WO2016136226A1 - 非水電解質二次電池の製造方法 - Google Patents

非水電解質二次電池の製造方法 Download PDF

Info

Publication number
WO2016136226A1
WO2016136226A1 PCT/JP2016/000920 JP2016000920W WO2016136226A1 WO 2016136226 A1 WO2016136226 A1 WO 2016136226A1 JP 2016000920 W JP2016000920 W JP 2016000920W WO 2016136226 A1 WO2016136226 A1 WO 2016136226A1
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
secondary battery
electrolyte secondary
silicon
nonaqueous electrolyte
Prior art date
Application number
PCT/JP2016/000920
Other languages
English (en)
French (fr)
Inventor
早奈恵 千場
顕 長崎
敦史 上田
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三洋電機株式会社 filed Critical 三洋電機株式会社
Priority to US15/546,374 priority Critical patent/US20180013132A1/en
Priority to CN201680012197.8A priority patent/CN107431249A/zh
Priority to JP2017501929A priority patent/JPWO2016136226A1/ja
Publication of WO2016136226A1 publication Critical patent/WO2016136226A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0404Methods of deposition of the material by coating on electrode collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0471Processes of manufacture in general involving thermal treatment, e.g. firing, sintering, backing particulate active material, thermal decomposition, pyrolysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/483Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/30Batteries in portable systems, e.g. mobile phone, laptop
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing a nonaqueous electrolyte secondary battery including a negative electrode plate containing graphite and a silicon material as a negative electrode active material, and a positive electrode plate containing polyvinylidene fluoride as a binder.
  • nonaqueous electrolyte secondary batteries have been widely used as drive power sources for portable electronic devices such as smartphones, tablet computers, notebook computers, and portable music players. With the progress of miniaturization and higher functionality of these portable electronic devices, non-aqueous electrolyte secondary batteries are required to have higher capacities.
  • Carbon materials such as graphite are mainly used as negative electrode active materials for non-aqueous electrolyte secondary batteries. While the carbon material has a discharge potential comparable to that of lithium metal, lithium dendrite growth during charging can be suppressed. Therefore, the nonaqueous electrolyte secondary battery excellent in safety can be provided by using the carbon material as the negative electrode active material.
  • Graphite can occlude lithium ions until it has a composition of LiC 6 , and its theoretical capacity is 372 mAh / g.
  • silicon materials such as silicon and oxides thereof having a higher capacity than carbon materials have attracted attention as negative electrode active materials for non-aqueous electrolyte secondary batteries.
  • silicon can occlude lithium ions until it has a composition of Li 4.4 Si, and its theoretical capacity is 4200 mAh / g. Therefore, the capacity of the nonaqueous electrolyte secondary battery can be increased by using the silicon material as the negative electrode active material.
  • Silicon material like carbon material, can suppress lithium dendrite growth during charging.
  • silicon materials have a larger amount of expansion and contraction due to charging and discharging than carbon materials, there is a problem that the cycle characteristics are inferior to carbon materials due to pulverization of the negative electrode active material and dropping from the conductive network. is doing.
  • Patent Document 1 discloses a material containing Si and O as constituent elements, a negative electrode mixture layer containing graphite as a negative electrode active material, and a formula Li 1 + y MO 2 (where ⁇ 0.3 ⁇ y ⁇ 0 as a positive electrode active material). .3, M is at least two elements containing Ni, and the ratio of Ni in the elements constituting M is 30 mol% or more and 95 mol% or less.)
  • the nonaqueous electrolyte secondary battery which has the positive mix layer which carries out and the initial stage charge / discharge efficiency of a positive electrode is lower than a negative electrode is disclosed.
  • Patent Document 2 discloses a non-aqueous electrolyte secondary battery in which heat treatment is performed in a temperature range of Tm ⁇ 30 to Tm + 20 after the positive electrode plate is compressed when the melting point of polyvinylidene fluoride contained in the positive electrode mixture layer is Tm (° C.). The manufacturing method is disclosed. In this technology, when the positive electrode active material is cracked during compression and a highly active portion is exposed, polyvinylidene fluoride covers the active portion of the positive electrode active material, so that the decomposition reaction of the nonaqueous electrolyte on the positive electrode active material The purpose is to suppress.
  • Patent Document 3 discloses a non-aqueous electrolyte secondary battery in which a porous insulating layer is disposed between a positive electrode plate and a negative electrode plate, and the tensile elongation of the positive electrode plate is 3.0% or more. Patent Document 3 describes that the positive electrode plate is subjected to heat treatment after the positive electrode mixture layer is compressed in order to increase the tensile elongation of the positive electrode plate.
  • This non-aqueous electrolyte secondary battery is provided to prevent a short circuit, and an aluminum foil containing iron is used as a positive electrode current collector in order to prevent a decrease in capacity due to heat treatment.
  • a non-aqueous electrolyte secondary battery using a negative electrode active material with low initial charge / discharge efficiency such as silicon oxide the potential fluctuation of the negative electrode is larger than that of the positive electrode during discharge. Therefore, the deterioration of silicon oxide is promoted at the initial stage of the charge / discharge cycle, and the cycle characteristics are deteriorated.
  • fluctuations in the potential of the negative electrode during discharge can be suppressed by using a positive electrode having an initial charge / discharge efficiency lower than that of the negative electrode.
  • the battery capacity of the nonaqueous electrolyte secondary battery is regulated by the positive electrode, if the initial charge / discharge efficiency of the positive electrode is too low, the battery capacity is reduced. In this case, the advantage of using a high-capacity negative electrode active material such as silicon oxide cannot be sufficiently exhibited. This is a problem common not only to silicon oxide but also to silicon materials containing silicon.
  • Patent Document 2 if the decomposition of the nonaqueous electrolyte on the positive electrode active material can be suppressed, an improvement in cycle characteristics is expected.
