WO2016143446A1 - Medical device - Google Patents

Medical device Download PDF

Info

Publication number
WO2016143446A1
WO2016143446A1 PCT/JP2016/053720 JP2016053720W WO2016143446A1 WO 2016143446 A1 WO2016143446 A1 WO 2016143446A1 JP 2016053720 W JP2016053720 W JP 2016053720W WO 2016143446 A1 WO2016143446 A1 WO 2016143446A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer tube
moving
inner tube
medical device
balloon
Prior art date
Application number
PCT/JP2016/053720
Other languages
French (fr)
Japanese (ja)
Inventor
和俊 大橋
賢二 大山
Original Assignee
テルモ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by テルモ株式会社 filed Critical テルモ株式会社
Publication of WO2016143446A1 publication Critical patent/WO2016143446A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/962Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve
    • A61F2/966Instruments specially adapted for placement or removal of stents or stent-grafts having an outer sleeve with relative longitudinal movement between outer sleeve and prosthesis, e.g. using a push rod
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/95Instruments specially adapted for placement or removal of stents or stent-grafts
    • A61F2/958Inflatable balloons for placing stents or stent-grafts

Definitions

  • the present invention relates to a medical device.
  • a medical instrument such as a stent or a drug-eluting balloon may be used to perform a local treatment on a site to be treated such as a stenosis occurring in a living organ.
  • a delivery apparatus including a long catheter having flexibility is generally used in order to enable delivery to a desired position in a living body lumen.
  • Patent Document 1 discloses a stent delivery that enables delivery to a treatment target site in a living body lumen in a state where a stent (self-expanding stent) is accommodated on the distal end side of a catheter including an outer tube and an inner tube.
  • An apparatus is disclosed.
  • the stent is exposed from the catheter by a simple operation of pushing and pulling the pulling wire fixed to the outer tube by a hand operation, and a treatment for expanding the stenosis portion as a treatment target site by the stent is performed. Implementation is possible.
  • the length of the catheter is designed to be long. Therefore, it is necessary to design the length of the pulling wire to be long.
  • the pulling wire is lengthened, the pulling wire is likely to be twisted or bent, and the responsiveness of the catheter tip to the operation at hand is lowered, and the operability may be impaired.
  • the present invention has been made to solve the above-described problems, and provides a medical device excellent in operability that can suitably deliver a medical instrument to a desired position in a living organ. Objective.
  • the medical device that achieves the above object includes an inner tube and an outer tube disposed so as to cover an outer peripheral surface of the inner tube, a shaft portion that is inserted into a living organ, and the inner tube And a moving unit that is disposed between the outer tube and the outer tube, and moves relative to the inner tube along the axial direction by expanding and contracting along the axial direction of the shaft unit. Before the moving part is expanded and contracted, it is accommodated between the inner tube and the outer tube, and when the moving part is expanded and contracted, it is exposed from the shaft part and is applied to the treatment target site in the living organ. And a treatment unit for performing a predetermined treatment.
  • the outer tube can be moved relative to the inner tube by expanding and contracting the moving unit disposed in the shaft portion.
  • the treatment portion can be treated by exposing the treatment portion more reliably and easily from the shaft portion.
  • FIG. 1 is an overall configuration diagram of a medical device according to an embodiment of the present invention.
  • 2 is a cross-sectional view of the distal end portion of the medical device shown in FIG.
  • FIG. 3 is a cross-sectional view of the medical device according to the first embodiment.
  • FIG. 3A shows a state before the moving part is stretched and deformed
  • FIG. 3B shows that the moving part is stretched and deformed. Shown later.
  • FIG. 4 shows a distal end portion of the medical device related to the proportionality
  • FIGS. 4A to 4D are diagrams for explaining operations by the medical device related to the proportionality.
  • FIG. 5 is a cross-sectional view of a medical device according to a modified example of the first embodiment.
  • FIG. 5 is a cross-sectional view of a medical device according to a modified example of the first embodiment.
  • FIG. 5 (A) shows a state before the moving part expands and contracts
  • FIG. 5 (B) shows the moving part.
  • the state after elastic deformation is shown.
  • FIG. 6 is a cross-sectional view of the medical device according to the second embodiment.
  • FIG. 6 (A) shows a state before the moving part is stretched and deformed
  • FIG. 6C shows a state in which a portion exposed from the shaft portion of the moving portion is further expanded and contracted.
  • FIG. 7 is a cross-sectional view of the medical device according to the third embodiment.
  • FIG. 7 (A) shows a state before the moving part is stretched and deformed
  • FIG. 7 (B) shows that the moving part is stretched and deformed. Shown later.
  • FIG. 8 is a cross-sectional view of a medical device according to a modification of the third embodiment.
  • FIG. 8 (A) shows a state before the moving part is expanded and contracted
  • FIG. 8 (B) shows the moving part. The state after elastic deformation is shown.
  • FIG. 1 is an overall configuration diagram of a stent delivery system 10 (corresponding to a medical device) according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the distal end portion of the stent delivery system 10 shown in FIG.
  • FIG. 3 is a cross-sectional view of the stent delivery system 10 according to the first embodiment.
  • FIG. 3 (A) shows a state before the moving part 200 is stretched and deformed
  • FIG. 3 (B) shows the moving part 200. Shows the state after the elastic deformation.
  • FIG. 4 shows the distal end side portion of the stent delivery system 10 ′ according to the proportionality
  • FIGS. 4A to 4D are diagrams for explaining the operation by the stent delivery system 10 ′ according to the proportionality. .
  • the stent delivery system 10 is used to place the stent 300 in a living body lumen.
  • the stent 300 is generally used for dilated treatment of lesions (corresponding to a site to be treated) such as stenosis or occlusion occurring in a biological lumen (biological organ) such as a blood vessel, bile duct, trachea, esophagus, or urethra. used.
  • the stent 300 is expanded by a balloon 210 mounted with the stent 300 (balloon expandable stent 320), and is expanded by removing a member that suppresses expansion from the outside (self-expandable stent 310).
  • a balloon 210 mounted with the stent 300 balloon expandable stent 320
  • self-expandable stent 310 self-expandable stent 320
  • an example using the self-expandable stent 310 will be described, and in an embodiment 2 described later, an example using the balloon expandable stent 320 will be described (see FIG. 6).
  • the stent delivery system 10 is disposed between a shaft portion 100 to be inserted into a living body lumen, an inner tube 110 and an outer tube 120, and an axis of the shaft portion 100.
  • the movable portion 200 that moves the inner tube 110 relative to the outer tube 120 along the axial direction by expanding and contracting along the direction, and a predetermined treatment on the treatment target site in the living body lumen
  • a self-expanding stent 310 (corresponding to a treatment unit) to be implemented and a hub 400 that operates expansion and contraction of the moving unit 200 are included.
  • it has the tube member 510 mentioned later which transfers a pressurization medium, and the insertion pipe
  • the side inserted into the body cavity is referred to as the distal end side (the direction of arrow A shown in the figure), and the side on which the hub 400 serving as the proximal side is provided is the proximal end side (the direction of arrow B shown in the figure). ).
  • the longitudinal direction of the shaft portion 100 is referred to as the axial direction.
  • the shaft portion 100 includes an inner tube 110 and an outer tube 120 disposed so as to cover the outer peripheral surface of the inner tube 110, and is inserted into a living body lumen.
  • the inner tube 110 is constituted by a long tubular body in which a guide wire lumen 110a penetrating from the distal end to the proximal end is formed.
  • a guide wire (not shown) that guides the stent delivery system 10 to a stenosis in the living body lumen is inserted through the guide wire lumen 110a.
  • a tip member 130 is disposed at the forefront of the inner tube 110.
  • the tip member 130 is fixed to the tip portion of the inner tube 110 by a stopper 131.
  • the stopper 131 is embedded in the tip member 130 and prevents the tip member 130 from being detached.
  • the stopper 131 is preferably formed of a metal such as stainless steel, for example.
  • the distal end member 130 has a shape that gradually decreases in diameter toward the distal end, and is easily formed into a living body lumen.
  • An opening 110 b is formed at the tip of the tip member 130.
  • the tip member 130 may be constituted by a member separate from the inner tube 110 or may be constituted integrally by the same member as the inner tube 110.
  • a distal-side movement restricting portion 111 that abuts on the distal end side of the self-expandable stent 310 and restricts movement toward the distal end side, and a first fixing portion described later 220 is fixed.
  • the distal end side movement restricting portion 111 and the first fixing portion 220 are formed in an annular shape around the longitudinal axis.
  • the distal end side movement restricting portion 111 has a tapered surface whose proximal end portion is reduced in diameter toward the proximal end side. For this reason, when releasing the self-expanding stent 310, which will be described later, the distal-side movement restricting portion 111 does not become an obstacle, and the stent delivery system 10 after the self-expanding stent 310 is released can be easily collected.
  • the proximal end side of the inner tube 110 is formed obliquely so as to incline toward the proximal end side, and is provided so as to communicate with a guide wire outlet hole 122a of the outer tube 120 described later. . This facilitates guide wire guidance.
  • the material for forming the inner tube 110 it is preferable to use a flexible material.
  • a flexible material for example, polyolefins such as polyethylene and polypropylene, polyamides, polyamide elastomers, polyesters such as polyethylene terephthalate, polyester elastomers, fluorine resins such as polytetrafluoroethylene (PTFE), PEEK, polyimide, and the like can be used.
  • PTFE polytetrafluoroethylene
  • PEEK polytetrafluoroethylene
  • polyimide polyimide
  • the material for forming the tip member 130 it is preferable to use a material having flexibility.
  • synthetic resin elastomers such as olefin elastomer, polyamide elastomer, styrene elastomer, polyurethane, urethane elastomer, fluororesin elastomer, synthetic rubber such as urethane rubber, silicone rubber, butadiene rubber, natural rubber such as latex rubber, etc. Rubbers can be used.
  • the outer tube 120 is disposed on the distal end side, and is disposed on the proximal side of the first outer tube 121 that houses the self-expanding stent 310 and the first outer tube 121. And a second outer tube 122.
  • the first outer tube 121 constitutes an accommodating portion 121a that can be accommodated in a state where the self-expandable stent 310 is compressed radially inward between the first outer tube 121 and the inner tube 110.
  • the accommodating portion 121a is formed by a portion surrounded by the distal end side movement restricting portion 111, the first fixing portion 220, and the first outer tube 121.
  • the self-expanding stent 310 is exposed from the shaft portion 100 by being moved to the proximal end side with respect to the inner tube 110 by moving the first outer tube 121 to the stenosis portion in the living body lumen. At this time, the self-expanding stent 310 is subjected to a frictional force to move to the proximal end side with the movement of the first outer tube 121. However, the movement of the self-expanding stent 310 to the proximal end side is restricted by contacting the first fixing portion 220. Thus, the self-expanding stent 310 can be released without moving from the place where the stenosis is disposed.
  • a second fixing portion 230 described later is fixed to the inner surface of the first outer tube 121.
  • the second fixing portion 230 is formed in an annular shape around the longitudinal axis.
  • the second outer tube 122 has an outer diameter smaller than the inner diameter of the first outer tube 121, and is slidably inserted into the first outer tube 121. Thereby, the operation of moving the first outer tube 121 relative to the inner tube 110 can be facilitated.
  • the second outer tube 122 has a guide wire lead-out hole 122 a that protrudes obliquely outward in the radial direction at the proximal end portion of the second outer tube 122.
  • the guide wire lead-out hole 122a is provided so as to be able to communicate with the guide wire lumen 110a of the inner tube 110, and the guide wire can be led out of the outer tube 120.
  • An insertion tube 520 (described later) is fixed in the lumen of the proximal end portion of the second outer tube 122.
  • the moving unit 200 is disposed between the inner tube 110 and the outer tube 120 and closer to the proximal end side than the housing unit 121a.
  • the moving unit 200 includes a balloon 210 that expands and contracts in the axial direction, a first fixing unit 220 (corresponding to the tip of the moving unit) fixed to the inner tube 110, and a second fixed to the outer tube 120.
  • a fixed portion 230 (corresponding to a base end portion of the moving portion).
  • the balloon 210 is expanded and deformed when a pressurized medium such as physiological saline or a contrast medium is supplied to the inside.
  • the pressurized medium is supplied into the balloon 210 via the tube member 510.
  • the structure of the balloon 210 is not particularly limited, but is preferably a structure that is easily extended in the axial direction.
  • the balloon 210 is configured by a bellows structure, and is folded and contracted before expansion and is expanded in the axial direction after expansion.
  • the outer tube 120 is moved relative to the inner tube 110 along the axial direction.
  • the moving part 200 can be easily expanded and contracted.
  • the material for forming the balloon 210 is not particularly limited, but examples thereof include polyethylene, polypropylene, polyolefins of ethylene-propylene copolymer, polyesters such as polyethylene terephthalate, fluorine resins such as polytetrafluoroethylene (PTFE), polyvinyl chloride, and the like. Further, ethylene-vinyl acetate copolymer, cross-linked ethylene-vinyl acetate copolymer, thermoplastic resin such as polyurethane, polyamide elastomer, polystyrene elastomer, silicone rubber, latex rubber and the like can be used. Among the above, PTFE can be preferably used.
  • the sliding resistance between the first outer tube 121 and the balloon 210 can be lowered and the balloon 210 can be easily deformed. It is also possible to coat a material having biocompatibility, in particular antithrombotic properties.
  • the antithrombogenic material for example, dimethylacrylamide polymer can be used.
  • the length L1 in the axial direction of the balloon 210 in a folded state can be formed to be, for example, 5 mm or less.
  • the length L2 in the axial direction of the balloon 210 in the expanded state is, for example, 10 to 250 mm, and the diameter d is, for example, 1.0 to 1.8 mm. it can.
  • the distance L3 between the portion having the maximum outer diameter of the balloon 210 and the lumen of the first outer tube 121 is preferably 0.1 mm or more, for example.
  • the first fixing portion 220 is fixed to the inner tube 110 and is disposed on the proximal end side of the accommodating portion 121a that accommodates the stent 300.
  • the second fixing portion 230 is fixed to the proximal end of the balloon 210.
  • the means for fixing the first fixing portion 220 to the inner tube 110 and the means for fixing the second fixing portion 230 to the outer tube 120 are not particularly limited, but for example, fixing means such as fusion or adhesive may be used. it can.
  • the first fixing portion 220 and the second fixing portion 230 are configured to be able to move apart as the balloon 210 is expanded and deformed.
  • a tube member 510 for supplying a pressurized medium is inserted between the second fixing portion 230 and the inner tube 110.
  • the tube member 510 is liquid-tight and air-tight.
  • the inner tube 110 has a slidable structure, and in this embodiment, the packing 800 is provided between the second fixing portion 230 and the inner tube 110.
  • the present invention is not limited to this, and any structure may be used as long as the pressurized medium does not leak from the inside of the balloon 210 and is liquid-tight / air-tight and the inner tube 110 is slidable.
  • the forming material of the first fixing part 220 and the second fixing part 230 it is preferable to use a material having high rigidity.
  • a metal such as stainless steel or a resin can be used.
  • fixed part 230 were fixed to the balloon 210, it is not limited to this, The balloon 210 is not fixed, but the 1st fixing
  • the self-expanding stent 310 is accommodated in the accommodating portion 121a in a state of being compressed inward in the radial direction around the longitudinal axis of the outer tube 120 when inserted into the living body lumen. As the outer tube 120 moves toward the proximal end, the accommodating portion 121a is exposed to the outside, and the self-expanding stent 310 is released to the stenosis portion in the living body lumen. This expands radially outward and restores the shape before compression.
  • the stent 300 is formed in a substantially cylindrical shape with a mesh shape having a large number of openings.
  • a superelastic alloy such as a Ni—Ti alloy can be preferably used.
  • the hub 400 is arranged on the proximal end side (hand side), and operates the expansion / contraction deformation of the moving unit 200.
  • the hub 400 includes a supply device (not shown) for supplying and discharging the pressurized medium, and a connection portion 410 that can be connected in a liquid-tight and air-tight manner.
  • the connection unit 410 can be configured by, for example, a luer taper configured such that a tube connected to the supply device can be connected and separated.
  • the supply device supplies a pressurized medium into the balloon 210 to expand the balloon 210 into a predetermined shape.
  • a known indeflator or the like can be used as the supply device.
  • the pressurized medium used for the expansion of the balloon 210 can flow into the shaft portion 100 via the connection portion 410 of the hub 400.
  • the pressurized medium is supplied to the balloon 210 via the tube member 510.
  • the tube member 510 is arranged in parallel so as to follow the outer surface of the inner tube 110, and is configured by a long tubular body in which a lumen that passes through the pressurized medium through the tip end to the base end is formed. .
  • the tube member 510 transfers the pressurized medium and supplies it to the balloon 210 or discharges it from the balloon 210.
  • the proximal end of the balloon 210 is joined to the distal end of the tube member 510 in a liquid-tight or air-tight manner by welding or the like.
  • the tube member 510 is provided on the outer surface side of the inner tube 110, the present invention is not limited to this.
  • the inner tube 110 may be inserted into the tube member 510.
  • the inner tube 110 and the tube member 510 are configured by a double tube structure concentrically aligned, and a lumen for supplying a pressurized medium may be formed between the inner tube 110 and the tube member 510. Good.
  • the insertion tube 520 is constituted by a long tubular body extending from the proximal end portion of the balloon 210 to the hub 400, and the tube member 510 is inserted therethrough.
  • Examples of the material for forming the tube member 510 and the insertion tube 520 include polyethylene, polypropylene, polyolefins such as ethylene-propylene copolymer and ethylene-vinyl acetate copolymer, thermoplastic resins such as soft polyvinyl chloride, silicone rubber, Various rubbers such as latex rubber, various elastomers such as polyurethane elastomer, polyamide elastomer, and polyester elastomer, and crystalline plastics such as polyamide, crystalline polyethylene, and crystalline polypropylene can be used.
  • an antithrombotic substance such as heparin, prostaglandin, urokinase, arginine derivative or the like can be blended to obtain a material having antithrombotic properties.
  • a guide wire is inserted into the opening 110b of the tip member 130 shown in FIGS. 1 and 2, and a guide wire (not shown) is led out from the guide wire lead-out hole 122a.
  • the shaft portion 100 is inserted into the living body and pushed along the guide wire, and the accommodating portion 121a of the first outer tube 121 is disposed in the narrowed portion.
  • the balloon 210 is in a contracted state before being expanded (expanded).
  • the self-expanding stent 310 is disposed in advance in the accommodating portion 121a in a contracted state.
  • the pressurized medium is supplied to the balloon 210 from the supply device.
  • the balloon 210 is expanded and deformed in the axial direction, and the first fixing portion 220 located on the distal end side is moved to the distal end side, and the second fixing portion located on the proximal end side. 230 move away from each other toward the base end side. Due to this separation movement, the moving part 200 expands and moves the outer pipe 120 to which the second fixing part 230 is fixed relative to the inner pipe 110 to which the first fixing part 220 is fixed.
  • the self-expandable stent 310 is exposed from the shaft portion 100 by moving the inner tube 110 and the outer tube 120 relative to each other along the axial direction.
  • the self-expanding stent 310 is disposed closer to the distal end side of the shaft portion 100 than the first fixing portion 220 in a state before the moving portion 200 is extended (see FIG. 3A). For this reason, when the stent 310 is exposed, the distance for moving the outer tube 120 with respect to the inner tube 110 can be shortened, so that the self-expanding stent 310 can be released to the stenosis more quickly. It becomes possible.
  • the stent delivery system 10 ′ includes an inner tube 110 ′ and an outer tube disposed around the inner tube 110 ′.
  • the self-expandable stent 310 is delivered to the living body lumen in a state where the self-expandable stent 310 is accommodated on the distal end side of the shaft portion 100 ′, and the outer tube 120 ′ is moved relative to the inner tube 110 ′. Is placed in the body lumen.
  • the stent delivery system 10 ′ according to the comparative example is a wire pulling type in which the pulling wires 700a and 700b fixed to the outer tube 120 are pulled to the proximal side by a hand operation to move the outer tube 120 ′ to the proximal side.
  • This embodiment is different from the present embodiment in that it has a moving mechanism.
  • FIG. 4 (A) shows the distal end portion of the stent delivery system 10 'before towing. In this state, it is inserted into the living body lumen from the distal end side.
  • the static frictional resistance between the self-expandable stent 310 and the outer tube 120 ′ in the accommodating portion 121 a is increased by a restoring force that the self-expandable stent 310 tries to spread radially outward.
  • the pulling force acting along with the pulling is also increased, so that the static frictional resistance is further increased.
  • the self-expanding stent 310 moves toward the proximal end due to static frictional resistance. Accordingly, the first fixing portion 220 ′ fixed to the inner tube 110 ′ on the proximal end side of the self-expandable stent 310 is moved by the self-expandable stent 310 in the proximal direction by being pressed by the self-expandable stent 310. It takes. Therefore, since the first fixing portion 220 ′ applies a force in the direction of moving the inner tube 110 toward the proximal end, the proximal end of the inner tube 110 ′ may be bent.
  • the propulsive force causes the self-expandable stent 310 to jump over the stenosis portion to be treated and jump to an unintended place or the length of the self-expandable stent 310. This may cause a so-called shortening phenomenon in which the length becomes shorter than the target length.
  • the outer tube 120 is moved with respect to the inner tube 110 by the expansion / contraction deformation of the moving unit 200 disposed in the shaft unit 100 as described above. It can be moved relatively. For this reason, regardless of the distance from the operation unit (such as the hub 400) disposed outside the living body to the treatment target site, the distance between the moving unit 200 serving as a power source and the outer tube 120 serving as the moving target can be kept short. it can.
  • the first fixing portion 220 moves away from the distal end side, and the second fixing portion 230 moves away from the proximal end side. Since the 1st fixing
  • the stent delivery system 10 includes the inner tube 110 and the outer tube 120 disposed so as to cover the outer peripheral surface of the inner tube 110, and is inserted into a living body lumen.
  • the shaft portion 100 is disposed between the inner tube 110 and the outer tube 120, and the outer tube 120 is extended with respect to the inner tube 110 along the axial direction by expanding and contracting along the axial direction of the shaft portion 100.
  • the moving part 200 to be moved relatively and before the moving part 200 expands and contracts are accommodated between the inner tube 110 and the outer tube 120, and are exposed from the shaft part 100 when the moving part 200 expands and contracts and the living body
  • a self-expandable stent 310 that performs a predetermined treatment on a treatment target site in the lumen.
  • the outer tube 120 can be moved relative to the inner tube 110 by the expansion and contraction of the moving unit 200 disposed in the shaft unit 100. For this reason, force can be easily transmitted to the outer tube 120, and the self-expandable stent 310 can be more reliably and easily exposed from the shaft portion 100 to perform the treatment of the stenosis.
  • first fixing part 220 is fixed to the inner pipe 110
  • second fixing part 230 is fixed to the outer pipe 120.
  • the inner pipe 110 and the outer pipe 120 are The self-expanding stent 310 is exposed from the shaft portion 100 by moving forward and backward with respect to each other along the axial direction.
  • the inner tube 110 can be prevented from being bent. As a result, it is possible to prevent a so-called jumping phenomenon or shortening phenomenon from occurring when a treatment portion such as the self-expanding stent 310 is placed.
  • the self-expanding stent 310 is disposed on the distal end side of the shaft portion 100 with respect to the first fixing portion 220 in a state before the moving portion 200 extends.
  • the self-expandable stent 310 is treated more quickly in the stenosis. be able to.
  • the outer tube 120 includes a first outer tube 121 to which the moving unit 200 is fixed, and a second outer tube 122 that is slidably inserted into the first outer tube 121.
  • the operation of moving the first outer tube 121 relative to the inner tube 110 can be facilitated.
  • the moving unit 200 is configured by a balloon 210 that expands and contracts in the axial direction by inflow and discharge of the pressurized medium.
  • the moving part 200 can be easily expanded and contracted.
  • the treatment unit is accommodated in a state compressed inward in the radial direction of the shaft before the moving unit 200 expands, and a living body that is a living organ after the moving unit 200 expands and is exposed from the shaft unit 100. It includes a self-expanding stent 310 that is placed in the lumen.
  • the self-expandable stent 310 can be smoothly placed in the stenosis.
  • FIG. 5 is a cross-sectional view of a stent delivery system 10a according to a modification of the first embodiment.
  • FIG. 5 (A) shows a state before the moving part 200 is stretched and deformed, and FIG. The state after the moving part 200 expands and contracts is shown.
  • a stent delivery system 10a according to a modification of the first embodiment will be described with reference to FIG.
  • the stent delivery system 10a according to the modified example of the first embodiment is different from the first embodiment only in the configuration of the moving part 200, and the self-expandable stent 310 is exposed from the shaft part 100 by contracting and deforming the moving part 200. This is different from the first embodiment.
  • Other configurations are the same as those of the first embodiment. Hereinafter, description of the same configuration as that of the first embodiment will be omitted.
  • the member which has the structure similar to 1st Embodiment it demonstrates using the same code
  • the moving unit 200 is disposed between the inner tube 110 and the outer tube 120 on the proximal side from the housing unit 121a, as in the first embodiment.
  • the moving unit 200 includes a balloon 210 that is contracted and deformed in the axial direction, a first fixing unit 220 that is fixed to the outer tube 120, and a second fixing unit 230 that is fixed to the inner tube 110.
  • the balloon 210 is contracted and deformed when the pressurized medium is discharged from a state where the pressurized medium such as physiological saline or contrast medium is filled inside.
  • the structure and forming material of the balloon 210 are the same as those in the first embodiment.
  • the first fixing part 220 is fixed to the tip of the balloon 210.
  • the second fixing portion 230 is fixed to the inner tube 110 and is disposed on the proximal end side of the accommodating portion 121 a that accommodates the self-expanding stent 310.
  • the fixing means of the first fixing part 220 and the second fixing part 230 is the same as in the first embodiment.
  • the present invention is not limited to fixing, and any structure may be used as long as the first fixing unit 220 and the second fixing unit 230 can be moved by following deformation of the balloon 210 by engagement or the like.
  • the first fixing portion 220 and the second fixing portion 230 are configured to be able to move closer together with the contraction deformation of the balloon 210.
  • Other configurations and forming materials of the first fixing portion 220 and the second fixing portion 230 are the same as those in the first embodiment.
  • the accommodating portion 121a of the self-expandable stent 310 of the first outer tube 121 is disposed in the narrowed portion.
  • the balloon 210 is in an expanded state with the inside filled with a pressurized medium.
  • the self-expanding stent 310 is disposed in advance in the accommodating portion 121a in a contracted state.
  • the pressurized medium is discharged from the balloon 210 by the supply device.
  • the balloon 210 is contracted and deformed in the axial direction, and the first fixing portion 220 located on the distal end side is moved to the proximal end side, and the second fixed portion located on the proximal end side.
  • the parts 230 move toward each other toward the tip side.
  • the moving part 200 contracts, and the outer tube 120 to which the first fixing part 220 is fixed is moved relative to the inner pipe 110 to which the second fixing part 230 is fixed.
  • the self-expanding stent 310 is exposed from the shaft portion 100 and is placed in the stenosis portion.
  • the stent delivery system 10b according to the modification of the first embodiment obtains the same effect by the same configuration as that of the first embodiment. Moreover, the following effects are further exhibited by the following configuration characteristic of the modification of the first embodiment.
  • the first fixing portion 220 is fixed to the outer tube 120, and the proximal end portion of the moving portion 200 is fixed to the inner tube 110.
  • the inner tube 110 and the outer tube 120 move closer to each other along the axial direction when the tube 200 contracts, the self-expanding stent 310 is exposed from the shaft portion 100.
  • the shaft portion 100 is contracted and reduced in size, so that the shaft portion 100 is removed from the living body in a reduced size. Is possible.
  • FIG. 6 is a cross-sectional view of the stent delivery system 10b according to the second embodiment.
  • FIG. 6 (A) shows a state before the moving part 200 expands and contracts
  • FIG. 6 (B) shows the moving part 200.
  • FIG. 6C shows a state where the portion 210a exposed from the shaft portion 100 of the moving unit 200 is further stretched and deformed.
  • the stent delivery system 10b according to the second embodiment will be described with reference to FIG.
  • the stent delivery system 10b according to the second embodiment is different from the first embodiment in that when the moving part 200 extends, a part of the moving part 200 is exposed from the shaft part 100 and further expands and deforms in the radial direction. .
  • description of the same configuration as that of the first embodiment will be omitted.
  • the member which has the structure similar to 1st Embodiment it demonstrates using the same code
  • a balloon expandable stent 320 is used as the stent 300.
  • the stent 300 used in this embodiment is not limited to the balloon expandable stent 320, and a self-expandable stent 310 may be used.
  • the balloon 210 is expandable in the axial direction and the radial direction.
  • the structure of the balloon 210 is the same as that of the first embodiment.
  • the material for forming the balloon 210 can be the same as that of the first embodiment, but it is preferable to form the balloon 210 with a configuration having different material properties on the distal end side and the proximal end side.
  • the portion exposed from the shaft portion 100 on the distal end side of the balloon 210 is more easily deformed radially outward.
  • the balloon 210 may be formed of the same material.
  • the balloon expandable stent 320 is disposed on the outer surface side of the balloon 210 in a state before the moving part 200 is extended. Thereby, the balloon expandable stent 320 can be easily expanded radially outward as the balloon 210 is expanded in the radial direction.
  • the accommodating portion 121a of the balloon expandable stent 320 of the first outer tube 121 is disposed in the narrowed portion.
  • the balloon 210 is in a contracted state before being expanded (expanded).
  • the balloon expandable stent 320 is arranged in advance in the accommodating portion 121a.
  • a pressurized medium is supplied to the balloon 210 to expand and deform the balloon 210 in the axial direction.
  • the moving unit 200 extends to move the outer tube 120 to which the second fixing unit 230 is fixed relative to the inner tube 110 to which the first fixing unit 220 is fixed.
  • the balloon expandable stent 320 is exposed from the shaft portion 100 by the inner tube 110 and the outer tube 120 moving back and forth in the axial direction.
  • the balloon 210 has a portion 210a that is exposed from the shaft portion 100 when the inner tube 110 and the outer tube 120 move forward and backward.
  • the pressurized medium is further supplied to the balloon 210 to expand and deform the balloon 210 radially outward.
  • the balloon expandable stent 320 is indwelled, it can be expanded radially outward.
  • the stent delivery system 10b according to the second embodiment obtains the same effect by the same configuration as that of the first embodiment.
  • the following effects, which are characteristic of the second embodiment, further exhibit the following effects.
  • a part of the moving part 200 of the stent delivery system 10b according to the second embodiment is exposed from the shaft part 100 when extended.
  • the stent delivery system 10b configured as described above, it is possible to increase the driving force for moving the outer tube 120 of the moving unit 200 to the proximal side with respect to the inner tube 110.
  • portion 210 a exposed from the shaft portion 100 in the moving portion 200 is configured to be expandable and deformable outward in the radial direction of the shaft portion 100.
  • the balloon expandable stent 320 can be further expanded radially outward.
  • the balloon expandable stent 320 is preferably used. be able to.
  • the balloon expandable stent 320 is disposed on the outer surface side of the balloon 210 in a state before the moving part 200 is extended.
  • the first fixing portion 220 can be disposed on the outer surface side of the balloon 210 that expands radially outward, and thus the balloon expandable stent 320 can be easily aligned in the radial direction. Can be expanded outward.
  • the treatment unit is accommodated in a state compressed inward in the radial direction of the shaft before the moving unit 200 is extended, and is inserted into the living body lumen after the moving unit 200 is extended and exposed from the shaft unit 100. It includes a balloon expandable stent 320 that is deployed.
  • the balloon expandable stent 320 can be smoothly placed in the stenosis and further expanded radially outward.
  • FIG. 7 shows a stent delivery system 10c according to the third embodiment.
  • FIG. 7 (A) shows a state before the moving part 200 is stretched and deformed
  • FIG. 7 (B) shows that the moving part 200 is stretched and deformed. The state after doing.
  • the stent delivery system 10c according to the third embodiment will be described with reference to FIG.
  • the stent delivery system 10c according to the third embodiment is the first in that it has a limiting unit 240 that limits the amount of movement of the outer tube 120 relative to the inner tube 110 when the moving unit 200 extends.
  • a limiting unit 240 that limits the amount of movement of the outer tube 120 relative to the inner tube 110 when the moving unit 200 extends.
  • description of the same configuration as that of the first embodiment will be omitted.
  • the member which has the structure similar to 1st Embodiment it demonstrates using the same code
  • the restricting portion 240 has a locking member 241 fixed to the inner tube 110 on the proximal end side of the moving portion 200.
  • the locking member 241 abuts on the first fixing portion 220 and restricts the movement toward the proximal end side with respect to the inner tube 110.
  • the locking member 241 can use the same material as the first fixing portion 220 and the second fixing portion 230.
  • the accommodating portion 121a of the self-expandable stent 310 of the first outer tube 121 is disposed in the narrowed portion.
  • the balloon 210 is in a contracted state before being expanded (expanded).
  • the self-expanding stent 310 is disposed in advance in the accommodating portion 121a in a contracted state.
  • a pressurized medium is supplied to the balloon 210 to expand and deform the balloon 210 in the axial direction.
  • the moving unit 200 extends to move the outer tube 120 to which the second fixing unit 230 is fixed relative to the inner tube 110 to which the first fixing unit 220 is fixed.
  • the self-expanding stent 310 is exposed from the shaft portion 100 and is placed in the stenosis.
  • FIG. 7B when the balloon 210 is expanded by an amount sufficient to expose the self-expanding stent 310, the first fixing portion 220 comes into contact with the locking member 241 and is expanded.
  • the expansion deformation is suppressed and the movement of the outer tube 120 is limited.
  • overexpansion of the balloon 210 can be prevented, and the amount of movement of the outer tube 120 can be limited regardless of the physical properties of the balloon 210.
  • the stent delivery system 10c according to the third embodiment obtains the same effect by the same configuration as that of the first embodiment.
  • the following effects that are characteristic of the third embodiment further exhibit the following effects.
  • the stent delivery system 10c further includes a limiting unit 240 that limits the amount of movement of the outer tube 120 relative to the inner tube 110 when the moving unit 200 extends.
  • the movement amount of the outer tube 120 can be limited regardless of the physical properties of the balloon 210.
  • the restricting portion 240 is configured by the locking member 241, it is possible to easily adjust the amount of movement of the outer tube 120 relative to the inner tube 110 by changing the position of the locking member 241. it can.
  • FIG. 8 is a cross-sectional view of a stent delivery system 10d according to a modification of the third embodiment.
  • FIG. 8 (A) shows a state before the moving part 200 is stretched and deformed, and FIG. The state after the moving part 200 expands and contracts is shown.
  • a stent delivery system 10d according to a modification of the third embodiment will be described with reference to FIG.
  • the stent delivery system 10d according to the third embodiment is different from the third embodiment in that the limiting portion 640 is configured by the reduced diameter portion 623 of the outer tube 620.
  • description of the same configurations as those of the first embodiment and the third embodiment will be omitted.
  • the member which has the structure similar to 1st Embodiment and 3rd Embodiment it demonstrates using the same code
  • the restricting portion 240 is constituted by a reduced diameter portion 623 of the outer tube 120.
  • the reduced diameter portion 623 includes a first reduced diameter portion 623 a formed in the first outer tube 621 and a second reduced diameter portion 623 b formed in the second outer tube 622.
  • the outer tube 620 includes a first outer tube 621 disposed on the distal end side and a second outer tube disposed on the proximal end side of the first outer tube 621.
  • the second outer tube 622 is slidably inserted into the first outer tube 621.
  • the first outer tube 621 is the first outer tube 621. 2 slidably inserted into the outer tube 622.
  • the first reduced diameter portion 623a is formed at the proximal end portion of the first outer tube 621 and gradually decreases in diameter toward the proximal end.
  • the second reduced diameter portion 623b is formed at a position on the base end side of the predetermined length from the distal end of the second outer tube 622, and gradually decreases in diameter toward the distal end in the same manner as the first reduced diameter portion 623a.
  • the restriction part 640 is configured by the reduced diameter part 623, the expansion of the balloon 210 can be gradually suppressed, so that the burden on the balloon 210 can be reduced as compared with the case where the expansion is suddenly stopped.
  • the method for placing the self-expanding stent 310 in the stenosis portion by the stent delivery system 10d of the present embodiment is the same as that of the third embodiment, and thus the description thereof is omitted.
  • the stent delivery system 10d according to the third embodiment obtains the same effect by the same configuration as the first embodiment and the third embodiment.
  • the following effects that are characteristic of the third embodiment further exhibit the following effects.
  • the stent delivery system 10d according to the modification of the third embodiment obtains the same effect by the same configuration as that of the third embodiment. Moreover, there exists an advantageous effect by the following structures characteristic to the modification of 3rd Embodiment.
  • the restricting portion 240 is configured by the reduced diameter portion 623 of the outer tube 620.
  • the treatment unit and the medical device are not limited thereto.
  • a medical device configured to use an elution balloon that elutes a drug in a living organ as a treatment portion and deliver the treatment portion to a desired position in the living body lumen.
  • the moving unit can be used as a treatment unit.
  • the moving part is configured to be partly exposed from the shaft part and expandable in the radial direction (see FIGS. 6B and 6C). Further, the outer surface of the exposed part is coated with at least a drug that functions as a treatment part. By configuring in this way, the exposed and expanded part can come into contact with the lesion site and the drug can be eluted and permeated through the treatment part.
  • the moving unit 200 is configured by the balloon 210, the moving unit 200 is not limited thereto, and may be configured by a material that can be expanded and contracted such as a spring.
  • 10, 10 ′, 10a, 10b, 10c, 10d stent delivery system (medical device), 100, 100 'shaft part, 110, 610 inner tube, 111 tip side movement restriction part, 120, 120 ′, 620, outer tube, 121, 621 first outer tube, 122, 622 second outer tube, 200 moving part, 210 balloon, 220, 220 ′ first fixed part (tip part of moving part), 230 second fixed part (base end part of the moving part), 240, 640 restriction part, 241 locking member, 300 stent (treatment area), 400 hubs, 410 connection, 510 tube member, 520 intubation tube, 623 reduced diameter part, 700a, 700b puller wire, 800 packing.

Abstract

[Problem] To provide a medical device capable of delivering a medical device a long distance in a living body lumen while improving operability. [Solution] A medical device (10) has: a shaft section (100) for insertion into a living body organ, the shaft section being provided with an inner tube (110) and an outer tube (120) arranged so as to cover the external peripheral surface of the inner tube; a movement section (200) for extendably/contractibly deforming along the axial direction of the shaft section to thereby move the outer tube along the axial direction in relative fashion to the inner tube, the movement section being arranged between the inner tube and the outer tube; and a treatment section (300) that is accommodated between the inner tube and the outer tube prior to the extendable/contractible deformation of the movement section and that is exposed from the shaft section when the movement section has extendably/contractibly deformed to carry out a predetermined treatment of a to-be-treated location inside the living body organ.

Description

医療装置Medical equipment
 本発明は、医療装置に関する。 The present invention relates to a medical device.
 生体器官内に生じた狭窄部等の処置対象部位に対して局所的な処置を実施するために、ステントや薬剤溶出バルーン等の医療器具を使用することがある。これらの医療器具を使用する場合、生体管腔内の所望の位置への送達を可能にするために、可撓性を備える長尺なカテーテル等を備えるデリバリー装置が一般的に使用されている。 A medical instrument such as a stent or a drug-eluting balloon may be used to perform a local treatment on a site to be treated such as a stenosis occurring in a living organ. When these medical devices are used, a delivery apparatus including a long catheter having flexibility is generally used in order to enable delivery to a desired position in a living body lumen.
 例えば、特許文献1には、外管と内管とを備えるカテーテルの先端側にステント(自己拡張型ステント)を収容した状態で生体管腔内の処置対象部位への送達を可能にするステントデリバリー装置が開示されている。このステントデリバリー装置においては、外管に固定された牽引ワイヤを手元の操作で押し引きする簡単な作業によって、ステントをカテーテルから露出させて、処置対象部位となる狭窄部をステントによって拡張させる処置を実施可能にしている。 For example, Patent Document 1 discloses a stent delivery that enables delivery to a treatment target site in a living body lumen in a state where a stent (self-expanding stent) is accommodated on the distal end side of a catheter including an outer tube and an inner tube. An apparatus is disclosed. In this stent delivery device, the stent is exposed from the catheter by a simple operation of pushing and pulling the pulling wire fixed to the outer tube by a hand operation, and a treatment for expanding the stenosis portion as a treatment target site by the stent is performed. Implementation is possible.
国際公開第2010/093017号International Publication No. 2010/093017
 例えば、上記のようなデリバリー装置を使用して、生体においてカテーテルを挿入する部位から比較的遠い位置にある処置対象部位へステント等の医療器具を移送する場合、カテーテルの長さを長く設計することになるため、牽引ワイヤの長さも長く設計する必要がある。牽引ワイヤを長くすると、牽引ワイヤにねじれや撓みが生じ易くなり、手元の操作に対するカテーテル先端部の応答性が低下してしまい、操作性を損なってしまう可能性がある。 For example, when a medical device such as a stent is transferred to a treatment target site that is relatively far from the site where the catheter is inserted in the living body using the delivery device as described above, the length of the catheter is designed to be long. Therefore, it is necessary to design the length of the pulling wire to be long. When the pulling wire is lengthened, the pulling wire is likely to be twisted or bent, and the responsiveness of the catheter tip to the operation at hand is lowered, and the operability may be impaired.
 そこで、本発明は、上記課題を解決するためになされたものであり、生体器官内への所望の位置へ医療器具を好適に送達することが可能な操作性に優れる医療装置を提供することを目的とする。 Accordingly, the present invention has been made to solve the above-described problems, and provides a medical device excellent in operability that can suitably deliver a medical instrument to a desired position in a living organ. Objective.
 上記目的を達成する本発明に係る医療装置は、内管と、前記内管の外周面を覆うように配置される外管とを備え、生体器官内に挿入されるシャフト部と、前記内管と前記外管との間に配置され、前記シャフト部の軸方向に沿って伸縮変形することにより、前記軸方向に沿って前記外管を前記内管に対して相対的に移動させる移動部と、前記移動部が伸縮変形する前は前記内管と前記外管との間に収容され、前記移動部が伸縮変形した際に前記シャフト部から露出されて前記生体器官内の処置対象部位に対して所定の処置を実施する処置部と、を有する。 The medical device according to the present invention that achieves the above object includes an inner tube and an outer tube disposed so as to cover an outer peripheral surface of the inner tube, a shaft portion that is inserted into a living organ, and the inner tube And a moving unit that is disposed between the outer tube and the outer tube, and moves relative to the inner tube along the axial direction by expanding and contracting along the axial direction of the shaft unit. Before the moving part is expanded and contracted, it is accommodated between the inner tube and the outer tube, and when the moving part is expanded and contracted, it is exposed from the shaft part and is applied to the treatment target site in the living organ. And a treatment unit for performing a predetermined treatment.
 上記のように構成した医療装置によれば、シャフト部内に配置された移動部を伸縮変形させることによって外管を内管に対して相対的に移動させことができるため、外管および内管を移動させる牽引力を手元側から伝達させる場合に比べて、処置部をシャフト部からより確実かつ容易に露出させて病変部位の処置を実施することができる。 According to the medical device configured as described above, the outer tube can be moved relative to the inner tube by expanding and contracting the moving unit disposed in the shaft portion. Compared with the case where the traction force to be moved is transmitted from the hand side, the treatment portion can be treated by exposing the treatment portion more reliably and easily from the shaft portion.
図1は、本発明の実施形態に係る医療装置の全体構成図である。FIG. 1 is an overall configuration diagram of a medical device according to an embodiment of the present invention. 図2は、図1に示す医療装置の先端側部分の断面図である。2 is a cross-sectional view of the distal end portion of the medical device shown in FIG. 図3は、第1実施形態に係る医療装置の断面図であり、図3(A)は、移動部が伸縮変形する前の状態を示し、図3(B)は、移動部が伸縮変形した後の状態を示す。FIG. 3 is a cross-sectional view of the medical device according to the first embodiment. FIG. 3A shows a state before the moving part is stretched and deformed, and FIG. 3B shows that the moving part is stretched and deformed. Shown later. 図4は、対比例に係る医療装置の先端側部分を示し、図4(A)~(D)は、対比例に係る医療装置による操作を説明するための図である。FIG. 4 shows a distal end portion of the medical device related to the proportionality, and FIGS. 4A to 4D are diagrams for explaining operations by the medical device related to the proportionality. 図5は、第1実施形態の変形例に係る医療装置の断面図であり、図5(A)は、移動部が伸縮変形する前の状態を示し、図5(B)は、移動部が伸縮変形した後の状態を示す。FIG. 5 is a cross-sectional view of a medical device according to a modified example of the first embodiment. FIG. 5 (A) shows a state before the moving part expands and contracts, and FIG. 5 (B) shows the moving part. The state after elastic deformation is shown. 図6は、第2実施形態に係る医療装置の断面図であり、図6(A)は、移動部が伸縮変形する前の状態を示し、図6(B)は、移動部が伸縮変形して移動部の一部がシャフト部から露出した状態を示し、図6(C)は、移動部のシャフト部から露出した部位がさらに伸縮変形した状態を示す。FIG. 6 is a cross-sectional view of the medical device according to the second embodiment. FIG. 6 (A) shows a state before the moving part is stretched and deformed, and FIG. FIG. 6C shows a state in which a portion exposed from the shaft portion of the moving portion is further expanded and contracted. 図7は、第3実施形態に係る医療装置の断面図であり、図7(A)は、移動部が伸縮変形する前の状態を示し、図7(B)は、移動部が伸縮変形した後の状態を示す。FIG. 7 is a cross-sectional view of the medical device according to the third embodiment. FIG. 7 (A) shows a state before the moving part is stretched and deformed, and FIG. 7 (B) shows that the moving part is stretched and deformed. Shown later. 図8は、第3実施形態の変形例に係る医療装置の断面図であり、図8(A)は、移動部が伸縮変形する前の状態を示し、図8(B)は、移動部が伸縮変形した後の状態を示す。FIG. 8 is a cross-sectional view of a medical device according to a modification of the third embodiment. FIG. 8 (A) shows a state before the moving part is expanded and contracted, and FIG. 8 (B) shows the moving part. The state after elastic deformation is shown.
 以下、添付した図面を参照しながら、本発明の実施形態および変形例を説明する。なお、以下の記載は特許請求の範囲に記載される技術的範囲や用語の意義を限定するものではない。また、図面の寸法比率は説明の都合上誇張されており、実際の比率とは異なる場合がある。 Hereinafter, embodiments and modifications of the present invention will be described with reference to the accompanying drawings. In addition, the following description does not limit the technical scope and terms used in the claims. In addition, the dimensional ratios in the drawings are exaggerated for convenience of explanation, and may differ from actual ratios.
 (第1実施形態)
 図1は、本発明の実施形態に係るステントデリバリーシステム10(医療装置に相当)の全体構成図である。図2は、図1に示すステントデリバリーシステム10の先端側部分の断面図である。図3は、第1実施形態に係るステントデリバリーシステム10の断面図であり、図3(A)は、移動部200が伸縮変形する前の状態を示し、図3(B)は、移動部200が伸縮変形した後の状態を示す。図4は、対比例に係るステントデリバリーシステム10’の先端側部分を示し、図4(A)~(D)は、対比例に係るステントデリバリーシステム10’による操作を説明するための図である。
(First embodiment)
FIG. 1 is an overall configuration diagram of a stent delivery system 10 (corresponding to a medical device) according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of the distal end portion of the stent delivery system 10 shown in FIG. FIG. 3 is a cross-sectional view of the stent delivery system 10 according to the first embodiment. FIG. 3 (A) shows a state before the moving part 200 is stretched and deformed, and FIG. 3 (B) shows the moving part 200. Shows the state after the elastic deformation. FIG. 4 shows the distal end side portion of the stent delivery system 10 ′ according to the proportionality, and FIGS. 4A to 4D are diagrams for explaining the operation by the stent delivery system 10 ′ according to the proportionality. .
 ステントデリバリーシステム10は、ステント300を生体管腔内に留置するために用いられる。 The stent delivery system 10 is used to place the stent 300 in a living body lumen.
 ステント300は、一般的に、血管、胆管、気管、食道、尿道等の生体管腔(生体器官)内に生じた狭窄部や閉塞部等の病変部(処置対象部位に相当)の拡張治療に使用される。ステント300には、ステント300をマウントしたバルーン210によって拡張されるもの(バルーン拡張型ステント320)と、外部からの拡張を抑制する部材を取り除くことによって自ら拡張するもの(自己拡張型ステント310)とがある。本実施形態においては、自己拡張型ステント310を使用した例を説明し、後述する実施形態2においては、バルーン拡張型ステント320を使用した例を説明する(図6を参照)。 The stent 300 is generally used for dilated treatment of lesions (corresponding to a site to be treated) such as stenosis or occlusion occurring in a biological lumen (biological organ) such as a blood vessel, bile duct, trachea, esophagus, or urethra. used. The stent 300 is expanded by a balloon 210 mounted with the stent 300 (balloon expandable stent 320), and is expanded by removing a member that suppresses expansion from the outside (self-expandable stent 310). There is. In the present embodiment, an example using the self-expandable stent 310 will be described, and in an embodiment 2 described later, an example using the balloon expandable stent 320 will be described (see FIG. 6).
 本実施形態に係るステントデリバリーシステム10は、図1に示すように、生体管腔内に挿入されるシャフト部100と、内管110と外管120との間に配置され、シャフト部100の軸方向に沿って伸縮変形することにより、軸方向に沿って内管110を外管120に対して相対的に移動させる移動部200と、生体管腔内の処置対象部位に対して所定の処置を実施する自己拡張型ステント310(処置部に相当)と、移動部200の伸縮変形を操作するハブ400と、を有する。また、加圧媒体を移送する後述するチューブ部材510と、チューブ部材510が挿通される挿通管520と、をさらに有する。 As shown in FIG. 1, the stent delivery system 10 according to the present embodiment is disposed between a shaft portion 100 to be inserted into a living body lumen, an inner tube 110 and an outer tube 120, and an axis of the shaft portion 100. The movable portion 200 that moves the inner tube 110 relative to the outer tube 120 along the axial direction by expanding and contracting along the direction, and a predetermined treatment on the treatment target site in the living body lumen A self-expanding stent 310 (corresponding to a treatment unit) to be implemented and a hub 400 that operates expansion and contraction of the moving unit 200 are included. Moreover, it has the tube member 510 mentioned later which transfers a pressurization medium, and the insertion pipe | tube 520 in which the tube member 510 is penetrated.
 なお、本明細書中では、体腔内に挿入される側を先端側(図に示す矢印A方向)と称し、手元側となるハブ400が設けられる側を基端側(図に示す矢印B方向)と称する。また、シャフト部100の長手方向を軸方向と称する。 In this specification, the side inserted into the body cavity is referred to as the distal end side (the direction of arrow A shown in the figure), and the side on which the hub 400 serving as the proximal side is provided is the proximal end side (the direction of arrow B shown in the figure). ). The longitudinal direction of the shaft portion 100 is referred to as the axial direction.
 シャフト部100は、内管110と、内管110の外周面を覆うように配置される外管120とを備え、生体管腔内に挿入されている。 The shaft portion 100 includes an inner tube 110 and an outer tube 120 disposed so as to cover the outer peripheral surface of the inner tube 110, and is inserted into a living body lumen.
 内管110は、図2に示すように、先端から基端まで貫通するガイドワイヤルーメン110aが形成された長尺状の管状体によって構成されている。ガイドワイヤルーメン110aには、ステントデリバリーシステム10を生体管腔内の狭窄部に導くガイドワイヤ(図示せず)が挿通されている。 As shown in FIG. 2, the inner tube 110 is constituted by a long tubular body in which a guide wire lumen 110a penetrating from the distal end to the proximal end is formed. A guide wire (not shown) that guides the stent delivery system 10 to a stenosis in the living body lumen is inserted through the guide wire lumen 110a.
 内管110の最先端には先端部材130が配置されている。先端部材130は、内管110の先端部分にストッパー131によって固定されている。ストッパー131は、先端部材130内に埋設されており、先端部材130の離脱を防止している。ストッパー131は、例えば、ステンレス等の金属によって形成することが好ましい。先端部材130は、先端に向かって徐々に縮径する形状を有し、生体管腔内に挿入容易に形成されている。先端部材130の先端には、開口部110bが形成されている。なお、先端部材130は、内管110と別部材によって構成してもよいし、内管110と同一部材によって一体的に構成してもよい。 A tip member 130 is disposed at the forefront of the inner tube 110. The tip member 130 is fixed to the tip portion of the inner tube 110 by a stopper 131. The stopper 131 is embedded in the tip member 130 and prevents the tip member 130 from being detached. The stopper 131 is preferably formed of a metal such as stainless steel, for example. The distal end member 130 has a shape that gradually decreases in diameter toward the distal end, and is easily formed into a living body lumen. An opening 110 b is formed at the tip of the tip member 130. The tip member 130 may be constituted by a member separate from the inner tube 110 or may be constituted integrally by the same member as the inner tube 110.
 内管110の外面には、図2に示すように、自己拡張型ステント310の先端側へ当接して先端側への移動を制限する先端側移動制限部111と、後述する第1の固定部220と、が固定されている。先端側移動制限部111および第1の固定部220は、長手軸周りに環状に形成されている。 As shown in FIG. 2, on the outer surface of the inner tube 110, a distal-side movement restricting portion 111 that abuts on the distal end side of the self-expandable stent 310 and restricts movement toward the distal end side, and a first fixing portion described later 220 is fixed. The distal end side movement restricting portion 111 and the first fixing portion 220 are formed in an annular shape around the longitudinal axis.
 先端側移動制限部111は、基端部分が基端側に向かって縮径するテーパー面となっている。このため、後述する自己拡張型ステント310を放出するとき、先端側移動制限部111が障害となることがなく、自己拡張型ステント310放出後のステントデリバリーシステム10の回収が容易となる。 The distal end side movement restricting portion 111 has a tapered surface whose proximal end portion is reduced in diameter toward the proximal end side. For this reason, when releasing the self-expanding stent 310, which will be described later, the distal-side movement restricting portion 111 does not become an obstacle, and the stent delivery system 10 after the self-expanding stent 310 is released can be easily collected.
 内管110の基端側は、図2に示すように、基端側に向かって傾斜するように斜めに形成され、後述する外管120のガイドワイヤ導出孔122aと連通可能に設けられている。これによって、ガイドワイヤの誘導を容易にしている。 As shown in FIG. 2, the proximal end side of the inner tube 110 is formed obliquely so as to incline toward the proximal end side, and is provided so as to communicate with a guide wire outlet hole 122a of the outer tube 120 described later. . This facilitates guide wire guidance.
 内管110の形成材料としては、可撓性を有する材料を用いることが好ましい。例えば、ポリエチレン、ポリプロピレン等のポリオレフィン、ポリアミド、ポリアミドエラストマー、ポリエチレンテレフタレート等のポリエステル、ポリエステルエラストマー、ポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂、PEEK、ポリイミド等を使用できる。上記の樹脂のうち、特に熱可塑性を有する樹脂を好適に使用することができる。 As the material for forming the inner tube 110, it is preferable to use a flexible material. For example, polyolefins such as polyethylene and polypropylene, polyamides, polyamide elastomers, polyesters such as polyethylene terephthalate, polyester elastomers, fluorine resins such as polytetrafluoroethylene (PTFE), PEEK, polyimide, and the like can be used. Among the above resins, a resin having thermoplasticity can be particularly preferably used.
 先端部材130の形成材料としては、柔軟性を有する材料を用いることが好ましい。例えば、オレフィン系エラストマー、ポリアミドエラストマー、スチレン系エラストマー、ポリウレタン、ウレタン系エラストマー、フッ素樹脂系エラストマー等の合成樹脂エラストマー、ウレタンゴム、シリコーンゴム、ブタジエンゴム等の合成ゴム、ラテックスゴム等の天然ゴム等のゴム類を使用することができる。 As the material for forming the tip member 130, it is preferable to use a material having flexibility. For example, synthetic resin elastomers such as olefin elastomer, polyamide elastomer, styrene elastomer, polyurethane, urethane elastomer, fluororesin elastomer, synthetic rubber such as urethane rubber, silicone rubber, butadiene rubber, natural rubber such as latex rubber, etc. Rubbers can be used.
 外管120は、図1および図2に示すように、先端側に配置され、自己拡張型ステント310を収容する第1の外管121と、第1の外管121の基端側に配置される第2の外管122と、を有する。 As shown in FIGS. 1 and 2, the outer tube 120 is disposed on the distal end side, and is disposed on the proximal side of the first outer tube 121 that houses the self-expanding stent 310 and the first outer tube 121. And a second outer tube 122.
 第1の外管121は、内管110との間に自己拡張型ステント310を径方向内方に圧縮した状態で収納可能な収容部121aを構成する。 The first outer tube 121 constitutes an accommodating portion 121a that can be accommodated in a state where the self-expandable stent 310 is compressed radially inward between the first outer tube 121 and the inner tube 110.
 収容部121aは、先端側移動制限部111、第1の固定部220および第1の外管121によって囲まれた部分によって形成されている。自己拡張型ステント310は、生体管腔内の狭窄部に配置された後、第1の外管121を内管110に対して基端側に移動させることによって、シャフト部100から露出する。このとき、自己拡張型ステント310には、第1の外管121の移動に伴って基端側へ移動させようとする摩擦力が作用する。しかしながら、自己拡張型ステント310は、第1の固定部220に当接することによって、基端側への移動が制限されている。これによって、狭窄部において配置した場所から移動することなく、自己拡張型ステント310を放出させることができる。 The accommodating portion 121a is formed by a portion surrounded by the distal end side movement restricting portion 111, the first fixing portion 220, and the first outer tube 121. The self-expanding stent 310 is exposed from the shaft portion 100 by being moved to the proximal end side with respect to the inner tube 110 by moving the first outer tube 121 to the stenosis portion in the living body lumen. At this time, the self-expanding stent 310 is subjected to a frictional force to move to the proximal end side with the movement of the first outer tube 121. However, the movement of the self-expanding stent 310 to the proximal end side is restricted by contacting the first fixing portion 220. Thus, the self-expanding stent 310 can be released without moving from the place where the stenosis is disposed.
 第1の外管121の内面には、後述する第2の固定部230が固定されている。第2の固定部230は、長手軸周りに環状に形成されている。 A second fixing portion 230 described later is fixed to the inner surface of the first outer tube 121. The second fixing portion 230 is formed in an annular shape around the longitudinal axis.
 第2の外管122は、図2に示すように、外径が第1の外管121の内径よりも小さく構成され、第1の外管121内に摺動可能に挿入されている。これによって、第1の外管121を内管110に対して相対的に移動させる操作を容易にすることができる。 As shown in FIG. 2, the second outer tube 122 has an outer diameter smaller than the inner diameter of the first outer tube 121, and is slidably inserted into the first outer tube 121. Thereby, the operation of moving the first outer tube 121 relative to the inner tube 110 can be facilitated.
