WO2016145374A1 - Electrochemical cell diagnostic systems and methods using second order and higher harmonic components - Google Patents

Electrochemical cell diagnostic systems and methods using second order and higher harmonic components Download PDF

Info

Publication number
WO2016145374A1
WO2016145374A1 PCT/US2016/022119 US2016022119W WO2016145374A1 WO 2016145374 A1 WO2016145374 A1 WO 2016145374A1 US 2016022119 W US2016022119 W US 2016022119W WO 2016145374 A1 WO2016145374 A1 WO 2016145374A1
Authority
WO
Grant status
Application
Patent type
Prior art keywords
electrochemical cell
indication
response
stimulus
battery
Prior art date
Application number
PCT/US2016/022119
Other languages
French (fr)
Inventor
Matthew D. MURBACH
Daniel T. Schwartz
Original Assignee
University Of Washington
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration, power consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L11/00Electric propulsion with power supplied within the vehicle
    • B60L11/18Electric propulsion with power supplied within the vehicle using power supply from primary cells, secondary cells, or fuel cells
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LELECTRIC EQUIPMENT OR PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES, IN GENERAL
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration, power consumption
    • B60L3/12Recording operating variables ; Monitoring of operating variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Apparatus for testing electrical condition of accumulators or electric batteries, e.g. capacity or charge condition
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Apparatus for testing electrical condition of accumulators or electric batteries, e.g. capacity or charge condition
    • G01R31/3644Various constructional arrangements
    • G01R31/3679Various constructional arrangements for determining battery ageing or deterioration, e.g. state-of-health (SoH), state-of-life (SoL)
    • G01R31/392
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating condition, e.g. level or density of the electrolyte
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane

Abstract

Electrochemical cell diagnostic systems and methods are described. Examples include systems having a signal generator configured to apply a stimulus having a stimulus frequency to at least one electrochemical cell. The stimulus may be configured to excite at least one non-linear mode of the at least one electrochemical cell. Systems may include measurement circuitry configured to detect a response of the at least one electrochemical cell to the stimulus. The response may include a second or greater harmonic component. Systems may include a display device configured to display an indication of an internal state of the at least one electrochemical cell based, at least in part of the second or greater harmonic component of the response.

Description

ELECTROCHEMICAL CELL DIAGNOSTIC SYSTEMS AND METHODS USING SECOND ORDER AND HIGHER HARMONIC COMPONENTS CROSS-REFERENCE TO RELATED APPLICATION(S)

[001] This application claims the benefit under 35 U.S.C. § 119 of the earlier filing dates of U.S. Application Serial Numbers 62/131,698, filed March 11, 2015, and 62/280,616, filed January 19, 2016. The entire contents of the afore-mentioned priority applications are hereby incorporated by reference in their entirety for any purpose. STATEMENT REGARDING RESEARCH & DEVELOPMENT

[002] This invention was made with government support under contract P200A120023 awarded by the U.S. Department of Education and under contract DGE- 1258485 awarded by the National Science Foundation. The government has certain rights in the invention. TECHNICAL FIELD

[003] Examples described herein relate to diagnostics for electrochemical cells and includes examples of nonlinear analysis for batteries. BACKGROUND

[004] Energy storage has the capability to dramatically reduce global greenhouse gas emissions by fundamentally changing the way energy is delivered and consumed, including by the transportation sector and electric utilities. To date, battery implementation in our vehicles and electric grid has been slow and limited to a few earlier adopters willing to pay a premium over other technologies. Today, batteries are discarded prematurely and operated under overly conservative protocols due to limited information on the health of the battery.

[005] The true benefits of energy storage are still severely limited by high costs as batteries remain a major expense for utilities and car manufacturers. Moreover, despite their significant cost, batteries are not currently used to their full potential in a rudimentary effort to prolong their useful life and avoid unsafe conditions that can result in catastrophic events. For example, electric vehicle (EV) batteries are often replaced when their capacity (and thus the vehicle’s driving range) decreases to a maximum of 70%. Although these batteries may no longer be suitable for EV use, their remaining capacity offers a significant value that is currently unrealized in the market. Recycling the individual cells is an option; however, it is difficult to extract components that still have value. There are also environmental impacts from discarding and recycling batteries such as release of process gasses into the atmosphere as well as other toxic chemicals that must be dealt with. Ensuring that each battery is used to its full potential can reduce the environmental burden of manufacturing and recycling additional batteries.

[006] Implementing cost effective energy storage is difficult in part due to a lack of information about the asset itself. It is difficult to get quality data related to the health of batteries. Despite the complexity and safety concerns associated with lithium ion batteries, current technologies use relatively simplistic methods of estimating critical battery parameters and information. This inaccuracy leads to large safety margins and poor application of optimization protocols contributing to high costs and uncertainty about remaining useful life. This uncertainty makes it difficult to resell a used electrical vehicle battery to a secondary market since the buyer has no assurances about the quality of the system. SUMMARY

[007] Examples of methods are described herein. Some example methods include stimulating non-linear modes of at least one electrochemical cell using a stimulus having a stimulus frequency and detecting a response of the at least one electrochemical cell. A response frequency of the response may be a second or greater harmonic of the stimulus frequency. Based, at least in part, on the response, methods may include displaying an indication of an internal state of the at least one electrochemical cell.

[008] In some examples, displaying the indication of the internal state comprises displaying an indication of degradation. The indication of degradation may include an indication of asymmetry in a charging and discharging behavior of the at least one electrochemical cell. [009] In some examples, the stimulus frequency is selected to be above frequencies at which thermodynamic relationships and slow mass transfer dominate the response.

[010] In some examples, displaying the indication of the internal state of the at least one electrochemical cell may include displaying an indication of degradation when the response exceeds a threshold magnitude.

[011] In some examples, the at least one electrochemical cell comprises a lithium ion battery. In some examples, the at least one electrochemical cell comprises a battery in an electric vehicle. Stimulating the non-linear modes of the at least one electrochemical cell may include applying the stimulus during braking of the electric vehicle. Stimulating the non-linear modes of the at least one electrochemical cell may include applying the stimulus using a charging cable of the electric vehicle.

[012] In some examples, displaying the indication of the internal state of the at least one electrochemical cell may include displaying an indication of remaining life of the at least one electrochemical cell.

[013] In some examples, the at least one electrochemical cell includes a battery in an electric vehicle, and displaying the indication of the internal state of the at least one electrochemical cell comprises displaying an indication of estimated range of the electric vehicle using the battery.

[014] Some example methods further include performing a comparison of the response with electronic signatures indicative of particular internal states, and wherein displaying the indication of the internal state is based, at least in part, on the comparison.