  • Patent Document 2 does not discuss any cycle characteristics when a negative electrode active material having a low initial charge / discharge efficiency such as silicon oxide is used.
  • the heat treatment of the positive electrode plate described in Patent Document 3 is intended to improve the tensile elongation of the positive electrode plate, and no consideration is given to the cycle characteristics when a negative electrode active material such as silicon oxide is used. It has not been.
  • the present invention has been made in view of the above, and an object thereof is to improve the cycle characteristics of a nonaqueous electrolyte secondary battery including graphite and a silicon material as a negative electrode active material.
  • a method for producing a nonaqueous electrolyte secondary battery includes a positive electrode plate, and a nonaqueous solution having a negative electrode plate on which a negative electrode mixture layer containing graphite and a silicon material is formed.
  • a method for producing an electrolyte secondary battery comprising: applying a positive electrode mixture slurry containing a lithium transition metal composite oxide and polyvinylidene fluoride on a positive electrode current collector; and drying the positive electrode mixture slurry to form a positive electrode mixture And a step of heat-treating the positive electrode mixture layer.
  • a non-aqueous electrolyte secondary battery having a high capacity and excellent cycle characteristics can be provided.
  • Example 1 (Preparation of positive electrode plate) A lithium transition metal composite oxide having a composition of LiNi 0.82 Co 0.15 Al 0.03 O 2 was used as the positive electrode active material.
  • the positive electrode active material was mixed so that it was 100 parts by mass, acetylene black as a conductive agent was 1.25 parts by mass, and polyvinylidene fluoride (PVDF) as a binder was 1.7 parts by mass.
  • This mixture was put into N-methylpyrrolidone (NMP) as a dispersion medium and kneaded to prepare a positive electrode mixture slurry.
  • NMP N-methylpyrrolidone
  • This positive electrode mixture slurry was applied to both surfaces of a 15 ⁇ m thick aluminum positive electrode current collector by a doctor blade method and dried in an environment of 100 to 150 ° C. to form a positive electrode mixture layer.
  • the positive electrode mixture layer was compressed with a compression roll so as to have a thickness of 0.177 mm, and then a heat treatment was performed by bringing a roll heated to 250 ° C. into contact with the surface of the positive electrode mixture layer for 0.7 seconds. Finally, the positive electrode plate after heat treatment was cut to produce a positive electrode plate 11 according to Experimental Example 1 having a length of 656 mm and a width of 58.5 mm.
  • SiO was heated to 1000 ° C. in an inert gas atmosphere, and the surface of the SiO particles was coated with carbon by a chemical vapor deposition (CVD) method in which a hydrocarbon gas was thermally decomposed.
  • the coating amount of carbon was 1% by mass with respect to SiO.
  • a negative electrode active material was prepared by mixing so that SiO was 1 part by mass and graphite was 99 parts by mass.
  • the negative electrode active material was 100 parts by mass and the styrene butadiene rubber (SBR) as a binder was 1 part by mass.
  • SBR styrene butadiene rubber
  • This negative electrode mixture slurry was applied to both sides of a copper negative electrode current collector having a thickness of 8 ⁇ m by a doctor blade method and dried to form a negative electrode mixture layer.
  • the negative electrode mixture layer was compressed to a predetermined thickness with a compression roll and cut to produce a negative electrode plate 13 according to Experimental Example 1 having a length of 590 mm and a width of 59.5 mm.
  • Ethylene carbonate (EC) and dimethyl carbonate (DMC) were mixed at a volume ratio of 1: 3 to prepare a non-aqueous solvent.
  • EC Ethylene carbonate
  • DMC dimethyl carbonate
  • LiPF 6 lithium hexafluorophosphate
  • a positive electrode lead 12 and a negative electrode lead 14 were connected to the positive electrode plate 11 and the negative electrode plate 13, respectively, and the positive electrode plate 11 and the negative electrode plate 13 were wound through a polyethylene separator 15 to produce an electrode body 16.
  • FIG. 1 (Preparation of non-aqueous electrolyte secondary battery) As shown in FIG. 1, an upper insulating plate 17 and a lower insulating plate 18 are arranged above and below the electrode body 16, and the electrode body 16 is housed in an outer can 21.
  • the negative electrode lead 14 was connected to the bottom of the outer can 21, and the positive electrode lead 12 was connected to the terminal plate of the sealing body 20.
  • a nonaqueous electrolyte is injected into the outer can 21 under reduced pressure, and the sealing body 20 is caulked and fixed to the opening of the outer can 21 via the gasket 19 to thereby have a nonaqueous electrolyte having a design capacity of 3400 mAh.
  • a secondary battery 10 was produced.
  • Example 2 A nonaqueous electrolyte secondary battery 10 according to Experimental Example 2 was fabricated in the same manner as Experimental Example 1 except that the positive electrode mixture layer was not heat-treated.
  • Example 3 A nonaqueous electrolyte secondary battery 10 according to Experimental Example 3 was produced in the same manner as in Experimental Example 1 except that the content of SiO was 4% by mass with respect to the total mass of graphite and SiO.
  • Example 4 A nonaqueous electrolyte secondary battery 10 according to Experimental Example 4 was fabricated in the same manner as Experimental Example 3 except that the positive electrode mixture layer was not heat-treated.
  • Example 5 A nonaqueous electrolyte secondary battery 10 according to Experimental Example 5 was produced in the same manner as in Experimental Example 1 except that the content of SiO was 7% by mass with respect to the total mass of graphite and SiO.
  • Example 6 A nonaqueous electrolyte secondary battery 10 according to Experimental Example 6 was produced in the same manner as Experimental Example 5 except that the positive electrode mixture layer was not heat-treated.
  • Example 7 The nonaqueous electrolyte 2 according to Experimental Example 7 is the same as Experimental Example 3 except that a lithium transition metal composite oxide having a composition of LiNi 0.85 Co 0.12 Al 0.03 O 2 is used as the positive electrode active material. A secondary battery 10 was produced.
