WO2016148392A1 - Memory device - Google Patents

Memory device Download PDF

Info

Publication number
WO2016148392A1
WO2016148392A1 PCT/KR2016/001130 KR2016001130W WO2016148392A1 WO 2016148392 A1 WO2016148392 A1 WO 2016148392A1 KR 2016001130 W KR2016001130 W KR 2016001130W WO 2016148392 A1 WO2016148392 A1 WO 2016148392A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
magnetization
free
memory device
free layer
Prior art date
Application number
PCT/KR2016/001130
Other languages
French (fr)
Korean (ko)
Inventor
박재근
이승은
Original Assignee
한양대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150045171A external-priority patent/KR101705125B1/en
Application filed by 한양대학교 산학협력단 filed Critical 한양대학교 산학협력단
Priority to CN201680016516.2A priority Critical patent/CN107735874B/en
Publication of WO2016148392A1 publication Critical patent/WO2016148392A1/en
Priority to US15/707,491 priority patent/US10580964B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/80Constructional details
    • H10N50/85Magnetic active materials

Definitions

  • the present invention relates to a memory device, and more particularly to a magnetic memory device using a magnetic tunnel junction (MTJ).
  • MTJ magnetic tunnel junction
  • next-generation nonvolatile memory devices which consume less power and have higher integration than flash memory devices.
  • Such next-generation nonvolatile memory devices include phase change RAM (PRAM) using a state change of a phase change material such as a chalcogenide alloy, and a magnetic tunnel junction according to the magnetization state of a ferromagnetic material.
  • PRAM phase change RAM
  • MRAM Magnetic RAM
  • Ferroelectric memory using polarization of ferroelectric material
  • ReRAM Resistance change RAM
  • STT-MRAM Spin-Transfer Torque Magnetic Random Access Memory
  • STT-MRAM devices each include a pinned layer and a free layer formed of ferromagnetic material, and a magnetic tunnel junction having a tunnel barrier formed therebetween.
  • the magnetic tunnel junction has a low resistance state because the magnetization directions of the free layer and the pinned layer are the same (i.e., parallel), so that the current flows easily, and when the magnetization directions are different (i.e., anti-parallel), the current decreases. Indicates the resistance state.
  • the magnetization direction should change only in the direction perpendicular to the substrate, so the free layer and the pinned layer should have the vertical magnetization value.
  • STT-MRAM devices can theoretically cycle beyond 10 15 and can switch at as fast as nanoseconds.
  • the vertical magnetization type STT-MRAM device has no scaling limit in theory, and research is being actively conducted as a next-generation memory device that can replace the DRAM device due to the advantage that the current density of the driving current can be lowered as the scaling progresses. Is going on. Meanwhile, an example of the STT-MRAM device is shown in Korean Patent Registration No. 10-1040163.
  • a seed layer is formed below the free layer, a capping layer is formed on the fixed layer, and a synthetic exchange diamagnetic layer and an upper electrode are formed on the capping layer.
  • a silicon oxide film is formed on a silicon substrate, and a seed layer and a magnetic tunnel junction are formed thereon.
  • a selection element such as a transistor may be formed on the silicon substrate, and the silicon oxide film may be formed to cover the selection element.
  • the STT-MRAM device has a stacked structure of a silicon oxide film, a seed layer, a free layer, a tunnel barrier, a pinned layer, a capping layer, a synthetic exchange diamagnetic layer, and an upper electrode on a silicon substrate on which the selection element is formed.
  • the seed layer and the capping layer are formed using tantalum (Ta)
  • the synthetic exchange diamagnetic layer has a structure in which a lower magnetic layer and an upper magnetic layer in which magnetic metals and nonmagnetic metals are alternately stacked, and a nonmagnetic layer are formed therebetween.
  • magnetic tunnel junctions are based on SiO 2 or MgO substrates, and do not have a bottom electrode, or a structure using a Ta / Ru bottom electrode.
  • a capacitor in order to implement an STT-MRAM device, a capacitor must be replaced by a magnetic tunnel junction in a 1T1C structure of a conventional DRAM.
  • a lower electrode must be formed using materials for reducing transistor resistance and preventing metal diffusion.
  • magnetic tunnel junctions fabricated using conventional SiO 2 or MgO substrates are not directly applicable to memory fabrication in consideration of their incorporation into actual cell transistors.
  • the switching energy in order to implement the STT-MRAM device, the switching energy must be low enough to cope with the DRAM, but there is a disadvantage in that the memory manufacturing is difficult due to the high energy for rotating the spin of the free layer.
  • the present invention provides a memory device capable of lowering the switching energy of the free layer.
  • the present invention provides a memory device capable of rapidly changing the magnetization direction of a magnetic tunnel junction, thereby increasing the operation speed.
  • the present invention provides a memory device capable of improving the crystallinity of a magnetic tunnel junction and thereby rapidly changing the magnetization direction.
  • a memory device includes a magnetic tunnel junction including a free layer, a tunnel barrier, and a pinned layer, wherein the free layer is formed of at least two layers having magnetizations in different directions.
  • the free layer has a vertical magnetization adjacent to the pinned layer.
  • the free layer includes a first magnetization layer having a horizontal magnetization, a separation layer having no magnetization, and a second magnetization layer having a vertical magnetization.
  • the first and second free layers are formed with different thicknesses using the same material.
  • the first and second free layers are formed of a material including CoFeB, and the first free layer is formed thicker than the second free layer.
  • the first free layer is formed to a thickness of 1 nm to 4 nm, and the second free layer is formed to a thickness of 0.8 nm to 1.2 nm.
  • the separation layer is formed to a thickness of 0.4nm to 2nm using a material of the bcc structure.
  • the lower electrode further comprises a lower electrode, a buffer layer, and a seed layer formed below the free layer.
  • the lower electrode is made of a polycrystalline conductive material.
  • the capping layer is formed of a material of a bcc structure.
  • the synthetic exchange diamagnetic layer is formed of a material containing Pt.
  • the embodiment of the present invention can be applied to an actual memory process using 1T1M (1 transistor and 1 MTJ), which is a basic structure of STT-MRAM, using a lower electrode using a polycrystalline conductive material.
  • 1T1M (1 transistor and 1 MTJ)
  • a seed layer of polycrystal on the lower electrode, an amorphous magnetic tunnel junction formed thereon is formed along the crystal structure of the seed layer, and then has a more improved crystal structure by heat treatment. Therefore, the change in the magnetization direction of the magnetic tunnel junction can be made drastically, and the operation speed can be increased.
  • the spin direction of the second free layer of vertical magnetization passes through the horizontal direction by forming the free layer in a laminated structure of a first free layer having horizontal magnetization, a separation layer having no magnetization, and a second free layer having vertical magnetization.
  • the magnetic resonance with the first free layer of the horizontal magnetization when changed in the opposite vertical direction can lower the switching energy of the free layer while maintaining the magnetization characteristics and the magnetoresistance ratio of the magnetic tunnel junction.
  • FIG. 1 is a cross-sectional view of a memory device according to an exemplary embodiment of the present invention.
  • 6 and 7 illustrate switching current characteristics of a memory device according to the related art and the present invention.
  • FIG. 8 is a diagram illustrating magnetoresistance ratios of memory devices according to the related art and the present invention.
  • FIG. 1 is a cross-sectional view of a memory device according to an exemplary embodiment of the present invention, and a cross-sectional view of an STT-MRAM device.
  • a memory device may include a lower electrode 110, a first buffer layer 120, a seed layer 130, a free layer 140, and a tunnel formed on a substrate 100.
  • the barrier 150 includes a pinned layer 160, a capping layer 170, a second buffer layer 180, a synthetic exchange diamagnetic layer 190, and an upper electrode 200.
  • the free layer 140, the tunnel barrier 150, and the pinned layer 160 form a magnetic tunnel junction.
  • the free layer 140 has a stacked structure of the first free layer 141, the separation layer 142, and the second free layer 143, and the first and second free layers 141 and 143 are different from each other. Has magnetization in the direction.
  • the substrate 100 may use a semiconductor substrate.
  • the substrate 100 may use a silicon substrate, a gallium arsenide substrate, a silicon germanium substrate, a silicon oxide substrate, or the like.
  • a silicon substrate is used.
  • a selection device including a transistor may be formed on the substrate 100.
  • An insulating layer 105 may be formed on the substrate 100. That is, the insulating layer 105 may be formed to cover a predetermined structure such as a selection device, and a contact hole exposing at least a portion of the selection device may be formed in the insulating layer 105.
  • the insulating layer 105 may be formed using an amorphous silicon oxide film (SiO 2 ) or the like.
  • the lower electrode 110 is formed on the insulating layer 105.
  • the lower electrode 110 may be formed using a conductive material such as metal or metal nitride.
  • the lower electrode 110 of the present invention may be formed of at least one layer.
  • the lower electrode 110 may be formed on the insulating layer 105, or may be formed inside the insulating layer 105.
  • the lower electrode 110 may be formed in or on the insulating layer 105 to be connected to the selection element formed on the substrate 100.
  • the lower electrode 110 may be formed of a polycrystal material. That is, the lower electrode 110 may be formed of a conductive material having a bcc structure.
  • the lower electrode 110 may be formed of a metal nitride such as titanium nitride (TiN).
  • TiN titanium nitride
  • the lower electrode 110 may be formed of at least two layers including titanium nitride.
  • the lower electrode 110 may be formed of a stacked structure of a metal nitride such as titanium nitride and a metal such as tungsten (W). That is, when the lower electrode 110 is formed in a double structure, tungsten may be formed on the insulating layer 105, and titanium nitride may be formed on tungsten.
  • the first buffer layer 120 is formed on the lower electrode 110.
  • the first buffer layer 120 is provided to solve the lattice constant mismatch between the lower electrode 110 and the seed layer 130.
  • the first buffer layer 120 is made of a material having excellent conformity with the lower electrode 110.
  • the first buffer layer 120 may be formed using tantalum (Ta) having excellent lattice matching with TiN.
  • Ta tantalum
  • the amorphous first buffer layer 120 may be grown along the crystal direction of the polycrystalline lower electrode 110, and then the crystallinity is improved by heat treatment.
  • the first buffer layer 120 may be formed to have a thickness of, for example, 2 nm to 10 nm, preferably 5 nm.
  • the seed layer 130 is formed on the first buffer layer 120.
  • the seed layer 130 may be formed of a polycrystalline material, for example, a conductive material having a bcc structure.
  • the seed layer 130 may be formed of tungsten (W).
  • W tungsten
  • the seed layer 130 may be formed of a material having a bcc structure to improve crystallinity of the magnetic tunnel junction including the free layer 140, the tunnel barrier 150, and the pinned layer 160 formed thereon. That is, when the seed layer 130 is formed in the bcc structure, an amorphous magnetic tunnel junction formed on the top thereof is grown along the crystal direction of the seed layer 130, and then heat treated for vertical magnetic anisotropy. This crystallinity can be improved than before.
  • the free layer 140 and the pinned layer 160 may be crystallized to maintain the perpendicular magnetic anisotropy of the magnetic tunnel junction. That is, in the conventional case in which an amorphous seed layer and an amorphous magnetic tunnel junction are formed on an amorphous insulating layer, the crystallinity of the magnetic tunnel junction does not improve even if heat treatment is performed.
  • the seed layer 130 may be formed to have a thickness of, for example, 1 nm to 3 nm.
  • the free layer 140 is formed on the seed layer 130 and is formed of a ferromagnetic material.
  • the free layer 140 may be changed from one direction to another direction in which magnetization is not fixed in one direction. That is, the free layer 140 may have the same magnetization direction as that of the pinned layer 160 (ie, parallel), or may be opposite (ie, anti-parallel).
  • the magnetic tunnel junction may be used as a memory device by mapping information of '0' or '1' to resistance values that vary depending on the magnetization arrangement of the free layer 140 and the pinned layer 160. For example, when the magnetization direction of the free layer 140 is parallel to the pinned layer 160, the resistance value of the magnetic tunnel junction becomes small, and this case may be defined as data '0'.
  • the free layer 140 is formed in a stacked structure of the first free layer 141, the separation layer 142, and the second free layer 143.
  • the first and second free layers 141 and 143 may have magnetizations in different directions, and the separation layer 142 does not have magnetization.
  • the first free layer 141 may have a horizontal magnetization and the second free layer 143 may have a vertical magnetization.
  • the first free layer 141 may be magnetized horizontally, the separation layer 142 may not be magnetized, and the second free layer 143 may be magnetized vertically.
  • the first free layer 141 has a thickness of 1 nm to 4 nm when using the following CoFeB to have a horizontal magnetization, 0.8 nm when using a CoFeB to have a vertical magnetization of the second free layer 143 It can be formed in thickness of -1.2 nm.
  • the first and second free layers 141 and 143 may be formed of different materials or have different processes in order to have magnetization in different directions.
  • the separation layer 142 may form a material having a bcc structure with a thickness of 0.4 nm to 2 nm.
  • the separation layer 142 may be formed of a material of a bcc structure to form the tunnel barrier 150 in a bcc structure, for example, may be formed of W.
  • the first free layer 141 having horizontal magnetization and the second free layer 143 having vertical magnetization are formed with the separation layer 142 interposed therebetween, so that the magnetism of the first and second free layers 141 and 143 is formed.
  • Resonance can lower the switching energy. That is, when the spin direction of the second free layer 143 of vertical magnetization is changed to the opposite vertical direction through the horizontal direction, the resonance energy of the free layer 140 is changed by the magnetic resonance with the first free layer 141 of the horizontal magnetization. Can be lowered.
  • the first and second free layers 141 and 143 may use various materials in addition to CoFeB.
  • ferromagnetic metal and nonmagnetic metal can be formed by using a ferromagnetic material such as a multilayer thin film, an alloy having an L10 type crystal structure, or a cobalt-based alloy.
  • the full-heussler semimetal-based alloys include CoFeAl, CoFeAlSi and the like, and amorphous rare earth element alloys include alloys such as TbFe, TbCo, TbFeCo, DyTbFeCo, and GdTbCo.
  • amorphous rare earth element alloys include alloys such as TbFe, TbCo, TbFeCo, DyTbFeCo, and GdTbCo.
  • the alloy having a L10 type crystal structure includes Fe 50 Pt 50, Fe 50 Pd 50, Co 50 Pt 50, Fe 30 Ni 20 Pt 50, Co 30 Ni 20 Pt 50, and the like.
  • Cobalt-based alloys include CoCr, CoPt, CoCrPt, CoCrTa, CoCrPtTa and CoCrNb in addition to CoFeB.
  • the CoFeB single layer may have a horizontal magnetization and a vertical magnetization through a thickness change, and may be formed thicker than the multilayer structure of CoFeB and Co / Pt or Co / Pd, thereby increasing the magnetoresistance ratio.
  • CoFeB is easier to etch than a metal such as Pt or Pd
  • a CoFeB single layer is easier to manufacture than a multilayer structure containing Pt or Pd.
  • CoFeB may have horizontal magnetization as well as vertical magnetization by adjusting the thickness. Accordingly, an embodiment of the present invention forms the first and second free layers 141 and 143 using CoFeB monolayers, and CoFeB is formed into an amorphous and then texturized into bcc 100 by heat treatment.
  • the tunnel barrier 150 is formed on the free layer 140 to separate the free layer 140 and the pinned layer 160.
  • Tunnel barrier 150 enables quantum mechanical tunneling between free layer 140 and pinned layer 160.
  • the tunnel barrier 150 may include magnesium oxide (MgO), aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), tantalum oxide (Ta 2 O 5 ), silicon nitride (SiNx), aluminum nitride (AlNx), or the like. It can be formed as.
  • polycrystalline magnesium oxide is used as the tunnel barrier 150. The magnesium oxide is then textured into bcc 100 by heat treatment.
  • the pinned layer 160 is formed on the tunnel barrier 150.
  • the pinned layer 160 is fixed in one direction in a magnetic field within a predetermined range, and may be formed of a ferromagnetic material. For example, magnetization may be fixed in a direction from top to bottom.
  • the pinned layer 160 has, for example, a full-heusler semimetal alloy, an amorphous rare earth element alloy, a multilayer thin film in which magnetic metals and nonmagnetic metals are alternately stacked, or an L10 type crystal structure. It may be formed of a ferromagnetic material such as an alloy.
  • the pinned layer 160 may be formed of the same ferromagnetic material as the free layer 140, and specifically, may be formed of a single CoFeB layer. CoFeB is amorphous and then texturized into BCC 100 by heat treatment.
  • the capping layer 170 is formed on the pinned layer 160 to magnetically separate the pinned layer 160 and the synthetic exchange diamagnetic layer 180 from each other. As the capping layer 170 is formed, the magnetization of the synthetic exchange diamagnetic layer 190 and the pinned layer 160 is generated independently of each other. In addition, the capping layer 170 may be formed in consideration of the magnetoresistance ratio of the free layer 140 and the pinned layer 160 for the operation of the magnetic tunnel junction. The capping layer 170 may be formed of a material that allows the synthetic exchange diamagnetic layer 190 to grow crystals. That is, the capping layer 170 allows the first and second magnetic layers 191 and 193 of the synthetic exchange diamagnetic layer 190 to grow in a desired crystal direction.
  • the capping layer 170 includes tantalum (Ta), ruthenium (Ru), titanium (Ti), palladium (Pd), platinum (Pt), magnesium (Mg), cobalt (Co), aluminum (Al), and tungsten (W). It may include a metal or an alloy thereof selected from the group consisting of. Preferably, the capping layer 170 may be formed of at least one of tantalum (Ta) and tungsten (W).
  • the capping layer 170 may be formed of tantalum (Ta) or tungsten (W), or may be formed in a stacked structure of Ta / W. Meanwhile, the capping layer 170 may be formed to a thickness of 0.3 nm to 0.6 nm, but may be formed to a thickness of 0.4 nm to 0.6 nm when using Ta, and 0.35 nm to 0.55 nm when using W. It can be formed as.
  • the magnetization direction of the pinned layer 160 is fixed only when the first magnetic layer 191 of the pinned layer 160 and the synthetic exchange diamagnetic layer 190 is ferrocoupled, but the capping layer 170 using W is When formed to a thickness of 0.55 nm or more, the magnetization direction of the pinned layer 170 is not fixed due to an increase in the thickness of the capping layer 170, and has the same magnetization direction as that of the free layer 150. This does not happen and does not work with memory.
  • the second buffer layer 180 is formed on the capping layer 170.
  • the second buffer layer 180 is formed to solve the lattice constant mismatch between the capping layer 170 and the synthetic exchange diamagnetic layer 180.
  • the second buffer layer 180 may be formed of the same material as the synthetic exchange diamagnetic layer 180.
  • the second buffer layer 180 may be formed as a single layer in which Co and Pt are stacked.
  • Synthetic exchange diamagnetic layer 190 is formed on second buffer layer 180.
  • the synthetic exchange diamagnetic layer 190 serves to fix the magnetization of the pinned layer 160.
  • the synthetic exchange diamagnetic layer 190 includes a first magnetic layer 191, a nonmagnetic layer 192, and a second magnetic layer 193.
  • the first magnetic layer 191 and the second magnetic layer 193 are antiferromagnetically coupled to each other through the nonmagnetic layer 192. In this case, the magnetization directions of the first magnetic layer 191 and the second magnetic layer 193 are antiparallel to each other.
  • the first magnetic layer 191 may be magnetic in the upper direction (ie, the upper electrode 200 direction), and the second magnetic layer 193 may be magnetized in the lower direction (ie, the magnetic tunnel junction direction).
  • the first magnetic layer 191 and the second magnetic layer 193 may be formed in a structure in which magnetic metals and nonmagnetic metals are alternately stacked.
  • a magnetic metal a single metal or an alloy thereof selected from the group consisting of iron (Fe), cobalt (Co), nickel (Ni), and the like may be used, and chromium (Cr), platinum (Pt), palladium as a nonmagnetic metal may be used.
  • a single metal or alloy thereof selected from the group consisting of (Pd), iridium (Ir), rhodium (Rh), ruthenium (Ru), osmium (Os), rhenium (Re), gold (Au) and copper (Cu) can be used.
  • the first magnetic layer 191 and the second magnetic layer 193 may be formed of [Co / Pd] n, [Co / Pt] n or [CoFe / Pt] n (where n is an integer of 1 or more). Can be.
  • the nonmagnetic layer 192 is formed between the first magnetic layer 191 and the first magnetic layer 193, and is a nonmagnetic material for allowing the first magnetic layer 191 and the second magnetic layer 193 to perform diamagnetic coupling. Is formed.
  • the nonmagnetic layer 192 may be formed of one or an alloy thereof selected from the group consisting of ruthenium (Ru), rhodium (Rh), osmium (Os), rhenium (Re), and chromium (Cr).
  • the upper electrode 200 is formed on the synthetic exchange diamagnetic layer 190.
  • the upper electrode 200 may be formed using a conductive material, and may be formed of metal, metal oxide, metal nitride, or the like.
  • the upper electrode 200 is a single selected from the group consisting of tantalum (Ta), ruthenium (Ru), titanium (Ti), palladium (Pd), platinum (Pt), magnesium (Mg) and aluminum (Al). It may be formed of a metal or an alloy thereof.
  • the memory device forms the lower electrode 110 using a polycrystalline conductive material, for example, TiN, to 1T1M (1 transistor and 1 MTJ), which is a basic structure of the STT-MRAM. It is possible to apply to the actual memory process.
  • a polycrystalline conductive material for example, TiN, to 1T1M (1 transistor and 1 MTJ)
  • the free layer 130 in a laminated structure of the first free layer 141 having horizontal magnetization, the separation layer 142 having no magnetization, and the second free layer 143 having vertical magnetization, When the spin direction of the second free layer 143 changes from the horizontal direction to the opposite vertical direction, the magnetic resonance characteristics of the magnetic tunnel junction and the magneto-resistance ratio of the magnetic tunnel junction are adjusted by magnetic resonance with the first free layer 141. While maintaining the switching energy of the free layer 140 can be lowered.
  • FIGS. 2 to 5 are views illustrating magnetic characteristics of a conventional magnetic tunnel junction and a free layer in which a free layer of a single layer is formed, and FIGS. 4 and 5 illustrate first and second magnetizations having magnetizations in different directions.
  • 2 shows the magnetic tunnel junction of the present invention in which a free layer is formed of a free layer and magnetic properties of the free layer.
  • 3 is an enlarged view of portion A of FIG. 2, and FIG.
  • FIG. 5 is an enlarged view of portion B of FIG. 4.
  • the present invention can be seen that the free layer maintains coercive force and squareness as in the prior art shown in FIGS. 2 and 3.
  • the free layer has only vertical magnetization, but in the case of the present invention, it can be seen that the free layer has not only vertical magnetization but also horizontal magnetization.
  • FIG. 6 and 7 illustrate switching current characteristics of the present invention in which the free layer is formed of the first and second free layers having different magnetization directions from those of the conventional single layer free layer. That is, the switching current when the free layer is changed from the parallel to the fixed layer to the antiparallel state by applying a pulse of 10 ns is shown in FIG. 6. The switching current when the free layer is changed from the parallel to the fixed layer is antiparallel. 7 is shown. As shown in FIG. 6, the present invention has a switching current of about 60% lower than the conventional state in the antiparallel state, and when the state changes from the parallel state to the antiparallel state as shown in FIG. 7. It has a switching current about 40% lower than conventional.
  • FIG. 8 is a diagram illustrating a magnetoresistance ratio (C) according to a conventional seed layer thickness and a magnetoresistance ratio (D) according to a thickness of a separation layer of the present invention. That is, the seed layer was formed on the TiN lower electrode, and the magnetic resistance ratio was measured by forming a magnetic tunnel junction in which a CoFeB free layer, an MgO tunnel barrier, and a CoFeB fixed layer were stacked. In this case, in the conventional case, a free layer was formed as a single layer, and in the present invention, a separation layer having a bcc structure was formed between two free layers having horizontal magnetization and vertical magnetization.
  • C magnetoresistance ratio
  • D magnetoresistance ratio
  • the magnetoresistance ratio was measured by changing the thickness of the seed layer
  • the present invention measured the magnetoresistance ratio by changing the thickness of the separation layer.
  • graph C As the thickness of the seed layer increases, the magnetoresistance ratio decreases, and it can be seen that it has a maximum value of about 147%.
  • graph D As the thickness of the separation layer increases, the magnetoresistance ratio increases, and it can be seen that it has a maximum value of about 150%. Therefore, even when two free layers are formed, the magnetoresistance ratio can be maintained similarly to the case of forming a single free layer.