[015] Example electronic signatures may include Nyquist plot shapes of a second or higher harmonic component at different degradation states. The indication of the internal state may include an indication of degradation.

[016] Example electronic signatures include thresholds of real impedance of a second or higher harmonic component at different degradation states. The indication of the internal state may include an indication of degradation.

[017] Example systems are described herein. An example system may include a signal generator configured to apply a stimulus having a stimulus frequency to at least one electrochemical cell. The stimulus may be configured to excite at least one non- linear mode of the at least one electrochemical cell. Example systems may further include measurement circuitry configured to detect a response of the at least one electrochemical cell to the stimulus wherein the response includes a second or greater harmonic component. Example systems may further include a display device configured to display an indication of an internal state of the at least one electrochemical cell based, at least in part of the second or greater harmonic component of the response.

[018] In some examples, the stimulus frequency is selected to be above frequencies at which thermodynamic relationships and slow mass transfer dominate the response.

[019] In some examples, the at least one electrochemical cell comprises a battery of an electric vehicle.

[020] In some examples, the signal generator includes a component of a charging system for the electric vehicle.

[021] In some examples, the signal generator may be configured to apply the stimulus during braking of the electric vehicle.

[022] In some examples, the indication of the internal state includes an indication of a range of the electric vehicle using the battery.

[023] In some examples, the indication of the internal state includes an indication of degradation of the battery.

[024] Some example systems further include a memory configured to store electronic signatures representative of particular internal states. Example systems may further include at least one processing unit configured to conduct a comparison of the second or greater harmonic component of the response with the electronic signatures. The indication of the internal state may be based, at least in part, on the comparison.

[025] In some examples, the electronic signatures are derived from empirical data.

[026] Example systems may further include at least one processing unit and a memory encoded with executable instructions for modeling that, when executed, cause the at least one processing unit to model behavior of the at least one electrochemical cell using parameters for electrode asymmetry.

[027] In some examples, the executable instructions for modeling further include instructions for predicting a predicted response of the at least one electrochemical cell and comparing the predicted response with the response, and wherein the indication of the internal state is based, at least in part, on the comparing. [028] In some examples, the executable instructions for modeling further include instructions for fitting a model to the response. BRIEF DESCRIPTION OF THE DRAWINGS

[029] FIG. 1 is a schematic illustration of a system arranged in accordance with examples described herein.

[030] FIG. 2 is a Nyquist plot of a response of a battery at several states of degradation.

[031] FIG. 3 is a flowchart of a method arranged in accordance with examples described herein.

[032] FIG. 4 illustrates Fourier transforms of a stimulus and response arranged in accordance with examples described herein.

[033] FIG. 5 illustrates measured and predicted second order harmonic components of electrochemical cell responses in accordance with examples described herein.

[034] FIG. 6 illustrates measured and predicted second order harmonic components of electrochemical cell responses in accordance with examples described herein DETAILED DESCRIPTION

[035] Certain details are set forth below to provide a sufficient understanding of embodiments of the invention. However, it will be clear to one skilled in the art that embodiments of the invention may be practiced without various of these particular details. In some instances, well-known circuits, electrochemical cell components and materials, control signals, timing protocols, and software operations have not been shown in detail in order to avoid unnecessarily obscuring the described embodiments of the invention.

[036] Examples described herein relate to diagnostics for electrochemical cells (e.g. batteries) facilitated by nonlinear responses of the electrochemical cells. Nonlinear responses generally refer to responses which include second and/or higher order harmonic components. Generally, an electrochemical cell (e.g. a battery cell) may be stimulated with either an oscillating current or voltage stimulus at a specified frequency (or combination of frequencies) in order to drive a nonlinear response within the electrochemical cell.

[037] The nonlinear response is characterized by a response signal containing not just the fundamental (e.g. stimulus) frequency, but also integer multiples of the fundamental frequency (and in some examples the sums and differences between frequencies when a combination of input frequencies are used.)

[038] Figure 1 is a schematic illustration of a system arranged in accordance with examples described herein. The system 100 includes an electrochemical cell 102, a signal generator 104, measurement circuitry 106, a computing device 114 which may include one or more processing unit(s) 112 and memory 110, and a display device 108.

[039] The signal generator 104 and the measurement circuitry 106 may be connected to the electrochemical cell 102. For example, the signal generator 104 and measurement circuitry 106 may be electrically connected to one or more electrodes of the electrochemical cell 102. The signal generator 104 may apply one or more stimuli to the electrochemical cell 102, and the measurement circuitry 106 may measure a response of the electrochemical cell 102 to the stimuli.

[040] A computing device 114 may be coupled to the measurement circuitry 106 and/or signal generator 104. The computing device 114 may include one or more processing unit(s) 112 (e.g. processor(s), custom circuitry, or combinations thereof) and memory 110. The computing device 114 may be programmed (e.g. by encoding the memory with executable instructions) to perform actions described herein. The computing device 114 may control operation of the measurement circuitry 106 and/or signal generator 104 in some examples. The computing device 114 may receive measurements from the measurement circuitry 106 and/or analyze data received from the measurement circuitry 106.

[041] A display device 108 may be coupled to the computing device 114 and/or to the measurement circuitry 106. The display device 108 may display an indication of the internal state of the electrochemical cell 102 in accordance with the measurements taken by the measurement circuitry 106.

[042] Any of a variety of electrochemical cells may be utilized in systems described herein. The electrochemical cell 102, for example, may be implemented using a battery, such as a lithium ion battery. The electrochemical cell 102 may be implemented using a fuel cell in some examples. Although a single electrochemical cell 102 is shown in Figure 1, multiple electrochemical cells may be used in example systems. In some examples, each electrochemical cell may receive individual respective stimuli and have a measured individual response. In some examples, multiple electrochemical cells may be stimulated together and a combined response received and analyzed as described herein.

[043] A battery used to implement the electrochemical cell 102 may be an electric vehicle battery. Generally, electric vehicles include 'hybrid' vehicles which may operate from time to time on battery power and from time to time using fossil fuels.

[044] The signal generator 104 may apply a stimulus having a stimulus frequency to the electrochemical cell 102. The stimulus (e.g. perturbation signal) may be selected to excite at least one non-linear mode of the electrochemical cell 102. For example, the stimulus may be a current signal having a particular frequency. In some examples, the stimulus may be a voltage signal having a particular frequency. In some examples, multiple stimuli may be provided. For example respective stimulus signals may be provided, each having a respective frequency, to obtain a response from the electrochemical cell 102 across a number or range of frequencies.