  • Example 8 The nonaqueous electrolyte 2 according to Experimental Example 8 is the same as Experimental Example 3 except that a lithium transition metal composite oxide having a composition of LiNi 0.88 Co 0.09 Al 0.03 O 2 is used as the positive electrode active material. A secondary battery 10 was produced.
  • Example 9 The nonaqueous electrolyte 2 according to Experimental Example 9 is the same as Experimental Example 5 except that a lithium transition metal composite oxide having a composition of LiNi 0.88 Co 0.09 Al 0.03 O 2 is used as the positive electrode active material. A secondary battery 10 was produced.
  • Example 10 The nonaqueous electrolyte according to Experimental Example 10 is the same as Experimental Example 5 except that polycrystalline silicon (Si) having an average particle diameter (median diameter D50) of 5 ⁇ m is used instead of SiO coated with carbon. A secondary battery 10 was produced.
  • Si polycrystalline silicon having an average particle diameter (median diameter D50) of 5 ⁇ m
  • Example 11 A nonaqueous electrolyte secondary battery 10 according to Experimental Example 11 was produced in the same manner as Experimental Example 10 except that the positive electrode mixture layer was not heat-treated.
  • Example 12 (Production of silicon-graphite composite) In a nitrogen gas atmosphere, single-crystal Si particles are put into a solvent methylnaphthalene together with a bead mill, and the Si particles are wet-pulverized so that the average particle diameter (median diameter D50) is 0.2 ⁇ m to produce a silicon-containing slurry. did. Graphite particles and carbon pitch were added to the silicon-containing slurry and mixed to carbonize the carbon pitch. The product was classified to a predetermined particle size and carbon pitch was added. The carbon pitch was carbonized to produce a silicon-graphite composite in which Si particles and graphite particles were bound with amorphous carbon. The silicon content in the composite was 20.9% by mass.
  • a nonaqueous electrolyte secondary battery 10 according to Experimental Example 10 was manufactured in the same manner as Experimental Example 5 except that the silicon-graphite composite prepared as described above was used in place of SiO coated with carbon. .
  • Example 13 A nonaqueous electrolyte secondary battery 10 according to Experimental Example 11 was produced in the same manner as Experimental Example 10 except that the positive electrode mixture layer was not heat-treated.
  • Example 14 (Preparation of silicon-lithium silicate composite)
  • Si particles and lithium silicate (Li 2 SiO 3 ) particles were mixed at a mass ratio of 42:58, and the mixture was milled with a planetary ball mill.
  • the particles milled in an inert gas atmosphere were taken out and heat-treated at 600 ° C. for 4 hours in an inert gas atmosphere.
  • Heat-treated particles (hereinafter referred to as mother particles) were pulverized, mixed with coal pitch, and subjected to heat treatment at 800 ° C. for 5 hours in an inert gas atmosphere to form a carbon conductive layer on the surfaces of the mother particles.
  • the amount of carbon contained in the conductive layer was 5% by mass with respect to the total mass of the mother particles and the conductive layer.
  • the mother particles were classified to prepare a silicon-lithium silicate composite having an average particle size of 5 ⁇ m.
  • a nonaqueous electrolyte secondary battery 10 according to Experimental Example 14 was obtained in the same manner as Experimental Example 5 except that the silicon-lithium silicate composite prepared as described above was used in place of SiO coated with carbon. Produced.
  • Example 15 A nonaqueous electrolyte secondary battery 10 according to Experimental Example 15 was fabricated in the same manner as Experimental Example 14 except that the positive electrode mixture layer was not heat-treated.
  • Example 16 A nonaqueous electrolyte secondary battery 10 according to Experimental Example 16 was produced in the same manner as Experimental Example 2 except that SiO was not used as the negative electrode active material.
  • Example 17 A nonaqueous electrolyte secondary battery 10 according to Experimental Example 17 was fabricated in the same manner as Experimental Example 16 except that the positive electrode mixture layer was heat-treated.
  • a positive electrode plate produced in each experimental example was cut into a predetermined size as a working electrode, and a bipolar cell using a lithium metal foil as a counter electrode and a reference electrode was produced. Using this bipolar cell, the initial charge capacity and the initial discharge capacity of the positive electrode plate were measured under the following conditions to determine the initial charge / discharge efficiency of the positive electrode.
  • the working electrode using the positive electrode plate is charged at a constant current density of 7 mA / cm 2 until the working electrode potential becomes 4.3 V with respect to the reference electrode, and then the working electrode potential is set to the reference electrode. The battery was charged until the current density reached 1.4 mA / cm 2 while maintaining 4.3V.
  • the charge capacity at this time was defined as an initial charge capacity Qc1.
  • the working electrode using the positive electrode plate was discharged at a constant current density of 7 mA / cm 2 until the potential of the working electrode was 2.5 V with respect to the reference electrode.
  • the discharge capacity obtained at this time was defined as an initial discharge capacity Qd1.
  • the percentage of Qd1 to Qc1 was calculated to obtain the initial charge / discharge efficiency of the positive electrode.
  • a bipolar electrode using lithium metal foil as a counter electrode and a reference electrode was prepared using a negative electrode plate produced in each experimental example as a working electrode, cut into a predetermined size. Using this bipolar cell, the initial charge capacity and initial discharge capacity of the negative electrode plate were measured under the following conditions, and the initial charge / discharge efficiency of the negative electrode was determined. First, the working electrode using the negative electrode plate is charged at a constant current density of 7 mA / cm 2 until the potential of the working electrode becomes 0.01 V with respect to the reference electrode. The battery was charged until the current density reached 1 mA / cm 2 while maintaining 0.01 V. The charge capacity at this time was defined as an initial charge capacity Qc2.
  • the working electrode using the negative electrode plate was discharged at a constant current density of 7 mA / cm 2 until the potential of the working electrode was 1.0 V with respect to the reference electrode.