Abstract

Disclosed is a memory device having a magnetic tunnel junction comprising a free layer, a tunnel barrier and a pinned layer, wherein the free layer comprises at least two layers having magnetism of mutually different directions.

Description

메모리 소자Memory elements
본 발명은 메모리 소자에 관한 것으로, 특히 자기 터널 접합(Magnetic Tunnel Junction; MTJ)을 이용하는 자기 메모리 소자에 관한 것이다.The present invention relates to a memory device, and more particularly to a magnetic memory device using a magnetic tunnel junction (MTJ).
플래쉬 메모리 소자에 비해 소비 전력이 적고 집적도가 높은 차세대 비휘발성 메모리 소자에 대한 연구가 진행되고 있다. 이러한 차세대 비휘발성 메모리 소자로는 칼코게나이드 합금(chalcogenide alloy)과 같은 상변화 물질의 상태 변화를 이용하는 상변화 메모리(Phase change RAM; PRAM), 강자성체의 자화 상태에 따른 자기 터널 접합(Magnetic Tunnel Junction; MTJ)의 저항 변화를 이용하는 자기 메모리(Magnetic RAM; MRAM), 강유전체 물질의 분극 현상을 이용하는 강유전체 메모리(Ferroelectric RAM), 가변 저항 물질의 저항 변화를 이용하는 저항 변화 메모리(Resistance change RAM; ReRAM) 등이 있다.Research into next-generation nonvolatile memory devices, which consume less power and have higher integration than flash memory devices, is being conducted. Such next-generation nonvolatile memory devices include phase change RAM (PRAM) using a state change of a phase change material such as a chalcogenide alloy, and a magnetic tunnel junction according to the magnetization state of a ferromagnetic material. Magnetic RAM (MRAM) using resistance change of MTJ, Ferroelectric memory using polarization of ferroelectric material, Resistance change RAM (ReRAM) using resistance change of variable resistance material, etc. There is this.
자기 메모리로서 전자 주입에 의한 스핀 전달 토크(Spin-Transfer Torque; STT) 현상을 이용하여 자화를 반전시키고, 자화 반전 전후의 저항차를 판별하는 STT-MRAM(Spin-Transfer Torque Magnetic Random Access Memory) 소자가 있다. STT-MRAM 소자는 각각 강자성체로 형성된 고정층(pinned layer) 및 자유층(free layer)과, 이들 사이에 터널 배리어(tunnel barrier)가 형성된 자기 터널 접합을 포함한다. 자기 터널 접합은 자유층과 고정층의 자화 방향이 동일(즉 평행(parallel))하면 전류 흐름이 용이하여 저저항 상태를 갖고, 자화 방향이 다르면(즉 반평행(anti parallel)) 전류가 감소하여 고저항 상태를 나타낸다. 또한, 자기 터널 접합은 자화 방향이 기판에 수직 방향으로만 변화하여야 하기 때문에 자유층 및 고정층이 수직 자화값을 가져야 한다. 자기장의 세기 및 방향에 따라 수직 자화값이 0을 기준으로 대칭이 되고 스퀘어니스(squareness; S)의 모양이 뚜렷이 나오게 되면(S=1) 수직 자기 이방성(perpendicular magnetic anisotropy; PMA)이 우수하다고 할 수 있다. 이러한 STT-MRAM 소자는 이론적으로 1015 이상의 사이클링(cycling)이 가능하고, 나노초(ns) 정도의 빠른 속도로 스위칭이 가능하다. 특히, 수직 자화형 STT-MRAM 소자는 이론상 스케일링 한계(Scaling Limit)가 없고, 스케일링이 진행될수록 구동 전류의 전류 밀도를 낮출 수 있다는 장점으로 인해 DRAM 소자를 대체할 수 있는 차세대 메모리 소자로 연구가 활발하게 진행되고 있다. 한편, STT-MRAM 소자의 예가 한국등록특허 제10-1040163호에 제시되어 있다.Spin-Transfer Torque Magnetic Random Access Memory (STT-MRAM) device that inverts magnetization by using spin-transfer torque (STT) phenomenon due to electron injection and determines resistance difference before and after magnetization reversal as magnetic memory. There is. STT-MRAM devices each include a pinned layer and a free layer formed of ferromagnetic material, and a magnetic tunnel junction having a tunnel barrier formed therebetween. The magnetic tunnel junction has a low resistance state because the magnetization directions of the free layer and the pinned layer are the same (i.e., parallel), so that the current flows easily, and when the magnetization directions are different (i.e., anti-parallel), the current decreases. Indicates the resistance state. In addition, in the magnetic tunnel junction, the magnetization direction should change only in the direction perpendicular to the substrate, so the free layer and the pinned layer should have the vertical magnetization value. Perpendicular magnetic anisotropy (PMA) is excellent when the vertical magnetization value is symmetric with respect to zero and the shape of squareness (S) becomes clear according to the strength and direction of the magnetic field (S = 1). Can be. Such STT-MRAM devices can theoretically cycle beyond 10 15 and can switch at as fast as nanoseconds. In particular, the vertical magnetization type STT-MRAM device has no scaling limit in theory, and research is being actively conducted as a next-generation memory device that can replace the DRAM device due to the advantage that the current density of the driving current can be lowered as the scaling progresses. Is going on. Meanwhile, an example of the STT-MRAM device is shown in Korean Patent Registration No. 10-1040163.
또한, STT-MRAM 소자는 자유층 하부에 시드층이 형성되고, 고정층 상부에 캐핑층이 형성되며, 캐핑층 상부에 합성 교환 반자성층 및 상부 전극이 형성된다. 그리고, STT-MRAM 소자는 실리콘 기판 상에 실리콘 산화막이 형성된 후 그 상부에 시드층 및 자기 터널 접합이 형성된다. 또한, 실리콘 기판 상에는 트랜지스터 등의 선택 소자가 형성될 수 있고, 실리콘 산화막은 선택 소자를 덮도록 형성될 수 있다. 따라서, STT-MRAM 소자는 선택 소자가 형성된 실리콘 기판 상에 실리콘 산화막, 시드층, 자유층, 터널 배리어, 고정층, 캐핑층, 합성 교환 반자성층 및 상부 전극의 적층 구조를 갖는다. 여기서, 시드층 및 캐핑층은 탄탈륨(Ta)를 이용하여 형성하고, 합성 교환 반자성층은 자성 금속과 비자성 금속이 교대로 적층된 하부 자성층 및 상부 자성층과, 이들 사이에 비자성층이 형성된 구조를 갖는다.In the STT-MRAM device, a seed layer is formed below the free layer, a capping layer is formed on the fixed layer, and a synthetic exchange diamagnetic layer and an upper electrode are formed on the capping layer. In the STT-MRAM device, a silicon oxide film is formed on a silicon substrate, and a seed layer and a magnetic tunnel junction are formed thereon. In addition, a selection element such as a transistor may be formed on the silicon substrate, and the silicon oxide film may be formed to cover the selection element. Therefore, the STT-MRAM device has a stacked structure of a silicon oxide film, a seed layer, a free layer, a tunnel barrier, a pinned layer, a capping layer, a synthetic exchange diamagnetic layer, and an upper electrode on a silicon substrate on which the selection element is formed. Here, the seed layer and the capping layer are formed using tantalum (Ta), and the synthetic exchange diamagnetic layer has a structure in which a lower magnetic layer and an upper magnetic layer in which magnetic metals and nonmagnetic metals are alternately stacked, and a nonmagnetic layer are formed therebetween. Have
그런데, 현재 보고되는 자기 터널 접합은 SiO2 또는 MgO 기판을 기반으로, 하부 전극이 없거나, Ta/Ru 하부 전극을 이용한 구조가 주를 이룬다. 그런데, STT-MRAM 소자를 구현하기 위해 기존 DRAM의 1T1C 구조에서 캐패시터를 자기 터널 접합으로 대체해야 하며, 이때 트랜지스터의 저항 감소와 금속의 확산 방지를 위한 재료를 이용하여 하부 전극을 형성해야 한다. 그러나, 기존의 SiO2 또는 MgO 기판을 이용하여 제조한 자기 터널 접합의 경우 실제 셀 트랜지스터와의 접목을 고려할 때 메모리 제조에 바로 적용이 불가능하다.However, currently reported magnetic tunnel junctions are based on SiO 2 or MgO substrates, and do not have a bottom electrode, or a structure using a Ta / Ru bottom electrode. However, in order to implement an STT-MRAM device, a capacitor must be replaced by a magnetic tunnel junction in a 1T1C structure of a conventional DRAM. In this case, a lower electrode must be formed using materials for reducing transistor resistance and preventing metal diffusion. However, magnetic tunnel junctions fabricated using conventional SiO 2 or MgO substrates are not directly applicable to memory fabrication in consideration of their incorporation into actual cell transistors.
또한, STT-MRAM 소자를 구현하기 위해서는 DRAM을 대처할 만큼 스위칭 에너지가 낮아야하지만, 자유층의 스핀을 회전시키는 에너지가 높은 단점이 있어 메모리 제조에 어려움이 있다.In addition, in order to implement the STT-MRAM device, the switching energy must be low enough to cope with the DRAM, but there is a disadvantage in that the memory manufacturing is difficult due to the high energy for rotating the spin of the free layer.
(선행기술문헌)(Prior art document)
한국등록특허 제10-1040163호 Korea Patent Registration No. 10-1040163
본 발명은 자유층의 스위칭 에너지를 낮출 수 있는 메모리 소자를 제공한다.The present invention provides a memory device capable of lowering the switching energy of the free layer.
본 발명은 자기 터널 접합의 자화 방향의 변화를 급격하게 할 수 있어 동작 속도를 빠르게 할 수 있는 메모리 소자를 제공한다.The present invention provides a memory device capable of rapidly changing the magnetization direction of a magnetic tunnel junction, thereby increasing the operation speed.
본 발명은 자기 터널 접합의 결정성을 향상시킬 수 있고, 그에 따라 자화 방향의 변화를 급격하게 할 수 있는 메모리 소자를 제공한다.The present invention provides a memory device capable of improving the crystallinity of a magnetic tunnel junction and thereby rapidly changing the magnetization direction.
본 발명의 일 양태에 따른 메모리 소자는 자유층, 터널 배리어 및 고정층을 포함하는 자기 터널 접합을 포함하고, 상기 자유층이 서로 다른 방향의 자화를 갖는 적어도 두층으로 형성된다.A memory device according to an aspect of the present invention includes a magnetic tunnel junction including a free layer, a tunnel barrier, and a pinned layer, wherein the free layer is formed of at least two layers having magnetizations in different directions.
상기 자유층은 상기 고정층에 인접하여 수직 자화를 갖는다.The free layer has a vertical magnetization adjacent to the pinned layer.
상기 자유층은 수평 자화를 갖는 제 1 자화층, 자화를 갖지 않는 분리층 및 수직 자화를 갖는 제 2 자화층을 포함한다.The free layer includes a first magnetization layer having a horizontal magnetization, a separation layer having no magnetization, and a second magnetization layer having a vertical magnetization.
상기 제 1 및 제 2 자유층은 동일 물질을 이용하여 서로 다른 두께로 형성된다.The first and second free layers are formed with different thicknesses using the same material.
상기 제 1 및 제 2 자유층은 CoFeB를 포함하는 물질로 형성되며, 상기 제 1 자유층이 상기 제 2 자유층보다 두껍게 형성된다.The first and second free layers are formed of a material including CoFeB, and the first free layer is formed thicker than the second free layer.
상기 제 1 자유층은 1㎚ 내지 4㎚의 두께로 형성되고, 상기 제 2 자유층은 0.8㎚ 내지 1.2㎚의 두께로 형성된다.The first free layer is formed to a thickness of 1 nm to 4 nm, and the second free layer is formed to a thickness of 0.8 nm to 1.2 nm.