[045] The stimulus may be selected to excite at least one non-linear mode of the electrochemical cell 102. For example, the stimulus may have an amplitude selected to elicit second order and/or higher harmonic components in the response. For example, at low perturbation amplitudes, a largely linear response (e.g. no significant higher harmonics) may be measured; however, as the perturbation amplitude is increased, the second and/or third and/or higher harmonics begin to be distinguishable from the noise as a function of the perturbation amplitude squared and cubed, respectively.

[046] The stimulus frequency may refer to a frequency of oscillation of the stimulus signal, a periodicity of the stimulus signal, or combinations thereof. Any of a variety of stimulus signals may be used including, but not limited to, sine waves, square waves, triangle waves, impulses, and combinations thereof. In examples where the electrochemical cell 102 is implemented as a battery, the stimulus frequency or frequencies may in some examples be in the range of 10mHz to 10kHz.

[047] The stimulus frequency may be selected to investigate a particular physical process or processes taking place in the electrochemical cell 102. Different frequencies generally may be used to investigate processes occurring on different timescales. For example, at low frequencies, thermodynamic relationships and slow mass transfer may generally dominate the system; however, as the frequency of the perturbation signal increases, the positive and negative electrode reaction kinetics and double-layer capacitances may result in characteristic responses. Similarly, these time constants may be reflected in the higher harmonic response as well, allowing methods described herein to resolve the electrochemical cell's internal state more clearly in some examples than current diagnostic technology based on static current/voltage measurements.

[048] In some examples, the stimulus frequency is selected to be outside (e.g. above) a range at which thermodynamic relationships and slow mass transfer dominate the response of the electrochemical cell 102. The frequencies at which thermodynamic relationships and slow mass transfer dominate the response of the electrochemical cell 102 may generally be above 10-100Hz, above 0.5 Hz in some examples, above 1 Hz in some examples, above 5 Hz in some examples, above 10Hz in some examples, above 50Hz in some examples, above 100 Hz in some examples, above 200 Hz in some examples, above 300 Hz in some examples, above 400 Hz in some examples, above 500 Hz in some examples, above 600 Hz in some examples, above 700 Hz in some examples, above 800 Hz in some examples, above 900 Hz in some examples, above 1000Hz in some examples.

[049] Determining the frequency at which the electrochemical cell is above the thermo/mass transfer regime may be performed in some examples by theoretically calculating the different timescales of diffusion and kinetics. In some examples, the frequency at which the electrochemical cell is above the thermo/mass transfer regime may be performed experimentally, for example by measuring a full spectra of a battery and modeling the particular ranges over which the mass transfer or kinetics dominate. For some example batteries, this approximate point is ~1Hz (e.g. above 10Hz the cell is squarely in the kinetics regime and below .1 Hz the cell is in the mass transfer regime.) In some examples, a single frequency or selected group of frequencies may be probed rather than a full spectra of the electrochemical cell.

[050] The signal generator 104 may be implemented, for example, using a voltage source, a current source, or other signal generating circuitry or devices. The signal generator 104 may include a data acquisition (DAQ) board/computer/power amplifier setup. Various electrodes may be used to physically apply and receive the signals from the battery or other test device. Additional or alternative equipment may be used as well. In some examples, the signal generator 104 may be implemented using a portion of a charging system for an electric vehicle. In some examples, the signal generator 104 may be implemented using an electric motor of an electric vehicle and/or braking systems of an electric vehicle. In some examples, for example where data for battery diagnostics is desired during operation of the vehicle, the signal generator 104 may apply a stimulus to the electrochemical cell 102 during operation of the vehicle, such as during braking. The system 100 may include one or more sensors (e.g. vehicle sensors) which may provide an indication to the signal generator 104 (e.g. directly or through the computing device 114) that braking is occurring. Responsive to the indication that braking is occurring; the signal generator 104 may provide a stimulus to the electrochemical cell 102.

[051] The measurement circuitry 106 may detect a response of the electrochemical cell 102 to the stimulus provided by the signal generator 104. The response may include a second or greater harmonic component. Harmonic component generally refers to a component of a response occurring at a harmonic frequency relative to the stimulus frequency. A second harmonic, for example, may be a portion of the response occurring at twice the stimulus frequency. A third harmonic, for example, may be a portion of the response occurring at three times the stimulus frequency.

[052] In some examples, for example where the signal generator 104 provides a voltage stimulus, the measurement circuitry 106 may measure a current response. In some examples, for example where the signal generator 104 provides a current stimulus, the measurement circuitry 106 may measure a voltage response.

[053] The measurement circuitry 106 may be implemented, for example, using circuitry for detection of a voltage or current between electrodes of the electrochemical cell 102.

[054] When the stimulus frequency is selected to be outside the range where thermodynamics and mass transfer dominate, the second harmonic component of the response (which may be measured by the measurement circuitry 106) may be indicative of the symmetry of the reaction kinetics in the electrochemical cell 102. For example, in a perfectly symmetric rechargeable battery (e.g. reflecting an ideal reaction in which charging and discharging are equally easy) the second harmonic component of the response may approach zero. As such, perturbing a battery at this amplitude and frequency may generate a harmonic signature useful in understanding any breakdown in the symmetry of the reaction kinetics as well as the presence of degradative (e.g. generally non-symmetric/irreversible) side reactions. Additionally, in some examples the size of the harmonics (which may be scaled by ratios) may be related to the historical normal use vs. abuse cases in a battery. For example, a shape of the third harmonic component of the response in this frequency range may grow in magnitude as the damage to the battery (e.g., the depth to which the cell was overdischarged) is increased.

[055] In some examples, electronic signatures may also be used to predict a remaining usable lifetime of a battery. For example, a particular pattern or threshold of second- order or higher harmonics may be indicative of a particular remaining usable lifetime. In some examples, second-order or higher harmonics may be sensitive to the inhomogeneity in the battery and may be used to predict a state-of-power of the battery (e.g. the battery’s propensity to accept and/or deliver a particular charge or discharge power). Electronic signatures may be used which are indicative of the state-of-power of the battery. In some examples, electronic signatures may be used to estimate physical and/or empirical parameters for battery modeling and/or control.

[056] A computing device 114 may be coupled to the measurement circuitry 106 and/or the signal generator 104. The computing device 114 may analyze the response detected by the measurement circuitry 106. For example, the computing device 114 may analyze a second or third harmonic component of the response in some examples. The computing device 114 may determine an indication of an internal state of the electrochemical cell 102 based on the analysis of harmonic components of the response, such as the second and/or third harmonic components.

[057] Examples of internal states of the electrochemical cell which may be determined in accordance with examples described herein include, but are not limited to, degradation of the electrochemical cell, asymmetry of the electrochemical cell, remaining charge of the electrochemical cell, and combinations thereof. Another example of internal state of the electrochemical cell 102, for example when the electrochemical cell 102 is implemented using an electric vehicle battery, is range of the battery (e.g. mileage the vehicle is estimated to be able to go given the current charge of the battery).

[058] The computing device 114 may be implemented, for example, using one or more computing systems such as a server, controller, microcontroller, desktop, laptop, tablet, mobile phone, appliance, automobile, or combinations thereof.

[059] It is to be understood that arrangement of components of the computing device 114 may be quite flexible, and although processing unit(s) 112 and memory 110 are shown together in Figure 1, these components may be distributed and electronic communication in some examples. In some examples, more than one memory device may be used, and the memories may be co-located or distributed. The computing device 114 may be programmed (e.g. the memory 110 may be encoded with executable instructions which, when executed, cause the computing device 114 to perform actions described herein).

[060] In some examples, the memory 110 may include electronic signatures indicative of various internal states of the electrochemical cell 102. For example, threshold values for second or higher order harmonics may be stored in the memory 110. In other examples, electronic signatures may include amplitudes of responses across particular frequency ranges indicative of a particular internal state - e.g. degradation, range value, asymmetry value, charge level. The electronic signatures may be developed from empirical data in some examples. For example, other electrochemical cells (not shown in Figure 1) may be measured in certain known internal states - e.g. degradation, range values, asymmetry values, charge levels. The second and higher order harmonic responses of these electrochemical cells in known states may be determined and stored as electronic signatures of the state.

[061] The processing unit(s) 112 may conduct a comparison of the second or greater harmonic component of the response with the electronic signatures (e.g. in accordance with executable instructions stored, for example, in memory 110, and/or in accordance with custom circuitry or firmware). The processing unit(s) 112 may determine an internal state of the electrochemical cell 102 based, at least in part, on the comparison.

[062] The computing device 114 may compute a Fourier transform (e.g. a Fast Fourier Transform) of the stimulus provided by the signal generator 104 and/or the response measured by the measurement circuitry 106. The Fourier transform may yield Fourier coefficients, generally representing a magnitude for each of a plurality of harmonic components of the signal. These components may be used to conduct analysis described herein.

[063] In some examples, the computing device 114 may compute a model of the electrochemical cell 102. For example, the computing device 114 may be programmed (e.g. the memory 110 may be encoded with executable instructions for modeling) such that the processing unit(s) 112 may model behavior of the electrochemical cell 102. The model used may include parameters for electrode asymmetry. The parameters for electrode asymmetry may be derived from measurements of second order harmonic responses of electrochemical cells. The model may utilize non-symmetric charge transfer coefficients in some examples. In some examples, the computing device 114 may compare a response of the electrochemical cell 102 to a modeled (e.g. predicted) response of the electrochemical cell 102. In some examples, an indication of the internal state of the electrochemical cell 102 may be identified based on the comparison between the modeled (e.g. predicted) response and the measured response. In some examples, the measured response may be used to fit the model to the measured response, which may in some examples improve the accuracy of the model in predicting future responses.

[064] A display device 108 may be in communication with the computing device 114.

The display device 108 may be wired or wireless communication with the computing device 114. The display device 108 may display an indication of the internal state of the electrochemical cell 102 based on the second or greater harmonic component of the response. The display device 108 may be implemented using, for example, an LCD, LED, or holographic display. The display device 108 may be implemented for example using a display, a dashboard, a heads-up display, an augmented or virtual reality display, or combinations thereof.

[065] Figure 2 is a Nyquist plot of a response of a battery at several states of degradation.

[066] The Nyquist plot 200 depicts the imaginary and real potential of the third harmonic component of a battery's response (e.g. transfer function) over a range of frequencies. The Nyquist plot 200 depicts the real portion of the transfer function (e.g. voltage in mV) along the x axis and the imaginary portion of the transfer function (e.g. voltage in mV) along the y axis. The Nyquist plot 200 includes line 202, line 204, and line. Line 202 represents third harmonic components of responses of the battery across a range of frequencies when the battery is healthy. Line 204 represents third harmonic components of responses of the battery across a range of frequencies when the battery has been overdischarged a moderate amount (e.g. overdischarged to 1.5V in an example). The line 206 represents the third harmonic component of responses of the battery across a range of frequencies when the electrochemical cell 102 has been significantly overdischarged (e.g. overdischarged to 2.0V in an example).

[067] In some examples, the Nyquist plot 200 may represent empirical data that may be used to develop electronic signatures described herein. For example, shapes of the lines 202, 204, and 206 may be stored in, for example, the memory 110 of Figure 1. The signal generator 104 may provide a stimulus across a range of frequencies to the electrochemical cell 102, and the measurement circuitry 106 may measure at least third harmonic components of the response of the electrochemical cell 102. The computing device 114 may compare the response measured by the measurement circuitry 106 to the stored electronic signatures (e.g. the lines 202, 204, 206) to determine which is a best match, and provide an indication of the internal state of the electrochemical cell 102 (e.g. if the electrochemical cell 102 is healthy, moderately overdischarged, or significantly overdischarged). If the measured response is best matched to the line 202, the computing device 114 may provide an indication that the electrochemical cell 102 is healthy. If the measured response is best matched to the line 204, the computing device 114 may provide an indication that the electrochemical cell 102 has been moderately overdischarged. If the measured response is best matched to the line 206, the computing device 114 may provide an indication that the electrochemical cell 102 has been significantly overdischarged.

[068] Accordingly, in examples described herein Nyquist plot shapes of second, third, or higher order harmonics may be utilized as electronic signatures. Second, third, or higher order harmonic Nyquist plot shapes may be responses of electrochemical cells which may be analyzed to provide an indication of the internal state of electrochemical cells described herein.

[069] Nyquist plots may involve stimulating and measuring responses of electrochemical cells across a range of frequencies. In some examples, a single frequency may be used to stimulate the electrochemical cell and a threshold may be used to provide indication of an internal state of the electrochemical cell.

[070] Referring again to Figure 2, point 208, point 210, and point 212 are points on line 202, line 204, and line 206 respectively which were taken at a same frequency. Accordingly, it can be seen that a threshold of real potential magnitude may be used to discern between line 202, line 204, and line 206 at the frequency at which the points 208, 210, and 212 were taken. In some examples, the memory 110 of Figure 1 may store a real potential threshold value of, for example between the values of points 208 and 210 as a moderate degradation threshold, and a real potential threshold value of, for example, between the values of points 210 and 212 as a significant degradation threshold.

[071] In operation, the signal generator 104 may provide a stimulus to the electrochemical cell 102 at a frequency to which the points 208, 210, and 212 correspond. The third harmonic component of the response may be measured by measurement circuitry 106 and analyzed by the computing device 114. If the real potential is below the first threshold, the computing device 114 may provide an indication of the internal state of the electrochemical cell 102 as healthy. If the real potential is above the first threshold but below the second threshold, the computing device 114 may provide an indication of the internal state of the electrochemical cell 102 as moderately degraded. If the real potential is above the second threshold, the computing device 114 may provide an indication of the internal state of the electrochemical cell 102 as significantly degraded.

[072] Figure 3 is a flowchart of a method arranged in accordance with examples described herein. The method 300 may be implemented, for example using the system 100 of Figure 1.

[073] The method 300 includes stimulating non-linear modes of at least one electrochemical cell in block 302, detecting a response of the at least one electrochemical cell, including at least a second or higher order harmonic component in block 304, and displaying an indication of an internal state of the at least one electrochemical cell in block 306. [074] Block 302 recites stimulating non-linear modes of at least one electrochemical cell. For example, the electrochemical cell 102 may be stimulated by the signal generator 104. Non-linear modes generally refer to modes at which second order or higher harmonic components are present above a noise level in the response. From a physical perspective, the non-linear modes may refer to operational regions beyond where thermodynamic relationships and slow mass transfer operations dominate the electrochemical cell behavior.

[075] In some examples, a frequency and/or amplitude of the stimulus may be selected to elicit a non-linear response from the electrochemical cell. For example, a frequency and magnitude may be selected which are sufficiently large to yield a second, third, and/or higher order harmonic component in the response which is greater than a noise level.

[076] Voltage and/or current signals may be provided to electrodes of an electrochemical cell (e.g. a battery) in block 302 to achieve the described stimulating. In some examples, a single frequency may be used. In other examples, a range of stimulus frequencies and/or multiple stimulus frequencies may be used.

[077] Stimulating in block 302 may occur at rest or during use of a system containing the electrochemical cell. For example, the electrochemical cell may be implemented using a battery, such as an electric vehicle battery. The stimulating in block 302 may occur during vehicle use, such as during braking. In some examples, the stimulating in block 302 may occur periodically (e.g. hourly, daily, weekly, monthly) as a routine battery diagnostic. Periodic stimulation may allow for tracking of the electrochemical cell’s performance over time, and may allow in some examples for a warning or other indication to be provided when the electrochemical cell’s performance falls below a threshold.

[078] Block 304 recites detecting a response of the at least one electrochemical cell, including at least a second or higher order harmonic component. Generally, the second or higher order harmonic component may refer to a second or greater harmonic of the stimulus frequency. For example, the measurement circuitry 106 of Figure 1 may detect a response of the electrochemical cell 102.

[079] Block 306 recites displaying an indication of an internal state of the at least one electrochemical cell. For example, the display device 108 of Figure 1 may display indication of the internal state. The indication of the internal state may be based, at least in part, on the second or higher order harmonic components of the response detected in block 304.

[080] Any of a variety of indication of the internal state may be displayed, as discussed herein, including an indication of degradation. In some examples, the indication of degradation may include an indication of asymmetry in a charging and discharging behavior of the at least one electrochemical cell.

[081] The response detected in block 304 may be analyzed to determine the indication. The analysis may include computing a Fourier transform of the stimulus used in block 302 and the response detected in block 304.

[082] The internal state of the at least one chemical cell may be determined through analysis of the second and/or higher order harmonic components of the response detected in block 304. For example, the detected response may be compared with one or more stored signatures, each indicative of a particular internal state (e.g. degradation, asymmetry, remaining life, charge state, range).

[083] In some examples, the stored signatures may include shapes of Nyquist plots of third harmonic components of responses over a variety of frequencies. In some examples, the stored signatures may include thresholds of real or imaginary portions of the response. For example, an indication of health may be displayed if a measured real portion of a third harmonic component of a response to a stimulus frequency is below a first threshold. An indication of moderate degradation may be displayed if a measured real portion of a third harmonic component of a response to a stimulus frequency is between a first and second threshold. An indication of significant degradation may be displayed if a measured real portion of a third harmonic component of a response to a stimulus frequency is greater than a second threshold.

[084] In some examples, the internal state may be a range available to an electric vehicle using the electrochemical cell. To assess range, the harmonic response of the electrochemical cell is dependent upon the current state of charge of the battery. Accordingly, a value or ratio of the second or higher order harmonics may be used to predict the state of charge, and therefore range, of the electrochemical cell. Degradation and remaining usable life are also related to the size and shape of the harmonics. In some examples the correlation may not necessarily be one to one and machine learning techniques may be used to predict degradation and remaining usable life from the second and/or higher order harmonic responses. In some examples, the harmonic shapes/sizes may be used as features for predicting the internal state of the electrochemical cell (e.g. battery).

[085] Examples of methods described herein may be used as diagnostics for the online detection of degradative of unsafe states during battery (dis)charging.

[086] Figure 4 illustrates Fourier transforms of a stimulus and response arranged in accordance with examples described herein.

[087] Figure 4a illustrates a Fourier transform of a current stimulus provided to a battery in accordance with examples described herein. The graph in Figure 4a plots current magnitude in mA against harmonic order k (e.g. 1, 2, 3, etc.). Figure 4a illustrates the stimulus as a perturbation signal having multiple different amplitudes - 25mA, 50mA, 100mA, 200mA. Generally, the Fourier transform illustrates only a component for a first order harmonic component (e.g. k=1). The magnitude of that component increases with increasing magnitude of the perturbation signal.

[088] Figure 4b illustrates a Fourier transform of a voltage response provided from the battery responsive to the stimulus shown in Figure 4a. The graph in Figure 4b plots voltage magnitude in mV against harmonic order k (e.g. 1, 2, 3, etc.) Figure 4b illustrates the stimulus as a perturbation signal having multiple different amplitudes - 25mA, 50mA, 100mA, 200mA. As the amplitude of the perturbation signal increases, an increase may be seen in the presence of second and third order harmonic components (e.g. k=2, k=3). The inset in Figure 4b illustrates an exploded view of the second and third harmonic components. Note that the harmonic components increase with increasing stimulus amplitude (e.g. perturbation signal amplitude).

[089] From the foregoing it will be appreciated that, although specific embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without deviating from the spirit and scope of the invention. EXAMPLES

[090] Nonlinear electrochemical impedance spectroscopy (NLEIS) was applied to batteries using a 750mA-h LixCoO2/C cell purchased from AA Portable Power Corp. (Richmond, CA). The cell was held at a 3.8V state of charge and room temperature. Experiments were carried using an Autolab PGSTAT128N potentiostat with a frequency response analyzer module (Autolab FRA32). The measurements used a four electrode configuration with voltage sensing at the cell terminals.

[091] A single cosine current modulation waveform with frequency and amplitude was sent to the potentiostat:

[092]

Figure imgf000019_0001

[093] where and Re denotes the real component of the bracketed function.

Figure imgf000019_0002

The actual time domain current perturbation applied to the battery by the potentiostat, , and the measured voltage response, , were recorded for a wide range of input frequencies ( ) and amplitude (¨I) parameters. Time domain data were recorded after the system had reached a steady periodic state. A minimum of 10 steady periodic cycles were logged with time domain measurements for both current and voltage. A rest time of 15 minutes was provided between each frequency sweep to provide a consistent baseline.

[094] Fast Fourier transformation of the steady periodic current and voltage waveforms resulted in spectra containing complex Fourier coefficients at integer multiples, , of the fundamental frequency, ,

[095]

[096]

[097]

Figure imgf000019_0003

[098] As detailed below, the standard (linear) electrochemical impedance is

Figure imgf000019_0004
tied to the Fourier coefficients of current and voltage, whereas the nonlinear electrochemical impedance spectra are tied to the
Figure imgf000019_0005
voltage Fourier coefficients.

[099] In every experiment performed, the complex Fourier spectra had a harmonic structure comprised of integer values. The lack of sub-harmonic ( ) or anharmonic (non-integer ) response in the system indicates that the battery (and potentiostat) were stable, in all cases, to the finite amplitude current modulations applied to the battery. The stability of this system allows for a simplified computational approach for estimating the linear and nonlinear response of the system. [0100] A fast analytic-numeric formulation may be used, beginning by expanding all dependent variables in the governing equations and boundary condition in a complex Fourier series

Figure imgf000020_0001

[0101] where denotes any of the dependent variables (such as Li+ concentration or potential in the electrolyte or solid, current, voltage, etc.), are the complex Fourier

Figure imgf000020_0003

coefficients for the respective dependent variables, is the vector of spatial independent variables (x, r), is time, is the current modulation amplitude, and is

Figure imgf000020_0004

the fundamental frequency of the perturbation.

[0102] To analyze the linear and nonlinear harmonic response, we use the pseudo 2- dimensional (P2D) battery model to represent the coupled transport and reaction occurring in our experimental electrochemical cell. This mathematical model includes a set of coupled, nonlinear partial differential equations governing the electrolyte potential ( ), electrolyte concentration (c), solid-state potential ( ), and solid-state concentration ( ) in the porous electrodes and the electrolyte potential and electrolyte concentration in the separator. Nonlinear current-overpotential relationships at each electrode describe lithium intercalation or deintercalation rates. The effect of double- layer charging, which is typically ignored in dc models, is also included for the solid/electrolyte interfaces of each porous electrode.

[0103] The amplitude dependence of these complex Fourier coefficients can be expressed by expanding each in a regular perturbation series in powers of the current modulation amplitude,

Figure imgf000020_0002

[0104] The resulting double-indexed complex coefficients within the summation of Eq. (E) are key frequency dispersion coefficients for the Fourier coefficients at harmonic number, , and order of nonlinear coupling, . When , the governing equations and boundary conditions represent the linear response of the system to infinitesimal current modulations. When , the governing equations and boundary conditions represent the leading order 2nd harmonic response of the system of equations to finite perturbations, and so on. Solutions for , represent corrections to the leading order solutions that can be computed to better match the harmonic response for larger perturbations of the system. Thus, when

Figure imgf000021_0010
the sum of two terms in Equation (E) represents a better estimate of the first harmonic Fourier coefficient for the finite amplitude modulation than simply using the first
Figure imgf000021_0011

[0105] The practical implications of this mathematical formalism is fast computation of theoretical linear and nonlinear dynamics of a battery that can be directly compared with experiments. More specifically, the complex voltage Fourier coefficients measured experimentally at each harmonic, , can be directly computed as

[0106]

Figure imgf000021_0001

[0107] where is the Fourier coefficient for the solid state potential

Figure imgf000021_0002

evaluated at the boundary of the positive current collector ( ) and

is the value at the negative current collector . Using Eq. (E), the leading order approximations for the first three values of are

[0108]

[0109]

[0110]

[0111]

[0112]

Figure imgf000021_0003

[0113] when

Figure imgf000021_0004
(here we ignore the dc values at ) The double
Figure imgf000021_0005

indexed coefficient in Eq. (G) is identically equal to the normal (linear)

Figure imgf000021_0007

electrochemical impedance of the system. is the leading order nonlinear

Figure imgf000021_0006

electrochemical impedance derived from the second harmonic of the voltage response to a pure cosine input current and

Figure imgf000021_0008
is the leading order nonlinear electrochemical impedance derived from the third harmonic response.

[0114] Fourier coefficients for the current and voltage waveforms measured at the battery terminals, derived from experimental data, given by Equations (B) and (C), are related to the leading order double-index Fourier coefficients we compute, following the formalism of Equations (G)-(I). In particular,

[0115]

Figure imgf000021_0009
[0116]

[0117]

[0118]

Figure imgf000022_0001

[0119] In Equations (J)-(L), measured values from the Fourier transformation of the time domain data (left hand sides), are expected to be dependent on the current modulation amplitude. The coefficients of the power relationships should be, to leading order, equal to what the double-index Fourier coefficients we compute for the linear and nonlinear components of our model. Evidence that this formalism holds will be the functional amplitude dependence predicted in the equations.

[0120] Perfect implementation of Equation (A) is challenging for any power amplifier, so under some frequency and amplitude conditions there is measurable harmonic distortion in the power spectrum of the input current waveform (measured total harmonic distortion, THD, is <0.5%). Figure 4a shows the current input spectrum for for a range of perturbation amplitudes. Figure 4b shows a series of

Figure imgf000022_0005

corresponding voltage spectra. A practical implication of THD is that we use rather than for calculating the double-indexed Fourier coefficients from experimental data, since it is the actual current modulation amplitude applied to the battery. Harmonic distortion in the input signal also adds a linearly driven contribution to the higher order voltage response. This distortion is most significant at high frequencies; however, for the qualitative analysis presented here, the effect is small enough to be neglected.