  • the discharge capacity at this time was defined as the initial discharge capacity Qd2.
  • the percentage of Qd2 to Qc1 was calculated to obtain the initial charge / discharge efficiency of the negative electrode.
  • Tables 1 to 4 show the results of the initial charge and discharge efficiency and cycle characteristics of the positive electrode and the negative electrode.
  • surface is represented as a molar percentage with respect to the lithium transition metal complex oxide which is a positive electrode active material.
  • Table 1 summarizes the results of Experimental Examples 1 to 6 in order to clearly show the effect of the heat treatment of the positive electrode mixture layer. From Table 1, the capacity retention rate decreases with increasing SiO content in the negative electrode active material, but the capacity retention rate increases uniformly regardless of the SiO content by heat treatment of the positive electrode mixture layer. I understand. One of the reasons why the capacity retention rate is improved is that the difference in the initial charge / discharge efficiency between the positive electrode and the negative electrode is reduced by the heat treatment of the positive electrode mixture layer.
  • Table 2 summarizes the results of Experimental Examples 3, 5, and 7 to 9 in order to confirm the influence of the Ni content in the positive electrode active material.
  • the Ni content in the positive electrode active material is preferably 85 mol% or more, and more preferably 88 mol% or more.
  • Table 3 summarizes the results of Experimental Examples 10 to 15 in order to confirm the effect of using a silicon material other than SiO. From Table 3, it can be seen that the same effect as in the case of SiO can be obtained by using any of silicon, silicon-graphite composite, and Si-Li 2 SiO 3 composite as the silicon material. Therefore, the present invention is considered to be widely applicable to silicon-containing compounds and silicon-containing composites that can occlude and release lithium.
  • Table 4 summarizes the results of Experimental Example 16 and Experimental Example 17 in order to show the effect of the heat treatment of the positive electrode mixture layer when the negative electrode active material not containing SiO is used. From Table 4, it can be seen that there is no difference in capacity retention between Experimental Example 16 and Experimental Example 17. Therefore, in order for the effect of the present invention to be exhibited, the negative electrode active material needs to contain a silicon material.
  • the positive electrode active material is not limited to the lithium nickel composite oxide shown in the experimental example, and a lithium transition metal composite oxide capable of inserting and extracting lithium ions can be used.
  • a lithium transition metal composite oxide capable of inserting and extracting lithium ions can be used.
  • the lithium transition metal composite oxide include the formula LiMO 2 (M is at least one of Co, Ni, and Mn), LiMn 2 O 4 , and LiFePO 4 .
  • These lithium transition metal composite oxides can be used alone or in admixture of two or more. Further, these lithium transition metal composite oxides can be used by adding at least one selected from the group consisting of Al, Ti, Mg, and Zr, or by replacing a part of the transition metal element.
  • lithium nickel composite oxides are preferable.
  • the Ni content in the lithium nickel composite oxide is preferably 85 mol% or more, and more preferably 88 mol% or more.
  • the formula Li a Ni b Co c M (1- bc ) O 2 (where 0 ⁇ a ⁇ 1.2, 0.8 ⁇ b ⁇ 1, 0 ⁇ c) ⁇ 0.2, M is exemplified by at least one selected from the group consisting of Al, Mn, Mg, Ti, and Zr).
  • the formula Li a Ni b Co c M (1- bc ) O 2 (where 0 ⁇ a ⁇ 1.2, 0.85 ⁇ b ⁇ 1, 0 ⁇ c ⁇ 0.15, and M is at least one selected from the group consisting of Al, Mn, Mg, Ti, and Zr).
  • a which represents the amount of Li in the formula is set to the above range in consideration of changing during charging and discharging.
  • a preferably satisfies 0.95 ⁇ a ⁇ 1.2.
  • any compound containing Si and O as constituent elements can be used without limitation, but it is preferable to use silicon oxide represented by the formula SiO x (0.5 ⁇ x ⁇ 1.6).
  • the surface of silicon oxide with carbon it is not always essential to coat the surface of silicon oxide with carbon, but it is preferable to coat the surface of silicon oxide with carbon because the conductivity of silicon oxide can be improved. It is sufficient that carbon covers a part of the surface of silicon oxide, and the coating amount of carbon is preferably 0.1% by mass or more and 10% by mass or less, and 0.1% by mass or more and 5% by mass with respect to silicon oxide. % Or less is more preferable.
  • silicon can be used alone or as a composite with other materials.
  • any of single crystal silicon, polycrystalline silicon, and amorphous silicon can be used, but polycrystalline silicon and amorphous silicon having a crystallite size of 60 nm or less are preferable. By using such silicon, cracking of particles during charging and discharging is suppressed, and cycle characteristics are improved.
  • the average particle diameter (median diameter D50) of silicon is preferably 0.1 ⁇ m or more and 10 ⁇ m or less, more preferably 0.1 ⁇ m or more and 5 ⁇ m or less.
  • Examples of means for obtaining silicon having such an average particle diameter include a dry pulverization method using a jet mill and a ball mill and a wet pulverization method using a bead mill and a ball mill. Silicon can also be alloyed with at least one metal element selected from the group consisting of nickel, copper, cobalt, chromium, iron, silver, titanium, molybdenum, and tungsten.
  • a material for forming a composite with silicon it is preferable to use a material having an action of relieving a large volume change caused by charging / discharging of silicon.
  • examples of such materials include graphite and lithium silicate.
  • silicon particles and graphite particles are bound to each other by amorphous carbon.
  • graphite particles any particles of artificial graphite and natural graphite can be used.
  • Pitch-based materials, tar-based materials, and resin-based materials can be used as amorphous carbon precursors that bind silicon particles and graphite particles.
  • resin materials include vinyl resins, cellulose resins, and phenol resins. These amorphous carbon precursors can be converted to amorphous carbon by performing a heat treatment at 700 to 1300 ° C. in an inert gas atmosphere.
  • the amorphous carbon when amorphous carbon binds silicon particles and graphite particles, the amorphous carbon is included in the constituent elements of the silicon-graphite composite.
  • the silicon content in the silicon-graphite composite is preferably 10% by mass or more and 60% by mass or less.
  • the silicon-lithium silicate composite preferably has a structure in which silicon particles are dispersed in a lithium silicate phase.
  • the surface of the silicon-lithium silicate composite may be coated with carbon in the same manner as SiO x . Carbon in that case is an optional component and not a constituent of the silicon-lithium silicate composite.
  • the silicon content in the silicon-lithium silicate composite is preferably 40% by mass or more and 60% by mass or less.
  • SiO x has a structure in which Si particles are dispersed in the SiO 2 phase. This SiO 2 is considered to act so as to relieve the expansion and contraction during the charge and discharge of Si. However, when SiO x is used as the negative electrode active material, SiO 2 reacts with lithium (Li) as shown in formula (1) during charging. 2SiO 2 + 8Li + + 8e over ⁇ Li 4 Si + Li 4 SiO 4 ⁇ (1)
  • Li 4 SiO 4 produced by the reaction of SiO 2 and Li cannot reversibly insert and desorb lithium. Therefore, the irreversible capacity accompanying the production of Li 4 SiO 4 is accumulated in the negative electrode containing SiO x as the negative electrode active material during the initial charge. On the other hand, since lithium silicate does not cause a chemical reaction that accumulates irreversible capacity like SiO x , the volume change during charge / discharge of Si can be reduced without reducing the initial charge / discharge efficiency of the negative electrode.
  • the lithium silicate is not limited to Li 2 SiO 3 shown in Experimental Example 14, and lithium silicate represented by the general formula Li 2z SiO (2 + z) (0 ⁇ z ⁇ 2) can be used. Moreover, it is preferable that the half width of the diffraction peak of the (111) plane of lithium silicate in the XRD pattern is 0.05 ° or more. Thereby, the lithium ion conductivity in the silicon-lithium silicate composite particles and the effect of mitigating the volume change of Si are further improved.
  • the content of the silicon material in the negative electrode active material is not particularly limited. However, considering the balance between battery capacity and cycle characteristics, the content of the silicon material is preferably 4% by mass or more and 20% by mass or less, more preferably 4% by mass or more and 10% by mass or less, based on the total mass of graphite and silicon oxide. preferable.
  • non-aqueous electrolyte a solution obtained by dissolving a lithium salt as an electrolyte salt in a non-aqueous solvent can be used.
  • a non-aqueous solvent or a non-aqueous electrolyte using a gel polymer together with the non-aqueous solvent can be used.
  • a cyclic carbonate ester As the non-aqueous solvent, a cyclic carbonate ester, a chain carbonate ester, a cyclic carboxylic acid ester and a chain carboxylic acid ester can be used, and these are preferably used in combination of two or more.
  • the cyclic carbonate include ethylene carbonate (EC), propylene carbonate (PC), and butylene carbonate (BC).
  • a cyclic carbonate in which part of hydrogen is substituted with fluorine such as fluoroethylene carbonate (FEC)
  • the chain carbonate include dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate (DEC), and methyl propyl carbonate (MPC).
  • Examples of cyclic carboxylic acid esters include ⁇ -butyrolactone ( ⁇ -BL) and ⁇ -valerolactone ( ⁇ -VL).
  • Examples of chain carboxylic acid esters include methyl pivalate, ethyl pivalate, methyl isobutyrate and methyl Pionate is exemplified.
  • lithium salts examples include LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiN (CF 3 SO 2 ) (C 4 F 9 SO 2 ), LiC (CF 3 SO 2 ) 3 , LiC (C 2 F 5 SO 2 ) 3 , LiAsF 6 , LiClO 4 , Li 2 B 10 Cl 10 and Li 2 B 12 Cl 12 .
  • LiPF 6 is particularly preferable, and the concentration in the nonaqueous electrolyte is preferably 0.5 to 2.0 mol / L.
  • Other lithium salts such as LiBF 4 may be mixed with LiPF 6 .
  • the preferable temperature range for the heat treatment of the positive electrode mixture layer is 20 ° C. or higher than the melting point of polyvinylidene fluoride and lower than the decomposition temperature of polyvinylidene fluoride. More specifically, a preferable temperature range for the heat treatment is 160 ° C. or higher and 350 ° C. or lower, more preferably 200 ° C. or higher and 300 ° C. or lower.
  • the heat treatment method is not particularly limited as long as the positive electrode mixture layer is placed in an environment of the above temperature range, but a method of bringing hot air or a heated roll into contact with the positive electrode mixture layer is simple and preferable. In particular, a method using a heated roll is more preferable because heat treatment can be performed in a short time.
  • the heat treatment time of the positive electrode mixture layer can be appropriately determined according to the heat treatment method. For example, in the case of a method using a heated roll, it is preferably 0.1 seconds or more and 20 seconds or less.
  • the heat treatment of the positive electrode mixture layer may be performed either before or after compression, but it is preferable to perform the heat treatment of the positive electrode mixture layer after compression.
  • a non-aqueous electrolyte secondary battery having a high capacity and excellent cycle characteristics can be provided. Therefore, the industrial applicability of the present invention is great.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

 本発明の一態様に係る非水電解質二次電池の製造方法は、正極板と、黒鉛とケイ素材料を含む負極合剤層が形成された負極板とを有する非水電解質二次電池の製造方法であって、リチウム遷移金属複合酸化物とポリフッ化ビニリデンを含む正極合剤スラリーを正極集電体上に塗布するステップと、正極合剤スラリーを乾燥して正極合剤層を形成するステップと、正極合剤層を熱処理するステップと、を備えることを特徴としている。熱処理の温度は160℃以上350℃以下であることが好ましい。

Description

非水電解質二次電池の製造方法
 本発明は、黒鉛とケイ素材料を負極活物質として含む負極板と、ポリフッ化ビニリデンを結着剤として含む正極板を備えた非水電解質二次電池の製造方法に関する。
 近年、非水電解質二次電池はスマートフォン、タブレット型コンピュータ、ノートパソコン及び携帯型音楽プレイヤーなどの携帯型電子機器の駆動電源として広く用いられている。これらの携帯型電子機器の小型化及び高機能化の進展に伴い、非水電解質二次電池は更なる高容量化が求められている。
 非水電解質二次電池の負極活物質として黒鉛などの炭素材料が主として用いられている。炭素材料はリチウム金属に匹敵する放電電位を有しながら、充電時のリチウムのデンドライト成長を抑制することができる。そのため、炭素材料を負極活物質として用いることで安全性に優れた非水電解質二次電池を提供することができる。黒鉛はリチウムイオンをLiCの組成になるまで吸蔵することができ、その理論容量は372mAh/gを示す。
 ところが、現在使用されている炭素材料は既に理論容量に近い容量を示しており、負極活物質を改良することによる非水電解質二次電池の高容量化は難しくなっている。そこで、近年は炭素材料よりも高い容量を有するケイ素やその酸化物などのケイ素材料が非水電解質二次電池の負極活物質として注目されている。例えば、ケイ素はLi4.4Siの組成になるまでリチウムイオンを吸蔵することができ、その理論容量は4200mAh/gを示す。そのため、ケイ素材料を負極活物質として用いることで非水電解質二次電池を高容量化することができる。
 ケイ素材料は炭素材料と同様に充電時のリチウムのデンドライト成長を抑制することができる。しかし、ケイ素材料は炭素材料に比べて充放電に伴う膨張収縮量が大きいため、負極活物質の微粉化や導電ネットワークからの脱落などが原因で炭素材料に比べてサイクル特性に劣るという問題を有している。
 特許文献1は、SiとOを構成元素に含む材料、及び黒鉛を負極活物質として含有する負極合剤層と、正極活物質として式Li1+yMO(ただし、-0.3≦y≦0.3、Mは少なくともNiを含有する2種以上の元素であり、Mを構成する元素中でNiの割合は30mol%以上95mol%以下である。)で表されるリチウム遷移金属酸化物を含有する正極合剤層を有し、正極の初期充放電効率が負極よりも低い非水電解質二次電池を開示している。
 特許文献2は、正極合剤層に含まれるポリフッ化ビニリデンの融点をTm(℃)としたときに、正極板を圧縮した後にTm-30からTm+20の温度範囲で熱処理する非水電解質二次電池の製造方法を開示している。この技術は、圧縮時に正極活物質が割れて活性の高い部分が露出した場合に、ポリフッ化ビニリデンが正極活物質の活性な部分を覆うことにより、正極活物質上での非水電解質の分解反応を抑制することを目的としている。
 特許文献3は、正極板と負極板の間に多孔質絶縁層が配置され、正極板の引張伸び率は3.0%以上である非水電解質二次電池を開示している。特許文献3には、正極板の引張伸び率を高めるために正極合剤層を圧縮した後に正極板の熱処理を行うことが記載されている。この非水電解質二次電池は短絡を防止するために提供されたものであり、熱処理に伴う容量低下を防止するために鉄を含有するアルミニウム箔を正極集電体として用いている。
特開2012-169300号公報 特開2007-273259号公報 特開2009-64770号公報
 酸化ケイ素のような初期充放電効率の低い負極活物質を用いた非水電解質二次電池では、放電時に正極に比べて負極の電位変動が大きくなる。そのため、充放電サイクル初期の段階で酸化ケイ素の劣化が促進されて、サイクル特性が低下する。特許文献1に記載されているように、負極よりも低い初期充放電効率を有する正極を用いることで放電時の負極の電位変動を抑えることができる。しかし、非水電解質二次電池の電池容量は正極で規制されているため、正極の初期充放電効率が低すぎると、電池容量が低下する。これでは酸化ケイ素のような高容量の負極活物質を用いる利点を十分に発揮することができない。このことは、酸化ケイ素だけでなくケイ素を含むケイ素材料に共通する課題である。
 特許文献2に記載されているように、正極活物質上での非水電解質の分解を抑制することができればサイクル特性の向上が期待される。しかし、酸化ケイ素のような初期充放電効率が低い負極活物質を用いた場合のサイクル特性については特許文献2において何ら検討されていない。
 特許文献3に記載されている正極板の熱処理は正極板の引張伸び率を向上することを目的としたものであり、酸化ケイ素のような負極活物質を用いた場合のサイクル特性については何ら検討されていない。
 本発明は上記に鑑みてなされたものであり、黒鉛とケイ素材料を負極活物質として含む非水電解質二次電池のサイクル特性を向上することを目的とする。
 上記課題を解決するために本発明の一態様に係る非水電解質二次電池の製造方法は、正極板と、黒鉛とケイ素材料を含む負極合剤層が形成された負極板とを有する非水電解質二次電池の製造方法であって、リチウム遷移金属複合酸化物とポリフッ化ビニリデンを含む正極合剤スラリーを正極集電体上に塗布するステップと、正極合剤スラリーを乾燥して正極合剤層を形成するステップと、正極合剤層を熱処理するステップと、を備えることを特徴としている。
 本発明の一態様によれば、高容量でサイクル特性に優れた非水電解質二次電池を提供することができる。
実験例に用いた非水電解質二次電池の断面斜視図である。
 本発明を実施するための形態について、本発明の実施形態を含む種々の実験例に基づいて説明する。なお、本発明は以下の実験例に限定されず、本発明の要旨を変更しない範囲において適宜変更して実施することができる。
(実験例1)
(正極板の作製)
 正極活物質としてLiNi0.82Co0.15Al0.03の組成を有するリチウム遷移金属複合酸化物を用いた。この正極活物質が100質量部、導電剤としてのアセチレンブラックが1.25質量部、結着剤としてのポリフッ化ビニリデン(PVDF)が1.7質量部となるように混合した。この混合物を分散媒としてのN-メチルピロリドン(NMP)に投入し、混練して正極合剤スラリーを作製した。この正極合剤スラリーをドクターブレード法により厚み15μmのアルミニウム製の正極集電体の両面に塗布し、100~150℃の環境下で乾燥して正極合剤層を形成した。この正極合剤層を圧縮ロールにより厚みが0.177mmとなるように圧縮した後、正極合剤層の表面に250℃に加熱したロールを0.7秒間接触させることにより熱処理を行った。最後に、熱処理後の正極板を切断して長さが656mm、幅が58.5mmの実験例1に係る正極板11を作製した。
(負極板の作製)
 ケイ素材料としてSiO(式SiOのx=1に対応)の組成を有する酸化ケイ素を用いた。SiOを不活性ガス雰囲気下で1000℃に加熱し、炭化水素系のガスを熱分解させる化学蒸着(CVD)法によりSiO粒子の表面を炭素で被覆した。炭素の被覆量はSiOに対して1質量%とした。SiOが1質量部、黒鉛が99質量部となるように混合して負極活物質を調製した。
 負極活物質が100質量部、結着剤としてのスチレンブタジエンゴム(SBR)が1質量部となるように分散媒としての水に投入し、混練して負極合剤スラリーを作製した。この負極合剤スラリーを、厚み8μmの銅製の負極集電体の両面にドクターブレード法により塗布し、乾燥して負極合剤層を形成した。この負極合剤層を圧縮ロールにより所定厚みになるように圧縮し、切断して長さが590mm、幅が59.5mmの実験例1に係る負極板13を作製した。
(非水電解質の調製)
 エチレンカーボネート(EC)とジメチルカーボネート(DMC)を1:3の体積比で混合して非水溶媒を調製した。この非水溶媒に5質量%のビニレンカーボネートを添加し、ヘキサフルオロリン酸リチウム(LiPF)を1mol/Lの濃度で溶解して非水電解質を調製した。
(電極体の作製)
 正極板11と負極板13にそれぞれ正極リード12と負極リード14を接続し、ポリエチレン製のセパレータ15を介して正極板11と負極板13を巻回して電極体16を作製した。
(非水電解質二次電池の作製)
 図1に示すように、電極体16の上下にそれぞれ上部絶縁板17と下部絶縁板18を配置し、電極体16を外装缶21へ収納した。負極リード14を外装缶21の底部に接続し、正極リード12を封口体20の端子板に接続した。次に、外装缶21の内部に非水電解質を減圧下で注液し、外装缶21の開口部にガスケット19を介して封口体20をかしめ固定することによって3400mAhの設計容量を有する非水電解質二次電池10を作製した。
(実験例2)
 正極合剤層の熱処理を行わなかったこと以外は実験例1と同様にして実験例2に係る非水電解質二次電池10を作製した。
(実験例3)
 SiOの含有量を黒鉛とSiOの合計質量に対して4質量%としたこと以外は実験例1と同様にして実験例3に係る非水電解質二次電池10を作製した。
(実験例4)
 正極合剤層の熱処理を行わなかったこと以外は実験例3と同様にして実験例4に係る非水電解質二次電池10を作製した。
(実験例5)
 SiOの含有量を黒鉛とSiOの合計質量に対して7質量%としたこと以外は実験例1と同様にして実験例5に係る非水電解質二次電池10を作製した。
(実験例6)
 正極合剤層の熱処理を行わなかったこと以外は実験例5と同様にして実験例6に係る非水電解質二次電池10を作製した。
(実験例7)
 正極活物質としてLiNi0.85Co0.12Al0.03の組成を有するリチウム遷移金属複合酸化物を用いたこと以外は実験例3と同様にして実験例7に係る非水電解質二次電池10を作製した。
(実験例8)
 正極活物質としてLiNi0.88Co0.09Al0.03の組成を有するリチウム遷移金属複合酸化物を用いたこと以外は実験例3と同様にして実験例8に係る非水電解質二次電池10を作製した。
(実験例9)
 正極活物質としてLiNi0.88Co0.09Al0.03の組成を有するリチウム遷移金属複合酸化物を用いたこと以外は実験例5と同様にして実験例9に係る非水電解質二次電池10を作製した。
(実験例10)
 炭素で被覆されたSiOに代えて、平均粒径(メジアン径D50)が5μmである多結晶のケイ素(Si)を用いたこと以外は実験例5と同様にして実験例10に係る非水電解質二次電池10を作製した。
(実験例11)
 正極合剤層の熱処理を行わなかったこと以外は実験例10と同様にして実験例11に係る非水電解質二次電池10を作製した。
(実験例12)
(ケイ素-黒鉛複合体の作製)
 窒素ガス雰囲気中で、単結晶のSi粒子をビーズミルとともに溶媒のメチルナフタレンへ投入し、平均粒径(メジアン径D50)が0.2μmになるようにSi粒子を湿式粉砕してケイ素含有スラリーを作製した。そのケイ素含有スラリーに黒鉛粒子と炭素ピッチを加えて混合し、炭素ピッチを炭化させた。その生成物を所定範囲の粒度になるように分級し、炭素ピッチを加えた。その炭素ピッチを炭化させて、Si粒子及び黒鉛粒子が非晶質炭素で結着したケイ素-黒鉛複合体を作製した。この複合体中のケイ素の含有量は20.9質量%であった。
