WO2016155441A1 - 用于损毁检测的节点网络 - Google Patents

用于损毁检测的节点网络 Download PDF

Info

Publication number
WO2016155441A1
WO2016155441A1 PCT/CN2016/074741 CN2016074741W WO2016155441A1 WO 2016155441 A1 WO2016155441 A1 WO 2016155441A1 CN 2016074741 W CN2016074741 W CN 2016074741W WO 2016155441 A1 WO2016155441 A1 WO 2016155441A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
data
nodes
data port
current detection
Prior art date
Application number
PCT/CN2016/074741
Other languages
English (en)
French (fr)
Inventor
张贯京
陈兴明
葛新科
张少鹏
王海荣
高伟明
李慧玲
Original Assignee
深圳市共创百业科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市共创百业科技开发有限公司 filed Critical 深圳市共创百业科技开发有限公司
Publication of WO2016155441A1 publication Critical patent/WO2016155441A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L43/00Arrangements for monitoring or testing data switching networks

Definitions

  • the utility model relates to the field of electronic information technology, in particular to a node network for damage detection.
  • the existing damage detection system usually puts the loop circuit in the area to be tested. When a link of the loop circuit is destroyed, the damage detection system can obtain the information that has been destroyed, but the loop circuit cannot provide information about the destruction. Link details.
  • each part is designed with a separate circuit, but still has the disadvantages that are difficult to overcome - only part of which is destroyed and applied to textile clothing Monitoring textile damage is very limited because the technology does not allow the creation of high-density loops.
  • subnets that include many detection loops connected to the local microcontroller and send local status information to the host processor through the local microcontroller, but a large number of subnets means that the data transmission bus is too wide and the data processing speed is high. slow.
  • the main purpose of the utility model is to provide a node network for damage detection, which forms a node network through a node connection chip, and provides detailed node information for the damage detection system.
  • the present invention provides a node network.
  • the node network includes a central processor and a plurality of nodes, the node including a microprocessor and a data port coupled to the microprocessor, the central processor is coupled to at least one of the nodes, the node Connected via a data port signal.
  • the data port includes a switching unit, a receiving unit, and a transmitting unit, and the data port and the microprocessor pass the power input end, the receiving data end, the receiving data ground end, the selecting end, and the power output.
  • the terminal, the transmitting data end, and the transmitting data ground end signal are connected, and the data port performs data communication with other nodes through the signal input end and the signal output end.
  • a port connector is provided on the data port of the node, and the nodes are connected by the port connector signal.
  • the data ports are arranged in four, and the four data ports are evenly distributed around the nodes.
  • the four data ports are disposed on different horizontal planes around the node, and the signal lines of the two data ports are disposed upward, and the other two data port signal lines are disposed downward.
  • the adjacent two nodes are connected by signal lines to different data port signals.
  • the utility model adopts the above technical solution, and brings the technical effect that the embodiment of the present invention forms a node network through a central processor and a plurality of nodes, and the central processor is connected with at least one node signal for receiving a specific network through the node network.
  • Node information the node includes a microprocessor and a data port, and other nodes can be extended through the data port, and the data port is communicated with other nodes through the microprocessor control data port, and finally the specific node information is transmitted to the central processor.
  • the embodiment of the present invention is applied to the damage detection system to form a damage detection network, which can detect the damage of the node in time, and transmit the damaged node information to the central processor through the damage detection network.
  • FIG. 1 is a schematic structural view of a preferred embodiment of a node network of the present invention.
  • FIG. 2 is a schematic structural view of a preferred embodiment of a node connection chip of the present invention.
  • FIG. 3 is a schematic diagram showing the external structure of a preferred embodiment of a node connection chip of the utility model
  • FIG. 4 is a schematic diagram of a data transmission process for destroying one of the damaged nodes based on edge detection when the node network is damaged according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of relative coordinates and relative positions of neighbor nodes connected to four data ports of a current detection node according to an embodiment of the present invention.
  • the main purpose of the utility model is to provide a node network for damage detection, which forms a node network through a node connection chip, and provides detailed node information for the damage detection system.
  • the present invention provides a node network.
  • FIG. 1 is a schematic structural diagram of a preferred embodiment of a node network of the present invention.
  • the node network includes a central processing unit 02 and a plurality of nodes 01.
  • the node 01 includes a microprocessor 1 and a data port 2 connected to the microprocessor.
  • the central processing unit 02 Connected to at least one of the nodes 01, the nodes are connected by a data port 2 signal.
  • the node is a node connection chip.
  • FIG. 2 is a schematic structural diagram of a preferred embodiment of the node connection chip of the present invention.
  • the node connection chip includes a microprocessor 1 and a data port 2 that is signally connected to the microprocessor 1.
  • the data port 2 includes a switching unit 21, a receiving unit 22, and a transmitting unit 23, and the data port 2 and the
  • the microprocessor 1 is connected through a power input end, a receiving data end, a receiving data ground end, a selecting end, a power output end, a transmitting data end, and a transmitting data ground end signal, and the data port 2 passes through the signal input end and the signal output end.
  • the node connection chip 01 communicates with the neighbor node through the data port 2 for data communication.
  • the microprocessor 1 is a microprocessing unit having data processing and storage functions for processing and storing data transmitted and received through the data port 2.
  • the data port 2 is configured to receive data sent by the outside world and send data that the node connection chip needs to send.
  • the data port 2 includes a switching unit 21, a receiving unit 22 and a transmitting unit 23, and the switching unit 21 is configured to control the receiving unit 22 and the transmitting unit 23 to be effective under the control of the microprocessor 1, ie In different cases, the data port 2 is configured to receive data sent by the outside world or data used to send the node connection chip.
  • the data port 2 may be configured to connect to other nodes according to requirements, and the other nodes may be node connection chips provided by the embodiments of the present invention, or may have data storage and processing capabilities.
  • the node connection chip can connect N neighboring nodes by setting N data ports, and the node connection chip and the N neighbor nodes are connected by the data port signal and perform data communication.
  • the node network comprises a central processing unit 02, which is connected to at least one of the node connection chips.
  • the central processing unit 02 may be connected to a plurality of node connection chips therein, and when one of the nodes connected to the central processing unit is connected When the chip is damaged, other nodes can also transmit data through other data transmission channels.
