 from a direction perpendicular to the length direction of the output signal conductors 83 and 84. , 84.
  • the derivative 3 has a rectangular shape having two sides 85 and 86 along the length direction of the output signal conductors 83 and 84 and two sides 87 and 88 orthogonal to the two sides 85 and 86. Is formed. In the phase shift circuit 81, the derivative 3 is moved along the length direction of the output signal conductors 83 and 84.
  • the transformer section 7 is formed along a side 86 that intersects the input signal conductor 82 of the dielectric 3 and a side 87 and 88 that intersects the output signal conductors 83 and 84. ing.
  • the position of the transformer section 7 that overlaps with the input signal conductor 82 changes with the movement of the dielectric 3, so that at least the input signal within the movement range of the dielectric 3.
  • the transformer section 7 needs to be formed along the side 86 of the portion that intersects the conductor 82.
  • the case where the transformer section 7 is formed along the entire side 86 is shown.
  • phase shift circuit 81 when the dielectric 3 is moved to the left side in the figure (the output signal conductor 83 side), the phase of the signal output from the signal conductor 83 is delayed and the signal output from the signal conductor 84 is delayed. The phase will advance. Further, when the dielectric 3 is moved to the right side (the signal conductor 84 side) in the figure, the phase of the signal output from the signal conductor 83 is advanced, and the phase of the signal output from the signal conductor 84 is delayed. Thus, the phase shift circuit 81 operates as a differential phase shift circuit.
  • a phase shift circuit 91 shown in FIGS. 9A and 9B has a two-stage transformer section 7.
  • the transformer section 7 formed on the signal input / output side is called a first transformer section 92
  • the transformer section 7 formed on the dielectric 3 side is called a second transformer section 93.
  • Both transformer sections 92 and 93 constitute a ⁇ / 4 transformer, and the length L along the signal conductor 2 is ⁇ g / 4 when the effective wavelength ⁇ g in the non-overlapping section 6 is assumed.
  • the characteristic impedance Z1 of the first transformer section 92 and the characteristic impedance Z2 of the second transformer section 93 are expressed by the following equations (2) and (3).
  • Z1 (Zb ⁇ Z2) 1/2 (2)
  • Z2 (Z1 ⁇ Za) 1/2 (3)
  • Za is set so as to satisfy both the characteristic impedances of the overlapping portion 5.
  • the thickness of the dielectric layer 7a of the first transformer section 92 is thinner than the thickness of the dielectric 3, and the thickness of the dielectric layer 7a of the second transformer section 93 is equal to the first transformer section. It is formed thinner than the thickness of the dielectric layer 7a of 92, and the transformer section 7 and the dielectric 3 are formed in a step shape as a whole.
  • the frequency is in the range of about 1.35 GHz to 2.4 GHz
  • the VSWR is 1.2 or less
  • the impedance matching is good, and it is good in a wider frequency band. It can be seen that a good VSWR characteristic can be realized.
  • the transformer section 7 has a two-stage configuration
  • a configuration having three or more stages may be used.
  • a favorable VSWR characteristic can be realized in a wider frequency band.
  • a signal conductor (2) for transmitting a signal and a dielectric (3) disposed so as to overlap the signal conductor (2), the signal conductor (2) and the dielectric (3) Is a phase shift circuit (1) that changes the phase of the signal by changing the area of the overlapping portion (5) that overlaps with each other, and the end portions on the input side and output side of the signal of the dielectric (3)
  • the characteristic impedance value of the non-overlapping part (6) in which the value of the characteristic impedance is larger than the value of the characteristic impedance of the overlapping part (5) and the signal conductor (2) and the dielectric (3) do not overlap.
  • the transformer (3) is configured to change the phase of the signal by changing the area of the overlapping portion (5) by moving the dielectric (3) within a preset moving range,
  • the part (7) is configured to be always positioned at the signal input side and output side ends of the dielectric (3).
  • the phase shift circuit (1) according to any one of [1] to [3].
  • a ground conductor (4) disposed on the opposite side of the dielectric (3) from the signal conductor (2) and having a ground potential, the signal conductor (2) in the transformer section (7),
  • the effective dielectric constant between the ground conductors (4) is smaller than the effective dielectric constant between the signal conductor (2) and the ground conductor (4) in the overlapping portion (5), and in the non-overlapping portion (6).
  • the phase shift circuit (1) according to any one of [1] to [5], which is larger than an effective dielectric constant between the signal conductor (2) and the ground conductor (4).
  • the structure of the transmission line is not particularly limited.
  • the present invention can be applied to a strip line.
  • the present invention is not limited to this, and the transformer section 7 includes the dielectric layer.
  • the thickness of 7a may be formed in a tapered shape that gradually increases toward the dielectric 3. In this case, since the characteristic impedance value gradually changes between the overlapping portion 5 and the non-overlapping portion 6, it is possible to obtain a better impedance matching state.

Landscapes

  • Waveguide Switches, Polarizers, And Phase Shifters (AREA)

Abstract

Provided are: a phase shifting circuit whereby size can be reduced, while being capable of increasing a phase shift quantity, and excellent voltage standing wave ratio (VSWR) can be obtained in a wide frequency band; and an antenna device. A phase shifting circuit 1 is provided with a signal conductor 2 that transmits signals, and a dielectric body 3 that is disposed such that the dielectric body and the signal conductor 2 overlap each other, and the phase shifting circuit changes the phase of the signals by changing the area of an overlapping section 5 where the signal conductor 2 and the dielectric body 3 overlap each other. The phase shifting circuit is also provided with a transformer unit 7, which is provided on dielectric body 3 end portions on the signal input side and the signal output side, and in which a characteristic impedance value is larger than the characteristic impedance value of the overlapping section 5, and is smaller than the characteristic impedance value of a non-overlapping section 6 where the signal conductor 2 and the dielectric body 3 do not overlap each other.