 第2の外管122は、図2に示すように、第2の外管122の基端部分に径方向外方に向かって斜めに突出して開口するガイドワイヤ導出孔122aを有する。ガイドワイヤ導出孔122aは、内管110のガイドワイヤルーメン110aと連通可能に設けられ、ガイドワイヤを外管120の外方へ導出可能である。また、第2の外管122の基端部分の内腔には後述する挿通管520が固定されている。 As shown in FIG. 2, the second outer tube 122 has a guide wire lead-out hole 122 a that protrudes obliquely outward in the radial direction at the proximal end portion of the second outer tube 122. The guide wire lead-out hole 122a is provided so as to be able to communicate with the guide wire lumen 110a of the inner tube 110, and the guide wire can be led out of the outer tube 120. An insertion tube 520 (described later) is fixed in the lumen of the proximal end portion of the second outer tube 122.
 移動部200は、図2に示すように、内管110と外管120との間であって、収容部121aより基端側に配置されている。移動部200は、軸方向に伸縮変形されるバルーン210と、内管110に固定される第1の固定部220(移動部の先端部に相当)と、外管120に固定される第2の固定部230(移動部の基端部に相当)と、を有する。 As shown in FIG. 2, the moving unit 200 is disposed between the inner tube 110 and the outer tube 120 and closer to the proximal end side than the housing unit 121a. The moving unit 200 includes a balloon 210 that expands and contracts in the axial direction, a first fixing unit 220 (corresponding to the tip of the moving unit) fixed to the inner tube 110, and a second fixed to the outer tube 120. A fixed portion 230 (corresponding to a base end portion of the moving portion).
 バルーン210は、生理食塩水や造影剤等のような加圧媒体を内部に供給されることによって拡張変形する。加圧媒体は、チューブ部材510を介してバルーン210内へ供給される。バルーン210の構造は、特に限定されないが、軸方向に伸長しやすい構造であることが好ましい。本実施形態においては、図2に示すように、バルーン210は蛇腹構造によって構成され、拡張変形前は、折り畳まれて収縮し、拡張後は軸方向に伸長する。バルーン210が軸方向に沿って伸長することにより、軸方向に沿って外管120を内管110に対して相対的に移動させる。バルーン210を使用することによって、容易に移動部200を伸縮変形させることができる。 The balloon 210 is expanded and deformed when a pressurized medium such as physiological saline or a contrast medium is supplied to the inside. The pressurized medium is supplied into the balloon 210 via the tube member 510. The structure of the balloon 210 is not particularly limited, but is preferably a structure that is easily extended in the axial direction. In the present embodiment, as shown in FIG. 2, the balloon 210 is configured by a bellows structure, and is folded and contracted before expansion and is expanded in the axial direction after expansion. When the balloon 210 extends along the axial direction, the outer tube 120 is moved relative to the inner tube 110 along the axial direction. By using the balloon 210, the moving part 200 can be easily expanded and contracted.
 バルーン210の形成材料としては、特に限定されないが、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体のポリオレフィン、ポリエチレンテレフタレート等のポリエステル、ポリテトラフルオロエチレン(PTFE)等のフッ素系樹脂、ポリ塩化ビニル、エチレン-酢酸ビニル共重合体、架橋型エチレン-酢酸ビニル共重合体、ポリウレタン等の熱可塑性樹脂、ポリアミドエラストマー、ポリスチレンエラストマー、シリコーンゴム、ラテックスゴム等を用いることができる。上記の中でも、PTFEを好適に使用することができる。これによって、第1の外管121とバルーン210との摺動抵抗を低くしてバルーン210を変形しやすくすることができる。また、生体適合性、特に抗血栓性を有する物質をコーティングすることも可能である。抗血栓性材料としては、例えば、ジメチルアクリルアミドポリマー等を使用することができる。 The material for forming the balloon 210 is not particularly limited, but examples thereof include polyethylene, polypropylene, polyolefins of ethylene-propylene copolymer, polyesters such as polyethylene terephthalate, fluorine resins such as polytetrafluoroethylene (PTFE), polyvinyl chloride, and the like. Further, ethylene-vinyl acetate copolymer, cross-linked ethylene-vinyl acetate copolymer, thermoplastic resin such as polyurethane, polyamide elastomer, polystyrene elastomer, silicone rubber, latex rubber and the like can be used. Among the above, PTFE can be preferably used. As a result, the sliding resistance between the first outer tube 121 and the balloon 210 can be lowered and the balloon 210 can be easily deformed. It is also possible to coat a material having biocompatibility, in particular antithrombotic properties. As the antithrombogenic material, for example, dimethylacrylamide polymer can be used.
 また、図3(A)に示すように、折り畳んだ状態のバルーン210の軸方向の長さL1は、例えば、5mm以下に形成することができる。図3(B)に示すように、拡張変形した状態のバルーン210の軸方向の長さL2は、例えば、10~250mm、直径dは、例えば、1.0~1.8mmに形成することができる。また、拡張変形した状態のとき、バルーン210の最大外径となる部位と第1の外管121の内腔との間の距離L3は、例えば、0.1mm以上であることが好ましい。 Further, as shown in FIG. 3A, the length L1 in the axial direction of the balloon 210 in a folded state can be formed to be, for example, 5 mm or less. As shown in FIG. 3B, the length L2 in the axial direction of the balloon 210 in the expanded state is, for example, 10 to 250 mm, and the diameter d is, for example, 1.0 to 1.8 mm. it can. In the expanded state, the distance L3 between the portion having the maximum outer diameter of the balloon 210 and the lumen of the first outer tube 121 is preferably 0.1 mm or more, for example.
 第1の固定部220は、内管110に固定され、ステント300を収容する収容部121aの基端側に配置されている。第2の固定部230は、バルーン210の基端に固定されている。第1の固定部220の内管110に対する固定手段および第2の固定部230の外管120に対する固定手段は、特に限定されないが、例えば、融着や接着材等による固定手段を使用することができる。第1の固定部220および第2の固定部230は、バルーン210の拡張変形に伴い、離反移動可能に構成されている。また、第2の固定部230と内管110との間には、加圧媒体を供給するチューブ部材510が挿通されるが、加圧媒体がバルーン210内から漏れないために液密・気密かつ内管110が摺動可能な構造となっており、本実施形態では、パッキン800が、第2の固定部230と内管110との間に設けられている。しかし、これに限らず、加圧媒体がバルーン210内から漏れないために液密・気密かつ内管110が摺動可能な構造となっていれば何れでもよい。 The first fixing portion 220 is fixed to the inner tube 110 and is disposed on the proximal end side of the accommodating portion 121a that accommodates the stent 300. The second fixing portion 230 is fixed to the proximal end of the balloon 210. The means for fixing the first fixing portion 220 to the inner tube 110 and the means for fixing the second fixing portion 230 to the outer tube 120 are not particularly limited, but for example, fixing means such as fusion or adhesive may be used. it can. The first fixing portion 220 and the second fixing portion 230 are configured to be able to move apart as the balloon 210 is expanded and deformed. In addition, a tube member 510 for supplying a pressurized medium is inserted between the second fixing portion 230 and the inner tube 110. However, since the pressurized medium does not leak from the balloon 210, the tube member 510 is liquid-tight and air-tight. The inner tube 110 has a slidable structure, and in this embodiment, the packing 800 is provided between the second fixing portion 230 and the inner tube 110. However, the present invention is not limited to this, and any structure may be used as long as the pressurized medium does not leak from the inside of the balloon 210 and is liquid-tight / air-tight and the inner tube 110 is slidable.
 第1の固定部220および第2の固定部230の形成材料としては、剛性の高い材料を使用することが好ましい。例えば、ステンレス等の金属や樹脂を使用することができる。 As the forming material of the first fixing part 220 and the second fixing part 230, it is preferable to use a material having high rigidity. For example, a metal such as stainless steel or a resin can be used.
 なお、第1の固定部220および第2の固定部230は、バルーン210に固定されているとしたが、これに限定されず、固定せずにバルーン210を第1の固定部220および第2の固定部230の間に配置してもよい。この場合、第1の固定部220および第2の固定部230は、バルーン210に対して隙間がないように密接させてもよく、あるいは隙間を設けてもよい。 In addition, although the 1st fixing | fixed part 220 and the 2nd fixing | fixed part 230 were fixed to the balloon 210, it is not limited to this, The balloon 210 is not fixed, but the 1st fixing | fixed part 220 and 2nd You may arrange | position between the fixed parts 230. In this case, the first fixing part 220 and the second fixing part 230 may be in close contact with the balloon 210 so that there is no gap, or a gap may be provided.
 自己拡張型ステント310は、生体管腔内への挿入時には外管120の長手軸を中心とする径方向内方に圧縮された状態において収容部121aに収容される。外管120の基端側への移動に伴って収容部121aは外方へ露出し、自己拡張型ステント310は、生体管腔内の狭窄部に放出される。これによって、径方向外側に拡張して圧縮前の形状へと復元する。ステント300は、多数の開口を有したメッシュ状で略円筒形状に形成されている。なお、ステント300を構成する材料としては、例えば、Ni-Ti合金等の超弾性合金を好適に使用することができる。 The self-expanding stent 310 is accommodated in the accommodating portion 121a in a state of being compressed inward in the radial direction around the longitudinal axis of the outer tube 120 when inserted into the living body lumen. As the outer tube 120 moves toward the proximal end, the accommodating portion 121a is exposed to the outside, and the self-expanding stent 310 is released to the stenosis portion in the living body lumen. This expands radially outward and restores the shape before compression. The stent 300 is formed in a substantially cylindrical shape with a mesh shape having a large number of openings. As a material constituting the stent 300, for example, a superelastic alloy such as a Ni—Ti alloy can be preferably used.
 再び図1を参照して、ハブ400は、基端側(手元)に配置され、移動部200の伸縮変形を操作する。ハブ400は、加圧媒体を供給および排出するための供給装置(図示せず)と、液密・気密に接続可能な接続部410と、を備えている。接続部410は、例えば、供給装置に接続されるチューブ等が接続・分離可能に構成されたルアーテーパー等によって構成することができる。 Referring to FIG. 1 again, the hub 400 is arranged on the proximal end side (hand side), and operates the expansion / contraction deformation of the moving unit 200. The hub 400 includes a supply device (not shown) for supplying and discharging the pressurized medium, and a connection portion 410 that can be connected in a liquid-tight and air-tight manner. The connection unit 410 can be configured by, for example, a luer taper configured such that a tube connected to the supply device can be connected and separated.
 供給装置は、加圧媒体をバルーン210の内部に供給してバルーン210を所定の形状に拡張させる。供給装置としては、例えば、公知のインデフレーター等を用いることが可能である。 The supply device supplies a pressurized medium into the balloon 210 to expand the balloon 210 into a predetermined shape. As the supply device, for example, a known indeflator or the like can be used.
 バルーン210の拡張に使用される加圧媒体は、ハブ400の接続部410を介してシャフト部100内へ流入させることができる。加圧媒体は、チューブ部材510を経由してバルーン210へ供給される。 The pressurized medium used for the expansion of the balloon 210 can flow into the shaft portion 100 via the connection portion 410 of the hub 400. The pressurized medium is supplied to the balloon 210 via the tube member 510.
 チューブ部材510は、内管110の外面に沿うように並列して配置され、先端から基端まで貫通して加圧媒体を流通するルーメンが形成された長尺状の管状体によって構成されている。チューブ部材510は、加圧媒体を移送してバルーン210へ供給またはバルーン210から排出する。チューブ部材510の先端にはバルーン210の基端を溶着等により液密・気密に接合している。なお、チューブ部材510は、内管110の外面側に設けるとしたが、これに限定されるものではない。例えば、内管110をチューブ部材510に内挿してもよい。この場合、内管110およびチューブ部材510は、同心状に位置合わせされた二重管構造によって構成され、内管110とチューブ部材510との間に加圧媒体を供給するルーメンを形成してもよい。 The tube member 510 is arranged in parallel so as to follow the outer surface of the inner tube 110, and is configured by a long tubular body in which a lumen that passes through the pressurized medium through the tip end to the base end is formed. . The tube member 510 transfers the pressurized medium and supplies it to the balloon 210 or discharges it from the balloon 210. The proximal end of the balloon 210 is joined to the distal end of the tube member 510 in a liquid-tight or air-tight manner by welding or the like. Although the tube member 510 is provided on the outer surface side of the inner tube 110, the present invention is not limited to this. For example, the inner tube 110 may be inserted into the tube member 510. In this case, the inner tube 110 and the tube member 510 are configured by a double tube structure concentrically aligned, and a lumen for supplying a pressurized medium may be formed between the inner tube 110 and the tube member 510. Good.
 挿通管520は、バルーン210の基端部からハブ400まで延伸する長尺状の管状体によって構成され、チューブ部材510が挿通される。 The insertion tube 520 is constituted by a long tubular body extending from the proximal end portion of the balloon 210 to the hub 400, and the tube member 510 is inserted therethrough.
 チューブ部材510および挿通管520の形成材料としては、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、エチレン-酢酸ビニル共重合体等のポリオレフィン、軟質ポリ塩化ビニル等の熱可塑性樹脂、シリコーンゴム、ラテックスゴム等の各種ゴム類、ポリウレタンエラストマー、ポリアミドエラストマー、ポリエステルエラストマー等の各種エラストマー、ポリアミド、結晶性ポリエチレン、結晶性ポリプロピレン等の結晶性プラスチックを使用することができる。これらの材料中に、例えば、ヘパリン、プロスタグランジン、ウロキナーゼ、アルギニン誘導体等の抗血栓性物質を配合し、抗血栓性を有する材料とすることも可能である。 Examples of the material for forming the tube member 510 and the insertion tube 520 include polyethylene, polypropylene, polyolefins such as ethylene-propylene copolymer and ethylene-vinyl acetate copolymer, thermoplastic resins such as soft polyvinyl chloride, silicone rubber, Various rubbers such as latex rubber, various elastomers such as polyurethane elastomer, polyamide elastomer, and polyester elastomer, and crystalline plastics such as polyamide, crystalline polyethylene, and crystalline polypropylene can be used. In these materials, for example, an antithrombotic substance such as heparin, prostaglandin, urokinase, arginine derivative or the like can be blended to obtain a material having antithrombotic properties.
 以下、第1実施形態のステントデリバリーシステム10によって自己拡張型ステント310を狭窄部に留置する方法について説明する。 Hereinafter, a method of placing the self-expanding stent 310 in the stenosis portion by the stent delivery system 10 of the first embodiment will be described.
 まず、図1および図2に示す先端部材130の開口部110bにガイドワイヤを挿入させ、ガイドワイヤ導出孔122aからガイドワイヤ(図示せず)を導出させる。次に、ガイドワイヤに沿わせてシャフト部100を生体内に挿入して押し進め、狭窄部に第1の外管121の収容部121aを配置させる。このとき、図3(A)に示すように、バルーン210は伸長(拡張変形)する前の収縮した状態である。また、自己拡張型ステント310は、収縮した状態で収容部121a内に予め配置しておく。 First, a guide wire is inserted into the opening 110b of the tip member 130 shown in FIGS. 1 and 2, and a guide wire (not shown) is led out from the guide wire lead-out hole 122a. Next, the shaft portion 100 is inserted into the living body and pushed along the guide wire, and the accommodating portion 121a of the first outer tube 121 is disposed in the narrowed portion. At this time, as shown in FIG. 3A, the balloon 210 is in a contracted state before being expanded (expanded). In addition, the self-expanding stent 310 is disposed in advance in the accommodating portion 121a in a contracted state.
 次に、供給装置から加圧媒体をバルーン210へ供給する。これによって、図3(B)に示すように、バルーン210を軸方向に拡張変形させ、先端側に位置する第1の固定部220は先端側へ、基端側に位置する第2の固定部230は基端側へ互いに離反移動する。この離反移動によって、移動部200は伸長して、第2の固定部230が固定される外管120を第1の固定部220が固定される内管110に対して相対的に移動させる。内管110と外管120とが軸方向に沿って互いに移動することによって自己拡張型ステント310がシャフト部100から露出される。 Next, the pressurized medium is supplied to the balloon 210 from the supply device. As a result, as shown in FIG. 3B, the balloon 210 is expanded and deformed in the axial direction, and the first fixing portion 220 located on the distal end side is moved to the distal end side, and the second fixing portion located on the proximal end side. 230 move away from each other toward the base end side. Due to this separation movement, the moving part 200 expands and moves the outer pipe 120 to which the second fixing part 230 is fixed relative to the inner pipe 110 to which the first fixing part 220 is fixed. The self-expandable stent 310 is exposed from the shaft portion 100 by moving the inner tube 110 and the outer tube 120 relative to each other along the axial direction.
 自己拡張型ステント310は、移動部200が伸長する前の状態においては、第1の固定部220よりもシャフト部100の先端側に配置されている(図3(A)を参照)。このため、ステント310を露出させる際に、内管110に対して外管120を移動させる距離を短くすることができるので、自己拡張型ステント310をより迅速に狭窄部に対して放出することが可能になる。 The self-expanding stent 310 is disposed closer to the distal end side of the shaft portion 100 than the first fixing portion 220 in a state before the moving portion 200 is extended (see FIG. 3A). For this reason, when the stent 310 is exposed, the distance for moving the outer tube 120 with respect to the inner tube 110 can be shortened, so that the self-expanding stent 310 can be released to the stenosis more quickly. It becomes possible.
 図4に示す対比例に係るステントデリバリーシステム10’は、本実施形態に係るステントデリバリーシステム10と同様に、シャフト部100’は内管110’と、当該内管110’の周囲に配置した外管120’と、を備える。シャフト部100’の先端側に自己拡張型ステント310を収容した状態で生体管腔内へ送達し、外管120’を内管110’に対して相対的に移動させることによって自己拡張型ステント310を生体管腔内に留置する。対比例に係るステントデリバリーシステム10’は、外管120に固定された牽引ワイヤ700a、700bを手元の操作で基端側へ牽引することによって外管120’を基端側へ移動させるワイヤ牽引式の移動機構を有する点で本実施形態とは異なる。 As in the stent delivery system 10 according to this embodiment, the stent delivery system 10 ′ according to the comparative example shown in FIG. 4 includes an inner tube 110 ′ and an outer tube disposed around the inner tube 110 ′. A tube 120 ′. The self-expandable stent 310 is delivered to the living body lumen in a state where the self-expandable stent 310 is accommodated on the distal end side of the shaft portion 100 ′, and the outer tube 120 ′ is moved relative to the inner tube 110 ′. Is placed in the body lumen. The stent delivery system 10 ′ according to the comparative example is a wire pulling type in which the pulling wires 700a and 700b fixed to the outer tube 120 are pulled to the proximal side by a hand operation to move the outer tube 120 ′ to the proximal side. This embodiment is different from the present embodiment in that it has a moving mechanism.
 図4(A)は、牽引前のステントデリバリーシステム10’の先端側部分を示す。この状態で、先端側から生体管腔内に挿入する。 FIG. 4 (A) shows the distal end portion of the stent delivery system 10 'before towing. In this state, it is inserted into the living body lumen from the distal end side.
 次に、図4(B)に示すように、先端側部分を狭窄部に挿入した際、シャフト部100’の先端側部分には狭窄部によって径方向内方(図4(B)矢印方向)への負荷(拘束力)が掛かる場合がある。狭窄部の内径が極端に狭いと径方向内方への負荷が大きなってしまい、自己拡張型ステント310を収容する収容部121aが圧縮される。このとき、収容部121a内の自己拡張型ステント310と外管120’との間の静止摩擦抵抗は、自己拡張型ステント310が径方向外方へ広がろうとする復元力によって増加する。特に、比較的長い距離で各牽引ワイヤ700a、700bを牽引する場合は、牽引に伴って作用する引っ張り力も大きくなるため、静止摩擦抵抗がより一層大きなものとなる。 Next, as shown in FIG. 4B, when the distal end portion is inserted into the constricted portion, the distal end portion of the shaft portion 100 ′ is radially inward by the constricted portion (the arrow direction in FIG. 4B). A load (restraint force) may be applied. When the inner diameter of the constricted portion is extremely narrow, a load inward in the radial direction is increased, and the accommodating portion 121a that accommodates the self-expanding stent 310 is compressed. At this time, the static frictional resistance between the self-expandable stent 310 and the outer tube 120 ′ in the accommodating portion 121 a is increased by a restoring force that the self-expandable stent 310 tries to spread radially outward. In particular, when the pulling wires 700a and 700b are pulled at a relatively long distance, the pulling force acting along with the pulling is also increased, so that the static frictional resistance is further increased.
 また、外管120’が基端側へ牽引されるとき、静止摩擦抵抗によって自己拡張型ステント310は基端側に移動する。これによって、自己拡張型ステント310の基端側において内管110’に固定されている第1の固定部220’は、自己拡張型ステント310によって押圧されることによって基端側方向へ移動させる力がかかる。よって、第1の固定部220’が内管110を基端側へ移動させる方向へ力を作用させるため、内管110’の基端側が撓んでしまう場合がある。 Also, when the outer tube 120 ′ is pulled toward the proximal end, the self-expanding stent 310 moves toward the proximal end due to static frictional resistance. Accordingly, the first fixing portion 220 ′ fixed to the inner tube 110 ′ on the proximal end side of the self-expandable stent 310 is moved by the self-expandable stent 310 in the proximal direction by being pressed by the self-expandable stent 310. It takes. Therefore, since the first fixing portion 220 ′ applies a force in the direction of moving the inner tube 110 toward the proximal end, the proximal end of the inner tube 110 ′ may be bent.
 このとき、図4(C)に示すように、先端側部分を抜去しようとして、シャフト部100’を基端側へ移動させると、狭窄部による拘束力から開放されるので、外管120’と自己拡張型ステント310との軸方向の静止摩擦抵抗が小さくなる。内管110’は、撓みを元に戻そうとする復元力によって、第1の固定部220’を先端側へ押圧し、自己拡張型ステント310を外管120’の先端側へ押し出そうとする推進力を生じる。 At this time, as shown in FIG. 4C, when the shaft portion 100 ′ is moved toward the proximal end in order to remove the distal end side portion, it is released from the restraining force by the narrowed portion, so that the outer tube 120 ′ The axial static frictional resistance with the self-expanding stent 310 is reduced. The inner tube 110 ′ attempts to push the first fixing portion 220 ′ toward the distal end side and to push the self-expanding stent 310 toward the distal end side of the outer tube 120 ′ by a restoring force to restore the deflection. To generate a driving force.
 当該推進力によって、図4(D)に示すように、自己拡張型ステント310が治療したい狭窄部を跳び越えて、意図していない場所に跳んでいくいわゆるジャンピング現象や自己拡張型ステント310の長さが目的の長さよりも短くなるいわゆるショートニング現象を引き起こす場合がある。 As shown in FIG. 4D, the propulsive force causes the self-expandable stent 310 to jump over the stenosis portion to be treated and jump to an unintended place or the length of the self-expandable stent 310. This may cause a so-called shortening phenomenon in which the length becomes shorter than the target length.
 本実施形態に係るステントデリバリーシステム10では、自己拡張型ステント310を留置する際、上述したようにシャフト部100内に配置された移動部200の伸縮変形によって外管120を内管110に対して相対的に移動させことができる。このため、生体外部に配置される操作部(ハブ400等)から処置対象部位までの距離に関わらず、動力源となる移動部200と移動対象である外管120との距離を短く保つことができる。よって、内管110に対して外管120を移動させるための力が伝わり易くなるため、自己拡張型ステント310をシャフト部100からより確実かつ容易に露出させて狭窄部の処置を実施することができる。 In the stent delivery system 10 according to the present embodiment, when the self-expanding stent 310 is placed, the outer tube 120 is moved with respect to the inner tube 110 by the expansion / contraction deformation of the moving unit 200 disposed in the shaft unit 100 as described above. It can be moved relatively. For this reason, regardless of the distance from the operation unit (such as the hub 400) disposed outside the living body to the treatment target site, the distance between the moving unit 200 serving as a power source and the outer tube 120 serving as the moving target can be kept short. it can. Therefore, since the force for moving the outer tube 120 with respect to the inner tube 110 is easily transmitted, it is possible to more reliably and easily expose the self-expanding stent 310 from the shaft portion 100 to perform the treatment of the stenosis. it can.
 また、バルーン210が拡張変形することによって第1の固定部220は先端側へ、第2の固定部230は基端側へ互いに離反移動する。第1の固定部220は内管110に固定されているので内管110が先端側へ移動する方向へ力がかかる。このため、内管110が基端側へ移動して撓むことを抑制することができる。これによって、自己拡張型ステント310を留置する際に、いわゆるジャンピング現象やショートニング現象を防止することができる。 Also, when the balloon 210 is expanded and deformed, the first fixing portion 220 moves away from the distal end side, and the second fixing portion 230 moves away from the proximal end side. Since the 1st fixing | fixed part 220 is being fixed to the inner tube | pipe 110, force is applied to the direction where the inner tube | pipe 110 moves to the front end side. For this reason, it can suppress that the inner pipe | tube 110 moves to a base end side, and bends. Thereby, when the self-expanding stent 310 is placed, a so-called jumping phenomenon or shortening phenomenon can be prevented.
 以上説明したように、第1実施形態に係るステントデリバリーシステム10は、内管110と、内管110の外周面を覆うように配置される外管120とを備え、生体管腔内に挿入されるシャフト部100と、内管110と外管120との間に配置され、シャフト部100の軸方向に沿って伸縮変形することにより、軸方向に沿って外管120を内管110に対して相対的に移動させる移動部200と、移動部200が伸縮変形する前は内管110と外管120との間に収容され、移動部200が伸縮変形した際にシャフト部100から露出されて生体管腔内の処置対象部位に対して所定の処置を実施する自己拡張型ステント310と、を有する。 As described above, the stent delivery system 10 according to the first embodiment includes the inner tube 110 and the outer tube 120 disposed so as to cover the outer peripheral surface of the inner tube 110, and is inserted into a living body lumen. The shaft portion 100 is disposed between the inner tube 110 and the outer tube 120, and the outer tube 120 is extended with respect to the inner tube 110 along the axial direction by expanding and contracting along the axial direction of the shaft portion 100. The moving part 200 to be moved relatively and before the moving part 200 expands and contracts are accommodated between the inner tube 110 and the outer tube 120, and are exposed from the shaft part 100 when the moving part 200 expands and contracts and the living body A self-expandable stent 310 that performs a predetermined treatment on a treatment target site in the lumen.
 このように構成したステントデリバリーシステム10によれば、シャフト部100内に配置された移動部200の伸縮変形によって外管120を内管110に対して相対的に移動させことができる。このため、外管120に力が伝わりやすくなり、自己拡張型ステント310をシャフト部100からより確実かつ容易に露出させて狭窄部の処置を実施することができる。 According to the stent delivery system 10 configured as described above, the outer tube 120 can be moved relative to the inner tube 110 by the expansion and contraction of the moving unit 200 disposed in the shaft unit 100. For this reason, force can be easily transmitted to the outer tube 120, and the self-expandable stent 310 can be more reliably and easily exposed from the shaft portion 100 to perform the treatment of the stenosis.
 また、第1の固定部220は内管110に固定されており、第2の固定部230は外管120に固定されており、移動部200が伸長した際に内管110と外管120とが軸方向に沿って互いに進退動することによって自己拡張型ステント310がシャフト部100から露出される。 Further, the first fixing part 220 is fixed to the inner pipe 110, and the second fixing part 230 is fixed to the outer pipe 120. When the moving part 200 is extended, the inner pipe 110 and the outer pipe 120 are The self-expanding stent 310 is exposed from the shaft portion 100 by moving forward and backward with respect to each other along the axial direction.
 このように構成したステントデリバリーシステム10によれば、内管110が先端側へ移動する方向へ力がかかるため、内管110が撓むことを抑制することができる。これによって、自己拡張型ステント310等の処置部を留置する際に、いわゆるジャンピング現象やショートニング現象等が発生するのを防止することができる。 According to the stent delivery system 10 configured as described above, since the force is applied in the direction in which the inner tube 110 moves toward the distal end side, the inner tube 110 can be prevented from being bent. As a result, it is possible to prevent a so-called jumping phenomenon or shortening phenomenon from occurring when a treatment portion such as the self-expanding stent 310 is placed.
 また、自己拡張型ステント310は、移動部200が伸長する前の状態において、第1の固定部220よりもシャフト部100の先端側に配置されている。 In addition, the self-expanding stent 310 is disposed on the distal end side of the shaft portion 100 with respect to the first fixing portion 220 in a state before the moving portion 200 extends.
 このように構成したステントデリバリーシステム10によれば、外管120の内管110に対する相対的な移動距離を短くすることができるので、自己拡張型ステント310をより迅速に狭窄部の処置を実施することができる。 According to the stent delivery system 10 configured as described above, since the relative moving distance of the outer tube 120 with respect to the inner tube 110 can be shortened, the self-expandable stent 310 is treated more quickly in the stenosis. be able to.
 また、外管120は、移動部200が固定された第1の外管121と、第1の外管121内に摺動可能に挿入される第2の外管122と、を有する。 The outer tube 120 includes a first outer tube 121 to which the moving unit 200 is fixed, and a second outer tube 122 that is slidably inserted into the first outer tube 121.
 このように構成したステントデリバリーシステム10によれば、第1の外管121を内管110に対して相対的に移動させる操作を容易にすることができる。 According to the stent delivery system 10 configured as described above, the operation of moving the first outer tube 121 relative to the inner tube 110 can be facilitated.
 また、移動部200は、加圧媒体の流入および排出により軸方向に伸縮変形されるバルーン210によって構成されている。 Further, the moving unit 200 is configured by a balloon 210 that expands and contracts in the axial direction by inflow and discharge of the pressurized medium.
 このように構成したステントデリバリーシステム10によれば、容易に移動部200を伸縮変形させることができる。 According to the stent delivery system 10 configured in this way, the moving part 200 can be easily expanded and contracted.
 また、処置部は、移動部200が伸長する前は、シャフトの径方向内方に圧縮された状態で収容され、移動部200が伸長してシャフト部100から露出された後に生体器官である生体管腔内に留置される自己拡張型ステント310を含む。 In addition, the treatment unit is accommodated in a state compressed inward in the radial direction of the shaft before the moving unit 200 expands, and a living body that is a living organ after the moving unit 200 expands and is exposed from the shaft unit 100. It includes a self-expanding stent 310 that is placed in the lumen.
 このように構成したステントデリバリーシステム10によれば、自己拡張型ステント310をスムーズに狭窄部において留置することができる。 According to the stent delivery system 10 configured as described above, the self-expandable stent 310 can be smoothly placed in the stenosis.
 (第1実施形態の変形例)
 図5は、第1実施形態の変形例に係るステントデリバリーシステム10aの断面図であり、図5(A)は、移動部200が伸縮変形する前の状態を示し、図5(B)は、移動部200が伸縮変形した後の状態を示す。以下、図5を参照して第1実施形態の変形例に係るステントデリバリーシステム10aについて説明する。
(Modification of the first embodiment)
FIG. 5 is a cross-sectional view of a stent delivery system 10a according to a modification of the first embodiment. FIG. 5 (A) shows a state before the moving part 200 is stretched and deformed, and FIG. The state after the moving part 200 expands and contracts is shown. Hereinafter, a stent delivery system 10a according to a modification of the first embodiment will be described with reference to FIG.
 第1実施形態の変形例に係るステントデリバリーシステム10aは、移動部200の構成のみが第1実施形態と異なり、移動部200を収縮変形させることによって自己拡張型ステント310をシャフト部100から露出する点において第1実施形態と異なる。他の構成は第1実施形態と同様である。以下、第1実施形態と同様の構成については、説明を省略する。なお、第1実施形態と同様の構成を有する部材については、同じ符号を用いて説明する。 The stent delivery system 10a according to the modified example of the first embodiment is different from the first embodiment only in the configuration of the moving part 200, and the self-expandable stent 310 is exposed from the shaft part 100 by contracting and deforming the moving part 200. This is different from the first embodiment. Other configurations are the same as those of the first embodiment. Hereinafter, description of the same configuration as that of the first embodiment will be omitted. In addition, about the member which has the structure similar to 1st Embodiment, it demonstrates using the same code | symbol.
 図5(A)に示すように、移動部200は、第1実施形態と同様に、内管110と外管120との間であって、収容部121aより基端側に配置される。移動部200は、軸方向に収縮変形されるバルーン210と、外管120に固定される第1の固定部220と、内管110に固定される第2の固定部230と、を有する。 As shown in FIG. 5A, the moving unit 200 is disposed between the inner tube 110 and the outer tube 120 on the proximal side from the housing unit 121a, as in the first embodiment. The moving unit 200 includes a balloon 210 that is contracted and deformed in the axial direction, a first fixing unit 220 that is fixed to the outer tube 120, and a second fixing unit 230 that is fixed to the inner tube 110.
 バルーン210は、生理食塩水や造影剤等のような加圧媒体を内部に満たした状態から当該加圧媒体が排出されることによって収縮変形する。バルーン210の構造および形成材料は、第1実施形態と同様である。 The balloon 210 is contracted and deformed when the pressurized medium is discharged from a state where the pressurized medium such as physiological saline or contrast medium is filled inside. The structure and forming material of the balloon 210 are the same as those in the first embodiment.
 第1の固定部220は、バルーン210の先端に固定されている。第2の固定部230は、内管110に固定され、自己拡張型ステント310を収容する収容部121aの基端側に配置されている。第1の固定部220および第2の固定部230の固定手段は、第1実施形態と同様である。なお、固定に限定されず、係合等によってバルーン210の変形に追従させて第1の固定部220および第2の固定部230を移動できる構成であればよい。第1の固定部220および第2の固定部230は、バルーン210の収縮変形に伴い、接近移動可能に構成されている。第1の固定部220および第2の固定部230のその他の構成および形成材料は、第1実施形態と同様である。 The first fixing part 220 is fixed to the tip of the balloon 210. The second fixing portion 230 is fixed to the inner tube 110 and is disposed on the proximal end side of the accommodating portion 121 a that accommodates the self-expanding stent 310. The fixing means of the first fixing part 220 and the second fixing part 230 is the same as in the first embodiment. Note that the present invention is not limited to fixing, and any structure may be used as long as the first fixing unit 220 and the second fixing unit 230 can be moved by following deformation of the balloon 210 by engagement or the like. The first fixing portion 220 and the second fixing portion 230 are configured to be able to move closer together with the contraction deformation of the balloon 210. Other configurations and forming materials of the first fixing portion 220 and the second fixing portion 230 are the same as those in the first embodiment.
 以下、本実施形態のステントデリバリーシステム10aによって自己拡張型ステント310を狭窄部に留置する方法について説明する。 Hereinafter, a method of placing the self-expanding stent 310 in the stenosis portion by the stent delivery system 10a of the present embodiment will be described.
 まず、第1実施形態と同様に狭窄部に第1の外管121の自己拡張型ステント310の収容部121aを配置させる。このとき、図5(A)に示すように、バルーン210は、内部に加圧媒体が満たされて拡張した状態にある。また、自己拡張型ステント310は、収縮した状態で収容部121a内に予め配置しておく。 First, similarly to the first embodiment, the accommodating portion 121a of the self-expandable stent 310 of the first outer tube 121 is disposed in the narrowed portion. At this time, as shown in FIG. 5A, the balloon 210 is in an expanded state with the inside filled with a pressurized medium. In addition, the self-expanding stent 310 is disposed in advance in the accommodating portion 121a in a contracted state.
 次に、供給装置によって加圧媒体をバルーン210から排出する。これによって、図5(B)に示すように、バルーン210が軸方向に収縮変形し、先端側に位置する第1の固定部220は基端側へ、基端側に位置する第2の固定部230は先端側へ互いに接近移動する。この接近移動によって、移動部200は収縮して、第1の固定部220が固定される外管120を第2の固定部230が固定される内管110に対して相対的に移動させる。内管110と外管120とが軸方向に沿って互いに接近移動することによって自己拡張型ステント310はシャフト部100から露出されて狭窄部に留置される。 Next, the pressurized medium is discharged from the balloon 210 by the supply device. As a result, as shown in FIG. 5B, the balloon 210 is contracted and deformed in the axial direction, and the first fixing portion 220 located on the distal end side is moved to the proximal end side, and the second fixed portion located on the proximal end side. The parts 230 move toward each other toward the tip side. By this approaching movement, the moving part 200 contracts, and the outer tube 120 to which the first fixing part 220 is fixed is moved relative to the inner pipe 110 to which the second fixing part 230 is fixed. As the inner tube 110 and the outer tube 120 move closer to each other along the axial direction, the self-expanding stent 310 is exposed from the shaft portion 100 and is placed in the stenosis portion.
 以上説明したように、第1実施形態の変形例に係るステントデリバリーシステム10bは、第1実施形態と同様の構成によって同様の効果を得る。また、第1実施形態の変形例に特徴的な以下の構成によってさらに以下の効果を奏する。 As described above, the stent delivery system 10b according to the modification of the first embodiment obtains the same effect by the same configuration as that of the first embodiment. Moreover, the following effects are further exhibited by the following configuration characteristic of the modification of the first embodiment.
 第1実施形態の変形例に係るステントデリバリーシステム10aは、第1の固定部220は外管120に固定されており、移動部200の基端部は内管110に固定されており、移動部200が収縮した際に内管110と外管120とが軸方向に沿って互いに接近移動することによって自己拡張型ステント310がシャフト部100から露出される。 In the stent delivery system 10a according to the modification of the first embodiment, the first fixing portion 220 is fixed to the outer tube 120, and the proximal end portion of the moving portion 200 is fixed to the inner tube 110. When the inner tube 110 and the outer tube 120 move closer to each other along the axial direction when the tube 200 contracts, the self-expanding stent 310 is exposed from the shaft portion 100.
 このように構成したステントデリバリーシステム10aによれば、自己拡張型ステント310を放出させる際にシャフト部100が収縮して小型化するため、シャフト部100を小型化した状態で生体外へ抜去することが可能になる。 According to the stent delivery system 10a configured as described above, when the self-expandable stent 310 is released, the shaft portion 100 is contracted and reduced in size, so that the shaft portion 100 is removed from the living body in a reduced size. Is possible.
 (第2実施形態)
 図6は、第2実施形態に係るステントデリバリーシステム10bの断面図であり、図6(A)は、移動部200が伸縮変形する前の状態を示し、図6(B)は、移動部200が伸縮変形した後の状態を示し、図6(C)は、移動部200のシャフト部100から露出する部位210aがさらに伸縮変形した状態を示す。以下、図6を参照して第2実施形態に係るステントデリバリーシステム10bについて説明する。
(Second Embodiment)
FIG. 6 is a cross-sectional view of the stent delivery system 10b according to the second embodiment. FIG. 6 (A) shows a state before the moving part 200 expands and contracts, and FIG. 6 (B) shows the moving part 200. FIG. 6C shows a state where the portion 210a exposed from the shaft portion 100 of the moving unit 200 is further stretched and deformed. Hereinafter, the stent delivery system 10b according to the second embodiment will be described with reference to FIG.
 第2実施形態に係るステントデリバリーシステム10bは、移動部200が伸長した際に、移動部200の一部がシャフト部100から露出して径方向にさらに拡張変形する点において第1実施形態と異なる。以下、第1実施形態と同様の構成については、説明を省略する。なお、第1実施形態と同様の構成を有する部材については、同じ符号を用いて説明する。 The stent delivery system 10b according to the second embodiment is different from the first embodiment in that when the moving part 200 extends, a part of the moving part 200 is exposed from the shaft part 100 and further expands and deforms in the radial direction. . Hereinafter, description of the same configuration as that of the first embodiment will be omitted. In addition, about the member which has the structure similar to 1st Embodiment, it demonstrates using the same code | symbol.
 ステント300としては、バルーン拡張型ステント320を使用した例を説明する。ただし、本実施形態に用いるステント300は、バルーン拡張型ステント320に限定されず、自己拡張型ステント310を使用してもよい。 An example in which a balloon expandable stent 320 is used as the stent 300 will be described. However, the stent 300 used in this embodiment is not limited to the balloon expandable stent 320, and a self-expandable stent 310 may be used.
 バルーン210は、軸方向および径方向に拡張可能である。バルーン210の構造は第1実施形態と同様である。バルーン210の形成材料も第1実施形態と同じ材料を使用することができるが、先端側と基端側において材料特性が異なる構成によって形成することが好ましい。例えば、先端側の形成材料が基端側よりも弾性コンプライアンスが高い材料を使用することができる。これによって、バルーン210の先端側においてシャフト部100から露出する部分がより径方向外方へ変形しやすくなる。なお、バルーン210を同一の材料によって形成してもよい。この場合、バルーン拡張型ステント320は、移動部200が伸長する前の状態において、バルーン210の外面側に配置される。これによって、バルーン210の径方向への拡張に伴ってバルーン拡張型ステント320を容易に径方向外方に拡張させることができる。 The balloon 210 is expandable in the axial direction and the radial direction. The structure of the balloon 210 is the same as that of the first embodiment. The material for forming the balloon 210 can be the same as that of the first embodiment, but it is preferable to form the balloon 210 with a configuration having different material properties on the distal end side and the proximal end side. For example, it is possible to use a material in which the forming material on the distal end side has higher elastic compliance than the proximal end side. As a result, the portion exposed from the shaft portion 100 on the distal end side of the balloon 210 is more easily deformed radially outward. Note that the balloon 210 may be formed of the same material. In this case, the balloon expandable stent 320 is disposed on the outer surface side of the balloon 210 in a state before the moving part 200 is extended. Thereby, the balloon expandable stent 320 can be easily expanded radially outward as the balloon 210 is expanded in the radial direction.
 以下、本実施形態のステントデリバリーシステム10bによってバルーン拡張型ステント320を狭窄部に留置する方法について説明する。 Hereinafter, a method for placing the balloon-expandable stent 320 in the stenosis portion by the stent delivery system 10b of the present embodiment will be described.
 まず、第1実施形態と同様に狭窄部に第1の外管121のバルーン拡張型ステント320の収容部121aを配置させる。このとき、図6(A)に示すように、バルーン210は伸長(拡張変形)する前の収縮した状態である。また、バルーン拡張型ステント320は、収容部121a内に予め配置しておく。 First, similarly to the first embodiment, the accommodating portion 121a of the balloon expandable stent 320 of the first outer tube 121 is disposed in the narrowed portion. At this time, as shown in FIG. 6A, the balloon 210 is in a contracted state before being expanded (expanded). Further, the balloon expandable stent 320 is arranged in advance in the accommodating portion 121a.
 次に、図6(B)に示すように、第1実施形態と同様に、加圧媒体をバルーン210へ供給してバルーン210を軸方向に拡張変形させる。これによって、移動部200は伸長して、第2の固定部230が固定される外管120を第1の固定部220が固定される内管110に対して相対的に移動させる。内管110と外管120とが軸方向に沿って互いに進退動することによってバルーン拡張型ステント320がシャフト部100から露出される。また、バルーン210は、内管110と外管120とが進退動した際に、シャフト部100から露出する部位210aを有する。バルーン210をシャフト部100から露出させるように拡張させることによって、バルーン210の拡張力が増す。よって、移動部200の外管120を内管110に対して基端側へ移動させる推進力を高めることができる。 Next, as shown in FIG. 6B, as in the first embodiment, a pressurized medium is supplied to the balloon 210 to expand and deform the balloon 210 in the axial direction. As a result, the moving unit 200 extends to move the outer tube 120 to which the second fixing unit 230 is fixed relative to the inner tube 110 to which the first fixing unit 220 is fixed. The balloon expandable stent 320 is exposed from the shaft portion 100 by the inner tube 110 and the outer tube 120 moving back and forth in the axial direction. The balloon 210 has a portion 210a that is exposed from the shaft portion 100 when the inner tube 110 and the outer tube 120 move forward and backward. By expanding the balloon 210 so as to be exposed from the shaft portion 100, the expansion force of the balloon 210 is increased. Therefore, it is possible to increase the propulsive force that moves the outer tube 120 of the moving unit 200 toward the proximal side with respect to the inner tube 110.
 その後、図6(C)に示すように、加圧媒体をバルーン210へさらに供給してバルーン210を径方向外方に拡張変形させる。これによって、バルーン拡張型ステント320を留置した後、径方向外方に拡張させることができる。 Thereafter, as shown in FIG. 6C, the pressurized medium is further supplied to the balloon 210 to expand and deform the balloon 210 radially outward. As a result, after the balloon expandable stent 320 is indwelled, it can be expanded radially outward.
 以上説明したように、第2実施形態に係るステントデリバリーシステム10bは、第1実施形態と同様の構成によって同様の効果を得る。また、第2実施形態に特徴的な以下の構成によってさらに以下の効果を奏する。 As described above, the stent delivery system 10b according to the second embodiment obtains the same effect by the same configuration as that of the first embodiment. In addition, the following effects, which are characteristic of the second embodiment, further exhibit the following effects.
 第2実施形態に係るステントデリバリーシステム10bの移動部200の一部は、伸長した際に、シャフト部100から露出する。 A part of the moving part 200 of the stent delivery system 10b according to the second embodiment is exposed from the shaft part 100 when extended.
 このように構成したステントデリバリーシステム10bによれば、移動部200の外管120を内管110に対して基端側へ移動させる推進力を増すことができる。 According to the stent delivery system 10b configured as described above, it is possible to increase the driving force for moving the outer tube 120 of the moving unit 200 to the proximal side with respect to the inner tube 110.
 また、移動部200においてシャフト部100から露出する部位210aは、シャフト部100の径方向外方へ拡張変形可能に構成されている。 Further, the portion 210 a exposed from the shaft portion 100 in the moving portion 200 is configured to be expandable and deformable outward in the radial direction of the shaft portion 100.
 このように構成したステントデリバリーシステム10bによれば、バルーン拡張型ステント320がシャフト部100から露出した後、さらに径方向外方に拡張させることができ、特にバルーン拡張型ステント320を好適に使用することができる。 According to the stent delivery system 10b configured as described above, after the balloon expandable stent 320 is exposed from the shaft portion 100, the balloon expandable stent 320 can be further expanded radially outward. In particular, the balloon expandable stent 320 is preferably used. be able to.
 また、バルーン拡張型ステント320は、移動部200が伸長する前の状態において、バルーン210の外面側に配置される。 Further, the balloon expandable stent 320 is disposed on the outer surface side of the balloon 210 in a state before the moving part 200 is extended.
 このように構成したステントデリバリーシステム10bによれば、第1の固定部220を径方向外方に拡張するバルーン210の外面側に配置することができるので、バルーン拡張型ステント320を容易に径方向外方に拡張させることができる。 According to the stent delivery system 10b configured in this manner, the first fixing portion 220 can be disposed on the outer surface side of the balloon 210 that expands radially outward, and thus the balloon expandable stent 320 can be easily aligned in the radial direction. Can be expanded outward.
 また、処置部は、移動部200が伸長する前は、シャフトの径方向内方に圧縮された状態で収容され、移動部200が伸長してシャフト部100から露出された後に生体管腔内に留置されるバルーン拡張型ステント320を含む。 Further, the treatment unit is accommodated in a state compressed inward in the radial direction of the shaft before the moving unit 200 is extended, and is inserted into the living body lumen after the moving unit 200 is extended and exposed from the shaft unit 100. It includes a balloon expandable stent 320 that is deployed.
 このように構成したステントデリバリーシステム10によれば、バルーン拡張型ステント320をスムーズに狭窄部において留置させ、さらに径方向外方へ拡張させることができる。 According to the stent delivery system 10 configured as described above, the balloon expandable stent 320 can be smoothly placed in the stenosis and further expanded radially outward.
 (第3実施形態)
 図7は、第3実施形態に係るステントデリバリーシステム10cであり、図7(A)は、移動部200が伸縮変形する前の状態を示し、図7(B)は、移動部200が伸縮変形した後の状態を示す。以下、図7を参照して第3実施形態に係るステントデリバリーシステム10cについて説明する。
(Third embodiment)
FIG. 7 shows a stent delivery system 10c according to the third embodiment. FIG. 7 (A) shows a state before the moving part 200 is stretched and deformed, and FIG. 7 (B) shows that the moving part 200 is stretched and deformed. The state after doing. Hereinafter, the stent delivery system 10c according to the third embodiment will be described with reference to FIG.
 第3実施形態に係るステントデリバリーシステム10cは、移動部200が伸長した際に、外管120が内管110に対して相対的に移動する移動量を制限する制限部240を有する点において第1実施形態と異なる。以下、第1実施形態と同様の構成については、説明を省略する。なお、第1実施形態と同様の構成を有する部材については、同じ符号を用いて説明する。 The stent delivery system 10c according to the third embodiment is the first in that it has a limiting unit 240 that limits the amount of movement of the outer tube 120 relative to the inner tube 110 when the moving unit 200 extends. Different from the embodiment. Hereinafter, description of the same configuration as that of the first embodiment will be omitted. In addition, about the member which has the structure similar to 1st Embodiment, it demonstrates using the same code | symbol.
 制限部240は、図7(A)に示すように、移動部200の基端側において内管110に固定された係止部材241を有する。係止部材241は、第1の固定部220に当接して内管110に対する基端側への移動を制限する。係止部材241は、第1の固定部220および第2の固定部230と同様の材料を使用することができる。 As shown in FIG. 7A, the restricting portion 240 has a locking member 241 fixed to the inner tube 110 on the proximal end side of the moving portion 200. The locking member 241 abuts on the first fixing portion 220 and restricts the movement toward the proximal end side with respect to the inner tube 110. The locking member 241 can use the same material as the first fixing portion 220 and the second fixing portion 230.
 以下、本実施形態のステントデリバリーシステム10cによって自己拡張型ステント310を狭窄部に留置する方法について説明する。 Hereinafter, a method of placing the self-expanding stent 310 in the stenosis portion by the stent delivery system 10c of the present embodiment will be described.
 まず、第1実施形態と同様に狭窄部に第1の外管121の自己拡張型ステント310の収容部121aを配置させる。このとき、図7(A)に示すように、バルーン210は伸長(拡張変形)する前の収縮した状態である。また、自己拡張型ステント310は、収縮した状態で収容部121a内に予め配置しておく。 First, similarly to the first embodiment, the accommodating portion 121a of the self-expandable stent 310 of the first outer tube 121 is disposed in the narrowed portion. At this time, as shown in FIG. 7A, the balloon 210 is in a contracted state before being expanded (expanded). In addition, the self-expanding stent 310 is disposed in advance in the accommodating portion 121a in a contracted state.
 次に、第1実施形態と同様に、加圧媒体をバルーン210へ供給してバルーン210を軸方向に拡張変形させる。これによって、移動部200は伸長して、第2の固定部230が固定される外管120を第1の固定部220が固定される内管110に対して相対的に移動させる。内管110と外管120とが軸方向に沿って互いに進退動することによって自己拡張型ステント310がシャフト部100から露出されて狭窄部に留置される。このとき、図7(B)に示すように、バルーン210が自己拡張型ステント310を露出させるのに十分な量だけ拡張したところで、第1の固定部220が係止部材241に当接してそれ以上の拡張変形を抑制して外管120の移動を制限する。これによって、バルーン210の過拡張を防止することができ、バルーン210の物性に関わらず、外管120の移動量を制限することができる。 Next, as in the first embodiment, a pressurized medium is supplied to the balloon 210 to expand and deform the balloon 210 in the axial direction. As a result, the moving unit 200 extends to move the outer tube 120 to which the second fixing unit 230 is fixed relative to the inner tube 110 to which the first fixing unit 220 is fixed. As the inner tube 110 and the outer tube 120 move back and forth in the axial direction, the self-expanding stent 310 is exposed from the shaft portion 100 and is placed in the stenosis. At this time, as shown in FIG. 7B, when the balloon 210 is expanded by an amount sufficient to expose the self-expanding stent 310, the first fixing portion 220 comes into contact with the locking member 241 and is expanded. The expansion deformation is suppressed and the movement of the outer tube 120 is limited. As a result, overexpansion of the balloon 210 can be prevented, and the amount of movement of the outer tube 120 can be limited regardless of the physical properties of the balloon 210.
 以上説明したように、第3実施形態に係るステントデリバリーシステム10cは、第1実施形態と同様の構成によって同様の効果を得る。また、第3実施形態に特徴的な以下の構成によってさらに以下の効果を奏する。 As described above, the stent delivery system 10c according to the third embodiment obtains the same effect by the same configuration as that of the first embodiment. In addition, the following effects that are characteristic of the third embodiment further exhibit the following effects.
 第3実施形態に係るステントデリバリーシステム10cは、移動部200が伸長した際に、外管120が内管110に対して相対的に移動する移動量を制限する制限部240をさらに有する。 The stent delivery system 10c according to the third embodiment further includes a limiting unit 240 that limits the amount of movement of the outer tube 120 relative to the inner tube 110 when the moving unit 200 extends.
 このように構成したステントデリバリーシステム10cによれば、バルーン210の物性に関わらず、外管120の移動量を制限することができる。 According to the stent delivery system 10c configured as described above, the movement amount of the outer tube 120 can be limited regardless of the physical properties of the balloon 210.
 また、制限部240は、係止部材241によって構成されため、係止部材241の位置を変えることによって容易に外管120が内管110に対して相対的に移動する移動量を調整することができる。 Further, since the restricting portion 240 is configured by the locking member 241, it is possible to easily adjust the amount of movement of the outer tube 120 relative to the inner tube 110 by changing the position of the locking member 241. it can.
 (第3実施形態の変形例)
 図8は、第3実施形態の変形例に係るステントデリバリーシステム10dの断面図であり、図8(A)は、移動部200が伸縮変形する前の状態を示し、図8(B)は、移動部200が伸縮変形した後の状態を示す。以下、図8を参照して第3実施形態の変形例に係るステントデリバリーシステム10dについて説明する。
(Modification of the third embodiment)
FIG. 8 is a cross-sectional view of a stent delivery system 10d according to a modification of the third embodiment. FIG. 8 (A) shows a state before the moving part 200 is stretched and deformed, and FIG. The state after the moving part 200 expands and contracts is shown. Hereinafter, a stent delivery system 10d according to a modification of the third embodiment will be described with reference to FIG.
 第3実施形態に係るステントデリバリーシステム10dは、制限部640が外管620の縮径部623によって構成される点において第3実施形態と異なる。以下、第1実施形態および第3実施形態と同様の構成については、説明を省略する。なお、第1実施形態および第3実施形態と同様の構成を有する部材については、同じ符号を用いて説明する。 The stent delivery system 10d according to the third embodiment is different from the third embodiment in that the limiting portion 640 is configured by the reduced diameter portion 623 of the outer tube 620. Hereinafter, description of the same configurations as those of the first embodiment and the third embodiment will be omitted. In addition, about the member which has the structure similar to 1st Embodiment and 3rd Embodiment, it demonstrates using the same code | symbol.
 図8(A)に示すように、制限部240は、外管120の縮径部623によって構成される。縮径部623は、第1の外管621に形成された第1の縮径部623aと、第2の外管622に形成された第2の縮径部623bと、を備える。 As shown in FIG. 8A, the restricting portion 240 is constituted by a reduced diameter portion 623 of the outer tube 120. The reduced diameter portion 623 includes a first reduced diameter portion 623 a formed in the first outer tube 621 and a second reduced diameter portion 623 b formed in the second outer tube 622.
 外管620は、第1実施形態および第3実施形態と同様に、先端側に配置される第1の外管621と、第1の外管621の基端側に配置される第2の外管622と、を有する。第1実施形態では、第2の外管622が第1の外管621内に摺動可能に挿入されているとしたが、第3実施形態の変形例では、第1の外管621が第2の外管622内に摺動可能に挿入される。 As in the first and third embodiments, the outer tube 620 includes a first outer tube 621 disposed on the distal end side and a second outer tube disposed on the proximal end side of the first outer tube 621. A tube 622. In the first embodiment, the second outer tube 622 is slidably inserted into the first outer tube 621. However, in the modification of the third embodiment, the first outer tube 621 is the first outer tube 621. 2 slidably inserted into the outer tube 622.
 第1の縮径部623aは、第1の外管621の基端部分に形成され、基端に向かって徐々に縮径する。第2の縮径部623bは、第2の外管622の先端から所定長基端側の位置に形成され、第1の縮径部623aと同様に先端に向かって徐々に縮径する。第1の外管621が基端側へ所定長移動すると、第1の縮径部623aが第2の縮径部623bに当接する。これによって、外管620の移動量を制限することができ、バルーン210の過拡張を防止することができる。また、縮径部623によって制限部640を構成することによって、バルーン210の拡張を徐々に抑えることができるので急に拡張を止める場合に比べてバルーン210への負担を軽減することができる。 The first reduced diameter portion 623a is formed at the proximal end portion of the first outer tube 621 and gradually decreases in diameter toward the proximal end. The second reduced diameter portion 623b is formed at a position on the base end side of the predetermined length from the distal end of the second outer tube 622, and gradually decreases in diameter toward the distal end in the same manner as the first reduced diameter portion 623a. When the first outer tube 621 moves to the proximal end side for a predetermined length, the first reduced diameter portion 623a contacts the second reduced diameter portion 623b. As a result, the amount of movement of the outer tube 620 can be limited, and overexpansion of the balloon 210 can be prevented. Moreover, since the restriction part 640 is configured by the reduced diameter part 623, the expansion of the balloon 210 can be gradually suppressed, so that the burden on the balloon 210 can be reduced as compared with the case where the expansion is suddenly stopped.
 本実施形態のステントデリバリーシステム10dによって自己拡張型ステント310を狭窄部に留置する方法については第3の実施形態と同様なので説明を省略する。 The method for placing the self-expanding stent 310 in the stenosis portion by the stent delivery system 10d of the present embodiment is the same as that of the third embodiment, and thus the description thereof is omitted.
 以上説明したように、第3実施形態に係るステントデリバリーシステム10dは、第1実施形態および第3実施形態と同様の構成によって同様の効果を得る。また、第3実施形態に特徴的な以下の構成によってさらに以下の効果を奏する。 As described above, the stent delivery system 10d according to the third embodiment obtains the same effect by the same configuration as the first embodiment and the third embodiment. In addition, the following effects that are characteristic of the third embodiment further exhibit the following effects.
 第3実施形態の変形例に係るステントデリバリーシステム10dは、第3実施形態と同様の構成によって同様の効果を得る。また、第3実施形態の変形例に特徴的な以下の構成によって有利な効果を奏する。 The stent delivery system 10d according to the modification of the third embodiment obtains the same effect by the same configuration as that of the third embodiment. Moreover, there exists an advantageous effect by the following structures characteristic to the modification of 3rd Embodiment.
 第3実施形態の変形例に係るステントデリバリーシステム10dは、制限部240は、外管620の縮径部623によって構成される。これによって、バルーン210の拡張を徐々に抑えることができるので急に拡張を止める場合に比べてバルーン210への負担を軽減することができる。 In the stent delivery system 10d according to the modification of the third embodiment, the restricting portion 240 is configured by the reduced diameter portion 623 of the outer tube 620. Thereby, since the expansion of the balloon 210 can be gradually suppressed, the burden on the balloon 210 can be reduced as compared with the case where the expansion is suddenly stopped.
 以上、実施形態および複数の変形例を通じて本発明に係るステントデリバリーシステム10を説明したが、本発明は実施形態および各変形例において説明した構成のみに限定されることはなく、特許請求の範囲の記載に基づいて適宜変更することが可能である。 As mentioned above, although the stent delivery system 10 which concerns on this invention was demonstrated through embodiment and the some modification, this invention is not limited only to the structure demonstrated in embodiment and each modification, Changes can be made as appropriate based on the description.
 例えば、生体管腔内にステント300を留置するステントデリバリーシステム10について説明したが、処置部および医療装置はこれに限定されない。例えば、生体器官内に薬剤を溶出する溶出バルーンを処置部とし、このような処置部を生体管腔内の所望の位置へ送達するように構成された医療装置としてもよい。この場合は、移動部を処置部として用いることができる。さらに、前述した第2実施形態と同様に、移動部は一部をシャフト部から露出して径方向に拡張可能に構成されている(図6(B)および図6(C)を参照)。また、露出する部位の外表面には、少なくとも処置部として機能する薬剤を被覆する。このように構成することによって、露出して拡張した部分が病変部位に接触して処置部を介して薬剤を溶出させ浸透させることが可能となる。 For example, although the stent delivery system 10 in which the stent 300 is placed in the living body lumen has been described, the treatment unit and the medical device are not limited thereto. For example, a medical device configured to use an elution balloon that elutes a drug in a living organ as a treatment portion and deliver the treatment portion to a desired position in the living body lumen. In this case, the moving unit can be used as a treatment unit. Furthermore, as in the second embodiment described above, the moving part is configured to be partly exposed from the shaft part and expandable in the radial direction (see FIGS. 6B and 6C). Further, the outer surface of the exposed part is coated with at least a drug that functions as a treatment part. By configuring in this way, the exposed and expanded part can come into contact with the lesion site and the drug can be eluted and permeated through the treatment part.
 また、移動部200はバルーン210によって構成されるとしたが、これに限定されず、ばね等の伸縮変形可能な材料によって構成してもよい。 In addition, although the moving unit 200 is configured by the balloon 210, the moving unit 200 is not limited thereto, and may be configured by a material that can be expanded and contracted such as a spring.
 本出願は、2015年3月11日に出願された日本国特許出願第2015-048756号に基づいており、その開示内容は、参照により全体として引用されている。 This application is based on Japanese Patent Application No. 2015-048756 filed on Mar. 11, 2015, the disclosure of which is incorporated by reference in its entirety.
10、10’、10a、10b、10c、10dステントデリバリーシステム(医療装置)、
100、100’ シャフト部、
110、610 内管、
111 先端側移動制限部、
120、120’、620、 外管、
121、621 第1の外管、
122、622 第2の外管、
200 移動部、
210 バルーン、
220、220’ 第1の固定部(移動部の先端部)、
230 第2の固定部(移動部の基端部)、
240、640 制限部、
241 係止部材、
300 ステント(処置部)、
400 ハブ、
410 接続部、
510 チューブ部材、
520 挿通管、
623 縮径部、
700a、700b 牽引ワイヤ、
800 パッキン。
10, 10 ′, 10a, 10b, 10c, 10d stent delivery system (medical device),
100, 100 'shaft part,
110, 610 inner tube,
111 tip side movement restriction part,
120, 120 ′, 620, outer tube,
121, 621 first outer tube,
122, 622 second outer tube,
200 moving part,
210 balloon,
220, 220 ′ first fixed part (tip part of moving part),
230 second fixed part (base end part of the moving part),
240, 640 restriction part,
241 locking member,
300 stent (treatment area),
400 hubs,
410 connection,
510 tube member,
520 intubation tube,
623 reduced diameter part,
700a, 700b puller wire,
800 packing.

Claims (9)

  1.  内管と、前記内管の外周面を覆うように配置される外管とを備え、生体器官内に挿入されるシャフト部と、
     前記内管と前記外管との間に配置され、前記シャフト部の軸方向に沿って伸縮変形することにより、前記軸方向に沿って前記外管を前記内管に対して相対的に移動させる移動部と、
     前記移動部が伸縮変形する前は前記内管と前記外管との間に収容され、前記移動部が伸縮変形した際に前記シャフト部から露出されて前記生体器官内の処置対象部位に対して所定の処置を実施する処置部と、を有する、医療装置。
    An inner tube and an outer tube disposed so as to cover the outer peripheral surface of the inner tube, and a shaft portion inserted into a living organ;
    The outer tube is disposed between the inner tube and the outer tube, and is expanded and contracted along the axial direction of the shaft portion, thereby moving the outer tube relative to the inner tube along the axial direction. A moving part;
    Before the moving part is stretched and deformed, it is accommodated between the inner tube and the outer tube, and when the moving part is stretched and deformed, the moving part is exposed from the shaft part and is against the treatment target site in the living organ. A medical device having a treatment unit for performing a predetermined treatment.
  2.  前記移動部の先端部は前記内管に固定されており、
     前記移動部の基端部は前記外管に固定されており、
     前記移動部が伸長した際に前記内管と前記外管とが前記軸方向に沿って互いに進退動することによって前記処置部が前記シャフト部から露出される、請求項1に記載の医療装置。
    The tip of the moving part is fixed to the inner tube,
    The base end of the moving part is fixed to the outer tube,
    The medical device according to claim 1, wherein the treatment section is exposed from the shaft portion by the inner tube and the outer tube moving forward and backward along the axial direction when the moving portion extends.
  3.  前記移動部の少なくとも一部は、伸長した際に、前記シャフト部から露出する、請求項2に記載の医療装置。 The medical device according to claim 2, wherein at least a part of the moving part is exposed from the shaft part when extended.
  4.  前記移動部において前記シャフト部から露出する部位は、前記シャフト部の径方向外方へ拡張変形可能に構成されている、請求項3に記載の医療装置。 The medical device according to claim 3, wherein a portion exposed from the shaft portion in the moving portion is configured to be expandable and deformable outward in the radial direction of the shaft portion.
  5.  前記処置部は、前記移動部が伸長する前の状態において、前記移動部の先端部よりも前記シャフト部の先端側または前記移動部の外面側に配置される、請求項3または請求項4に記載の医療装置。 5. The treatment section according to claim 3, wherein the treatment section is disposed closer to a distal end side of the shaft section or an outer surface side of the moving section than a distal end section of the moving section in a state before the moving section extends. The medical device described.
  6.  前記移動部が伸長した際に、前記外管が前記内管に対して相対的に移動する移動量を制限する制限部をさらに有する、請求項2~5のいずれか1項に記載の医療装置。 The medical device according to any one of claims 2 to 5, further comprising a limiting unit that limits a moving amount of the outer tube relative to the inner tube when the moving unit is extended. .
  7.  前記外管は、前記移動部が固定された第1の外管と、前記第1の外管内に摺動可能に挿入される第2の外管と、を有する、請求項2~6のいずれか1項に記載の医療装置。 The outer tube includes a first outer tube to which the moving portion is fixed, and a second outer tube that is slidably inserted into the first outer tube. The medical device according to claim 1.
  8.  前記移動部は、加圧媒体の流入および排出により前記軸方向に伸縮変形されるバルーンによって構成されている、請求項1~7のいずれか1項に記載の医療装置。 The medical device according to any one of claims 1 to 7, wherein the moving unit is configured by a balloon that is elastically deformed in the axial direction by inflow and discharge of a pressurized medium.
  9.  前記処置部は、前記移動部が伸長する前は、前記シャフト部の径方向内方に圧縮された状態で収容され、前記移動部が伸長して前記シャフト部から露出された後に前記生体器官である生体管腔内に留置されるステントを含む、請求項1~8のいずれか1項に記載の医療装置。 The treatment portion is accommodated in a state compressed inward in the radial direction of the shaft portion before the moving portion is extended, and after the moving portion is extended and exposed from the shaft portion, The medical device according to any one of claims 1 to 8, comprising a stent placed in a living body lumen.
PCT/JP2016/053720 2015-03-11 2016-02-08 Medical device WO2016143446A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015048756A JP2018068320A (en) 2015-03-11 2015-03-11 Medical device
JP2015-048756 2015-03-11

Publications (1)

Publication Number Publication Date
WO2016143446A1 true WO2016143446A1 (en) 2016-09-15

Family

ID=56879515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053720 WO2016143446A1 (en) 2015-03-11 2016-02-08 Medical device

Country Status (2)

Country Link
JP (1) JP2018068320A (en)
WO (1) WO2016143446A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110709032A (en) * 2017-06-02 2020-01-17 托尔福公司 Delivery system with telescoping capsule for deploying prosthetic heart valve device and related method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060282152A1 (en) * 2005-06-14 2006-12-14 Dagmar Beyerlein Delivery system for a device such as a stent
JP2008529719A (en) * 2005-02-16 2008-08-07 ボストン サイエンティフィック リミティド Delivery system for self-expanding stents, method of using the delivery system and method of manufacturing the delivery system
US20120116490A1 (en) * 2010-11-09 2012-05-10 Biotronik Ag Balloon catheter, in particular for delivering drugs or stents in the region of a stenosis
JP2014509219A (en) * 2011-02-01 2014-04-17 エスティーイーエヌティーワイエス Stent delivery system

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008529719A (en) * 2005-02-16 2008-08-07 ボストン サイエンティフィック リミティド Delivery system for self-expanding stents, method of using the delivery system and method of manufacturing the delivery system
US20060282152A1 (en) * 2005-06-14 2006-12-14 Dagmar Beyerlein Delivery system for a device such as a stent
US20120116490A1 (en) * 2010-11-09 2012-05-10 Biotronik Ag Balloon catheter, in particular for delivering drugs or stents in the region of a stenosis
JP2014509219A (en) * 2011-02-01 2014-04-17 エスティーイーエヌティーワイエス Stent delivery system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110709032A (en) * 2017-06-02 2020-01-17 托尔福公司 Delivery system with telescoping capsule for deploying prosthetic heart valve device and related method
CN110709032B (en) * 2017-06-02 2021-09-24 托尔福公司 Delivery system with telescoping capsule for deploying prosthetic heart valve device and related method

Also Published As

Publication number Publication date
JP2018068320A (en) 2018-05-10

Similar Documents

Publication Publication Date Title
US10610390B2 (en) Implant delivery system and method of use
EP3570925B1 (en) System for delivering a catheter
US7001419B2 (en) Stent delivery system with membrane
JP5162444B2 (en) Method for assembling an implantable medical endoprosthesis delivery system
JP5085121B2 (en) Guidewire having a distal expansion feature and method for improving the delivery and traversal capabilities of a medical device
JP5600745B2 (en) Dilatation catheter
JP6625984B2 (en) Balloon catheter and system and method for delivering a stent using the catheter
US20080172120A1 (en) Endoprosthesis delivery systems and related methods
WO2008027748A2 (en) Custom length stent apparatus
JP2010523222A (en) Catheter with internal mechanism to facilitate balloon refolding
KR20060010827A (en) Stent supplying device
WO2009140214A1 (en) Sleeves for positioning a stent on a delivery balloon cathether system
JP6150979B2 (en) Wire with flexible sheath
WO2013118362A1 (en) Stent graft delivery device
WO2016143446A1 (en) Medical device
JP7025540B2 (en) Stent delivery catheter system via pins with fast control tabs and slots with slow control
WO2017120606A1 (en) Balloon inside a guide catheter
JP2016159048A (en) Self-expandable stent delivery system
JP2012205838A (en) Stent-graft delivery device
JP2019092811A (en) Balloon catheter
WO2009130457A1 (en) Expanding medical collet
JP2017176277A (en) Medical device
WO2014118905A1 (en) Organism lumen treatment system, and stent
JP6864984B2 (en) Balloons and balloon catheters
JP2022106410A (en) Balloon catheter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16761418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16761418

Country of ref document: EP

Kind code of ref document: A1