  • the embodiment of the present invention forms a node network by a central processing unit and a plurality of nodes, and the central processing unit is connected with at least one node signal for receiving specific node information through the node network, and the node includes a microprocessor and a data port, and passes through the data port. Other nodes can be extended, data communication with other nodes through the microprocessor control data port, and finally the specific node information is transmitted to the central processor.
  • the embodiment of the present invention is applied to the damage detection system to form a damage detection network, which can detect the damage of the node in time, and quickly transmit the damaged node information to the central processor through the damage detection network. And because it is a network of nodes formed by nodes, it can be flexibly distributed and placed on the fabric to form an evaluation system for human injuries.
  • a port connector is provided on the data port of the node, and the nodes are connected by the port connector signal.
  • a port connector is set between the node and the node. When any two nodes are connected through the port, the port connector is connected together, which is quick and convenient. When a node is damaged, you can also quickly repair the node network by repairing the port connector or replacing it with a new one.
  • the data ports are arranged in four, and the four data ports are evenly distributed around the nodes.
  • Four data ports can be set to extend the neighbor nodes on the top, bottom, left, and right to form a square node network.
  • a new data transmission channel can be established through other neighbor nodes to transmit data.
  • the adjacent two nodes are connected by signal lines to different data port signals.
  • FIG. 3 is a schematic diagram showing the external structure of a preferred embodiment of a node connecting chip of the utility model.
  • Four of the data ports are disposed on different horizontal planes around the node, and two of the data ports are The signal line is set up and the other two data port signal lines are facing down.
  • four of the data ports are respectively 201, 202, 203, 204, which are disposed in the office.
  • the nodes are connected to different horizontal planes around the chip, and wherein the signal lines of the data port 201 and the data port 202 are arranged upward, and the signal lines of the other two data ports 203 and 204 are disposed downward. Only one of the signal lines 2021 of the data port 202 and one of the signal lines 2031 of the data port 203 are identified in the figure. The purpose of this setting is to facilitate the signal connection between two adjacent nodes through different signal lines to two different data ports.
  • the data transmission method applied to the above node network based on edge detection is as follows:
  • S2 Initializing a vector value of a neighbor node connected to the current detection node and a current detection direction value
  • FIG. 5 is a schematic diagram of a data transmission process based on edge detection when one of the damaged nodes is damaged when the node network is damaged according to an embodiment of the present invention.
  • step S1 includes the following steps:
  • S11 The node connected by the data port of the preset detection direction value of the damaged node is used as the current detection node;
  • the node SP is a damaged node
  • the preset detection direction is a certain direction adjacent to the damaged node SP.
  • the embodiment of the present invention selects P0 (that is, the data port below the damaged node SP).
  • the connected node acts as the current detection node.
  • P0 that is, the data port below the damaged node SP
  • the connected node acts as the current detection node.
  • a node that is connected to the data port in the other direction of the node SP as the current detection node.
  • the vector value of the neighbor node is a preset relative coordinate value of a neighbor node connected to the port, and the current detection direction value is a preset location.
  • FIG. 6 is a schematic diagram of relative coordinates and relative positions of neighbor nodes connected to four data ports of a current detecting node according to an embodiment of the present invention.
  • the information of the damaged node SP is sent to the CPU by using P0 as the current detection node PX and D2 as the current detection direction value.
  • P0 the current detection node PX and D2 as the current detection direction value.
  • the method for determining whether the data port is normal may be that the current feedback status request is sent to the neighbor node connected to the data port corresponding to the current detection direction value D2 of the current detection node PX.
  • the data port corresponding to the current detection node is normal, the coordinates of the node connected to the data port are calculated, and the current detection node is used as the current detection node, and S3 is continued; if it is corresponding to the current detection node If the data port is abnormal, the S5 is executed.
  • the calculation method of the coordinates of the node connected to the data port is calculated by the coordinates of the current detection node and the relative coordinates of the neighbor nodes connected to the current detection port of the current detection node. For example, if the current detected node coordinates are (x1, y1), the current detection port is D2, and the relative coordinates of the neighbor nodes connected to the current detection port of the current detection node are (0, -1), then the current detection node is current. The coordinates of the neighbor nodes connected to the detection port are (x1, y1-1), and so on.
  • the method for determining whether the data port is normal may be a data port corresponding to the current detection direction value D3 of the current detection node PX.
  • the connected neighbor node sends a current feedback status request.
  • the D2 (lower) data port of the node connected to the data port corresponding to the right side of the node PZ in FIG. 5 does not actually have a connection node, that is, in S6, the current detection direction value of the current detection node corresponds to The data port is abnormal. You need to execute S8.
  • S5 ⁇ S8 are cyclically executed until the connection node of the current detection node is a central processing unit, and the information of the damaged node is transmitted to the central processing unit (CPU).
  • the node SM is an intermediate bridge node.
  • the node on the left side of the node SM loses contact with the central processor, and at this time, the node information of the node SM cannot be transmitted.
  • the central processor may be set according to the layout of the node network, or multiple node networks may be set in the damage detection system to obtain specific node damage information more accurately.
  • the node SC is a reference node, which is connected to the central processor to implement a data communication bridge between other nodes in the node network and the central processing unit.
  • the central processor can be connected to multiple nodes to ensure that the central processor establishes multiple data transmission channels with other nodes.
  • node P0 is used as an initial node to transmit node information of the damaged node SP to the CPU based on edge detection (shown by a solid line in FIG. 5). Based on the edge detection, the data transmission channel can be established at the fastest speed, and the damaged node information is transmitted.
  • the data transmission method of each of the damaged nodes in the node network of the present invention can transmit the information of each damaged node to the central processor based on the data transmission method of the above preferred embodiment.
  • the central processor can depict the damaged shape according to the information of each damaged node, calculate the damaged area, and judge the damage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)
  • Small-Scale Networks (AREA)

