WO2016151547A1 - Automated finishing station for a brake pad - Google Patents

Automated finishing station for a brake pad Download PDF

Info

Publication number
WO2016151547A1
WO2016151547A1 PCT/IB2016/051725 IB2016051725W WO2016151547A1 WO 2016151547 A1 WO2016151547 A1 WO 2016151547A1 IB 2016051725 W IB2016051725 W IB 2016051725W WO 2016151547 A1 WO2016151547 A1 WO 2016151547A1
Authority
WO
WIPO (PCT)
Prior art keywords
workhead
guide
finishing
finishing tool
brake pad
Prior art date
Application number
PCT/IB2016/051725
Other languages
French (fr)
Inventor
Carlo RADICE
Augusto CARUSI
Original Assignee
Itt Italia S.R.L.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Itt Italia S.R.L. filed Critical Itt Italia S.R.L.
Priority to US15/323,160 priority Critical patent/US10309474B2/en
Priority to CN201680001931.0A priority patent/CN106470798B/en
Priority to MX2017008103A priority patent/MX2017008103A/en
Priority to EP16718467.0A priority patent/EP3149352B1/en
Publication of WO2016151547A1 publication Critical patent/WO2016151547A1/en

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D65/00Parts or details
    • F16D65/02Braking members; Mounting thereof
    • F16D65/04Bands, shoes or pads; Pivots or supporting members therefor
    • F16D65/092Bands, shoes or pads; Pivots or supporting members therefor for axially-engaging brakes, e.g. disc brakes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B41/00Component parts such as frames, beds, carriages, headstocks
    • B24B41/06Work supports, e.g. adjustable steadies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/10Single-purpose machines or devices
    • B24B7/16Single-purpose machines or devices for grinding end-faces, e.g. of gauges, rollers, nuts, piston rings
    • B24B7/162Single-purpose machines or devices for grinding end-faces, e.g. of gauges, rollers, nuts, piston rings for mass articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/005Manipulators for mechanical processing tasks
    • B25J11/0065Polishing or grinding
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D69/00Friction linings; Attachment thereof; Selection of coacting friction substances or surfaces
    • F16D2069/004Profiled friction surfaces, e.g. grooves, dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16DCOUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
    • F16D2250/00Manufacturing; Assembly
    • F16D2250/0092Tools or machines for producing linings

Definitions

  • the present invention relates to an automated finishing station for a brake pad.
  • a brake pad comprises a support plate, preferably metal, obtained by punching, sintering or the like, and a layer of friction material adhering to the support plate.
  • the friction layer After compaction and/or cross-linking and/or hardening of the friction material in the kiln, the friction layer must be finished to meet the geometric mounting tolerances on a brake caliper.
  • the finishing operation is carried out with rotary tools, such as grinders or milling cutters, which apply an action on the friction layer of a certain entity. Such action must be opposed in order to reduce the geometrical tolerances of the friction layer after the finishing. This requirement is particularly important because the shape and dimensions of the friction material must meet very tight tolerances required on the brake pad design.
  • the finishing includes in particular the adjustment that allows the flatness of the surfaces delimiting the frictional layer to be defined.
  • the finishing also comprises further abrasion operations for the removal of material carried out by means of milling cutters, also disk milling cutters, or grinders.
  • the finishing operation may comprise the realization of a groove in the friction layer by means of a disk milling cutter or grinder to subdivide a contact surface of the friction layer selectively cooperating in use with the brake disc into two or more areas.
  • the geometry of the friction layer may vary.
  • the friction layer presents a main flat face substantially parallel, in use, to a brake disc.
  • the friction layer may also present zones of variable thickness, in particular decreasing from the center of the pad towards the ends and/or the periphery. These zones are delimited by faces facing, in use, the disc and defining chamfers, for example flat chamfers, at constant angle.
  • the chamfers may have different profiles, and present, for example, a sequence of flat faces at different inclinations to one another or a curvilinear 'J' form. It is therefore important that the finishing station is flexible to allow the creation of a variety of friction layer geometries.
  • the purpose of the present invention is to provide an automated finishing station that is able to meet at least in part the requirements specified above.
  • FIG. 1 a plan view of an automated finishing station according to claim 1;
  • FIG. 2 a front view of a detail of figure 1 with parts removed for clarity;
  • FIG. 5 a rear view of figure 1 with parts removed for clarity.
  • FIG. 1 Illustrated in Figure 1 with 1, as a whole, is an automated station for the finishing of a brake pad comprising a rotary finishing tool 2, for example a flat grinder with a vertical axis A, a workhead 3 to pick, retain and release a brake pad 4 and a guide 5 on which the workhead 3 leans during a finishing step carried out by the grinder 2.
  • the guide 5 is fixed and presents an optionally adjustable position.
  • the workhead 3 is moved by a handling unit 6 preferably comprising an articulated arm and, still more preferably, a 6-axis robotic arm, in particular anthropomorphic.
  • the handling unit 6 is flexible and programmable to allow the movement of the workhead 3 along various trajectories or paths different from one another and dependent on the type of finishing operation and/or on the brake pad 4 model.
  • the automated station 1 also comprises a conveyor 7, for example a conveyor belt, to bring the brake pads 4 before and after the finishing step, one or more further rotary finishing tools 8 and 9, for example a cylindrical disc grinder for grooving and a disc grinder with a shaped profile, for example rounded, and a soundproof cabin 10 within which the mobile elements of the finishing station 1 are housed.
  • a conveyor 7 for example a conveyor belt
  • one or more further rotary finishing tools 8 and 9 for example a cylindrical disc grinder for grooving and a disc grinder with a shaped profile, for example rounded, and a soundproof cabin 10 within which the mobile elements of the finishing station 1 are housed.
  • Figure 2 illustrates in greater detail the workhead 3 and the guide 5.
  • the workhead 3 comprises a slide or trolley 17 and a gripping device 18 to pick the brake pad 4 from the conveyor 7, retain the brake pad 4 during the finishing along the programmable path and release the brake pad 4 on the conveyor 7 after the finishing.
  • the gripping device 18 can be magnetic or electromagnetic to attract a support plate 19 of the brake pad 4 made of ferromagnetic material, or it can be pneumatic with suction.
  • the gripping device 18 is mechanical and includes calipers that tighten to withdraw the brake pad 4. In all cases, the gripping device 18 rigidly retains the brake pad 4 to the workhead 3 so as to avoid displacements of the brake pad 4 during the finishing on the grinder 2.
  • the guide 5 and workhead 4 are in contact during the finishing so that the action of the grinder 2 on the brake pad 4 is opposed along at least one direction.
  • the action of the grinder 2 on the brake pad 4 is opposed by the contact between the workhead 3 and the guide 5 closing down the plays and defining a constraint able to meet the tolerances.
  • the grinder 2 applies on the brake pad 4 and, therefore, on the workhead 3 wherein the brake pad 4 is anchored, a twisting moment acting around the axis A due to the rotation of the grinder 2 and/or a tilting moment around an axis B perpendicular to the plane containing both the axis A and a feed direction C of the workhead 3 during the finishing on the grinder 2.
  • the guide 5 comprises two tracks 20, 21 opposite with respect to axis A and parallel to the feed direction C.
  • the workhead 3 contacts the guide 5 in at least three misaligned zones or points defining a plane parallel to which the grinder 2 acts on a friction material 22 of the brake pad 3 during the finishing.
  • the guide 5 is double-acting. According to the creation example of figure 2, the guide 5 defines the position of the workhead 3 both when a load is applied by the grinder 2 toward the workhead 3 and vice versa along a direction parallel to axis A.
  • the workhead 3 or the guide 5 comprise one or more restrictions 23 in order to avoid the hunting of the workhead 3 with respect to the feed direction C.
  • the workhead 3 comprises a trolley 24 provided with two pairs of rollers 25, 26.
  • the rollers 25 are cylindrical and run on flat faces of the tracks 20 and the rollers 26 define the restrictions 23.
  • the track 21 presents a shaped profile in order to engage with the restrictions 23 of the respective rollers 26 in order to prevent the hunting of the workhead 3.
  • the workhead 3 has passed through a mouth 27 (Figure 1) of the guides 5 and the friction material 22 is being processed on the grinder 2.
  • the mouth 27 faces the conveyor 7.
  • the distance along the axis A between the workhead 3 and the grinder 2 is constant and the axis A is fixed.
  • an adjustment device 28 to change the position of the grinder 2 with respect to the guides 5.
  • the device is manual and comprises a gear 29 and a screw - nut screw 29 driven by the gear 28.
  • a motor 30 of the grinder 2 is mounted on a slide 31 handled by the screw - nut screw 29. The latter can be only handled by the gear 29 and, on the contrary, remains locked when a load is applied on the grinder 2 along the axis A downwards or upwards .
  • the grinder 2 projects with respect to an exit opening 32 of the guides 5 so as to define a working zone 33 in which the workhead 3 can be orientated by the anthropomorphic arm 6 independently from the guide 5 and, at the same time, allow the grinder 2 to finish the friction layer 22 to create, for example, a flat chamfer 34 (figure 4) flanked to a main face 35 parallel in use to a brake disk of a vehicle.
  • the chamfer 34 is created by means of the joints or hinges of the anthropomorphic arm 6 that allow an inclination of the brake pad 4 with respect to the grinder 2 when the 3 workhead has come out from the outlet 32 of the guide 5.
  • the anthropomorphic arm 6 is programmable to orient the workhead 3 with respect to the grinder 2 in a first position thanks to the guide 5 and in a second position different from the first position when the workhead 3 is located in the working zone 33 and the brake pad 4 contacts the grinder 2.
  • the trajectory followed by the workhead 3 is programmable so as to carry out chamfers with different inclinations and/or on brake pads 4 having different dimensions and/or geometries.
  • the anthropomorphic arm 6 is programmable to lead the workhead 3 along a path that involves the creation, by means of the disk grinder 8, of a rectilinear groove in the friction layer 22. This groove can be parallel to a plane of symmetry of the brake pad 4 or be inclined with respect to this plane.
  • the anthropomorphic arm 6 is programmable for controlling the workhead 3 along a further path directed towards the shaped grinder 9, after the workhead 3 has passed through the exit opening 32 and is disengaged from the guide 5.
  • the anthropomorphic arm 6 can be programmed to carry out in succession a first pass over the main face 35 after the workhead 3 has passed through the mouth 27 and is engaged with the guide 5; at least one further finishing operation, comprising for example the creation of the chamfer 34 by means of the grinder 2 and/or other finishings made by means of the tools 8, 9, after the workhead 3 has passed through the exit opening 32 and is disengaged from the guide 5; and a second pass over the main face 35 after the workhead 3 has passed through the exit opening 32 and has engaged with the guide 5. Therefore, the second pass is in the opposite direction of the first pass. This way it is possible to terminate the work cycle towards the conveyor 7 where the finished brake pad is unloaded and a still unfinished brake pad is taken away.
  • a handling unit 6 programmable for controlling the workhead 3 along several three-dimensional paths can present a structure whose plays are too high and/or whose overall stiffness is too low to obtain a high finishing accuracy, in particular on the main face 35 of the brake pad 4.
  • the automated station 1 allows the creation of even small batches of different brake pads 4 models since the path of the workhead 3 is programmable for each brake pad 4 model.
  • the automated station is also of simple construction since the axes of the rotary finishing tools 2, 8, 9 are fixed during machining and, to create the flat chamfer 34, the rotary finishing tool 2 is used, which has a flat work surface.
  • the station 1 can be programmed to also carry out further processing while the workhead 18 is disengaged from the guide 5.
  • a groove (not illustrated) may be carried out which subdivides the main face 35 into symmetrical areas.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Robotics (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)

Abstract

An automated station (1) for the finishing of brake pads (4) comprises at least one rotary finishing tool (2) for finishing a friction layer (22) of the brake pad (4), a workhead (3) to pick, retain and release the brake pad (4), a handling unit (6) to move the workhead (3) along a programmable path comprising a pass over the rotary finishing tool (2) and a guide (5) having a mouth (27) which is passed through by the workhead (3) in order to start the finishing pass along the length of the programmable route, the guide (5) contacting the workhead (3) to define, along at least one direction (A; C), the relative position between the workhead (3) and the brake pad (4) during the finishing carried out by the rotary finishing tool (2).

Description

"AUTOMATED FINISHING STATION FOR A BRAKE PAD "
TECHNICAL FIELD
The present invention relates to an automated finishing station for a brake pad.
BACKGROUND ART
A brake pad comprises a support plate, preferably metal, obtained by punching, sintering or the like, and a layer of friction material adhering to the support plate.
After compaction and/or cross-linking and/or hardening of the friction material in the kiln, the friction layer must be finished to meet the geometric mounting tolerances on a brake caliper.
The finishing operation is carried out with rotary tools, such as grinders or milling cutters, which apply an action on the friction layer of a certain entity. Such action must be opposed in order to reduce the geometrical tolerances of the friction layer after the finishing. This requirement is particularly important because the shape and dimensions of the friction material must meet very tight tolerances required on the brake pad design. The finishing includes in particular the adjustment that allows the flatness of the surfaces delimiting the frictional layer to be defined. The finishing also comprises further abrasion operations for the removal of material carried out by means of milling cutters, also disk milling cutters, or grinders. For example, the finishing operation may comprise the realization of a groove in the friction layer by means of a disk milling cutter or grinder to subdivide a contact surface of the friction layer selectively cooperating in use with the brake disc into two or more areas.
Furthermore, the geometry of the friction layer may vary. After the finishing, the friction layer presents a main flat face substantially parallel, in use, to a brake disc. At the sides of the flat face, the friction layer may also present zones of variable thickness, in particular decreasing from the center of the pad towards the ends and/or the periphery. These zones are delimited by faces facing, in use, the disc and defining chamfers, for example flat chamfers, at constant angle. The chamfers may have different profiles, and present, for example, a sequence of flat faces at different inclinations to one another or a curvilinear 'J' form. It is therefore important that the finishing station is flexible to allow the creation of a variety of friction layer geometries.
DISCLOSURE OF INVENTION
The purpose of the present invention is to provide an automated finishing station that is able to meet at least in part the requirements specified above.
The purpose of the present invention is achieved by means of an automated finishing station according to claim 1.
BRIEF DESCRIPTION OF THE DRAWINGS
The invention will now be described with reference to the accompanying drawings, which illustrate examples of non-limiting embodiments and refer to:
- Figure 1 a plan view of an automated finishing station according to claim 1;
- Figure 2: a front view of a detail of figure 1 with parts removed for clarity;
- Figure 3: a section according to the plane III-III of figure 1 with parts removed for clarity;
- Figure 4 : a longitudinal section of a brake pad; and
- Figure 5: a rear view of figure 1 with parts removed for clarity.
BEST MODE FOR CARRYING OUT THE INVENTION
Illustrated in Figure 1 with 1, as a whole, is an automated station for the finishing of a brake pad comprising a rotary finishing tool 2, for example a flat grinder with a vertical axis A, a workhead 3 to pick, retain and release a brake pad 4 and a guide 5 on which the workhead 3 leans during a finishing step carried out by the grinder 2. The guide 5 is fixed and presents an optionally adjustable position. The workhead 3 is moved by a handling unit 6 preferably comprising an articulated arm and, still more preferably, a 6-axis robotic arm, in particular anthropomorphic. The handling unit 6 is flexible and programmable to allow the movement of the workhead 3 along various trajectories or paths different from one another and dependent on the type of finishing operation and/or on the brake pad 4 model.
Optionally, alternatively or in any combination, the automated station 1 also comprises a conveyor 7, for example a conveyor belt, to bring the brake pads 4 before and after the finishing step, one or more further rotary finishing tools 8 and 9, for example a cylindrical disc grinder for grooving and a disc grinder with a shaped profile, for example rounded, and a soundproof cabin 10 within which the mobile elements of the finishing station 1 are housed.
The cabin 10 is also closed by means of doors 15 for access of operators for the maintenance and defines a closed and sealed volume within which aspirators 16 pick the finishing processing residues, in particular powders.
Figure 2 illustrates in greater detail the workhead 3 and the guide 5. In particular, the workhead 3 comprises a slide or trolley 17 and a gripping device 18 to pick the brake pad 4 from the conveyor 7, retain the brake pad 4 during the finishing along the programmable path and release the brake pad 4 on the conveyor 7 after the finishing. The gripping device 18 can be magnetic or electromagnetic to attract a support plate 19 of the brake pad 4 made of ferromagnetic material, or it can be pneumatic with suction. In a further embodiment, the gripping device 18 is mechanical and includes calipers that tighten to withdraw the brake pad 4. In all cases, the gripping device 18 rigidly retains the brake pad 4 to the workhead 3 so as to avoid displacements of the brake pad 4 during the finishing on the grinder 2.
The guide 5 and workhead 4 are in contact during the finishing so that the action of the grinder 2 on the brake pad 4 is opposed along at least one direction. The action of the grinder 2 on the brake pad 4 is opposed by the contact between the workhead 3 and the guide 5 closing down the plays and defining a constraint able to meet the tolerances. During the finishing, the grinder 2 applies on the brake pad 4 and, therefore, on the workhead 3 wherein the brake pad 4 is anchored, a twisting moment acting around the axis A due to the rotation of the grinder 2 and/or a tilting moment around an axis B perpendicular to the plane containing both the axis A and a feed direction C of the workhead 3 during the finishing on the grinder 2. These actions tend to modify the relative position between the brake pad 4 and the grinder 2 and this adversely impacts the accuracy of the finishing. According to the embodiment of the present invention, the guide 5 comprises two tracks 20, 21 opposite with respect to axis A and parallel to the feed direction C. The workhead 3 contacts the guide 5 in at least three misaligned zones or points defining a plane parallel to which the grinder 2 acts on a friction material 22 of the brake pad 3 during the finishing. Furthermore, to define an effective constraint against tilting moments, the guide 5 is double-acting. According to the creation example of figure 2, the guide 5 defines the position of the workhead 3 both when a load is applied by the grinder 2 toward the workhead 3 and vice versa along a direction parallel to axis A.
In addition, the workhead 3 or the guide 5 comprise one or more restrictions 23 in order to avoid the hunting of the workhead 3 with respect to the feed direction C.
According to the embodiment of figure 2, the workhead 3 comprises a trolley 24 provided with two pairs of rollers 25, 26. The rollers 25 are cylindrical and run on flat faces of the tracks 20 and the rollers 26 define the restrictions 23. Accordingly, the track 21 presents a shaped profile in order to engage with the restrictions 23 of the respective rollers 26 in order to prevent the hunting of the workhead 3.
In figure 3, the workhead 3 has passed through a mouth 27 (Figure 1) of the guides 5 and the friction material 22 is being processed on the grinder 2. The mouth 27 faces the conveyor 7. During finishing, the distance along the axis A between the workhead 3 and the grinder 2 is constant and the axis A is fixed. However, provided is an adjustment device 28 to change the position of the grinder 2 with respect to the guides 5. Preferably, the device is manual and comprises a gear 29 and a screw - nut screw 29 driven by the gear 28. Furthermore, a motor 30 of the grinder 2 is mounted on a slide 31 handled by the screw - nut screw 29. The latter can be only handled by the gear 29 and, on the contrary, remains locked when a load is applied on the grinder 2 along the axis A downwards or upwards .
In addition, the grinder 2 projects with respect to an exit opening 32 of the guides 5 so as to define a working zone 33 in which the workhead 3 can be orientated by the anthropomorphic arm 6 independently from the guide 5 and, at the same time, allow the grinder 2 to finish the friction layer 22 to create, for example, a flat chamfer 34 (figure 4) flanked to a main face 35 parallel in use to a brake disk of a vehicle. Preferably, the chamfer 34 is created by means of the joints or hinges of the anthropomorphic arm 6 that allow an inclination of the brake pad 4 with respect to the grinder 2 when the 3 workhead has come out from the outlet 32 of the guide 5. More generally, the anthropomorphic arm 6 is programmable to orient the workhead 3 with respect to the grinder 2 in a first position thanks to the guide 5 and in a second position different from the first position when the workhead 3 is located in the working zone 33 and the brake pad 4 contacts the grinder 2.
The trajectory followed by the workhead 3 is programmable so as to carry out chamfers with different inclinations and/or on brake pads 4 having different dimensions and/or geometries. In addition, if required by the specific model of the brake pad 4, before or after the creation of the chamfer 34, the anthropomorphic arm 6 is programmable to lead the workhead 3 along a path that involves the creation, by means of the disk grinder 8, of a rectilinear groove in the friction layer 22. This groove can be parallel to a plane of symmetry of the brake pad 4 or be inclined with respect to this plane. Furthermore, where the chamfer 34 is not flat, the anthropomorphic arm 6 is programmable for controlling the workhead 3 along a further path directed towards the shaped grinder 9, after the workhead 3 has passed through the exit opening 32 and is disengaged from the guide 5.
In use, the anthropomorphic arm 6 can be programmed to carry out in succession a first pass over the main face 35 after the workhead 3 has passed through the mouth 27 and is engaged with the guide 5; at least one further finishing operation, comprising for example the creation of the chamfer 34 by means of the grinder 2 and/or other finishings made by means of the tools 8, 9, after the workhead 3 has passed through the exit opening 32 and is disengaged from the guide 5; and a second pass over the main face 35 after the workhead 3 has passed through the exit opening 32 and has engaged with the guide 5. Therefore, the second pass is in the opposite direction of the first pass. This way it is possible to terminate the work cycle towards the conveyor 7 where the finished brake pad is unloaded and a still unfinished brake pad is taken away.
The advantages that the automated station 1 according to the present invention allows us to obtain are the following.
A handling unit 6 programmable for controlling the workhead 3 along several three-dimensional paths can present a structure whose plays are too high and/or whose overall stiffness is too low to obtain a high finishing accuracy, in particular on the main face 35 of the brake pad 4. Through the interaction of 3 workhead with the guides 5 during the pass over the main face 35, it is possible to obtain a high precision. In addition, the automated station 1 allows the creation of even small batches of different brake pads 4 models since the path of the workhead 3 is programmable for each brake pad 4 model. The automated station is also of simple construction since the axes of the rotary finishing tools 2, 8, 9 are fixed during machining and, to create the flat chamfer 34, the rotary finishing tool 2 is used, which has a flat work surface. The conical rotary finishing tools are avoided in this way. Moreover, it was verified that the resultant of the cutting forces during the finishing, in particular the adjustment of the main face 35 is greater than the resultant of the cutting forces generated during the flat chamfer 34 processing. Therefore the latter can be created, reducing time and costs, through the anthropomorphic arm 6 while the workhead 18 is disengaged from the guide 5.
Finally, it is clear that changes and variations to the automated finishing station 1 according to the present invention can be made without departing from the scope of protection as defined by the appended claims.
The guide 5 can be single effect and therefore define a simple support suitably designed together with the workhead 3 to counteract the action and the loads of the removal of material by the rotary tool 2.
In addition to the realization of the chamfers 34, the station 1 can be programmed to also carry out further processing while the workhead 18 is disengaged from the guide 5. For example a groove (not illustrated) may be carried out which subdivides the main face 35 into symmetrical areas.

Claims

1. An automated station (1) for finishing brake pads (4) comprising at least one rotary finishing tool (2) for finishing a friction layer (22) of brake pad (4), a workhead (3) to pick, retain and release the brake pad (4), a handling unit (6) to move the workhead (3) along a programmable path comprising a pass over the rotary finishing tool (2) and a guide (5) having a mouth (27) which is passed through by the workhead (3) in order to start the finishing pass along the length of the programmable route, the guide (5) contacting the workhead (3) to define, in at least one direction (A; C) , the relative position between the workhead (3) and the brake pad (4) during the finishing operated by the rotary finishing tool (2) .
2. An automated station according to claim 1, characterized in that the rotary finishing tool (2) protrudes from an exit opening (32) of the guide (5) as opposed to the mouth (27) to define a zone (33) where the workhead (3) is disengaged from the guide (5) and the handling unit (6) orients the workhead (3) with respect to the rotary finishing tool (2) to a position that is different than that defined by the guide (5) .
3. An automated station according to any of the preceding claims, characterized in that the workhead (3) comprises a trolley (24) or a slide in contact with the guide (5) during the finishing.
4. An automated station according to any one of the preceding claims, characterized in that the workhead (3) or the guide (5) defines at least one restriction (23) in order to prevent hunting of the workhead (3) while the workhead (3) is engaged with the guide (5) .
5. An automated station according to any of the preceding claims, characterized by comprising an adjustment device (28) to adjust the distance between the guide (5) and the rotary finishing tool (2) .
6. An automated station according to any of the preceding claims, characterized in that the position of a rotation axis (A) of the rotary finishing tool (2) is fixed while the friction layer (22) is in contact with the rotary finishing tool (2) .
7. An automated station according to any one of the preceding claims, characterized in that the rotary finishing tool (2) is flat and in that the direction is parallel to an axis of rotation of the rotary finishing tool (2) .
8. An automated station according to any of the preceding claims, characterized in that the handling unit (6) comprises an articulated arm that is used to tilt the workhead (4) and carry out chamfering (34) .
9. A control method for an automated station according to any of the preceding claims, characterized by comprising, in succession, a first step of passing the workhead (3) over the rotary finishing tool (2) along a first direction while the workhead (3) is engaged with the guide (5) ; a second step of carrying out an additional finishing operation while the workhead (3) is disengaged from the guide (5) ; a third step of passing the workhead (3) over the rotary finishing tool (2) along a second direction opposite to the first direction while the workhead is engaged with the guide (5) .
10. Control method according to claim 9, characterized in that the second step comprises the manufacturing of at least a chamfer (34) of the friction layer (22) .
PCT/IB2016/051725 2015-03-25 2016-03-25 Automated finishing station for a brake pad WO2016151547A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US15/323,160 US10309474B2 (en) 2015-03-25 2016-03-25 Automated finishing station for a brake pad
CN201680001931.0A CN106470798B (en) 2015-03-25 2016-03-25 Automation finishing stage for brake block
MX2017008103A MX2017008103A (en) 2015-03-25 2016-03-25 Automated finishing station for a brake pad.
EP16718467.0A EP3149352B1 (en) 2015-03-25 2016-03-25 Automated finishing station for a brake pad

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ITUB20140048 2015-03-25
IT102015000009801 2015-03-25

Publications (1)

Publication Number Publication Date
WO2016151547A1 true WO2016151547A1 (en) 2016-09-29

Family

ID=56978070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2016/051725 WO2016151547A1 (en) 2015-03-25 2016-03-25 Automated finishing station for a brake pad

Country Status (1)

Country Link
WO (1) WO2016151547A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113798978A (en) * 2021-11-03 2021-12-17 扬州朗玛科技有限公司 Processing device for polishing two sides of clamp body

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB724426A (en) * 1953-02-25 1955-02-23 Serafino Villa Apparatus for machining the linings of motor vehicle brake shoes
DE2837873A1 (en) * 1978-08-30 1980-03-13 Sedelmayer Franz X Jun Protective dust cover for brake lining machining unit - is concentric to rotary arm support tube, self supporting and clearly visible in rotary arm working area
FR2985796A1 (en) * 2012-01-12 2013-07-19 Valeo Materiaux De Friction METHOD FOR PRODUCING A CLUTCH FRICTION TRIM

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB724426A (en) * 1953-02-25 1955-02-23 Serafino Villa Apparatus for machining the linings of motor vehicle brake shoes
DE2837873A1 (en) * 1978-08-30 1980-03-13 Sedelmayer Franz X Jun Protective dust cover for brake lining machining unit - is concentric to rotary arm support tube, self supporting and clearly visible in rotary arm working area
FR2985796A1 (en) * 2012-01-12 2013-07-19 Valeo Materiaux De Friction METHOD FOR PRODUCING A CLUTCH FRICTION TRIM

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113798978A (en) * 2021-11-03 2021-12-17 扬州朗玛科技有限公司 Processing device for polishing two sides of clamp body
CN113798978B (en) * 2021-11-03 2022-07-26 扬州朗玛科技有限公司 Processing device for polishing two sides of clamp body

Similar Documents

Publication Publication Date Title
EP3149352B1 (en) Automated finishing station for a brake pad
EP3563988B1 (en) Machining robot and machining method
JP5031775B2 (en) Method for grinding a rod-shaped workpiece, grinding machine for carrying out the method, and twin-configuration grinding cell
CN104994994B (en) Centrifugal drum lapping device and roller Ginding process
KR101083933B1 (en) Apparatus for grinding of friction material of brakepad
JP2014040001A (en) Workpiece processing device and control method for the same
JP2010253613A (en) Workpiece machining device and method of controlling the same
KR102209578B1 (en) Device for multi-angle cutting material of window frame
CN106363475B (en) A kind of efficient double-ended grinding machine and its control method
CN101337326B (en) Slide device for machine tool
US9011208B2 (en) Dual-spindle grinder
CN105798616A (en) Numerical-control universal assembly line machining center
CN112318294A (en) Controllable torque floating main shaft and control method
TWI485034B (en) Machine tool control system
CN206967274U (en) Silicon rod handler and silicon rod Multi-position processing machine
WO2016151547A1 (en) Automated finishing station for a brake pad
KR101609664B1 (en) index table device for manufacturing a main bore of caliper housing
CN208528684U (en) Aperture numerical control inner conical surface grinding machine
JP4558278B2 (en) A processing method for forming a surface concave portion having a circular cross section having a central axis inclined with respect to a processing material axis around the outside of the processing material
CN105636744B (en) Dressing method and trimming device
KR20130069661A (en) Method for processing an inner face of a housing having an opening
CN104690646A (en) Precise grinding combined control method
CN109434467B (en) Luggage rack automatic production line
US20190009384A1 (en) Centerless grinding machine and method for the use of a centerless grinding machine
CN101186041A (en) Machining unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16718467

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016718467

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2016718467

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15323160

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/008103

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE