WO2016152766A1 - フレキシブル太陽電池 - Google Patents

フレキシブル太陽電池 Download PDF

Info

Publication number
WO2016152766A1
WO2016152766A1 PCT/JP2016/058663 JP2016058663W WO2016152766A1 WO 2016152766 A1 WO2016152766 A1 WO 2016152766A1 JP 2016058663 W JP2016058663 W JP 2016058663W WO 2016152766 A1 WO2016152766 A1 WO 2016152766A1
Authority
WO
WIPO (PCT)
Prior art keywords
photoelectric conversion
solar cell
organic
flexible solar
layer
Prior art date
Application number
PCT/JP2016/058663
Other languages
English (en)
French (fr)
Inventor
明伸 早川
元彦 浅野
峻士 小原
麻由美 湯川
智仁 宇野
淳之介 村上
Original Assignee
積水化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水化学工業株式会社 filed Critical 積水化学工業株式会社
Priority to AU2016237352A priority Critical patent/AU2016237352A1/en
Priority to EP16768669.0A priority patent/EP3273497A4/en
Priority to CN201680016552.9A priority patent/CN107431131B/zh
Priority to BR112017018280-7A priority patent/BR112017018280A2/ja
Priority to US15/551,622 priority patent/US20180040840A1/en
Priority to JP2016518782A priority patent/JPWO2016152766A1/ja
Publication of WO2016152766A1 publication Critical patent/WO2016152766A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/30Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising bulk heterojunctions, e.g. interpenetrating networks of donor and acceptor material domains
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • H10K30/82Transparent electrodes, e.g. indium tin oxide [ITO] electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/50Organic perovskites; Hybrid organic-inorganic perovskites [HOIP], e.g. CH3NH3PbI3
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/50Photovoltaic [PV] devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/30Coordination compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a flexible solar cell having a photoelectric conversion layer containing an organic-inorganic perovskite compound that is excellent in light resistance and photoelectric conversion efficiency.
  • Such a flexible solar cell has a photoelectric conversion layer made of a silicon semiconductor or a compound semiconductor having a function of generating current when irradiated with light on a flexible base made of a heat-resistant polymer material such as polyimide or polyester. Are manufactured in a thin film. Furthermore, a solar cell sealing sheet is laminated and sealed on the upper and lower surfaces of the solar cell element as necessary. (For example, Patent Document 1 etc.)
  • the present inventors have found that a novel flexible solar cells, are considering a flexible solar cell having a photoelectric conversion layer containing an organic-inorganic perovskite compound represented by the general formula R-M-X 3.
  • a solar cell having high photoelectric conversion efficiency can be produced.
  • a flexible solar cell having a photoelectric conversion layer containing an organic / inorganic perovskite compound has a problem of light resistance in which the photoelectric conversion efficiency is lowered by light irradiation.
  • the present inventors solved the light resistance problem by performing an annealing process in which the photoelectric conversion layer after film formation is heated to a temperature of 80 ° C.
  • An object of this invention is to provide the flexible solar cell which has the photoelectric converting layer containing the organic inorganic perovskite compound which is excellent in light resistance and photoelectric conversion efficiency in view of the said present condition.
  • the present invention is a flexible solar cell having a structure in which a metal foil, an electron transport layer, a photoelectric conversion layer, a hole transport layer, and a transparent electrode are laminated in this order, and the photoelectric conversion layer has the general formula R-MX 3 (wherein R is an organic molecule, M is a metal atom, X is a halogen atom or a chalcogen atom), and is a flexible solar cell containing an organic-inorganic perovskite compound.
  • R-MX 3 wherein R is an organic molecule, M is a metal atom, X is a halogen atom or a chalcogen atom
  • the flexible solar cell of the present invention has a structure in which a metal foil, an electron transport layer, a photoelectric conversion layer, a hole transport layer, and a transparent electrode are laminated in this order.
  • the said metal foil plays the role as a base material of a flexible solar cell.
  • the metal foil may serve as a base material at the same time as one electrode of the flexible solar cell.
  • the metal constituting the metal foil is not particularly limited, and is preferably one having excellent durability and conductivity that can be used as an electrode.
  • metals such as aluminum, titanium, copper, and gold, stainless steel
  • An alloy such as steel (SUS) can be used. These materials may be used alone or in combination of two or more.
  • the metal which comprises the said metal foil contains stainless steel (SUS).
  • SUS stainless steel
  • the metal constituting the metal foil preferably contains aluminum.
  • the difference in coefficient of linear expansion between the metal foil and the photoelectric conversion layer containing the organic / inorganic perovskite compound is reduced, thereby further suppressing the occurrence of distortion during annealing. be able to.
  • the thickness of the said metal foil is not specifically limited, A preferable minimum is 5 micrometers and a preferable upper limit is 500 micrometers. If the thickness of the metal foil is 5 ⁇ m or more, the mechanical strength of the resulting flexible solar cell is sufficient and the handleability is improved. If the thickness is 500 ⁇ m or less, the metal foil can be bent, and the flexibility is improved. Will improve. The minimum with more preferable thickness of the said metal foil is 10 micrometers, and a more preferable upper limit is 100 micrometers.
  • the metal foil When the metal foil is used as a base material for a flexible solar cell, the metal foil itself serves as an electrode and a base material, and an electrode is provided on the surface of the metal foil on the photoelectric conversion layer side through an insulating layer.
  • the form to form is considered.
  • the insulating layer which consists of an insulating resin layer or a metal oxide layer is suitable. More specifically, the insulating layer is preferably formed using an insulating resin such as a polyimide resin or a silicone resin, or a metal oxide such as zirconia, silica, or hafnia.
  • a preferable lower limit of the thickness of the insulating layer is 0.1 ⁇ m, and a preferable upper limit is 10 ⁇ m.
  • the metal foil and the electrode can be reliably insulated. It does not specifically limit as an electrode formed in the surface by the side of the photoelectric converting layer of the said metal foil through an insulating layer, The metal electrode normally used in a solar cell can be used.
  • the electron transport layer is preferably formed on the metal foil or an electrode formed on the surface of the metal foil on the photoelectric conversion layer side through an insulating layer.
  • the material of the electron transport layer is not particularly limited.
  • N-type conductive polymer, N-type low molecular organic semiconductor, N-type metal oxide, N-type metal sulfide, alkali metal halide, alkali metal, surface activity Specific examples include, for example, cyano group-containing polyphenylene vinylene, boron-containing polymer, bathocuproine, bathophenanthrene, hydroxyquinolinato aluminum, oxadiazole compound, benzimidazole compound, naphthalene tetracarboxylic acid compound, perylene derivative, Examples include phosphine oxide compounds, phosphine sulfide compounds, fluoro group-containing phthalocyanines, titanium oxide, zinc oxide, indium oxide, tin oxide, gallium oxide, tin sulfide, indium
  • the preferable lower limit of the thickness of the electron transport layer is 1 nm, and the preferable upper limit is 2000 nm. If the thickness is 1 nm or more, holes can be sufficiently blocked. If the said thickness is 2000 nm or less, it will become difficult to become resistance at the time of electron transport, and photoelectric conversion efficiency will become high.
  • the more preferable lower limit of the thickness of the electron transport layer is 3 nm, the more preferable upper limit is 1000 nm, the still more preferable lower limit is 5 nm, and the still more preferable upper limit is 500 nm.
  • Examples of the method of forming the electron transport layer include a method of performing an electron transport layer forming step of forming an electron transport layer on a metal foil.
  • the method for forming the electron transport layer on the metal foil is not particularly limited.
  • a coating solution containing titanium is applied on the metal foil and then baked.
  • a thin film electron transport layer is formed, and then a titanium oxide paste containing an organic binder and titanium oxide particles is applied onto the thin film electron transport layer, followed by baking to form a porous electron transport layer. And the like.
  • the method of sputtering titanium on metal foil and oxidizing the surface and obtaining titanium oxide as an electron carrying layer is also mentioned.
  • the photoelectric conversion layer includes an organic / inorganic perovskite compound represented by the general formula R-MX 3 (where R is an organic molecule, M is a metal atom, and X is a halogen atom or a chalcogen atom).
  • R-MX 3 an organic / inorganic perovskite compound represented by the general formula R-MX 3 (where R is an organic molecule, M is a metal atom, and X is a halogen atom or a chalcogen atom).
  • the portion containing the organic / inorganic perovskite compound represented by the general formula R—M—X 3 is hereinafter also referred to as an organic / inorganic perovskite compound portion.
  • the organic / inorganic perovskite compound, when represented by the general formula RMX 3 is a cubic system in which a metal atom M is disposed at the body center, an organic molecule R is disposed at each vertex, and a halogen atom or a chalcogen atom X is disposed at the face center. It is preferable to have the following structure. FIG.
  • FIG. 1 shows a cubic structure in which a metal atom M is arranged in the body center, an organic molecule R is arranged at each vertex, and a halogen atom or a chalcogen atom X is arranged in the face center.
  • R is an organic molecule, and is a molecule represented by C 1 N m X n (l, m, and n are all positive integers).
  • R is specifically methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine, dimethylamine, diethylamine, dipropylamine, dibutylamine, dipentylamine, dihexylamine, trimethylamine, triethylamine, tripropylamine, tributylamine , Tripentylamine, trihexylamine, ethylmethylamine, methylpropylamine, butylmethylamine, methylpentylamine, hexylmethylamine, ethylpropylamine, ethylbutylamine, imidazole, azole, pyrrole, aziridine, azirine, azet