Abstract

本实用新型公开了一种用于损毁检测的节点网络。所述应用于评估人体受伤情况的节点网络通过中央处理器和多个节点构成节点网络,中央处理器与至少一个节点信号连接,用于通过节点网络接收具体的节点信息,节点包括微处理器和数据端口,通过数据端口可以扩展其他的节点,通过微处理器控制数据端口与其他节点进行数据通讯,最终将具体的节点信息传输至中央处理器。本实用新型实施例应用于损毁检测系统,构成损毁检测网络,能够及时检测节点的损毁情况,并快速通过损毁检测网络将损毁节点信息传输至中央处理器。

Description

用于损毁检测的节点网络
技术领域
本实用新型涉及电子信息技术领域,尤其涉及一种用于损毁检测的节点网络。
背景技术
现有的损毁检测系统通常的做法是将环路电路放置在待测区域,当环路电路一个链路被毁坏时,损毁检测系统能够获取到已经损毁的信息,但环路电路不能提供关于毁坏链路的详细信息。随着技术的发展,为了区别待测区域的毁坏部分,每个部分设计了单独的回路,但仍然具有很难克服的缺点-只能识别其中的一部分被毁坏,且将其应用于纺织衣物中监测纺织物的损毁情况时非常受限,因为本技术不允许创建的高密度环路。因此,出现了包括很多与本地微控制器连接的检测环路并通过本地微控制器发送本地状态信息至主处理器的子网,但大量子网意味着数据传输总线要求太宽,数据处理速度慢。
基于此,有必要设计一种用于损毁检测的节点网络,通过节点连接芯片构成节点网络,为损毁检测系统提供详细的节点信息。
实用新型内容
本实用新型的主要目的在于提供一种用于损毁检测的节点网络,通过节点连接芯片构成节点网络,为损毁检测系统提供详细的节点信息。
为实现上述目的,本实用新型提供了一种节点网络。
所述节点网络包括中央处理器和多个节点,所述节点包括微处理器以及与所述微处理器信号连接的数据端口,所述中央处理器与其中至少一个节点信号连接,所述节点之间通过数据端口信号连接。
在其中一个实施例中,所述数据端口包括切换单元、接收单元和发送单元,所述数据端口与所述微处理器通过电源输入端、接收数据端、接收数据地端、选择端、电源输出端、发送数据端、发送数据地端信号连接,所述数据端口通过信号输入端和信号输出端与其他节点进行数据通讯。
在其中一个实施例中,所述节点的数据端口上设置端口连接器,所述节点之间通过所述端口连接器信号连接。
在其中一个实施例中,所述数据端口设置四个,四个所述数据端口均匀分布于所述节点的四周。
在其中一个实施例中,四个所述数据端口设置于节点四周不同的水平面上,且其中两个数据端口的信号线朝上设置,另外两个数据端口信号线朝下设置。
在其中一个实施例中,相邻的所述两个节点之间通过信号线朝向不同的两个数据端口信号连接。
本实用新型采用上述技术方案,带来的技术效果为:本实用新型实施例通过中央处理器和多个节点构成节点网络,中央处理器与至少一个节点信号连接,用于通过节点网络接收具体的节点信息,节点包括微处理器和数据端口,通过数据端口可以扩展其他的节点,通过微处理器控制数据端口与其他节点进行数据通讯,最终将具体的节点信息传输至中央处理器。本实用新型实施例应用于损毁检测系统,构成损毁检测网络,能够及时检测节点的损毁情况,并通过损毁检测网络将损毁节点信息传输至中央处理器。
附图说明
图1为本实用新型节点网络的较佳实施例结构示意图;
图2为本实用新型节点连接芯片较佳实施例结构示意图;
图3所示为实用新型节点连接芯片较佳实施例外部结构示意图;
图4为本实用新型实施例节点网络被损毁时损毁其中一个损毁节点基于边沿检测的数据传输过程示意图;
图5为实用新型实施例与当前检测节点的四个数据端口连接的邻居节点相对坐标和相对位置示意图。
本实用新型目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本实用新型,并不用于限定本实用新型。
本实用新型的主要目的在于提供一种用于损毁检测的节点网络,通过节点连接芯片构成节点网络,为损毁检测系统提供详细的节点信息。
为实现上述目的,本实用新型提供了一种节点网络。
