WO2016137019A1 - Chromatography apparatus digital monitoring sensor using printed thin film transistor array, chromatography apparatus including same, and method for manufacturing chromatography apparatus digital monitoring sensor - Google Patents

Chromatography apparatus digital monitoring sensor using printed thin film transistor array, chromatography apparatus including same, and method for manufacturing chromatography apparatus digital monitoring sensor Download PDF

Info

Publication number
WO2016137019A1
WO2016137019A1 PCT/KR2015/001679 KR2015001679W WO2016137019A1 WO 2016137019 A1 WO2016137019 A1 WO 2016137019A1 KR 2015001679 W KR2015001679 W KR 2015001679W WO 2016137019 A1 WO2016137019 A1 WO 2016137019A1
Authority
WO
WIPO (PCT)
Prior art keywords
thin film
film transistor
transistor array
layer
chromatography
Prior art date
Application number
PCT/KR2015/001679
Other languages
French (fr)
Korean (ko)
Inventor
조규진
김유신
선준봉
이우규
노진수
Original Assignee
순천대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 순천대학교 산학협력단 filed Critical 순천대학교 산학협력단
Priority to PCT/KR2015/001679 priority Critical patent/WO2016137019A1/en
Publication of WO2016137019A1 publication Critical patent/WO2016137019A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D15/00Separating processes involving the treatment of liquids with solid sorbents; Apparatus therefor
    • B01D15/08Selective adsorption, e.g. chromatography
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/05Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Definitions

  • the present invention uses a thin film transistor array that can be manufactured by a roll-to-roll gravure printing process that can be mass-produced at low cost instead of a thin film transistor manufactured through a semiconductor manufacturing process.
  • the present invention relates to a sensor capable of monitoring organic matter analysis in digital values and analyzing organic matter, a chromatographic apparatus including the sensor, and a method of manufacturing the sensor.
  • chromatographic apparatuses such as thin layer chromatography, column chromatography or high performance liquid chromatography (HPLC) require a means for monitoring the separation state of organic matter.
  • an absorbance detection method for detecting a separation state of an analyte sample according to a difference in ultraviolet absorption characteristics of an analyte sample, and a difference in fluorescence emission characteristics of an analyte sample Fluorescence detection method for detecting the separation situation, electrochemical detection method for detecting the separation condition of the sample under the difference of the electrochemical characteristics of the sample to be analyzed, or parallax for detecting the separation condition of the sample under measurement by measuring the differential refractive index Refractive index detection methods and the like are used, these detection methods have a problem that is expensive.
  • the present invention when applied to a thin film chromatography, column chromatography or high performance liquid chromatography (HPLC) that can separate and analyze a mixture of two or more organic substances in each component, by digitizing in real time To provide a sensor that can be monitored and manufactured at low cost.
  • HPLC high performance liquid chromatography
  • Another object of the present invention is to provide a chromatography apparatus capable of digitizing and monitoring a separated organic material in real time.
  • Another object of the present invention is to provide a method for mass production of low-cost sensors capable of digitizing and monitoring separated organics in real time.
  • the present invention is disposed in a column for chromatography, a sensor for tracking the separation of organic matter, the sensor is formed on the substrate and the substrate, the gate layer, dielectric layer, active layer, insulation
  • a thin film transistor comprising a layer and a source / drain layer and formed by a printing process, the thin film transistor array having an M ⁇ N array, wherein the thin film transistor array is protected from an organic material for analysis on the surface of the thin film transistor array.
  • a digital monitoring sensor for a chromatography device characterized in that a passivation layer is formed.
  • the present invention provides a thin film transistor array in which a column for chromatography, a thin film transistor element arranged inside the chromatography column, is arranged in an M ⁇ N arrangement, and a surface of the thin film transistor array. And a passivation layer formed to protect the thin film transistor array from the organic material for analysis, wherein the passivation layer may exert dipole attraction with the organic material to be separated and include a material having a lower wettability than the organic material to be separated.
  • a chromatographic apparatus is provided.
  • this invention forms the gate layer, the dielectric layer, the active layer, the insulating layer, and the source / drain layer on a board
  • the senor according to the present invention forms a thin film transistor array through a printing process, it can be mass-produced at low cost, and is reached by the attraction difference between the mobile phase and the stationary phase through the thin film transistor array protected from the organic material for analysis through a passivation layer. Detects changes in the electrical properties of materials with different speeds and generates electrical signals, allowing digital separation and monitoring of chromatographic separation processes (e.g., the flow position and velocity of liquids as mobile phases). .
  • the chromatographic apparatus according to the present invention can monitor the separation process of analyte organics through a thin film transistor array, and in the chromatographic apparatus according to the present invention, wetting is easy while increasing the flow characteristics of the mobile phase and the analyte.
  • the passivation layer is provided to protect the thin film transistor array without being made, thereby increasing the efficiency of the chromatographic analysis.
  • the manufacturing method of the sensor according to the present invention since all processes including the thin film transistor array and the passivation layer are formed through the printing process, the low temperature and the atmospheric pressure process are possible, thereby greatly reducing the manufacturing cost of the manufactured sensor. For example, large-scale production may be possible.
  • FIG. 1 is a view of a sensor for a chromatographic apparatus according to an embodiment of the present invention and a partially enlarged view thereof.
  • FIG. 2 is a cross-sectional view of a thin film transistor constituting a sensor for a chromatography device according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a thin film transistor and a passivation layer constituting a sensor for a chromatography device according to an embodiment of the present invention.
  • FIG. 4 is a schematic view of a chromatography apparatus according to an embodiment of the present invention.
  • FIG. 5 is a manufacturing process diagram of a sensor for a chromatographic apparatus according to an embodiment of the present invention.
  • Figure 6 is a roll-to-roll gravure equipment picture used in the present invention.
  • the digital monitoring sensor for a chromatographic apparatus is a sensor for tracking the separation state of an organic substance, which is disposed where the organic substance of the chromatography apparatus is separated, wherein the sensor is formed on a substrate and the substrate.
  • a thin film transistor including a gate layer, a dielectric layer, an active layer, an insulating layer, and a source / drain layer, and formed through a printing process, including a thin film transistor array having an array of M ⁇ N arrays.
  • a passivation layer is formed that can protect the thin film transistor array from an organic material.
  • the substrate is preferably made of a material that can give flexibility, such as a polymer material or a metal material, and a film made of a synthetic resin, which is light, inexpensive and excellent in flexibility.
  • a material that can give flexibility such as a polymer material or a metal material
  • a film made of a synthetic resin which is light, inexpensive and excellent in flexibility.
  • the film made of a synthetic resin material can be used without limitation as long as it has physical properties that can be used in a chromatography device.
  • PET polyethylene terephtalate
  • PM poly (methyl methacrylate)
  • PC Materials such as Polycarbonate
  • the thin film transistor may have a bottom gate structure in which a gate layer is disposed below, and a top gate structure in which the gate layer is disposed above.
  • the gate layer As the respective materials constituting the gate layer, the dielectric layer, the active layer, the insulating layer, and the source / drain layer constituting the thin film transistor, all known transistor materials may be used.
  • the active layer if necessary for the analysis of the organic compound, may be formed in one kind, or a thin film transistor array may be manufactured using two or more materials.
  • All of the thin film transistor arrays may be formed by a printing process.
  • a large area thin film transistor array may be formed at low cost.
  • the passivation layer is a material capable of generating a strong dipole moment with a material to be analyzed and having a low wetting angle compared to the material to be analyzed, while protecting the thin film transistor array.
  • cytop As a material which can be used for the passivation layer, for example, cytop.
  • the flow rate of the organic material can be controlled by controlling the shape of the passivation layer (for example, grid shape, protrusion pattern shape, etc.), the optimum flow rate is derived by controlling the shape to more precisely determine the flow rate. Analysis can be made possible.
  • shape of the passivation layer for example, grid shape, protrusion pattern shape, etc.
  • a chromatography apparatus includes a thin film transistor array in which a column for chromatography, a thin film transistor element disposed on one side of the chromatography column, is arranged in an M ⁇ N array, and a surface of the thin film transistor array. And a passivation layer formed to protect the thin film transistor array from the organic material for analysis.
  • the column is generally a tubular vessel used in a chromatography apparatus, which is generally made of a transparent material and is made of a material such as glass in which mass transfer inside can be observed from the outside.
  • the substrate of the sensor including the thin film transistor array and the passivation layer is attached to the inside of the column, the output terminal of the sensor is located near the injection port of the column to output the change of the electrical signal generated in the thin film transistor array to the outside It is.
  • the chromatography apparatus may further include a controller capable of processing a signal output from the sensor to control a variable, such as a pressure applied to a column of the chromatography apparatus, by means of this configuration. Based on the separated state of the organic matter, the pressure applied to the column and the separation rate of the organic matter can be optimized in real time.
  • each layer of a gate layer, a dielectric layer, an active layer, an insulating layer, and a source / drain layer is formed on a substrate through a printing process, and each layer is formed.
  • the thin film transistor forms a thin film transistor array consisting of M ⁇ N arrays and forms a passivation layer that protects the thin film transistor array from organic material by printing on the thin film transistor array. It features.
  • the manufacturing process of the thin film transistor array may use a method of forming a gate layer, a dielectric layer, an active layer, an insulating layer, and a source / drain layer on a substrate using an inkjet, or may use a roll-to-roll gravure printing process.
  • the roll-to-roll gravure process is more preferable for mass production.
  • the heat treatment process may be performed by using an oven after each layer is printed, according to the type of printing ink used in each layer, about 150 °C for the gate layer, about 100 °C for the dielectric layer, insulation layer
  • the source / drain layer may be carried out at about 150 °C
  • the active layer may be carried out a heat treatment process at a temperature of a wider range than the above temperature according to the type of ink used.
  • FIG. 1 is a view of a chromatographic device sensor and a partially enlarged view thereof according to an embodiment of the present invention
  • Figure 2 is a cross-sectional view of a thin film transistor constituting a sensor for a chromatography device according to an embodiment of the present invention
  • 3 is a schematic diagram of a thin film transistor and a passivation layer constituting a sensor for a chromatography device according to an embodiment of the present invention.
  • a sensor 10 for a chromatography apparatus has a substrate 11 and an N ⁇ M having a bottom gate structure formed on the substrate 11. And a passivation layer 13 formed on the thin film transistor array.
  • the substrate 10 is made of a transparent polyethylene terephtalate (PET) film having a thickness of 50 ⁇ 100 ⁇ m and has a shape extending in the longitudinal direction.
  • PET polyethylene terephtalate
  • the thin film transistor array 12 is formed on a substrate 11 extending in the longitudinal direction. Each transistor constituting the thin film transistor array 12 is formed on the substrate 11 and contains silver (Ag) as a main component.
  • a gate layer 12a made of a material, a dielectric layer 12b formed on the gate layer 12a and formed of a dielectric ink having a dielectric constant of 10 or more, and carbon nanotubes formed on the dielectric layer 12b.
  • An active layer 12c comprising a material and a source / drain layer 12d formed of a material containing silver (Ag) as a main component on the active layer 12c.
  • a plurality of transistors having a bottom gate structure including an insulating layer formed by using an insulating ink of an epoxy substrate are arranged.
  • the passivation layer 13 is formed on the surface of the thin film transistor array 12 to cover the thin film transistor array 12.
  • the passivation layer 13 is made of a cytop, the thickness of which is preferably 0.3 ⁇ 1 ⁇ m, which is less than 0.3 ⁇ m the electrical characteristic sensitivity is difficult to distinguish the detection material, if it is more than 1 ⁇ m electrical characteristic sensitivity This is because it is difficult to use as a sensor.
  • FIG. 4 is a schematic view of a chromatography apparatus according to an embodiment of the present invention.
  • the chromatographic apparatus 1 includes a column 20 extending in the longitudinal direction and a lengthwise extension attached to an inner circumference of the column. It comprises a sensor 10.
  • the column 20 is formed in a columnar shape, the diameter of the tube is gradually reduced in the lower portion, the outlet is made of a very narrow diameter compared to the upper portion, made of transparent glass.
  • the output of the sensor 10 is located at the upper end of the column 20 so as to output an electrical signal to the outside.
  • the sensor 10 is disposed in most of the longitudinal direction of the column 20, but may be intermittently disposed at one or more of the upper, middle, and lower portions of the column 20 as necessary.
  • the material of the stationary phase 30 which does not move is disposed in the column 20, and the material of the mobile phase 40 is disposed on the upper portion of the column 20, and the organic phase to be analyzed is included in the mobile phase 40.
  • silica gel powder may be used as the stationary phase 30, and a mixture of ethyl acetate / hexane may be used as the mobile phase 40.
  • the chromatography apparatus since the change in the electrical characteristics of the thin film transistor is detected by the separated organic material, the chromatography apparatus according to the embodiment of the present invention changes the electrical change generated through the thin film transistor array to a digital value, thereby separating the organic material. The process can be monitored.
  • the electrical characteristics of the thin film transistor may vary depending on the type of organic material loaded, the type of active layer constituting the thin film transistor array, the thickness of the passivation layer, and the shape thereof.
  • the electrical characteristics of the thin film transistor eg, ion / off ratio, threshold voltage, transconductance, subtreshold swing, etc.
  • the chromatographic apparatus detects a change in electrical characteristics of the thin film transistor array and through this result, it is possible to optimize the pressure applied to the column and the separation rate of the organic compound in real time. It may include a control device.
  • FIG. 5 is a manufacturing process diagram of a sensor for a chromatographic apparatus according to an embodiment of the present invention.
  • Figure 6 is a roll-to-roll gravure equipment picture used in the present invention.
  • a thin film transistor array 12 having a bottom gate structure is formed on a substrate 11, and a passivation layer ( 13) to form.
  • the gate layer 12a is first printed on the PET substrate 11 (S202), and then the dielectric layer 12b is continuously printed (S204). At this time, since the physical properties of the ink constituting the gate layer 12a and the dielectric layer 12b are different, the printing pressure, speed, and blading conditions should be adjusted according to each layer. Print
  • the active layer 12c and the source / drain layer 12d are additionally printed using the mark pattern (S206 and S208).
  • the gate layer is performed at a temperature of 150 ° C., a dielectric layer 100 ° C., an active layer 150 ° C., a source / drain layer, and a wiring layer.
  • the printing process as described above may be performed using an inkjet, but it is preferable to use a roll-to-roll gravure printing apparatus as shown in FIG. 6 because many thin film transistors can be printed at a time.
  • a thin film transistor was manufactured in a 100% printing process using a roll-to-roll gravure printing apparatus.
  • Roll-to-roll gravure printing equipment is a device that prints patterns on the film passing between rolls using a roll-engraved pattern and pressure rolls. Ink consumption also has the advantage.
  • the substrate used in the present invention is PET (polyethylene terephtalate), PET is not only excellent in flexibility, the heat treatment temperature of the printed layer 100 ⁇ 150 °C It is preferred because it has excellent heat resistance.
  • PET polyethylene terephtalate
  • polymer materials such as PMMA, PI, and PC can be suitably used as the substrate material according to the present invention, which combines flexibility and heat resistance.
  • the PET board After mounting the PET substrate in the roll-to-roll gravure printing equipment of FIG. 6, the PET board is sent to the end of the roll-to-roll gravure printing equipment. And control the tension between the PET substrate and the roll-to-roll gravure printing equipment through the control system, the value is set to 5 ⁇ 7kgf.
  • the pattern of the engraved roll engraving and the ink is controlled.
  • the blading condition affects the transfer property of the ink according to the friction force between the printing roll and the blade. Considering the contact angle to minimize the friction, and to avoid the phenomenon of ink leakage other than the pattern, the conditions applied in the embodiment of the present invention was set back blade 5mm, blade 5mm, blade mounting length 11mm, height 41mm.
  • printing preparation is completed by making a printing pressure into 6-8 kg f / cm ⁇ 2> by making a printing roll and a pressure roll contact.
  • An ink used to form a gate layer printed on a PET substrate is Ag ink (PG-007 Paru Co, Korea).
  • An important factor in printing Ag inks is to match the optimum viscosity and surface energy for proper printing on PET substrates.
  • ink conditions are set using various surface active agents or organic solvents.
  • the optimum viscosity and surface tension of Ag ink are 200-500 cP and 40-48 N / m 2 at 6-12 m / min printing speed for roll-to-roll gravure printing.
  • the solvent is added to adjust the viscosity, and ethylene glycol is used, and the surface tension is a low surface tension material such as ethyl acetate to finally tune the ink conditions.
  • the Ag ink is supplied to a plate making roll, and printing is performed at a printing speed of 6 to 8 m / min to form a gate layer.
  • the thickness of the gate layer formed 100-500 nm is preferable.
  • the gate layer thus formed is heat-treated at 150 ° C. through an oven and dried.
  • the gate layer is heat-treated through an oven and then transferred to the place where the insulating layer is printed. At this time, the camera recognizes the gate layer mark printed on the PET substrate and controls the insulating layer to be superimposed thereon.
  • the dielectric layer overlaid on the gate layer used a dielectric ink having a dielectric constant of 10 or more (an ink including BaTiO 3 ).
  • the insulating layer is overprinted on the gate layer, wherein the thickness of the insulating layer is preferably 1 ⁇ m to 3 ⁇ m.
  • the overprinted dielectric layer is heat treated at 100 ° C. through an oven and dried.
  • the active layer is printed.
  • the active layer commercial semiconductor inks such as monolayer carbon nanotubes, PQ12, TIPS-pentacene, P6HT, DNTT, etc. may be used.
  • the monolayer carbon nanotubes may be dispersed in a solvent capable of dispersing them. An ink added with about 4% by weight was used.
  • the thickness of the active layer formed 10-15 nm is preferable.
  • the active layer thus formed is heat-treated at 150 ° C. through an oven and dried.
  • the film printed up to the active layer is rewound to the initial starting point, and the epoxy or PMMA-based ink is printed as an insulating layer on the portion where the overlap occurs between the wirings, and the printed insulating layer is heat-treated at 150 ° C. through an oven and dried. do.
  • the ink used for the source / drain layer formed on the insulating layer printed thereon is Ag ink (PG-007 Paru Co, Korea) like the gate layer, and the thickness of the source / drain layer is preferably 100 to 500 nm. Do.
  • heat treatment is performed at 150 ° C. through an oven.
  • the transistor device In order for the thin film transistor array to operate as a sensor, when the analytical organic material is positioned on a specific transistor device, the transistor device is affected by the analytical organic material, and the electrical characteristics thereof are changed, and after the analytical organic material has passed through the transistor device, The electrical characteristics of the must be restored to their original state.
  • the active layer region of the printed thin film transistor when the active layer region of the printed thin film transistor is in direct contact with another material, the electrical characteristics of the transistor may be changed to such an extent that it does not recover. In order to prevent this, it is necessary to form a protective layer on the printed thin film transistor array.
  • cytop is used as a protective layer of the thin film transistor array. Cytop strongly induces polar organics and dipole moments and at the same time protects the printed active layer from organic solvents.
  • the method of measuring the separation state of the organic matter for analysis using the sensor thus manufactured may be performed through an active transistor measuring system.
  • the current-voltage characteristic curve (Vg-Id or Vd-Id curve) of the thin film transistor is used to measure the organic mixture. Proceed with separation.
  • each component of the organic mixture included in the mobile phase has a different attraction force for the mobile phase and the stationary phase, respectively. Since it passes through the stationary phase at a different speed, as a result, there is a difference in the speed at which each component constituting the organic mixture reaches the thin film transistor for measurement, and thus the position on the column for each component is changed.
  • the difference in position can be determined by measuring the current-voltage characteristic curve (IV curve) of the thin film transistor.
  • the mixed phases A and B are stationary phases. Separated in the process of passing through.
  • the mobile phase since the mobile phase does not affect the electrical properties of the thin film transistor, it exhibits the inherent electrical properties (eg: Vg-Id curve) of the thin film transistor array before the loaded organic material is developed downward (FIG. 7).
  • the blocking current of the thin film transistor is increased by about 10 times higher than the inherent blocking current of the thin film transistor (TR7, TR8 in FIG. 8 and TR10, TR11 in FIG. 8). Is restored to its own value.
  • the blocking current of the thin film transistor is increased by about 100 times higher than the inherent blocking current of the thin film transistor (TR3, TR4 of FIG. 8 and TR7, TR8 of FIG. 9). Is restored to its own value.
  • the separation process can be monitored by quantizing and digitizing the characteristic parameters of transistors such as off current and threshold voltage based on the I-V characteristic curves measured in the thin film transistor array by a certain range value.
  • the thin film transistor array sequentially displays the digital values of '01' (mobile phase), '10' (organic B), and '11' (organic A). It is possible to monitor the classification and analysis status of the materials used.

Abstract

The present invention relates to: a sensor capable of monitoring, by using a thin film transistor array capable of being manufactured by a roll-to-roll gravure printing process for enabling low priced mass production, an organic matter analysis by a digital value in chromatography for separating and analyzing a mixture containing two or more kinds of organic matter mixed therein; a chromatography apparatus including the same; and a method for manufacturing the same. The sensor according to the present invention is arranged in a column for the chromatography so as to track the separation of organic matter, and comprises: a substrate; and a thin film transistor array formed on the substrate, including a gate layer, a dielectric layer, an active layer, an insulating layer, and a source/drain layer, and having an array of M×N number of thin film transistors formed through the printing process, wherein the thin film transistor array has a passivation layer formed on the surface thereof so as to protect the thin film transistor array against the organic matter for the analysis.

Description

인쇄 박막 트랜지스터 어레이를 이용한 크로마토그래피 장치용 디지털 모니터링 센서, 이 센서를 포함하는 크로마토그래피 장치, 크로마토그래피 장치용 디지털 모니터링 센서의 제조방법Digital Monitoring Sensor for Chromatography Devices Using Printed Thin Film Transistor Array, Chromatography Apparatus Comprising the Sensor, Method of Manufacturing Digital Monitoring Sensor for Chromatography Apparatus
본 발명은 반도체 제조 공정을 통해 제조되는 박막 트랜지스터 대신에 저가로 대량 생산이 가능한 롤대롤 그라비아 인쇄 공정으로 제조가능한 박막 트랜지스터 어레이를 이용하여, 두 가지 이상의 유기물이 섞여 있는 혼합물을 분리하여 분석하는 크로마토그래피에서 유기물 분석을 디지털 값으로 모니터링하고 유기물을 분석할 수 있는 센서, 이 센서를 포함하는 크로마토그래피 장치 및 상기 센서의 제조방법에 관한 것이다.The present invention uses a thin film transistor array that can be manufactured by a roll-to-roll gravure printing process that can be mass-produced at low cost instead of a thin film transistor manufactured through a semiconductor manufacturing process. The present invention relates to a sensor capable of monitoring organic matter analysis in digital values and analyzing organic matter, a chromatographic apparatus including the sensor, and a method of manufacturing the sensor.
인쇄전자에 적용되는 소재 및 인쇄 공정 기술의 발전에 따라 유연한 기판 위에 대면적으로 트랜지스터 소자를 어레이 형태로 집적할 수 있는 인쇄 박막트랜지스터 제조에 대한 연구가 활발하게 이뤄지고 있으며, 이를 이용한 플렉서블 디스플레이, E-페이퍼, E-스킨, 월-페이퍼(wall-paper), 유연압력센서 등 다양한 응용 디바이스가 데모 샘플 형태로 제작되고 있다.With the development of materials and printing process technology applied to printed electronics, researches on printed thin film transistors that can integrate transistor elements in array form on flexible substrates are being actively conducted, and flexible displays, E- Various application devices such as paper, E-skin, wall-paper and flexible pressure sensors are being produced in the form of demonstration samples.
또한, 사물인터넷과 MEMS 기술의 발전으로 인해 각속도, 가속도, 위치 등을 측정할 수 물리량 검출 센서, 주변 환경을 검출할 수 있는 화학센서 등 여러 분야에서 센서의 수요가 급격하게 증가하고 있다.In addition, with the development of the Internet of Things and MEMS technology, the demand for sensors is rapidly increasing in various fields such as physical quantity detection sensors capable of measuring angular velocity, acceleration, and position, and chemical sensors capable of detecting the surrounding environment.
그런데, 현재 제작되고 있는 물리, 화학센서는 대부분 실리콘 웨이퍼 표면에 에칭, 증착과 같은 공정을 통해 제조되고 있어, 저가로 대면적의 센서를 대량으로 생산하기 어려운 문제점이 있을 뿐 아니라, 유연성을 부여하기 어려워 웨어러블용이나 스마트 패키지에 적용되기 어려운 문제점이 있다.However, most of the physical and chemical sensors currently manufactured are manufactured by processes such as etching and deposition on the surface of silicon wafers. It is difficult to be applied to wearables or smart packages have a problem.
한편, 박막 크로마토그래피, 컬럼 크로마토그래피 또는 고성능 액체 크로마토그래피(HPLC) 와 같은 크로마토그래피 장치에는 유기물의 분리상태를 모니터링할 수 있는 수단이 필요하다.On the other hand, chromatographic apparatuses such as thin layer chromatography, column chromatography or high performance liquid chromatography (HPLC) require a means for monitoring the separation state of organic matter.
이러한 유기물의 분리상태를 모니터링하는 방법으로는, 피분석 시료의 자외선 흡수특성의 차이에 따라 피분석시료의 분리상황을 검출하는 흡광도 검출방법, 분석시료의 형광 발광특성의 차이에 따라 피분석시료의 분리상황을 검출하는 형광 검출방법, 피분석시료의 전기화학적 특성의 차이에 따라 피분석시료의 분리상황을 검출하는 전기화학 검출방법, 또는 시차굴절율을 측정하여 피분석시료의 분리상황을 검출하는 시차굴절율 검출방법 등이 사용되고 있는데, 이들 검출방법들은 비용이 많이 드는 문제점이 있다.As a method of monitoring the separation state of the organic material, an absorbance detection method for detecting a separation state of an analyte sample according to a difference in ultraviolet absorption characteristics of an analyte sample, and a difference in fluorescence emission characteristics of an analyte sample Fluorescence detection method for detecting the separation situation, electrochemical detection method for detecting the separation condition of the sample under the difference of the electrochemical characteristics of the sample to be analyzed, or parallax for detecting the separation condition of the sample under measurement by measuring the differential refractive index Refractive index detection methods and the like are used, these detection methods have a problem that is expensive.
본 발명은 2종 이상의 유기물이 섞여 있는 혼합물을 각각의 성분으로 분리 및 분석할 수 있는 박막 크로마토그래피, 컬럼 크로마토그래피 또는 고성능 액체 크로마토그래피(HPLC) 등에 적용하였을 때, 분리되는 유기물을 실시간으로 디지털화하여 모니터링할 수 있으며, 저비용으로 제조가 가능한 센서를 제공하는 것이다.The present invention, when applied to a thin film chromatography, column chromatography or high performance liquid chromatography (HPLC) that can separate and analyze a mixture of two or more organic substances in each component, by digitizing in real time To provide a sensor that can be monitored and manufactured at low cost.
본 발명의 다른 과제는 분리되는 유기물을 실시간으로 디지털화하여 모니터링할 수 있는 크로마토그래피 장치를 제공하는 것이다.Another object of the present invention is to provide a chromatography apparatus capable of digitizing and monitoring a separated organic material in real time.
본 발명의 또 다른 과제는 분리되는 유기물을 실시간으로 디지털화하여 모니터링할 수 있는 센서를 저가로 대량생산할 수 있는 방법을 제공하는 것이다.Another object of the present invention is to provide a method for mass production of low-cost sensors capable of digitizing and monitoring separated organics in real time.
상기 과제를 해결하기 위해 본 발명은, 크로마토그래피용 컬럼에 배치되어, 유기물의 분리를 추적하기 위한 센서로, 상기 센서는, 기판과, 상기 기판 상에 형성되며, 게이트층, 유전체층, 활성층, 절연층, 및 소스/드레인 층을 포함하며 인쇄공정을 통해 형성된 박막 트랜지스터가 M×N개의 배열로 이루어진 박막 트랜지스터 어레이를 포함하고, 상기 박막 트랜지스터 어레이의 표면에는, 분석용 유기물로부터 상기 박막 트랜지스터 어레이를 보호할 수 있는 패시베이션(passivation)층이 형성되어 있는 것을 특징으로 하는 크로마토그래피 장치용 디지털 모니터링 센서를 제공한다.In order to solve the above problems, the present invention is disposed in a column for chromatography, a sensor for tracking the separation of organic matter, the sensor is formed on the substrate and the substrate, the gate layer, dielectric layer, active layer, insulation A thin film transistor comprising a layer and a source / drain layer and formed by a printing process, the thin film transistor array having an M × N array, wherein the thin film transistor array is protected from an organic material for analysis on the surface of the thin film transistor array. Provided are a digital monitoring sensor for a chromatography device, characterized in that a passivation layer is formed.
상기 다른 과제를 해결하기 위해 본 발명은, 크로마토그래피용 컬럼과, 상기 크로마토그래피용 컬럼의 내측에 배치되는 박막 트랜지스터 소자가 M×N개의 배열로 이루어진 박막 트랜지스터 어레이와, 상기 박막 트랜지스터 어레이의 표면에 형성되어 분석용 유기물로부터 상기 박막 트랜지스터 어레이를 보호하는 패시베이션층을 포함하고, 상기 패시베이션층은 분리하고자 하는 유기물과 쌍극자 인력을 발휘할 수 있고, 분리하고자 하는 유기물에 비해 젖음성이 낮은 물질을 포함하는 것을 특징으로 하는 크로마토그래피 장치를 제공한다.In order to solve the above another problem, the present invention provides a thin film transistor array in which a column for chromatography, a thin film transistor element arranged inside the chromatography column, is arranged in an M × N arrangement, and a surface of the thin film transistor array. And a passivation layer formed to protect the thin film transistor array from the organic material for analysis, wherein the passivation layer may exert dipole attraction with the organic material to be separated and include a material having a lower wettability than the organic material to be separated. A chromatographic apparatus is provided.
상기 또 다른 과제를 해결하기 위해 본 발명은, 인쇄 공정을 통해, 기판 상에, 게이트층, 유전체층, 활성층, 절연층, 및 소스/드레인층을 형성한 후, 열처리하여, 박막 트랜지스터가 M×N개의 배열로 이루어진 박막 트랜지스터 어레이를 형성하고, 상기 박막 트랜지스터 어레이 상에 상기 박막 트랜지스터 어레이를 분석하고자 하는 유기물로부터 보호하기 위한 패시베이션층을 형성하는 것을 특징으로 하는 크로마토그래피 장치용 디지털 모니터링 센서의 제조방법을 제공한다.MEANS TO SOLVE THE PROBLEM In order to solve the said another subject, this invention forms the gate layer, the dielectric layer, the active layer, the insulating layer, and the source / drain layer on a board | substrate through a printing process, and heat-processes, and a thin film transistor is MxN. And a passivation layer for protecting the thin film transistor array from organic matters to be analyzed on the thin film transistor array. to provide.
본 발명에 따른 센서는 인쇄공정을 통해 박막 트랜지스터 어레이를 형성하기 때문에 저가로 대량생산이 가능하며, 패시베이션층을 통해 분석용 유기물로부터 보호되는 박막 트랜지스터 어레이를 통해 이동상과 정지상의 인력 차이에 의해 도달하는 속도 차이가 있는 물질의 전기적 특성의 변화를 감지하여 전기적 신호를 발생함으로써, 크로마토그래피의 분리과정(예를 들어, 이동상인 액체의 유동 위치 및 속도 등)을 실시간으로 디지털화하여 모리터링할 수 있게 한다.Since the sensor according to the present invention forms a thin film transistor array through a printing process, it can be mass-produced at low cost, and is reached by the attraction difference between the mobile phase and the stationary phase through the thin film transistor array protected from the organic material for analysis through a passivation layer. Detects changes in the electrical properties of materials with different speeds and generates electrical signals, allowing digital separation and monitoring of chromatographic separation processes (e.g., the flow position and velocity of liquids as mobile phases). .
본 발명에 따른 크로마토그래피 장치는 박막 트랜지스터 어레이를 통해 분석용 유기물의 분리과정을 모니터링할 수 있으며, 본 발명에 따른 크로마토그래피 장치에서는 이동상 및 분석용 물질의 유동 특성을 높이면서 웨팅(wetting)이 쉽게 이루어지지 않으면서 박막 트랜지스터 어레이를 보호할 수 있는 패시베이션층이 구비되어 있어, 크로마토그래피 분석의 효율성을 높일 수 있다.The chromatographic apparatus according to the present invention can monitor the separation process of analyte organics through a thin film transistor array, and in the chromatographic apparatus according to the present invention, wetting is easy while increasing the flow characteristics of the mobile phase and the analyte. The passivation layer is provided to protect the thin film transistor array without being made, thereby increasing the efficiency of the chromatographic analysis.
본 발명에 따른 센서의 제조방법은 박막 트랜지스터 어레이와 패시베이션층을 포함하는 모든 공정을 인쇄공정을 통해 형성하므로, 저온 및 상압공정이 가능하게 되어 제조되는 센서의 제조비용을 크게 절감할 수 있을 뿐 아니라, 대면적으로 대량생산이 가능할 수 있다.In the manufacturing method of the sensor according to the present invention, since all processes including the thin film transistor array and the passivation layer are formed through the printing process, the low temperature and the atmospheric pressure process are possible, thereby greatly reducing the manufacturing cost of the manufactured sensor. For example, large-scale production may be possible.
도 1은 본 발명의 일 실시형태에 따른 크로마토그래피 장치용 센서의 도면과 이의 부분 확대도이다.1 is a view of a sensor for a chromatographic apparatus according to an embodiment of the present invention and a partially enlarged view thereof.
도 2는 본 발명의 일 실시형태에 따른 크로마토그래피 장치용 센서를 구성하는 박막 트랜지스터의 단면도이다.2 is a cross-sectional view of a thin film transistor constituting a sensor for a chromatography device according to an embodiment of the present invention.
도 3은 본 발명의 일 실시형태에 따른 크로마토그래피 장치용 센서를 구성하는 박막 트랜지스터와 패시베이션층에 대한 모식도이다.3 is a schematic diagram of a thin film transistor and a passivation layer constituting a sensor for a chromatography device according to an embodiment of the present invention.
도 4는 본 발명의 일 실시형태에 따른 크로마토그래피 장치의 모식도이다.4 is a schematic view of a chromatography apparatus according to an embodiment of the present invention.
도 5는 본 발명의 일 실시형태에 따른 크로마토그래피 장치용 센서의 제조 공정도이다.5 is a manufacturing process diagram of a sensor for a chromatographic apparatus according to an embodiment of the present invention.
도 6은 본 발명에서 사용한 롤대롤 그라비아 장비 사진이다.Figure 6 is a roll-to-roll gravure equipment picture used in the present invention.
도 7 내지 도 9는 본 발명의 일 실시형태에 따른 크로마토그래피 장치를 사용하여 유기 화합물을 분리할 때, 트랜지스터 소자의 전류특성의 변화를 모식적으로 나타낸 것이다.7 to 9 schematically show changes in the current characteristics of transistor elements when separating organic compounds using a chromatography apparatus according to an embodiment of the present invention.
[부호의 설명][Description of the code]
1 : 크로마토그래피 장치1: Chromatography Device
10 : 센서10: sensor
20 : 컬럼20: column
30 : 정지상30: stationary phase
40 : 이동상40: mobile phase
이하 본 발명의 실시예에 대하여 첨부된 도면을 참고로 그 구성 및 작용을 설명하기로 한다.Hereinafter, the configuration and operation of the present invention will be described with reference to the accompanying drawings.
도면들 중 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 참조번호 및 부호들로 나타내고 있음에 유의해야 한다. 하기에서 본 발명을 설명함에 있어, 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 또한, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.It should be noted that the same elements among the drawings are denoted by the same reference numerals and symbols as much as possible even though they are shown in different drawings. In the following description of the present invention, if it is determined that a detailed description of a related known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description thereof will be omitted. In addition, when a part is said to "include" a certain component, this means that it may further include other components, except to exclude other components unless otherwise stated.
본 발명에 따른 크로마토그래피 장치용 디지털 모니터링 센서는, 크로마토그래피 장치의 유기물의 분리가 이루어지는 곳에 배치되어, 유기물의 분리 상태를 추적하기 위한 센서로, 상기 센서는, 기판과, 상기 기판 상에 형성되며, 게이트층, 유전체층, 활성층, 절연층, 및 소스/드레인 층을 포함하며 인쇄공정을 통해 형성된 박막 트랜지스터가 M×N개의 배열로 이루어진 박막 트랜지스터 어레이를 포함하고, 상기 박막 트랜지스터 어레이의 표면에는 분석용 유기물로부터 상기 박막 트랜지스터 어레이를 보호할 수 있는 패시베이션층이 형성되어 있는 것을 특징으로 한다.The digital monitoring sensor for a chromatographic apparatus according to the present invention is a sensor for tracking the separation state of an organic substance, which is disposed where the organic substance of the chromatography apparatus is separated, wherein the sensor is formed on a substrate and the substrate. And a thin film transistor including a gate layer, a dielectric layer, an active layer, an insulating layer, and a source / drain layer, and formed through a printing process, including a thin film transistor array having an array of M × N arrays. A passivation layer is formed that can protect the thin film transistor array from an organic material.
상기 기판은 본 발명에 따른 센서에 유연성이 요구되는 점을 고려하여, 고분자 재료 또는 금속 재료와 같이 유연성을 부여할 수 있는 재료로 이루어지는 것이 바람직하며, 이중에서도 가볍고 저렴하며 유연성이 우수한 합성수지로 이루어진 필름이 바람직하다. 합성수지 재료로 이루어진 필름은 크로마토그래피 장치에 사용될 수 있을 정도의 물성을 가진 것이라면 제한 없이 사용될 수 있으며, 예를 들어, PET(polyethylene terephtalate), PMMA(Poly(methyl methacrylate), PI(Polyimide), PC(Polycarbonate)와 같은 물질이 사용될 수 있다.In consideration of the flexibility required for the sensor according to the present invention, the substrate is preferably made of a material that can give flexibility, such as a polymer material or a metal material, and a film made of a synthetic resin, which is light, inexpensive and excellent in flexibility. This is preferred. The film made of a synthetic resin material can be used without limitation as long as it has physical properties that can be used in a chromatography device. For example, polyethylene terephtalate (PET), poly (methyl methacrylate), PM (polyimide), and PC ( Materials such as Polycarbonate) may be used.
상기 박막 트랜지스터는 게이트층이 하부에 위치한 바텀 게이트 구조는 물론, 게이트층이 상부에 위치하는 탑 게이트 구조도 적용될 수 있다.The thin film transistor may have a bottom gate structure in which a gate layer is disposed below, and a top gate structure in which the gate layer is disposed above.
박막 트랜지스터를 구성하는 게이트층, 유전체층, 활성층, 절연층 및 소스/드레인층을 구성하는 각각의 물질은 공지된 트랜지스터 재료가 모두 사용될 수 있다. 이때, 상기 활성층의 경우, 유기 화합물의 분석에 필요한 경우, 하나의 종류로 형성하거나, 2 이상의 물질을 사용하여 박막 트랜지스터 어레이를 제작할 수도 있다.As the respective materials constituting the gate layer, the dielectric layer, the active layer, the insulating layer, and the source / drain layer constituting the thin film transistor, all known transistor materials may be used. In this case, the active layer, if necessary for the analysis of the organic compound, may be formed in one kind, or a thin film transistor array may be manufactured using two or more materials.
박막 트랜지스터 어레이는 모두 인쇄공정으로 형성될 수 있는데, 특히 롤대롤 그라비아 인쇄공정을 통해 형성할 경우, 저비용으로 대면적의 박막 트랜지스터 어레이를 형성할 수 있어 바람직하다.All of the thin film transistor arrays may be formed by a printing process. In particular, when the thin film transistor array is formed through a roll-to-roll gravure printing process, a large area thin film transistor array may be formed at low cost.
상기 패시베이션층은, 분석하고자 하는 물질과 강한 쌍극자 모먼트를 발생시킬 수 있으면서, 분석하고자 하는 물질에 비해 젖음각이 낮으면서, 박막 트랜지스터 어레이를 보호할 수 있는 물질이 바람직하다.The passivation layer is a material capable of generating a strong dipole moment with a material to be analyzed and having a low wetting angle compared to the material to be analyzed, while protecting the thin film transistor array.
상기 패시베이션층에 사용될 수 있는 물질로는, 예를 들어 cytop이 있다.As a material which can be used for the passivation layer, for example, cytop.
또한, 상기 패시베이션층의 형상(예를 들어, 그리드상, 돌출형 패턴상 등)의 제어를 통해, 유기물의 유동속도를 제어할 수 있으므로, 형상의 제어를 통해 최적의 유동속도를 도출하여 보다 정확한 분석이 가능하도록 할 수 있다.In addition, since the flow rate of the organic material can be controlled by controlling the shape of the passivation layer (for example, grid shape, protrusion pattern shape, etc.), the optimum flow rate is derived by controlling the shape to more precisely determine the flow rate. Analysis can be made possible.
또한, 본 발명에 따른 크로마토그래피 장치는, 크로마토그래피용 컬럼과, 상기 크로마토그래피용 컬럼의 일측에 배치되는 박막 트랜지스터 소자가 M×N개의 배열로 이루어진 박막 트랜지스터 어레이와, 상기 박막 트랜지스터 어레이의 표면에 형성되어 분석용 유기물로부터 상기 박막 트랜지스터 어레이를 보호하는 패시베이션층을 포함하는 것을 특징으로 한다.In addition, a chromatography apparatus according to the present invention includes a thin film transistor array in which a column for chromatography, a thin film transistor element disposed on one side of the chromatography column, is arranged in an M × N array, and a surface of the thin film transistor array. And a passivation layer formed to protect the thin film transistor array from the organic material for analysis.
상기 컬럼은 일반적으로 크로마토그래피 장치에 사용되는 관형 용기로, 일반적으로 투명한 물질로 이루어져 내부의 물질 이동이 외부에서 관찰될 수 있는 유리와 같은 물질로 이루어진다.The column is generally a tubular vessel used in a chromatography apparatus, which is generally made of a transparent material and is made of a material such as glass in which mass transfer inside can be observed from the outside.
상기 컬럼의 내측에 박막 트랜지스터 어레이와 패시베이션층을 포함하는 센서의 기판이 부착되어 있으며, 센서의 출력단자는 컬럼의 주입구 근처에 위치하여 박막 트랜지스터 어레이에서 발생하는 전기신호의 변화를 외부로 출력할 수 있도록 되어 있다.The substrate of the sensor including the thin film transistor array and the passivation layer is attached to the inside of the column, the output terminal of the sensor is located near the injection port of the column to output the change of the electrical signal generated in the thin film transistor array to the outside It is.
또한, 상기 크로마토그래피 장치는 추가로 상기 센서에서 출력되는 신호를 처리하여 상기 크로마토그래피 장치의 컬럼에 가하는 압력과 같은 변수를 제어할 수 있는 제어장치를 포함할 수 있으며, 이 구성에 의해 실시간으로 모리터링된 유기물의 분리상태에 기초하여 컬럼에 가하는 압력과 유기물의 분리속도를 실시간으로 최적화할 수 있게 된다.In addition, the chromatography apparatus may further include a controller capable of processing a signal output from the sensor to control a variable, such as a pressure applied to a column of the chromatography apparatus, by means of this configuration. Based on the separated state of the organic matter, the pressure applied to the column and the separation rate of the organic matter can be optimized in real time.
또한, 본 발명에 따른 크로마토그래피 장치용 디지털 모니터링 센서의 제조방법은, 인쇄 공정을 통해, 기판 상에, 게이트층, 유전체층, 활성층, 절연층, 및 소스/드레인층의 각층을 형성하고 각층을 형성한 후에는 각각 열처리하는 방법을 통해, 박막 트랜지스터가 M×N개의 배열로 이루어진 박막 트랜지스터 어레이를 형성하고, 상기 박막 트랜지스터 어레이 상에 인쇄방법으로 유기물로부터 박막 트랜지스터 어레이를 보호하는 패시베이션층을 형성하는 것을 특징으로 한다.In addition, in the method for manufacturing a digital monitoring sensor for a chromatography device according to the present invention, each layer of a gate layer, a dielectric layer, an active layer, an insulating layer, and a source / drain layer is formed on a substrate through a printing process, and each layer is formed. After the heat treatment, the thin film transistor forms a thin film transistor array consisting of M × N arrays and forms a passivation layer that protects the thin film transistor array from organic material by printing on the thin film transistor array. It features.
상기 박막 트랜지스터 어레이를 제조하는 공정은 잉크젯을 이용하여, 기판 상에 게이트층, 유전체층, 활성층, 절연층 및 소스/드레인층을 형성하는 방법을 사용할 수도 있고, 롤대롤 그라비아 인쇄공정을 사용할 수도 있는데, 대량생산을 위해서는 롤대롤 그라비아 공정이 보다 바람직하다.The manufacturing process of the thin film transistor array may use a method of forming a gate layer, a dielectric layer, an active layer, an insulating layer, and a source / drain layer on a substrate using an inkjet, or may use a roll-to-roll gravure printing process. The roll-to-roll gravure process is more preferable for mass production.
상기 열처리 공정은 각각의 층이 인쇄된 후 오븐을 사용하여, 각층에 사용된 인쇄 잉크의 종류에 맞추어 열처리를 수행할 수 있는데, 게이트층의 경우 약 150℃, 유전체층의 경우 약 100℃, 절연층의 경우 약 150℃, 소스/드레인층의 경우 약 150℃에서 수행될 수 있으며, 활성층의 경우 사용되는 잉크 종류에 맞추어 상기한 온도에 비해 보다 다양한 폭의 온도로 열처리 공정이 수행될 수 있다.The heat treatment process may be performed by using an oven after each layer is printed, according to the type of printing ink used in each layer, about 150 ℃ for the gate layer, about 100 ℃ for the dielectric layer, insulation layer In the case of about 150 ℃, the source / drain layer may be carried out at about 150 ℃, in the case of the active layer may be carried out a heat treatment process at a temperature of a wider range than the above temperature according to the type of ink used.
이하 본 발명의 실시예에 대하여 첨부된 도면을 참고로 그 구성 및 작용을 설명하기로 한다.Hereinafter, the configuration and operation of the present invention will be described with reference to the accompanying drawings.
[실시예] EXAMPLE
크로마토그래피 장치용 디지털 모니터링 센서Digital Monitoring Sensors for Chromatography Devices
도 1은 본 발명의 일 실시형태에 따른 크로마토그래피 장치용 센서의 도면과 이의 부분 확대도이고, 도 2는 본 발명의 일 실시형태에 따른 크로마토그래피 장치용 센서를 구성하는 박막 트랜지스터의 단면도이고, 도 3은 본 발명의 일 실시형태에 따른 크로마토그래피 장치용 센서를 구성하는 박막 트랜지스터와 패시베이션층에 대한 모식도이다.1 is a view of a chromatographic device sensor and a partially enlarged view thereof according to an embodiment of the present invention, Figure 2 is a cross-sectional view of a thin film transistor constituting a sensor for a chromatography device according to an embodiment of the present invention, 3 is a schematic diagram of a thin film transistor and a passivation layer constituting a sensor for a chromatography device according to an embodiment of the present invention.
도 1 내지 도 3에 도시된 바와 같이, 본 발명의 일 실시형태에 따른 크로마토그래피 장치용 센서(10)는 기판(11)과, 이 기판(11) 상에 형성된 바텀 게이트 구조를 갖는 N×M개의 박막 트랜지스터가 배열된 박막 트랜지스터 어레이(12)와, 이 박막 트랜지스터 어레이 상에 형성된 패시베이션층(13)을 포함하여 이루어진다.As shown in Figs. 1 to 3, a sensor 10 for a chromatography apparatus according to an embodiment of the present invention has a substrate 11 and an N × M having a bottom gate structure formed on the substrate 11. And a passivation layer 13 formed on the thin film transistor array.
상기 기판(10)은 두께 50~100㎛의 투명한 PET(polyethylene terephtalate) 필름으로 이루어지며 길이 방향으로 길게 연장하는 형상으로 이루어진다.The substrate 10 is made of a transparent polyethylene terephtalate (PET) film having a thickness of 50 ~ 100㎛ and has a shape extending in the longitudinal direction.
상기 박막 트랜지스터 어레이(12)는 길이 방향으로 연장하는 기판(11) 상에 형성되는데, 박막 트랜지스터 어레이(12)를 구성하는 각각의 트랜지스터는 상기 기판(11) 상에 형성되며 은(Ag)을 주성분으로 하는 물질로 이루어지는 게이트층(12a)과, 이 게이트층(12a) 상에 형성되며 유전율 10 이상의 유전잉크로 형성되는 유전체층(12b)과, 이 유전체층(12b) 상에 형성되며 탄소 나노튜브를 주성분으로 포함하여 물질로 이루어지는 활성층(12c)과, 이 활성층(12c) 상에 형성되며 은(Ag)을 주성분으로 하는 물질로 이루어지는 소스/드레인층(12d)를 포함하며, 박막 트랜지스터 어레이(12)의 배선이 교차되는 부분의 단락을 방지하기 위하여 에폭시 기판의 절연잉크를 사용하여 형성된 절연층을 포함하여 이루어지는 바텀 게이트 구조의 트랜지스터가 복수 개 배열된 형태이다.The thin film transistor array 12 is formed on a substrate 11 extending in the longitudinal direction. Each transistor constituting the thin film transistor array 12 is formed on the substrate 11 and contains silver (Ag) as a main component. A gate layer 12a made of a material, a dielectric layer 12b formed on the gate layer 12a and formed of a dielectric ink having a dielectric constant of 10 or more, and carbon nanotubes formed on the dielectric layer 12b. An active layer 12c comprising a material and a source / drain layer 12d formed of a material containing silver (Ag) as a main component on the active layer 12c. In order to prevent a short circuit of a portion where wiring crosses, a plurality of transistors having a bottom gate structure including an insulating layer formed by using an insulating ink of an epoxy substrate are arranged.
이러한 박막 트랜지스터 어레이(12)의 표면에는 도 3에 도시된 바와 같이, 패시베이션층(13)이 박막 트랜지스터 어레이(12)를 커버하는 형태로 형성되어 있다.As shown in FIG. 3, the passivation layer 13 is formed on the surface of the thin film transistor array 12 to cover the thin film transistor array 12.
상기 패시베이션층(13)은 cytop으로 이루어지며, 그 두께는 0.3~1㎛인 것이 바람직한데, 이는 0.3㎛ 미만일 경우 전기적 특성 감응도가 높아져 검출 물질을 구별하기 어렵고, 1㎛ 초과일 경우 전기적 특성 감응도가 미비하기 때문에 센서로 사용하기 어렵기 때문이다.The passivation layer 13 is made of a cytop, the thickness of which is preferably 0.3 ~ 1㎛, which is less than 0.3 ㎛ the electrical characteristic sensitivity is difficult to distinguish the detection material, if it is more than 1 ㎛ electrical characteristic sensitivity This is because it is difficult to use as a sensor.
크로마토그래피 장치Chromatography Device
도 4는 본 발명의 일 실시형태에 따른 크로마토그래피 장치의 모식도이다.4 is a schematic view of a chromatography apparatus according to an embodiment of the present invention.
도 4에 도시된 바와 같이, 본 발명에 따른 크로마토그래피 장치(1)는 길이방향으로 연장되는 컬럼(20)과, 이 컬럼의 내주부에 길이방향으로 연장되게 부착되는 센서(10)를 포함하여 이루어진다.As shown in Fig. 4, the chromatographic apparatus 1 according to the present invention includes a column 20 extending in the longitudinal direction and a lengthwise extension attached to an inner circumference of the column. It comprises a sensor 10.
상기 컬럼(20)은 원주 형상으로 이루어지며 하부에는 관의 직경이 서서히 줄어들어, 상부에 비해 출구가 매우 좁은 직경으로 이루어져 있으며, 투명한 유리로 이루어진다.The column 20 is formed in a columnar shape, the diameter of the tube is gradually reduced in the lower portion, the outlet is made of a very narrow diameter compared to the upper portion, made of transparent glass.
상기 센서(10)의 그 출력부가 상기 컬럼(20)의 상단부에 위치하여, 외부로 전기신호를 출력할 수 있도록 되어 있다. 본 발명의 실시예에서는 컬럼(20)의 길이방향의 대부분에 센서(10)를 배치하였으나, 필요에 따라 컬럼(20)의 상부, 중간부, 하부의 1 이상으로 단속적으로 배치할 수도 있다.The output of the sensor 10 is located at the upper end of the column 20 so as to output an electrical signal to the outside. In the embodiment of the present invention, the sensor 10 is disposed in most of the longitudinal direction of the column 20, but may be intermittently disposed at one or more of the upper, middle, and lower portions of the column 20 as necessary.
상기 컬럼(20)의 내부에는 움직이지 않는 정지상(30)의 물질이 배치되고 그 상부에는 이동상(40)의 물질이 배치되며, 상기 이동상(40)에는 분석하고자 하는 유기물이 포함된다. 상기 정지상(30)으로는 예를 들어 실리카겔 분말이 사용될 수 있으며, 상기 이동상(40)으로는 예를 들어 에틸아세테이트/헥산의 혼합물이 사용될 수 있다.The material of the stationary phase 30 which does not move is disposed in the column 20, and the material of the mobile phase 40 is disposed on the upper portion of the column 20, and the organic phase to be analyzed is included in the mobile phase 40. For example, silica gel powder may be used as the stationary phase 30, and a mixture of ethyl acetate / hexane may be used as the mobile phase 40.
이동상(40)에 분산되어 있는 2종 이상의 유기물의 혼합물은 정지상을 통과할 때, 각각 이동상과 정지상에 대해 인력의 차이를 가져, 성분별로 다른 속도로 정지상을 통과하게 되며, 그 결과 혼합된 각각의 유기물이 분리된다.When the mixture of two or more organic substances dispersed in the mobile phase 40 passes through the stationary phase, the attraction force is different for the mobile phase and the stationary phase, respectively, and passes through the stationary phase at different speeds according to the components. Organics are separated.
이때, 분리된 유기물에 의해 박막 트랜지스터의 전기적 특성에 변화가 감지되므로, 본 발명의 실시예에 따른 크로마토그래피 장치는 박막 트랜지스터 어레이를 통해 발생하는 전기적 변화를 디지털 값으로 변화시키고, 이를 통해 유기물의 분리 과정을 모니터링할 수 있게 된다.In this case, since the change in the electrical characteristics of the thin film transistor is detected by the separated organic material, the chromatography apparatus according to the embodiment of the present invention changes the electrical change generated through the thin film transistor array to a digital value, thereby separating the organic material. The process can be monitored.
또한, 로딩된 유기물의 종류, 박막 트랜지스터 어레이를 구성하는 활성층의 종류, 패시베이션층의 두께 및 그 형상에 따라 박막 트랜지스터의 전기적 특성(Ion/off ratio, Treshold voltage, Transconductance, Subtreshold swing 등)에 변화가 발생하기 때문에, 로딩된 물질의 이동 속도 및 트랜지스터 표면에 흘러가는 유기물 자체를 분석할 수도 있다.In addition, depending on the type of organic material loaded, the type of active layer constituting the thin film transistor array, the thickness of the passivation layer, and the shape thereof, the electrical characteristics of the thin film transistor (eg, ion / off ratio, threshold voltage, transconductance, subtreshold swing, etc.) may vary. As it occurs, it is possible to analyze the rate of movement of the loaded material and the organics themselves flowing on the transistor surface.
본 발명의 실시예에 따른 크로마토그래피 장치에는, 도면에 도시되어 있지는 않지만 박막 트랜지스터 어레이의 전기적 특성 변화를 검출하고 이 결과를 통해, 컬럼에 가하는 압력과 유기 화합물의 분리 속도를 실시간으로 최적화할 수 있는 제어 장치를 포함할 수 있다.Although not shown in the drawings, the chromatographic apparatus according to the embodiment of the present invention detects a change in electrical characteristics of the thin film transistor array and through this result, it is possible to optimize the pressure applied to the column and the separation rate of the organic compound in real time. It may include a control device.
크로마토그래피 장치용 디지털 모니터링 센서의 제조방법Manufacturing Method of Digital Monitoring Sensor for Chromatography Apparatus
도 5는 본 발명의 일 실시형태에 따른 크로마토그래피 장치용 센서의 제조 공정도이다. 도 6은 본 발명에서 사용한 롤대롤 그라비아 장비 사진이다.5 is a manufacturing process diagram of a sensor for a chromatographic apparatus according to an embodiment of the present invention. Figure 6 is a roll-to-roll gravure equipment picture used in the present invention.
본 발명의 일 실시형태에 따른 크로마토그래피 장치용 센서의 제조공정은, 기판(11) 상에 바텀 게이트 구조를 갖는 박막 트랜지스터 어레이(12)를 형성하고, 박막 트랜지스터 어레이(12) 상에 패시베이션층(13)을 형성하는 공정을 포함한다.In the manufacturing process of a sensor for a chromatography device according to an embodiment of the present invention, a thin film transistor array 12 having a bottom gate structure is formed on a substrate 11, and a passivation layer ( 13) to form.
구체적으로, 도 5에 도시된 바와 같이, PET 기판(11)에 게이트층(12a)을 먼저 인쇄한(S202) 후에 연속적으로 유전체층(12b)을 인쇄한다(S204). 이때, 게이트층(12a)과 유전체층(12b)을 구성하는 잉크의 물성이 다르기 때문에 인쇄 압력이나 속도, 블레이딩 조건을 각 층에 맞게 조절해야 하며, 중첩 인쇄는 마크를 이용해서 진행되므로 마크 패턴을 인쇄한다.Specifically, as shown in FIG. 5, the gate layer 12a is first printed on the PET substrate 11 (S202), and then the dielectric layer 12b is continuously printed (S204). At this time, since the physical properties of the ink constituting the gate layer 12a and the dielectric layer 12b are different, the printing pressure, speed, and blading conditions should be adjusted according to each layer. Print
유전체층(12b)까지 인쇄가 진행된 필름은 최초 인쇄가 시작된 곳에 다시 세팅 후, 상기 마크 패턴을 이용하여 추가적으로 활성층(12c)과 소스/드레인층(12d)을 중첩 인쇄한다(S206,S208).After the film which has been printed up to the dielectric layer 12b is set again at the place where the initial printing is started, the active layer 12c and the source / drain layer 12d are additionally printed using the mark pattern (S206 and S208).
이때, 각층을 인쇄한 후에는 오븐을 사용하여 열처리하여 인쇄층을 건조하고 유기물을 제거하는 공정이 수행된다.At this time, after printing each layer, a process of drying the printed layer and removing the organic material by heat treatment using an oven is performed.
상기 열처리 공정은 게이트층의 경우 150℃, 유전체층 100℃, 활성층 150℃, 소스/드레인층 및 배선층을 150℃의 온도에서 수행한다.In the heat treatment process, the gate layer is performed at a temperature of 150 ° C., a dielectric layer 100 ° C., an active layer 150 ° C., a source / drain layer, and a wiring layer.
이상과 같은 인쇄공정은 잉크젯을 이용하여 수행될 수도 있으나, 바람직하게 도 6에 나타낸 것과 같은 롤대롤 그라비아 인쇄장비를 사용할 경우, 한번에 많은 박막 트랜지스터를 인쇄할 수 있기 때문에 보다 바람직하다.The printing process as described above may be performed using an inkjet, but it is preferable to use a roll-to-roll gravure printing apparatus as shown in FIG. 6 because many thin film transistors can be printed at a time.
본 발명의 실시예에서는 박막 트랜지스터 어레이를 롤대롤 그라비아 인쇄장비를 사용하여 100% 인쇄공정으로 박막 프랜지스터를 제조하였다.In the embodiment of the present invention, a thin film transistor was manufactured in a 100% printing process using a roll-to-roll gravure printing apparatus.
롤대롤 그라비아 인쇄장비는 패턴이 새겨진 롤(Roll) 제판과 압력을 가하는 롤을 이용해서 롤과 롤 사이로 지나가는 필름에 패턴을 인쇄하는 장비로, 고속공정, 연속공정, 다층구조 제조가 가능하고 사용되는 잉크 소모량도 적은 장점이 있다.Roll-to-roll gravure printing equipment is a device that prints patterns on the film passing between rolls using a roll-engraved pattern and pressure rolls. Ink consumption also has the advantage.
상술한 박막 트랜지스 어레이의 제조공정을 좀 더 자세히 설명하면, 먼저 본 발명에 사용된 기판은 PET(polyethylene terephtalate)인데, PET는 유연성이 우수할 뿐 아니라, 인쇄층의 열처리 온도인 100~150℃에서 내열성이 우수한 특징이 있어, 바람직하다. 이러한 PET 이외에, PMMA, PI, PC와 같은 고분자 재료는 유연성과 내열성을 겸비하여, 본 발명에 따른 기판 재료로 적합하게 사용될 수 있다.In more detail the manufacturing process of the above-mentioned thin film transistor array, first, the substrate used in the present invention is PET (polyethylene terephtalate), PET is not only excellent in flexibility, the heat treatment temperature of the printed layer 100 ~ 150 ℃ It is preferred because it has excellent heat resistance. In addition to such PET, polymer materials such as PMMA, PI, and PC can be suitably used as the substrate material according to the present invention, which combines flexibility and heat resistance.
PET 기판을 도 6의 롤투롤 그라비아 인쇄장비에 장착시킨 후, PET 기판을 롤투롤 그라비아 인쇄장비의 끝까지 보낸다. 그리고 제어시스템을 통해서 PET 기판과 롤투롤 그라비아 인쇄장비 간에 장력을 제어하되, 그 값은 5~7kgf으로 설정한다. After mounting the PET substrate in the roll-to-roll gravure printing equipment of FIG. 6, the PET board is sent to the end of the roll-to-roll gravure printing equipment. And control the tension between the PET substrate and the roll-to-roll gravure printing equipment through the control system, the value is set to 5 ~ 7kgf.
이와 같이 장력이 최적화된 후에 패턴이 새겨진 롤 제판과 잉크가 블레이딩 되는 조건을 조절하는데, 블레이딩 조건은 인쇄 롤과 블레이드 간의 마찰력에 따라 잉크가 전이되는 특성에 영향을 주기 때문에 블레이드 소재나 롤과 접촉되는 각도를 고려해서 마찰을 최소화하고, 패턴 이외에 잉크가 누수되는 현상이 없도록 해야 하는데, 본 발명의 실시예에서 적용한 조건은 백블레이드 5mm, 블레이드 5mm, 블레이드 장착 길이는 11mm, 높이는 41mm로 하였다.After the tension is optimized, the pattern of the engraved roll engraving and the ink is controlled. The blading condition affects the transfer property of the ink according to the friction force between the printing roll and the blade. Considering the contact angle to minimize the friction, and to avoid the phenomenon of ink leakage other than the pattern, the conditions applied in the embodiment of the present invention was set back blade 5mm, blade 5mm, blade mounting length 11mm, height 41mm.
이와 같이 맞춘 후, 제판 롤과 압력 롤을 접촉시켜서 인쇄압력이 6~8kgf/㎠이 되도록 설정함으로써 인쇄 준비를 완료한다.After making it like this, printing preparation is completed by making a printing pressure into 6-8 kg f / cm <2> by making a printing roll and a pressure roll contact.
PET 기판 위에 인쇄되는 게이트층의 형성에 사용되는 잉크는 Ag 잉크(PG-007 Paru Co, Korea)이다. Ag 잉크를 인쇄하는데 있어서 중요한 요소로는 PET 기판에 제대로 인쇄되기 위한 최적의 점도와 표면 에너지를 맞추는 것이다.An ink used to form a gate layer printed on a PET substrate is Ag ink (PG-007 Paru Co, Korea). An important factor in printing Ag inks is to match the optimum viscosity and surface energy for proper printing on PET substrates.
이를 위해서 다양한 표면 활성제나 유기용매를 이용해서 잉크 조건을 설정하게 된다. Ag잉크 최적의 점도와 표면장력은 롤투롤 그라비아 인쇄시 인쇄속도 6~12m/min에서 각각 200~500cP, 40~48 N/m2 이다. 점도를 맞추기 위해 첨가되는 용매는 에틸렌 글리콜 그리고 표면장력은 에틸아세테이트와 같은 표면장력이 낮은 물질을 이용해서 잉크조건을 최종 튜닝한다. 이 Ag 잉크를 제판 롤에 공급시키고 인쇄속도를 6~8m/min로 설정해서 인쇄를 진행하여 게이트층을 형성한다. 형성되는 게이트층의 두께는 100~500nm가 바람직하다. 이와 같이 형성된 게이트층은 오븐을 통해 150℃에서 열처리되어 건조된다.To this end, ink conditions are set using various surface active agents or organic solvents. The optimum viscosity and surface tension of Ag ink are 200-500 cP and 40-48 N / m 2 at 6-12 m / min printing speed for roll-to-roll gravure printing. The solvent is added to adjust the viscosity, and ethylene glycol is used, and the surface tension is a low surface tension material such as ethyl acetate to finally tune the ink conditions. The Ag ink is supplied to a plate making roll, and printing is performed at a printing speed of 6 to 8 m / min to form a gate layer. As for the thickness of the gate layer formed, 100-500 nm is preferable. The gate layer thus formed is heat-treated at 150 ° C. through an oven and dried.
게이트층이 오븐을 거쳐 열처리된 다음, 절연층이 인쇄되는 곳으로 이송되며, 이때 카메라가 PET 기판에 인쇄된 게이트층 마크를 인식해서 그 위에 절연층이 중첩되도록 제어한다.The gate layer is heat-treated through an oven and then transferred to the place where the insulating layer is printed. At this time, the camera recognizes the gate layer mark printed on the PET substrate and controls the insulating layer to be superimposed thereon.
게이트층 상에 중첩 인쇄되는 유전체층은 유전율 10 이상의 유전체 잉크(BaTiO3를 포함하는 잉크)를 사용하였다.The dielectric layer overlaid on the gate layer used a dielectric ink having a dielectric constant of 10 or more (an ink including BaTiO 3 ).
중첩 설정 완료 후에 게이트층 상부에 절연층을 중첩 인쇄하는데, 이때 절연층의 두께는 1㎛~3㎛인 것이 바람직하다. 이와 같이 중첩 인쇄된 유전체층은 오븐을 통해 100℃에서 열처리되어 건조된다.After the overlap setting is completed, the insulating layer is overprinted on the gate layer, wherein the thickness of the insulating layer is preferably 1 μm to 3 μm. The overprinted dielectric layer is heat treated at 100 ° C. through an oven and dried.
이와 같이 게이트층과 절연층이 인쇄된 기판의 시작점을 롤대롤 그라비아 인쇄장비의 처음 시작점으로 이송한 후, 활성층을 인쇄한다.As such, after transferring the starting point of the substrate on which the gate layer and the insulating layer are printed to the first starting point of the roll-to-roll gravure printing equipment, the active layer is printed.
상기 활성층에는 단일막 탄소나노튜브, PQ12, TIPS-pentacene, P6HT, DNTT와 같은 상용 반도체 잉크 등이 사용될 수 있으며, 본 발명의 실시예에서는 단일막 탄소나노튜브를 이를 분산시킬 수 있는 용매에 1~4중량% 정도 첨가한 잉크를 사용하였다.In the active layer, commercial semiconductor inks such as monolayer carbon nanotubes, PQ12, TIPS-pentacene, P6HT, DNTT, etc. may be used. In an embodiment of the present invention, the monolayer carbon nanotubes may be dispersed in a solvent capable of dispersing them. An ink added with about 4% by weight was used.
형성되는 활성층층의 두께는 10~15nm가 바람직하다. 이와 같이 형성된 활성층은 오븐을 통해 150℃에서 열처리되어 건조된다. As for the thickness of the active layer formed, 10-15 nm is preferable. The active layer thus formed is heat-treated at 150 ° C. through an oven and dried.
상기 활성층까지 인쇄된 필름을 처음 시작점으로 다시 감고, 배선 간에 중첩이 발생하는 부분에 에폭시 또는 PMMA 기반의 잉크를 절연층으로 인쇄하고, 이와 같이 인쇄된 절연층은 오븐을 통해 150℃에서 열처리되어 건조된다.The film printed up to the active layer is rewound to the initial starting point, and the epoxy or PMMA-based ink is printed as an insulating layer on the portion where the overlap occurs between the wirings, and the printed insulating layer is heat-treated at 150 ° C. through an oven and dried. do.
이와 같이 절연층이 인쇄된 위에 형성되는 소스/드레인층에 사용되는 잉크는 게이트층과 동일하게 Ag 잉크(PG-007 Paru Co, Korea)이며, 소스/드레인층의 두께는 100~500nm인 것이 바람직하다. 소스/드레인층의 인쇄가 완료되면, 오븐을 통해 150℃에서 열처리한다.In this way, the ink used for the source / drain layer formed on the insulating layer printed thereon is Ag ink (PG-007 Paru Co, Korea) like the gate layer, and the thickness of the source / drain layer is preferably 100 to 500 nm. Do. When printing of the source / drain layer is complete, heat treatment is performed at 150 ° C. through an oven.
박막 트랜지스터 어레이가 센서로 동작하기 위해서는 분석용 유기물이 특정트랜지스터 소자상에 위치할 때, 트랜지스터 소자가 분석용 유기물의 영향을 받아 전기적 특성이 변화되고 분석용 유기물이 해당 트랜지스터 소자를 지나간 후에는 트랜지스터 소자의 전기적 특성이 다시 원래의 상태로 복구되어야 한다.In order for the thin film transistor array to operate as a sensor, when the analytical organic material is positioned on a specific transistor device, the transistor device is affected by the analytical organic material, and the electrical characteristics thereof are changed, and after the analytical organic material has passed through the transistor device, The electrical characteristics of the must be restored to their original state.
그런데, 인쇄 박막 트랜지스터의 활성층 영역이 직접적으로 다른 물질에 접촉하게 되면 트랜지스터의 전기적 특성이 원상태로 회복되지 않을 정도로 변화를 받을 수 있다. 이를 방지하기 위해서는 인쇄 박막 트랜지스터 어레이 상에 보호층을 형성할 필요가 있다.However, when the active layer region of the printed thin film transistor is in direct contact with another material, the electrical characteristics of the transistor may be changed to such an extent that it does not recover. In order to prevent this, it is necessary to form a protective layer on the printed thin film transistor array.
이때, 보호층은 트랜지스터의 전기적 특성에 영향을 줄 수 있는 이동상과 분석용 유기물의 유동 특성을 향상시키고 젖음성을 제어하기 위하여, 이동상 및 분석용 유기물에 비해 표면장력을 낮게 유지하는 것이 바람직하다.In this case, in order to improve the flow characteristics and control the wettability of the mobile phase and the analyte organics that may affect the electrical characteristics of the transistor, it is preferable to keep the surface tension lower than that of the mobile phase and the analyte organic.
본 발명의 실시예에서는 박막 트랜지스터 어레이의 보호층으로 사이톱(Cytop)을 사용하였다. 사이톱(Cytop)은 극성 유기물과 쌍극자모먼트를 강하게 유발함과 동시에 인쇄된 활성층을 유기용매로부터 보호하는 역할을 한다.In the exemplary embodiment of the present invention, cytop is used as a protective layer of the thin film transistor array. Cytop strongly induces polar organics and dipole moments and at the same time protects the printed active layer from organic solvents.
이를 통해, 박막 트랜지스터 어레이의 보호와 함께, 이동상 및 분석용 유기물의 유동 특성을 향상시키고 젖음을 방지할 수 있어, 효율적인 센서의 기능을 구현할 수 있게 된다.Through this, in addition to the protection of the thin film transistor array, it is possible to improve the flow characteristics of the mobile phase and analyte organics and to prevent the wetting, thereby implementing the function of the efficient sensor.
크로마토그래피 장치용 디지털 모니터링 센서의 작동방법How Digital Monitoring Sensors Work for Chromatography Devices
이와 같이 제작된 센서를 이용한 분석용 유기물의 분리상태의 측정방법은, 능동 방식의 트래지스터 측정 시스템을 통해 수행될 수 있다.The method of measuring the separation state of the organic matter for analysis using the sensor thus manufactured may be performed through an active transistor measuring system.
구체적으로, 인가 바이어스를 고정한 후(예를 들어; drain voltage -20V, gate voltage 10~-20V), 박막 트랜지스터의 전류-전압 특성 곡선(Vg-Id 또는 Vd-Id 곡선) 측정을 통해 유기 혼합물의 분리상태의 분석을 진행한다.Specifically, after fixing the application bias (e.g., drain voltage -20V, gate voltage 10-20V), the current-voltage characteristic curve (Vg-Id or Vd-Id curve) of the thin film transistor is used to measure the organic mixture. Proceed with separation.
패시베이션층(보호층)이 형성된 박막 트랜지스터 어레이 표면에서 이동상에 포함되어 있는 분석용 유기 혼합물을 주입하여, 정지상을 향해 통과시키면 이동상에 포함되어 있는 유기 혼합물의 각 성분은 각각 이동상과 정지상에 대해 다른 인력을 가지기 때문에, 다른 속도로 정지상을 통과하게 되고, 그 결과 유기 혼합물을 구성하는 각 성분이 측정용 박막 트랜지스터에 도달하는 속도 차이가 발생하게 되어 각 성분별로 컬럼 상에서 위치하는 위치가 달라지게 되고, 이러한 위치의 차이는 박막 트랜지스터의 전류-전압 특성 곡선(I-V커브)의 측정을 통해 파악할 수 있다.When an analytical organic mixture contained in the mobile phase is injected from the surface of the thin film transistor array on which the passivation layer (protective layer) is formed and passed toward the stationary phase, each component of the organic mixture included in the mobile phase has a different attraction force for the mobile phase and the stationary phase, respectively. Since it passes through the stationary phase at a different speed, as a result, there is a difference in the speed at which each component constituting the organic mixture reaches the thin film transistor for measurement, and thus the position on the column for each component is changed. The difference in position can be determined by measuring the current-voltage characteristic curve (IV curve) of the thin film transistor.
또한, 박막 트랜지스터 소자를 구성하는 활성층의 종류를 다양하게 조절할 경우, 유기물의 위치뿐 아니라, 유기 혼합물에 구성된 물질 자체의 분석도 가능하게 된다.In addition, when various types of active layers constituting the thin film transistor element are adjusted, not only the position of the organic material but also the analysis of the material itself included in the organic mixture is possible.
도 7 내지 도 9는 본 발명의 일 실시형태에 따른 크로마토그래피 장치를 사용하여 유기 화합물을 분리할 때, 트랜지스터 소자의 전류특성의 변화를 모식적으로 나타낸 것이다.7 to 9 schematically show changes in the current characteristics of transistor elements when separating organic compounds using a chromatography apparatus according to an embodiment of the present invention.
도 7 내지 도 9에 도시된 바와 같이, A 성분과 B 성분이 혼합되어 있는 유기물을 이동상에 로딩하면, 혼합 유기물을 구성하는 각 성분을 정지상을 향해 이동하게 된다.As shown in Figs. 7 to 9, when the organic material in which the A component and the B component are mixed is loaded into the mobile phase, each component constituting the mixed organic material is moved toward the stationary phase.
이때, 정지상에 대해 상대적으로 약한 인력을 갖는 유기물 B가 더 빠르게 아래로 이동하고, 정지상에 대해 상대적으로 강한 인력을 갖는 유기물 A는 B에 비해 느리게 이동하게 되므로, 혼합된 상태의 A와 B는 정지상을 통과하는 과정에서 분리된다.At this time, since the organic material B having a relatively weak attraction force to the stationary phase moves down faster, and the organic material A having a relatively strong attraction force to the stationary phase moves slower than B, the mixed phases A and B are stationary phases. Separated in the process of passing through.
그리고, 이동상은 박막 트랜지스터의 전기적 특성에 영향을 미치지 않으므로 로딩된 유기물이 아래로 전개되기 전에는 박막 트랜지스터 어레이 고유의 전기적 특성(ex: Vg-Id 곡선)을 나타낸다(도 7).In addition, since the mobile phase does not affect the electrical properties of the thin film transistor, it exhibits the inherent electrical properties (eg: Vg-Id curve) of the thin film transistor array before the loaded organic material is developed downward (FIG. 7).
유기물 B가 박막 트랜지스터에 도달하게 되면 박막 트랜지스터의 차단 전류가 박막 트랜지스터 고유의 차단 전류보다 약 10배 증가되며 (도 8의 TR7, TR8, 도 9의 TR10, TR11 상태) 유기물 B가 지나가면 다시 이동상에 의해 고유의 값으로 회복된다.When the organic material B reaches the thin film transistor, the blocking current of the thin film transistor is increased by about 10 times higher than the inherent blocking current of the thin film transistor (TR7, TR8 in FIG. 8 and TR10, TR11 in FIG. 8). Is restored to its own value.
유기물 A가 박막 트랜지스터에 도달하게 되면 박막 트랜지스터의 차단 전류가 박막 트랜지스터 고유의 차단 전류보다 약 100배 증가되며 (도 8의 TR3, TR4 및 도 9의 TR7, TR8), 유기물 A가 지나가고 나면 다시 이동상에 의해 고유의 값으로 회복된다.When the organic material A reaches the thin film transistor, the blocking current of the thin film transistor is increased by about 100 times higher than the inherent blocking current of the thin film transistor (TR3, TR4 of FIG. 8 and TR7, TR8 of FIG. 9). Is restored to its own value.
박막트랜지스터 어레이에서 측정된 I-V 특성 곡선을 토대로 추출된 차단전류(off current), 문턱전압 (Threshold voltage) 등의 트랜지스터의 특성 파라메타를 일정한 범위값 별로 양자화시켜 디지털화시킴으로써, 분리 과정을 모니터링할 수 있다.The separation process can be monitored by quantizing and digitizing the characteristic parameters of transistors such as off current and threshold voltage based on the I-V characteristic curves measured in the thin film transistor array by a certain range value.
일 예로, 차단전류를 '01'=10-10~10-9A(이동상), '10'=10-9~10-8A(유기물 B), '11'=10-8~10-7A(유기물 A)로 양자화 및 디지털화시키면, 박막 트랜지스터 어레이는 순차적으로 '01'(이동상), '10'(유기물 B), '11'(유기물 A)의 디지털값을 나타내며, 이를 이용하여 분석에 사용된 물질의 분류와 분석상태의 모니터링이 가능하다.For example, the breaking current is set to '01' = 10 -10 to 10 -9 A (mobile phase), '10' = 10 -9 to 10 -8 A (organic B), and '11' = 10 -8 to 10 -7 When quantized and digitized with A (organic A), the thin film transistor array sequentially displays the digital values of '01' (mobile phase), '10' (organic B), and '11' (organic A). It is possible to monitor the classification and analysis status of the materials used.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고 이 또한 본 발명의 범위에 속하는 것은 당연하다.Although the preferred embodiments of the present invention have been described above, the present invention is not limited thereto, and various modifications and changes can be made within the scope of the claims and the detailed description of the invention and the accompanying drawings. Naturally, it belongs to the scope of the invention.

Claims (12)

  1. 크로마토그래피용 컬럼에 배치되어, 유기물의 분리를 추적하기 위한 센서로,A sensor placed on a column for chromatography that tracks the separation of organics.
    상기 센서는, 기판과, 상기 기판 상에 형성되며, 게이트층, 유전체층, 활성층, 절연층 및 소스/드레인 층을 포함하며 인쇄공정을 통해 형성된 박막 트랜지스터가 M×N개의 배열로 이루어진 박막 트랜지스터 어레이를 포함하고,The sensor may include a thin film transistor array formed on the substrate, the thin film transistor including a gate layer, a dielectric layer, an active layer, an insulating layer, and a source / drain layer and formed by a printing process in an M × N array. Including,
    상기 박막 트랜지스터 어레이의 표면에는, 분석용 유기물로부터 상기 박막 트랜지스터 어레이를 보호할 수 있는 패시베이션층이 형성되어 있는 것을 특징으로 하는 크로마토그래피 장치용 디지털 모니터링 센서.The passivation layer which can protect the said thin film transistor array from the organic substance for analysis is formed in the surface of the said thin film transistor array, The digital monitoring sensor for chromatography apparatuses characterized by the above-mentioned.
  2. 제1항에 있어서,The method of claim 1,
    상기 게이트층, 유전체층, 활성층, 절연층, 및 소스/드레인층은 상기 기판 상에 롤대롤 그라비아 인쇄법으로 인쇄된 후 열처리를 통해 형성된 것을 특징으로 하는 크로마토그래피 장치용 디지털 모니터링 센서.The gate layer, the dielectric layer, the active layer, the insulating layer, and the source / drain layer are printed on the substrate by a roll-to-roll gravure printing method, and then formed by heat treatment.
  3. 제1항에 있어서,The method of claim 1,
    상기 박막 트랜지스터 소자는 바텀 게이트 구조인 것을 특징으로 하는 크로마토그래피 장치용 디지털 모니터링 센서.The thin film transistor device is a digital monitoring sensor for a chromatography device, characterized in that the bottom gate structure.
  4. 제1항에 있어서,The method of claim 1,
    상기 패시베이션층은 분리하고자 하는 유기물과 쌍극자 인력을 발휘할 수 있고, 분리하고자 하는 유기물에 비해 표면장력이 낮은 물질을 포함하는 것을 특징으로 하는 크로마토그래피 장치용 디지털 모니터링 센서.The passivation layer may exert an organic material and dipole attraction to be separated, and comprises a material having a surface tension lower than that of the organic material to be separated.
  5. 크로마토그래피용 컬럼과, A column for chromatography,
    상기 크로마토그래피용 컬럼의 내측에 배치되며 인쇄공정을 통해 형성되는 박막 트랜지스터 소자가 M×N개의 배열로 이루어진 박막 트랜지스터 어레이와,A thin film transistor array disposed inside the chromatography column and formed through a printing process, the thin film transistor array having an M × N array;
    상기 박막 트랜지스터 어레이의 표면에 형성되어 분석용 유기물로부터 상기 박막 트랜지스터 어레이를 보호하는 패시베이션층을 포함하고,A passivation layer formed on a surface of the thin film transistor array to protect the thin film transistor array from an organic material for analysis;
    상기 패시베이션층은 분리하고자 하는 유기물과 쌍극자 인력을 발휘할 수 있고, 분리하고자 하는 유기물에 비해 표면장력이 낮은 물질을 포함하는 것을 특징으로 하는 크로마토그래피 장치.The passivation layer may exert an organic material and dipole attraction to be separated, and comprises a material having a lower surface tension than the organic material to be separated.
  6. 제5항에 있어서,The method of claim 5,
    상기 박막 트랜지스터 어레이는 롤대롤 그라비아 인쇄공정을 통해 형성되는 것을 특징으로 하는 크로마토그래피 장치.The thin film transistor array is a chromatography apparatus, characterized in that formed through a roll-to-roll gravure printing process.
  7. 제5항에 있어서,The method of claim 5,
    상기 박막 트랜지스터 어레이는 상기 크로마토그래피용 컬럼의 전체에 배치되거나, 상부, 중간부 또는 하부 중 어느 한 곳 이상에 부분적으로 배치되는 것을 특징으로 하는 크로마토그래피 장치.And the thin film transistor array is disposed in the entirety of the chromatography column or partially disposed in at least one of an upper portion, an intermediate portion, and a lower portion.
  8. 인쇄 공정을 통해, 기판 상에, 게이트층, 유전체층, 활성층, 절연층, 및 소스/드레인층을 형성한 후, 열처리하여, 박막 트랜지스터가 M×N개의 배열로 이루어진 박막 트랜지스터 어레이를 형성하고,Through a printing process, a gate layer, a dielectric layer, an active layer, an insulating layer, and a source / drain layer are formed on a substrate, followed by heat treatment to form a thin film transistor array in which the thin film transistors are arranged in M × N arrays,
    상기 박막 트랜지스터 어레이 상에 상기 박막 트랜지스터 어레이를 분석하고자 하는 유기물로부터 보호하기 위한 패시베이션층을 형성하는 것을 특징으로 하는 크로마토그래피 장치용 디지털 모니터링 센서의 제조방법.And forming a passivation layer on the thin film transistor array to protect the thin film transistor array from an organic material to be analyzed.
  9. 제8항에 있어서,The method of claim 8,
    상기 박막 트랜지스터 어레이는 잉크젯 방식을 사용하여 전체 트랜지스터 어레이를 인쇄한 후, 열처리하는 방법을 통해 형성되는 것을 특징으로 하는 크로마토그래피 장치용 디지털 모니터링 센서의 제조방법.The thin film transistor array is a method of manufacturing a digital monitoring sensor for a chromatographic apparatus, characterized in that formed by a method of heat-treating and then printing the entire transistor array using an inkjet method.
  10. 제8항에 있어서,The method of claim 8,
    상기 박막 트랜지스터 어레이는 롤대롤 그라비아를 이용하여 전체 트랜지스터 어레이를 인쇄한 후, 열처리하는 방법을 통해 형성되는 것을 특징으로 하는 크로마토그래피 장치용 디지털 모니터링 센서의 제조방법.The thin film transistor array is a method of manufacturing a digital monitoring sensor for a chromatographic apparatus, characterized in that formed by a method of heat-treating and then printing the entire transistor array using roll-to-roll gravure.
  11. 제10항에 있어서,The method of claim 10,
    상기 패시베이션층은 잉크젯 방법으로 형성하는 것을 특징으로 하는 크로마토그래피 장치용 디지털 모니터링 센서의 제조방법.The passivation layer is a method of manufacturing a digital monitoring sensor for a chromatography device, characterized in that formed by the inkjet method.
  12. 인쇄 박막 트랜지스터 어레이의 전기적 특성 변화를 검출하여 컬럼에 가하는 압력과 유기 화합물의 분리 속도를 실시간으로 최적화할 수 있는 제어 장치.A control device that can detect changes in electrical properties of printed thin film transistor arrays and optimize the pressure applied to the column and the separation rate of organic compounds in real time.
PCT/KR2015/001679 2015-02-23 2015-02-23 Chromatography apparatus digital monitoring sensor using printed thin film transistor array, chromatography apparatus including same, and method for manufacturing chromatography apparatus digital monitoring sensor WO2016137019A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2015/001679 WO2016137019A1 (en) 2015-02-23 2015-02-23 Chromatography apparatus digital monitoring sensor using printed thin film transistor array, chromatography apparatus including same, and method for manufacturing chromatography apparatus digital monitoring sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2015/001679 WO2016137019A1 (en) 2015-02-23 2015-02-23 Chromatography apparatus digital monitoring sensor using printed thin film transistor array, chromatography apparatus including same, and method for manufacturing chromatography apparatus digital monitoring sensor