  • methylamine, ethylamine, propylamine, butylamine, pentylamine, hexylamine and their ions and phenethylammonium are preferred, and methylamine, ethylamine, propylamine and these ions are more preferred.
  • M is a metal atom, such as lead, tin, zinc, titanium, antimony, bismuth, nickel, iron, cobalt, silver, copper, gallium, germanium, magnesium, calcium, indium, aluminum, manganese, chromium, molybdenum, europium, etc. Can be mentioned. These elements may be used independently and 2 or more types may be used together.
  • X is a halogen atom or a chalcogen atom, and examples thereof include chlorine, bromine, iodine, sulfur, and selenium. These elements may be used independently and 2 or more types may be used together.
  • the halogen atom is preferable because the organic / inorganic perovskite compound becomes soluble in an organic solvent and can be applied to an inexpensive printing method by containing halogen in the structure. Furthermore, iodine is more preferable because the energy band gap of the organic-inorganic perovskite compound becomes narrow.
  • X is a halogen atom or a chalcogen atom.
  • the organic / inorganic perovskite compound becomes soluble in an organic solvent and can be applied to an inexpensive printing method.
  • the photoelectric conversion layer may further contain an organic semiconductor or an inorganic semiconductor in addition to the organic / inorganic perovskite compound as long as the effects of the present invention are not impaired.
  • the organic semiconductor or inorganic semiconductor here may serve as an electron transport layer or a hole transport layer.
  • the organic semiconductor include compounds having a thiophene skeleton such as poly (3-alkylthiophene).
  • conductive polymers having a polyparaphenylene vinylene skeleton, a polyvinyl carbazole skeleton, a polyaniline skeleton, a polyacetylene skeleton, and the like can be given.
  • compounds having a porphyrin skeleton such as a phthalocyanine skeleton, a naphthalocyanine skeleton, a pentacene skeleton, or a benzoporphyrin skeleton, a spirobifluorene skeleton, etc.
  • carbon-containing materials such as carbon nanotubes, graphene, and fullerene that may be surface-modified Also mentioned.
  • the inorganic semiconductor examples include titanium oxide, zinc oxide, indium oxide, tin oxide, gallium oxide, tin sulfide, indium sulfide, zinc sulfide, CuSCN, Cu 2 O, CuI, MoO 3 , V 2 O 5 , WO 3 , MoS 2, MoSe 2, Cu 2 S , and the like.
  • the photoelectric conversion layer may be a thin film organic semiconductor or a laminated body in which an inorganic semiconductor portion and a thin organic inorganic perovskite compound portion are laminated, or an organic semiconductor Alternatively, a composite film in which an inorganic semiconductor site and an organic / inorganic perovskite compound site are combined may be used.
  • a laminated body is preferable in that the production method is simple, and a composite film is preferable in that the charge separation efficiency in the organic semiconductor or the inorganic semiconductor can be improved.
  • the preferable lower limit of the thickness of the thin-film organic / inorganic perovskite compound site is 5 nm, and the preferable upper limit is 5000 nm. If the thickness is 5 nm or more, light can be sufficiently absorbed, and the photoelectric conversion efficiency is increased. If the said thickness is 5000 nm or less, since it can suppress that the area
  • the more preferable lower limit of the thickness is 10 nm, the more preferable upper limit is 1000 nm, the still more preferable lower limit is 20 nm, and the still more preferable upper limit is 500 nm.
  • a preferable lower limit of the thickness of the composite film is 30 nm, and a preferable upper limit is 3000 nm. If the thickness is 30 nm or more, light can be sufficiently absorbed, and the photoelectric conversion efficiency is increased. If the said thickness is 3000 nm or less, since it becomes easy to reach
  • the more preferable lower limit of the thickness is 40 nm, the more preferable upper limit is 2000 nm, the still more preferable lower limit is 50 nm, and the still more preferable upper limit is 1000 nm.
  • a method of forming a photoelectric conversion layer a method of forming a photoelectric conversion layer containing an organic / inorganic perovskite compound on the electron transport layer and then performing a photoelectric conversion layer forming step of annealing at a temperature of 80 ° C. or higher is preferable.
  • the method for forming the photoelectric conversion layer on the electron transport layer is not particularly limited, and examples thereof include a vacuum deposition method, a sputtering method, a gas phase reaction method (CVD), an electrochemical deposition method, and a printing method.
  • the flexible solar cell which can exhibit high photoelectric conversion efficiency can be easily formed in a large area by employ
  • Examples of the printing method include a spin coating method and a casting method, and examples of a method using the printing method include a roll-to-roll method.
  • a method for forming the photoelectric conversion layer specifically, for example, an organic / inorganic perovskite compound forming solution (that is, a precursor solution of an organic / inorganic perovskite compound) is stacked on the electron transporting layer.
  • Examples of the method include forming the organic inorganic perovskite compound part and then forming the thin film organic semiconductor part on the thin film organic inorganic perovskite compound part.
  • the annealing has a role of imparting light resistance to the photoelectric conversion layer containing the organic / inorganic perovskite compound.
  • the crystallinity of the organic / inorganic perovskite compound is increased, so that it is considered that excellent light resistance is exhibited.
  • the increase in crystallinity increases electron mobility and improves photoelectric conversion efficiency.
  • distortion has occurred due to heating during annealing due to a difference in linear expansion coefficient between the substrate and the photoelectric conversion layer.
  • a metal foil is used as a base material, such distortion hardly occurs.
  • the crystallinity is obtained by separating the crystalline-derived scattering peak detected from the X-ray scattering intensity distribution measurement and the halo derived from the amorphous part by fitting, obtaining the intensity integral of each, It can be obtained by calculating the ratio of the parts.
  • the minimum of the preferable crystallinity degree of the said organic inorganic perovskite compound is 30%. When the crystallinity is 30% or more, the mobility of electrons increases and the photoelectric conversion efficiency increases. A more preferred lower limit of crystallinity is 50%, and a more preferred lower limit is 70%.
  • the annealing temperature is preferably 80 ° C. or higher. By annealing at a temperature of 80 ° C. or higher, the crystallinity of the organic / inorganic perovskite compound can be increased, so that a flexible solar cell having excellent light resistance and high photoelectric conversion efficiency can be obtained.
  • the annealing temperature is more preferably 100 ° C. or higher, and further preferably 120 ° C. or higher.
  • the upper limit of the annealing temperature is not particularly limited, but even if the temperature is higher than that, the effect of increasing the degree of crystallinity does not change, and there is also an adverse effect on other members. is there.
  • the annealing heating time is not particularly limited, but is preferably 3 minutes or more and 2 hours or less.
  • the heating time is 3 minutes or longer, the crystallinity of the organic-inorganic perovskite compound can be sufficiently increased. If the heating time is within 2 hours, the organic inorganic perovskite compound can be heat-treated without causing thermal degradation.
  • These heating operations are preferably performed in a vacuum or under an inert gas, and the dew point temperature is preferably 10 ° C or lower, more preferably 7.5 ° C or lower, and further preferably 5 ° C or lower.
  • the material of the hole transport layer is not particularly limited, and examples thereof include a P-type conductive polymer, a P-type low molecular organic semiconductor, a P-type metal oxide, a P-type metal sulfide, and a surfactant.
  • examples include polystyrene sulfonate adduct of polyethylenedioxythiophene, carboxyl group-containing polythiophene, phthalocyanine, porphyrin, molybdenum oxide, vanadium oxide, tungsten oxide, nickel oxide, copper oxide, tin oxide, molybdenum sulfide, tungsten sulfide, copper sulfide. , Tin sulfide and the like, fluoro group-containing phosphonic acid, carbonyl group-containing phosphonic acid and the like.
  • a hole transport layer containing an amorphous organic semiconductor is suitable.
  • an amorphous organic semiconductor high conversion efficiency can be obtained by relieving the stress when the transparent electrode is formed.
  • the amorphous organic semiconductor include Poly (4-butylphenyl-diphenyl-amine).
  • the preferable lower limit of the thickness of the hole transport layer is 1 nm, and the preferable upper limit is 2000 nm. If the thickness is 1 nm or more, electrons can be sufficiently blocked. If the said thickness is 2000 nm or less, it will become difficult to become resistance at the time of hole transport, and a photoelectric conversion efficiency will become high.
  • the more preferable lower limit of the thickness is 3 nm, the more preferable upper limit is 1000 nm, the still more preferable lower limit is 5 nm, and the still more preferable upper limit is 500 nm.
  • Examples of the method of forming the hole transport layer include a method of performing a hole transport layer forming step of forming a hole transport layer on the photoelectric conversion layer.
  • the method of forming the hole transport layer on the photoelectric conversion layer is not particularly limited. For example, a method of applying a solution in which a hole transport material is dissolved in an organic solvent and then volatilizing the organic solvent, vapor deposition, sputtering, or the like. Examples include a vacuum film forming method.
  • the material constituting the transparent electrode is not particularly limited.
  • CuI indium tin oxide
  • SnO 2 indium tin oxide
  • AZO aluminum zinc oxide
  • IZO indium zinc oxide
  • GZO gallium zinc oxide
  • conductive transparent materials, etc., and the like may be used alone or in combination of two or more.
  • Examples of the method for forming the transparent electrode include a method of performing a transparent electrode forming step of forming a transparent electrode on the hole transport layer.
  • the method for forming the transparent electrode on the hole transport layer is not particularly limited, and examples thereof include a method of sputtering the above material, a method of electron beam evaporation, and a method of applying nanoparticles and nanotubes.