Description

移相回路及びアンテナ装置Phase shift circuit and antenna device
 本発明は、移相回路及びアンテナ装置に関する。 The present invention relates to a phase shift circuit and an antenna device.
 従来の移相回路として、特許文献1がある。 There is Patent Document 1 as a conventional phase shift circuit.
 特許文献1に記載の移相回路では、移相回路の長手方向に沿って信号導体と誘電体とが重なり合う交差部を複数設け、誘電体を移相回路の長手方向に移動させることで、各交差部において信号導体と誘電体とが重なり合う面積を変化させ、信号導体を伝送する信号の位相を変化させるように構成されている。 In the phase shift circuit described in Patent Document 1, a plurality of intersections where the signal conductor and the dielectric overlap along the longitudinal direction of the phase shift circuit are provided, and the dielectric is moved in the longitudinal direction of the phase shift circuit. The area where the signal conductor and the dielectric overlap is changed at the intersection, and the phase of the signal transmitted through the signal conductor is changed.
特開2014-158188号公報JP 2014-158188 A 特許第4745213号公報Japanese Patent No. 4745213
 しかしながら、特許文献1に記載の移相回路では、移相量を大きくするためには交差部の数を増やす必要があり、全長が長くなってしまう場合がある、という問題がある。 However, the phase shift circuit described in Patent Document 1 has a problem that it is necessary to increase the number of intersections in order to increase the amount of phase shift, and the total length may be increased.
 また、特許文献1に記載の移相回路では、広い周波数帯域で良好なVSWR(電圧定在波比)特性を得るためには、誘電体の形状や交差部の間隔等を調整する必要が生じる。この際、調整後の誘電体の形状によっては、駆動量と移相量のリニアリティが低下し、誘電体の移動制御が複雑になってしまう場合がある、という問題がある。 Further, in the phase shift circuit described in Patent Document 1, in order to obtain a good VSWR (voltage standing wave ratio) characteristic in a wide frequency band, it is necessary to adjust the shape of the dielectric, the interval between intersections, and the like. . At this time, depending on the shape of the dielectric after adjustment, there is a problem that the linearity of the drive amount and the phase shift amount is lowered, and the movement control of the dielectric may be complicated.
 そこで、本発明は、移相量が大きくすることが可能でありながらもコンパクト化が可能であり、広い周波数帯域で良好なVSWR特性を得ることが可能な移相回路及びアンテナ装置を提供することを目的とする。 Accordingly, the present invention provides a phase shift circuit and an antenna device that can be made compact while being able to increase the amount of phase shift, and that can obtain good VSWR characteristics in a wide frequency band. With the goal.
 本発明は、上記課題を解決することを目的として、信号を伝送する信号導体と、前記信号導体と重なり合うように配置される誘電体と、を備え、前記信号導体と前記誘電体とが重なり合う重複部の面積を変化させることで前記信号の位相を変化させる移相回路であって、前記誘電体の前記信号の入力側および出力側の端部に設けられ、特性インピーダンスの値が、前記重複部の特性インピーダンスの値より大きく、前記信号導体と前記誘電体とが重なり合わない非重複部の特性インピーダンスの値より小さい変成器部を備えた、移相回路を提供する。 In order to solve the above problems, the present invention includes a signal conductor that transmits a signal and a dielectric disposed so as to overlap the signal conductor, and the signal conductor and the dielectric overlap each other. A phase-shift circuit that changes the phase of the signal by changing the area of the part, provided at the input side and output side ends of the signal of the dielectric, wherein the characteristic impedance value is the overlapping part A phase shift circuit having a transformer portion that is larger than a characteristic impedance value of the non-overlapping portion where the signal conductor and the dielectric do not overlap with each other.
 また、本発明は、上記課題を解決することを目的として、前記移相回路を備えた、アンテナ装置を提供する。 The present invention also provides an antenna device including the phase shift circuit for the purpose of solving the above-described problems.
 本発明によれば、移相量が大きくすることが可能でありながらもコンパクト化が可能であり、広い周波数帯域で良好なVSWR特性を得ることが可能な移相回路及びアンテナ装置を提供できる。 According to the present invention, it is possible to provide a phase shift circuit and an antenna device that can be made compact while being able to increase the amount of phase shift and that can obtain good VSWR characteristics in a wide frequency band.
本発明の一実施の形態に係る移相回路を示す図であり、(a)は一方の地導体を省略した平面図、(b)は(a)のA-A線断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows the phase shift circuit which concerns on one embodiment of this invention, (a) is the top view which abbreviate | omitted one ground conductor, (b) is the sectional view on the AA line of (a). 図1の移相回路において、VSWR(電圧定在波比)特性をシミュレーションした結果を示すグラフ図である。FIG. 2 is a graph showing a result of simulating VSWR (voltage standing wave ratio) characteristics in the phase shift circuit of FIG. 1. 図1の移相回路において、駆動量と移相との関係をシミュレーションした結果を示すグラフ図である。FIG. 2 is a graph showing the result of simulating the relationship between drive amount and phase shift in the phase shift circuit of FIG. 1. 図1の移相回路を用いたアンテナ装置の概略構成図である。It is a schematic block diagram of the antenna apparatus using the phase shift circuit of FIG. (a),(b)は、本発明の一変形例に係る移相回路の断面図である。(A), (b) is sectional drawing of the phase shift circuit which concerns on one modification of this invention. 本発明の一変形例に係る移相回路の一方の地導体を省略した平面図である。It is the top view which abbreviate | omitted one ground conductor of the phase shift circuit which concerns on one modification of this invention. (a)は本発明の一変形例に係る移相回路の一方の地導体を省略した平面図、(b)は(a)のB-B線断面図、(c)は(a)の移相回路を多段に構成した際の平面図である。(A) is a plan view in which one ground conductor of a phase shift circuit according to a modification of the present invention is omitted, (b) is a cross-sectional view taken along line BB of (a), and (c) is a phase shift of (a). It is a top view at the time of comprising a phase circuit in multistage. 本発明の一変形例に係る移相回路の一方の地導体を省略した平面図である。It is the top view which abbreviate | omitted one ground conductor of the phase shift circuit which concerns on one modification of this invention. (a)は本発明の一変形例に係る移相回路の一方の地導体を省略した平面図、(b)は(a)のC-C線断面図である。(A) is the top view which abbreviate | omitted one ground conductor of the phase shift circuit based on one modification of this invention, (b) is CC sectional view taken on the line of (a). 図9の移相回路において、VSWR(電圧定在波比)特性をシミュレーションした結果を示すグラフ図である。FIG. 10 is a graph showing a result of simulating a VSWR (voltage standing wave ratio) characteristic in the phase shift circuit of FIG. 9.
[実施の形態]
 以下、本発明の実施の形態を添付図面にしたがって説明する。
[Embodiment]
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 図1は、本実施の形態に係る移相回路を示す図であり、(a)は一方の地導体を省略した平面図、(b)は断面図である。 FIG. 1 is a diagram showing a phase shift circuit according to the present embodiment, in which (a) is a plan view in which one ground conductor is omitted, and (b) is a cross-sectional view.
 図1(a),(b)に示すように、移相回路1は、信号を伝送する信号導体2と、信号導体2と重なり合うように配置される誘電体3と、誘電体3の信号導体2と反対側に配置される地導体4と、を備えている。 As shown in FIGS. 1A and 1B, the phase shift circuit 1 includes a signal conductor 2 that transmits a signal, a dielectric 3 that is disposed so as to overlap the signal conductor 2, and a signal conductor of the dielectric 3. 2 and a ground conductor 4 disposed on the opposite side.
 信号導体2は、電気良導体からなる板状の部材からなる。本実施の形態では、信号導体2は、平行に配置された2本の直線部2aと、直線部2aの先端部同士(図1における右側の端部同士)を接続する接続部2bとからなり、全体として平面視で反時計周りに90°回転させたU字状に形成されている。直線部2aと接続部2bとの接続部は、面取りがなされた形状となっている。 The signal conductor 2 is made of a plate-like member made of a good electric conductor. In the present embodiment, the signal conductor 2 is composed of two straight portions 2a arranged in parallel and a connecting portion 2b that connects the tip portions of the straight portions 2a (right ends in FIG. 1). As a whole, it is formed in a U-shape rotated 90 ° counterclockwise in plan view. The connecting portion between the straight line portion 2a and the connecting portion 2b has a chamfered shape.
 なお、本実施の形態では、信号導体2として電気良導体からなる板状の部材を用いたが、これに限らず、信号導体2はガラスエポキシ等からなる誘電体基板の両面に形成された配線パターンで構成されてもよく、また、誘電体としてフィルム状のものを用いる場合には、当該フィルム状の基板の一方の面に形成された配線パターンで構成されてもよい。 In the present embodiment, a plate-like member made of a good electrical conductor is used as the signal conductor 2, but the signal conductor 2 is not limited to this, and the signal conductor 2 is a wiring pattern formed on both surfaces of a dielectric substrate made of glass epoxy or the like. In addition, when a film-like material is used as the dielectric, it may be constituted by a wiring pattern formed on one surface of the film-like substrate.
 地導体4は、電気良導体からなる板状の部材からなる。本実施の形態では、移相回路4を、信号導体2を上下から挟み込むように2枚の地導体4を設けたトリプレート構造としている。以下、信号導体2の上方(図1(b)の上側)に配置される地導体4を第1地導体4aと呼称し、信号導体2の下方(図1(b)の下側))に配置される地導体4を第2地導体4bと呼称する。なお、図1(a)では、第1地導体4aを省略したときの上面図を示している。 The ground conductor 4 is made of a plate-like member made of a good electrical conductor. In the present embodiment, the phase shift circuit 4 has a triplate structure in which two ground conductors 4 are provided so as to sandwich the signal conductor 2 from above and below. Hereinafter, the ground conductor 4 disposed above the signal conductor 2 (upper side in FIG. 1B) is referred to as a first ground conductor 4a and below the signal conductor 2 (lower side in FIG. 1B). The arranged ground conductor 4 is referred to as a second ground conductor 4b. In addition, in Fig.1 (a), the top view when the 1st ground conductor 4a is abbreviate | omitted is shown.