상기 분리층은 bcc 구조의 물질을 이용하여 0.4㎚ 내지 2㎚의 두께로 형성된다.The separation layer is formed to a thickness of 0.4nm to 2nm using a material of the bcc structure.
상기 자유층 하측에 하부로부터 적층 형성된 하부 전극, 버퍼층 및 시드층을 더 포함한다.The lower electrode further comprises a lower electrode, a buffer layer, and a seed layer formed below the free layer.
상기 하부 전극은 다결정의 도전 물질로 형성된다.The lower electrode is made of a polycrystalline conductive material.
상기 고정층 상측에 적층 형성된 캐핑층 및 합성 교환 반자성층을 더 포함한다.It further comprises a capping layer and a synthetic exchange diamagnetic layer laminated on the pinned layer.
상기 캐핑층은 bcc 구조의 물질로 형성된다.The capping layer is formed of a material of a bcc structure.
상기 합성 교환 반자성층은 Pt를 포함하는 물질로 형성된다.The synthetic exchange diamagnetic layer is formed of a material containing Pt.
본 발명의 실시 예는 다결정의 도전 물질을 이용한 하부 전극을 이용하여 STT-MRAM의 기본 구조인 1T1M(1 트랜지스터 및 1 MTJ)로 실제 메모리 공정에 적용이 가능하다. 또한, 하부 전극 상에 다결정의 시드층을 형성함으로써 그 상부에 형성되는 비정질의 자기 터널 접합이 시드층의 결정 구조를 따라 형성되고, 이후 열처리에 의해 종래보다 더욱 향상된 결정 구조를 갖게 된다. 따라서, 자기 터널 접합의 자화 방향의 변화를 급격하게 할 수 있어 동작 속도를 빠르게 할 수 있다. The embodiment of the present invention can be applied to an actual memory process using 1T1M (1 transistor and 1 MTJ), which is a basic structure of STT-MRAM, using a lower electrode using a polycrystalline conductive material. In addition, by forming a seed layer of polycrystal on the lower electrode, an amorphous magnetic tunnel junction formed thereon is formed along the crystal structure of the seed layer, and then has a more improved crystal structure by heat treatment. Therefore, the change in the magnetization direction of the magnetic tunnel junction can be made drastically, and the operation speed can be increased.
그리고, 수평 자화를 갖는 제 1 자유층, 자화를 갖지 않는 분리층 및 수직 자화를 갖는 제 2 자유층의 적층 구조로 자유층을 형성함으로써 수직 자화의 제 2 자유층의 스핀 방향이 수평 방향을 지나 반대 수직 방향으로 변화될 때 수평 자화의 제 1 자유층과 자기 공명을 하도록 하여 자기 터널 접합의 자화 특성과 자기 저항비를 유지하면서 자유층의 스위칭 에너지를 낮출 수 있다.The spin direction of the second free layer of vertical magnetization passes through the horizontal direction by forming the free layer in a laminated structure of a first free layer having horizontal magnetization, a separation layer having no magnetization, and a second free layer having vertical magnetization. The magnetic resonance with the first free layer of the horizontal magnetization when changed in the opposite vertical direction can lower the switching energy of the free layer while maintaining the magnetization characteristics and the magnetoresistance ratio of the magnetic tunnel junction.
도 1은 본 발명의 일 실시 예에 따른 메모리 소자의 단면도.1 is a cross-sectional view of a memory device according to an exemplary embodiment of the present invention.
도 2 및 도 3은 종래에 따른 메모리 소자의 자성 특성을 도시한 도면.2 and 3 illustrate magnetic properties of a conventional memory device.
도 4 및 도 5는 본 발명에 따른 메모리 소자의 자성 특성을 도시한 도면.4 and 5 illustrate magnetic properties of a memory device according to the present invention;
도 6 및 도 7은 종래 및 본 발명에 따른 메모리 소자의 스위칭 전류 특성을 도시한 도면.6 and 7 illustrate switching current characteristics of a memory device according to the related art and the present invention.
도 8은 종래 및 본 발명에 따른 메모리 소자의 자기 저항비를 도시한 도면.8 is a diagram illustrating magnetoresistance ratios of memory devices according to the related art and the present invention.
이하, 첨부된 도면을 참조하여 본 발명의 실시 예를 상세히 설명하기로 한 다. 그러나, 본 발명은 이하에서 개시되는 실시 예에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하며, 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이다.Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various forms, and only the embodiments are intended to complete the disclosure of the present invention and to those skilled in the art. It is provided for complete information.
도 1은 본 발명의 일 실시 예에 따른 메모리 소자의 단면도로서, STT-MRAM 소자의 단면도이다.1 is a cross-sectional view of a memory device according to an exemplary embodiment of the present invention, and a cross-sectional view of an STT-MRAM device.
도 1을 참조하면, 본 발명의 일 실시 예에 따른 메모리 소자는 기판(100) 상에 형성된 하부 전극(110), 제 1 버퍼층(120), 시드층(130), 자유층(140), 터널 배리어(150), 고정층(160), 캐핑층(170), 제 2 버퍼층(180), 합성 교환 반자성층(190) 및 상부 전극(200)을 포함한다. 여기서, 자유층(140), 터널 배리어(150) 및 고정층(160)은 자기 터널 접합을 이룬다. 또한, 자유층(140)은 제 1 자유층(141), 분리층(142) 및 제 2 자유층(143)의 적층 구조를 가지며, 제 1 및 제 2 자유층(141, 143)은 서로 다른 방향의 자화를 갖는다.Referring to FIG. 1, a memory device according to an embodiment of the present disclosure may include a lower electrode 110, a first buffer layer 120, a seed layer 130, a free layer 140, and a tunnel formed on a substrate 100. The barrier 150 includes a pinned layer 160, a capping layer 170, a second buffer layer 180, a synthetic exchange diamagnetic layer 190, and an upper electrode 200. Here, the free layer 140, the tunnel barrier 150, and the pinned layer 160 form a magnetic tunnel junction. In addition, the free layer 140 has a stacked structure of the first free layer 141, the separation layer 142, and the second free layer 143, and the first and second free layers 141 and 143 are different from each other. Has magnetization in the direction.
기판(100)은 반도체 기판을 이용할 수 있다. 예를 들어, 기판(100)은 실리콘 기판, 갈륨 비소 기판, 실리콘 게르마늄 기판, 실리콘 산화막 기판 등을 이용할 수 있는데, 본 실시 예에서는 실리콘 기판을 이용한다. 또한, 기판(100) 상에는 트랜지스터를 포함하는 선택 소자가 형성될 수 있다. 이러한 기판(100) 상에는 절연층(105)이 형성될 수 있다. 즉, 절연층(105)은 선택 소자 등의 소정의 구조물을 덮도록 형성될 수 있고, 절연층(105)에는 선택 소자의 적어도 일부를 노출시키는 콘택홀이 형성될 수 있다. 이러한 절연층(105)은 비정질 구조의 실리콘 산화막(SiO2) 등을 이용하여 형성할 수 있다.The substrate 100 may use a semiconductor substrate. For example, the substrate 100 may use a silicon substrate, a gallium arsenide substrate, a silicon germanium substrate, a silicon oxide substrate, or the like. In this embodiment, a silicon substrate is used. In addition, a selection device including a transistor may be formed on the substrate 100. An insulating layer 105 may be formed on the substrate 100. That is, the insulating layer 105 may be formed to cover a predetermined structure such as a selection device, and a contact hole exposing at least a portion of the selection device may be formed in the insulating layer 105. The insulating layer 105 may be formed using an amorphous silicon oxide film (SiO 2 ) or the like.
하부 전극(110)은 절연층(105) 상에 형성된다. 이러한 하부 전극(110)은 금속, 금속 질화물 등의 도전 물질을 이용하여 형성할 수 있다. 또한, 본 발명의 하부 전극(110)은 적어도 하나의 층으로 형성될 수 있다. 여기서, 하부 전극(110)은 절연층(105) 상에 형성될 수 있고, 절연층(105) 내부에 형성될 수도 있다. 하부 전극(110)이 절연층(105) 내부 또는 상부에 형성되어 기판(100) 상에 형성된 선택 소자와 연결될 수도 있다. 이러한 하부 전극(110)은 다결정(polycrystal)의 물질로 형성될 수 있다. 즉, 하부 전극(110)은 bcc 구조의 도전 물질로 형성될 수 있는데, 예를 들어 티타늄 질화물(TiN) 등의 금속 질화물로 형성될 수 있다. 물론, 하부 전극(110)은 티타늄 질화물을 포함하는 적어도 두층으로 형성될 수 있는데, 예를 들어 텅스텐(W) 등의 금속과 티타늄 질화물 등의 금속 질화물의 적층 구조로 형성될 수 있다. 즉, 하부 전극(110)이 이중 구조로 형성되는 경우 텅스텐이 절연층(105) 상에 형성되고, 티타늄 질화물이 텅스텐 상에 형성될 수 있다.The lower electrode 110 is formed on the insulating layer 105. The lower electrode 110 may be formed using a conductive material such as metal or metal nitride. In addition, the lower electrode 110 of the present invention may be formed of at least one layer. Here, the lower electrode 110 may be formed on the insulating layer 105, or may be formed inside the insulating layer 105. The lower electrode 110 may be formed in or on the insulating layer 105 to be connected to the selection element formed on the substrate 100. The lower electrode 110 may be formed of a polycrystal material. That is, the lower electrode 110 may be formed of a conductive material having a bcc structure. For example, the lower electrode 110 may be formed of a metal nitride such as titanium nitride (TiN). Of course, the lower electrode 110 may be formed of at least two layers including titanium nitride. For example, the lower electrode 110 may be formed of a stacked structure of a metal nitride such as titanium nitride and a metal such as tungsten (W). That is, when the lower electrode 110 is formed in a double structure, tungsten may be formed on the insulating layer 105, and titanium nitride may be formed on tungsten.
제 1 버퍼층(120)은 하부 전극(110) 상에 형성된다. 이러한 제 1 버퍼층(120)은 하부 전극(110)과 시드층(130)의 격자 상수 불일치를 해소하기 위해 마련되며, 이를 위해 제 1 버퍼층(120)은 하부 전극(110)과 정합성이 우수한 물질로 형성할 수 있다. 예를 들어, 하부 전극(110)이 TiN으로 형성되는 경우 제 1 버퍼층(120)은 TiN과 격자 정합성이 우수한 탄탈륨(Ta)을 이용하여 형성할 수 있다. 여기서, Ta는 비정질이지만, 하부 전극(110)이 다결정이기 때문에 비정질의 제 1 버퍼층(120)은 다결정의 하부 전극(110)의 결정 방향을 따라 성장될 수 있고, 이후 열처리에 의해 결정성이 향상될 수 있다. 한편, 제 1 버퍼층(120)은 예를 들어 2㎚∼10㎚의 두께, 바람직하게는 5㎚의 두께로 형성될 수 있다.The first buffer layer 120 is formed on the lower electrode 110. The first buffer layer 120 is provided to solve the lattice constant mismatch between the lower electrode 110 and the seed layer 130. For this purpose, the first buffer layer 120 is made of a material having excellent conformity with the lower electrode 110. Can be formed. For example, when the lower electrode 110 is formed of TiN, the first buffer layer 120 may be formed using tantalum (Ta) having excellent lattice matching with TiN. Here, Ta is amorphous, but since the lower electrode 110 is polycrystalline, the amorphous first buffer layer 120 may be grown along the crystal direction of the polycrystalline lower electrode 110, and then the crystallinity is improved by heat treatment. Can be. Meanwhile, the first buffer layer 120 may be formed to have a thickness of, for example, 2 nm to 10 nm, preferably 5 nm.