[0121] In addition to a large peak at the fundamental frequency the measured

Figure imgf000022_0004

steady periodic voltage response contains measurable signals in the nonlinear harmonics

Figure imgf000022_0002
As the battery system is nonlinear, the value of the higher harmonic components ( depends nonlinearly on the amplitude of the current perturbation
Figure imgf000022_0003

and these voltage harmonics appear to grow out of the background as the perturbation amplitude is increased.

[0122] Measuring and computing the double-index voltage coefficients over a range of frequencies provides insights into the system at different physical timescales. Figure 5 shows a Nyquist representation of the experimentally measured second harmonic response at logarithmically spaced frequencies from 10kHz to 100mHz (Figure 5A) and the computed response spectra of the P2D model using base case parameters for a LixCoO2 cell (Figure 5B). A Nyquist representation of the experimentally measured response was obtained at logarithmically spaced frequencies from 10kHz to 100mHz and compared with the computed response spectra of the P2D model using base case parameters for a LixCoO2 cell. While the measured and computed first and third, harmonic coefficients were qualitatively comparable in shape,

Figure imgf000023_0004

the measured second harmonic, , differs significantly from what the base case

Figure imgf000023_0005

parameters predicted computationally (see Figures 5A and 5B). While the quantitative differences in can be attributed to a lack of optimizing the

Figure imgf000023_0003

parameters used for the particular batteries examined, the stark difference in shape and size of the computations shows that we are not correctly capturing all of the

Figure imgf000023_0002

system’s physics.

[0123] This difference is captured in the expansion of the Butler-Volmer kinetics resulting in the following second harmonic reaction term,

[0124]

[0125]

Figure imgf000023_0001

[0126] where is the overpotential, is the exchange current density, and and are the anodic and cathodic charge transfer coefficients, respectively. When these transfer coefficients are set to 0.5 as is typically assumed in battery models, the second term in Equation (M) vanishes and the second harmonic is close to zero at the frequencies dominated by the reaction kinetics (1Hz to 1kHz). The overall symmetry between the kinetics at each electrode is also mathematically present in the second harmonic as the first term in Equation (M), however, analysis shows that this term is small and contributes negligibly to the response for the parameters used.

[0127] Using non-symmetric charge transfer coefficients results in a behavior which is qualitatively similar to the experimentally measured response. Changing the anodic charge transfer coefficient, , from 0.5 to 0.65 for the reaction kinetics at the negative electrode was evaluated. Figure 6B shows the effect of changing the anodic charge transfer coefficient, , from 0.5 to 0.65 for the reaction kinetics at the negative electrode. Figure 6A is a copy of Figure 5A for reference, showing the experimentally measured second harmonic component of the battery response. Use of the non- symmetric charge transfer coefficients has improved the shape of the modeled response in Figure 6B relative to that shown in Figure 5B. Breaking the symmetry of the reaction at either electrode results in a sizeable response at the frequencies dominated by the reaction kinetics and the phase of the response depends on the direction of symmetry breaking.

[0128] Bringing together the formalism of a physics based model for interpreting the nonlinear response with the ability to measure harmonics of the lithium ion battery enables a wide range of future opportunities. For instance, nonlinear impedance based techniques could provide significant improvements over dc methods for noninvasive parameter estimation in P2D models which are used for both model predictive control as well as battery design and optimization.

[0129] Accordingly, nonlinear EIS may be applied to lithium ion batteries. A frequency domain formulation of the P2D model may be used as a tool to analyze the higher order harmonics in the voltage response to a moderate amplitude current perturbation. Comparing experimentally measured and computed harmonic coefficients shows that the typical symmetric reaction kinetics used in P2D modeling is not consistent with the measurable second harmonic in the battery.

Claims

What is claimed is: 1. A method comprising:
stimulating non-linear modes of at least one electrochemical cell using a stimulus having a stimulus frequency;
detecting a response of the at least one electrochemical cell, wherein a response frequency of the response is a second or greater harmonic of the stimulus frequency; and
based, at least in part, on the response, displaying an indication of an internal state of the at least one electrochemical cell.
2. The method of claim 1 wherein displaying the indication of the internal state comprises displaying an indication of degradation.
3. The method of claim 2 wherein the indication of degradation comprises an indication of asymmetry in a charging and discharging behavior of the at least one electrochemical cell.
4. The method of claim 2, wherein the stimulus frequency is selected to be above frequencies at which thermodynamic relationships and slow mass transfer dominate the response.
5. The method of claim 1 wherein displaying the indication of the internal state of the at least one electrochemical cell comprises displaying an indication of degradation when the response exceeds a threshold magnitude.
6. The method of claim 1 wherein the at least one electrochemical cell comprises a lithium ion battery.
7. The method of claim 1 wherein the at least one electrochemical cell comprises a battery in an electric vehicle, and wherein stimulating the non-linear modes of the at least one electrochemical cell comprises applying the stimulus during braking of the electric vehicle.
8. The method of claim 1 wherein the at least one electrochemical cell comprises a battery in an electric vehicle, and wherein stimulating the non-linear modes of the at least one electrochemical cell comprises applying the stimulus using a charging cable of the electric vehicle.
9. The method of claim 1 wherein displaying the indication of the internal state of the at least one electrochemical cell comprises displaying an indication of remaining life of the at least one electrochemical cell.
10. The method of claim 1 wherein the at least one electrochemical cell comprises a battery in an electric vehicle, and wherein displaying the indication of the internal state of the at least one electrochemical cell comprises displaying an indication of estimated range of the electric vehicle using the battery.
11. The method of claim 1 further comprising performing a comparison of the response with electronic signatures indicative of particular internal states, and wherein displaying the indication of the internal state is based, at least in part, on the comparison.
12. The method of claim 11, wherein the electronic signatures comprise Nyquist plot shapes of a second or higher harmonic component at different degradation states, and wherein the indication of the internal state comprises an indication of degradation.
13. The method of claim 11, wherein the electronic signatures comprise thresholds of real impedance of a second or higher harmonic component at different degradation states, and wherein the indication of the internal state comprises and indication of degradation.
14. A system comprising:
a signal generator configured to apply a stimulus having a stimulus frequency to at least one electrochemical cell, wherein the stimulus is configured to excite at least one non-linear mode of the at least one electrochemical cell;
measurement circuitry configured to detect a response of the at least one electrochemical cell to the stimulus wherein the response includes a second or greater harmonic component; and
a display device configured to display an indication of an internal state of the at least one electrochemical cell based, at least in part of the second or greater harmonic component of the response.
15. The system of claim 14, wherein the stimulus frequency is selected to be above frequencies at which thermodynamic relationships and slow mass transfer dominate the response.
16. The system of claim 14 wherein the at least one electrochemical cell comprises a battery of an electric vehicle.
17. The system of claim 16 wherein the signal generator comprises a component of a charging system for the electric vehicle.
18. The system of claim 16 wherein the signal generator is configured to apply the stimulus during braking of the electric vehicle.
19. The system of claim 16, wherein the indication of the internal state comprises an indication of a range of the electric vehicle using the battery.
20. The system of claim 16, wherein the indication of the internal state comprises an indication of degradation of the battery.
21. The system of claim 14 further comprising a memory configured to store electronic signatures representative of particular internal states, the system further comprising at least one processing unit configured to conduct a comparison of the second or greater harmonic component of the response with the electronic signatures, and wherein the indication of the internal state is based, at least in part, on the comparison.
22. The system of claim 21 wherein the electronic signatures are derived from empirical data.
23. The system of claim 14 further comprising at least one processing unit and a memory encoded with executable instructions for modeling that, when executed, cause the at least one processing unit to model behavior of the at least one electrochemical cell using parameters for electrode asymmetry.
24. The system of claim 23 wherein the executable instructions for modeling further include instructions for predicting a predicted response of the at least one electrochemical cell and comparing the predicted response with the response, and wherein the indication of the internal state is based, at least in part, on the comparing.
25. The system of claim 24 wherein the executable instructions for modeling further include instructions for fitting a model to the response.
PCT/US2016/022119 2015-03-11 2016-03-11 Electrochemical cell diagnostic systems and methods using second order and higher harmonic components WO2016145374A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US201562131698 true 2015-03-11 2015-03-11
US62/131,698 2015-03-11
US201662280616 true 2016-01-19 2016-01-19
US62/280,616 2016-01-19