 誘電体3は、平面視で矩形状の板状の部材からなる。誘電体3の材料は特に限定するものではないが、移相量を大きくするため、なるべく誘電率が大きい材料を用いることが望ましい。 The dielectric 3 is made of a rectangular plate-like member in plan view. The material of the dielectric 3 is not particularly limited, but it is desirable to use a material having a dielectric constant as large as possible in order to increase the amount of phase shift.
 本実施の形態では、誘電体3は、信号導体2を上下から挟み込むように配置される第1誘電体3aと第2誘電体3bとからなる。第1誘電体3aは、信号導体2と第1地導体4aとの間に配置され、第2誘電体3bは、信号導体2と第2地導体4bとの間に配置される。両誘電体3a,3bは、信号導体2と地導体4の直近に形成される電界の影響を受けないように、信号導体2および地導体4から離間して配置されている。つまり、第1誘電体3aは、信号導体2および第1地導体4aから離間して配置され、第2誘電体3bは、信号導体2および第2地導体4bから離間して配置されている。 In the present embodiment, the dielectric 3 includes a first dielectric 3a and a second dielectric 3b that are disposed so as to sandwich the signal conductor 2 from above and below. The first dielectric 3a is disposed between the signal conductor 2 and the first ground conductor 4a, and the second dielectric 3b is disposed between the signal conductor 2 and the second ground conductor 4b. Both dielectrics 3a and 3b are arranged apart from the signal conductor 2 and the ground conductor 4 so as not to be affected by the electric field formed in the immediate vicinity of the signal conductor 2 and the ground conductor 4. That is, the first dielectric 3a is disposed away from the signal conductor 2 and the first ground conductor 4a, and the second dielectric 3b is disposed away from the signal conductor 2 and the second ground conductor 4b.
 両誘電体3a,3bは、図示しない連結部材により連結されている。誘電体3a,3bは、DCモータ等の移動機構(不図示)により、図1における左右方向に移動可能に構成されている。 Both dielectrics 3a and 3b are connected by a connecting member (not shown). The dielectrics 3a and 3b are configured to be movable in the left-right direction in FIG. 1 by a moving mechanism (not shown) such as a DC motor.
 以下、移相回路1における信号導体2と誘電体3とが重なり合う部分を重複部5、信号導体2と誘電体3とが重なり合わない部分を非重複部6と呼称する。非重複部6は、信号導体2と地導体4とが空気層を介して対向する部分である。 Hereinafter, a portion where the signal conductor 2 and the dielectric 3 overlap in the phase shift circuit 1 is referred to as an overlapping portion 5, and a portion where the signal conductor 2 and the dielectric 3 do not overlap is referred to as a non-overlapping portion 6. The non-overlapping portion 6 is a portion where the signal conductor 2 and the ground conductor 4 face each other with an air layer interposed therebetween.
 移相回路1では、誘電体3を移動手段により移動させ、信号導体2と誘電体3とが重なり合う重複部5の面積を変化させることで、信号導体2を伝送される信号の位相を変化させるように構成されている。移相回路1では、重複部5の面積が大きくなるほど信号の位相が遅れ、重複部5の面積が小さくなるほど信号の位相が進むことになる。よって、図1の場合、ある基準位置から図示左側(平行部2aの基端側)に誘電体3を移動させることで、信号の位相を基準位置における位相よりも遅らせ、基準位置から図示右側(平行部2aの先端側、接続部2b側)に誘電体を移動させることで、信号の位相を基準位置における位相よりも進めることができる。誘電体3の移動範囲は予め設定されており、移相回路1では、この移動範囲内で誘電体3を移動させることにより、重複部5の面積を変化させて信号の位相を変化させるように構成されている。 In the phase shift circuit 1, the phase of the signal transmitted through the signal conductor 2 is changed by moving the dielectric 3 by the moving means and changing the area of the overlapping portion 5 where the signal conductor 2 and the dielectric 3 overlap. It is configured as follows. In the phase shift circuit 1, the phase of the signal is delayed as the area of the overlapping portion 5 is increased, and the phase of the signal is advanced as the area of the overlapping portion 5 is decreased. Therefore, in the case of FIG. 1, by moving the dielectric 3 from a certain reference position to the left side (the base end side of the parallel part 2a), the phase of the signal is delayed from the phase at the reference position, and the right side ( The phase of the signal can be advanced from the phase at the reference position by moving the dielectric to the tip side of the parallel part 2a and the connection part 2b side). The moving range of the dielectric 3 is set in advance. In the phase shift circuit 1, the phase of the signal is changed by changing the area of the overlapping portion 5 by moving the dielectric 3 within the moving range. It is configured.
 さて、本実施の形態に係る移相回路1では、誘電体3の信号の入力側および出力側の端部に、重複部5と非重複部6との間でインピーダンスを整合させるための変成器部7を備えている。ここで、誘電体3の信号の入力側および出力側の端部とは、つまり、誘電体3における重複部5と非重複部6の境界の近傍の部分であり、信号の入力側および出力側の信号導体2(平行部2a)が重複部5から非重複部6に延出される部分の近傍の誘電体3の縁部である。なお、本実施の形態では、誘電体3の一部を加工することで変成器部7を形成しているが、変成器部7は誘電体3の一部ではなく、誘電体3とは別部材として取り扱う。すなわち、変成器部7と信号導体2とが重なり合う部分は、重複部5に含まれない。 Now, in the phase shift circuit 1 according to the present embodiment, a transformer for matching impedance between the overlapping portion 5 and the non-overlapping portion 6 at the signal input side and output side ends of the dielectric 3. Part 7 is provided. Here, the signal input side and output side end portions of the dielectric 3 are portions in the vicinity of the boundary between the overlapping portion 5 and the non-overlapping portion 6 in the dielectric 3, and the signal input side and output side The signal conductor 2 (parallel portion 2 a) is an edge portion of the dielectric 3 in the vicinity of a portion extending from the overlapping portion 5 to the non-overlapping portion 6. In this embodiment, the transformer section 7 is formed by processing a part of the dielectric 3. However, the transformer section 7 is not a part of the dielectric 3 and is separate from the dielectric 3. Handle as a member. That is, a portion where the transformer portion 7 and the signal conductor 2 overlap is not included in the overlap portion 5.
 本実施の形態では、入力側および出力側の信号導体2(平行部2a)が同じ方向(図示左方向)に延出されているため、誘電体3における信号導体2の延出側(図示左側)の端部に、入力側と出力側とで共通の変成器部7を形成している。なお、変成器部7は、信号の入力側と出力側とで個別に設けられていても構わない。変成器部7は、第1誘電体3aと第2誘電体3bの両方にそれぞれ設けられる。 In the present embodiment, since the input side and output side signal conductors 2 (parallel portions 2a) extend in the same direction (left direction in the figure), the extension side (left side in the figure) of the signal conductor 2 in the dielectric 3 is shown. A common transformer section 7 is formed on the input side and the output side. The transformer section 7 may be provided separately on the signal input side and the output side. The transformer section 7 is provided on both the first dielectric 3a and the second dielectric 3b, respectively.
 また、変成器部7は、誘電体3を設定された移動範囲内で移動させたとき、常に誘電体3の信号の入力側および出力側の端部に位置するように構成されている。ここでは、誘電体3の信号導体2の延出側の端部に変成器部7を形成しており、かつ、信号導体2の延出方向に沿って誘電体3を移動させるように移相回路1を構成しているため、変成器部7は、誘電体3を図示左右方向に移動させた場合であっても、必ず誘電体3の信号の入力側および出力側の端部に位置することになる。 Also, the transformer section 7 is configured to always be located at the signal input side and output side ends of the dielectric 3 when the dielectric 3 is moved within the set moving range. Here, the transformer section 7 is formed at the end of the dielectric 3 on the extending side of the signal conductor 2, and the phase shift is performed so that the dielectric 3 is moved along the extending direction of the signal conductor 2. Since the circuit 1 is configured, the transformer unit 7 is always located at the signal input side and output side ends of the dielectric 3 even when the dielectric 3 is moved in the horizontal direction in the figure. It will be.
 変成器部7は、その特性インピーダンスの値が、重複部5の特性インピーダンスの値より大きく、非重複部6の特性インピーダンスの値より小さく設定される。 The transformer section 7 is set such that the characteristic impedance value is larger than the characteristic impedance value of the overlapping section 5 and smaller than the characteristic impedance value of the non-overlapping section 6.
 本実施の形態では、信号導体2が伝送する信号の中心周波数に対応するλ/4変成器となるように変成器部7を構成した。つまり、信号導体2が伝送する信号の中心周波数に対応する波長(非重複部6における実効波長)をλgとしたとき、変成器部7は、その信号導体2に沿った長さLがλg/4とされ、その特性インピーダンスの値が、下式(1)
  Z=(Za×Zb)1/2  ・・・(1)
   但し、Za:重複部5の特性インピーダンス
      Zb:非重複部6の特性インピーダンス
を満たすように設定される。
In the present embodiment, the transformer section 7 is configured to be a λ / 4 transformer corresponding to the center frequency of the signal transmitted by the signal conductor 2. That is, when the wavelength corresponding to the center frequency of the signal transmitted by the signal conductor 2 (effective wavelength in the non-overlapping portion 6) is λg, the transformer section 7 has a length L along the signal conductor 2 of λg / 4 and the characteristic impedance value is expressed by the following equation (1).
Z = (Za × Zb) 1/2 (1)
However, Za is set so as to satisfy the characteristic impedance of the overlapping portion 5 Zb: the characteristic impedance of the non-overlapping portion 6 is satisfied.
 本実施の形態では、誘電体3の端部における誘電体3の厚さを薄くすることにより、当該厚さを薄くした部分における信号導体2と地導体4との間の実効誘電率を低下させることで、変成器部7を構成している。つまり、本実施の形態では、変成器部7における信号導体2と地導体4間の実効誘電率が、重複部5における信号導体2と地導体4間の実効誘電率よりも小さく、非重複部6における信号導体2と地導体4間の実効誘電率よりも大きくなっている。 In the present embodiment, by reducing the thickness of the dielectric 3 at the end of the dielectric 3, the effective dielectric constant between the signal conductor 2 and the ground conductor 4 in the portion where the thickness is reduced is reduced. Thus, the transformer section 7 is configured. That is, in this embodiment, the effective dielectric constant between the signal conductor 2 and the ground conductor 4 in the transformer section 7 is smaller than the effective dielectric constant between the signal conductor 2 and the ground conductor 4 in the overlapping section 5, and the non-overlapping section. 6 is larger than the effective dielectric constant between the signal conductor 2 and the ground conductor 4.
 以下、変成器部7の一部を構成する誘電体3、すなわち厚さを薄く形成した誘電体3の端部を誘電体層7aと呼称し、誘電体層7aと地導体4との間の隙間部分を空気層7bと呼称する。誘電体層7aの厚さ、すなわち、誘電体層7aと空気層7bとの厚さの割合は、変成器部7における特性インピーダンスの値が上述の式(1)を満たす値となるように調整される。例えば、重複部5の特性インピーダンスが21Ω、非重複部6の特性インピーダンスが50Ωである場合、変成器部7の特性インピーダンスは約32.4Ωに設定される。 Hereinafter, the dielectric 3 constituting a part of the transformer section 7, that is, the end of the dielectric 3 formed with a small thickness is referred to as a dielectric layer 7a, and the gap between the dielectric layer 7a and the ground conductor 4 is referred to as a dielectric layer 7a. The gap portion is referred to as an air layer 7b. The thickness of the dielectric layer 7a, that is, the ratio of the thickness of the dielectric layer 7a and the air layer 7b is adjusted so that the value of the characteristic impedance in the transformer section 7 satisfies the above formula (1). Is done. For example, when the characteristic impedance of the overlapping part 5 is 21Ω and the characteristic impedance of the non-overlapping part 6 is 50Ω, the characteristic impedance of the transformer part 7 is set to about 32.4Ω.
 なお、図1においては、誘電体層7aが信号導体2側に、空気層7bが地導体4側となるように変成器部7を構成しているが、これに限らず、誘電体層7aが地導体4側に、空気層7bが信号導体2側に配置されていてもよいし、誘電体層7aを厚さ方向の中央部に形成し、誘電体層7aの上下に空気層7bが配置されるように構成しても構わない。 In FIG. 1, the transformer section 7 is configured such that the dielectric layer 7a is on the signal conductor 2 side and the air layer 7b is on the ground conductor 4 side. However, the present invention is not limited to this, and the dielectric layer 7a is not limited thereto. May be disposed on the ground conductor 4 side and the air layer 7b may be disposed on the signal conductor 2 side. The dielectric layer 7a may be formed in the center in the thickness direction, and the air layers 7b may be formed above and below the dielectric layer 7a. You may comprise so that it may arrange | position.
 図1の移相回路1において、VSWR(電圧定在波比)特性をシミュレーションした結果を図2に示す。 FIG. 2 shows the result of simulating the VSWR (voltage standing wave ratio) characteristics in the phase shift circuit 1 of FIG.
 図2に示すように、移相回路1では、周波数が約0.8GHz~1.07GHzの範囲でVSWRが1.2以下となり、インピーダンスの整合が良好となっており、広い周波数帯域で良好なVSWR特性が実現できていることが分かる。 As shown in FIG. 2, in the phase shift circuit 1, the VSWR is 1.2 or less in the frequency range of about 0.8 GHz to 1.07 GHz, the impedance matching is good, and the good in a wide frequency band. It can be seen that the VSWR characteristic is realized.
 また、図1の移相回路1において、駆動量と位相との関係をシミュレーションした結果を図3に示す。なお、駆動量とは、図1の左右方向における誘導体3の移動量のことである。 FIG. 3 shows the result of simulating the relationship between the drive amount and the phase in the phase shift circuit 1 of FIG. The driving amount is the amount of movement of the derivative 3 in the left-right direction in FIG.
 図3に示すように、移相回路1では、少なくとも移相量が90°~-90°の間で駆動量と位相とが略線形関係となっており、高いリニアリティが得られていることが分かる。 As shown in FIG. 3, in the phase shift circuit 1, the drive amount and the phase have a substantially linear relationship at least when the phase shift amount is between 90 ° and −90 °, and high linearity is obtained. I understand.
 次に、移相回路1を用いたアンテナ装置について説明する。 Next, an antenna device using the phase shift circuit 1 will be described.
 図4に示すように、アンテナ装置41は、高周波信号が入力される入力端子42と、入力端子42に入力された信号を分配する第1分配線路14aと、第1分配線路44aによって分配された信号をさらに分配する第2分配線路44bと、第2分配線路44bによって分配された信号をさらに分配する第3分配線路44cと、第3分配線路44cの端末部に接続されたアンテナ素子43と、を備えている。各分配線路44a~44cは1入力2出力の線路構成となっており、第3分配線路44cの端末部には合計8個のアンテナ素子43a~43hがそれぞれ接続されている。 As shown in FIG. 4, the antenna device 41 is distributed by an input terminal 42 to which a high-frequency signal is input, a first distribution line 14a that distributes a signal input to the input terminal 42, and a first distribution line 44a. A second distribution line 44b for further distributing the signal, a third distribution line 44c for further distributing the signal distributed by the second distribution line 44b, an antenna element 43 connected to a terminal portion of the third distribution line 44c, It has. Each distribution line 44a to 44c has a 1-input / 2-output line configuration, and a total of eight antenna elements 43a to 43h are connected to the terminal portion of the third distribution line 44c.
 第1分配線路44aと第2分配線路44bとの間、及び第2分配線路44bと第3分配線路44cとの間には、それぞれ移相回路1が設けられている。ここでは、第1分配線路44aと第2分配線路44bとの間の2箇所と、第2分配線路44bと第3分配線路44cとの間の4箇所に、合計6個の移相回路1a~1fが設けられている。 The phase shift circuit 1 is provided between the first distribution line 44a and the second distribution line 44b and between the second distribution line 44b and the third distribution line 44c. Here, a total of six phase shift circuits 1a to 1 are provided at two places between the first distribution line 44a and the second distribution line 44b and at four places between the second distribution line 44b and the third distribution line 44c. 1f is provided.
 第1分配線路44aと第2分配線路44bとの間に設けられる移相回路1a,1b、第2分配線路44bと第3配線路44cとの間に設けられる移相回路1c,1dおよび移相回路1e,1fは、ペアとして用いられ、ペアの一方の移相回路1a,1c,1eが所定の移相量で位相を進ませるとき、ペアの他方の移相回路1b,1d,1fは同じ移相量で位相を遅らせるように構成されている。ここでは、移相回路1a,1b、移相回路1c,1d、および移相回路1e,1fの各ペアの移相回路1において、ペアを構成する移相回路1を誘電体3の移動方向に互いに反転して配置すると共に、両者の誘電体3を連結して共に移動するように構成することで、ペアを構成する移相回路1の一方では位相を進めさせ、他方では位相を遅れさせる差動の移相回路を構成した。 Phase shift circuits 1a and 1b provided between the first distribution line 44a and the second distribution line 44b, phase shift circuits 1c and 1d provided between the second distribution line 44b and the third wiring path 44c, and phase shift The circuits 1e and 1f are used as a pair. When one phase shift circuit 1a, 1c and 1e of the pair advances the phase by a predetermined phase shift amount, the other phase shift circuits 1b, 1d and 1f of the pair are the same. The phase is delayed by the amount of phase shift. Here, in the phase shift circuit 1 of each pair of the phase shift circuits 1a and 1b, the phase shift circuits 1c and 1d, and the phase shift circuits 1e and 1f, the phase shift circuit 1 constituting the pair is moved in the moving direction of the dielectric 3. By arranging the two dielectrics 3 so as to be connected and moved together, the phase shift circuit 1 constituting the pair is advanced in phase while the other is delayed in phase. A dynamic phase shift circuit was constructed.
 アンテナ装置41では、移相回路1a~1fによって信号の位相を変化させることにより、アンテナ素子43a~43hから放射される電波の指向性(電気チルト角)を調節することが可能である。なお、ここでは、8個のアンテナ素子43(43a~43h)と、6個の移相回路1(1a~1f)を用いる場合を説明したが、アンテナ素子43や移相回路1の数は一例であり、図示のものに限定されない。 In the antenna device 41, it is possible to adjust the directivity (electric tilt angle) of radio waves radiated from the antenna elements 43a to 43h by changing the phase of the signal by the phase shift circuits 1a to 1f. Although the case where eight antenna elements 43 (43a to 43h) and six phase shift circuits 1 (1a to 1f) are used has been described here, the number of antenna elements 43 and phase shift circuits 1 is an example. It is not limited to the illustrated one.
(実施の形態の作用及び効果)
 以上説明したように、本実施の形態に係る移相回路1では、誘電体3の信号の入力側および出力側の端部に設けられ、特性インピーダンスの値が、重複部5の特性インピーダンスの値より大きく、非重複部6の特性インピーダンスの値より小さい変成器部7を備えている。
(Operation and effect of the embodiment)
As described above, in the phase shift circuit 1 according to the present embodiment, the characteristic impedance value provided at the signal input side and output side ends of the dielectric 3 is the value of the characteristic impedance of the overlapping portion 5. A transformer section 7 that is larger and smaller than the characteristic impedance value of the non-overlapping section 6 is provided.
 変成器部7を備えることで、特性インピーダンスの異なる重複部5と非重複部6のインピーダンスを整合させ、広い周波数帯域で良好なVSWR特性を得ることが可能になる。また、移相回路1では、駆動量と移相量のリニアリティが高く、誘電体3の移動制御が容易である。 By providing the transformer unit 7, it is possible to match the impedances of the overlapping portion 5 and the non-overlapping portion 6 having different characteristic impedances, and obtain a good VSWR characteristic in a wide frequency band. Moreover, in the phase shift circuit 1, the linearity of the drive amount and the phase shift amount is high, and the movement control of the dielectric 3 is easy.
 さらに、移相回路1では、誘電体3の移動方向に沿った長さを調整することで、重複部5の面積の変化量、すなわち移相量を容易に大きくすることが可能であり、しかも、従来のように誘電体3の移動方向に沿って複数の交差部を設ける場合と比較して、同じ重複部5の面積を得るために必要な誘電体3の移動距離を小さくし、誘電体3の移動方向におけるサイズを小型化することが可能である。 Further, the phase shift circuit 1 can easily increase the amount of change in the area of the overlapping portion 5, that is, the amount of phase shift, by adjusting the length of the dielectric 3 along the moving direction. Compared to the conventional case where a plurality of intersections are provided along the moving direction of the dielectric 3, the moving distance of the dielectric 3 required to obtain the same area of the overlapping portion 5 is reduced, and the dielectric 3 can be reduced in size in the moving direction.