  • a laminate having a structure in which a metal foil, an electron transport layer, a photoelectric conversion layer, a hole transport layer, and a transparent electrode are laminated in this order is covered with a sealing layer.
  • a sealing layer By covering with a sealing layer, the laminate including the photoelectric conversion layer can be protected from the outside environment and sufficient durability can be obtained, and a flexible solar cell with higher photoelectric conversion efficiency and higher durability can be obtained. be able to.
  • the material used for the sealing layer is not particularly limited, and a known material can be used, which may be an organic material or an inorganic material. That is, the sealing layer may include an organic sealing layer made of an organic material or an inorganic sealing layer made of an inorganic material. Furthermore, the sealing layer preferably includes both an organic sealing layer and an inorganic sealing layer. Examples of the organic material include a curable resin and a hot melt resin. Examples of the inorganic material include inorganic oxides, inorganic nitrides, inorganic sulfides, and the like, and silicone resins having an organic group may be used.
  • the said sealing layer contains an inorganic sealing layer, and the said inorganic sealing layer consists of an inorganic oxide or inorganic nitride. Is preferred.
  • a sealing step of covering a stacked body having a structure in which a metal foil, an electron transport layer, a photoelectric conversion layer, a hole transport layer, and a transparent electrode are stacked in this order with the sealing layer The method of performing is mentioned.
  • the method for forming the sealing layer is not particularly limited, and examples thereof include a printing method such as dispensing and screen printing if the material used for the sealing layer is an organic material. If the material used for the sealing layer is an inorganic material, sputtering, vapor deposition, and the like can be given.
  • Specific examples of the method of forming the sealing layer include a method of forming the sealing layer on the second electrode of the laminate so as to cover the entire laminate. .
  • the sealing layer is formed on the second electrode.
  • the first electrode may be a cathode (that is, a metal foil or an electrode formed on the surface of the metal foil on the photoelectric conversion layer side through an insulating layer) or an anode (that is, a transparent electrode), and the second electrode may be Either an anode or a cathode may be used.
  • the preferable lower limit of the thickness of the organic sealing layer is 100 nm, and the preferable upper limit is 100000 nm.
  • the thickness is 100 nm or more, the laminate can be sufficiently covered by the organic sealing layer.
  • the organic sealing layer can sufficiently block water vapor entering from the side surface.
  • a more preferable lower limit of the thickness is 500 nm, a more preferable upper limit is 50000 nm, a still more preferable lower limit is 1000 nm, and a still more preferable upper limit is 20000 nm.
  • the preferable lower limit of the thickness of the inorganic sealing layer is 30 nm, and the preferable upper limit is 3000 nm. If the said thickness is 30 nm or more, the said inorganic sealing layer can have sufficient water vapor
  • the more preferable lower limit of the thickness is 50 nm, the more preferable upper limit is 1000 nm, the still more preferable lower limit is 100 nm, and the still more preferable upper limit is 500 nm.
  • the thickness of the inorganic sealing layer can be measured using an optical film thickness measuring device (for example, FE-3000 manufactured by Otsuka Electronics Co., Ltd.).
  • FIG. 1 An example of the flexible solar cell of the present invention is schematically shown in FIG.
  • a metal foil 2 an electron transport layer 3, a photoelectric conversion layer 4 containing an organic / inorganic perovskite compound, a hole transport layer 5 and a transparent electrode 6 are formed in this order.
  • an organic compound represented by the general formula R—M—X 3 (where R is an organic molecule, M is a metal atom, and X is a halogen atom or a chalcogen atom).
  • a method for producing a flexible solar cell including an inorganic perovskite compound, the step of forming an electron transport layer on a metal foil, and the photoelectric conversion layer including the organic inorganic perovskite compound on the electron transport layer After forming, a photoelectric conversion layer forming step of annealing at a temperature of 80 ° C. or higher, a hole transport layer forming step of forming a hole transport layer on the photoelectric conversion layer, and a transparent electrode on the hole transport layer.
  • the manufacturing method of the flexible solar cell which has the transparent electrode formation process to form is preferable.
  • the flexible solar cell which has the photoelectric converting layer containing the organic inorganic perovskite compound which is excellent in light resistance and a photoelectric conversion efficiency can be provided.
  • Example 1 After applying a titanium oxide paste containing polyisobutyl methacrylate as an organic binder and titanium oxide (mixture of average particle diameters of 10 nm and 30 nm) on a metal foil made of aluminum having a thickness of 50 ⁇ m by spin coating, the temperature is 150 ° C. And dried for 10 minutes. Then, using a high-pressure mercury lamp (HLR100T-2, manufactured by Sen Special Light Company), ultraviolet rays were irradiated for 15 minutes at an irradiation intensity of 500 mW / cm 2 to form a porous electron transport layer made of titanium oxide and having a thickness of 200 nm. did.
  • HLR100T-2 high-pressure mercury lamp
  • lead iodide as a metal halide compound was dissolved in N, N-dimethylformamide (DMF) to prepare a 1M solution, and a film was formed on the porous electron transport layer by a spin coating method. Further, methylammonium iodide as an amine compound was dissolved in 2-propanol to prepare a 1% by weight solution. A layer containing CH 3 NH 3 PbI 3 , which is an organic / inorganic perovskite compound, was formed by immersing the sample formed of lead iodide in the solution. Thereafter, the obtained sample was annealed at 120 ° C. for 30 minutes.
  • a 1% by weight chlorobenzene solution of Poly (4-butylphenyl-diphenyl-amine) (manufactured by 1-Material) was laminated to a thickness of 50 nm by spin coating on the organic / inorganic perovskite compound portion of the annealed photoelectric conversion layer.
  • a hole transport layer was formed.
  • a transparent electrode having a thickness of 300 nm made of ITO was formed on the hole transport layer by an electron beam evaporation method to obtain a flexible solar cell.
  • Examples 2 to 7 A flexible solar cell was manufactured in the same manner as in Example 1 except that the type of metal foil and the annealing temperature were set as shown in Table 1.
  • Example 8 Except that a 1% by weight chlorobenzene solution of P3HT (manufactured by Aldrich) was laminated to a thickness of 50 nm by spin coating on the organic / inorganic perovskite compound portion of the annealed photoelectric conversion layer.
  • a flexible solar cell was produced in the same manner as in Example 1.
  • Example 9 Zirconia (ZrO 2 ) was formed as an insulating layer on a metal foil made of aluminum having a thickness of 50 ⁇ m, and titanium (Ti) was formed as an electrode in order with a thickness of 500 nm by electron beam evaporation. Thereafter, a flexible solar cell was produced in the same manner as in Example 1.
  • Example 10 A flexible solar cell was manufactured in the same manner as in Example 9 except that aluminum (Al) was used instead of titanium (Ti) as an electrode.
  • Example 11 A metal foil made of SUS was used in place of the metal foil made of aluminum, and polyimide (UPIA-VS, manufactured by Ube Industries) was used as an insulating layer in place of zirconia (ZrO 2 ) to a thickness of 10 ⁇ m by spin coating.
  • a flexible solar cell was manufactured in the same manner as Example 9 except for the above.
  • Aluminum was formed to a thickness of 100 nm on a plastic substrate made of polyethylene naphthalate (PEN) by vacuum deposition.
  • a titanium oxide paste containing polyisobutyl methacrylate as an organic binder and titanium oxide (a mixture of an average particle size of 10 nm and 30 nm) was applied by a spin coating method and then dried at 150 ° C. for 10 minutes. Then, using a high-pressure mercury lamp (HLR100T-2, manufactured by Sen Special Light Company), ultraviolet rays were irradiated for 15 minutes at an irradiation intensity of 500 mW / cm 2 to form a porous electron transport layer made of titanium oxide and having a thickness of 200 nm. did.
  • HLR100T-2 high-pressure mercury lamp
  • lead iodide as a metal halide compound was dissolved in N, N-dimethylformamide (DMF) to prepare a 1M solution, and a film was formed on the porous electron transport layer by a spin coating method. Further, methylammonium iodide as an amine compound was dissolved in 2-propanol to prepare a 1% by weight solution. A layer containing CH 3 NH 3 PbI 3 , which is an organic / inorganic perovskite compound, was formed by immersing the sample formed of lead iodide in the solution. Thereafter, the obtained sample was annealed at 60 ° C. for 30 minutes.
  • a 1% by weight chlorobenzene solution of Poly (4-butylphenyl-diphenyl-amine) (manufactured by 1-Material) was laminated to a thickness of 50 nm by spin coating on the organic / inorganic perovskite compound portion of the annealed photoelectric conversion layer.
  • a hole transport layer was formed.
  • a transparent electrode having a thickness of 300 nm made of ITO was formed on the hole transport layer by an electron beam evaporation method to obtain a flexible solar cell.
  • Comparative Example 2 A flexible solar cell was manufactured in the same manner as in Comparative Example 1 except that the annealing treatment temperature was set as shown in Table 1.
  • Comparative Example 4 A flexible solar cell was obtained in the same manner as in Comparative Example 2 except that a plastic substrate made of polyethylene terephthalate (PET) was used instead of polyethylene naphthalate (PEN).
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • the flexible solar cell which has the photoelectric converting layer containing the organic inorganic perovskite compound which is excellent in light resistance and a photoelectric conversion efficiency can be provided.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本発明は、耐光性と光電変換効率とに優れる、有機無機ペロブスカイト化合物を含む光電変換層を有するフレキシブル太陽電池を提供することを目的とする。本発明は、金属箔、電子輸送層、光電変換層、ホール輸送層及び透明電極がこの順に積層された構造を有するフレキシブル太陽電池であって、前記光電変換層は、一般式R-M-X(但し、Rは有機分子、Mは金属原子、Xはハロゲン原子又はカルコゲン原子である。)で表される有機無機ペロブスカイト化合物を含有するフレキシブル太陽電池である。

Description

フレキシブル太陽電池
本発明は、耐光性と光電変換効率とに優れる、有機無機ペロブスカイト化合物を含む光電変換層を有するフレキシブル太陽電池に関する。
太陽電池として、ガラスを基材とするリジットな太陽電池と、ポリイミドやポリエステル系の耐熱高分子材料を基材とするフレキシブルな太陽電池とが知られている。近年、薄型化や軽量化による運搬、施工の容易さや、衝撃に強い点から、フレキシブル太陽電池が注目されるようになってきている。
このようなフレキシブルな太陽電池は、ポリイミドやポリエステル系の耐熱高分子材料からなるフレキシブル基材上に、光が照射されると電流を生じる機能を有するシリコン半導体や化合物半導体等からなる光電変換層等を薄膜状に積層することにより製造される。更に、必要に応じて太陽電池素子の上下面を、太陽電池封止シートを積層して封止する。(例えば、特許文献1等。)
国際公開第2012/046564号
本発明者らは、新規なフレキシブル太陽電池として、一般式R-M-Xで表される有機無機ペロブスカイト化合物を含む光電変換層を有するフレキシブル太陽電池を検討している。光電変換層に特定の有機無機ペロブスカイト化合物を用いることにより、高い光電変換効率を有する太陽電池を製造することができる。
しかしながら、有機無機ペロブスカイト化合物を含む光電変換層を有するフレキシブル太陽電池は、光照射により光電変換効率が低下する、耐光性の問題を有していた。これに対して本発明者らは、成膜後の光電変換層を80℃以上の温度に加熱するアニール工程を行い、有機無機ペロブスカイト化合物の結晶化度を上げることにより、耐光性の課題を解決することを見出した。ところが、ポリイミドやポリエステル系の耐熱高分子材料からなるフレキシブル基材上に光電変換層等を積層していく従来の製造方法により有機無機ペロブスカイト化合物を含む光電変換層を有するフレキシブル太陽電池を製造しようとすると、フレキシブル基材と光電変換層等との線膨張係数の相違により、アニール時に歪みが生じ、その結果、高い光電変換効率を達成することが難しいという問題があった。さらに電子輸送層として金属酸化物を使用する際には高温でのアニール工程を行わない場合、高い変換効率を達成することが難しいという問題があった。
本発明は、上記現状に鑑み、耐光性と光電変換効率とに優れる、有機無機ペロブスカイト化合物を含む光電変換層を有するフレキシブル太陽電池を提供することを目的とする。
本発明は、金属箔、電子輸送層、光電変換層、ホール輸送層及び透明電極がこの順に積層された構造を有するフレキシブル太陽電池であって、前記光電変換層は、一般式R-M-X(但し、Rは有機分子、Mは金属原子、Xはハロゲン原子又はカルコゲン原子である。)で表される有機無機ペロブスカイト化合物を含有するフレキシブル太陽電池である。
以下に本発明を詳述する。
本発明のフレキシブル太陽電池は、金属箔、電子輸送層、光電変換層、ホール輸送層及び透明電極がこの順に積層された構造を有する。
上記金属箔は、フレキシブル太陽電池の基材としての役割を果たす。上記金属箔は、フレキシブル太陽電池の一方の電極であると同時に、基材としての役割を果たしてもよい。基材として金属箔を用いることにより、後述する光電変換層形成工程において耐光性を付与する目的で80℃以上の温度でアニールを行っても、歪みの発生を最小限に抑えて、高い光電変換効率を有するフレキシブル太陽電池を得ることができる。上記金属箔は、実質的に平坦であることが好ましい。
上記金属箔を構成する金属としては特に限定されず、耐久性に優れ、かつ、電極として用いることができる導電性を有するものが好ましく、例えば、アルミニウム、チタン、銅、金等の金属や、ステンレス鋼(SUS)等の合金を用いることができる。これらの材料は単独で用いられてもよく、2種以上が併用されてもよい。
なかでも、上記金属箔を構成する金属は、ステンレス鋼(SUS)を含むことが好ましい。上記金属箔を構成する金属としてステンレス鋼(SUS)を用いることで、上記金属箔が強靱になり曲げに対する耐性が向上するため、曲げ変形に起因する光電変換効率のばらつきを抑えることができる。上記金属箔を構成する金属は、アルミニウムを含むことも好ましい。上記金属箔を構成する金属としてアルミニウムを用いることで、上記金属箔と、有機無機ペロブスカイト化合物を含有する光電変換層との線膨張係数の差が小さくなるため、アニール時の歪みの発生を更に抑えることができる。
上記金属箔の厚さは特に限定されないが、好ましい下限は5μm、好ましい上限は500μmである。上記金属箔の厚さが5μm以上であれば、得られるフレキシブル太陽電池の機械的強度が充分となり、取り扱い性が向上し、500μm以下であれば、上記金属箔の曲げ等が可能となり、フレキシブル性が向上する。上記金属箔の厚さのより好ましい下限は10μm、より好ましい上限は100μmである。
上記金属箔をフレキシブル太陽電池の基材として用いる場合には、上記金属箔自体が電極と基材とを兼ねる態様のほか、上記金属箔の光電変換層側の表面に絶縁層を介して電極を形成する態様が考えられる。
上記絶縁層としては特に限定されないが、絶縁樹脂層又は金属酸化物層からなる絶縁層が好適である。より具体的には、ポリイミド樹脂、シリコーン樹脂等の絶縁樹脂や、ジルコニア、シリカ、ハフニア等の金属酸化物を用いて上記絶縁層を形成することが好ましい。
上記絶縁層の厚みの好ましい下限は0.1μm、好ましい上限は10μmである。上記絶縁層の厚みがこの範囲内であれば、上記金属箔と電極とを確実に絶縁することができる。
上記金属箔の光電変換層側の表面に絶縁層を介して形成される電極としては特に限定されず、太陽電池において通常用いられる金属電極を用いることができる。
上記電子輸送層は、上記金属箔上に形成されるか、上記金属箔の光電変換層側の表面に絶縁層を介して形成された電極上に形成されることが好ましい。上記電子輸送層の材料は特に限定されず、例えば、N型導電性高分子、N型低分子有機半導体、N型金属酸化物、N型金属硫化物、ハロゲン化アルカリ金属、アルカリ金属、界面活性剤等が挙げられ、具体的には例えば、シアノ基含有ポリフェニレンビニレン、ホウ素含有ポリマー、バソキュプロイン、バソフェナントレン、ヒドロキシキノリナトアルミニウム、オキサジアゾール化合物、ベンゾイミダゾール化合物、ナフタレンテトラカルボン酸化合物、ペリレン誘導体、ホスフィンオキサイド化合物、ホスフィンスルフィド化合物、フルオロ基含有フタロシアニン、酸化チタン、酸化亜鉛、酸化インジウム、酸化スズ、酸化ガリウム、硫化スズ、硫化インジウム、硫化亜鉛等が挙げられる。
上記電子輸送層の厚みは、好ましい下限が1nm、好ましい上限が2000nmである。上記厚みが1nm以上であれば、充分にホールをブロックできるようになる。上記厚みが2000nm以下であれば、電子輸送の際の抵抗になり難く、光電変換効率が高くなる。上記電子輸送層の厚みのより好ましい下限は3nm、より好ましい上限は1000nmであり、更に好ましい下限は5nm、更に好ましい上限は500nmである。
上記電子輸送層を形成する方法としては、例えば、金属箔上に、電子輸送層を形成する電子輸送層形成工程を行う方法が挙げられる。
上記金属箔上に電子輸送層を形成する方法は特に限定されず、例えば、酸化チタンからなる電子輸送層を形成する場合、上記金属箔上に、チタンを含有する塗布液を塗布後、焼成して薄膜状の電子輸送層を形成し、次いで、該薄膜状の電子輸送層上に、有機バインダと酸化チタン粒子とを含有する酸化チタンペーストを塗布し、焼成して多孔質状の電子輸送層を形成する方法等が挙げられる。また、金属箔上にチタンをスパッタリングし、表面を酸化させることにより酸化チタンを得て電子輸送層とする方法も挙げられる。
上記光電変換層は、一般式R-M-X(但し、Rは有機分子、Mは金属原子、Xはハロゲン原子又はカルコゲン原子である。)で表される有機無機ペロブスカイト化合物を含む。
有機無機ペロブスカイト化合物を用いることにより、本発明のフレキシブル太陽電池は、光電変換効率に優れたものとなる。
なお、一般式R-M-Xで表される有機無機ペロブスカイト化合物を含む部位を、以下、有機無機ペロブスカイト化合物部位ともいう。
上記有機無機ペロブスカイト化合物は、一般式R-M-Xで表したとき、体心に金属原子M、各頂点に有機分子R、面心にハロゲン原子又はカルコゲン原子Xが配置された立方晶系の構造を有することが好ましい。このような体心に金属原子M、各頂点に有機分子R、面心にハロゲン原子又はカルコゲン原子Xが配置された立方晶系の構造を図1に示す。詳細は明らかではないが、上記構造を有することにより、結晶格子内の八面体の向きが容易に変わることができるため、電子移動度が高くなることから、高い光電変換効率を実現することができると推定される。
上記有機無機ペロブスカイト化合物の一般式R-M-Xにおいて、Rは有機分子であり、C(l、m、nはいずれも正の整数)で示される分子であることが好ましい。Rは具体的にはメチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン、ジメチルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、ジペンチルアミン、ジヘキシルアミン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン、トリペンチルアミン、トリヘキシルアミン、エチルメチルアミン、メチルプロピルアミン、ブチルメチルアミン、メチルペンチルアミン、ヘキシルメチルアミン、エチルプロピルアミン、エチルブチルアミン、イミダゾール、アゾール、ピロール、アジリジン、アジリン、アゼチジン、アゼト、イミダゾリン、カルバゾール及びこれらのイオン(例えば、メチルアンモニウム(CHNH)等)やフェネチルアンモニウム等が挙げられる。なかでも、メチルアミン、エチルアミン、プロピルアミン、ブチルアミン、ペンチルアミン、ヘキシルアミン及びこれらのイオンやフェネチルアンモニウムが好ましく、メチルアミン、エチルアミン、プロピルアミン及びこれらのイオンがより好ましい。
Mは金属原子であり、鉛、スズ、亜鉛、チタン、アンチモン、ビスマス、ニッケル、鉄、コバルト、銀、銅、ガリウム、ゲルマニウム、マグネシウム、カルシウム、インジウム、アルミニウム、マンガン、クロム、モリブデン、ユーロピウム等が挙げられる。これらの元素は単独で用いられてもよく、2種以上が併用されてもよい。Xはハロゲン原子又はカルコゲン原子であり、例えば、塩素、臭素、ヨウ素、硫黄、セレン等が挙げられる。これらの元素は単独で用いられてもよく、2種以上が併用されてもよい。なかでも、構造中にハロゲンを含有することで、上記有機無機ペロブスカイト化合物が有機溶媒に可溶になり、安価な印刷法等への適用が可能になることから、ハロゲン原子が好ましい。更に、上記有機無機ペロブスカイト化合物のエネルギーバンドギャップが狭くなることから、ヨウ素がより好ましい。
Xはハロゲン原子又はカルコゲン原子である。構造中にハロゲン又はカルコゲンを含有することで、上記有機無機ペロブスカイト化合物が有機溶媒に可溶になり安価な印刷法への適用も可能になる。
上記光電変換層は、本発明の効果を損なわない範囲内であれば、上記有機無機ペロブスカイト化合物に加えて、更に、有機半導体又は無機半導体を含んでいてもよい。なお、ここでいう有機半導体又は無機半導体は、電子輸送層又はホール輸送層としての役割を果たしてもよい。
上記有機半導体として、例えば、ポリ(3-アルキルチオフェン)等のチオフェン骨格を有する化合物等が挙げられる。また、例えば、ポリパラフェニレンビニレン骨格、ポリビニルカルバゾール骨格、ポリアニリン骨格、ポリアセチレン骨格等を有する導電性高分子等も挙げられる。更に、例えば、フタロシアニン骨格、ナフタロシアニン骨格、ペンタセン骨格、ベンゾポルフィリン骨格等のポルフィリン骨格、スピロビフルオレン骨格等を有する化合物や、表面修飾されていてもよいカーボンナノチューブ、グラフェン、フラーレン等のカーボン含有材料も挙げられる。
上記無機半導体として、例えば、酸化チタン、酸化亜鉛、酸化インジウム、酸化スズ、酸化ガリウム、硫化スズ、硫化インジウム、硫化亜鉛、CuSCN、CuO、CuI、MoO、V、WO、MoS、MoSe、CuS等が挙げられる。
上記光電変換層は、上記有機半導体又は上記無機半導体を含む場合、薄膜状の有機半導体又は無機半導体部位と薄膜状の有機無機ペロブスカイト化合物部位とを積層した積層体であってもよいし、有機半導体又は無機半導体部位と有機無機ペロブスカイト化合物部位とを複合化した複合膜であってもよい。製法が簡便である点では積層体が好ましく、上記有機半導体又は上記無機半導体中の電荷分離効率を向上させることができる点では複合膜が好ましい。
上記薄膜状の有機無機ペロブスカイト化合物部位の厚みは、好ましい下限が5nm、好ましい上限が5000nmである。上記厚みが5nm以上であれば、充分に光を吸収することができるようになり、光電変換効率が高くなる。上記厚みが5000nm以下であれば、電荷分離できない領域が発生することを抑制できるため、光電変換効率の向上につながる。上記厚みのより好ましい下限は10nm、より好ましい上限は1000nmであり、更に好ましい下限は20nm、更に好ましい上限は500nmである。
上記光電変換層が、有機半導体又は無機半導体部位と有機無機ペロブスカイト化合物部位とを複合化した複合膜である場合、上記複合膜の厚みの好ましい下限は30nm、好ましい上限は3000nmである。上記厚みが30nm以上であれば、充分に光を吸収することができるようになり、光電変換効率が高くなる。上記厚みが3000nm以下であれば、電荷が電極に到達しやすくなるため、光電変換効率が高くなる。上記厚みのより好ましい下限は40nm、より好ましい上限は2000nmであり、更に好ましい下限は50nm、更に好ましい上限は1000nmである。
上記光電変換層を形成する方法としては、上記電子輸送層上に有機無機ペロブスカイト化合物を含む光電変換層を形成した後、80℃以上の温度でアニールする光電変換層形成工程を行う方法が好ましい。
上記電子輸送層上に光電変換層を形成する方法は特に限定されず、真空蒸着法、スパッタ法、気相反応法(CVD)、電気化学沈積法、印刷法等が挙げられる。なかでも、印刷法を採用することで、高い光電変換効率を発揮できるフレキシブル太陽電池を大面積で簡易に形成することができる。印刷法として、例えば、スピンコート法、キャスト法等が挙げられ、印刷法を用いた方法としてロールtoロール法等が挙げられる。
上記光電変換層を形成する方法として、具体的には例えば、上記電子輸送層上に、有機無機ペロブスカイト化合物形成用溶液(即ち、有機無機ペロブスカイト化合物の前駆体溶液)を積層して上記薄膜状の有機無機ペロブスカイト化合物部位を形成した後、上記薄膜状の有機無機ペロブスカイト化合物部位上に、上記薄膜状の有機半導体部位を形成する方法等が挙げられる。
上記アニールは、上記有機無機ペロブスカイト化合物を含む光電変換層に耐光性を付与する役割を有する。アニールを施すことにより、有機無機ペロブスカイト化合物の結晶化度が上昇することにより、優れた耐光性が発揮されるものと考えられる。また、結晶化度が上昇することにより、電子の移動度が高くなり、光電変換効率が向上する。
従来のフレキシブル太陽電池の製造方法では、基材と光電変換層等との線膨張率の相違により、アニール時の加熱によって歪みが発生してしまっていた。しかしながら、本発明のフレキシブル太陽電池では、基材として金属箔を用いていることから、このような歪みがほとんど発生することがない。
上記結晶化度は、X線散乱強度分布測定により検出された結晶質由来の散乱ピークと非晶質部由来のハローとをフィッティングにより分離し、それぞれの強度積分を求めて、全体のうちの結晶部分の比を算出することにより求めることができる。
上記有機無機ペロブスカイト化合物の好ましい結晶化度の下限は30%である。結晶化度が30%以上であると、電子の移動度が高くなり、光電変換効率が上昇する。より好ましい結晶化度の下限は50%であり、更に好ましい下限は70%である。
上記アニールの温度は80℃以上であることが好ましい。80℃以上の温度でアニールを行うことにより、有機無機ペロブスカイト化合物の結晶化度を上昇させることができるので、優れた耐光性を有し、高い光電変換効率を有するフレキシブル太陽電池が得られる。上記アニールの温度は100℃以上であることがより好ましく、120℃以上であることが更に好ましい。
上記アニールの温度の上限は特に限定されないが、それ以上の温度としても結晶化度上昇の効果が変わらず、また、他の部材への悪影響もあることから、200℃程度が実質的な上限である。
上記アニールの加熱時間は特に限定されないが、3分以上、2時間以内であることが好ましい。上記加熱時間が3分以上であれば、上記有機無機ペロブスカイト化合物の結晶化度を充分に上げることができる。上記加熱時間が2時間以内であれば、上記有機無機ペロブスカイト化合物を熱劣化させることなく加熱処理を行うことができる。
これらの加熱操作は真空又は不活性ガス下で行われることが好ましく、露点温度は10℃以下が好ましく、7.5℃以下がより好ましく、5℃以下が更に好ましい。
上記ホール輸送層の材料は特に限定されず、例えば、P型導電性高分子、P型低分子有機半導体、P型金属酸化物、P型金属硫化物、界面活性剤等が挙げられ、具体的には例えば、ポリエチレンジオキシチオフェンのポリスチレンスルホン酸付加物、カルボキシル基含有ポリチオフェン、フタロシアニン、ポルフィリン、酸化モリブデン、酸化バナジウム、酸化タングステン、酸化ニッケル、酸化銅、酸化スズ、硫化モリブデン、硫化タングステン、硫化銅、硫化スズ等、フルオロ基含有ホスホン酸、カルボニル基含有ホスホン酸等が挙げられる。
上記ホール輸送層としては、アモルファス有機半導体を含むホール輸送層が好適である。アモルファス有機半導体を用いることにより、透明電極を成膜した際の応力を緩和することにより、高い変換効率が得られる。
上記アモルファス有機半導体としては、例えば、Poly(4-butylphenyl-diphenyl-amine)等が挙げられる。
上記ホール輸送層の厚みは、好ましい下限は1nm、好ましい上限は2000nmである。上記厚みが1nm以上であれば、充分に電子をブロックできるようになる。上記厚みが2000nm以下であれば、ホール輸送の際の抵抗になり難く、光電変換効率が高くなる。上記厚みのより好ましい下限は3nm、より好ましい上限は1000nmであり、更に好ましい下限は5nm、更に好ましい上限は500nmである。
上記ホール輸送層を形成する方法としては、例えば、上記光電変換層上にホール輸送層を形成するホール輸送層形成工程を行う方法が挙げられる。
上記光電変換層上にホール輸送層を形成する方法は特に限定されず、例えば、有機溶媒にホール輸送材料を溶解させた溶液を塗布し、その後、有機溶媒を揮発させる方法、蒸着又はスパッタリング等の真空成膜する方法等が挙げられる。
上記透明電極を構成する材料としては特に限定されず、例えば、CuI、ITO(インジウムスズ酸化物)、SnO、AZO(アルミニウム亜鉛酸化物)、IZO(インジウム亜鉛酸化物)、GZO(ガリウム亜鉛酸化物)等の導電性透明材料や、導電性透明ポリマー等が挙げられる。これらの材料は単独で用いられてもよく、2種以上が併用されてもよい。
上記透明電極を形成する方法としては、例えば、上記ホール輸送層上に透明電極を形成する透明電極形成工程を行う方法が挙げられる。
上記ホール輸送層上に透明電極を形成する方法は特に限定されず、例えば、上記の材料をスパッタリングする方法、電子ビーム蒸着する方法、ナノ粒子やナノチューブを塗布する方法等が挙げられる。
本発明のフレキシブル太陽電池は、更に、金属箔、電子輸送層、光電変換層、ホール輸送層及び透明電極がこの順に積層された構造を有する積層体が、封止層で覆われていることが好ましい。封止層で覆うことにより、光電変換層を含む積層体を外環境から保護して充分な耐久性を得ることができ、より光電変換効率が高く、より耐久性に優れたフレキシブル太陽電池を得ることができる。
上記封止層として用いられる材料は特に限定されず、公知の材料を用いることができ、有機材料でも無機材料でもよい。即ち、上記封止層は、有機材料からなる有機封止層を含んでいても無機材料からなる無機封止層を含んでいてもよい。更に、上記封止層は、有機封止層と無機封止層とをともに含んでいることも好ましい。
有機材料としては、硬化性樹脂、ホットメルト樹脂等が挙げられる。無機材料としては、無機酸化物、無機窒化物、無機硫化物等が挙げられ、有機基を有するシリコーン樹脂等でもよい。具体的には、酸化ケイ素、酸化スズ、酸化ジルコニウム、酸化マグネシウム、複数の金属からなる複合酸化物窒化アルミニウム、窒化ケイ素等が挙げられる。なかでも、ガスバリア性に優れ、フレキシブル太陽電池の耐久性をより高めることができることから、上記封止層は無機封止層を含み、上記無機封止層は無機酸化物又は無機窒化物からなることが好ましい。
上記封止層を形成する方法として、例えば、金属箔、電子輸送層、光電変換層、ホール輸送層及び透明電極がこの順に積層された構造を有する積層体を、封止層で覆う封止工程を行う方法が挙げられる。
上記封止層を形成する方法は特に限定されず、封止層として用いられる材料が有機材料であれば、ディスペンス、スクリーン印刷等の印刷法が挙げられる。封止層として用いられる材料が無機材料であれば、スパッタリング、蒸着等が挙げられる。
上記封止層を形成する方法として、具体的には例えば、上記積層体の上記第二の電極上に、上記積層体の全体を覆うようにして上記封止層を形成する方法等が挙げられる。上記第一の電極から順に形成した場合、上記封止層は上記第二の電極上に形成される。上記第一の電極は陰極(即ち、金属箔又は金属箔の光電変換層側の表面に絶縁層を介して形成された電極)でも陽極(即ち、透明電極)でもよく、上記第二の電極は陽極でも陰極でもよい。
上記有機封止層の厚みは、好ましい下限が100nm、好ましい上限が100000nmである。上記厚みが100nm以上であれば、上記有機封止層によって上記積層体を充分に覆いつくすことができる。上記厚みが100000nm以下であれば、上記有機封止層は側面から浸入してくる水蒸気を充分にブロックすることができる。上記厚みのより好ましい下限は500nm、より好ましい上限は50000nmであり、更に好ましい下限は1000nm、更に好ましい上限は20000nmである。
上記無機封止層の厚みは、好ましい下限が30nm、好ましい上限が3000nmである。上記厚みが30nm以上であれば、上記無機封止層が充分な水蒸気バリア性を有することができ、フレキシブル太陽電池の耐久性が向上する。上記厚みが3000nm以下であれば、上記無機封止層の厚みが増した場合であっても、発生する応力が小さいため、上記無機封止層、電極、半導体層等の剥離を抑制することができる。上記厚みのより好ましい下限は50nm、より好ましい上限は1000nmであり、更に好ましい下限は100nm、更に好ましい上限は500nmである。
なお、無機封止層の厚みは、光学膜厚測定装置(例えば、大塚電子社製、FE-3000等)を用いて測定することができる。
本発明のフレキシブル太陽電池の一例を、図2に模式的に示す。図2に示すフレキシブル太陽電池1は、金属箔2、電子輸送層3、有機無機ペロブスカイト化合物を含む光電変換層4、ホール輸送層5及び透明電極6がこの順に形成されている。
本発明のフレキシブル太陽電池を製造する方法としては、一般式R-M-X(但し、Rは有機分子、Mは金属原子、Xはハロゲン原子又はカルコゲン原子である。)で表される有機無機ペロブスカイト化合物を含むフレキシブル太陽電池の製造方法であって、金属箔上に、電子輸送層を形成する電子輸送層形成工程と、上記電子輸送層上に、上記有機無機ペロブスカイト化合物を含む光電変換層を形成した後、80℃以上の温度でアニールする光電変換層形成工程と、上記光電変換層上に、ホール輸送層を形成するホール輸送層形成工程と、上記ホール輸送層上に、透明電極を形成する透明電極形成工程を有するフレキシブル太陽電池の製造方法が好ましい。
本発明によれば、耐光性と光電変換効率とに優れる、有機無機ペロブスカイト化合物を含む光電変換層を有するフレキシブル太陽電池を提供することができる。
有機無機ペロブスカイト化合物の結晶構造の一例を示す模式図である。 本発明のフレキシブル太陽電池の一例を、模式的に示した断面図である。
以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例にのみ限定されるものではない。
(実施例1)
厚さ50μmのアルミニウムからなる金属箔上に、有機バインダとしてのポリイソブチルメタクリレートと酸化チタン(平均粒子径10nmと30nmとの混合物)とを含有する酸化チタンペーストをスピンコート法により塗布した後150℃で10分間乾燥させた。その後、高圧水銀ランプ(セン特殊光源社製、HLR100T-2)を用いて、紫外線を射強度500mW/cmで15分間照射し、酸化チタンからなる厚み200nmの多孔質状の電子輸送層を形成した。
次いで、ハロゲン化金属化合物としてヨウ化鉛をN,N-ジメチルホルムアミド(DMF)に溶解させて1Mの溶液を調製し、上記多孔質状の電子輸送層上にスピンコート法によって製膜した。更に、アミン化合物としてヨウ化メチルアンモニウムを2-プロパノールに溶解させて1重量%の溶液を調製した。この溶液内に上記のヨウ化鉛を製膜したサンプルを浸漬させることによって有機無機ペロブスカイト化合物であるCHNHPbIを含む層を形成した。その後、得られたサンプルに対して120℃にて30分間アニール処理を行った。
アニール後の光電変換層の有機無機ペロブスカイト化合物部位上に、Poly(4-butylphenyl-diphenyl-amine)(1-Material社製)の1重量%クロロベンゼン溶液を、スピンコート法によって50nmの厚みに積層してホール輸送層を形成した。次いで、ホール輸送層上に、電子ビーム蒸着法によりITOからなる厚み300nmの透明電極を形成して、フレキシブル太陽電池を得た。
(実施例2~7)
金属箔の種類とアニール処理の温度を表1に示すような条件とした以外は、実施例1と同様にしてフレキシブル太陽電池を製造した。
(実施例8)
アニール後の光電変換層の有機無機ペロブスカイト化合物部位上に、P3HT(Aldrich社製)の1重量%クロロベンゼン溶液を、スピンコート法によって50nmの厚みに積層してホール輸送層を形成した以外は、実施例1と同様にしてフレキシブル太陽電池を製造した。
(実施例9)
厚さ50μmのアルミニウムからなる金属箔上に絶縁層としてジルコニア(ZrO)を、電極としてチタン(Ti)をそれぞれ順に500nmの厚みで電子ビーム蒸着法により製膜した。その後は実施例1と同様にしてフレキシブル太陽電池を製造した。
(実施例10)
電極としてチタン(Ti)の代わりにアルミニウム(Al)を用いた以外は実施例9と同様にしてフレキシブル太陽電池を製造した。
(実施例11)
アルミニウムからなる金属箔の代わりにSUSからなる金属箔を用い、絶縁層としてジルコニア(ZrO)の代わりにポリイミド(UPIA-VS、宇部興産社製)をスピンコートにて10μmの厚みで製膜した以外は実施例9と同様にしてフレキシブル太陽電池を製造した。
(比較例1)
ポリエチレンナフタレート(PEN)からなるプラスチック基材上に、真空蒸着法によりアルミニウムを100nmの厚みに製膜した。有機バインダとしてのポリイソブチルメタクリレートと酸化チタン(平均粒子径10nmと30nmとの混合物)とを含有する酸化チタンペーストをスピンコート法により塗布した後150℃で10分間乾燥させた。その後、高圧水銀ランプ(セン特殊光源社製、HLR100T-2)を用いて、紫外線を射強度500mW/cmで15分間照射し、酸化チタンからなる厚み200nmの多孔質状の電子輸送層を形成した。
次いで、ハロゲン化金属化合物としてヨウ化鉛をN,N-ジメチルホルムアミド(DMF)に溶解させて1Mの溶液を調製し、上記多孔質状の電子輸送層上にスピンコート法によって製膜した。更に、アミン化合物としてヨウ化メチルアンモニウムを2-プロパノールに溶解させて1重量%の溶液を調製した。この溶液内に上記のヨウ化鉛を製膜したサンプルを浸漬させることによって有機無機ペロブスカイト化合物であるCHNHPbIを含む層を形成した。その後、得られたサンプルに対して60℃にて30分間アニール処理を行った。
アニール後の光電変換層の有機無機ペロブスカイト化合物部位上に、Poly(4-butylphenyl-diphenyl-amine)(1-Material社製)の1重量%クロロベンゼン溶液を、スピンコート法によって50nmの厚みに積層してホール輸送層を形成した。次いで、ホール輸送層上に、電子ビーム蒸着法によりITOからなる厚み300nmの透明電極を形成して、フレキシブル太陽電池を得た。
(比較例2)
アニール処理の温度を表1に示すような条件とした以外は、比較例1と同様にしてフレキシブル太陽電池を製造した。
(比較例3)
ポリエチレンナフタレート(PEN)からなるプラスチック基材上に、電子ビーム蒸着法によりITOからなる厚み300nmのITO膜を形成し、純水、アセトン、メタノールをこの順に用いて各10分間超音波洗浄した後、乾燥させた。多孔質状の電子輸送層を形成する工程以降は、ホール輸送層上に真空蒸着により厚み100nmの金膜を形成したこと以外は比較例2と同様にしてフレキシブル太陽電池を得た。
(比較例4)
ポリエチレンナフタレート(PEN)の代わりにポリエチレンテレフタレート(PET)からなるプラスチック基材を用いた以外は比較例2と同様の方法にてフレキシブル太陽電池を得た。
<評価>
実施例及び比較例で得られたフレキシブル太陽電池について、以下の評価を行った。
(1)初期変換効率の評価
フレキシブル太陽電池の電極間に、電源(KEITHLEY社製、236モデル)を接続し、100mW/cmの強度のソーラーシミュレータ(山下電装社製)を用いて光電変換効率を測定した。得られた光電変換効率を初期変換効率とした。下記に示す基準で判定を行った。
◎:初期変換効率が6%以上の場合
○:初期変換効率が5%以上、6%未満の場合
△:初期変換効率が4%以上、5%未満の場合
×:初期変換効率が4%未満の場合
(2)耐光性の評価
100mW/cmの強度のソーラーシミュレータにて光を1時間照射し続けたときの、変換効率を測定し、初期変換効率に対する保持率を算出した。
○:保持率が70%以上
△:保持率が40%以上、70%未満
×:保持率が40%未満
(3)光電変換効率のばらつき
同じ条件にて10個のフレキシブル太陽電池のサンプルを作製して、10個のサンプルの光電変換効率の平均値を算出した。下記に示す基準で判定を行った。
◎:10個のサンプルの平均値と最小値との差が1%未満
○:10個のサンプルの平均値と最小値との差が1%以上、2%未満
×:10個のサンプルの平均値と最小値との差が2%以上
Figure JPOXMLDOC01-appb-T000001
本発明によれば、耐光性と光電変換効率とに優れる、有機無機ペロブスカイト化合物を含む光電変換層を有するフレキシブル太陽電池を提供することができる。
1 フレキシブル太陽電池
2 金属箔
3 電子輸送層
4 有機無機ペロブスカイト化合物を含む光電変換層
5 ホール輸送層
6 透明電極

Claims (5)

  1. 金属箔、電子輸送層、光電変換層、ホール輸送層及び透明電極がこの順に積層された構造を有するフレキシブル太陽電池であって、
    前記光電変換層は、一般式R-M-X(但し、Rは有機分子、Mは金属原子、Xはハロゲン原子又はカルコゲン原子である。)で表される有機無機ペロブスカイト化合物を含有する
    ことを特徴とするフレキシブル太陽電池。
  2. 金属箔を構成する金属がステンレス鋼を含むことを特徴とする請求項1記載のフレキシブル太陽電池。
  3. 金属箔を構成する金属がアルミニウムを含むことを特徴とする請求項1記載のフレキシブル太陽電池。
  4. 金属箔の光電変換層側の表面に絶縁層を介して電極を有することを特徴とする請求項1、2又は3記載のフレキシブル太陽電池。
  5. ホール輸送層がアモルファス有機半導体を含むことを特徴とする請求項1、2、3又は4記載のフレキシブル太陽電池。
PCT/JP2016/058663 2015-03-20 2016-03-18 フレキシブル太陽電池 WO2016152766A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2016237352A AU2016237352A1 (en) 2015-03-20 2016-03-18 Flexible solar cell
EP16768669.0A EP3273497A4 (en) 2015-03-20 2016-03-18 Flexible solar cell
CN201680016552.9A CN107431131B (zh) 2015-03-20 2016-03-18 柔性太阳能电池
BR112017018280-7A BR112017018280A2 (ja) 2015-03-20 2016-03-18 Flexible solar cell
US15/551,622 US20180040840A1 (en) 2015-03-20 2016-03-18 Flexible solar cell
JP2016518782A JPWO2016152766A1 (ja) 2015-03-20 2016-03-18 フレキシブル太陽電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-058421 2015-03-20
JP2015058421 2015-03-20

Publications (1)

Publication Number Publication Date
WO2016152766A1 true WO2016152766A1 (ja) 2016-09-29

Family

ID=56978501

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/058663 WO2016152766A1 (ja) 2015-03-20 2016-03-18 フレキシブル太陽電池

Country Status (7)

Country Link
US (1) US20180040840A1 (ja)
EP (1) EP3273497A4 (ja)
JP (2) JPWO2016152766A1 (ja)
CN (1) CN107431131B (ja)
AU (1) AU2016237352A1 (ja)
BR (1) BR112017018280A2 (ja)
WO (1) WO2016152766A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139146A1 (ja) * 2017-01-27 2018-08-02 積水化学工業株式会社 フレキシブル太陽電池
WO2018159799A1 (ja) * 2017-03-02 2018-09-07 積水化学工業株式会社 太陽電池及び太陽電池の製造方法
WO2019043495A1 (en) * 2017-09-01 2019-03-07 King Abdullah University Of Science And Technology METHODS AND APPARATUSES FOR MANUFACTURING PEROVSKITE DEVICES ON FLEXIBLE CONDUCTIVE SUBSTRATES

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101776533B1 (ko) * 2016-11-03 2017-09-07 현대자동차주식회사 접합식 페로브스카이트 태양전지의 제조방법
JP6378383B1 (ja) * 2017-03-07 2018-08-22 株式会社東芝 半導体素子およびその製造方法
US11778896B2 (en) * 2017-06-16 2023-10-03 Ubiquitous Energy, Inc. Visibly transparent, near-infrared-absorbing metal-complex photovoltaic devices
US11545635B2 (en) 2017-06-16 2023-01-03 Ubiquitous Energy, Inc. Visibly transparent, near-infrared-absorbing boron-containing photovoltaic devices
KR101983596B1 (ko) * 2017-12-08 2019-05-29 서울시립대학교 산학협력단 상변이 물질의 잠열을 이용한 유기 소자의 전극 증착 방법 및 유기 소자
CN109244171B (zh) * 2018-08-29 2020-07-28 电子科技大学 一种宽光谱无机钙钛矿太阳能电池结构及其制备方法
CN109713127A (zh) * 2018-12-26 2019-05-03 西安电子科技大学 一种钙钛矿太阳能电池的制备方法
JP2020190395A (ja) * 2019-05-23 2020-11-26 積水化学工業株式会社 温度調節システム
US20220277902A1 (en) * 2019-07-31 2022-09-01 The Board Of Regents Of The University Of Oklahoma Dichalcogenide composite electrode and solar cell and uses
CN115260027B (zh) * 2022-06-27 2023-08-25 清华大学 一种应力缓释剂及其制备方法和应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014164846A (ja) * 2013-02-22 2014-09-08 Fujifilm Corp 光電変換素子、光電変換素子の製造方法および色素増感太陽電池
JP2015046298A (ja) * 2013-08-28 2015-03-12 コニカミノルタ株式会社 光電変換素子およびその製造方法、ならびにそれを用いた太陽電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101447341B (zh) * 2008-12-30 2011-02-09 南京航空航天大学 以不锈钢为基底的柔性染料敏化太阳能电池及其制备方法
WO2011118580A1 (ja) * 2010-03-24 2011-09-29 富士フイルム株式会社 光電変換素子及び光電気化学電池
GB2504414B (en) * 2011-01-24 2014-09-03 Univ Swansea Flexible dye sensitised solar cell and a method for manufacturing the same
WO2014165830A2 (en) * 2013-04-04 2014-10-09 The Regents Of The University Of California Electrochemical solar cells
CN103354273B (zh) * 2013-06-17 2016-02-24 华侨大学 一种嵌入式大面积柔性敏化太阳电池及其制备方法
CN103872248B (zh) * 2014-03-27 2017-02-15 武汉大学 一种钙钛矿薄膜光伏电池及其制备方法
JP5667715B1 (ja) * 2014-06-16 2015-02-12 積水化学工業株式会社 薄膜太陽電池及び薄膜太陽電池の製造方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014164846A (ja) * 2013-02-22 2014-09-08 Fujifilm Corp 光電変換素子、光電変換素子の製造方法および色素増感太陽電池
JP2015046298A (ja) * 2013-08-28 2015-03-12 コニカミノルタ株式会社 光電変換素子およびその製造方法、ならびにそれを用いた太陽電池

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018139146A1 (ja) * 2017-01-27 2018-08-02 積水化学工業株式会社 フレキシブル太陽電池
JPWO2018139146A1 (ja) * 2017-01-27 2019-11-21 積水化学工業株式会社 フレキシブル太陽電池
WO2018159799A1 (ja) * 2017-03-02 2018-09-07 積水化学工業株式会社 太陽電池及び太陽電池の製造方法
TWI753124B (zh) * 2017-03-02 2022-01-21 日商積水化學工業股份有限公司 太陽電池及太陽電池之製造方法
JP2022075784A (ja) * 2017-03-02 2022-05-18 積水化学工業株式会社 太陽電池及び太陽電池の製造方法
WO2019043495A1 (en) * 2017-09-01 2019-03-07 King Abdullah University Of Science And Technology METHODS AND APPARATUSES FOR MANUFACTURING PEROVSKITE DEVICES ON FLEXIBLE CONDUCTIVE SUBSTRATES
US11653555B2 (en) 2017-09-01 2023-05-16 King Abdullah University Of Science And Technology Methods and apparatuses for fabricating perovskite-based devices on cost-effective flexible conductive substrates

Also Published As

Publication number Publication date
JP2017092489A (ja) 2017-05-25
JP6154058B2 (ja) 2017-06-28
BR112017018280A2 (ja) 2018-04-10
CN107431131B (zh) 2020-09-25
EP3273497A4 (en) 2018-10-10
CN107431131A (zh) 2017-12-01
AU2016237352A1 (en) 2017-09-21
JPWO2016152766A1 (ja) 2018-01-11
EP3273497A1 (en) 2018-01-24
US20180040840A1 (en) 2018-02-08

Similar Documents

Publication Publication Date Title
JP6154058B2 (ja) フレキシブル太陽電池
TWI753124B (zh) 太陽電池及太陽電池之製造方法
WO2018052032A1 (ja) フレキシブル太陽電池
JP2016178290A (ja) 太陽電池
JP6989391B2 (ja) 太陽電池
JP6592639B1 (ja) 太陽電池の製造方法、及び、太陽電池
JP2018163938A (ja) 太陽電池
JP6745116B2 (ja) フレキシブル太陽電池
WO2018139146A1 (ja) フレキシブル太陽電池
JP2017034089A (ja) 薄膜太陽電池
JP2016082003A (ja) 薄膜太陽電池の製造方法
JP2019169684A (ja) 太陽電池
JP2018056213A (ja) フレキシブル太陽電池及びフレキシブル太陽電池の製造方法
JP2019067914A (ja) 太陽電池の製造方法及び太陽電池
WO2019188288A1 (ja) 太陽電池の製造方法、及び、太陽電池
WO2018062307A1 (ja) フレキシブル太陽電池
JP6804957B2 (ja) フレキシブル太陽電池及びフレキシブル太陽電池の製造方法
JP7112225B2 (ja) フレキシブル太陽電池及びフレキシブル太陽電池の製造方法
JP2018163939A (ja) 太陽電池
JP2018147956A (ja) 太陽電池
JP2018056233A (ja) 太陽電池
JP2018046056A (ja) 太陽電池、及び、太陽電池の製造方法
JP2018125522A (ja) フレキシブル太陽電池
JP2016082004A (ja) 太陽電池
JP2020053454A (ja) 太陽電池及び太陽電池の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2016518782

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768669

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15551622

Country of ref document: US

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017018280

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2016237352

Country of ref document: AU

Date of ref document: 20160318

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2016768669

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 112017018280

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170825