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US15556853 US20180043778A1 (en) 2015-03-11 2016-03-11 Electrochemical cell diagnostic systems and methods using second order and higher harmonic components

Publications (1)

Publication Number Publication Date
WO2016145374A1 true true WO2016145374A1 (en) 2016-09-15

Family

ID=56878894

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/022119 WO2016145374A1 (en) 2015-03-11 2016-03-11 Electrochemical cell diagnostic systems and methods using second order and higher harmonic components

Country Status (2)

Country Link
US (1) US20180043778A1 (en)
WO (1) WO2016145374A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060284617A1 (en) * 2002-02-19 2006-12-21 Kozlowski James D Model-based predictive diagnostic tool for primary and secondary batteries
US20110196545A1 (en) * 2009-05-28 2011-08-11 Toyota Jidosha Kabushiki Kaisha Charging system, vehicle, and charging system control method
US20110254564A1 (en) * 2010-04-16 2011-10-20 Avo Multi-Amp Corporation D/B/A Megger System and Method for Detecting Voltage Dependence in Insulation Systems Based on Harmonic Analysis
US20120143435A1 (en) * 2010-12-03 2012-06-07 Kia Motors Corporation Method for estimating remaining travel distance of electric vehicle
US20130288104A1 (en) * 2012-03-16 2013-10-31 Lg Chem, Ltd. Battery cell of asymmetric structure and battery pack employed with the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060284617A1 (en) * 2002-02-19 2006-12-21 Kozlowski James D Model-based predictive diagnostic tool for primary and secondary batteries
US20110196545A1 (en) * 2009-05-28 2011-08-11 Toyota Jidosha Kabushiki Kaisha Charging system, vehicle, and charging system control method
US20110254564A1 (en) * 2010-04-16 2011-10-20 Avo Multi-Amp Corporation D/B/A Megger System and Method for Detecting Voltage Dependence in Insulation Systems Based on Harmonic Analysis
US20120143435A1 (en) * 2010-12-03 2012-06-07 Kia Motors Corporation Method for estimating remaining travel distance of electric vehicle
US20130288104A1 (en) * 2012-03-16 2013-10-31 Lg Chem, Ltd. Battery cell of asymmetric structure and battery pack employed with the same

Also Published As

Publication number Publication date Type
US20180043778A1 (en) 2018-02-15 application

Similar Documents

Publication Publication Date Title
Fotouhi et al. A review on electric vehicle battery modelling: From Lithium-ion toward Lithium–Sulphur
Roscher et al. Dynamic electric behavior and open-circuit-voltage modeling of LiFePO4-based lithium ion secondary batteries
Schmidt et al. Experiment-driven electrochemical modeling and systematic parameterization for a lithium-ion battery cell
Widodo et al. Intelligent prognostics for battery health monitoring based on sample entropy
US7710119B2 (en) Battery tester that calculates its own reference values
Andre et al. Advanced mathematical methods of SOC and SOH estimation for lithium-ion batteries
Forman et al. Genetic identification and fisher identifiability analysis of the Doyle–Fuller–Newman model from experimental cycling of a LiFePO4 cell
Rezvanizaniani et al. Review and recent advances in battery health monitoring and prognostics technologies for electric vehicle (EV) safety and mobility
US6534954B1 (en) Method and apparatus for a battery state of charge estimator
US20060284617A1 (en) Model-based predictive diagnostic tool for primary and secondary batteries
Berecibar et al. Critical review of state of health estimation methods of Li-ion batteries for real applications
US6781382B2 (en) Electronic battery tester
Smith et al. Solid-state diffusion limitations on pulse operation of a lithium ion cell for hybrid electric vehicles
Li et al. A comparative study of state of charge estimation algorithms for LiFePO4 batteries used in electric vehicles
US7521895B2 (en) System and method for determining both an estimated battery state vector and an estimated battery parameter vector
Vasebi et al. Predicting state of charge of lead-acid batteries for hybrid electric vehicles by extended Kalman filter
Shahriari et al. Online state-of-health estimation of VRLA batteries using state of charge
US20060111870A1 (en) Method and system for joint battery state and parameter estimation
Klein et al. Electrochemical model based observer design for a lithium-ion battery
Waag et al. Adaptive estimation of the electromotive force of the lithium-ion battery after current interruption for an accurate state-of-charge and capacity determination
Hu et al. A comparative study of equivalent circuit models for Li-ion batteries
Gholizadeh et al. Estimation of state of charge, unknown nonlinearities, and state of health of a lithium-ion battery based on a comprehensive unobservable model
Eddahech et al. Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks
US20070001679A1 (en) Method and apparatus of estimating state of health of battery
Moura et al. PDE estimation techniques for advanced battery management systems—Part I: SOC estimation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16762646

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16762646

Country of ref document: EP

Kind code of ref document: A1