 つまり、本実施の形態によれば、移相量が大きくすることが可能でありながらもコンパクト化が可能であり、広い周波数帯域で良好なVSWR特性を得ることが可能な移相回路1を実現できる。 That is, according to the present embodiment, the phase shift circuit 1 can be made compact while being able to increase the amount of phase shift, and can obtain good VSWR characteristics in a wide frequency band. it can.
 また、移相回路1では、変成器部7が、信号の中心周波数に対応するλ/4変成器を構成しているため、変成器部7の設計や調整が容易である。 Further, in the phase shift circuit 1, since the transformer section 7 constitutes a λ / 4 transformer corresponding to the center frequency of the signal, the design and adjustment of the transformer section 7 are easy.
 さらに、移相回路1では、誘電体3を移動範囲内で移動させたとき、常に誘電体3の信号の入力側および出力側の端部に位置するように構成されている。そのため、誘電体3の位置によらず、重複部5と非重複部6間のインピーダンスを整合させ、良好なVSWR特性を得ることが可能である。 Furthermore, the phase shift circuit 1 is configured so that when the dielectric 3 is moved within the moving range, it is always positioned at the signal input side and output side ends of the dielectric 3. Therefore, regardless of the position of the dielectric 3, it is possible to match the impedance between the overlapping portion 5 and the non-overlapping portion 6 and obtain good VSWR characteristics.
 次に、本発明の変形例について説明する。 Next, a modified example of the present invention will be described.
 図5(a)に示す移相回路51は、図1の移相回路1において、空気層7bの部分に、誘電体層7aよりも誘電率が低い誘電体からなる低誘電率層52を備えたものである。移相回路51のように空気層7bを低誘電率層52とした場合であっても、変成器部7が全体としてλ/4変成器を構成するなど、重複部5と非重複部6間のインピーダンスを整合できる条件を満たしていれば、図1の移相回路1と同様の作用効果を得ることができる。 A phase shift circuit 51 shown in FIG. 5A includes a low dielectric constant layer 52 made of a dielectric having a dielectric constant lower than that of the dielectric layer 7a in the air layer 7b in the phase shift circuit 1 of FIG. It is a thing. Even when the air layer 7 b is the low dielectric constant layer 52 as in the phase shift circuit 51, the transformer section 7 constitutes a λ / 4 transformer as a whole, and the like between the overlapping section 5 and the non-overlapping section 6. As long as the condition for matching the impedance of the phase shift circuit 1 is satisfied, the same effect as the phase shift circuit 1 of FIG. 1 can be obtained.
 図5(b)に示す移相回路55は、図1の移相回路1において、変成器部7全体を誘電体3よりも誘電率が低い誘電体で構成したものである。この場合も、変成器部7が全体としてλ/4変成器を構成するなど、重複部5と非重複部6間のインピーダンスを整合できる条件を満たしていれば、図1の移相回路1と同様の作用効果を得ることができる。 A phase shift circuit 55 shown in FIG. 5 (b) is a circuit in which the entire transformer section 7 is made of a dielectric having a lower dielectric constant than that of the dielectric 3 in the phase shift circuit 1 of FIG. Also in this case, the phase shift circuit 1 of FIG. 1 can be used as long as the conditions for matching the impedance between the overlapping portion 5 and the non-overlapping portion 6 are satisfied, such as the transformer portion 7 constituting a λ / 4 transformer as a whole. Similar effects can be obtained.
 図6に示す移相回路61は、図1の移相回路1において、信号導体2をメアンダ状に形成することで、信号導体2と誘電体3とが重なり合う重複部5の最大面積の増大を図ったものである。つまり、移相回路61によれば、移相量をより大きくすることが可能になる。また、移相回路61によれば、誘電体3の移動距離を小さくしても大きい移相量を実現できることになるため、誘電体3の移動方向におけるサイズをより小さくすることができる。なお、ここでは信号導体2を3回折り返して、全体として略時計方向に90°回転させたM字状に信号導体2を構成したが、信号導体2を折り返す回数は特に限定されない。 The phase shift circuit 61 shown in FIG. 6 increases the maximum area of the overlapping portion 5 where the signal conductor 2 and the dielectric 3 overlap each other by forming the signal conductor 2 in a meander shape in the phase shift circuit 1 of FIG. It is intended. That is, according to the phase shift circuit 61, the amount of phase shift can be further increased. Further, according to the phase shift circuit 61, a large amount of phase shift can be realized even if the moving distance of the dielectric 3 is reduced, so that the size of the dielectric 3 in the moving direction can be further reduced. Here, the signal conductor 2 is folded three times, and the signal conductor 2 is configured in an M shape that is rotated by 90 ° in a substantially clockwise direction as a whole. However, the number of times of folding the signal conductor 2 is not particularly limited.
 図7(a),(b)に示す移相回路71は、直線状に形成された信号導体2の長さ方向に対して垂直方向に誘電体3を移動させるように構成したものである。移相回路71では、誘電体3は、信号導体2と平行な辺72と信号導体2と斜めに交差する2つの辺73,74とを有する三角形状(二等辺三角形状)に形成されており、その信号導体2と交差する2つの辺73,74に沿って、変成器部7が形成されている。移相回路71では、誘電体3の移動に伴って信号導体2と重なり合う変成器部7の位置が変化することになるため、少なくとも、誘電体3の移動範囲内で信号導体2と交差する部分の辺73,74に沿うように、変成器部7を形成する必要がある。ここでは、辺73,74の全体に沿うように変成器部7を形成する場合を示している。変成器部7は、その信号導体2に沿った長さLが一定となるように形成されており、全体として平行四辺形状に形成されている。 7A and 7B are configured to move the dielectric 3 in a direction perpendicular to the length direction of the signal conductor 2 formed in a straight line. In the phase shift circuit 71, the dielectric 3 is formed in a triangular shape (isosceles triangular shape) having a side 72 parallel to the signal conductor 2 and two sides 73 and 74 that obliquely intersect the signal conductor 2. The transformer section 7 is formed along two sides 73 and 74 that intersect the signal conductor 2. In the phase shift circuit 71, the position of the transformer section 7 that overlaps the signal conductor 2 changes with the movement of the dielectric 3, so that at least a portion that intersects the signal conductor 2 within the movement range of the dielectric 3. It is necessary to form the transformer section 7 along the sides 73 and 74 of the current. Here, the case where the transformer section 7 is formed along the entire sides 73 and 74 is shown. The transformer section 7 is formed so that the length L along the signal conductor 2 is constant, and is formed in a parallelogram shape as a whole.
 図7(c)に示すように、信号導体2をメアンダ状に形成すると共に、複数の誘電体3を移動方向に連結すること、すなわち移相回路71を複数連結することで、多段の移相回路75を構成し、移相量を増加させることも可能である。 As shown in FIG. 7C, the signal conductor 2 is formed in a meander shape, and a plurality of dielectrics 3 are connected in the moving direction, that is, a plurality of phase shift circuits 71 are connected, so that a multistage phase shift is achieved. It is also possible to configure the circuit 75 and increase the amount of phase shift.
 図8に示す移相回路81は、1入力2出力の分配配線と差動の移相回路とを一体化したものである。移相回路81は、1本の入力用の信号導体82と、2本の出力用の信号導体83,84と、信号導体82,83,84と重なり合うように配置された誘導体3と、を備えている。2本の出力用の信号導体83,84は一体に直線状に形成されており、出力用の信号導体83,84の長さ方向に対して垂直方向から入力用の信号導体82が信号導体83,84に接続されている。 The phase shift circuit 81 shown in FIG. 8 is obtained by integrating a 1-input 2-output distribution wiring and a differential phase shift circuit. The phase shift circuit 81 includes one input signal conductor 82, two output signal conductors 83, 84, and the derivative 3 disposed so as to overlap the signal conductors 82, 83, 84. ing. The two output signal conductors 83 and 84 are integrally formed in a straight line, and the input signal conductor 82 is connected to the signal conductor 83 from a direction perpendicular to the length direction of the output signal conductors 83 and 84. , 84.
 移相回路81では、誘導体3は、出力用の信号導体83,84の長さ方向に沿った2辺85,86と当該2辺85,86と直交する2辺87,88を有する矩形状に形成されている。移相回路81では、誘導体3は、出力用の信号導体83,84の長さ方向に沿って移動される。 In the phase shift circuit 81, the derivative 3 has a rectangular shape having two sides 85 and 86 along the length direction of the output signal conductors 83 and 84 and two sides 87 and 88 orthogonal to the two sides 85 and 86. Is formed. In the phase shift circuit 81, the derivative 3 is moved along the length direction of the output signal conductors 83 and 84.
 移相回路81では、変成器部7は、誘電体3の入力用の信号導体82と交差する辺86と、出力用の信号導体83,84と交差する辺87,88とに沿って形成されている。移相回路81では、誘電体3の移動に伴って入力用の信号導体82と重なり合う変成器部7の位置が変化することになるため、少なくとも、誘電体3の移動範囲内で入力用の信号導体82と交差する部分の辺86に沿うように、変成器部7を形成する必要がある。ここでは、辺86の全体に沿うように変成器部7を形成する場合を示している。 In the phase shift circuit 81, the transformer section 7 is formed along a side 86 that intersects the input signal conductor 82 of the dielectric 3 and a side 87 and 88 that intersects the output signal conductors 83 and 84. ing. In the phase shift circuit 81, the position of the transformer section 7 that overlaps with the input signal conductor 82 changes with the movement of the dielectric 3, so that at least the input signal within the movement range of the dielectric 3. The transformer section 7 needs to be formed along the side 86 of the portion that intersects the conductor 82. Here, the case where the transformer section 7 is formed along the entire side 86 is shown.
 移相回路81では、誘電体3を図示左側(出力用の信号導体83側)に移動させると、信号導体83から出力される信号の位相が遅れ、かつ、信号導体84から出力される信号の位相が進むことになる。また、誘電体3を図示右側(信号導体84側)に移動させると、信号導体83から出力される信号の位相が進み、信号導体84から出力される信号の位相が遅れることになる。このように、移相回路81は差動の移相回路として作動する。 In the phase shift circuit 81, when the dielectric 3 is moved to the left side in the figure (the output signal conductor 83 side), the phase of the signal output from the signal conductor 83 is delayed and the signal output from the signal conductor 84 is delayed. The phase will advance. Further, when the dielectric 3 is moved to the right side (the signal conductor 84 side) in the figure, the phase of the signal output from the signal conductor 83 is advanced, and the phase of the signal output from the signal conductor 84 is delayed. Thus, the phase shift circuit 81 operates as a differential phase shift circuit.