参照图1,如图1所示为本实用新型节点网络的较佳实施例结构示意图。所述节点网络包括中央处理器02和多个节点01,结合图2所示,所述节点01包括微处理器1以及与所述微处理器信号连接的数据端口2,所述中央处理器02与其中至少一个节点01信号连接,所述节点之间通过数据端口2信号连接。
在一个实施例中,所述节点为节点连接芯片,参照图2,图2所示为本实用新型节点连接芯片较佳实施例结构示意图。所述节点连接芯片包括微处理器1以及与所述微处理器1信号连接的数据端口2,所述数据端口2包括切换单元21、接收单元22和发送单元23,所述数据端口2与所述微处理器1通过电源输入端、接收数据端、接收数据地端、选择端、电源输出端、发送数据端、发送数据地端信号连接,所述数据端口2通过信号输入端和信号输出端与外界进行数据通讯。在本实用新型实施例中,所述节点连接芯片01通过数据端口2与邻居节点连接芯片进行数据通讯。
所述微处理器1为具有数据处理和存储功能的微处理单元,所述微处理器1用于处理和存储通过所述数据端口2发送和接收的数据。所述数据端口2用于接收外界发送的数据以及发送所述节点连接芯片需要发送的数据。所述数据端口2包括切换单元21、接收单元22和发送单元23,所述切换单元21用于在所述微处理器1的控制下控制所述接收单元22和所述发送单元23有效,即在不同的情况下,所述数据端口2用于接收外界发送的数据或用于发送所述节点连接芯片需要发送的数据。在实际设计时,所述数据端口2根据需求可设置多个,用于连接其他节点,所述其他节点可以是本实用新型实施例提供的节点连接芯片,也可以是具有数据存储和处理能力的中央处理器。所述节点连接芯片设置N个数据端口就可以连接N个邻居节点,所述节点连接芯片和N个所述邻居节点之间通过所述数据端口信号连接并进行数据通讯。
所述节点网络包括中央处理器02,所述中央处理器02与其中至少一个节点连接芯片连接。为了确保所述中央处理器02与其他节点连接芯片构成多个数据传输通道,所述中央处理器02可以与其中的多个节点连接芯片连接,当与所述中央处理器连接的其中一个节点连接芯片损毁时,其他节点连接芯片还可以通过其他的数据传输通道进行传输数据。
本实用新型实施例通过中央处理器和多个节点构成节点网络,中央处理器与至少一个节点信号连接,用于通过节点网络接收具体的节点信息,节点包括微处理器和数据端口,通过数据端口可以扩展其他的节点,通过微处理器控制数据端口与其他节点进行数据通讯,最终将具体的节点信息传输至中央处理器。本实用新型实施例应用于损毁检测系统,构成损毁检测网络,能够及时检测节点的损毁情况,并快速通过损毁检测网络将损毁节点信息传输至中央处理器。且因是由节点构成的节点网络,可以灵活分布,设置于织物上,构成对人体受伤情况的评估系统。
在其中一个实施例中,所述节点的数据端口上设置端口连接器,所述节点之间通过所述端口连接器信号连接。为了便于构成节点网络,节点与节点之间设置了端口连接器,任何两个节点通过端口连接时,通过端口连接器将其连接在一起,快捷方便。当某个节点被损毁时,也可以通过修复端口连接器或者更换新的节点的方式,快速修复节点网络。
在其中一个实施例中,参照图1,所述数据端口设置四个,四个所述数据端口均匀分布于所述节点的四周。设置四个数据端口能够在上下左右分别扩展邻居节点,构成方形节点网络,且当其中一个邻居节点损毁时,还可以通过其他邻居节点建立新的数据传输通道进行传输数据。相邻的所述两个节点之间通过信号线朝向不同的两个数据端口信号连接。
在其中一个实施例中,参照图3,图3所示为实用新型节点连接芯片较佳实施例外部结构示意图,四个所述数据端口设置于节点四周不同的水平面上,且其中两个数据端口的信号线朝上设置,另外两个数据端口信号线朝下设置。具体地,如图3所示在本实用新型节点连接芯片外部结构示意图中,四个所述数据端口(实际是数据端口的信号线延伸部分)分别为201、202、203、204,设置于所述节点连接芯片四周不同的水平面上,且其中数据端口201和数据端口202的信号线朝上设置,另外两个数据端口203和数据端口204的信号线朝下设置。图中仅标识出了数据端口202的其中一个信号线2021,以及数据端口203其中一个信号线2031。这样设置的目的,便于相邻的两个节点之间通过信号线朝向不同的两个数据端口信号连接。
应用于上述节点网络基于边沿检测的数据传输方法如下:
S1:根据损毁节点确定当前检测节点;
S2:初始化与所述当前检测节点连接的邻居节点的向量值以及当前检测方向值;
S3:判断所述当前检测节点的当前检测方向值对应的数据端口是否正常;若是,执行S4;若否执行S5;
S4:计算所述检测方向值对应的数据端口连接的节点的坐标,并将所述检测方向值对应的数据端口连接的节点作为当前检测节点;执行S3;
S5:修正所述当前检测方向值,当前检测方向值=(当前检测方向值+1)%4;
S6:判断所述当前检测节点的当前检测方向值对应的数据端口是否正常;若是,执行S7;若否,执行S8;
S7:计算所述检测方向值对应的数据端口连接的节点的坐标,并将所述检测方向值对应的数据端口连接的节点作为当前检测节点;修正所述当前检测方向值,当前检测方向值=(当前检测方向值+3)%4;执行S6;
S8:执行S5,直到当前检测节点的连接节点为中央处理器。
参照图5,图5所示为本实用新型实施例节点网络被损毁时损毁其中一个损毁节点基于边沿检测的数据传输过程示意图。
具体地,所述步骤S1包括如下步骤:
S11:以损毁节点的预设检测方向值的数据端口连接的节点作为当前检测节点;
S12:获取当前检测节点坐标值P0=(x,y)。
具体的,在图5中,假设节点SP为损毁节点,设置预设的检测方向为与损毁节点SP相邻的某个方向,本实用新型实施例选择了P0(即损毁节点SP下方的数据端口连接的节点)作为当前检测节点。当然,也可以选择损毁节点SP其他方向的数据端口连接的节点作为当前检测节点。可以理解的是,节点网络的每个节点在默认情况下都在与邻居节点进行数据通讯,汇报其状态给邻居节点,因此当前检测节点检测到其邻居节点损毁(即请求其邻居节点发送反馈信息却没有反馈)时,准备好作为当前检测节点发送损毁节点的信息。因此,初始化之前的当前检测节点默认为是正常的节点。获取当前检测节点的坐标值P0=(x,y)。
在其中一个实施例中,所述步骤S2中,所述邻居节点的向量值为预设的与所述的端口连接的邻居节点的相对坐标值,所述当前检测方向值为预设的与所述当前检测节点连接的邻居节点相对位置值中的一个相对位置值。
具体地,在其中一个实施例中,参照图6,图6为实用新型实施例与当前检测节点的四个数据端口连接的邻居节点相对坐标和相对位置示意图,所述步骤S2中,所述当前检测节点设置四个数据端口,假设当前检测节点P0的坐标值为P0=(x,y),则与当前检测节点上方数据端口连接的邻居节点P1的相对坐标值为V0=(0,-1),与所述当前检测节点上方数据端口连接的邻居节点P1相对位置值为D0=0;与当前检测节点左方数据端口连接的邻居节点P2的相对坐标值为V1=(-1,0),与所述当前检测节点左方数据端口连接的邻居节点P2相对位置值为D1=1;与当前检测节点下方数据端口连接的邻居节点P3的相对坐标值为V2=(1,0),与所述当前检测节点上方数据端口连接的邻居节点P3相对位置值为D2=2;与当前检测节点右方数据端口连接的邻居节点P4的相对坐标值为V3=(0,1),与所述当前检测节点左方数据端口连接的邻居节点P4相对位置值为D3=3;所述当前检测方向值可以设置为D0、D1、D2或D3。本实用新型实施例中初始化的节点P0、P1、P2、P3、P4仅代表相对位置,并不限定一定为图6中的位置关系。
在其中一个实施例中,所述当前检测方向值选择为D2=2,即以当前检测节点的下方数据端口为初始的当前检测方向值。
参照图5,初始化与所述当前检测节点连接的邻居节点的向量值以及当前检测方向值后,即以P0为当前检测节点PX,D2为当前检测方向值将损毁节点SP的信息发送至CPU。具体过程如下:
S3:判断所述当前检测节点的当前检测方向值对应的数据端口是否正常;若是,执行S4;若否执行S5;