Publications (1)

Publication Number Publication Date
WO2016137019A1 true WO2016137019A1 (en) 2016-09-01

Family

ID=56789558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/001679 WO2016137019A1 (en) 2015-02-23 2015-02-23 Chromatography apparatus digital monitoring sensor using printed thin film transistor array, chromatography apparatus including same, and method for manufacturing chromatography apparatus digital monitoring sensor

Country Status (1)

Country Link
WO (1) WO2016137019A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190027252A (en) * 2017-09-06 2019-03-14 순천대학교 산학협력단 Artificial neuron circuit and method for fabricating the artificial neuron circuit

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09236560A (en) * 1995-12-29 1997-09-09 Horiba Ltd Apparatus for observing transient phenomenon at interface of foreign substance
JP2008216038A (en) * 2007-03-05 2008-09-18 Matsushita Electric Ind Co Ltd Chemical substance detection sensor
KR20090033166A (en) * 2006-03-16 2009-04-01 알-아민 디라니 Dielectric sensing method and system
US20110005304A1 (en) * 2008-02-06 2011-01-13 Proxeon Biosystems A/S Flow control in high performance liquid chromatography
US20140060210A1 (en) * 2012-09-05 2014-03-06 Sungkyunkwan University Foundation For Corporate Collaboration Pressure sensor and pressure sensing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09236560A (en) * 1995-12-29 1997-09-09 Horiba Ltd Apparatus for observing transient phenomenon at interface of foreign substance
KR20090033166A (en) * 2006-03-16 2009-04-01 알-아민 디라니 Dielectric sensing method and system
JP2008216038A (en) * 2007-03-05 2008-09-18 Matsushita Electric Ind Co Ltd Chemical substance detection sensor
US20110005304A1 (en) * 2008-02-06 2011-01-13 Proxeon Biosystems A/S Flow control in high performance liquid chromatography
US20140060210A1 (en) * 2012-09-05 2014-03-06 Sungkyunkwan University Foundation For Corporate Collaboration Pressure sensor and pressure sensing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190027252A (en) * 2017-09-06 2019-03-14 순천대학교 산학협력단 Artificial neuron circuit and method for fabricating the artificial neuron circuit
WO2019050290A1 (en) * 2017-09-06 2019-03-14 순천대학교 산학협력단 Artificial neural circuit, artificial neural system, and method for manufacturing artificial neural circuit
KR101998286B1 (en) 2017-09-06 2019-07-09 순천대학교 산학협력단 Artificial neuron circuit and method for fabricating the artificial neuron circuit

Similar Documents

Publication Publication Date Title
Spanu et al. A high-sensitivity tactile sensor based on piezoelectric polymer PVDF coupled to an ultra-low voltage organic transistor
EP3108516B1 (en) Field-effect sensor and associated methods
WO2012099446A2 (en) Transparent ion sensor chip using a field-effect-transistor-type signal converter in which an extended gate electrode is formed, and method for manufacturing the sensor chip
CN106716152A (en) Thin-film resistive-based sensor
WO2010056049A9 (en) Humidity sensor of capacitance type and method of fabricating same
WO2010125717A1 (en) Chemical sensor
EP2239561A1 (en) OFET-based sensor for detecting an analyte
Nausieda et al. An organic active-matrix imager
WO2014148800A1 (en) Pcr thermal block with pattern heaters repeatedly arranged and pcr apparatus including same
Li et al. Integrated low voltage ion sensing organic field effect transistor system on plastic
WO2010082724A2 (en) Surface-treated substrate for an inkjet printer
Cosseddu et al. A temperature transducer based on a low-voltage organic thin-film transistor detecting pyroelectric effect
WO2012138054A2 (en) Humidity sensor, humidity-sensing method, and transistor for the humidity sensor
WO2016137019A1 (en) Chromatography apparatus digital monitoring sensor using printed thin film transistor array, chromatography apparatus including same, and method for manufacturing chromatography apparatus digital monitoring sensor
US11650176B2 (en) Semiconductor gas sensor and gas sensing method
Liu et al. High‐performance proximity sensors with nanogroove‐template‐enhanced extended‐gate field‐effect transistor configuration
WO2020080655A1 (en) Heater-embedded humidity sensor and method for manufacturing same
WO2016181038A1 (en) Artificial skin cell structure and production method thereof
Li et al. Subthreshold-operated low-voltage organic field-effect transistor for ion-sensing system of high transduction sensitivity
WO2016085029A1 (en) Roll-to-roll gravure printing based thin film transistor manufacturing method, thin film transistor backplane manufacturing method, and backplane pressure sensor and smart floor manufacturing method
Botsialas et al. A miniaturized chemocapacitor system for the detection of volatile organic compounds
US20170067844A1 (en) Electrochemical detector
Huang et al. Solution processed highly uniform and reliable low voltage organic FETs and facile packaging for handheld multi-ion sensing
CN108807551B (en) Thin film transistor, detection device and method for detecting pressure or illumination
KR101731697B1 (en) Sensor for colum chromatography using printed thin film transistor array, chromatograpy analysis device comprising the sensor, method for manufacturing the sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15883408

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15883408

Country of ref document: EP

Kind code of ref document: A1