시드층(130)은 제 1 버퍼층(120) 상에 형성된다. 시드층(130)은 다결정 물질, 예를 들어 bcc 구조의 도전 물질로 형성될 수 있다. 예를 들어, 시드층(130)은 텅스텐(W)으로 형성될 수 있다. 이렇게 시드층(130)이 bcc 구조의 물질로 형성됨으로써 그 상부에 형성되는 자유층(140), 터널 배리어(150) 및 고정층(160)을 포함하는 자기 터널 접합의 결정성을 향상시킬 수 있다. 즉, 시드층(130)이 bcc 구조로 형성되면 그 상부에 형성되는 비정질의 자기 터널 접합이 시드층(130)의 결정 방향을 따라 성장되고, 이후 수직 자기 이방성을 위해 열처리를 하게 되면 자기 터널 접합이 결정성이 종래보다 향상될 수 있다. 특히, W을 시드층(130)으로 이용하게 되면 400℃ 이상, 예를 들어 400℃∼500℃의 고온 열처리 후에 결정화됨으로써 터널 배리어(150) 안으로의 캐핑층 물질 및 합성 교환 반자성층 물질 등의 확산을 억제하고, 자유층(140) 및 고정층(160)을 결정화시켜 자기 터널 접합의 수직 자기 이방성을 유지할 수 있다. 즉, 비정질의 절연층 상에 비정질의 시드층 및 비정질의 자기 터널 접합이 형성되는 종래의 경우 열처리를 실시하더라도 자기 터널 접합의 결정성이 향상되지 않았다. 그런데, 본 발명에 의해 자기 터널 접합의 결정성이 향상되면 자기장을 인가했을 때 자화가 더 크게 발생되고, 평행 상태에서 자기 터널 접합을 통해 흐르는 전류가 더 많아진다. 따라서, 이러한 자기 터널 접합을 메모리 소자에 적용하면 소자의 동작 속도 및 신뢰성을 향상시킬 수 있다. 한편, 시드층(130)은 예를 들어 1㎚∼3㎚의 두께로 형성될 수 있다.The seed layer 130 is formed on the first buffer layer 120. The seed layer 130 may be formed of a polycrystalline material, for example, a conductive material having a bcc structure. For example, the seed layer 130 may be formed of tungsten (W). As such, the seed layer 130 may be formed of a material having a bcc structure to improve crystallinity of the magnetic tunnel junction including the free layer 140, the tunnel barrier 150, and the pinned layer 160 formed thereon. That is, when the seed layer 130 is formed in the bcc structure, an amorphous magnetic tunnel junction formed on the top thereof is grown along the crystal direction of the seed layer 130, and then heat treated for vertical magnetic anisotropy. This crystallinity can be improved than before. In particular, when W is used as the seed layer 130, crystallization is performed after a high temperature heat treatment of 400 ° C. or higher, for example, 400 ° C. to 500 ° C. to diffuse the capping layer material and the synthetic exchange diamagnetic layer material into the tunnel barrier 150. In addition, the free layer 140 and the pinned layer 160 may be crystallized to maintain the perpendicular magnetic anisotropy of the magnetic tunnel junction. That is, in the conventional case in which an amorphous seed layer and an amorphous magnetic tunnel junction are formed on an amorphous insulating layer, the crystallinity of the magnetic tunnel junction does not improve even if heat treatment is performed. However, according to the present invention, when the crystallinity of the magnetic tunnel junction is improved, the magnetization is larger when the magnetic field is applied, and more current flows through the magnetic tunnel junction in parallel. Therefore, applying the magnetic tunnel junction to the memory device can improve the operation speed and reliability of the device. Meanwhile, the seed layer 130 may be formed to have a thickness of, for example, 1 nm to 3 nm.
자유층(140)은 시드층(130) 상에 형성되고, 강자성체 물질로 형성된다. 이러한 자유층(140)은 자화가 한 방향으로 고정되지 않고 일 방향에서 이와 대향되는 타 방향으로 변화될 수 있다. 즉, 자유층(140)은 고정층(160)과 자화 방향이 동일(즉 평행)할 수 있고, 반대(즉 반평행)일 수도 있다. 자기 터널 접합은 자유층(140)과 고정층(160)의 자화 배열에 따라 변하는 저항값에 '0' 또는 '1'의 정보를 대응시킴으로써 메모리 소자로 활용될 수 있다. 예를 들어, 자유층(140)의 자화 방향이 고정층(160)과 평행일 때, 자기 터널 접합의 저항값은 작아지고, 이 경우를 데이터 '0' 이라 규정할 수 있다. 또한, 자유층(140)의 자화 방향이 고정층(160)과 반평행일 때, 자기 터널 접합의 저항값은 커지고, 이 경우를 데이터 '1'이라 규정할 수 있다. 본 발명에 따른 자유층(140)은 제 1 자유층(141), 분리층(142) 및 제 2 자유층(143)의 적층 구조로 형성된다. 여기서, 제 1 및 제 2 자유층(141, 143)은 서로 다른 방향의 자화를 가질 수 있고, 분리층(142)은 자화를 갖지 않는다. 예를 들어, 제 1 자유층(141)은 수평 자화를 갖고, 제 2 자유층(143)은 수직 자화를 가질 수 있다. 즉, 제 1 자유층(141)은 수평으로 자화되고 분리층(142)은 자화되지 않으며 제 2 자유층(143)은 수직으로 자화될 수 있다. 또한, 제 1 자유층(141)이 수평 자화를 갖도록 하기 CoFeB를 이용하는 경우 1㎚∼4㎚의 두께로 형성하고, 제 2 자유층(143)이 수직 자화를 갖도록 하기 위해 CoFeB를 이용하는 경우 0.8㎚∼1.2㎚의 두께로 형성할 수 있다. 물론, 제 1 및 제 2 자유층(141, 143)이 서로 다른 방향의 자화를 갖도록 하기 위해 서로 다른 물질로 형성하거나 공정을 다르게 할 수도 있다. 또한, 분리층(142)은 bcc 구조의 물질을 0.4㎚∼2㎚의 두께로 형성할 수 있다. 분리층(142)은 터널 배리어(150)를 bcc 구조로 형성하기 위해 bcc 구조의 물질로 형성될 수 있으며, 예를 들어 W으로 형성될 수 있다. 이렇게 분리층(142)을 사이에 두고 수평 자화를 갖는 제 1 자유층(141)과 수직 자화를 갖는 제 2 자유층(143)이 형성됨으로써 제 1 및 제 2 자유층(141, 143)의 자기 공명을 통해 스위칭 에너지를 낮출 수 있다. 즉, 수직 자화의 제 2 자유층(143)의 스핀 방향이 수평 방향을 지나 반대 수직 방향으로 변화될 때 수평 자화의 제 1 자유층(141)과 자기 공명을 하여 자유층(140)의 스위칭 에너지를 낮출 수 있다. 한편, 제 1 및 제 2 자유층(141, 143)은 CoFeB 이외에 다양한 물질을 이용할 수 있는데, 예를 들어 풀-호이슬러(Full-Heusler) 반금속 계열의 합금, 비정질계 희토류 원소 합금, 자성 금속(ferromagnetic metal)과 비자성 금속(nonmagnetic matal)이 교대로 적층된 다층 박막, L10형 결정 구조를 갖는 합금 또는 코발트계 합금 등의 강자성체 물질을 이용하여 형성할 수 있다. 풀-호이슬러 반금속 계열의 합금으로는 CoFeAl, CoFeAlSi 등이 있고, 비정질계 희토류 원소 합금으로는 TbFe, TbCo, TbFeCo, DyTbFeCo, GdTbCo 등의 합금이 있다. 또한, 비자성 금속과 자성 금속이 교대로 적층된 다층 박막으로는 Co/Pt, Co/Pd, CoCr/Pt, Co/Ru, Co/Os, Co/Au, Ni/Cu, CoFeAl/Pd, CoFeAl/Pt, CoFeB/Pd, CoFeB/Pt 등이 있다. 그리고, L10형 결정 구조를 갖는 합금으로는 Fe50Pt50, Fe50Pd50, Co50Pt50, Fe30Ni20Pt50, Co30Ni20Pt50 등이 있다. 또한, 코발트계 합금으로는 CoFeB 이외에 CoCr, CoPt, CoCrPt, CoCrTa, CoCrPtTa, CoCrNb 등이 있다. 이러한 물질들 중에서 CoFeB 단일층은 두께 변화를 통해 수평 자화 및 수직 자화를 가질 수 있고, CoFeB와 Co/Pt 또는 Co/Pd의 다층 구조에 비해 두껍게 형성될 수 있어 자기 저항비를 증가시킬 수 있다. 또한, CoFeB는 Pt 또는 Pd 등과 같은 금속보다 식각이 용이하므로 CoFeB 단일층은 Pt 또는 Pd 등이 함유된 다층 구조에 비해 제조 공정이 용이하다. 뿐만 아니라 CoFeB는 두께를 조절함으로써 수직 자화 뿐만 아니라 수평 자화를 가질 수 있다. 따라서, 본 발명의 실시 예는 CoFeB 단일층을 이용하여 제 1 및 제 2 자유층(141, 143)을 형성하며, CoFeB는 비정질로 형성된 후 열처리에 의해 bcc(100)으로 텍스처링(texturing)된다.The free layer 140 is formed on the seed layer 130 and is formed of a ferromagnetic material. The free layer 140 may be changed from one direction to another direction in which magnetization is not fixed in one direction. That is, the free layer 140 may have the same magnetization direction as that of the pinned layer 160 (ie, parallel), or may be opposite (ie, anti-parallel). The magnetic tunnel junction may be used as a memory device by mapping information of '0' or '1' to resistance values that vary depending on the magnetization arrangement of the free layer 140 and the pinned layer 160. For example, when the magnetization direction of the free layer 140 is parallel to the pinned layer 160, the resistance value of the magnetic tunnel junction becomes small, and this case may be defined as data '0'. In addition, when the magnetization direction of the free layer 140 is antiparallel to the pinned layer 160, the resistance value of the magnetic tunnel junction increases, and this case may be defined as data '1'. The free layer 140 according to the present invention is formed in a stacked structure of the first free layer 141, the separation layer 142, and the second free layer 143. Here, the first and second free layers 141 and 143 may have magnetizations in different directions, and the separation layer 142 does not have magnetization. For example, the first free layer 141 may have a horizontal magnetization and the second free layer 143 may have a vertical magnetization. That is, the first free layer 141 may be magnetized horizontally, the separation layer 142 may not be magnetized, and the second free layer 143 may be magnetized vertically. In addition, the first free layer 141 has a thickness of 1 nm to 4 nm when using the following CoFeB to have a horizontal magnetization, 0.8 nm when using a CoFeB to have a vertical magnetization of the second free layer 143 It can be formed in thickness of -1.2 nm. Of course, the first and second free layers 141 and 143 may be formed of different materials or have different processes in order to have magnetization in different directions. In addition, the separation layer 142 may form a material having a bcc structure with a thickness of 0.4 nm to 2 nm. The separation layer 142 may be formed of a material of a bcc structure to form the tunnel barrier 150 in a bcc structure, for example, may be formed of W. As such, the first free layer 141 having horizontal magnetization and the second free layer 143 having vertical magnetization are formed with the separation layer 142 interposed therebetween, so that the magnetism of the first and second free layers 141 and 143 is formed. Resonance can lower the switching energy. That is, when the spin direction of the second free layer 143 of vertical magnetization is changed to the opposite vertical direction through the horizontal direction, the resonance energy of the free layer 140 is changed by the magnetic resonance with the first free layer 141 of the horizontal magnetization. Can be lowered. Meanwhile, the first and second free layers 141 and 143 may use various materials in addition to CoFeB. For example, a full-heusler semimetal alloy, an amorphous rare earth element alloy, and a magnetic metal. (ferromagnetic metal) and nonmagnetic metal (nonmagnetic matal) can be formed by using a ferromagnetic material such as a multilayer thin film, an alloy having an L10 type crystal structure, or a cobalt-based alloy. The full-heussler semimetal-based alloys include CoFeAl, CoFeAlSi and the like, and amorphous rare earth element alloys include alloys such as TbFe, TbCo, TbFeCo, DyTbFeCo, and GdTbCo. In addition, as a multilayer thin film in which a nonmagnetic metal and a magnetic metal are alternately stacked, Co / Pt, Co / Pd, CoCr / Pt, Co / Ru, Co / Os, Co / Au, Ni / Cu, CoFeAl / Pd, CoFeAl / Pt, CoFeB / Pd, CoFeB / Pt, and the like. The alloy having a L10 type crystal structure includes Fe 50 Pt 50, Fe 50 Pd 50, Co 50 Pt 50, Fe 30 Ni 20 Pt 50, Co 30 Ni 20 Pt 50, and the like. Cobalt-based alloys include CoCr, CoPt, CoCrPt, CoCrTa, CoCrPtTa and CoCrNb in addition to CoFeB. Among these materials, the CoFeB single layer may have a horizontal magnetization and a vertical magnetization through a thickness change, and may be formed thicker than the multilayer structure of CoFeB and Co / Pt or Co / Pd, thereby increasing the magnetoresistance ratio. In addition, since CoFeB is easier to etch than a metal such as Pt or Pd, a CoFeB single layer is easier to manufacture than a multilayer structure containing Pt or Pd. In addition, CoFeB may have horizontal magnetization as well as vertical magnetization by adjusting the thickness. Accordingly, an embodiment of the present invention forms the first and second free layers 141 and 143 using CoFeB monolayers, and CoFeB is formed into an amorphous and then texturized into bcc 100 by heat treatment.
터널 배리어(150)는 자유층(140) 상에 형성되어 자유층(140)과 고정층(160)을 분리한다. 터널 배리어(150)는 자유층(140)과 고정층(160) 사이에 양자 기계적 터널링(quantum mechanical tunneling)이 가능하게 한다. 이러한 터널 배리어(150)는 마그네슘 산화물(MgO), 알루미늄 산화물(Al2O3), 실리콘 산화물(SiO2), 탄탈륨산화물(Ta2O5), 실리콘 질화물(SiNx) 또는 알루미늄 질화물(AlNx) 등으로 형성될 수 있다. 본 발명의 실시 예에서는 터널 배리어(150)로 다결정의 마그네슘 산화물을 이용한다. 마그네슘 산화물은 이후 열처리에 의해 bcc(100)으로 텍스처링된다.The tunnel barrier 150 is formed on the free layer 140 to separate the free layer 140 and the pinned layer 160. Tunnel barrier 150 enables quantum mechanical tunneling between free layer 140 and pinned layer 160. The tunnel barrier 150 may include magnesium oxide (MgO), aluminum oxide (Al 2 O 3 ), silicon oxide (SiO 2 ), tantalum oxide (Ta 2 O 5 ), silicon nitride (SiNx), aluminum nitride (AlNx), or the like. It can be formed as. In the embodiment of the present invention, polycrystalline magnesium oxide is used as the tunnel barrier 150. The magnesium oxide is then textured into bcc 100 by heat treatment.
고정층(160)은 터널 배리어(150) 상에 형성된다. 고정층(160)은 소정 범위 내의 자기장에서 자화가 한 방향으로 고정되며, 강자성체 물질로 형성될 수 있다. 예를 들어, 상부에서 하부로 향하는 방향으로 자화가 고정될 수 있다. 이러한 고정층(160)은 예를 들어 풀-호이슬러(Full-Heusler) 반금속 계열의 합금, 비정질계 희토류 원소 합금, 자성 금속과 비자성 금속이 교대로 적층된 다층 박막 또는 L10형 결정 구조를 갖는 합금 등의 강자성체 물질로 형성될 수 있다. 이때, 고정층(160)은 자유층(140)과 동일한 강자성체로 형성될 수 있으며, 구체적으로 CoFeB 단일층으로 형성될 수 있다. CoFeB는 비정질로 형성된 후 열처리에 의해 BCC(100)으로 텍스처링(texturing)된다.The pinned layer 160 is formed on the tunnel barrier 150. The pinned layer 160 is fixed in one direction in a magnetic field within a predetermined range, and may be formed of a ferromagnetic material. For example, magnetization may be fixed in a direction from top to bottom. The pinned layer 160 has, for example, a full-heusler semimetal alloy, an amorphous rare earth element alloy, a multilayer thin film in which magnetic metals and nonmagnetic metals are alternately stacked, or an L10 type crystal structure. It may be formed of a ferromagnetic material such as an alloy. In this case, the pinned layer 160 may be formed of the same ferromagnetic material as the free layer 140, and specifically, may be formed of a single CoFeB layer. CoFeB is amorphous and then texturized into BCC 100 by heat treatment.
캐핑층(170)은 고정층(160) 상에 형성되어 고정층(160)과 합성 교환 반자성층(180)을 자기적으로 상호 분리시킨다. 캐핑층(170)이 형성됨으로써 합성 교환 반자성층(190)과 고정층(160)의 자화는 서로 독립적으로 발생된다. 또한, 캐핑층(170)은 자기 터널 접합의 동작을 위해 자유층(140)과 고정층(160)의 자기 저항비를 고려하여 형성할 수 있다. 이러한 캐핑층(170)은 합성 교환 반자성층(190)이 결정 성장할 수 있도록 하는 물질로 형성될 수 있다. 즉, 캐핑층(170)은 합성 교환 반자성층(190)의 제 1 및 제 2 자성층(191, 193)이 원하는 결정 방향으로 성장할 수 있도록 한다. 예를 들어, 면심 입방 격자(Face Centered Cubic: FCC)의 (111) 방향 또는 육방 밀집 구조(Hexagonal Close-Packed Structure: HCP)의 (001) 방향으로 결정의 성장을 용이하게 하는 금속으로 형성될 수 있다. 이러한 캐핑층(170)은 탄탈륨(Ta), 루테늄(Ru), 티타늄(Ti), 팔라듐(Pd), 백금(Pt), 마그네슘(Mg), 코발트(Co), 알루미늄(Al) 및 텅스텐(W)으로 이루어진 군으로부터 선택된 금속 또는 이들의 합금을 포함할 수 있다. 바람직하게, 캐핑층(170)은 탄탈륨(Ta) 및 텅스텐(W)의 적어도 어느 하나로 형성할 수 있다. 즉, 캐핑층(170)은 탄탈륨(Ta) 또는 텅스텐(W)으로 형성될 수도 있으며, Ta/W의 적층 구조로 형성할 수도 있다. 한편, 이러한 캐핑층(170)은 0.3㎚∼0.6㎚의 두께로 형성할 수 있는데, Ta를 이용하는 경우 0.4㎚∼0.6㎚의 두께로 형성할 수 있고, W을 이용하는 경우 0.35㎚∼0.55㎚의 두께로 형성할 수 있다. 여기서, 고정층(160)과 합성 교환 반자성층(190)의 제 1 자성층(191)이 페로커플링(ferro coupling)되어야 고정층(160)의 자화 방향이 고정되지만, W를 이용한 캐핑층(170)이 0.55㎚ 이상의 두께로 형성되면 캐핑층(170)의 두께 증가로 인하여 고정층(170)의 자화 방향이 고정되지 않고 자유층(150)과 동일한 자화 방향을 가져 MRAM 소자에서 필요한 동일 자화 방향 및 다른 자화 방향이 발생하지 않아 메모리로 동작하지 않는다.The capping layer 170 is formed on the pinned layer 160 to magnetically separate the pinned layer 160 and the synthetic exchange diamagnetic layer 180 from each other. As the capping layer 170 is formed, the magnetization of the synthetic exchange diamagnetic layer 190 and the pinned layer 160 is generated independently of each other. In addition, the capping layer 170 may be formed in consideration of the magnetoresistance ratio of the free layer 140 and the pinned layer 160 for the operation of the magnetic tunnel junction. The capping layer 170 may be formed of a material that allows the synthetic exchange diamagnetic layer 190 to grow crystals. That is, the capping layer 170 allows the first and second magnetic layers 191 and 193 of the synthetic exchange diamagnetic layer 190 to grow in a desired crystal direction. For example, it may be formed of a metal that facilitates the growth of crystals in the (111) direction of the face centered cubic (FCC) or the (001) direction of the hexagonal close-packed structure (HCP). have. The capping layer 170 includes tantalum (Ta), ruthenium (Ru), titanium (Ti), palladium (Pd), platinum (Pt), magnesium (Mg), cobalt (Co), aluminum (Al), and tungsten (W). It may include a metal or an alloy thereof selected from the group consisting of. Preferably, the capping layer 170 may be formed of at least one of tantalum (Ta) and tungsten (W). That is, the capping layer 170 may be formed of tantalum (Ta) or tungsten (W), or may be formed in a stacked structure of Ta / W. Meanwhile, the capping layer 170 may be formed to a thickness of 0.3 nm to 0.6 nm, but may be formed to a thickness of 0.4 nm to 0.6 nm when using Ta, and 0.35 nm to 0.55 nm when using W. It can be formed as. Here, the magnetization direction of the pinned layer 160 is fixed only when the first magnetic layer 191 of the pinned layer 160 and the synthetic exchange diamagnetic layer 190 is ferrocoupled, but the capping layer 170 using W is When formed to a thickness of 0.55 nm or more, the magnetization direction of the pinned layer 170 is not fixed due to an increase in the thickness of the capping layer 170, and has the same magnetization direction as that of the free layer 150. This does not happen and does not work with memory.
제 2 버퍼층(180)은 캐핑층(170) 상에 형성된다. 제 2 버퍼층(180)은 캐핑층(170)과 합성 교환 반자성층(180)의 격자 상수 불일치를 해소하기 위해 형성된다. 이러한 제 2 버퍼층(180)은 예를 들어 합성 교환 반자성층(180)과 동일 물질로 형성할 수 있다. 예를 들어, 제 2 버퍼층(180)은 Co 및 Pt가 적층된 단일층으로 형성될 수 있다. The second buffer layer 180 is formed on the capping layer 170. The second buffer layer 180 is formed to solve the lattice constant mismatch between the capping layer 170 and the synthetic exchange diamagnetic layer 180. For example, the second buffer layer 180 may be formed of the same material as the synthetic exchange diamagnetic layer 180. For example, the second buffer layer 180 may be formed as a single layer in which Co and Pt are stacked.
합성 교환 반자성층(190)은 제 2 버퍼층(180) 상에 형성된다. 합성 교환 반자성층(190)은 고정층(160)의 자화를 고정시키는 역할을 한다. 합성 교환 반자성층(190)은 제 1 자성층(191), 비자성층(192) 및 제 2 자성층(193)을 포함한다. 이러한 합성 교환 반자성층(190)은 제 1 자성층(191)과 제 2 자성층(193)이 비자성층(192)을 매개로 반강자성적으로 결합된다. 이때, 제 1 자성층(191)과 제 2 자성층(193)의 자화 방향은 반평행하게 배열된다. 예를 들어, 제 1 자성층(191)은 상측 방향(즉, 상부 전극(200) 방향)으로 자회되고, 제 2 자성층(193)은 하측 방향(즉, 자기 터널 접합 방향)으로 자화될 수 있다. 제 1 자성층(191) 및 제 2 자성층(193)은 자성 금속과 비자성 금속이 교대로 적층된 구조로 형성될 수 있다. 자성 금속으로 철(Fe), 코발트(Co) 및 니켈(Ni) 등으로 이루어진 군으로부터 선택된 단일 금속 또는 이들의 합금이 이용될 수 있고, 비자성 금속으로 크롬(Cr), 백금(Pt), 팔라듐(Pd), 이리듐(Ir), 로듐(Rh), 루테늄(Ru), 오스뮴(Os), 레늄(Re), 금(Au) 및 구리(Cu)로 이루어진 군으로부터 선택된 단일 금속 또는 이들의 합금이 이용될 수 있다. 예를 들어, 제 1 자성층(191) 및 제 2 자성층(193)은 [Co/Pd]n, [Co/Pt]n 또는 [CoFe/Pt]n (여기서, n은 1 이상의 정수)로 형성될 수 있다. 비자성층(192)은 제 1 자성층(191)과 제 1 자성층(193)의 사이에 형성되며, 제 1 자성층(191) 및 제 2 자성층(193)이 반자성 결합을 할 수 있도록 하는 비자성 물질로 형성된다. 예를 들어, 비자성층(192)은 루테늄(Ru), 로듐(Rh), 오스뮴(Os), 레늄(Re) 및 크롬(Cr)으로 이루어진 군으로부터 선택된 단독 또는 이들의 합금으로 형성될 수 있다.Synthetic exchange diamagnetic layer 190 is formed on second buffer layer 180. The synthetic exchange diamagnetic layer 190 serves to fix the magnetization of the pinned layer 160. The synthetic exchange diamagnetic layer 190 includes a first magnetic layer 191, a nonmagnetic layer 192, and a second magnetic layer 193. In the synthetic exchange diamagnetic layer 190, the first magnetic layer 191 and the second magnetic layer 193 are antiferromagnetically coupled to each other through the nonmagnetic layer 192. In this case, the magnetization directions of the first magnetic layer 191 and the second magnetic layer 193 are antiparallel to each other. For example, the first magnetic layer 191 may be magnetic in the upper direction (ie, the upper electrode 200 direction), and the second magnetic layer 193 may be magnetized in the lower direction (ie, the magnetic tunnel junction direction). The first magnetic layer 191 and the second magnetic layer 193 may be formed in a structure in which magnetic metals and nonmagnetic metals are alternately stacked. As a magnetic metal, a single metal or an alloy thereof selected from the group consisting of iron (Fe), cobalt (Co), nickel (Ni), and the like may be used, and chromium (Cr), platinum (Pt), palladium as a nonmagnetic metal may be used. A single metal or alloy thereof selected from the group consisting of (Pd), iridium (Ir), rhodium (Rh), ruthenium (Ru), osmium (Os), rhenium (Re), gold (Au) and copper (Cu) Can be used. For example, the first magnetic layer 191 and the second magnetic layer 193 may be formed of [Co / Pd] n, [Co / Pt] n or [CoFe / Pt] n (where n is an integer of 1 or more). Can be. The nonmagnetic layer 192 is formed between the first magnetic layer 191 and the first magnetic layer 193, and is a nonmagnetic material for allowing the first magnetic layer 191 and the second magnetic layer 193 to perform diamagnetic coupling. Is formed. For example, the nonmagnetic layer 192 may be formed of one or an alloy thereof selected from the group consisting of ruthenium (Ru), rhodium (Rh), osmium (Os), rhenium (Re), and chromium (Cr).
상부 전극(200)은 합성 교환 반자성층(190) 상에 형성된다.이러한 상부 전극(200)은 도전 물질을 이용하여 형성할 수 있는데, 금속, 금속 산화물, 금속 질화물 등으로 형성될 수 있다. 예를 들어, 상부 전극(200)은 탄탈륨(Ta), 루테늄(Ru), 티타늄(Ti), 팔라듐(Pd), 백금(Pt), 마그네슘(Mg) 및 알루미늄(Al)으로 이루어진 군으로부터 선택된 단일 금속 또는 이들의 합금으로 형성될 수 있다.The upper electrode 200 is formed on the synthetic exchange diamagnetic layer 190. The upper electrode 200 may be formed using a conductive material, and may be formed of metal, metal oxide, metal nitride, or the like. For example, the upper electrode 200 is a single selected from the group consisting of tantalum (Ta), ruthenium (Ru), titanium (Ti), palladium (Pd), platinum (Pt), magnesium (Mg) and aluminum (Al). It may be formed of a metal or an alloy thereof.
상기한 바와 같이 본 발명의 실시 예들에 따른 메모리 소자는 하부 전극(110)을 다결정의 도전 물질, 예를 들어 TiN을 이용하여 형성함으로써 STT-MRAM의 기본 구조인 1T1M(1 트랜지스터 및 1 MTJ)로 실제 메모리 공정에 적용되는 것이 가능하다. 또한, 수평 자화를 갖는 제 1 자유층(141), 자화를 갖지 않는 분리층(142) 및 수직 자화를 갖는 제 2 자유층(143)의 적층 구조로 자유층(130)을 형성함으로써 수직 자화의 제 2 자유층(143)의 스핀 방향이 수평 방향을 지나 반대 수직 방향으로 변화될 때 수평 자와의 제 1 자유층(141)과 자기 공명을 하도록 하여 자기 터널 접합의 자화 특성과 자기 저항비를 유지하면서 자유층(140)의 스위칭 에너지를 낮출 수 있다.As described above, the memory device according to the embodiments of the present invention forms the lower electrode 110 using a polycrystalline conductive material, for example, TiN, to 1T1M (1 transistor and 1 MTJ), which is a basic structure of the STT-MRAM. It is possible to apply to the actual memory process. In addition, by forming the free layer 130 in a laminated structure of the first free layer 141 having horizontal magnetization, the separation layer 142 having no magnetization, and the second free layer 143 having vertical magnetization, When the spin direction of the second free layer 143 changes from the horizontal direction to the opposite vertical direction, the magnetic resonance characteristics of the magnetic tunnel junction and the magneto-resistance ratio of the magnetic tunnel junction are adjusted by magnetic resonance with the first free layer 141. While maintaining the switching energy of the free layer 140 can be lowered.
종래 예 및 발명 예의 비교Comparison of Conventional Examples and Inventive Examples
기판 상에 자기 터널 접합 및 캐핑층을 형성한 후 400℃의 열처리를 실시하고, 합성 교환 반자장층 및 상부 전극을 형성한 후 350℃의 열처리를 실시한 메모리 소자의 자성 특성을 도 2 내지 도 5에 도시하였다. 즉, 도 2 및 도 3은 단일층의 자유층을 형성한 종래의 자기 터널 접합 및 자유층의 자성 특성을 도시한 도면이고, 도 4 및 도 5는 서로 다른 방향의 자화를 갖는 제 1 및 제 2 자유층으로 자유층을 형성한 본 발명의 자기 터널 접합 및 자유층의 자성 특성을 도시한 도면이다. 여기서, 도 3은 도 2의 A 부분을 확대한 도면이고, 도 5는 도 4의 B 부분을 확대한 도면이다. 도 4 및 도 5에 도시된 바와 같이 본 발명은 도 2 및 도 3에 도시된 종래와 마찬가지로 자유층이 보자력과 스퀘어니스를 잘 유지함을 알 수 있다. 그런데, 종래의 경우 도 3에 도시된 바와 같이 자유층이 수직 자화만을 가지고 있지만, 본 발명의 경우 도 5에 도시된 바와 같이 자유층이 수직 자화 뿐만 아니라 수평 자화를 가지고 있음을 알 수 있다.After the magnetic tunnel junction and the capping layer are formed on the substrate, the magnetic properties of the memory device subjected to heat treatment at 400 ° C. and the heat exchange at 350 ° C. after forming the synthetic exchange semi-magnetic layer and the upper electrode are illustrated in FIGS. 2 to 5. Shown in That is, FIGS. 2 and 3 are views illustrating magnetic characteristics of a conventional magnetic tunnel junction and a free layer in which a free layer of a single layer is formed, and FIGS. 4 and 5 illustrate first and second magnetizations having magnetizations in different directions. 2 shows the magnetic tunnel junction of the present invention in which a free layer is formed of a free layer and magnetic properties of the free layer. 3 is an enlarged view of portion A of FIG. 2, and FIG. 5 is an enlarged view of portion B of FIG. 4. As shown in FIGS. 4 and 5, the present invention can be seen that the free layer maintains coercive force and squareness as in the prior art shown in FIGS. 2 and 3. By the way, in the conventional case, as shown in FIG. 3, the free layer has only vertical magnetization, but in the case of the present invention, it can be seen that the free layer has not only vertical magnetization but also horizontal magnetization.
도 6 및 도 7은 단일층의 자유층을 형성한 종래와 자화 방향이 서로 다른 제 1 및 제2 자유층으로 자유층을 형성한 본 발명의 스위칭 전류 특성을 도시한 도면이다. 즉, 10ns의 펄스를 인가하여 자유층이 고정층과 평행 상태에서 반평행 상태로 바뀌 때의 스위칭 전류를 도 6에 도시하였고, 자유층이 고정층과 반평행 상태에서 평행 상태로 바뀔 때의 스위칭 전류를 도 7에 도시하였다. 도 6에 도시된 바와 같이 반평행 상태에서 평행 상태로 바뀔 때 본 발명은 종래보다 약 60% 정도 낮은 스위칭 전류를 가지며, 도 7에 도시된 바와 같이 평행 상태에서 반평행 상태로 바뀔 때 본 발명은 종래보다 약 40% 정도 낮은 스위칭 전류를 가진다.6 and 7 illustrate switching current characteristics of the present invention in which the free layer is formed of the first and second free layers having different magnetization directions from those of the conventional single layer free layer. That is, the switching current when the free layer is changed from the parallel to the fixed layer to the antiparallel state by applying a pulse of 10 ns is shown in FIG. 6. The switching current when the free layer is changed from the parallel to the fixed layer is antiparallel. 7 is shown. As shown in FIG. 6, the present invention has a switching current of about 60% lower than the conventional state in the antiparallel state, and when the state changes from the parallel state to the antiparallel state as shown in FIG. 7. It has a switching current about 40% lower than conventional.
도 8은 종래의 시드층 두께에 따른 자기 저항비(C)와 본 발명의 분리층 두께에 따른 자기 저항비(D)를 도시한 도면이다. 즉, TiN 하부 전극 상에 시드층을 형성하고, CoFeB 자유층, MgO 터널 배리어 및 CoFeB 고정층이 적층된 자기 터널 접합을 형성하여 자기 저항비를 측정하였다. 이때, 종래의 경우 자유층을 단일층으로 형성하였으며, 본 발명의 경우 수평 자화 및 수직 자화를 갖는 두개의 자유층 사이에 bcc 구조의 분리층이 형성된 구조로 형성하였다. 또한, 종래의 경우 시드층의 두께를 변화시켜 자기 저항비를 측정하였고, 본 발명은 분리층의 두께를 변화시켜 자기 저항비를 측정하였다. 그래프 C에 도시된 바와 같이 시드층의 두께가 증가할수록 자기 저항비는 낮아지는데, 약 147%의 최대값을 갖는 것을 알 수 있다. 또한, 그래프 D에 도시된 바와 같이 분리층의 두께가 증가할수록 자기 저항비는 증가하는데, 약 150%의 최대값을 갖는 것을 알 수 있다. 따라서, 두 개의 자유층을 형성하는 경우에도 단일 자유층을 형성하는 경우와 유사하게 자기 저항비가 유지될 수 있다.8 is a diagram illustrating a magnetoresistance ratio (C) according to a conventional seed layer thickness and a magnetoresistance ratio (D) according to a thickness of a separation layer of the present invention. That is, the seed layer was formed on the TiN lower electrode, and the magnetic resistance ratio was measured by forming a magnetic tunnel junction in which a CoFeB free layer, an MgO tunnel barrier, and a CoFeB fixed layer were stacked. In this case, in the conventional case, a free layer was formed as a single layer, and in the present invention, a separation layer having a bcc structure was formed between two free layers having horizontal magnetization and vertical magnetization. In addition, in the conventional case, the magnetoresistance ratio was measured by changing the thickness of the seed layer, and the present invention measured the magnetoresistance ratio by changing the thickness of the separation layer. As shown in graph C, as the thickness of the seed layer increases, the magnetoresistance ratio decreases, and it can be seen that it has a maximum value of about 147%. In addition, as shown in graph D, as the thickness of the separation layer increases, the magnetoresistance ratio increases, and it can be seen that it has a maximum value of about 150%. Therefore, even when two free layers are formed, the magnetoresistance ratio can be maintained similarly to the case of forming a single free layer.
한편, 본 발명의 기술적 사상은 상기 실시 예에 따라 구체적으로 기술되었으나, 상기 실시 예는 그 설명을 위한 것이며, 그 제한을 위한 것이 아님을 주지해야 한다. 또한, 본 발명의 기술분야에서 당업자는 본 발명의 기술 사상의 범위 내에서 다양한 실시 예가 가능함을 이해할 수 있을 것이다.On the other hand, although the technical spirit of the present invention has been described in detail according to the above embodiment, it should be noted that the above embodiment is for the purpose of explanation and not for the limitation. In addition, those skilled in the art will understand that various embodiments are possible within the scope of the technical idea of the present invention.

Claims (12)

  1. 자유층, 터널 배리어 및 고정층을 포함하는 자기 터널 접합을 포함하고,A magnetic tunnel junction comprising a free layer, a tunnel barrier, and a fixed layer,
    상기 자유층이 서로 다른 방향의 자화를 갖는 적어도 두층으로 형성된 메모리 소자.And at least two layers of the free layer having magnetizations in different directions.
  2. 청구항 1에 있어서, 상기 자유층은 상기 고정층에 인접하여 수직 자화를 갖는 메모리 소자.The memory device of claim 1, wherein the free layer has vertical magnetization adjacent to the pinned layer.
  3. 청구항 1 또는 청구항 2에 있어서, 상기 자유층은 수평 자화를 갖는 제 1 자화층, 자화를 갖지 않는 분리층 및 수직 자화를 갖는 제 2 자화층을 포함하는 메모리 소자.The memory device of claim 1, wherein the free layer comprises a first magnetization layer having a horizontal magnetization, a separation layer having no magnetization, and a second magnetization layer having a vertical magnetization.
  4. 청구항 3에 있어서, 상기 제 1 및 제 2 자유층은 동일 물질을 이용하여 서로 다른 두께로 형성된 메모리 소자.The memory device of claim 3, wherein the first and second free layers are formed to have different thicknesses using the same material.
  5. 청구항 4에 있어서, 상기 제 1 및 제 2 자유층은 CoFeB를 포함하는 물질로 형성되며, 상기 제 1 자유층이 상기 제 2 자유층보다 두껍게 형성된 메모리 소자.The memory device of claim 4, wherein the first and second free layers are formed of a material including CoFeB, and the first free layer is thicker than the second free layer.
  6. 청구항 5에 있어서, 상기 제 1 자유층은 1㎚ 내지 4㎚의 두께로 형성되고, 상기 제 2 자유층은 0.8㎚ 내지 1.2㎚의 두께로 형성된 메모리 소자.The memory device of claim 5, wherein the first free layer is formed to a thickness of 1 nm to 4 nm, and the second free layer is formed to a thickness of 0.8 nm to 1.2 nm.
  7. 청구항 6에 있어서, 상기 분리층은 bcc 구조의 물질을 이용하여 0.4㎚ 내지 2㎚의 두께로 형성된 메모리 소자.The memory device of claim 6, wherein the separation layer has a thickness of 0.4 nm to 2 nm using a material of a bcc structure.
  8. 청구항 3에 있어서, 상기 자유층 하측에 하부로부터 적층 형성된 하부 전극, 버퍼층 및 시드층을 더 포함하는 메모리 소자.The memory device of claim 3, further comprising a lower electrode, a buffer layer, and a seed layer stacked below the free layer.
  9. 청구항 8에 있어서, 상기 하부 전극은 다결정의 도전 물질로 형성되는 메모리 소자.The memory device of claim 8, wherein the lower electrode is made of a polycrystalline conductive material.
  10. 청구항 8에 있어서, 상기 고정층 상측에 적층 형성된 캐핑층 및 합성 교환 반자성층을 더 포함하는 메모리 소자.The memory device of claim 8, further comprising a capping layer and a synthetic exchange diamagnetic layer stacked on the pinned layer.
  11. 청구항 10에 있어서, 상기 캐핑층은 bcc 구조의 물질로 형성된 메모리 소자.The memory device of claim 10, wherein the capping layer is formed of a material having a bcc structure.
  12. 청구항 11에 있어서, 상기 합성 교환 반자성층은 Pt를 포함하는 물질로 형성된 메모리 소자.The memory device of claim 11, wherein the synthetic exchange diamagnetic layer is formed of a material including Pt.
PCT/KR2016/001130 2015-03-18 2016-02-02 Memory device WO2016148392A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201680016516.2A CN107735874B (en) 2015-03-18 2016-02-02 Memory device
US15/707,491 US10580964B2 (en) 2015-03-18 2017-09-18 Memory device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20150037231 2015-03-18
KR10-2015-0037231 2015-03-18
KR10-2015-0045171 2015-03-31
KR1020150045171A KR101705125B1 (en) 2015-03-18 2015-03-31 Memory device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/001135 Continuation-In-Part WO2016148394A1 (en) 2015-03-18 2016-02-02 Memory device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/001134 Continuation-In-Part WO2016148393A1 (en) 2015-03-18 2016-02-02 Memory device

Publications (1)

Publication Number Publication Date
WO2016148392A1 true WO2016148392A1 (en) 2016-09-22

Family

ID=56919110

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2016/001130 WO2016148392A1 (en) 2015-03-18 2016-02-02 Memory device

Country Status (1)

Country Link
WO (1) WO2016148392A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108511602A (en) * 2017-02-28 2018-09-07 中电海康集团有限公司 MTJ cell and STT-MRAM
KR20190030795A (en) * 2017-09-14 2019-03-25 한국과학기술원 Sot semiconductor device and method of writing data to sot semiconductor device
CN110416406A (en) * 2019-08-13 2019-11-05 上海新微技术研发中心有限公司 Magnetic memory device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050063222A1 (en) * 2003-09-19 2005-03-24 Yiming Huai Current confined pass layer for magnetic elements utilizing spin-transfer and an MRAM device using such magnetic elements
KR20110042657A (en) * 2009-10-19 2011-04-27 한국과학기술연구원 Magnetic tunnel junction structure with perpendicular magnetization layers
KR20150009664A (en) * 2013-07-16 2015-01-27 한양대학교 산학협력단 Magnetic tunnel junction structure having perpendicular magnetic anisotropy and magnetic device including the same
KR20150015601A (en) * 2013-07-31 2015-02-11 한양대학교 산학협력단 Memory device
KR20150015927A (en) * 2013-08-02 2015-02-11 삼성전자주식회사 Magnetic memory devices having perpendicular magnetic tunnel junction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050063222A1 (en) * 2003-09-19 2005-03-24 Yiming Huai Current confined pass layer for magnetic elements utilizing spin-transfer and an MRAM device using such magnetic elements
KR20110042657A (en) * 2009-10-19 2011-04-27 한국과학기술연구원 Magnetic tunnel junction structure with perpendicular magnetization layers
KR20150009664A (en) * 2013-07-16 2015-01-27 한양대학교 산학협력단 Magnetic tunnel junction structure having perpendicular magnetic anisotropy and magnetic device including the same
KR20150015601A (en) * 2013-07-31 2015-02-11 한양대학교 산학협력단 Memory device
KR20150015927A (en) * 2013-08-02 2015-02-11 삼성전자주식회사 Magnetic memory devices having perpendicular magnetic tunnel junction

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108511602A (en) * 2017-02-28 2018-09-07 中电海康集团有限公司 MTJ cell and STT-MRAM
CN108511602B (en) * 2017-02-28 2021-07-13 中电海康集团有限公司 MTJ cell and STT-MRAM
KR20190030795A (en) * 2017-09-14 2019-03-25 한국과학기술원 Sot semiconductor device and method of writing data to sot semiconductor device
KR102024876B1 (en) * 2017-09-14 2019-11-05 한국과학기술원 Sot semiconductor device and method of writing data to sot semiconductor device
CN110416406A (en) * 2019-08-13 2019-11-05 上海新微技术研发中心有限公司 Magnetic memory device

Similar Documents

Publication Publication Date Title
US10783945B2 (en) Memory device
US10580964B2 (en) Memory device
WO2016148391A1 (en) Memory device
KR102169622B1 (en) Memory device
WO2015160092A2 (en) Memory element
WO2015160093A2 (en) Memory element
KR20150015602A (en) Memory device
JP6440769B2 (en) Alloy thin film with perpendicular magnetic anisotropy
JP6375414B2 (en) Multilayer thin film with perpendicular magnetic anisotropy
KR101721618B1 (en) Memory device
KR101636492B1 (en) Memory device
KR20200060090A (en) Memory device
KR101705125B1 (en) Memory device
KR101956975B1 (en) Memory device
WO2016148392A1 (en) Memory device
WO2016148394A1 (en) Memory device
KR101756883B1 (en) Memory device
KR101698532B1 (en) Memory device
WO2015160094A2 (en) Memory element
WO2016148395A1 (en) Memory device
KR101956976B1 (en) Memory device
WO2016148393A1 (en) Memory device
KR101933268B1 (en) Memory device
KR101956977B1 (en) Memory device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16765148

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16765148

Country of ref document: EP

Kind code of ref document: A1