即判断所述当前检测节点PX的当前检测方向值D2(PX下方)对应的数据端口是否正常。判断数据端口是否正常的方法可以为,向与所述当前检测节点PX的当前检测方向值D2对应的数据端口连接的邻居节点发送当前反馈状态请求。
S4:计算所述检测方向值对应的数据端口连接的节点的坐标,并将所述检测方向值对应的数据端口连接的节点作为当前检测节点;执行S3;
结合图5所示,若与当前检测节点下方对应的数据端口正常,则计算与该数据端口连接的节点的坐标,并将其作为当前检测节点,继续执行S3;若与当前检测节点下方对应的数据端口不正常,则执行S5,例如当前检测节点PX为节点PZ时,其下方对应的数据端口没有连接邻居节点或者邻居节点断开(被损毁),则认为与当前检测节点下方对应的数据端口不正常;与该数据端口连接的节点的坐标的计算方法通过当前检测节点的坐标以及与当前检测节点的当前检测端口连接的邻居节点的相对坐标来计算。例如,若当前检测节点坐标为(x1,y1),当前检测端口为D2,与当前检测节点的当前检测端口连接的邻居节点的相对坐标为(0,-1),则与当前检测节点的当前检测端口连接的邻居节点的坐标为(x1,y1-1),依此类推。
S5:修正所述当前检测方向值,当前检测方向值=(当前检测方向值+1)%4;即当前检测方向值=(D2+1)%4,当前检测方向值为D3,即当前检测方向逆时针修正90°。
S6:判断所述当前检测节点的当前检测方向值对应的数据端口是否正常;若是,执行S7;若否,执行S8;
即判断当前检测节点PX(以节点PZ为例)右方对应的数据端口是否正常,判断数据端口是否正常的方法可以为,向与所述当前检测节点PX的当前检测方向值D3对应的数据端口连接的邻居节点发送当前反馈状态请求。
S7:计算所述检测方向值对应的数据端口连接的节点的坐标,并将所述检测方向值对应的数据端口连接的节点作为当前检测节点;修正所述当前检测方向值,当前检测方向值=(当前检测方向值+3)%4;执行S6;
结合图5所示,若当前检测节点PX(以节点PZ为例)右方对应的数据端口正常,则计算当前检测节点PX(以节点PZ为例)右方对应的数据端口连接的节点的坐标,并将所述检测方向值对应的数据端口连接的节点作为当前检测节点,此时,为了基于边沿检测,修正所述当前检测方向值D3,当前检测方向值=(D3+3)%4,当前检测方向值变为D2,即变回上次检测方向值。并循环执行S6。在循环执行S6时,图5中与节点PZ右方对应的数据端口连接的节点的D2(下方)数据端口实际上没有连接节点,即S6中,所述当前检测节点的当前检测方向值对应的数据端口不正常,此时需要执行S8。
S8:执行S5,直到当前检测节点的连接节点为中央处理器。
按照上述步骤循环执行S5~S8,直到当前检测节点的连接节点为中央处理器,即将损毁节点的信息传输至中央处理器(CPU)。需要说明的是,图5中,节点SM为中间桥梁节点,当节点SM被损毁时,节点SM左侧的节点便与中央处理器失去了联系,此时则不能将节点SM左侧节点信息传输至中央处理器。因此,在其他实施例中,可以根据节点网络的布局设置多个中央处理器,也可以在损毁检测系统中设置多个节点网络,以便更准确的获得具体的节点损毁信息。图5中节点SC为基准节点,其与中央处理器连接,实现节点网络中其他节点与中央处理器的数据通讯桥梁。当节点SC被损毁时,其他所有的节点均与中央处理器失去了联系。因此,在其他实施例中,中央处理器可以与多个节点连接,确保中央处理器与其他节点建立多个数据传输通道。图5中以节点P0为初始节点基于边沿检测将损毁节点SP的节点信息传输至CPU(图5中实线所示)。基于边沿检测能以最快的速度建立数据传输通道,传输损毁节点信息。
本实用新型节点网络在损毁时的每个损毁节点的数据传输方法均可基于上述较佳实施例的数据传输方法将每个损毁节点的信息发送至中央处理器。中央处理器根据每个损毁节点的信息可以描绘损毁形状,计算损毁面积,从而判断损毁情况。
以上仅为本实用新型的优选实施例,并非因此限制本实用新型的专利范围,凡是利用本实用新型说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本实用新型的专利保护范围内。

Claims (6)

  1. 一种用于损毁检测的节点网络,其特征在于,所述节点网络包括中央处理器和多个节点,所述节点包括微处理器以及与所述微处理器信号连接的数据端口,所述中央处理器与其中至少一个节点信号连接,所述节点之间通过数据端口信号连接。
  2. 如权利要求1所述的用于损毁检测的节点网络,其特征在于,所述数据端口包括切换单元、接收单元和发送单元,所述数据端口与所述微处理器通过电源输入端、接收数据端、接收数据地端、选择端、电源输出端、发送数据端、发送数据地端信号连接,所述数据端口通过信号输入端和信号输出端与其他节点进行数据通讯。
  3. 如权利要求1所述的用于损毁检测的节点网络,其特征在于,所述节点的数据端口上设置端口连接器,所述节点之间通过所述端口连接器信号连接。
  4. 如权利要求1所述的用于损毁检测的节点网络,其特征在于,所述数据端口设置四个,四个所述数据端口均匀分布于所述节点的四周。
  5. 如权利要求4所述的用于损毁检测的节点网络,其特征在于,四个所述数据端口设置于节点四周不同的水平面上,且其中两个数据端口的信号线朝上设置,另外两个数据端口信号线朝下设置。
  6. 如权利要求5所述的用于损毁检测的节点网络,其特征在于,相邻的所述两个节点之间通过信号线朝向不同的两个数据端口信号连接。
PCT/CN2016/074741 2015-04-03 2016-02-27 用于损毁检测的节点网络 WO2016155441A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201520202111.0 2015-04-03
CN201520202111.0U CN204597990U (zh) 2015-04-03 2015-04-03 用于损毁检测的节点网络

Publications (1)

Publication Number Publication Date
WO2016155441A1 true WO2016155441A1 (zh) 2016-10-06

Family

ID=53934096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/074741 WO2016155441A1 (zh) 2015-04-03 2016-02-27 用于损毁检测的节点网络

Country Status (2)

Country Link
CN (1) CN204597990U (zh)
WO (1) WO2016155441A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104869029A (zh) * 2015-04-03 2015-08-26 深圳市前海安测信息技术有限公司 节点网络及基于边沿检测的数据传输方法
CN204597990U (zh) * 2015-04-03 2015-08-26 深圳市易特科信息技术有限公司 用于损毁检测的节点网络

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1413456A (zh) * 2002-11-14 2003-04-30 浙江大学 深水网箱监测系统
CN101808383A (zh) * 2010-03-16 2010-08-18 浙江大学 面向矩阵式无线传感器网络的随机路由的选择方法
US8488444B2 (en) * 2007-07-03 2013-07-16 Cisco Technology, Inc. Fast remote failure notification
CN204520634U (zh) * 2015-04-03 2015-08-05 深圳市易特科信息技术有限公司 用于评估人体受伤情况的可穿戴设备
CN104865938A (zh) * 2015-04-03 2015-08-26 深圳市前海安测信息技术有限公司 应用于评估人体受伤情况的节点连接芯片及其节点网络
CN104866450A (zh) * 2015-04-03 2015-08-26 深圳市前海安测信息技术有限公司 基于节点连接芯片的节点网络及其初始化方法
CN104865937A (zh) * 2015-04-03 2015-08-26 深圳市前海安测信息技术有限公司 评估人体受伤情况的可穿戴设备和方法
CN204597990U (zh) * 2015-04-03 2015-08-26 深圳市易特科信息技术有限公司 用于损毁检测的节点网络
CN104869029A (zh) * 2015-04-03 2015-08-26 深圳市前海安测信息技术有限公司 节点网络及基于边沿检测的数据传输方法
CN104898598A (zh) * 2015-04-03 2015-09-09 深圳市前海安测信息技术有限公司 评估攻击者方向的可穿戴设备和方法
CN104899173A (zh) * 2015-04-03 2015-09-09 深圳市前海安测信息技术有限公司 基于节点连接芯片的节点网络及信息传输端口确定方法
CN204695303U (zh) * 2015-04-03 2015-10-07 深圳市易特科信息技术有限公司 应用于损毁检测系统的节点连接芯片及其节点网络

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1413456A (zh) * 2002-11-14 2003-04-30 浙江大学 深水网箱监测系统
US8488444B2 (en) * 2007-07-03 2013-07-16 Cisco Technology, Inc. Fast remote failure notification
CN101808383A (zh) * 2010-03-16 2010-08-18 浙江大学 面向矩阵式无线传感器网络的随机路由的选择方法
CN204520634U (zh) * 2015-04-03 2015-08-05 深圳市易特科信息技术有限公司 用于评估人体受伤情况的可穿戴设备
CN104865938A (zh) * 2015-04-03 2015-08-26 深圳市前海安测信息技术有限公司 应用于评估人体受伤情况的节点连接芯片及其节点网络
CN104866450A (zh) * 2015-04-03 2015-08-26 深圳市前海安测信息技术有限公司 基于节点连接芯片的节点网络及其初始化方法
CN104865937A (zh) * 2015-04-03 2015-08-26 深圳市前海安测信息技术有限公司 评估人体受伤情况的可穿戴设备和方法
CN204597990U (zh) * 2015-04-03 2015-08-26 深圳市易特科信息技术有限公司 用于损毁检测的节点网络
CN104869029A (zh) * 2015-04-03 2015-08-26 深圳市前海安测信息技术有限公司 节点网络及基于边沿检测的数据传输方法
CN104898598A (zh) * 2015-04-03 2015-09-09 深圳市前海安测信息技术有限公司 评估攻击者方向的可穿戴设备和方法
CN104899173A (zh) * 2015-04-03 2015-09-09 深圳市前海安测信息技术有限公司 基于节点连接芯片的节点网络及信息传输端口确定方法
CN204695303U (zh) * 2015-04-03 2015-10-07 深圳市易特科信息技术有限公司 应用于损毁检测系统的节点连接芯片及其节点网络

Also Published As

Publication number Publication date
CN204597990U (zh) 2015-08-26

Similar Documents

Publication Publication Date Title
CN206433003U (zh) 以太网链路切换装置
WO2016155441A1 (zh) 用于损毁检测的节点网络
CN104182371A (zh) 一种串口直连线与交叉线的切换装置
WO2016155442A1 (zh) 用于评估人体受伤情况的可穿戴设备
WO2016155096A1 (zh) 评估攻击者方向的可穿戴设备和方法
WO2016155439A1 (zh) 应用于损毁检测系统的节点连接芯片及其节点网络
WO2016155094A1 (zh) 节点网络及基于边沿检测的数据传输方法
CN104104519B (zh) 一种断电重启方法、装置及系统
WO2016155084A1 (zh) 应用于评估人体受伤情况的节点连接芯片及其节点网络
CN203858629U (zh) 一种协议转换器
WO2016155095A1 (zh) 评估人体受伤情况的可穿戴设备和方法
WO2016155098A1 (zh) 基于节点连接芯片的节点网络及信息传输端口确定方法
CN105100717B (zh) 影像处理装置
CN205179083U (zh) 一种路由器后台管理板
WO2016155443A1 (zh) 用于评估攻击者方向的可穿戴设备
CN101247235B (zh) 机架式设备及其主控模块和子模块
CN207869124U (zh) 一种通讯保护电路
CN208489861U (zh) 一种新型基于环形网络控制技术的结构
CN209543334U (zh) 一种医疗设备数据通信系统
CN112737913A (zh) 一种充电桩内部总线连接的控制系统
CN207440541U (zh) 一种基于arm处理器的冗余通信控制器
CN212064044U (zh) 一种实时性容错以太网交换机模块
CN104252430A (zh) 一种状态指示的方法及电子设备
CN206757612U (zh) 一种多路服务器互联系统
CN111277471B (zh) 一种无中心网络连接快速检测装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16771196

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16771196

Country of ref document: EP

Kind code of ref document: A1