 図9(a),(b)に示す移相回路91は、変成器部7を2段構成としたものである。信号の入出力側に形成される変成器部7を第1変成器部92、誘電体3側に形成される変成器部7を第2変成器部93と呼称する。両変成器部92,93は、それぞれλ/4変成器を構成し、その信号導体2に沿った長さLは、非重複部6における実効波長λgをとしたとき、λg/4とされる。また、第1変成器部92の特性インピーダンスZ1と第2変成器部93の特性インピーダンスZ2は、下式(2),(3)
  Z1=(Zb×Z2)1/2  ・・・(2)
   但し、Zb:非重複部6の特性インピーダンス
  Z2=(Z1×Za)1/2  ・・・(3)
   但し、Za:重複部5の特性インピーダンス
を共に満たすように設定される。
A phase shift circuit 91 shown in FIGS. 9A and 9B has a two-stage transformer section 7. The transformer section 7 formed on the signal input / output side is called a first transformer section 92, and the transformer section 7 formed on the dielectric 3 side is called a second transformer section 93. Both transformer sections 92 and 93 constitute a λ / 4 transformer, and the length L along the signal conductor 2 is λg / 4 when the effective wavelength λg in the non-overlapping section 6 is assumed. . The characteristic impedance Z1 of the first transformer section 92 and the characteristic impedance Z2 of the second transformer section 93 are expressed by the following equations (2) and (3).
Z1 = (Zb × Z2) 1/2 (2)
However, Zb: Characteristic impedance of the non-overlapping part 6 Z2 = (Z1 × Za) 1/2 (3)
However, Za is set so as to satisfy both the characteristic impedances of the overlapping portion 5.
 移相回路91では、第1変成器部92の誘電体層7aの厚さは誘電体3の厚さよりも薄く、第2変成器部93の誘電体層7aの厚さは第1変成器部92の誘電体層7aの厚さよりも薄く形成されており、変成器部7と誘電体3とが全体として階段状に形成されている。 In the phase shift circuit 91, the thickness of the dielectric layer 7a of the first transformer section 92 is thinner than the thickness of the dielectric 3, and the thickness of the dielectric layer 7a of the second transformer section 93 is equal to the first transformer section. It is formed thinner than the thickness of the dielectric layer 7a of 92, and the transformer section 7 and the dielectric 3 are formed in a step shape as a whole.
 移相回路91のVSWR(電圧定在波比)特性をシミュレーションした結果を図10に示す。図10に示すように、移相回路91では、周波数が約1.35GHz~2.4GHzの範囲でVSWRが1.2以下となり、インピーダンスの整合が良好となっており、より広い周波数帯域で良好なVSWR特性が実現できていることが分かる。 The result of simulating the VSWR (voltage standing wave ratio) characteristics of the phase shift circuit 91 is shown in FIG. As shown in FIG. 10, in the phase shift circuit 91, the frequency is in the range of about 1.35 GHz to 2.4 GHz, the VSWR is 1.2 or less, the impedance matching is good, and it is good in a wider frequency band. It can be seen that a good VSWR characteristic can be realized.
 ここでは、変成器部7を2段構成とする場合について説明したが、3段以上の構成としても構わない。変成器部7の段数を増加させることで、より広い周波数帯域で良好なVSWR特性が実現できる。 Here, although the case where the transformer section 7 has a two-stage configuration has been described, a configuration having three or more stages may be used. By increasing the number of stages of the transformer section 7, a favorable VSWR characteristic can be realized in a wider frequency band.
(実施の形態のまとめ)
 次に、以上説明した実施の形態から把握される技術思想について、実施の形態における符号等を援用して記載する。ただし、以下の記載における各符号等は、特許請求の範囲における構成要素を実施の形態に具体的に示した部材等に限定するものではない。
(Summary of embodiment)
Next, the technical idea grasped from the embodiment described above will be described with reference to the reference numerals in the embodiment. However, the reference numerals and the like in the following description are not intended to limit the constituent elements in the claims to the members and the like specifically shown in the embodiments.
[1]信号を伝送する信号導体(2)と、前記信号導体(2)と重なり合うように配置される誘電体(3)と、を備え、前記信号導体(2)と前記誘電体(3)とが重なり合う重複部(5)の面積を変化させることで前記信号の位相を変化させる移相回路(1)であって、前記誘電体(3)の前記信号の入力側および出力側の端部に設けられ、特性インピーダンスの値が、前記重複部(5)の特性インピーダンスの値より大きく、前記信号導体(2)と前記誘電体(3)とが重なり合わない非重複部(6)の特性インピーダンスの値より小さい変成器部(7)を備えた、移相回路(1)。 [1] A signal conductor (2) for transmitting a signal and a dielectric (3) disposed so as to overlap the signal conductor (2), the signal conductor (2) and the dielectric (3) Is a phase shift circuit (1) that changes the phase of the signal by changing the area of the overlapping portion (5) that overlaps with each other, and the end portions on the input side and output side of the signal of the dielectric (3) The characteristic impedance value of the non-overlapping part (6) in which the value of the characteristic impedance is larger than the value of the characteristic impedance of the overlapping part (5) and the signal conductor (2) and the dielectric (3) do not overlap. A phase shift circuit (1) with a transformer part (7) smaller than the impedance value.
[2]前記変成器部(7)は、前記信号の中心周波数に対応するλ/4変成器を構成する、[1]に記載の移相回路(1)。 [2] The phase shift circuit (1) according to [1], wherein the transformer section (7) constitutes a λ / 4 transformer corresponding to the center frequency of the signal.
[3]前記変成器部(7)は、前記誘電体(3)の厚さを薄くすることにより構成されている、[1]又は[2]に記載の移相回路(1)。 [3] The phase shift circuit (1) according to [1] or [2], wherein the transformer section (7) is configured by reducing the thickness of the dielectric (3).
[4]前記誘電体(3)を予め設定された移動範囲内で移動させることにより、前記重複部(5)の面積を変化させて前記信号の位相を変化させるように構成され、前記変成器部(7)は、前記誘電体(3)を前記移動範囲内で移動させたとき、常に前記誘電体(3)の前記信号の入力側および出力側の端部に位置するように構成されている、[1]乃至[3]のいずれかに記載の移相回路(1)。 [4] The transformer (3) is configured to change the phase of the signal by changing the area of the overlapping portion (5) by moving the dielectric (3) within a preset moving range, When the dielectric (3) is moved within the movement range, the part (7) is configured to be always positioned at the signal input side and output side ends of the dielectric (3). The phase shift circuit (1) according to any one of [1] to [3].
[5]前記変成器部(7)を多段に構成した、[1]乃至[4]のいずれかに記載の移相回路(1)。 [5] The phase shift circuit (1) according to any one of [1] to [4], wherein the transformer section (7) is configured in multiple stages.
[6]前記誘電体(3)の前記信号導体(2)と反対側に配置され接地電位とされた地導体(4)を備え、前記変成器部(7)における前記信号導体(2)と前記地導体(4)間の実効誘電率が、前記重複部(5)における前記信号導体(2)と前記地導体(4)間の実効誘電率よりも小さく、前記非重複部(6)における前記信号導体(2)と前記地導体(4)間の実効誘電率よりも大きい、[1]乃至[5]のいずれかに記載の移相回路(1)。 [6] A ground conductor (4) disposed on the opposite side of the dielectric (3) from the signal conductor (2) and having a ground potential, the signal conductor (2) in the transformer section (7), The effective dielectric constant between the ground conductors (4) is smaller than the effective dielectric constant between the signal conductor (2) and the ground conductor (4) in the overlapping portion (5), and in the non-overlapping portion (6). The phase shift circuit (1) according to any one of [1] to [5], which is larger than an effective dielectric constant between the signal conductor (2) and the ground conductor (4).
[7][1]乃至[6]のいずれかに記載の移相回路(1)を備えた、アンテナ装置。 [7] An antenna device including the phase shift circuit (1) according to any one of [1] to [6].
 以上、本発明の実施の形態を説明したが、上記に記載した実施の形態は特許請求の範囲に係る発明を限定するものではない。また、実施の形態の中で説明した特徴の組合せの全てが発明の課題を解決するための手段に必須であるとは限らない点に留意すべきである。 As mentioned above, although embodiment of this invention was described, embodiment described above does not limit the invention which concerns on a claim. In addition, it should be noted that not all the combinations of features described in the embodiments are essential to the means for solving the problems of the invention.
 本発明は、その趣旨を逸脱しない範囲で適宜変形して実施することが可能である。 The present invention can be appropriately modified and implemented without departing from the spirit of the present invention.
 例えば、上記実施の形態では、トリプレート構造の伝送線路に適用する場合を説明したが、伝送線路の構造は特に限定するものではなく、例えば、本発明はストリップ線路にも適用可能である。 For example, in the above-described embodiment, the case of applying to a transmission line having a triplate structure has been described. However, the structure of the transmission line is not particularly limited. For example, the present invention can be applied to a strip line.
 また、上記実施の形態では、変成器部7における誘電体層7aと誘電体3の厚さを階段状に変化させる場合を説明したが、これに限らず、変成器部7は、誘電体層7aの厚さが誘電体3に向かって徐々に厚くなるテーパ状に形成されてもよい。この場合、重複部5と非重複部6との間で特性インピーダンスの値が徐々に変化することになるため、より良好なインピーダンスの整合状態を得ることが可能になる。 In the above embodiment, the case where the thicknesses of the dielectric layer 7a and the dielectric 3 in the transformer section 7 are changed stepwise has been described. However, the present invention is not limited to this, and the transformer section 7 includes the dielectric layer. The thickness of 7a may be formed in a tapered shape that gradually increases toward the dielectric 3. In this case, since the characteristic impedance value gradually changes between the overlapping portion 5 and the non-overlapping portion 6, it is possible to obtain a better impedance matching state.
1…移相回路
2…信号導体
3…誘電体
4…地導体
5…重複部
6…非重複部
7…変成器部
7a…誘電体層
7b…空気層
DESCRIPTION OF SYMBOLS 1 ... Phase shift circuit 2 ... Signal conductor 3 ... Dielectric material 4 ... Ground conductor 5 ... Overlapping part 6 ... Non-overlapping part 7 ... Transformer part 7a ... Dielectric layer 7b ... Air layer

Claims (7)

  1.  信号を伝送する信号導体と、
     前記信号導体と重なり合うように配置される誘電体と、を備え、
     前記信号導体と前記誘電体とが重なり合う重複部の面積を変化させることで前記信号の位相を変化させる移相回路であって、
     前記誘電体の前記信号の入力側および出力側の端部に設けられ、特性インピーダンスの値が、前記重複部の特性インピーダンスの値より大きく、前記信号導体と前記誘電体とが重なり合わない非重複部の特性インピーダンスの値より小さい変成器部を備えた、
     移相回路。
    A signal conductor for transmitting the signal;
    A dielectric disposed so as to overlap the signal conductor,
    A phase shift circuit that changes a phase of the signal by changing an area of an overlapping portion where the signal conductor and the dielectric overlap;
    Provided at the signal input and output end portions of the dielectric, the characteristic impedance value is larger than the characteristic impedance value of the overlapping portion, and the signal conductor and the dielectric do not overlap With a transformer part smaller than the characteristic impedance value of the part,
    Phase shift circuit.
  2.  前記変成器部は、前記信号の中心周波数に対応するλ/4変成器を構成する、
     請求項1に記載の移相回路。
    The transformer section constitutes a λ / 4 transformer corresponding to the center frequency of the signal.
    The phase shift circuit according to claim 1.
  3.  前記変成器部は、前記誘電体の厚さを薄くすることにより構成されている、
     請求項1又は2に記載の移相回路。
    The transformer section is configured by reducing the thickness of the dielectric.
    The phase shift circuit according to claim 1 or 2.
  4.  前記誘電体を予め設定された移動範囲内で移動させることにより、前記重複部の面積を変化させて前記信号の位相を変化させるように構成され、
     前記変成器部は、前記誘電体を前記移動範囲内で移動させたとき、常に前記誘電体の前記信号の入力側および出力側の端部に位置するように構成されている、
     請求項1乃至3のいずれか1項に記載の移相回路。
    By moving the dielectric within a predetermined movement range, the area of the overlapping portion is changed to change the phase of the signal,
    The transformer section is configured to always be positioned at the signal input side and output side ends of the dielectric when the dielectric is moved within the movement range.
    The phase shift circuit of any one of Claims 1 thru | or 3.
  5.  前記変成器部を多段に構成した、
     請求項1乃至4のいずれか1項に記載の移相回路。
    The transformer section is configured in multiple stages,
    The phase shift circuit according to claim 1.
  6.  前記誘電体の前記信号導体と反対側に配置され接地電位とされた地導体を備え、
     前記変成器部における前記信号導体と前記地導体間の実効誘電率が、前記重複部における前記信号導体と前記地導体間の実効誘電率よりも小さく、前記非重複部における前記信号導体と前記地導体間の実効誘電率よりも大きい、
     請求項1乃至5のいずれか1項に記載の移相回路。
    A ground conductor disposed on the opposite side of the dielectric from the signal conductor and having a ground potential;
    An effective dielectric constant between the signal conductor and the ground conductor in the transformer portion is smaller than an effective dielectric constant between the signal conductor and the ground conductor in the overlapping portion, and the signal conductor and the ground in the non-overlapping portion. Greater than the effective dielectric constant between conductors,
    The phase shift circuit of any one of Claims 1 thru | or 5.
  7.  請求項1乃至6のいずれか1項に記載の移相回路を備えた、
     アンテナ装置。
    The phase shift circuit according to claim 1 is provided.
    Antenna device.
PCT/JP2015/059960 2015-03-30 2015-03-30 Phase shifting circuit and antenna device WO2016157375A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/059960 WO2016157375A1 (en) 2015-03-30 2015-03-30 Phase shifting circuit and antenna device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/059960 WO2016157375A1 (en) 2015-03-30 2015-03-30 Phase shifting circuit and antenna device

Publications (1)

Publication Number Publication Date
WO2016157375A1 true WO2016157375A1 (en) 2016-10-06

Family

ID=57006580

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/059960 WO2016157375A1 (en) 2015-03-30 2015-03-30 Phase shifting circuit and antenna device

Country Status (1)

Country Link
WO (1) WO2016157375A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11205002A (en) * 1998-01-14 1999-07-30 Mitsubishi Electric Corp Phase shifter
JP2014216784A (en) * 2013-04-24 2014-11-17 日立金属株式会社 Antenna device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11205002A (en) * 1998-01-14 1999-07-30 Mitsubishi Electric Corp Phase shifter
JP2014216784A (en) * 2013-04-24 2014-11-17 日立金属株式会社 Antenna device

Similar Documents

Publication Publication Date Title
JP6129857B2 (en) Dual-polarized antenna
US7026889B2 (en) Adjustable antenna feed network with integrated phase shifter
JP4341699B2 (en) Phase shifter
EP2278657B1 (en) Power divider
US10930995B2 (en) Power divider/combiner
JP6347423B2 (en) Phase shift circuit and antenna device
JP2015095840A (en) Planar antenna and radar device
US10530032B2 (en) 90-degree hybrid circuit
JP6173929B2 (en) Phase shift circuit and antenna device
JP5620534B2 (en) Phase shifter and antenna system
US20040080380A1 (en) Hybrid phase shifter and power divider
US10403948B2 (en) Adjustable phase shifter including a signal conductor, a movable dielectric plate and a transformer unit, where the transformer unit defines overlapped and non-overlapped portions with respect to the signal conductor
WO2016157375A1 (en) Phase shifting circuit and antenna device
JP4320348B2 (en) Coupling circuit
KR20200022738A (en) Coupler
US9525213B2 (en) Antenna device
JP2005303690A (en) Phase shifter
JP5888204B2 (en) Distributed phase shifter and antenna device
JP2011199368A (en) Power distributor
WO2021006244A1 (en) Phase shifter, antenna device, and phase control method
JP5234024B2 (en) High frequency attenuator
JPH04902A (en) Variable power distributor
JP6735029B2 (en) Phase shifter and antenna device
JP2008301045A (en) Coupling circuit
Zaidel et al. New ultra-wideband phase shifter design with performance improvement using a tapered line transmission line for a butler matrix UWB application

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15887528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15887528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP