WO2016150215A1 - 离子型阴极缓冲层分子型材料及其制备方法和应用 - Google Patents

离子型阴极缓冲层分子型材料及其制备方法和应用 Download PDF

Info

Publication number
WO2016150215A1
WO2016150215A1 PCT/CN2015/098525 CN2015098525W WO2016150215A1 WO 2016150215 A1 WO2016150215 A1 WO 2016150215A1 CN 2015098525 W CN2015098525 W CN 2015098525W WO 2016150215 A1 WO2016150215 A1 WO 2016150215A1
Authority
WO
WIPO (PCT)
Prior art keywords
buffer layer
target product
cathode buffer
ion
group
Prior art date
Application number
PCT/CN2015/098525
Other languages
English (en)
French (fr)
Inventor
朱旭辉
谭婉怡
李敏
张建
刘刚
彭俊彪
曹镛
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Publication of WO2016150215A1 publication Critical patent/WO2016150215A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/50Organo-phosphines
    • C07F9/53Organo-phosphine oxides; Organo-phosphine thioxides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/547Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom
    • C07F9/6561Heterocyclic compounds, e.g. containing phosphorus as a ring hetero atom containing systems of two or more relevant hetero rings condensed among themselves or condensed with a common carbocyclic ring or ring system, with or without other non-condensed hetero rings

Definitions

  • the invention relates to an alcohol-soluble cathode buffer layer material, in particular to an ion-type cathode buffer layer molecular type material, a preparation method and application thereof.
  • Inverted organic optoelectronic devices can avoid the use of low work function metals as cathodes, which is beneficial to improve device stability. Therefore, it is important to apply cathode buffer materials for inverted optoelectronic devices.
  • the organic small molecule cathode interface material has the advantages of certain chemical structure, high purity, excellent synthesis and purification repeatability, and has a very good application in the conventional organic photoelectric device.
  • most of the organic small molecule cathode interface materials are difficult to resist the erosion of weak polar solvents, that is, they are easily and partially washed away when the active layer is spin-coated, and the application in the inverted structure organic photoelectric device is limited. Therefore, it is particularly urgent to design and synthesize organic small molecule cathode interface materials with the ability to resist weak polar solvent erosion.
  • an object of the present invention to provide an ion-type cathode buffer layer molecular type material which is resistant to corrosion by a weakly polar solvent.
  • Another object of the present invention is to provide a method for preparing the above-described ion-type cathode buffer layer molecular type material.
  • a third object of the present invention is to provide an application of the above-described ion-type cathode buffer layer molecular type material.
  • the ionic cathode buffer layer molecular type material has the following chemical structural formula:
  • the alkyl ion-containing counter ion directly connected to the root ion, when n 1, R 3 , R 4 , and R 5 are alkyl chains having 1 to 18 carbon atoms, and X ⁇ is an anion;
  • the ionic cathode buffer layer molecular type material has the following chemical structural formula:
  • R 1 is an aryl group or a fused ring aryl group
  • R 2 is a nitrogen heterocyclic ring and an ionic salt has been formed
  • the R 1 is any one of the following structural units:
  • R 6 and R 7 are selected from an alkyl chain or an alkoxy chain having 1 to 18 carbon atoms or are any of the following structural units:
  • R8 and R9 are alkyl chains having 1 to 18 carbon atoms.
  • the R 2 is any one of the following structural units:
  • R 3 and R 4 are alkyl chains having 1 to 18 carbon atoms, and R 5 is any one of the following structural units:
  • the preparation method of the ionic cathode buffer layer molecular type material comprises the following steps:
  • the group R 2 is first reacted with an alkyl chain having a bromine group at both ends to obtain a target product having a bromine group at one end of the alkyl chain, and then reacted with an alkyl chain containing a secondary amine to obtain a target product;
  • the target product containing the boronic acid ester obtained in the step (2) is reacted with a nitrogen-containing heterocyclic ring containing a bromine to obtain a neutral target product;
  • the ionic salt of the bromine obtained by the step 6) is ion-exchanged with the sodium salt of the target anion to obtain a molecular type material containing the ionic cathodic buffer layer.
  • ionic cathode buffer layer molecular type material in an organic photovoltaic cell device, an electroluminescent display, illumination or an organic field effect transistor.
  • the organic small molecule cathode interface material is difficult to resist the erosion of the weak polar solvent, that is, it is easy to be partially or completely washed away when the active layer is spin-coated, and the application in the inverted structure organic photovoltaic cell device is limited.
  • the present invention reduces the solubility in a weakly polar solvent (for example, toluene, chlorobenzene) by lowering the solubility in a weakly polar solvent by using an amine group or a nitrogen heterocyclic group to form an ionic salt; Phenyl phosphorus oxide group, improving the alcohol solubility and solution processing properties of the material.
  • a weakly polar solvent for example, toluene, chlorobenzene
  • the present invention has the following advantages and benefits:
  • the ionic cathode buffer layer molecular type material of the present invention can reduce the solubility (for example, toluene, chlorobenzene) in a weakly polar solvent, resists the attack of a weakly polar solvent, and can resist the corrosion of a weakly polar solvent.
  • solubility for example, toluene, chlorobenzene
  • the ionic cathode buffer layer molecular type material of the invention has good alcohol solubility and solution addition Performance.
  • the ion-type cathode buffer layer molecular type material of the present invention has good film morphology stability.
  • 1a and 1b are differential scanning calorimetry curves of an ion-type cathode buffer layer molecular type material POBiNa-Z and PONaPhen-Br, respectively, according to an embodiment of the present invention.
  • 3 is a current density-voltage curve of an organic photovoltaic cell device in which the cathodes are ZnO/POBiNa-Z, ZnO/PONaPhen-Br, and ZnO, respectively.
  • 2,6-dibromonaphthalene (3g, 10.5mmol) was dissolved in dry tetrahydrofuran (200mL) cooled to -78 °C.
  • n-Butyllithium (2.4 M solution in hexane, 4.8 mL, 11.55 mmol) was added dropwise via a syringe. Stirring was carried out for 40 minutes under a N 2 atmosphere at this temperature, then diphenylphosphine chloride (2.3 mL, 12.6 mmol) was added by syringe. The mixture was slowly returned to room temperature and stirring was continued overnight under N 2 atmosphere.
  • 1,1'-bisdiphenylphosphinoferrocene palladium dichloride 80 mg, 0.11 mmol was added to compound 2 (1.35 g, 3.32 mmol) and boranoic acid pinacol ester (1.26) under N 2 atmosphere. g, 4.98 mmol), a mixture of potassium acetate (977 mg, 9.95 mmol) and N,N-dimethylformamide (30 mL). The reaction was heated to 80 ° C and allowed to react for 2 hours. After cooling to room temperature, dichloromethane and distilled water were added to the reaction mixture, and the organic layer was separated, and the aqueous layer was extracted with dichloromethane.
  • 2,6-dibromonaphthalene (3g, 10.5mmol) was dissolved in dry tetrahydrofuran (200mL) cooled to -78 °C.
  • n-Butyllithium (2.4 M solution in hexane, 4.8 mL, 11.55 mmol) was added dropwise via a syringe. Stirring was carried out for 40 minutes under a N 2 atmosphere at this temperature, then diphenylphosphine chloride (2.3 mL, 12.6 mmol) was added by syringe. The mixture was slowly returned to room temperature and stirring was continued overnight under N 2 atmosphere.
  • 1,1'-bisdiphenylphosphinoferrocene palladium dichloride 80 mg, 0.11 mmol was added to compound 2 (1.35 g, 3.32 mmol) and boranoic acid pinacol ester (1.26) under N 2 atmosphere. g, 4.98 mmol), a mixture of potassium acetate (977 mg, 9.95 mmol) and N,N-dimethylformamide (30 mL). The reaction was heated to 80 ° C and allowed to react for 2 hours. After cooling to room temperature, dichloromethane and distilled water were added to the reaction mixture, and the organic layer was separated, and the aqueous layer was extracted with dichloromethane.
  • DSC Differential Scanning Calorimetry
  • the ion-type cathode buffer layer molecular materials of Examples 1 to 2 were tested against weak polar solvent erosion:
  • the solubility of the cathode interface material in a weakly polar solvent was tested.
  • the solubility of both POBiNa-Z and PONaPhen-Br in toluene and chlorobenzene solvents was less than 0.1 mg mL -1 (insoluble), of which PONaPhen-Br even
  • the solubility in chloroform is also less than 0.1 mg mL -1 , indicating that it is well resistant to solvent solvent attack.
  • the resistance of the cathode interface material to weakly polar solvents was investigated by comparing the UV-Vis absorption spectra.
  • weakly polar solvents for example, toluene, chlorobenzene
  • a chloroform solution was spin-coated on a quartz plate at a concentration of 10 mg mL -1 , a rotation speed of 2000 rpm, an annealing at 100 ° C for 10 min, and a toluene or chlorobenzene solvent was spin-coated on the surface of the film.
  • weakly polar solvents for example, toluene, chlorobenzene
  • A is the absorbance
  • I 0 is the incident light intensity
  • I is the transmitted light intensity after passing the sample
  • is the molar absorptivity
  • l is the sample thickness
  • c is the sample concentration
  • ⁇ and c are fixed for the same sample. Therefore, the absorption strength of the film is proportional to the thickness of the film, and the ability of the cathode interface material to resist solvent erosion is judged by comparing the change in the absorption strength of the film before and after spin-coating of the toluene or chlorobenzene solvent. As shown in Figure 2, POBiNa-Z resists the attack of toluene and chlorobenzene.
  • POBiNa-Z and PONaPhen-Br were selected as the cathode interface materials, and PTB7:PC 71 BM was used as the active layer material.
  • the specific preparation process was as follows:
  • ITO indium tin oxide
  • a methanol solution of POBiNa-Z and PONaPhen-Br was spin-coated on the surface of ZnO at a concentration of 0.75 mg mL -1 at a rotation speed of 2000 rpm and annealed at 100 ° C for 10 minutes.
  • a solution of PTB7:PC 71 BM in chlorobenzene was spin-coated on the cathode interface layer to a thickness of about 100 nm (concentration: 10:15 mg mL -1 , rotation speed of 1500 rpm, time 30 s), and pumped under vacuum for 4 h.
  • MoO 3 is evaporated under a vacuum of ⁇ 5 ⁇ 10 -4 Pa (the evaporation rate is ), the thickness is 10 nm.
  • a device containing only ZnO is used as a comparison device, and the specific device structure is as follows:
  • ITO/ZnO/POBiNa-Z/PTB7 PC 71 BM/MoO 3 /Al
  • ITO/ZnO/PONaPhen-Br/PTB7 PC 71 BM/MoO 3 /Al
  • ITO/ZnO/PTB7 PC 71 BM/MoO 3 /Al
  • the energy conversion efficiency of the organic photovoltaic cell device prepared by the solution processing method was significantly improved by using POBiNa-Z and PONaPhen-Br.
  • the energy conversion efficiencies are 7.54% and 7.59%, respectively, which is 4% higher than that of pure ZnO devices, and the current density and fill factor are improved, indicating that the cathode buffer layer material can be modified.
  • the cathode facilitates electron extraction and improves device performance.
  • Table 1 Preliminary characterization results of organic photovoltaic cell devices with cathodes of ZnO/POBiNa-Z and ZnO, respectively

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本发明公开了离子型阴极缓冲层分子型材料,将芳基磷氧基团引入到铵根离子盐中,不仅具有较高的醇溶性及非晶态特性,还可以降低在弱极性溶剂中的溶解度,抵御弱极性溶剂的侵蚀。本发明还公开上了上述离子型阴极缓冲层分子型材料的制备方法和应用。相比于现有的有机小分子阴极缓冲层材料,本发明的离子型阴极缓冲层分子型材料适合于"多层"溶液加工倒置器件结构中的应用。

Description

离子型阴极缓冲层分子型材料及其制备方法和应用 技术领域
本发明涉及醇溶性阴极缓冲层材料,特别涉及一种离子型阴极缓冲层分子型材料及其制备方法和应用。
背景技术
倒置结构的有机光电器件可避免使用低功函的金属作为阴极,有利于提高器件稳定性,因此,可适用于倒置光电器件的阴极缓冲层材料具有重要意义。
有机小分子阴极界面材料具有确定的化学结构、高纯度以及优良的合成、提纯重复性等优点,在传统有机光电器件中有非常好的应用。然而,大部分有机小分子阴极界面材料很难抵御弱极性溶剂的侵蚀,即旋涂活性层时易被部分或完全洗去,在倒置结构的有机光电器件中的应用受到了一定的限制。因此,设计、合成具有抵御弱极性溶剂侵蚀能力的有机小分子阴极界面材料显得尤为迫切。
发明内容
为了克服现有技术的上述缺点与不足,本发明的目的之一在于提供一种离子型阴极缓冲层分子型材料,可抵御弱极性溶剂的腐蚀。
本发明的目的之二在于提供上述离子型阴极缓冲层分子型材料的制备方法。
本发明的目的之三在于提供上述离子型阴极缓冲层分子型材料的应用。
本发明的目的通过以下技术方案实现:
离子型阴极缓冲层分子型材料,具有如下化学结构式:
Figure PCTCN2015098525-appb-000001
其中,R1,R2为芳基或稠环芳基,m=0~17,当n=0时,R3、R4为碳数为1~18的烷基链,R5为与铵根离子直接相连的含烷基链的反离子,当n=1时,R3、R4、R5为碳数为1~18的烷基链,X是阴离子;
或者,离子型阴极缓冲层分子型材料具有如下化学结构式:
Figure PCTCN2015098525-appb-000002
其中,R1为芳基或稠环芳基;R2为氮杂环,并已形成离子盐;当n=0时,氮杂环通过烷基链与反离子直接相连,当n=1时,氮杂环上连接碳数为1–18的烷基链,X是阴离子,r=1~2。
所述R1为如下结构单元的任一种:
Figure PCTCN2015098525-appb-000003
其中,R6,R7从碳数为1–18的烷基链或烷氧基链中选择或为如下结构单元的任一种:
Figure PCTCN2015098525-appb-000004
其中,R8,R9为碳数为1~18的烷基链。
所述R2为如下结构单元的任一种:
Figure PCTCN2015098525-appb-000005
Figure PCTCN2015098525-appb-000006
当n=0时,R3、R4为碳数为1~18的烷基链,所述R5为如下结构单元的任一种:
Figure PCTCN2015098525-appb-000007
当n=1时,所述X具有如下结构单元中的一种:
Figure PCTCN2015098525-appb-000008
所述的离子型阴极缓冲层分子型材料的制备方法,包括以下步骤:
(1)以氯化二苯基膦作为反应原料,通过正丁基锂低温反应引入到基团R1上,再通过双氧水氧化得到含溴的已氧化的目标产物,其中,对于R6,R7,可 通过甲烷磺酸对芴酮进行催化引入芳基、稠环芳基,或通过氢氧化钾对芴进行催化引入碳数为1~18的烷基链或烷氧基链;
(2)以步骤(1)所得的含溴的已氧化的目标产物,通过钯催化剂的作用,与联硼酸频那醇酯反应,得到含硼酸酯的目标产物;
(3)基团R2作为反应原料,通过与含叔胺的且一端带氯的烷基链反应,得到含胺基的目标产物;
或者,基团R2先通过碳酸钾与两端带溴的烷基链反应,得到烷基链一端带溴的目标产物,再通过碳酸钾与含有仲胺的烷基链反应得到目标产物;
(4)以步骤(2)所得的含硼酸酯的目标产物与步骤(3)所得的目标产物,通过钯催化偶联反应,得到同时含有磷氧基团及胺基的目标产物;
或者,以步骤(2)所得的含硼酸酯的目标产物与含溴的氮杂环反应,得到中性的目标产物;
当n=0时,步骤(4)之后进行以下步骤:
(5)以步骤(4)所得的目标产物,通过与1,3-磺内酯反应,得到离子型阴极缓冲层分子型材料;
当n=1时,步骤(4)之后进行以下步骤:
(6)以步骤(4)所得的目标产物,通过与溴烃烷反应,得到阴离子为溴离子的目标产物;
(7)以步骤6)所得的阴离子为溴的离子盐,通过与目标阴离子的钠盐进行离子交换,得到含有离子型阴极缓冲层分子型材料。
所述的离子型阴极缓冲层分子型材料的在有机光伏电池器件、电致发光显示、照明或有机场效应晶体管中的应用。
本发明的原理如下:
有机小分子阴极界面材料很难抵御弱极性溶剂的侵蚀,即旋涂活性层时易被部分或完全洗去,在倒置结构的有机光伏电池器件中的应用受到了一定的限制。本发明通过将胺基基团或者氮杂环基团形成离子盐,降低在弱极性溶剂中的溶解度(例如,甲苯、氯苯),以低于弱极性溶剂的侵蚀;同时,引入二苯基磷氧基团,改善材料的醇溶性及溶液加工性能。
与现有技术相比,本发明具有以下优点和有益效果:
(1)本发明的离子型阴极缓冲层分子型材料可以降低在弱极性溶剂中的溶解度(例如,甲苯、氯苯),抵御弱极性溶剂的侵蚀,可抵御弱极性溶剂的腐蚀。
(2)本发明的离子型阴极缓冲层分子型材料,具有较好的醇溶性及溶液加 工性能。
(3)本发明的离子型阴极缓冲层分子型材料,具有良好的薄膜形貌稳定性。
附图说明
图1a和图1b分别为本发明的实施例的离子型阴极缓冲层分子型材料POBiNa-Z和PONaPhen-Br的差示扫描量热曲线。
图2为以石英片为基底的POBiNa-Z薄膜的溶剂洗涤前后的吸收光谱。
图3为阴极分别为ZnO/POBiNa-Z、ZnO/PONaPhen-Br、ZnO的有机光伏电池器件的电流密度-电压曲线。
具体实施方式
下面结合实施例,对本发明作进一步地详细说明,但本发明的实施方式不限于此。
实施例1
本实施例中的离子型阴极缓冲层分子型材料结构式如下:
Figure PCTCN2015098525-appb-000009
本实施例的离子型阴极缓冲层分子型材料的制备过程如下:
步骤一:(2-溴-6-萘基)二苯基膦(1)的制备
Figure PCTCN2015098525-appb-000010
在N2气氛下,将2,6-二溴萘(3g,10.5mmol)溶于干燥的四氢呋喃(200mL)中,冷却到–78℃。通过注射器滴加入正丁基锂(2.4M solution in hexane,4.8mL,11.55mmol)。在N2气氛及该温度下搅拌40分钟,然后氯化二苯基膦(2.3mL,12.6mmol)通过注射器加入。混合液慢慢恢复到室温,在N2气氛下继续搅拌过夜。待反应结束,加入少量乙醇终止反应,减压蒸馏除去四氢呋喃后,用二氯甲烷溶解,加入蒸馏水并用二氯甲烷萃取。有机层用无水硫酸镁干燥,过滤,减压 蒸馏除去溶剂后用硅胶柱分离,洗脱剂为石油醚和二氯甲烷的混合溶剂(4:1v/v),得到白色固体,产率81%(3.3g)。
步骤二,(2-溴-6-萘基)二苯基氧化膦(2)的制备
Figure PCTCN2015098525-appb-000011
向化合物1(2.7g,7.23mmol)的二氯甲烷(30mL)溶液中加入双氧水(30%,10mL)。反应在室温下搅拌过夜。待反应结束,向反应混合物中加入亚硫酸氢钠水溶液以还原过量的双氧水,并用二氯甲烷萃取。有机层用无水硫酸镁干燥,过滤,减压蒸馏除去溶剂后用硅胶柱分离,洗脱剂为二氯甲烷和乙酸乙酯的混合溶剂(4:1v/v),得到白色固体,产率96%(2.7g)。1H NMR(300MHz,DMSO,ppm):δ7.53–7.60(m,4H),7.62–7.77(m,8H),8.03–8.08(m,2H),8.33(s,1H),8.36(d,1H,J=13.86Hz).
步骤三,(2-(4,4,5,5-四甲基-2-1,3,2–二氧杂硼烷基)-6-萘基)二苯基氧化膦(3)的制备
Figure PCTCN2015098525-appb-000012
在N2气氛下,将1,1’-双二苯基膦二茂铁二氯化钯(80mg,0.11mmol)加入到化合物2(1.35g,3.32mmol)、联硼酸频那醇酯(1.26g,4.98mmol)、醋酸钾(977mg,9.95mmol)与N,N-二甲基甲酰胺(30mL)的混合液中。反应加热到80℃并反应2小时。待冷却到室温,向反应混合物中加入二氯甲烷和蒸馏水并分离有机层,再用二氯甲烷萃取水层。合并有机层后,用水洗涤三次,再用无水硫酸镁干燥,过滤,减压蒸馏除去溶剂后用硅胶柱分离,洗脱剂为二氯甲烷和乙酸乙酯的混合溶剂(3:1v/v),得到白色固体,产率83%(1.25g)。1H NMR(300MHz,DMSO,ppm):δ1.34(s,12H),7.53–7.71(m,11H),7.79(d,1H,J=8.2Hz),8.05(d,1H,J=8.4Hz),8.16(d,1H,J=13.7Hz),8.39(s,1H).
步骤四,3-(2-溴-6-萘氧基)-N,N-二甲基-1-丙基胺(4)的制备
Figure PCTCN2015098525-appb-000013
将2-溴-6-萘酚(3g,13.45mmol)、碳酸铯(17.5g,53.8mmol)和乙腈(80mL)的混合液在N2气氛下加热回流反应30分钟后,向反应体系中加入N,N-二甲氨基-3-氯丙烷(盐酸盐)(2.76g,17.48mmol),继续加热回流搅拌24h。待冷却至室温,向反应混合物中加入蒸馏水,并用二氯甲烷萃取。有机层用无水硫酸镁干燥,过滤,减压蒸馏除去溶剂后用硅胶柱分离,洗脱剂为二氯甲烷和乙醇的混合溶剂(20:1v/v),得到白色固体,产率82%(3.4g)。1H NMR(300MHz,DMSO,ppm):δ1.86–1.95(m,2H),2.16(s,6H),2.39(t,2H,J=7.05Hz),4.11(t,2H,J=6.48Hz),7.23(dd,1H,J=8.91,2.54Hz),7.36(s,1H),7.58(dd,1H,J=8.70,2.10Hz),7.83(t,2H,J=9.23Hz),8.11(s,1H).
步骤五,3-(2-(2-(二苯基磷氧基)-6-萘基)-6-萘氧基)-N,N-二甲基-1-丙基胺(5)的制备
Figure PCTCN2015098525-appb-000014
在N2气氛下,将醋酸钯(10mg,0.04mmol)、三环己基膦(25mg,0.09mmol)加入到(2-(4,4,5,5-四甲基-2-1,3,2–二氧杂硼烷基)-6-萘基)二苯基氧化膦(1g,2.20mmol)、化合物4(563mg,1.83mmol)、碳酸钠水溶液(2M,4mL,8mmol)、甲苯(25mL)和乙醇(4mL)的混合液中。反应加热到90℃并搅拌过夜。待冷却到室温,向反应混合物中加入蒸馏水并分离甲苯层,再用二氯甲烷萃取水层。有机层用无水硫酸镁干燥,过滤,减压蒸馏除去溶剂后用硅胶柱分离,洗脱剂为二氯甲烷和乙醇的混合溶剂(20:1v/v),得到白色固体,产率61%(320mg)。1H NMR(400MHz,DMSO,ppm):δ1.94(t,2H,J=6.70Hz),2.20(s,6H),2.45(t,2H,J=7.02Hz),4.15(t,2H,J=6.34Hz),7.23(d,1H,J=8.92Hz),7.38(s,1H),7.56–7.73(m,11H),7.94–7.97(m,3H),8.11(d,1H,J=8.64Hz),8.14–8.19(m,2H),8.33–8.35(m,2H),8.44(s,1H).
步骤六,化合物POBiNa-Z的制备
Figure PCTCN2015098525-appb-000015
向化合物5(550mg,0.99mmol)的甲苯(20ml)溶液中加入1,3-丙烷磺内酯(242mg,1.98mmol),在N2气氛下加热回流搅拌2天。冷却到室温,向反应混合物中加入碳酸氢钠水溶液并充分搅拌,再分离甲苯层,并用二氯甲烷萃取水层。合并有机层后,用水洗涤三次,再用无水硫酸镁干燥,过滤,减压蒸馏除去溶剂后三氧化二铝柱子分离,洗脱剂为二氯甲烷和甲醇的混合溶剂(10:1v/v),最后用正己烷重结晶并过滤得到白色产品,产率30%(200mg)。1H NMR(400MHz,CD3OH,ppm):δ2.27(m,2H),2.37(m,2H),2.90(m,2H),3.17(s,6H),3.61–3,62(m,4H),4.26(m,2H),7.24(d,2H,J=8.72Hz),7.32(s,1H),7.58–7.74(m,11H),7.89(m,3H),8.01(m,2H),8.10(d,2H,J=8.28Hz),8.19–8.23(m,2H),8.28(s,1H).
实施例2
本实施例中的离子型阴极缓冲层分子型材料结构式如下:
Figure PCTCN2015098525-appb-000016
本实施例的离子型阴极缓冲层分子型材料的制备过程如下:
步骤一:(2-溴-6-萘基)二苯基膦(1)的制备
Figure PCTCN2015098525-appb-000017
在N2气氛下,将2,6-二溴萘(3g,10.5mmol)溶于干燥的四氢呋喃(200mL)中,冷却到–78℃。通过注射器滴加入正丁基锂(2.4M solution in hexane,4.8mL,11.55mmol)。在N2气氛及该温度下搅拌40分钟,然后氯化二苯基膦(2.3mL,12.6mmol)通过注射器加入。混合液慢慢恢复到室温,在N2气氛下继续搅拌过夜。 待反应结束,加入少量乙醇终止反应,减压蒸馏除去四氢呋喃后,用二氯甲烷溶解,加入蒸馏水并用二氯甲烷萃取。有机层用无水硫酸镁干燥,过滤,减压蒸馏除去溶剂后用硅胶柱分离,洗脱剂为石油醚和二氯甲烷的混合溶剂(4:1v/v),得到白色固体,产率81%(3.3g)。
步骤二,(2-溴-6-萘基)二苯基氧化膦(2)的制备
Figure PCTCN2015098525-appb-000018
向化合物1(2.7g,7.23mmol)的二氯甲烷(30mL)溶液中加入双氧水(30%,10mL)。反应在室温下搅拌过夜。待反应结束,向反应混合物中加入亚硫酸氢钠水溶液以还原过量的双氧水,并用二氯甲烷萃取。有机层用无水硫酸镁干燥,过滤,减压蒸馏除去溶剂后用硅胶柱分离,洗脱剂为二氯甲烷和乙酸乙酯的混合溶剂(4:1v/v),得到白色固体,产率96%(2.7g)。1H NMR(300MHz,DMSO,ppm):δ7.53–7.60(m,4H),7.62–7.77(m,8H),8.03–8.08(m,2H),8.33(s,1H),8.36(d,1H,J=13.86Hz).
步骤三,(2-(4,4,5,5-四甲基-2-1,3,2–二氧杂硼烷基)-6-萘基)二苯基氧化膦(3)的制备
Figure PCTCN2015098525-appb-000019
在N2气氛下,将1,1’-双二苯基膦二茂铁二氯化钯(80mg,0.11mmol)加入到化合物2(1.35g,3.32mmol)、联硼酸频那醇酯(1.26g,4.98mmol)、醋酸钾(977mg,9.95mmol)与N,N-二甲基甲酰胺(30mL)的混合液中。反应加热到80℃并反应2小时。待冷却到室温,向反应混合物中加入二氯甲烷和蒸馏水并分离有机层,再用二氯甲烷萃取水层。合并有机层后,用水洗涤三次,再用无水硫酸镁干燥,过滤,减压蒸馏除去溶剂后用硅胶柱分离,洗脱剂为二氯甲烷和乙酸乙酯的混合溶剂(3:1v/v),得到白色固体,产率83%(1.25g)。1H NMR(300MHz,DMSO,ppm):δ1.34(s,12H),7.53–7.71(m,11H),7.79(d,1H,J=8.2Hz),8.05(d,1H,J=8.4Hz),8.16(d,1H,J=13.7Hz),8.39(s,1H).
步骤四,(2-(3-1,10-菲啰啉基)-6-萘基)二苯基氧化膦(6)的制备
Figure PCTCN2015098525-appb-000020
在N2气氛下,将醋酸钯(4.5mg,0.02mmol)、三环己基膦(11.2mg,0.04mmol)加入到化合物3(289mg,0.64mmol)、3-溴-1,10-菲啰啉(150mg,0.58mmol)、碳酸钠水溶液(2M,2mL,4mmol)、甲苯(30mL)和乙醇(8mL)的混合液中。反应加热到90℃并搅拌过夜。待冷却到室温,向反应混合物中加入蒸馏水并分离甲苯层,再用二氯甲烷萃取水层。有机层用无水硫酸镁干燥,过滤,减压蒸馏除去溶剂后用硅胶柱分离,洗脱剂为二氯甲烷和乙醇的混合溶剂(20:1v/v),得到白色固体,产率68%(200mg)。1H NMR(300MHz,DMSO,ppm):δ7.56–7.81(m,12H),8.04–8.12(m,2H),8.21–8.31(m,3H),8.44(d,1H,J=13.5Hz),8.53(dd,1H,J=8.1,1.7Hz),8.67(s,1H),8.99(s,1H),9.14(dd,1H,J=4.3,1.7Hz),9.62(s,1H).
步骤五,化合物PONaPhen-Br的制备
Figure PCTCN2015098525-appb-000021
在N2气氛下,将(2-(3-1,10-菲啰啉基)-6-萘基)二苯基氧化膦(100mg,0.20mmol)溶解于1,2-二溴乙烷(5mL)中,在温度110℃下加热回流过夜。待有黄色固体析出,用二氯甲烷重结晶,得到黄色固体,产率66%(90mg)。1H NMR(400MHz,CD3OH):δ10.43(s,1H),10.05(s,1H),9.77(d,1H,J=7.52Hz),9.61(d,1H,J=11.36Hz),8.76–8.84(m,3H),8.67(t,1H,J=9.42Hz),8.30–8.42(m,4H),7.62–7.89(m,11H),5.84(d,4H,J=8.8Hz)ppm.
测试例:
对实施例1~2的离子型阴极缓冲层分子型材料进行醇溶解度测试:
对POBiNa-Z和PONaPhen-Br进行了定量的溶解性实验。在室温下,在甲醇中的溶解度分别为10mg mL-1和4mg mL-1;而在Chem.Asian J.2012,7,2126-2132,Liu et al.中报道的含有线性共轭单元的阴极缓冲层材料2b,加热情况 下,即使在甲醇中的溶解度约为或小于2mg mL-1
对实施例1~2的离子型阴极缓冲层分子型材料进行热学性质测试:
差示扫描量热分析(DSC)是在NETZSCH DSC 204 F1热分析仪测得,升温速率为10℃/min,并以氮气为保护气。
如图1a和图1b,差示扫描量热分析表明,在第一轮、第二轮加热以及降温过程中,POBiNa-Z和PONaPhen-Br均没有出现熔融峰和结晶峰,并表现出明显的玻璃化转变,对应的玻璃化转变温度为分别为145℃和133℃。这表明材料可以形成稳定的无定形态。
对实施例1~2的离子型阴极缓冲层分子型材料进行抵御弱极性溶剂侵蚀能力测试:
首先测试阴极界面材料在弱极性溶剂中的溶解度,POBiNa-Z和PONaPhen-Br均在甲苯、氯苯溶剂中的溶解度均小于0.1mg mL-1(难溶),其中,PONaPhen-Br甚至在氯仿中的溶解度也小于0.1mg mL-1,表明其可很好的抵御溶剂型溶剂的侵蚀。
随后,通过对比紫外-可见吸收光谱来研究阴极界面材料对弱极性溶剂(例如,甲苯、氯苯)的抵御能力。以POBiNa-Z为例,将其氯仿溶液旋涂在石英片上,浓度为10mg mL–1,转速为2000rpm,100℃退火10min,再将甲苯或氯苯溶剂旋涂在该薄膜表面。根据朗伯-比尔定律,
Figure PCTCN2015098525-appb-000022
其中,A表示吸光度,I0为入射光强度,I为通过样品后透射光强度,ε表示摩尔吸光系数,l表示样品厚度,c表示样品浓度,对于同一样品,ε和c均固定不变,因此,薄膜的吸收强度与该薄膜厚度成正比,通过对比旋涂甲苯或氯苯溶剂前后的薄膜吸收强度的变化,判断阴极界面材料抵御溶剂侵蚀的能力。如图2所示,POBiNa-Z可以抵御甲苯、氯苯的侵蚀。
实施例1~2采用溶液加工法的有机光伏电池器件的制备过程与表征结果:
选用POBiNa-Z和PONaPhen-Br作为阴极界面材料,采用PTB7:PC71BM作为活性层材料,具体制备过程如下:
首先将电阻为15Ωsquare–1的氧化铟锡(ITO)导电玻璃片依次经去离子水、丙酮、洗涤剂、去离子水和异丙醇通过超声清洗,每步各20min。在烘箱中烘干后,在ITO玻璃片上,旋涂ZnO(溶胶-凝胶法),厚度30–40nm,转速为4000rpm,200℃退火1h。然后,在ZnO表面旋涂POBiNa-Z和PONaPhen-Br的甲 醇溶液,浓度为0.75mg mL–1,转速为2000rpm,100℃退火10min。将PTB7:PC71BM的氯苯溶液旋涂在阴极界面层上,厚度约为100nm(浓度为10:15mg mL–1,转速为1500rpm,时间为30s),在真空下抽4h。在<5×10-4Pa的真空下,将蒸镀MoO3(蒸镀速率为
Figure PCTCN2015098525-appb-000023
),厚度为10nm。最后,在<5×10-4Pa的真空下,蒸镀金属Al。PTB7:PC71BM器件的有效发光面积为0.16cm2。除ZnO薄膜的制备过程是在大气环境中完成的,其余所有环节均在氮气气氛的手套箱内完成。
采用仅含有ZnO的器件作为对比器件,具体器件结构如下:
器件I:ITO/ZnO/POBiNa-Z/PTB7:PC71BM/MoO3/Al
器件II:ITO/ZnO/PONaPhen-Br/PTB7:PC71BM/MoO3/Al
器件III:ITO/ZnO/PTB7:PC71BM/MoO3/Al
如表1及图3所示,以溶液加工法制备的有机光伏电池器件,采用POBiNa-Z和PONaPhen-Br后,能量转化效率明显提高。例如,在有机光伏电池器件中,能量转化效率分别为7.54%和7.59%,相比于纯ZnO器件,提高了4%,电流密度和填充因子均有所提高,表明该阴极缓冲层材料能修饰阴极,有利于电子抽取,改善器件性能。
表1:阴极分别为ZnO/POBiNa-Z、ZnO的有机光伏电池器件的初步表征结果
Figure PCTCN2015098525-appb-000024
[a]光强:100mW cm-2
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受所述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (7)

  1. 离子型阴极缓冲层分子型材料,其特征在于,具有如下化学结构式:
    Figure PCTCN2015098525-appb-100001
    其中,R1,R2为芳基或稠环芳基,m=0~17,当n=0时,R3、R4为碳数为1–18的烷基链,R5为与铵根离子直接相连的含烷基链的反离子,当n=1时,R3、R4、R5为碳数为1~18的烷基链,X是阴离子;
    或者,离子型阴极缓冲层分子型材料具有如下化学结构式:
    Figure PCTCN2015098525-appb-100002
    其中,R1为芳基或稠环芳基;R2为氮杂环,并已形成离子盐;当n=0时,氮杂环通过烷基链与反离子直接相连,当n=1时,氮杂环上连接碳数为1~18的烷基链,X是阴离子,r=1~2。
  2. 根据权利要求1所述的离子型阴极缓冲层分子型材料,其特征在于,所述R1为如下结构单元的任一种:
    Figure PCTCN2015098525-appb-100003
    其中,R6,R7从碳数为1–18的烷基链或烷氧基链中选择或为如下结构单元的任一种:
    Figure PCTCN2015098525-appb-100004
    其中,R8,R9为碳数为1~18的烷基链。
  3. 根据权利要求1所述的离子型阴极缓冲层分子型材料,其特征在于,所 述R2为如下结构单元的任一种:
    Figure PCTCN2015098525-appb-100005
  4. 根据权利要求1所述的离子型阴极缓冲层分子型材料,其特征在于,当n=0时,R3、R4为碳数为1~18的烷基链,所述R5为如下结构单元的任一种:
    Figure PCTCN2015098525-appb-100006
  5. 根据权利要求1所述的离子型阴极缓冲层分子型材料,其特征在于,当n=1时,所述X具有如下结构单元中的一种:
    Figure PCTCN2015098525-appb-100007
  6. 权利要求1所述的离子型阴极缓冲层分子型材料的制备方法,其特征在于,包括以下步骤:
    (1)以氯化二苯基膦作为反应原料,通过正丁基锂低温反应引入到基团R1上,再通过双氧水氧化得到含溴的已氧化的目标产物,其中,对于R6,R7,可通过甲烷磺酸对芴酮进行催化引入芳基、稠环芳基,或通过氢氧化钾对芴进行催化引入碳数为1~18的烷基链或烷氧基链;
    (2)以步骤(1)所得的含溴的已氧化的目标产物,通过钯催化剂的作用,与联硼酸频那醇酯反应,得到含硼酸酯的目标产物;
    (3)基团R2作为反应原料,通过与含叔胺的且一端带氯的烷基链反应,得到含胺基的目标产物;
    或者,基团R2先通过碳酸钾与两端带溴的烷基链反应,得到烷基链一端带溴的目标产物,再通过碳酸钾与含有仲胺的烷基链反应得到目标产物;
    (4)以步骤(2)所得的含硼酸酯的目标产物与步骤(3)所得的目标产物,通过钯催化偶联反应,得到同时含有磷氧基团及胺基的目标产物;
    或者,以步骤(2)所得的含硼酸酯的目标产物与含溴的氮杂环反应,得到中性的目标产物;
    当n=0时,步骤(4)之后进行以下步骤:
    (5)以步骤(4)所得的目标产物,通过与1,3-磺内酯反应,得到离子型阴极缓冲层分子型材料;
    当n=1时,步骤(4)之后进行以下步骤:
    (6)以步骤(4)所得的目标产物,通过与溴烃烷反应,得到阴离子为溴离子的目标产物;
    (7)以步骤6)所得的阴离子为溴的离子盐,通过与目标阴离子的钠盐进行离子交换,得到含有离子型阴极缓冲层分子型材料。
  7. 权利要求1~5任一项所述的离子型阴极缓冲层分子型材料的在有机光伏电池器件、电致发光显示、照明或有机场效应晶体管中的应用。
PCT/CN2015/098525 2015-03-24 2015-12-23 离子型阴极缓冲层分子型材料及其制备方法和应用 WO2016150215A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510131928.8 2015-03-24
CN201510131928.8A CN104860991B (zh) 2015-03-24 2015-03-24 离子型阴极缓冲层分子型材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2016150215A1 true WO2016150215A1 (zh) 2016-09-29

Family

ID=53907218

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098525 WO2016150215A1 (zh) 2015-03-24 2015-12-23 离子型阴极缓冲层分子型材料及其制备方法和应用

Country Status (2)

Country Link
CN (1) CN104860991B (zh)
WO (1) WO2016150215A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104860991B (zh) * 2015-03-24 2017-10-20 华南理工大学 离子型阴极缓冲层分子型材料及其制备方法和应用
CN109148729A (zh) * 2018-09-03 2019-01-04 中国工程物理研究院流体物理研究所 一种光电器件阴极界面层及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010985A2 (en) * 2006-07-20 2008-01-24 Merck & Co., Inc. Phosphorus derivatives as histone deacetylase inhibitors
CN103374040A (zh) * 2013-07-02 2013-10-30 华南理工大学 一类含有三芳基磷氧及氮杂环功能基团的醇溶性阴极缓冲层分子型材料及其合成方法与应用
US20140077190A1 (en) * 2012-09-14 2014-03-20 Industry-Academic Cooperation Foundation Gyeongsang National University Phosphine oxide-based compound and organic light-emitting device including the same
CN104031087A (zh) * 2014-05-27 2014-09-10 华南理工大学 一种醇溶性阴极缓冲层有机分子材料及其制备方法和应用
CN104860991A (zh) * 2015-03-24 2015-08-26 华南理工大学 离子型阴极缓冲层分子型材料及其制备方法和应用

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102976960A (zh) * 2012-11-14 2013-03-20 华南理工大学 含有线性共轭单元的阴极缓冲层分子型材料及其制备方法与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008010985A2 (en) * 2006-07-20 2008-01-24 Merck & Co., Inc. Phosphorus derivatives as histone deacetylase inhibitors
US20140077190A1 (en) * 2012-09-14 2014-03-20 Industry-Academic Cooperation Foundation Gyeongsang National University Phosphine oxide-based compound and organic light-emitting device including the same
CN103374040A (zh) * 2013-07-02 2013-10-30 华南理工大学 一类含有三芳基磷氧及氮杂环功能基团的醇溶性阴极缓冲层分子型材料及其合成方法与应用
CN104031087A (zh) * 2014-05-27 2014-09-10 华南理工大学 一种醇溶性阴极缓冲层有机分子材料及其制备方法和应用
CN104860991A (zh) * 2015-03-24 2015-08-26 华南理工大学 离子型阴极缓冲层分子型材料及其制备方法和应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
G. LIU: "Synthesis And Characterization of Alcohol-Soluble Electron Injection/Transport Molecular Materials", A DISSERTATION SUBMITTED FOR THE DEGREE OF DOCTOR OF PHILOSOPHY OF SOUTH CHINA UNIVERSITY OF TECHNOLOGY, 31 December 2011 (2011-12-31), pages 24 *

Also Published As

Publication number Publication date
CN104860991A (zh) 2015-08-26
CN104860991B (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
Wang et al. Small molecule acceptors with a ladder-like core for high-performance organic solar cells with low non-radiative energy losses
CN103374040B (zh) 一类含有三芳基磷氧及氮杂环功能基团的醇溶性阴极缓冲层分子型材料及其合成方法与应用
TWI425076B (zh) 咔唑衍生物及包含此衍生物之有機發光二極體
CN104761547A (zh) 噻吨酮-芳香胺化合物及应用该化合物的有机发光器件
CN112079731A (zh) 一种发光辅助材料及其制备方法和应用
CN105384917A (zh) 侧链含有磺酸或者磺酸盐的共轭聚合物及其制备的平面倒置有机/无机杂化钙钛矿太阳电池
EP2233490A1 (en) Novel boron compound, method for producing the same, and functional electronic device using the same
CN107602574A (zh) 一种以氰基苯为核心的化合物及其应用
Ban et al. Spirobifluorene/sulfone hybrid: highly efficient solution-processable material for UV–violet electrofluorescence, blue and green phosphorescent OLEDs
Huo et al. Comparative studies on OLED performances of chloro and fluoro substituted Zn (II) 8-hydroxyquinolinates
CN104710343B (zh) 一种有机电致发光材料及其制备的器件
WO2016150215A1 (zh) 离子型阴极缓冲层分子型材料及其制备方法和应用
CN106633005B (zh) 含寡聚醚侧链的三苯胺类聚合物及其在溶液法制备有机光电器件中的应用
CN109912564A (zh) 一种以氰基氮杂苯为核心的化合物及其在oled器件上的应用
CN106132923A (zh) 低聚苯胺衍生物、电荷传输性清漆以及有机电致发光元件
WO2021203663A1 (zh) 一类基于菲并咪唑单元的电致发光聚合物及其制备方法与应用
CN104629731B (zh) 有机化合物及其在电致发光器件中的应用
WO2021036158A1 (zh) 一种有机小分子空穴注入/传输材料及其制备方法与应用
CN108084197A (zh) 一种双咔唑类衍生物及其有机发光器件
TWI397516B (zh) 含聯三伸苯基之芳香族化合物及有機發光二極體
CN103288811A (zh) 含二苯并噻吩砜有机半导体材料、其制备方法及有机电致发光器件
CN102532031B (zh) 一种苯并咪唑四苯基二氢蒽类化合物及其应用
CN102653677A (zh) 双极性蓝光主体材料及其制备方法与有机电致发光器件
Jiang et al. Synthesis and characterization of a novel spirocyclic aromatic derivative: unique roles of phenothiazine
CN109438430B (zh) 一种间苯二酚杯芳烃化合物及制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15886137

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 17/01/2018)

122 Ep: pct application non-entry in european phase

Ref document number: 15886137

Country of ref document: EP

Kind code of ref document: A1