WO2016136755A1 - 光硬化性熱硬化性樹脂組成物、その硬化物、およびプリント配線板 - Google Patents

光硬化性熱硬化性樹脂組成物、その硬化物、およびプリント配線板 Download PDF

Info

Publication number
WO2016136755A1
WO2016136755A1 PCT/JP2016/055292 JP2016055292W WO2016136755A1 WO 2016136755 A1 WO2016136755 A1 WO 2016136755A1 JP 2016055292 W JP2016055292 W JP 2016055292W WO 2016136755 A1 WO2016136755 A1 WO 2016136755A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
resin composition
group
resin
photocurable thermosetting
Prior art date
Application number
PCT/JP2016/055292
Other languages
English (en)
French (fr)
Inventor
昇司 稲垣
Original Assignee
太陽ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2015037223A external-priority patent/JP6488149B2/ja
Priority claimed from JP2015131747A external-priority patent/JP6652338B2/ja
Application filed by 太陽ホールディングス株式会社 filed Critical 太陽ホールディングス株式会社
Priority to CN201680012267.XA priority Critical patent/CN107407882B/zh
Publication of WO2016136755A1 publication Critical patent/WO2016136755A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/027Non-macromolecular photopolymerisable compounds having carbon-to-carbon double bonds, e.g. ethylenic compounds
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/004Photosensitive materials
    • G03F7/075Silicon-containing compounds
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits
    • H05K3/28Applying non-metallic protective coatings

Definitions

  • the present invention relates to a photocurable thermosetting resin composition, a cured product thereof, and a printed wiring board. Specifically, the present invention relates to a photocurable thermosetting resin composition excellent in both sensitivity and solder heat resistance, a cured product thereof, and a printed wiring board. The present invention also relates to a photocurable thermosetting resin composition capable of lowering the dielectric constant and lowering the dielectric loss tangent, the cured product thereof, and a printed wiring board.
  • the solder resist used in the production of printed wiring boards is a liquid alkaline development type solder resist that forms an image by developing after exposure and heat-cures to form a coating film from the viewpoint of high accuracy and high density. Has been.
  • solder resist composition using an inorganic silane compound in addition to the conventional organic materials has been proposed in order to improve solder heat resistance against the solder resist.
  • Patent Document 1 in order to obtain a solder resist film excellent in PCT resistance and cooling cycle resistance in addition to solder heat resistance, (A) a novolak phenol resin (1) and an alkoxysilane partial condensate (2) are partially In particular, a solder resist composition containing an alkoxy group-containing silane-modified phenol resin, (B) an epoxy resin, and (C) a solvent, which is obtained by subjecting the alcohol to an alcohol-free condensation reaction, has been proposed.
  • patent document 2 it consists of the partial hydrolyzate of an alkoxysilane compound, and an organic solvent from a viewpoint of improving heat resistance and being able to endure high temperature mounting by lead-free solder at the time of component mounting.
  • the two-component type solder resist coating in which the first and second liquids composed of the first liquid and the second liquid composed of alkoxy titanium and an organic solvent are mixed and cured, the first liquid and / or the second liquid A two-component type solder resist coating containing potassium titanate fibers has been proposed.
  • Patent Document 3 discloses an ethylenic unsaturated group having a hydroxyl group and two or more (meth) acryloyl groups in order to increase sensitivity to laser light and improve storage stability over time and adhesion to a substrate. It has been proposed to use an organic-inorganic composite (organic-inorganic hybrid resin) formed by chemically bonding silica and / or silicate to a compound.
  • organic-inorganic composite organic-inorganic hybrid resin
  • the dielectric constant in the high-frequency band is the transmission rate, especially for high-speed operation in response to further miniaturization, higher density, and higher speed of printed wiring boards accompanying further downsizing of electronic equipment and higher capacity and higher speed.
  • the dielectric constant is high, the transmission speed will be delayed and the waveform of the signal will be disturbed, making it difficult to design a circuit that can handle high frequencies.
  • the dielectric loss is large, especially in the GHz band, the electrical signal is attenuated, battery consumption is high, and the usable time of the electronic device is shortened. Therefore, the solder resist has a low dielectric constant and a low dielectric loss tangent. It is requested. Under such circumstances, a resin composition for a solder resist to which a specific component is added has been proposed in order to realize a low dielectric constant and a low dielectric loss tangent of the solder resist.
  • Patent Document 4 in order to obtain a resin composition for a solder resist having a low dielectric constant, particularly a low dielectric loss even in a high frequency band of 1 GHz or higher, (A) a monomer unit derived from vinylbenzene and / or a derivative thereof, And / or at least one selected from the group consisting of a monomer unit derived from vinyl naphthalene and / or a derivative thereof, (B) a cyanate ester resin, an oxetane ring-containing compound, a divinylbenzene compound, and a (vinylphenyl) vinyl ether compound.
  • a resin composition for a solder resist containing a seed compound and (C) a cationic curing catalyst has been proposed.
  • thermosetting solder resist for forming a solder resist disposed thereon, which contains a polysilsesquioxane having an aromatic group, and the formed solder resist has resolution by laser irradiation.
  • thermosetting solder resist composition characterized by this.
  • JP 2002-40663 A (Claims etc.) Japanese Patent No. 3928136 (claims, etc.) Japanese Patent No. 4501402 (Claims etc.) JP 2004-354737 A JP 2010-34414 A
  • solder resist composition high solder heat resistance and the like can be obtained by using the organic-inorganic hybrid resin proposed so far, but there is still room for improvement in balance with sensitivity.
  • solder resist compositions proposed so far by adding specific components, etc., a low dielectric constant and a low dielectric loss tangent can be realized to some extent, but both are thermosetting compositions.
  • a low dielectric constant has been achieved, and no photo-curable and alkali developable resin composition has been realized.
  • photocuring and alkali development are possible, and further reduction in dielectric constant and dielectric loss tangent in the high frequency band is required.
  • an object of the present invention is to provide a photocurable thermosetting resin composition excellent in both sensitivity and solder heat resistance, a cured product thereof, and a printed wiring board.
  • the present inventor uses a specific carboxyl group-containing photosensitive organic-inorganic hybrid resin varnish as a resin component, so that the above-mentioned component can be used without using an epoxy resin as a composition component.
  • the present inventors have found that the problems can be solved and have completed the present invention.
  • the unsaturated monocarboxylic acid (a2) is reacted with the epoxy group of the polyfunctional epoxy resin (a1), and the reaction product has hydroxyl groups.
  • the polyfunctional epoxy resin (a1) is preferably a dicyclopentadiene type epoxy resin, a naphthalene type epoxy resin, or a cresol novolak type epoxy resin.
  • the unsaturated monocarboxylic acid (a2) is preferably (meth) acrylic acid.
  • the organic nitrogen compound (C) is preferably at least one of dicyandiamide, melamine or a derivative thereof.
  • the present inventor has used the above compound by using a compound having an oxazoline group as a component of a composition containing a specific photosensitive resin containing a carboxyl group.
  • the present inventors have found that the problems can be solved and have completed the present invention.
  • a specific carboxyl group-containing photosensitive organic-inorganic hybrid resin varnish as the resin, high solder heat resistance can be maintained without using an epoxy resin that generates a hydroxyl group after thermosetting as a component of the composition.
  • the present inventors have found that a further reduction in dielectric constant and reduction in dielectric loss tangent can be realized, and the present invention has been completed.
  • the other photocurable thermosetting resin composition of the present invention reacts the unsaturated monocarboxylic acid (a2 ′) with the epoxy group of the polyfunctional epoxy resin (a1 ′), and the reaction product thereof
  • the polyfunctional epoxy resin (a1 ') is preferably a dicyclopentadiene type epoxy resin.
  • the unsaturated monocarboxylic acid (a2 ′) is preferably (meth) acrylic acid.
  • the compound (D) having an oxazoline group is preferably a compound having at least one of styrene, acrylic and derivatives thereof as a main skeleton.
  • the photosensitive resin (A-1 ′) has a (meth) acryloyl group with respect to the hydroxyl group of the photosensitive resin (A-1 ′).
  • Carboxyl group-containing photosensitive organic-inorganic hybrid resin varnish (A ′) obtained by partially reacting a compound (A-2 ′) obtained by hydrolytic condensation reaction of a silane compound containing at least one silane compound having It is preferable that
  • the cured product of the present invention is obtained by applying the photocurable thermosetting resin composition to a substrate and photocuring it by irradiation with active energy rays.
  • the printed wiring board of the present invention is characterized by having a cured coating film obtained by photocuring a coating film formed by applying the photocurable thermosetting resin composition on a substrate in a pattern. To do.
  • thermosetting resin composition excellent in both sensitivity and solder heat resistance, a cured product thereof, and a printed wiring board can be provided. Moreover, according to this invention, since such an effect can be acquired, without using an epoxy resin, it becomes possible to set it as the one-component type photocurable thermosetting resin composition.
  • thermosetting resin composition capable of lowering the dielectric constant and lowering the dielectric tangent more than ever, a cured product thereof, and a printed wiring board. Furthermore, according to the present invention, by using a carboxyl group-containing photosensitive organic-inorganic hybrid resin varnish, it is possible to achieve a lower dielectric constant and a lower dielectric loss tangent than ever before while maintaining high solder heat resistance.
  • a photocurable thermosetting resin composition, a cured product thereof, and a printed wiring board can also be provided.
  • the photocurable thermosetting resin composition according to the first embodiment of the present invention reacts an unsaturated monocarboxylic acid (a2) with an epoxy group of a polyfunctional epoxy resin (a1), and a reaction product thereof.
  • a (meth) acryloyl group is formed on the hydroxyl group of the photosensitive resin (A-1) containing a carboxyl group obtained by reacting the polybasic acid anhydride (a3) so that a part of the hydroxyl group remains.
  • a polymerization initiator (B) and an organic nitrogen compound (C) are included.
  • Carboxyl group-containing photosensitive organic-inorganic hybrid resin varnish (A) The carboxyl group-containing photosensitive organic-inorganic hybrid resin varnish (A) (hereinafter referred to as “organic”) used in the photocurable thermosetting resin composition (hereinafter also referred to as “resin composition”) according to the first embodiment of the present invention. (Also referred to as “inorganic hybrid resin varnish (A)”) Unsaturated monocarboxylic acid (a2) is reacted with the epoxy group of polyfunctional epoxy resin (a1), and polybasic acid anhydride (a3) is added to the reaction product so that a part of the hydroxyl group remains.
  • organic hybrid resin varnish (A) Unsaturated monocarboxylic acid (a2) is reacted with the epoxy group of polyfunctional epoxy resin (a1), and polybasic acid anhydride (a3) is added to the reaction product so that a part of the hydroxyl group remains.
  • a silane compound containing at least one silane compound having a (meth) acryloyl group is added to the photosensitive resin (A-1) containing a carboxyl group in which a hydroxyl group is left as a reaction product in the step (1).
  • the compound (A-2) obtained by the decomposition condensation reaction is obtained by a production method including a step (2) of mixing or partially reacting in this order.
  • the organic-inorganic hybrid resin varnish (A) uses a polyfunctional epoxy resin (a1) as a starting material.
  • Typical examples include dicyclopentadiene type epoxy resins, naphthalene type epoxy resins, cresol novolac type epoxy resins, phenol novolac type epoxy resins, bisphenol A novolac type epoxy resins, and the like.
  • a compound obtained by reacting epichlorohydrin can be used. From the viewpoint of sensitivity and solder heat resistance, dicyclopentadiene type epoxy resin, naphthalene type epoxy resin, and cresol novolac type epoxy resin are preferable.
  • step (1) a part of the hydroxyl group remains with respect to the reaction product generated by the esterification reaction between the epoxy group of the polyfunctional epoxy resin (a1) and the carboxyl group of the unsaturated monocarboxylic acid (a2).
  • the polybasic acid anhydride (a3) was reacted as described above, and a number of free carboxyl groups were added to the side chain of the backbone polymer produced by the former esterification reaction by the latter reaction. Therefore, development with an aqueous alkali solution is possible.
  • the unsaturated monocarboxylic acid (a2) is a reaction product of acrylic acid, methacrylic acid, cinnamic acid, saturated or unsaturated dibasic acid anhydride and (meth) acrylates having one hydroxyl group in one molecule. These can be used singly or in combination of two or more. From the viewpoint of photocurability, acrylic acid or methacrylic acid is preferable, and acrylic acid is more preferable.
  • (meth) acrylate is a term that collectively refers to acrylate, methacrylate, and mixtures thereof, and the same applies to other similar expressions.
  • the polybasic acid anhydride (a3) is typically maleic anhydride, succinic anhydride, itaconic anhydride, phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylhexahydroanhydride.
  • Dibasic acid anhydrides such as phthalic acid, endomethylenetetrahydrophthalic anhydride, methylendomethylenetetrahydrophthalic anhydride, chlorendic anhydride, methyltetrahydrophthalic anhydride; trimellitic anhydride, pyromellitic anhydride, benzophenonetetracarboxylic acid
  • Aromatic polycarboxylic anhydrides such as dianhydrides; and other incidental examples such as 5- (2,5-dioxotetrahydrofuryl) -3-methyl-3-cyclohexene-1,2-dicarboxylic anhydride
  • Such polycarboxylic acid anhydride derivatives can be used.
  • step (2) at least one silane compound having a (meth) acryloyl group is added to the photosensitive resin (A-1) containing a carboxyl group in which the hydroxyl group as a reaction product of the step (1) is left.
  • the compound (A-2) obtained by subjecting the seed-containing silane compound to hydrolysis condensation reaction is mixed or partially reacted.
  • the reason for this is that if the amount of water is less than this ratio, hydrolysis does not proceed sufficiently, and if it is large, it is necessary to remove excess water from the system. If water remains, condensation does not proceed easily, and the fluidity of the resin is low. Because it will be lost.
  • the hydrolysis in the hydrolysis condensation reaction proceeds by stirring at room temperature, but if the stirring time is short, sufficient hydrolysis does not occur, so stirring for 30 minutes or more, preferably 3 hours or more is required. is there.
  • the condensation reaction in the hydrolysis-condensation reaction occurs partially at room temperature at the same time as the hydrolysis, but the reaction can be carried out by raising the temperature in order to shorten the time.
  • the condensation reaction at a high temperature is preferably a reaction at 100 ° C. or lower because the acrylic component causes gelation.
  • the photosensitive resin (A-1) containing a carboxyl group in which the hydroxyl group as a reaction product of the step (1) is left in the step (2) by partially hybridizing the photosensitive resin (A-1) containing a carboxyl group in which the hydroxyl group as a reaction product of the step (1) is left in the step (2).
  • a photo-curable thermosetting resin composition excellent in both sensitivity and solder heat resistance can be obtained.
  • a silane compound having at least a (meth) acryloyl group is used during the synthesis of the organic-inorganic hybrid resin varnish (A).
  • a silane compound having a (meth) acryloyl group include, for example, 3- (meth) acryloxypropyltrimethoxysilane, 3- (meth) acryloxypropyltriethoxysilane, 3- (meta) And alkoxysilane compounds having a (meth) acryloyl group such as acryloxypropylmethyldimethoxysilane and 3- (meth) acryloxypropylmethyldiethoxysilane.
  • silane compounds can be used singly or in combination of two or more types, among which 3- (meth) acryloxypropyltrimethoxysilane and 3- (meth) acryloxypropyltriethoxysilane are preferred from the viewpoint of sensitivity and solder heat resistance. Is preferred.
  • silane compounds that can be used in combination with a silane compound having a (meth) acryloyl group, silane compounds generally known as silane coupling agents can be used.
  • methyltrimethoxysilane examples include ethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane, tetramethoxysilane, and tetraethoxysilane.
  • the organic / inorganic hybrid resin varnish (A) means at least one photosensitive resin (A-1) containing a carboxyl group in which a hydroxyl group remains and a silane compound having a (meth) acryloyl group.
  • a mixture or partial reaction product with the compound (A-2) obtained by subjecting the seed-containing silane compound to hydrolysis condensation reaction is used.
  • the photocurable thermosetting resin composition according to the first embodiment of the present invention uses a photopolymerization initiator (B).
  • a photopolymerization initiator one or more photopolymerization initiators selected from the following group can be used.
  • photopolymerization initiator examples include benzoin such as benzoin, benzoin methyl ether, benzoin ethyl ether, and benzoin isopropyl ether and alkyl ethers thereof; acetophenone, 2,2-dimethoxy-1,2-diphenylethane-1-one, 2 , 2-dimethoxy-2-phenylacetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1 [4- (methylthio) phenyl] -2 Acetophenones such as morpholinopropan-1-one and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one; 2-methylanthraquinone, 2-ethylanthraquinone, 2-tarsha Lee Chill anthraquinone, 1-chloro anthraquino
  • Organic nitrogen compound (C) examples include dicyandiamide, melamine and derivatives thereof.
  • discoloration of copper foil can be prevented by using this organic nitrogen compound.
  • melamine 2,4,6-triamino-1,3,5-triazine, and its main application is as a raw material for melamine resin. By reacting melamine with formalin, methylol melamine can be obtained.
  • methylol melamine becomes a methylene bond, and a melamine resin can be produced.
  • a main production method of melamine there is a method of reacting urea under high pressure of ammonia. Melamine is industrially made by this process. Moreover, as another manufacturing method of melamine, it can synthesize
  • melamine derivatives include monoacetyl melamine, diacetyl melamine, triacetyl melamine, and more specifically, stearic acid anhydride, palmitic acid anhydride, myristic acid anhydride, lauric acid anhydride, capric acid anhydride, Substitutes such as caprylic anhydride, butyric anhydride, acetic anhydride and the like are known.
  • melamine-lactate, melamine-malonate, melamine-mono (2-methacryloyloxyethyl) acid phosphate Salts, melamine-toluenesulfonic acid, and melamine-tetrahydrophthalic acid have been evaluated as solder resists.
  • a preferable blending amount of such an organic nitrogen compound is 0.5 to 15% by mass, more preferably 1 to 1% by mass with respect to 100% by mass of the solid content of the photosensitive resin (A-1) containing the carboxyl group. 10% by mass. When the blending amount is 0.5% by mass or more, the effect becomes clear, and when it is 15% by mass or less, storage stability, developability, water resistance of the coating film and the like are improved.
  • the photocurable thermosetting resin composition according to the second embodiment of the present invention (hereinafter also referred to as “resin composition”) is an unsaturated monocarboxylic acid with respect to the epoxy group of the polyfunctional epoxy resin (a1 ′).
  • a photosensitive resin (A-1 ′) containing a carboxyl group obtained by reacting an acid (a2 ′) and reacting the reaction product with a polybasic acid anhydride (a3 ′) hereinafter referred to as “photosensitive”.
  • the resin composition has a polar group such as a carboxyl group, since the polar group is also present in the cured coating film after heat curing, it is difficult to lower the dielectric constant and lower the dielectric loss tangent.
  • a photosensitive resin (A-1 ′) containing a carboxyl group obtained by reacting a polybasic acid anhydride (a3 ′), the photosensitive resin By blending with the compound (D) having an oxazoline group that can react with the carboxyl group of the resin (A-1 ′) and reducing the number of carboxyl groups remaining in the resin composition at the time of thermosetting, even in the high frequency band A low dielectric constant and a low dielectric loss tangent can be achieved.
  • the carboxyl group-containing photosensitive organic compound obtained by partially hybridizing the photosensitive resin (A-1 ′) containing the carboxyl group.
  • the solder heat resistance can be maintained at a high level without using an epoxy resin. It was also found that a low dielectric constant and a low dielectric loss tangent can be achieved even in a high frequency band.
  • the photosensitive resin (A-1 ′) containing a carboxyl group used in the photocurable thermosetting resin composition according to the second embodiment of the present invention is based on the epoxy group of the polyfunctional epoxy resin (a1 ′). It is obtained by reacting an unsaturated monocarboxylic acid (a2 ′) and reacting the reaction product with a polybasic acid anhydride (a3 ′). From the viewpoint of developability, the addition amount of the polybasic acid anhydride (a3 ′) is preferably 50 to 100 mol%. When the addition amount of the polybasic acid anhydride (a3 ′) is within the above range, the tackiness is good, which is preferable.
  • polyfunctional epoxy resin (a1 ′) examples include those similar to the polyfunctional epoxy resin (a1) of the first embodiment. From the viewpoint of lowering the dielectric constant and lowering the dielectric loss tangent, dicyclopentadiene is used. Type epoxy resin is preferred.
  • the reaction product generated by the esterification reaction between the epoxy group of the polyfunctional epoxy resin (a1 ′) and the carboxyl group of the unsaturated monocarboxylic acid (a2 ′) The polybasic acid anhydride (a3 ′) is reacted and a number of free carboxyl groups are added to the side chain of the backbone polymer produced by the former esterification reaction by the latter reaction. Therefore, development with an alkaline aqueous solution becomes possible.
  • Examples of the unsaturated monocarboxylic acid (a2 ') include those similar to the unsaturated monocarboxylic acid (a2) of the first embodiment.
  • examples of the polybasic acid anhydride (a3 ′) include the same polybasic acid anhydride (a3) of the first embodiment.
  • the photocurable thermosetting resin composition according to the second embodiment of the present invention contains a photopolymerization initiator (B ′). About a photoinitiator, the thing similar to 1st embodiment is mentioned.
  • a suitable range of the amount of the photopolymerization initiator (B ′) to be used is preferably 1.0 to 20 parts by mass, more preferably 100 parts by mass of the solid content of the photosensitive resin (A-1 ′).
  • the ratio is 2.5 to 10 parts by mass.
  • the photocurable thermosetting resin composition according to the second embodiment of the present invention contains a compound (D) having an oxazoline group that can react with a carboxyl group of the photosensitive resin (A-1 ′).
  • a compound having an oxazoline group by including a compound having an oxazoline group, the carboxyl group remaining in the resin composition at the time of thermosetting is reduced, and a low dielectric constant and a low dielectric loss tangent can be achieved even in a high frequency band.
  • the compound having an oxazoline group a compound having one or more oxazoline groups selected from the following group can be used.
  • the compound having an oxazoline group is not particularly limited as long as it is a compound having an oxazoline group capable of reacting with the carboxyl group of the photosensitive resin (A-1 ′).
  • the compound having an oxazoline group is preferably a compound having at least one of styrene, acrylic, or a derivative thereof as a main skeleton from the viewpoint of lowering the dielectric constant and lowering the dielectric loss tangent in a high frequency band.
  • the preferred range of the weight average molecular weight of the compound having an oxazoline group is 10,000 to 300,000, more preferably 50,000 to 200,000 from the viewpoints of tackiness and developability.
  • the weight average molecular weight can be measured by gel permeation chromatography.
  • the preferred range of the amount of the compound having an oxazoline group as described above is that the solid content of the photosensitive resin (A-1 ′) is from the viewpoint of low dielectric constant and low dielectric loss tangent, developability, and compatibility.
  • the ratio is preferably 5 to 50 parts by mass, more preferably 10 to 30 parts by mass with respect to 100 parts by mass.
  • the photosensitive resin (A-1 ′) is: A compound (A-2 ′) obtained by subjecting the silane compound containing at least one silane compound having a (meth) acryloyl group to the hydroxyl group of the photosensitive resin (A-1 ′) to hydrolysis condensation reaction is partially obtained. It is preferably a carboxyl group-containing photosensitive organic-inorganic hybrid resin varnish (A ′) obtained by reaction.
  • Such an organic-inorganic hybrid resin varnish (A ′) The unsaturated monocarboxylic acid (a2 ′) is reacted with the epoxy group of the polyfunctional epoxy resin (a1 ′), the polybasic acid anhydride (a3 ′) is reacted with the reaction product, and the carboxyl group is converted.
  • the compound (A-2 ′) obtained by mixing can be obtained by a production method including a step (2 ′) of mixing or partially reacting in this order.
  • the organic-inorganic hybrid resin varnish (A ′) uses a polyfunctional epoxy resin (a1 ′) as a starting material.
  • a polybasic acid is used for the reaction product produced by the esterification reaction between the epoxy group of the polyfunctional epoxy resin (a1 ′) and the carboxyl group of the unsaturated monocarboxylic acid (a2 ′). Since the anhydride (a3 ′) is reacted and a large number of free carboxyl groups are added to the side chain of the backbone polymer produced by the former esterification reaction by the latter reaction, an alkaline aqueous solution Development by is possible.
  • the step (2 ′) includes at least one silane compound having a (meth) acryloyl group with respect to the photosensitive resin (A-1 ′) containing a carboxyl group, which is a reaction product of the step (1 ′).
  • the compound (A-2 ′) obtained by hydrolytic condensation reaction of the silane compound is mixed or partially reacted.
  • the hydrolysis condensation reaction of the silane compound in this step can be the same as the hydrolysis condensation reaction of the silane compound in step (2) according to the first embodiment.
  • a solder is obtained by partially hybridizing the photosensitive resin (A-1 ′) containing a carboxyl group which is a reaction product of the step (1 ′) in the step (2 ′).
  • a photocurable thermosetting resin composition capable of lowering the dielectric constant and lowering the dielectric loss tangent more than ever can be obtained while maintaining high heat resistance.
  • a silane compound having at least a (meth) acryloyl group is used during the synthesis of the organic-inorganic hybrid resin varnish (A ′).
  • a silane compound having a (meth) acryloyl group include those similar to those in the first embodiment.
  • 3- (Meth) acryloxypropyltrimethoxysilane is preferred.
  • a silane compound generally known as a silane coupling agent can be used, which is the same as in the first embodiment. Is mentioned.
  • dimethyldimethoxysilane is preferred because the dielectric constant can be lowered by increasing the hydrophobicity and decreasing the water absorption rate of the coating film.
  • the dielectric constant can be reduced while maintaining high solder heat resistance.
  • the organic-inorganic hybrid resin varnish (A ′) is a silane containing at least one photosensitive resin (A-1 ′) containing a carboxyl group and a silane compound having a (meth) acryloyl group.
  • a mixture or partial reaction product with the compound (A-2 ′) obtained by subjecting the compound to a hydrolytic condensation reaction is obtained.
  • the photocurable thermosetting resin composition according to the second embodiment of the present invention may contain an organic nitrogen compound (C ′).
  • the organic nitrogen compound can be the same as in the first embodiment.
  • a preferable blending amount of such an organic nitrogen compound (C ′) is 0.5 to 5% by mass, more preferably 1 to 4% with respect to 100% by mass of the solid content of the photosensitive resin (A-1 ′). 2% by mass.
  • the blending amount is 0.5% by mass or more, the effect becomes clear, and when it is 5% by mass or less, storage stability, developability, water resistance of the coating film, and the like are improved.
  • thermosetting resin composition in the photocurable thermosetting resin composition according to the first embodiment and the second embodiment of the present invention, a known and commonly used material such as barium sulfate, silicon oxide, talc, clay, calcium carbonate, etc.
  • Various additives such as fillers, phthalocyanine / blue, phthalocyanine / green, titanium oxide, carbon black and other commonly used colorants, antifoaming agents, adhesion-imparting agents or leveling agents, or hydroquinone, hydroquinone monomethyl ether, pyrogallol
  • known polymerization inhibitors such as tertiary butyl catechol and phenothiazine may be added.
  • the photocurable thermosetting resin composition according to the first embodiment and the second embodiment of the present invention is, for example, applied to a printed wiring board substrate by a screen printing method, a roll coater method, or a curtain coater method. Apply to the entire surface, irradiate active energy rays through the resist pattern film, cure the necessary part, dissolve the unexposed part with an alkaline aqueous solution, and then heat cure to form the desired solder resist film it can.
  • alkaline aqueous solutions such as potassium hydroxide, sodium hydroxide, sodium carbonate, potassium carbonate, sodium phosphate, sodium silicate, ammonia, amines and the like can be used.
  • a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a xenon lamp or a metal halide lamp is suitable.
  • a laser beam or the like can be used as an actinic ray for exposure.
  • Resin 1 obtained by synthesis was liquid at room temperature, and had a nonvolatile content of 60% and an acid value of 58 mKOH / g.
  • Resin 2 obtained by synthesis was liquid at room temperature, and had a non-volatile content of 66% and an acid value of 47.5 mKOH / g.
  • Resin 3 obtained by synthesis was liquid at room temperature, had a nonvolatile content of 63% and an acid value of 59.1 mKOH / g.
  • organic-inorganic hybrid resin varnish A-1-1 This mixture is designated as organic-inorganic hybrid resin varnish A-1-1.
  • thermosetting resin compositions of Examples 1 to 6 and Comparative Examples 1 to 6 were tested and evaluated. The results of each evaluation are shown in Tables 3 and 4. The evaluation test method is shown below.
  • thermosetting resin compositions obtained in Examples 1 to 6 and Comparative Examples 1 to 6 were respectively applied by screen printing to printed circuit boards on which circuits were formed, and then heated in a hot air circulation drying oven. C. for 30 minutes.
  • a negative film on which a solder resist pattern is drawn is applied to these substrates, exposed under an exposure condition of an exposure amount of 800 mJ / cm 2 , and developed with a 1 mass% Na 2 CO 3 aqueous solution with a spray pressure of 0.2 MPa for 1 minute.
  • a resist pattern was formed. This substrate was thermally cured at 150 ° C. for 60 minutes to produce an evaluation substrate.
  • a rosin-based flux is applied to the evaluation substrate and immersed in a solder bath set at 260 ° C. for 30 seconds in advance. After the substrate temperature has dropped to room temperature, the flux is applied again, and 30 ° C. in a solder bath at 260 ° C. Soaked for 2 seconds. After the solder was immersed once and twice, the flux was washed with isopropyl alcohol, and then a peel test using a cellophane adhesive tape was performed to evaluate the swelling, peeling and discoloration of the resist layer according to the following criteria. ⁇ : No change at all ⁇ : Slight change in color, etc. ⁇ : Resist layer swelling or peeling
  • Resin 4 obtained by synthesis was liquid at room temperature, non-volatile content was 66%, acid value was 47.5 mKOH / g, and the amount of acid anhydride added to the hydroxyl group was 60 mol%.
  • Resin 6 obtained by synthesis was liquid at room temperature, non-volatile content was 60%, acid value was 58 mKOH / g, and the amount of acid anhydride added to the hydroxyl group was 60 mol%.
  • organic-inorganic hybrid resin varnish A′-2 This mixture is designated as organic-inorganic hybrid resin varnish A′-2.
  • thermosetting resin compositions of Examples 7 to 10 and Comparative Examples 7 to 12 For the photocurable thermosetting resin compositions of Examples 7 to 10 and Comparative Examples 7 to 12, the following items were tested and evaluated. The results of each evaluation are shown in Table 6. The evaluation test method is shown below.
  • thermosetting resin compositions obtained in Examples 7 to 10 and Comparative Examples 7 to 12 were each applied onto the copper foil of the glass epoxy substrate by screen printing, and then heated in a hot air circulation drying oven. C. for 30 minutes.
  • Kodak No. 2 step tablet exposed at 250 mJ / cm 2 or 800 mJ / cm 2 , developed with 1 mass% Na 2 CO 3 aqueous solution with a spray pressure of 0.2 MPa for 1 minute, and the number of steps where the coating film remains completely Evaluated.
  • thermosetting resin compositions obtained in the above Examples 7 to 10 and Comparative Examples 7 to 12 were each coated on the entire surface of the printed circuit board on which the circuit was formed by screen printing, and then heated in a hot air circulating drying oven. C. for 30 minutes.
  • a negative film on which a solder resist pattern is drawn is applied to these substrates, exposed under an exposure condition of an exposure amount of 800 mJ / cm 2 , and developed with a 1 mass% Na 2 CO 3 aqueous solution with a spray pressure of 0.2 MPa for 1 minute.
  • a resist pattern was formed. This substrate was thermally cured at 150 ° C. for 60 minutes to produce an evaluation substrate.
  • a rosin flux was applied to the evaluation substrate and immersed in a solder bath previously set at 260 ° C. for 10 seconds or 30 seconds.
  • the solder-immersed substrate was washed with isopropyl alcohol and then subjected to a peel test using a cellophane adhesive tape to evaluate the swelling, peeling and discoloration of the resist layer according to the following criteria.
  • No change at all
  • Slight change in color, etc.
  • Resist layer swelling or peeling
  • thermosetting resin compositions obtained in the above Examples 7 to 10 and Comparative Examples 7 to 12 were respectively applied on a mirror surface of a copper foil by screen printing using a 100 Mesh Tetron bias plate, After drying for 15 minutes in a hot-air circulating drying oven and naturally cooling to room temperature, repeated printing was performed, and after drying for 15 minutes, the third printing was performed. After final drying for 20 minutes, using an aperture mask of 1.7 mm ⁇ 100 mm, exposed in the exposure condition of 800 mJ / cm 2 with exposure machine HMW-680GW Oak Seisakusho metal halide lamp, 1 wt% Na 2 After developing for 2 minutes with a developer manufactured by Tokyo Chemical Industry Co., Ltd.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials For Photolithography (AREA)

Abstract

 感度とはんだ耐熱性との双方に優れる光硬化性熱硬化性樹脂組成物、その硬化物、およびプリント配線板を提供する。 多官能エポキシ樹脂(a1)のエポキシ基に対し、不飽和モノカルボン酸(a2)を反応させ、その反応生成物に対し、水酸基の一部が残存するように多塩基酸無水物(a3)を反応させて得られるカルボキシル基を含有する感光性樹脂(A-1)の水酸基に対し、(メタ)アクリロイル基を有するシラン化合物を少なくとも1種含むシラン化合物を加水分解縮合反応させて得られる化合物(A-2)を部分的に反応させて得られるカルボキシル基含有感光性有機無機ハイブリッド樹脂ワニス(A)と、光重合開始剤(B)と、有機窒素化合物(C)と、を含む光硬化性熱硬化性樹脂組成物である。

Description

光硬化性熱硬化性樹脂組成物、その硬化物、およびプリント配線板
 本発明は、光硬化性熱硬化性樹脂組成物、その硬化物、およびプリント配線板に関する。詳しくは、感度とはんだ耐熱性との双方に優れる光硬化性熱硬化性樹脂組成物、その硬化物、およびプリント配線板に関する。また、低誘電率化および低誘電正接化が可能な光硬化性熱硬化性樹脂組成物、その硬化物、およびプリント配線板に関する。
 プリント配線板の製造に用いられるソルダーレジストは、高精度、高密度化の観点から、露光後、現像することにより画像形成し、加熱硬化して塗膜を形成する液状アルカリ現像型ソルダーレジストが使用されている。
 近年、はんだに含まれる鉛が環境や人体に有害であることから、鉛を含まない、いわゆる鉛フリーはんだの利用が盛んに検討されている。この鉛フリーはんだは、これまではんだ付け温度が220℃~230℃が標準的であったものが、290℃前後と高いものになってきている。このような状況の下、ソルダーレジストに対するはんだ耐熱性を高めるために、これまでの有機系材料に加え無機系のシラン系化合物を用いたソルダーレジスト組成物が提案されている。
 例えば、特許文献1では、はんだ耐熱性に加え、PCT耐性、冷熱サイクル耐性に優れるソルダーレジスト膜を得るために、(A)ノボラックフェノール樹脂(1)とアルコキシシラン部分縮合物(2)とを部分的に脱アルコール縮合反応させて得られるアルコキシ基含有シラン変性フェノール樹脂、(B)エポキシ樹脂、及び(C)溶剤を含有するソルダーレジト組成物が提案されている。
 また、特許文献2では、耐熱性を高めて、部品実装時には鉛フリー半田による高温度実装にも耐えることができるようにするなどの観点から、アルコキシシラン化合物の部分加水分解物と有機溶剤からなる第一液及びアルコキシチタンと有機溶剤からなる第二液から構成される第一液と第二液とを混合し硬化させる二液タイプのソルダーレジスト塗料において、第一液及び/又は第二液にチタン酸カリウム繊維を含有させる二液タイプのソルダーレジスト塗料が提案されている。
 一方、特許文献3では、レーザー光に対して高感度にするとともに、経時保存安定性及び基板に対する密着性を改善するために、水酸基と2以上の(メタ)アクリロイル基とを有するエチレン性不飽和化合物にシリカ及び/又はシリケートが化学結合してなる有機無機複合体(有機無機ハイブリッド樹脂)を用いることが提案されている。
 また、近年、エレクトロニクス機器のさらなる軽薄短小化及び大容量高速化に伴うプリント配線板の小型化、高密度化及び高速化に対応して、特に高速化については、高周波帯域における誘電率は伝送速度に影響し、誘電率が高い場合は伝送速度の遅れが生じ信号の波形が乱れるため、高周波に対応した回路設計が難しくなること、また、配線に高速信号が流れると、電気信号の一部が熱に変わり、特にGHz帯において誘電損失が大きい場合は、電気信号が減衰しバッテリーの消費が多く電子機器の使用可能時間が短くなることから、ソルダーレジストの低誘電率化および低誘電正接化が要求されている。
 このような状況の下、ソルダーレジストの低誘電率化および低誘電正接化を実現するために、特定の成分を添加したソルダーレジスト用樹脂組成物が提案されている。
 例えば、特許文献4では、誘電率が低く、特に1GHz以上の高周波帯域でも誘電損失が小さいソルダーレジスト用樹脂組成物を得るために、(A)ビニルベンゼン及び/若しくはその誘導体に由来するモノマー単位、並びに/又はビニルナフタレン及び/若しくはその誘導体に由来するモノマー単位からなるポリマー、(B)シアネートエステル樹脂、オキセタン環含有化合物、ジビニルベンゼン化合物及び(ビニルフェニル)ビニルエーテル化合物からなる群より選択される少なくとも1種の化合物、並びに(C)カチオン系硬化触媒を含む、ソルダーレジスト用樹脂組成物が提案されている。
 また、特許文献5では、狭ピッチ回路の基板に使用でき、高絶縁性でしかも低誘電率、低誘電損失等の良好な電気的特性を有するソルダーレジスト用の組成物を得るために、回路基板上に配置されるソルダーレジストを形成するための熱硬化性ソルダーレジスト用組成物であって、芳香族基を有するポリシルセスキオキサンを含有し、形成されたソルダーレジストがレーザー照射による分解能を有することを特徴とする熱硬化性ソルダーレジスト用組成物が提案されている。
特開2002-40663号公報(特許請求の範囲等) 特許第3928136号公報(特許請求の範囲等) 特許第4501402号公報(特許請求の範囲等) 特開2004-354737号公報 特開2010-34414号公報
 ソルダーレジスト組成物において、これまでに提案された有機無機ハイブリッド樹脂を用いることにより高いはんだ耐熱性等は得られるようになったが、感度とのバランスでなお改善の余地があった。また、これまでに提案されたソルダーレジスト組成物において、特定の成分を添加等することにより低誘電率化および低誘電正接化がある程度実現できるようになったが、いずれも熱硬化性組成物で低誘電率化を達成したものであり、光硬化性でアルカリ現像可能な樹脂組成物での実現はなされていない。今日では、光硬化およびアルカリ現像が可能で、高周波帯域におけるさらなる低誘電率化および低誘電正接化が求められている。
 そこで本発明の目的は、感度とはんだ耐熱性との双方に優れる光硬化性熱硬化性樹脂組成物、その硬化物、およびプリント配線板を提供することにある。
 本発明の他の目的は、これまで以上に低誘電率化および低誘電正接化が可能な光硬化性熱硬化性樹脂組成物、その硬化物、およびプリント配線板を提供することにある。
 本発明のさらに他の目的は、はんだ耐熱性を高度に維持しつつ、これまで以上に低誘電率化および低誘電正接化が可能な光硬化性熱硬化性樹脂組成物、その硬化物、およびプリント配線板を提供することにある。
 本発明者は、上記目的を達成するために鋭意検討した結果、樹脂成分として特定のカルボキシル基含有感光性有機無機ハイブリッド樹脂ワニスを使用することにより、組成物成分としてエポキシ樹脂を使用しなくとも上記課題を解決し得ることを見出し、本発明を完成するに至った。
 すなわち、本発明の光硬化性熱硬化性樹脂組成物は、多官能エポキシ樹脂(a1)のエポキシ基に対し、不飽和モノカルボン酸(a2)を反応させ、その反応生成物に対し、水酸基の一部が残存するように多塩基酸無水物(a3)を反応させて得られるカルボキシル基を含有する感光性樹脂(A-1)の水酸基に対し、(メタ)アクリロイル基を有するシラン化合物を少なくとも1種含むシラン化合物を加水分解縮合反応させて得られる化合物(A-2)を部分的に反応させて得られるカルボキシル基含有感光性有機無機ハイブリッド樹脂ワニス(A)と、光重合開始剤(B)と、有機窒素化合物(C)と、を含むことを特徴とするものである。
 本発明の光硬化性熱硬化性樹脂組成物においては、前記多官能エポキシ樹脂(a1)がジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂またはクレゾールノボラック型エポキシ樹脂であることが好ましい。また、前記不飽和モノカルボン酸(a2)は、好ましくは(メタ)アクリル酸である。さらに、前記有機窒素化合物(C)は、好ましくはジシアンジアミド、メラミン又はその誘導体のいずれか少なくとも1種である。
 また、本発明者は、上記他の目的を達成するために鋭意検討した結果、カルボキシル基を含有する特定の感光性樹脂を含む組成物の成分としてオキサゾリン基を有する化合物を使用することにより、上記課題を解決し得ることを見出し、本発明を完成するに至った。さらに、樹脂として、特定のカルボキシル基含有感光性有機無機ハイブリッド樹脂ワニスを使用することにより、組成物の成分として熱硬化後に水酸基を生成するエポキシ樹脂を使用しなくとも、はんだ耐熱性を高度に維持しつつ、より一層の低誘電率化および低誘電正接化が実現できることを見出し、本発明を完成するに至った。
 すなわち、本発明の他の光硬化性熱硬化性樹脂組成物は、多官能エポキシ樹脂(a1’)のエポキシ基に対し、不飽和モノカルボン酸(a2’)を反応させ、その反応生成物に対し、多塩基酸無水物(a3’)を反応させて得られるカルボキシル基を含有する感光性樹脂(A-1’)と、
 光重合開始剤(B’)と、
 前記感光性樹脂(A-1’)のカルボキシル基に対し反応し得るオキサゾリン基を有する化合物(D)と、
を含むことを特徴とするものである。
 本発明の他の光硬化性熱硬化性樹脂組成物においては、前記多官能エポキシ樹脂(a1’)がジシクロペンタジエン型エポキシ樹脂であることが好ましい。また、前記不飽和モノカルボン酸(a2’)は、好ましくは(メタ)アクリル酸である。さらに、前記オキサゾリン基を有する化合物(D)は好ましくはスチレン、アクリルまたはその誘導体のいずれか少なくとも1種を主骨格とする化合物である。
 また、本発明の他の光硬化性熱硬化性樹脂組成物においては、前記感光性樹脂(A-1’)が、該感光性樹脂(A-1’)の水酸基に対し(メタ)アクリロイル基を有するシラン化合物を少なくとも1種含むシラン化合物を加水分解縮合反応させて得られる化合物(A-2’)を部分的に反応させて得られるカルボキシル基含有感光性有機無機ハイブリッド樹脂ワニス(A’)であることが好ましい。
 本発明の硬化物は、前記光硬化性熱硬化性樹脂組成物を基材に塗布し、活性エネルギー線の照射により光硬化させて得られることを特徴とするものである。
 本発明のプリント配線板は、前記光硬化性熱硬化性樹脂組成物を基材上に塗布して形成した塗膜を、パターン状に光硬化させて得られる硬化塗膜を有することを特徴とするものである。
 本発明によれば、感度とはんだ耐熱性との双方に優れる光硬化性熱硬化性樹脂組成物、その硬化物、およびプリント配線板を提供することができる。また、本発明によれば、エポキシ樹脂を使用せずに、かかる効果を得ることができるため、一液タイプの光硬化性熱硬化性樹脂組成物とすることが可能となる。
 さらに、本発明によれば、これまで以上に低誘電率化および低誘電正接化が可能な光硬化性熱硬化性樹脂組成物、その硬化物、およびプリント配線板を提供することができる。
 さらにまた、本発明によれば、カルボキシル基含有感光性有機無機ハイブリッド樹脂ワニスを用いることにより、はんだ耐熱性を高度に維持しつつ、これまで以上に低誘電率化および低誘電正接化が可能な光硬化性熱硬化性樹脂組成物、その硬化物、およびプリント配線板を提供することもできる。
実施例7~10および比較例7~12における誘電率と誘電正接(tanδ)との関係を示すグラフである。
 本発明の第一の実施形態に係る光硬化性熱硬化性樹脂組成物は、多官能エポキシ樹脂(a1)のエポキシ基に対し、不飽和モノカルボン酸(a2)を反応させ、その反応生成物に対し、水酸基の一部が残存するように多塩基酸無水物(a3)を反応させて得られるカルボキシル基を含有する感光性樹脂(A-1)の水酸基に対し、(メタ)アクリロイル基を有するシラン化合物を少なくとも1種含むシラン化合物を加水分解縮合反応させて得られる化合物(A-2)を部分的に反応させて得られるカルボキシル基含有感光性有機無機ハイブリッド樹脂ワニス(A)と、光重合開始剤(B)と、有機窒素化合物(C)と、を含む。
 以下、本発明の第一の実施形態に係る光硬化性熱硬化性樹脂組成物の各成分について詳細に説明する。
<カルボキシル基含有感光性有機無機ハイブリッド樹脂ワニス(A)>
 本発明の第一の実施形態に係る光硬化性熱硬化性樹脂組成物(以下、「樹脂組成物」とも称する)に用いるカルボキシル基含有感光性有機無機ハイブリッド樹脂ワニス(A)(以下、「有機無機ハイブリッド樹脂ワニス(A)」とも称する。)は、
 多官能エポキシ樹脂(a1)のエポキシ基に対し、不飽和モノカルボン酸(a2)を反応させ、その反応生成物に対し、水酸基の一部が残存するように多塩基酸無水物(a3)を反応させ、水酸基を残存させたカルボキシル基を含有する感光性樹脂(A-1)を得る工程(1)、
 上記工程(1)の反応生成物である水酸基を残存させたカルボキシル基を含有する感光性樹脂(A-1)に対し、(メタ)アクリロイル基を有するシラン化合物を少なくとも1種含むシラン化合物を加水分解縮合反応させて得られる化合物(A-2)を、混合または部分的に反応させる工程(2)をこの順に含む製造方法により得られる。
 まず、上記有機無機ハイブリット樹脂ワニス(A)は、多官能エポキシ樹脂(a1)を出発原料とする。代表的なものとしては、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールAのノボラック型エポキシ樹脂などがあり、常法により、それぞれの樹脂にエピクロルヒドリンを反応せしめて得られるような化合物を用いることができる。感度およびはんだ耐熱性の観点から、ジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂が好ましい。
 上記工程(1)においては、多官能エポキシ樹脂(a1)のエポキシ基と不飽和モノカルボン酸(a2)のカルボキシル基とのエステル化反応によって生成した反応生成物に対し、水酸基の一部が残存するように多塩基酸無水物(a3)を反応させたものであり、前者のエステル化反応により生成したバックボーン・ポリマーの側鎖に上記後者の反応によって多数の遊離のカルボキシル基を付与したものであるため、アルカリ水溶液による現像が可能となる。
 上記不飽和モノカルボン酸(a2)としては、アクリル酸、メタクリル酸、桂皮酸、飽和又は不飽和二塩基酸無水物と1分子中に1個の水酸基を有する(メタ)アクリレート類との反応物等があり、これらを単独又は2種以上組み合わせて用いることができるが、光硬化性の観点から、アクリル酸又はメタクリル酸が好ましく、アクリル酸がより好ましい。
 なお、本明細書において、(メタ)アクリレートとは、アクリレート、メタクリレート及びそれらの混合物を総称する用語であり、他の類似の表現についても同様である。
 また、上記多塩基酸無水物(a3)としては、代表的なものとして無水マレイン酸、無水コハク酸、無水イタコン酸、無水フタル酸、無水テトラヒドロフタル酸、無水ヘキサヒドロフタル酸、メチルヘキサヒドロ無水フタル酸、無水エンドメチレンテトラヒドロフタル酸、無水メチルエンドメチレンテトラヒドロフタル酸、無水クロレンド酸、メチルテトラヒドロ無水フタル酸などの二塩基性酸無水物;無水トリメリット酸、無水ピロメリット酸、ベンゾフェノンテトラカルボン酸二無水物などの芳香族多価カルボン酸無水物;その他これに付随する例えば5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物のような多価カルボン酸無水物誘導体などが使用できる。
 上記工程(2)は、工程(1)の反応生成物である水酸基を残存させたカルボキシル基を含有する感光性樹脂(A-1)に対し、(メタ)アクリロイル基を有するシラン化合物を少なくとも1種含むシラン化合物を加水分解縮合反応させて得られる化合物(A-2)を、混合または部分的に反応させる工程である。この工程において、上記加水分解縮合反応における加水分解は、例えば(メタ)アクリロイル基を有するアルコキシシラン化合物を用いた場合、アルコキシシラン3当量に対し水1当量前後を添加することが好ましい。この理由は、水の量がこの比率より少ないと加水分解が充分進まず、多いと系内から余分な水を抜く必要があり、水が残存した場合は縮合が進み難く、樹脂の流動性が失われるからである。また、上記加水分解縮合反応における加水分解は、常温での撹拌において反応が進むが、撹拌時間が短い場合、充分な加水分解が起こらないため30分以上、好ましくは3時間以上の撹拌が必要である。一方、上記加水分解縮合反応における縮合反応は、加水分解と同時に常温でも部分的に起こっているが、時間の短縮のために温度を上げて反応を進めることができる。高温での縮合反応はアクリル成分がゲル化を起こすため、100℃以下の反応が好ましい。
 本発明においては、上記工程(2)中で上記工程(1)の反応生成物である水酸基を残存させたカルボキシル基を含有する感光性樹脂(A-1)を部分的にハイブリッド化することにより、感度およびはんだ耐熱性との双方に優れる光硬化性熱硬化性樹脂組成物を得ることができる。
 本発明においては、有機無機ハイブリッド樹脂ワニス(A)の合成時に少なくとも(メタ)アクリロイル基を有するシラン化合物を用いる。このような(メタ)アクリロイル基を有するシラン化合物の具体的な例としては、例えば、3-(メタ)アクリロキシプロピルトリメトキシシラン、3-(メタ)アクリロキシプロピルトリエトキシシラン、3-(メタ)アクリロキシプロピルメチルジメトキシシラン、3-(メタ)アクリロキシプロピルメチルジエトキシシラン等の(メタ)アクリロイル基を有するアルコキシシラン化合物などが挙げられる。これらを単独又は2種以上組み合わせて用いることができるが、なかでも、感度およびはんだ耐熱性の観点から、3-(メタ)アクリロキシプロピルトリメトキシシランや3-(メタ)アクリロキシプロピルトリエトキシシランが好ましい。
 また、(メタ)アクリロイル基を有するシラン化合物と組み合わせて用いることができる他のシラン化合物としては、シランカップリング剤として一般に知られているシラン化合物が使用でき、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、テトラメトキシシラン、テトラエトキシシラン等が挙げられる。
 なお、本明細書において、有機無機ハイブリッド樹脂ワニス(A)とは、水酸基を残存させたカルボキシル基を含有する感光性樹脂(A-1)と、(メタ)アクリロイル基を有するシラン化合物を少なくとも1種含むシラン化合物を加水分解縮合反応させて得られる化合物(A-2)との混合物または部分反応物とする。
<光重合開始剤(B)>
 本発明の第一の実施形態に係る光硬化性熱硬化性樹脂組成物は、光重合開始剤(B)を使用する。光重合開始剤としては、下記の群から選択される1種以上の光重合開始剤を使用することができる。
 上記光重合開始剤としては、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテルなどのベンゾインとそのアルキルエーテル類;アセトフェノン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2,2-ジメトキシ-2-フェニルアセトフェノン、2,2-ジエトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1[4-(メチルチオ)フェニル]-2-モルフォリノープロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オンなどのアセトフェノン類;2-メチルアントラキノン、2-エチルアントラキノン、2-ターシャリーブチルアントラキノン、1-クロロアントラキノン、2-アミルアントラキノンなどのアントラキノン類;アセトフェノンジメチルケタール、ベンジルジメチルケタールなどのケタール類;ベンゾフェノンなどのベンゾフェノン類又はキサントン類などが挙げられる。上記のような光重合開始剤の使用量の好適な範囲は、有機無機ハイブリッド樹脂ワニス(A)100質量部に対して好ましくは0.2~30質量部、より好ましくは2~20質量部となる割合である。
<有機窒素化合物(C)>
 上記有機窒素化合物(C)としては、ジシアンジアミド、メラミンおよびその誘導体などが挙げられる。本発明においては、この有機窒素化合物を用いることにより、銅箔の変色を防止することができる。特にメラミンを添加することにより、塗膜にUVを照射したり、熱履歴を与えたりする劣化試験後においても、塗膜の黄変や反射率の低下を少なくすることができる。
 メラミンは、2,4,6-トリアミノ-1,3,5-トリアジンであり、その主な用途としては、メラミン樹脂の原料として用いられる。メラミンは、ホルマリンと反応させることにより、メチロールメラミンを得ることができ、これを、触媒を利用して加熱することでメチロールメラミンがメチレン結合となり、メラミン樹脂を製造できる。メラミンの主な製法としては、尿素をアンモニアの高圧下で反応させる方法がある。メラミンは、工業的にはこの製法で作られている。また、メラミンの他の製法としては、石灰窒素、ジシアンジアミド、青酸からも合成することができる。さらに、メチロールメラミン等のメラミン誘導体を用いてもよい。
 メラミンの誘導体として、モノアセチルメラミン、ジアセチルメラミン、トリアセチルメラミン等があり、より具体的には、ステアリン酸無水物、パルミチン酸無水物、ミリスチン酸無水物、ラウリン酸無水物、カプリン酸無水物、カプリル酸無水物、無水酪酸、無水酢酸などの置換体が知られており、特開平8-193073において、メラミン-乳酸塩、メラミン-マロン酸塩、メラミン-モノ(2-メタクリロイルオキシエチル)アシッドホスフェート塩、メラミン-トルエンスルホン酸、メラミン-テトラヒドロフタル酸がソルダーレジストとして評価されている。
 このような有機窒素化合物の好ましい配合量は、上記カルボキシル基を含有する感光性樹脂(A-1)の固形分100質量%に対して0.5~15質量%であり、より好ましくは1~10質量%である。配合量が0.5質量%以上であると、その効果が明らかとなり、15質量%以下であると、保存安定性、現像性、塗膜の耐水性等が良好となる。
 本発明の第二の実施形態に係る光硬化性熱硬化性樹脂組成物(以下、「樹脂組成物」とも称する)は、多官能エポキシ樹脂(a1’)のエポキシ基に対し、不飽和モノカルボン酸(a2’)を反応させ、その反応生成物に対し、多塩基酸無水物(a3’)を反応させて得られるカルボキシル基を含有する感光性樹脂(A-1’)(以下、「感光性樹脂(A-1’)」とも称する。)と、光重合開始剤(B’)と、上記感光性樹脂(A-1’)のカルボキシル基に対し反応し得るオキサゾリン基を有する化合物(D)(以下、「オキサゾリン基を有する化合物(D)」とも称する。)と、を含む。
 樹脂組成物中にカルボキシル基等の極性基を有していると、熱硬化後の硬化塗膜中にも極性基が存在するため、低誘電率化、低誘電正接化が困難であるが、本発明の第二の実施形態に係る樹脂組成物においては、多塩基酸無水物(a3’)を反応させて得られるカルボキシル基を含有する感光性樹脂(A-1’)と、該感光性樹脂(A-1’)のカルボキシル基に対し反応し得るオキサゾリン基を有する化合物(D)とを配合し、熱硬化時に樹脂組成物中に残存するカルボキシル基を少なくすることによって、高周波帯域においても低誘電率化および低誘電正接化を可能としたものである。
 また、本発明の第二の実施形態に係る樹脂組成物においては、上記カルボキシル基を含有する感光性樹脂(A-1’)を部分的にハイブリッド化させることにより得られるカルボキシル基含有感光性有機無機ハイブリッド樹脂ワニス(A’)(以下、「有機無機ハイブリッド樹脂ワニス(A’)」とも称する。)を用いることによって、エポキシ樹脂を使用しなくともはんだ耐熱性を高度に維持することができ、かつ、高周波帯域においても低誘電率化および低誘電正接化が可能となることが分かった。
 以下、本発明の第二の実施形態に係る光硬化性熱硬化性樹脂組成物の各成分について詳細に説明する。
<カルボキシル基を含有する感光性樹脂(A-1’)>
 本発明の第二の実施形態に係る光硬化性熱硬化性樹脂組成物に用いるカルボキシル基を含有する感光性樹脂(A-1’)は、多官能エポキシ樹脂(a1’)のエポキシ基に対し、不飽和モノカルボン酸(a2’)を反応させ、その反応生成物に対し、多塩基酸無水物(a3’)を反応させることによって得られる。
 現像性の観点から、多塩基酸無水物(a3’)の付加量は50~100モル%が好ましい。多塩基酸無水物(a3’)の付加量が上記範囲内であると、タック性も良好となり、好ましい。
 上記多官能エポキシ樹脂(a1’)としては、第一の実施形態の多官能エポキシ樹脂(a1)と同様のものが挙げられるが、低誘電率化、低誘電正接化の観点から、ジシクロペンタジエン型エポキシ樹脂が好ましい。
 上記感光性樹脂(A-1’)においては、多官能エポキシ樹脂(a1’)のエポキシ基と不飽和モノカルボン酸(a2’)のカルボキシル基とのエステル化反応によって生成した反応生成物に対し、多塩基酸無水物(a3’)を反応させたものであり、前者のエステル化反応により生成したバックボーン・ポリマーの側鎖に上記後者の反応によって多数の遊離のカルボキシル基を付与したものであるため、アルカリ水溶液による現像が可能となる。
 上記不飽和モノカルボン酸(a2’)としては、第一の実施形態の不飽和モノカルボン酸(a2)と同様のものが挙げられる。
 また、上記多塩基酸無水物(a3’)としては、第一の実施形態の多塩基酸無水物(a3)と同様のものが挙げられる。
<光重合開始剤(B’)>
 本発明の第二の実施形態に係る光硬化性熱硬化性樹脂組成物は、光重合開始剤(B’)を含む。光重合開始剤については、第一の実施形態と同様のものが挙げられる。
 光重合開始剤(B’)の使用量の好適な範囲は、上記感光性樹脂(A-1’)の固形分100質量部に対して、好ましくは1.0~20質量部、より好ましくは2.5~10質量部となる割合である。
<オキサゾリン基を有する化合物(D)>
 本発明の第二の実施形態に係る光硬化性熱硬化性樹脂組成物は、上記感光性樹脂(A-1’)のカルボキシル基に対し反応し得るオキサゾリン基を有する化合物(D)を含む。本発明においては、オキサゾリン基を有する化合物を含むことにより、熱硬化時に樹脂組成物中に残存するカルボキシル基が低減し、高周波帯域においても低誘電率化および低誘電正接化が可能となる。
 オキサゾリン基を有する化合物としては、下記の群から選択される1種以上のオキサゾリン基を有する化合物を使用することができる。
 上記オキサゾリン基を有する化合物としては、上記感光性樹脂(A-1’)のカルボキシル基に対し反応し得るオキサゾリン基を有している化合物であれば特に制限されず、2-オキサゾリン、2-アミノ-2-オキサゾリン、2,2’-ビス(2-オキサゾリン)、1,3-ビス(4,5-ジヒドロ-2-オキサゾリル)ベンゼン、1,4-ビス(4,5-ジヒドロ-2-オキサゾリル)ベンゼン、1,3,5-トリス(4,5-ジヒドロ-2-オキサゾリル)ベンゼン、2,2’-(2,6-ピリジンジイル)ビス(4-イソプロピル-2-オキサゾリン)、2,2’-(2,6-ピリジンジイル)ビス(4-フェニル-2-オキサゾリン)、2-フェニル(2-オキサゾリン)、4,4-ジメチル-2-オキサゾリン、2,2’-イソプロピリデンビス(4-フェニル-2-オキサゾリン)、2-エチル-2-オキサゾリン、2,2’-イソプロピリデンビス(4-t-ブチル-2-オキサゾリン)、2-イソプロピル-2-オキサゾリン、4-メトキシメチル-2-メチル-5-フェニル-2-オキサゾリン、2-メチル-2-オキサゾリン、2,4,4-トリメチル-2-オキサゾリン、日本触媒社製エポクロスシリーズ K-1010E、K-2010E、K-1020E、K-2020E、K-1030E、K-2030E、WS-500、WS-700、RPS-1005、RAS-1005等が挙げられる。
 上記オキサゾリン基を有する化合物としては、高周波帯域における低誘電率化および低誘電正接化の観点から、例えば、スチレン、アクリルまたはその誘導体のいずれか少なくとも1種を主骨格とする化合物であることが好ましく、下記一般式(I)で表される構造を有する化合物がより好ましい。
Figure JPOXMLDOC01-appb-I000001
(式中、m:n=1:1~50:1である。)
 上記オキサゾリン基を有する化合物の重量平均分子量の好適な範囲は、タック性と現像性の観点から、10,000~300,000、より好ましくは50,000~200,000である。重量平均分子量が上記範囲内であると、タック性、現像性および感光材との相溶性が良好となる。重量平均分子量は、ゲルパーミエーションクロマトグラフィーにより測定することができる。
 上記のようなオキサゾリン基を有する化合物の使用量の好適な範囲は、低誘電率化および低誘電正接化、現像性、相溶性の観点から、上記感光性樹脂(A-1’)の固形分100質量部に対して、好ましくは5~50質量部、より好ましくは10~30質量部となる割合である。
(カルボキシル基含有感光性有機無機ハイブリッド樹脂ワニス(A’))
 本発明の第二の実施形態に係る光硬化性熱硬化性樹脂組成物は、低誘電率化、低誘電正接化およびはんだ耐熱性の観点から、上記感光性樹脂(A-1’)が、該感光性樹脂(A-1’)の水酸基に対し(メタ)アクリロイル基を有するシラン化合物を少なくとも1種含むシラン化合物を加水分解縮合反応させて得られる化合物(A-2’)を部分的に反応させて得られるカルボキシル基含有感光性有機無機ハイブリッド樹脂ワニス(A’)であることが好ましい。
 このような有機無機ハイブリッド樹脂ワニス(A’)は、
 多官能エポキシ樹脂(a1’)のエポキシ基に対し、不飽和モノカルボン酸(a2’)を反応させ、その反応生成物に対し、多塩基酸無水物(a3’)を反応させ、カルボキシル基を含有する感光性樹脂(A-1’)を得る工程(1’)、
 上記工程(1’)の反応生成物であるカルボキシル基を含有する感光性樹脂(A-1’)に対し、(メタ)アクリロイル基を有するシラン化合物を少なくとも1種含むシラン化合物を加水分解縮合反応させて得られる化合物(A-2’)を、混合または部分的に反応させる工程(2’)をこの順に含む製造方法により得られる。
 まず、上記有機無機ハイブリット樹脂ワニス(A’)は、多官能エポキシ樹脂(a1’)を出発原料とする。
 上記工程(1’)においては、多官能エポキシ樹脂(a1’)のエポキシ基と不飽和モノカルボン酸(a2’)のカルボキシル基とのエステル化反応によって生成した反応生成物に対し、多塩基酸無水物(a3’)を反応させたものであり、前者のエステル化反応により生成したバックボーン・ポリマーの側鎖に上記後者の反応によって多数の遊離のカルボキシル基を付与したものであるため、アルカリ水溶液による現像が可能となる。
 上記工程(2’)は、工程(1’)の反応生成物であるカルボキシル基を含有する感光性樹脂(A-1’)に対し、(メタ)アクリロイル基を有するシラン化合物を少なくとも1種含むシラン化合物を加水分解縮合反応させて得られる化合物(A-2’)を、混合または部分的に反応させる工程である。この工程におけるシラン化合物の加水分解縮合反応は、第一の実施形態に係る工程(2)におけるシラン化合物の加水分解縮合反応と同様のものとすることができる。
 本発明においては、上記工程(2’)中で上記工程(1’)の反応生成物であるカルボキシル基を含有する感光性樹脂(A-1’)を部分的にハイブリッド化することにより、はんだ耐熱性を高度に維持しつつ、これまで以上に低誘電率化および低誘電正接化が可能な光硬化性熱硬化性樹脂組成物を得ることができる。
 本発明においては、有機無機ハイブリッド樹脂ワニス(A’)の合成時に少なくとも(メタ)アクリロイル基を有するシラン化合物を用いる。このような(メタ)アクリロイル基を有するシラン化合物の具体的な例としては、第一の実施形態と同様のものが挙げられるが、なかでも、光硬化性、はんだ耐熱性の観点から、3-(メタ)アクリロキシプロピルトリメトキシシランが好ましい。
 また、(メタ)アクリロイル基を有するシラン化合物と組み合わせて用いることができる他のシラン化合物としては、シランカップリング剤として一般に知られているシラン化合物が使用でき、第一の実施形態と同様のものが挙げられる。なかでも、疎水性が上がり塗膜の吸水率が低下することによって低誘電率化できることから、ジメチルジメトキシシランが好ましい。
 このような他のシラン化合物を上記の(メタ)アクリロイル基を有するシラン化合物と組み合わせて用いる場合には、混合比は、好ましくは(メタ)アクリロイル基を有するシラン化合物:他のシラン化合物=1:0~1:1である。混合比が上記の範囲内であると、はんだ耐熱性を高度に維持しつつ、低誘電率化が可能となる。
 なお、本明細書において、有機無機ハイブリッド樹脂ワニス(A’)とは、カルボキシル基を含有する感光性樹脂(A-1’)と、(メタ)アクリロイル基を有するシラン化合物を少なくとも1種含むシラン化合物を加水分解縮合反応させて得られる化合物(A-2’)との混合物または部分反応物とする。
(有機窒素化合物(C’))
 本発明の第二の実施形態に係る光硬化性熱硬化性樹脂組成物は、有機窒素化合物(C’)を含有してもよい。有機窒素化合物としては、第一の実施形態と同様のものとすることができる。
 このような有機窒素化合物(C’)の好ましい配合量は、上記感光性樹脂(A-1’)の固形分100質量%に対して0.5~5質量%であり、より好ましくは1~2質量%である。配合量が0.5質量%以上であると、その効果が明らかとなり、5質量%以下であると、保存安定性、現像性、塗膜の耐水性等が良好となる。
 本発明の第一の実施形態および第二の実施形態に係る光硬化性熱硬化性樹脂組成物には、さらに必要に応じて硫酸バリウム、酸化珪素、タルク、クレー、炭酸カルシウムなどの公知慣用の充填剤、フタロシアニン・ブルー、フタロシアニン・グリーン、酸化チタン、カーボンブラックなどの公知慣用の着色剤、消泡剤、密着性付与剤またはレベリング剤などの各種添加剤類、あるいはハイドロキノン、ハイドロキノンモノメチルエーテル、ピロガロール、ターシャリーブチルカテコール、フェノチアジンなどの公知慣用の重合禁止剤類を加えてもよい。
 本発明の第一の実施形態および第二の実施形態に係る光硬化性熱硬化性樹脂組成物は、例えば、プリント配線板用基板上にスクリーン印刷法、ロールコーター法、あるいはカーテンコーター法などにより全面に塗布し、レジストパターンフィルムを通して活性エネルギー線を照射し、必要部分を硬化後、アルカリ水溶液で未露光部を溶かしさり、次いで加熱硬化させることにより、目的とするソルダーレジスト皮膜を形成せしめることができる。
 上記現像に使用されるアルカリ水溶液としては、水酸化カリウム、水酸化ナトリウム、炭酸ナトリウム、炭酸カリウム、リン酸ナトリウム、ケイ酸ナトリウム、アンモニア、アミン類などのアルカリ水溶液が使用できる。また、光硬化させるための照射光源としては、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノンランプまたはメタルハライドランプなどが適当である。その他、レーザー光線なども露光用活性光線として利用できる。
 以下、実施例及び比較例を示して、本発明の第一の実施形態について具体的に説明するが、本発明は下記実施例に限定されるものではない。なお、以下において「部」及び「%」とあるのは、特に断りのない限り全て質量基準である。
[合成例1(工程(1)による樹脂1の合成)]
 500cc三口セパラブルフラスコにクレゾールノボラック型エポキシ樹脂(DIC社製N-695、エポキシ当量215g/eq、軟化点96℃)108gを量り取り、ここに、ジエチレングリコールモノエチルエーテルアセテート135gを加え、加熱溶解した。その後、アクリル酸39.6g(1.1当量)、フェノチアジン0.10gおよびテトラメチルアンモニウムクロライド0.15gを加え、還流条件下、ゲル化防止のため空気0.5L/minを吹き込みながら105℃で8時間撹拌を行った。さらに、無水テトラヒドロフタル酸45.6g(水酸基に対して0.6当量)を加え、100℃で4時間撹拌し、樹脂1を得た。合成して得られた樹脂1は、常温で液体であり、不揮発分60%、酸価58mKOH/gであった。
[合成例2(工程(1)による樹脂2の合成)]
 500cc三口セパラブルフラスコにジシクロペンタジエン型エポキシ樹脂104gを量り取り、ここに、ジエチレングリコールモノエチルエーテルアセテート104gを加え、加熱溶解した。その後、アクリル酸31.7g(1.1当量)、フェノチアジン0.10gおよびテトラメチルアンモニウムクロライド0.15gを加え、還流条件下、ゲル化防止のため空気0.5L/minを吹き込みながら105℃で8時間撹拌を行った。さらに、無水テトラヒドロフタル酸36.5g(水酸基に対して0.6当量)を加え、100℃で4時間撹拌し、樹脂2を得た。合成して得られた樹脂2は、常温で液体であり、不揮発分66%、酸価47.5mKOH/gであった。
[合成例3(工程(1)による樹脂3の合成)]
 500cc三口セパラブルフラスコにナフタレン型エポキシ樹脂82.0gを量り取り、ここに、ジエチレングリコールモノエチルエーテルアセテート104gを加え、加熱溶解した。その後、アクリル酸39.6g(1.1当量)、フェノチアジン0.10gおよびテトラメチルアンモニウムクロライド0.15gを加え、還流条件下、ゲル化防止のため空気0.5L/minを吹き込みながら105℃で4時間撹拌を行った。さらに、無水テトラヒドロフタル酸45.6g(水酸基に対して0.6当量)を加え、100℃で1時間撹拌し、樹脂3を得た。合成して得られた樹脂3は、常温で液体であり、不揮発分63%、酸価59.1mKOH/gであった。
[合成例1-1(工程(2)による有機無機ハイブリッド樹脂ワニスA-1-1の合成)]
 500cc三口セパラブルフラスコに3-アクリロキシプロピルトリメトキシシラン(信越化学工業社製KBM-5103)37.4g、蒸留水3.74gおよびジラウリル酸ジブチル錫0.37gを量り取り、窒素置換後、常温で130rpm、3時間の撹拌を行った。
 次に、合成例1で得た樹脂1(クレゾールノボラック型エポキシ樹脂のアクリレート酸無水物付加物)60.0gを加え、還流条件下、空気0.5L/minを吹き込みながら80℃で1時間撹拌した。その後、還流管を外し、100℃で1時間の撹拌および加熱を行い、樹脂1と有機無機ハイブリッドアクリルオリゴマーとの混合物を得た。この混合物を有機無機ハイブリッド樹脂ワニスA-1-1とする。
[合成例1-2(工程(2)による有機無機ハイブリッド樹脂ワニスA-1-2の合成)]
 500cc三口セパラブルフラスコに3-アクリロキシプロピルトリメトキシシラン(信越化学工業社製KBM-5103)28.1g、テトラエトキシシラン(Tetraethоxysilane;TEOS)8.32g、蒸留水3.64g、ジラウリル酸ジブチル錫0.36gを量り取り、窒素置換後、常温で130rpm、3時間の撹拌を行った。
 次に、合成例1で得た樹脂1(クレゾールノボラック型エポキシ樹脂のアクリレート酸無水物付加物)60.0gを加え、還流条件下、空気0.5L/minを吹き込みながら80℃で1時間撹拌した。その後、還流管を外し、100℃で1時間の撹拌および加熱を行い、樹脂1と有機無機ハイブリッドアクリルオリゴマーとの混合物を得た。この混合物を有機無機ハイブリッド樹脂ワニスA-1-2とする。
[合成例1-3(工程(2)による有機無機ハイブリッド樹脂ワニスA-1-3の合成)]
 3-アクリロキシプロピルトリメトキシシラン(信越化学工業社製KBM-5103)28.1gを18.73gに、テトラエトキシシラン(Tetraethоxysilane;TEOS)8.32gを16.64gに変えた以外は合成例1-2と同様の方法で、樹脂1と有機無機ハイブリッドアクリルオリゴマーとの比率を変えた混合物を得た。この混合物を有機無機ハイブリッド樹脂ワニスA-1-3とする。
[合成例1-4(工程(2)による有機無機ハイブリッド樹脂ワニスA-1-4の合成)]
 3-アクリロキシプロピルトリメトキシシラン(信越化学工業社製KBM-5103)37.4gを、テトラエトキシシラン(Tetraethоxysilane;TEOS)33.28gに、蒸留水3.74gを3.33gに、かつ、ジラウリル酸ジブチル錫0.37gを0.33gに変えた以外は合成例1-1と同様の方法で、樹脂1とアクリロイル基を含まない有機無機ハイブリッドオリゴマーとの混合物を得た。この混合物を有機無機ハイブリッド樹脂ワニスA-1-4とする。
[合成例1-5(工程(2)による有機無機ハイブリッド樹脂ワニスA-1-5の合成)]
 3-アクリロキシプロピルトリメトキシシラン(信越化学工業社製KBM-5103)37.4gをフェニルトリエトキシシラン(PEOS、信越化学工業社製KBE-103)38.40gに、蒸留水3.74gを3.84gに、かつ、ジラウリル酸ジブチル錫0.37gを0.38gに変えた以外は合成例1-1と同様の方法で、樹脂1と芳香環を含有しアクリロイル基を含まない有機無機ハイブリッドオリゴマーとの混合物を得た。この混合物を有機無機ハイブリッド樹脂ワニスA-1-5とする。
[合成例2-1(工程(2)による有機無機ハイブリッド樹脂ワニスA-2-1の合成)]
 500cc三口セパラブルフラスコに3-アクリロキシプロピルトリメトキシシラン(信越化学工業社製KBM-5103)28.1g、テトラエトキシシラン(Tetraethоxysilane;TEOS)8.32g、蒸留水3.64gおよびジラウリル酸ジブチル錫0.36gを量り取り、窒素置換後、常温で130rpm、3時間の撹拌を行った。
 次に、合成例2で得た樹脂2(ジシクロペンタジエン型エポキシ樹脂のアクリレート酸無水物付加物)55.6gを加え、還流条件下、空気0.5L/minを吹き込みながら80℃で1時間撹拌した。その後、還流管を外し、100℃で1時間の撹拌および加熱を行い、樹脂2と有機無機ハイブリッドアクリルオリゴマーとの混合物を得た。この混合物を有機無機ハイブリッド樹脂ワニスA-2-1とする。
[合成例2-2(工程(2)による有機無機ハイブリッド樹脂ワニスA-2-2の合成)]
 テトラエトキシシラン(Tetraethоxysilane;TEOS)8.32gをフェニルトリエトキシシラン(PEOS、信越化学工業社製KBE-103)9.60gに変えた以外は合成例2-1と同様の方法で、樹脂2と芳香環を含有する有機無機ハイブリッドアクリルオリゴマーとの混合物を得た。この混合物を有機無機ハイブリッド樹脂ワニスA-2-2とする。
[合成例3-1(工程(2)による有機無機ハイブリッド樹脂ワニスA-3-1の合成)]
 500cc三口セパラブルフラスコに3-アクリロキシプロピルトリメトキシシラン(信越化学工業社製KBM-5103)28.1g、テトラエトキシシラン(Tetraethоxysilane;TEOS)8.32g、蒸留水3.64gおよびジラウリル酸ジブチル錫0.36gを量り取り、窒素置換後、常温で130rpm、3時間の撹拌を行った。
 次に、合成例3で得た樹脂3(ナフタレン型エポキシ樹脂のアクリレート酸無水物付加物)57.8gを加え、還流条件下、空気0.5L/minを吹き込みながら80℃で1時間撹拌した。その後、還流管を外し、100℃で1時間の撹拌および加熱を行い、樹脂3と有機無機ハイブリッドアクリルオリゴマーとの混合物を得た。この混合物を有機無機ハイブリッド樹脂ワニスA-3-1とする。
<実施例1~6および比較例1~6の光硬化性熱硬化性樹脂組成物の調製>
 上記合成例で得られた有機無機ハイブリッド樹脂ワニスA-1-1~A-3-1、樹脂1~3および印刷前の粘度調整用の溶剤であるプロピレングリコールメチルエーテルアセテート以外の下記表1および2に示す各成分を表中に記載の割合(質量部)にて配合し、井上製作所社製3本ロールミルでそれぞれの成分を分散させた。
 次に、上記合成例で得られた有機無機ハイブリッド樹脂ワニスA-1-1~A-3-1、樹脂1~3の感光性樹脂固形分10質量部(表1および2のA-1-1~A-3-1および樹脂1~3の成分中、感光性樹脂固形分はすべて10質量部である。)と、有機無機ハイブリッド樹脂ワニスA-1-1~A-3-1、樹脂1~3および印刷前の粘度調整用の溶剤であるプロピレングリコールメチルエーテルアセテート以外の分散物2.8質量部と、を混合し、光硬化性熱硬化性樹脂組成物を調製した。
Figure JPOXMLDOC01-appb-T000002
*1:有機無機ハイブリッド樹脂ワニスA-1-1(シラン化合物;KBM-5103のみ)
*2:有機無機ハイブリッド樹脂ワニスA-1-2(シラン化合物の質量比;KBM-5103:TEOS=3:1)
*3:有機無機ハイブリッド樹脂ワニスA-1-3(シラン化合物の質量比;KBM-5103:TEOS=1:1)
*4:有機無機ハイブリッド樹脂ワニスA-1-4(シラン化合物;TEOSのみ)
*5:有機無機ハイブリッド樹脂ワニスA-1-5(シラン化合物;PEOSのみ)
*6:有機無機ハイブリッド樹脂ワニスA-2-1(シラン化合物の質量比;KBM-5103:TEOS=3:1)
*7:有機無機ハイブリッド樹脂ワニスA-2-2(シラン化合物の質量比;KBM-5103:PEOS=3:1)
*8:有機無機ハイブリッド樹脂ワニスA-3-1(シラン化合物の質量比;KBM-5103:TEOS=3:1)
*9:樹脂1(シラン化合物;含まない)
*10:樹脂2(シラン化合物;含まない)
*11:樹脂3(シラン化合物;含まない)
*12:光重合開始剤、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オン(BASFジャパン社製)
*13:熱硬化性化合物
*14:ジペンタエリスリトールヘキサアクリレート(日本化薬社製)
*15:消泡・レベリング剤(共栄社化学社製)
*16:有機溶剤
*17:クレゾールノボラック型エポキシ樹脂(DIC社製N-695)60gをジエチレングリコールモノエチルエーテルアセテート(ECA)40gで溶解させた樹脂
Figure JPOXMLDOC01-appb-T000003
 上記実施例1~6および比較例1~6の各光硬化性熱硬化性樹脂組成物について、以下の各項目について試験を行い、評価した。各評価の結果を、表3および4に示した。なお、評価試験の方法は以下に示す。
<感度>
 上記実施例1~6および比較例1~6で得られた光硬化性熱硬化性樹脂組成物を、ガラスエポキシ基板の銅箔上にスクリーン印刷でそれぞれ全面塗布し、熱風循環式乾燥炉で80℃、30分乾燥した。これらの基板に、コダックNo.2のステップタブレットを当て、200mJ/cmで露光し、スプレー圧0.2MPaの1質量%NaCO水溶液で、1分間現像し、塗膜が完全に残っている段数を評価した。
 ◎:残存段数 14~12段
 〇:残存段数 11~9段
 △:残存段数 8~6段
 ×:残存段数 5~3段
 ××:残存段数 2~0段
<はんだ耐熱性>
 上記実施例1~6および比較例1~6で得られた光硬化性熱硬化性樹脂組成物を、回路形成されたプリント配線板にスクリーン印刷でそれぞれ全面塗布し、熱風循環式乾燥炉で80℃、30分乾燥した。これらの基板にソルダーレジストパターンが描かれたネガフィルムを当て、露光量800mJ/cmの露光条件で露光し、スプレー圧0.2MPaの1質量%NaCO水溶液で1分間現像し、ソルダーレジストパターンを形成した。この基板を、150℃で60分熱硬化し、評価基板を作製した。
 この評価基板に、ロジン系フラックスを塗布して、予め260℃に設定したはんだ槽に30秒間浸漬し、常温まで基板温度が下がった後に、再度フラックスを塗布して、260℃のはんだ槽に30秒間浸漬した。このはんだ浸漬1回、2回の基板を、イソプロピルアルコールでフラックスを洗浄した後、セロハン粘着テープによるピールテストを行い、レジスト層の膨れ・剥がれ・変色について、以下の基準で評価した。
 ○:全く変化が認められないもの
 △:ほんの僅か変色等の変化があるもの
 ×:レジスト層の膨れ、剥がれがあるもの
<保存安定性>
 上記実施例1~6および比較例1~6で得られた光硬化性熱硬化性樹脂組成物を調整した後、25℃での粘度の初期値を、EHD型粘度計で測定(5rpm値)し、その後、25℃の恒温槽に1週間または1ヶ月間保管し、それぞれの期間後に初期値と同様に粘度を測定した。その増粘率から、以下の判定基準で評価した。
 ○:増粘率が130%未満
 △:増粘率が130~200%以内
 ×:ゲル化もしくは増粘率が200%超
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
*18:感度が低く、現像後に塗膜が残らなかったため測定不可
 上記表3および4に示すように、所定の反応によって得られるカルボキシル基含有感光性有機無機ハイブリッド樹脂ワニスと、光重合開始剤と、有機窒素化合物とを含む各実施例1~6の組成物においては、比較例1~6に対して、いずれも感度とはんだ耐熱性との双方に優れることが確認された。
 以下、実施例及び比較例を示して、本発明の第二の実施形態について具体的に説明するが、本発明は下記実施例に限定されるものではない。なお、以下において「部」及び「%」とあるのは、特に断りのない限り全て質量基準である。
[合成例4(工程(1’)による樹脂4の合成)]
 500cc三口セパラブルフラスコにジシクロペンタジエン型エポキシ樹脂(DIC社製HP-7200)104gを量り取り、ここに、ジエチレングリコールモノエチルエーテルアセテート104gを加え、加熱溶解した。その後、アクリル酸31.7g(1.1当量)、フェノチアジン0.10gおよびテトラメチルアンモニウムクロライド0.15gを加え、還流条件下、ゲル化防止のため空気0.5L/minを吹き込みながら105℃で8時間撹拌を行った。さらに、無水テトラヒドロフタル酸36.5g(水酸基に対して0.6当量)を加え、100℃で4時間撹拌し、樹脂4を得た。合成して得られた樹脂4は、常温で液体であり、不揮発分66%、酸価47.5mKOH/g、水酸基に対する酸無水物の付加量は60モル%であった。
[合成例5(工程(1’)による樹脂5の合成)]
 無水テトラヒドロフタル酸36.5g(水酸基に対して0.6当量)を60.8g(水酸基に対して1.0当量)に変えた以外は合成例4と同様の方法で、樹脂5を得た。合成して得られた樹脂5は、常温で液体であり、不揮発分69%、酸価81mKOH/g、水酸基に対する酸無水物の付加量は100モル%であった。
[合成例6(工程(1’)による樹脂6の合成)]
 500cc三口セパラブルフラスコにクレゾールノボラック型エポキシ樹脂(DIC社製N-695)108gを量り取り、ここに、ジエチレングリコールモノエチルエーテルアセテート135gを加え、加熱溶解した。その後、アクリル酸39.6g(1.1当量)、フェノチアジン0.10gおよびテトラメチルアンモニウムクロライド0.15gを加え、還流条件下、ゲル化防止のため空気0.5L/minを吹き込みながら105℃で8時間撹拌を行った。さらに、無水テトラヒドロフタル酸45.6g(水酸基に対して0.6当量)を加え、100℃で4時間撹拌し、樹脂6を得た。合成して得られた樹脂6は、常温で液体であり、不揮発分60%、酸価58mKOH/g、水酸基に対する酸無水物の付加量は60モル%であった。
[合成例7(工程(2’)による有機無機ハイブリッド樹脂ワニスA’-1の合成)]
 500cc三口セパラブルフラスコに3-アクリロキシプロピルトリメトキシシラン(信越化学工業社製KBM-5103)18.7g、ジメチルジメトキシシラン(信越化学工業社製KBM-22)9.6g、蒸留水2.83gおよびジラウリル酸ジブチル錫0.28gを量り取り、窒素置換後、常温で130rpm、3時間の撹拌を行った。
 次に、合成例4で得た樹脂4(ジシクロペンタジエン型エポキシ樹脂のアクリレート酸無水物付加物)42.3gを加え、還流条件下、空気0.5L/minを吹き込みながら80℃で1時間撹拌した。その後、還流方式から副生成物であるアルコールを回収する方式に切り替えて更に80℃で1時間撹拌および加熱を行い、樹脂4と有機無機ハイブリッドアクリルオリゴマーとの混合物を得た。この混合物を有機無機ハイブリッド樹脂ワニスA’-1とする。
[合成例8(工程(2’)による有機無機ハイブリッド樹脂ワニスA’-2の合成)]
 500cc三口セパラブルフラスコに3-アクリロキシプロピルトリメトキシシラン(信越化学工業社製KBM-5103)28.3g、蒸留水2.83g、ジラウリル酸ジブチル錫0.28gを量り取り、窒素置換後、常温で130rpm、3時間の撹拌を行った。
 次に、合成例5で得た樹脂5(ジシクロペンタジエン型エポキシ樹脂のアクリレート酸無水物付加物)41.1gを加え、還流条件下、空気0.5L/minを吹き込みながら80℃で1時間撹拌した。その後、還流方式から副生成物であるアルコールを回収する方式に切り替えて更に80℃で1時間撹拌および加熱を行い、樹脂5と有機無機ハイブリッドアクリルオリゴマーとの混合物を得た。この混合物を有機無機ハイブリッド樹脂ワニスA’-2とする。
[合成例9(工程(2’)による有機無機ハイブリッド樹脂ワニスA’-3の合成)]
 樹脂5(ジシクロペンタジエン型エポキシ樹脂のアクリレート酸無水物付加物)41.1gを、樹脂4(ジシクロペンタジエン型エポキシ樹脂のアクリレート酸無水物付加物)43.3gに変えた以外は合成例8と同様の方法で、樹脂4と有機無機ハイブリッドアクリルオリゴマーとの混合物を得た。この混合物を有機無機ハイブリッド樹脂ワニスA’-3とする。
<実施例7~10および比較例7~12の光硬化性熱硬化性樹脂組成物の調製>
 下記の表5中に示す配合に従い、各成分を配合し、攪拌機にて予備混合した後、井上製作所社製3本ロールミルで分散させ、混練して、光硬化性熱硬化性樹脂組成物を調整した。表中の配合量は、質量部を示す。
Figure JPOXMLDOC01-appb-T000006
*19:シラン化合物の質量比はKBM-5103:KBM-22=1:1、感光性樹脂固形分50質量部
*20:シラン化合物はKBM-5103のみ含む、感光性樹脂固形分50質量部
*21:シラン化合物はKBM-5103のみ含む、感光性樹脂固形分50質量部
*22:酸無水物の付加量60モル%、感光性樹脂固形分50質量部
*23:酸無水物の付加量60モル%、感光性樹脂固形分66質量部
*24:100質量部のクレゾールノボラック型エポキシ樹脂(DIC社製N-695)を50質量部のカルビトールアセテートで溶解したワニス、固形分20質量部
*25:100質量部のジシクロペンタジエン型エポキシ樹脂(DIC社製HP-7200)を33.3質量部のカルビトールアセテートで溶解したワニス、固形分20質量部
*26:100質量部のオキサゾリン基を有する化合物(日本触媒社製エポクロスRPS-1005)を100質量部のカルビトールアセテートで溶解したワニス、固形分10質量部、オキサゾリン基を有する化合物の重量平均分子量(Mw)約160,000
*27:ジペンタエリスリトールヘキサアクリレート(日本化薬社製)
*28:光重合開始剤、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタン-1-オン(BASFジャパン社製)
*29:硫酸バリウム(堺化学工業社製)
*30:有機窒素化合物
*31:消泡剤(信越化学工業社製)
 上記実施例7~10および比較例7~12の各光硬化性熱硬化性樹脂組成物について、以下の各項目について試験を行い、評価した。各評価の結果を、表6に示した。なお、評価試験の方法は以下に示す。
<感度>
 上記実施例7~10および比較例7~12で得られた光硬化性熱硬化性樹脂組成物を、ガラスエポキシ基板の銅箔上にスクリーン印刷でそれぞれ全面塗布し、熱風循環式乾燥炉で80℃、30分乾燥した。これらの基板に、コダックNo.2のステップタブレットを当て、250mJ/cmまたは800mJ/cmで露光し、スプレー圧0.2MPaの1質量%NaCO水溶液で、1分間現像し、塗膜が完全に残っている段数を評価した。
<はんだ耐熱性>
 上記実施例7~10および比較例7~12で得られた光硬化性熱硬化性樹脂組成物を、回路形成されたプリント配線板にスクリーン印刷でそれぞれ全面塗布し、熱風循環式乾燥炉で80℃、30分乾燥した。これらの基板にソルダーレジストパターンが描かれたネガフィルムを当て、露光量800mJ/cmの露光条件で露光し、スプレー圧0.2MPaの1質量%NaCO水溶液で1分間現像し、ソルダーレジストパターンを形成した。この基板を、150℃で60分熱硬化し、評価基板を作製した。
 この評価基板に、ロジン系フラックスを塗布して、予め260℃に設定したはんだ槽に10秒または30秒間浸漬した。このはんだ浸漬した基板を、イソプロピルアルコールでフラックスを洗浄した後、セロハン粘着テープによるピールテストを行い、レジスト層の膨れ・剥がれ・変色について、以下の基準で評価した。
 ○:全く変化が認められないもの
 △:ほんの僅か変色等の変化があるもの
 ×:レジスト層の膨れ、剥がれがあるもの
<誘電率、誘電正接>
 上記実施例7~10および比較例7~12で得られた光硬化性熱硬化性樹脂組成物を、100Meshテトロンバイアス版を使用したスクリーン印刷で、銅箔鏡面上にそれぞれ塗布し、80℃の熱風循環式乾燥炉で15分乾燥、室温まで自然冷却後に再度重ね印刷を行い、15分乾燥後に3回目の印刷を行った。最後の乾燥を20分行った後、1.7mm×100mmの開口マスクを用いて、オーク製作所製メタルハライドランプの露光機HMW-680GWで800mJ/cmの露光条件で露光し、1質量%NaCO水溶液を用いた東京化工機製の現像液で2分間の現像を行い、150℃で1時間のポストキュアを行った後に、銅箔から剥がし取り評価用の硬化塗膜を作製した。
 誘電率、誘電正接(tanδ)の測定は、評価用の硬化塗膜を、関東電子応用開発社製空洞共振器(5GHz)を用い、キーサイト・テクノロジーズ社製ネットワークアナライザーE-507で測定した。誘電率、誘電正接(tanδ)の同一サンプルの3回測定平均値を表6および図1に示す。
Figure JPOXMLDOC01-appb-T000007

Claims (11)

  1.  多官能エポキシ樹脂(a1)のエポキシ基に対し、不飽和モノカルボン酸(a2)を反応させ、その反応生成物に対し、水酸基の一部が残存するように多塩基酸無水物(a3)を反応させて得られるカルボキシル基を含有する感光性樹脂(A-1)の水酸基に対し、(メタ)アクリロイル基を有するシラン化合物を少なくとも1種含むシラン化合物を加水分解縮合反応させて得られる化合物(A-2)を部分的に反応させて得られるカルボキシル基含有感光性有機無機ハイブリッド樹脂ワニス(A)と、光重合開始剤(B)と、有機窒素化合物(C)と、を含むことを特徴とする光硬化性熱硬化性樹脂組成物。
  2.  前記多官能エポキシ樹脂(a1)がジシクロペンタジエン型エポキシ樹脂、ナフタレン型エポキシ樹脂またはクレゾールノボラック型エポキシ樹脂である請求項1に記載の光硬化性熱硬化性樹脂組成物。
  3.  前記不飽和モノカルボン酸(a2)が(メタ)アクリル酸である請求項1に記載の光硬化性熱硬化性樹脂組成物。
  4.  前記有機窒素化合物(C)がジシアンジアミド、メラミン又はその誘導体のいずれか少なくとも1種である請求項1に記載の光硬化性熱硬化性樹脂組成物。
  5.  多官能エポキシ樹脂(a1’)のエポキシ基に対し、不飽和モノカルボン酸(a2’)を反応させ、その反応生成物に対し、多塩基酸無水物(a3’)を反応させて得られるカルボキシル基を含有する感光性樹脂(A-1’)と、
     光重合開始剤(B’)と、
     前記感光性樹脂(A-1’)のカルボキシル基に対し反応し得るオキサゾリン基を有する化合物(D)と、
    を含むことを特徴とする光硬化性熱硬化性樹脂組成物。
  6.  前記多官能エポキシ樹脂(a1’)がジシクロペンタジエン型エポキシ樹脂である請求項5に記載の光硬化性熱硬化性樹脂組成物。
  7.  前記不飽和モノカルボン酸(a2’)が(メタ)アクリル酸である請求項5に記載の光硬化性熱硬化性樹脂組成物。
  8.  前記オキサゾリン基を有する化合物(D)がスチレン、アクリルまたはその誘導体のいずれか少なくとも1種を主骨格とする化合物である請求項5に記載の光硬化性熱硬化性樹脂組成物。
  9.  前記感光性樹脂(A-1’)が、該感光性樹脂(A-1’)の水酸基に対し(メタ)アクリロイル基を有するシラン化合物を少なくとも1種含むシラン化合物を加水分解縮合反応させて得られる化合物(A-2’)を部分的に反応させて得られるカルボキシル基含有感光性有機無機ハイブリッド樹脂ワニス(A’)である請求項5に記載の光硬化性熱硬化性樹脂組成物。
  10.  請求項1または5に記載の光硬化性熱硬化性樹脂組成物を基材に塗布し、活性エネルギー線の照射により光硬化させて得られることを特徴とする硬化物。
  11.  請求項1または5に記載の光硬化性熱硬化性樹脂組成物を基材上に塗布して形成した塗膜を、パターン状に光硬化させて得られる硬化塗膜を有することを特徴とするプリント配線板。
PCT/JP2016/055292 2015-02-26 2016-02-23 光硬化性熱硬化性樹脂組成物、その硬化物、およびプリント配線板 WO2016136755A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201680012267.XA CN107407882B (zh) 2015-02-26 2016-02-23 光固化性热固化性树脂组合物、其固化物和印刷电路板

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-037223 2015-02-26
JP2015037223A JP6488149B2 (ja) 2015-02-26 2015-02-26 光硬化性熱硬化性樹脂組成物、その硬化物、およびプリント配線板
JP2015-131747 2015-06-30
JP2015131747A JP6652338B2 (ja) 2015-06-30 2015-06-30 光硬化性熱硬化性樹脂組成物、その硬化物、およびプリント配線板

Publications (1)

Publication Number Publication Date
WO2016136755A1 true WO2016136755A1 (ja) 2016-09-01

Family

ID=56788738

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/055292 WO2016136755A1 (ja) 2015-02-26 2016-02-23 光硬化性熱硬化性樹脂組成物、その硬化物、およびプリント配線板

Country Status (2)

Country Link
CN (1) CN107407882B (ja)
WO (1) WO2016136755A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108250409A (zh) * 2016-12-28 2018-07-06 荒川化学工业株式会社 树脂、活性能量线固化型树脂组合物、固化物、活性能量线固化型印刷油墨以及印刷物
CN113632004A (zh) * 2019-05-31 2021-11-09 昭和电工材料株式会社 感光性树脂组合物、感光性树脂膜、多层印刷配线板和半导体封装体、以及多层印刷配线板的制造方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114207033B (zh) * 2019-08-01 2024-04-02 株式会社钟化 热固性树脂组合物、热固性树脂膜、热固化膜、层叠体、以及印刷电路板及其制造方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169602A (ja) * 1988-12-22 1990-06-29 Nippon Kayaku Co Ltd 樹脂組成物及びソルダーレジスト樹脂組成物
JPH0619134A (ja) * 1992-06-30 1994-01-28 Tamura Kaken Kk 感光性樹脂組成物
JPH10161315A (ja) * 1996-12-05 1998-06-19 Nippon Steel Chem Co Ltd アルカリ可溶性感光性樹脂組成物
JPH10282666A (ja) * 1997-04-01 1998-10-23 Mitsui Chem Inc 感光性樹脂組成物
JPH11279243A (ja) * 1998-03-31 1999-10-12 Goo Chem Ind Co Ltd 紫外線硬化性樹脂及び紫外線硬化性樹脂組成物並びにフォトソルダーレジストインク
JPH11327150A (ja) * 1998-03-17 1999-11-26 Mitsubishi Chemical Corp 感光性樹脂組成物
JP2000017152A (ja) * 1998-06-30 2000-01-18 Asahi Denka Kogyo Kk 水性樹脂組成物
JP2002138140A (ja) * 2000-11-02 2002-05-14 Nippon Kayaku Co Ltd ポリエステル樹脂及びそれを用いた感光性樹脂組成物
JP2003195499A (ja) * 2001-12-25 2003-07-09 Tamura Kaken Co Ltd 感光性樹脂組成物及びプリント配線板
JP2006171279A (ja) * 2004-12-15 2006-06-29 Dainippon Ink & Chem Inc レジストインキ組成物
JP2007056151A (ja) * 2005-08-25 2007-03-08 Showa Highpolymer Co Ltd エチレン性不飽和基含有マレイミド系樹脂およびその製造方法、ならびにエチレン性不飽和基含有マレイミド系樹脂を含む光硬化性組成物および光・熱硬化性組成物
JP2007093801A (ja) * 2005-09-27 2007-04-12 Fujifilm Corp 感光性フィルム、並びに永久パターン形成方法及びパターン
JP2007140274A (ja) * 2005-11-21 2007-06-07 Sanyo Chem Ind Ltd レジストパターンの形成方法
JP2007153978A (ja) * 2005-12-02 2007-06-21 Nippon Shokubai Co Ltd 酸変性エポキシ(メタ)アクリレートおよび画像形成用感光性樹脂組成物
JP2008165180A (ja) * 2006-12-06 2008-07-17 Showa Highpolymer Co Ltd 感光性樹脂および感光性樹脂組成物
JP2009003369A (ja) * 2007-06-25 2009-01-08 Hitachi Chem Co Ltd 感光性樹脂組成物及びこれを用いた感光性エレメント

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4501402B2 (ja) * 2003-10-20 2010-07-14 三菱化学株式会社 光硬化性組成物、並びにそれを用いた光硬化性画像形成材料、光硬化性画像形成材、及び画像形成方法
JP4711208B2 (ja) * 2006-03-17 2011-06-29 山栄化学株式会社 感光性熱硬化性樹脂組成物、並びにレジスト膜被覆平滑化プリント配線基板及びその製造法。
JP5285257B2 (ja) * 2007-09-21 2013-09-11 太陽ホールディングス株式会社 光硬化性・熱硬化性樹脂組成物及びその硬化物
JP6084353B2 (ja) * 2010-12-28 2017-02-22 太陽インキ製造株式会社 光硬化性樹脂組成物の製造方法、ドライフィルムの製造方法、硬化物の製造方法およびプリント配線板の製造方法
CN104010815B (zh) * 2011-12-22 2016-08-17 太阳油墨制造株式会社 干膜及使用其的印刷电路板、印刷电路板的制造方法、以及倒装芯片安装基板

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02169602A (ja) * 1988-12-22 1990-06-29 Nippon Kayaku Co Ltd 樹脂組成物及びソルダーレジスト樹脂組成物
JPH0619134A (ja) * 1992-06-30 1994-01-28 Tamura Kaken Kk 感光性樹脂組成物
JPH10161315A (ja) * 1996-12-05 1998-06-19 Nippon Steel Chem Co Ltd アルカリ可溶性感光性樹脂組成物
JPH10282666A (ja) * 1997-04-01 1998-10-23 Mitsui Chem Inc 感光性樹脂組成物
JPH11327150A (ja) * 1998-03-17 1999-11-26 Mitsubishi Chemical Corp 感光性樹脂組成物
JPH11279243A (ja) * 1998-03-31 1999-10-12 Goo Chem Ind Co Ltd 紫外線硬化性樹脂及び紫外線硬化性樹脂組成物並びにフォトソルダーレジストインク
JP2000017152A (ja) * 1998-06-30 2000-01-18 Asahi Denka Kogyo Kk 水性樹脂組成物
JP2002138140A (ja) * 2000-11-02 2002-05-14 Nippon Kayaku Co Ltd ポリエステル樹脂及びそれを用いた感光性樹脂組成物
JP2003195499A (ja) * 2001-12-25 2003-07-09 Tamura Kaken Co Ltd 感光性樹脂組成物及びプリント配線板
JP2006171279A (ja) * 2004-12-15 2006-06-29 Dainippon Ink & Chem Inc レジストインキ組成物
JP2007056151A (ja) * 2005-08-25 2007-03-08 Showa Highpolymer Co Ltd エチレン性不飽和基含有マレイミド系樹脂およびその製造方法、ならびにエチレン性不飽和基含有マレイミド系樹脂を含む光硬化性組成物および光・熱硬化性組成物
JP2007093801A (ja) * 2005-09-27 2007-04-12 Fujifilm Corp 感光性フィルム、並びに永久パターン形成方法及びパターン
JP2007140274A (ja) * 2005-11-21 2007-06-07 Sanyo Chem Ind Ltd レジストパターンの形成方法
JP2007153978A (ja) * 2005-12-02 2007-06-21 Nippon Shokubai Co Ltd 酸変性エポキシ(メタ)アクリレートおよび画像形成用感光性樹脂組成物
JP2008165180A (ja) * 2006-12-06 2008-07-17 Showa Highpolymer Co Ltd 感光性樹脂および感光性樹脂組成物
JP2009003369A (ja) * 2007-06-25 2009-01-08 Hitachi Chem Co Ltd 感光性樹脂組成物及びこれを用いた感光性エレメント

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108250409A (zh) * 2016-12-28 2018-07-06 荒川化学工业株式会社 树脂、活性能量线固化型树脂组合物、固化物、活性能量线固化型印刷油墨以及印刷物
CN108250409B (zh) * 2016-12-28 2021-07-23 荒川化学工业株式会社 树脂、活性能量线固化型树脂组合物、固化物、活性能量线固化型印刷油墨以及印刷物
CN113632004A (zh) * 2019-05-31 2021-11-09 昭和电工材料株式会社 感光性树脂组合物、感光性树脂膜、多层印刷配线板和半导体封装体、以及多层印刷配线板的制造方法
EP3979002A4 (en) * 2019-05-31 2022-07-27 Showa Denko Materials Co., Ltd. PHOTOSENSITIVE RESIN COMPOSITION, PHOTOSENSITIVE RESIN FILM, MULTILAYERY CIRCUIT BOARD, SEMICONDUCTOR CASE AND METHOD OF MAKING A MULTILAYERY CIRCUIT BOARD
CN113632004B (zh) * 2019-05-31 2024-07-23 株式会社力森诺科 感光性树脂组合物、感光性树脂膜、多层印刷配线板和半导体封装体、以及多层印刷配线板的制造方法

Also Published As

Publication number Publication date
CN107407882B (zh) 2021-01-26
CN107407882A (zh) 2017-11-28

Similar Documents

Publication Publication Date Title
KR101128571B1 (ko) 광경화성?열경화성 수지 조성물 및 이를 이용한 프린트 배선판
JP3964326B2 (ja) カルボキシル基含有感光性樹脂、それを含有するアルカリ現像可能な光硬化性・熱硬化性組成物及びその硬化物
JP4514049B2 (ja) 感光性樹脂組成物並びにその硬化物
JP6652338B2 (ja) 光硬化性熱硬化性樹脂組成物、その硬化物、およびプリント配線板
JP2005182004A (ja) 硬化性樹脂組成物、その硬化物、およびプリント配線板
CN103299242A (zh) 光固化性树脂组合物、其干膜和固化物以及使用它们的印刷电路板
JP3134037B2 (ja) メラミンの有機酸塩を用いた熱硬化性もしくは光硬化性・熱硬化性コーティング組成物
JP5027458B2 (ja) 光硬化性・熱硬化性の一液型ソルダーレジスト組成物及びそれを用いたプリント配線板
KR20070096943A (ko) 경화성 수지 조성물 및 그의 경화물
JP5419618B2 (ja) 感光性樹脂組成物、プリント配線板用のソルダーレジスト組成物およびプリント配線板
WO2016136755A1 (ja) 光硬化性熱硬化性樹脂組成物、その硬化物、およびプリント配線板
JP2008019336A (ja) 光硬化性・熱硬化性の一液型ソルダーレジスト組成物及びそれを用いたプリント配線板
JP2007161878A (ja) ポリカルボン酸樹脂、感光性樹脂組成物及びその硬化物
KR20060081361A (ko) 광 경화성ㆍ열 경화성의 일액형 솔더 레지스트 조성물 및그것을 사용한 인쇄 배선판
JPH09255741A (ja) 感光性樹脂組成物、その硬化塗膜及び回路基板
JP6488149B2 (ja) 光硬化性熱硬化性樹脂組成物、その硬化物、およびプリント配線板
JP6491417B2 (ja) ソルダーレジスト用樹脂組成物、マーキングインク用樹脂組成物、硬化物及びプリント配線板
JP2007197530A (ja) 硬化性組成物及びその硬化物
JPH08272095A (ja) ソルダーフォトレジストインキ用組成物
JP4454002B2 (ja) 感光性樹脂組成物
JP2018151628A (ja) 感光性樹脂組成物、その硬化物及び物品
JP4812974B2 (ja) 硬化性樹脂、硬化性樹脂組成物及びその硬化物
WO2002094904A1 (en) Photosensitive resin, photosensitive resin compositions containing the same and cured articles of the compositions
JPH06138655A (ja) 感光性熱硬化性樹脂組成物
JP2533557B2 (ja) 感光性樹脂組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16755499

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16755499

Country of ref document: EP

Kind code of ref document: A1