 炭素で被覆されたSiOに代えて、上記のようにして作製したケイ素-黒鉛複合体を用いたこと以外は実験例5と同様にして実験例10に係る非水電解質二次電池10を作製した。
(実験例13)
 正極合剤層の熱処理を行わなかったこと以外は実験例10と同様にして実験例11に係る非水電解質二次電池10を作製した。
(実験例14)
(ケイ素-ケイ酸リチウム複合体の作製)
 不活性ガス雰囲気中で、Si粒子とケイ酸リチウム(LiSiO)粒子を、42:58の質量比で混合し、その混合物を遊星ボールミルでミリング処理を行った。そして不活性ガス雰囲気中でミリング処理した粒子を取り出し、600℃で4時間の熱処理を不活性ガス雰囲気中で行った。熱処理した粒子(以下、母粒子という)を粉砕し、石炭ピッチと混合して800℃で5時間の熱処理を不活性ガス雰囲気中で行って母粒子の表面に炭素の導電層を形成した。導電層に含まれる炭素量は、母粒子及び導電層の合計質量に対して5質量%とした。最後に、母粒子を分級して平均粒径が5μmのケイ素-ケイ酸リチウム複合体を作製した。
(ケイ素-ケイ酸リチウム複合体の分析)
 ケイ素-ケイ酸リチウム複合体の断面を走査型電子顕微鏡(SEM)で観察した結果、複合体中に含まれるSi粒子の平均粒径は100nm未満であった。また、LiSiO相中にSi粒子が均一に分散していることが確認された。ケイ素-ケイ酸リチウム複合体のXRDパターンには、SiとLiSiOに帰属される回折ピークが確認された。X線回折(XRD)パターンの2θ=27°付近に現れるLiSiOの面指数(111)の半値幅は0.233であった。なお、XRDパターンにSiOに帰属される回折ピークは確認されず、Si-NMRで測定したSiOの含有量は検出下限値未満であった。
 炭素で被覆されたSiOに代えて、上記のようにして作製したケイ素-ケイ酸リチウム複合体を用いたこと以外は実験例5と同様にして実験例14に係る非水電解質二次電池10を作製した。
(実験例15)
 正極合剤層の熱処理を行わなかったこと以外は実験例14と同様にして実験例15に係る非水電解質二次電池10を作製した。
(実験例16)
 負極活物質としてSiOを用いなかったこと以外は実験例2と同様にして実験例16に係る非水電解質二次電池10を作製した。
(実験例17)
 正極合剤層の熱処理を行ったこと以外は実験例16と同様にして実験例17に係る非水電解質二次電池10を作製した。
(正極の初期充放電効率の測定)
 作用極として各実験例で作製した正極板を所定の大きさに切り出したものを用い、対極及び参照電極としてリチウム金属箔を用いた二極式セルを作製した。この二極式セルを用いて次のような条件で正極板の初期充電容量と初期放電容量を測定し、正極の初期充放電効率を求めた。まず、正極板を用いた作用極を7mA/cmの定電流密度で作用極の電位が参照電極に対して4.3Vになるまで充電し、その後、作用極の電位を参照電極に対して4.3Vに維持したまま電流密度が1.4mA/cmになるまで充電した。このときの充電容量を初期充電容量Qc1とした。10分の休止後、正極板を用いた作用極を7mA/cmの定電流密度で作用極の電位が参照電極に対して2.5Vになるまで放電した。このとき得られた放電容量を初期放電容量Qd1とした。Qd1のQc1に対する百分率を算出して正極の初期充放電効率得た。
(負極の初期充放電効率の測定)
 作用極として各実験例で作製した負極板を所定の大きさに切り出したものを用い、対極及び参照電極としてリチウム金属箔を用いた二極式セルを作製した。この二極式セルを用いて次のような条件で負極板の初期充電容量と初期放電容量を測定し、負極の初期充放電効率を求めた。まず、負極板を用いた作用極を7mA/cmの定電流密度で作用極の電位が参照電極に対して0.01Vになるまで充電し、その後、作用極の電位を参照電極に対して0.01Vに維持したまま電流密度が1mA/cmになるまで充電した。このときの充電容量を初期充電容量Qc2とした。10分の休止後、負極板を用いた作用極を7mA/cmの定電流密度で作用極の電位が参照電極に対して1.0Vになるまで放電した。このときの放電容量を初期放電容量Qd2とした。Qd2のQc1に対する百分率を算出して負極の初期充放電効率を得た。
(サイクル特性の評価)
 実験例1~17の各電池を25℃の環境下で、0.3It(=1020mA)の定電流で電池電圧が4.2Vになるまで充電し、その後4.2Vの定電圧で電流が0.01It(=34mA)になるまで充電した。次いで、各電池を1It(=3400mA)の定電流で電池電圧が2.5Vになるまで放電した。この充放電を1サイクルとして、500サイクルを繰り返した。1サイクル目の放電容量と500サイクル目の放電容量を測定し、下記の式から500サイクル後の容量維持率を算出した。
 容量維持率(%)
   =(500サイクル目の放電容量/1サイクル目の放電容量)×100
 正極及び負極の初期充放電効率、並びにサイクル特性の結果を表1~4に示す。表中のNi含有量は正極活物質であるリチウム遷移金属複合酸化物に対するモル百分率として表したものである。
Figure JPOXMLDOC01-appb-T000001
 表1は、正極合剤層の熱処理の効果を端的に示すために実験例1~6の結果をまとめたものである。表1から、負極活物質中のSiO含有量の増加によって容量維持率は低下していくものの、正極合剤層の熱処理によって容量維持率はSiO含有量に関わらず一様に増加していることがわかる。正極合剤層の熱処理により、正極と負極の初期充放電効率の差が小さくなっていることが、容量維持率が向上した理由の一つとして考えられる。
Figure JPOXMLDOC01-appb-T000002
 表2は、正極活物質中のNi含有量の影響を確認するために実験例3、5、及び7~9の結果をまとめたものである。まず、実験例3、7及び8を比較すると正極活物質中のNi含有量の増加に伴って容量維持率が向上していることがわかる。実験例5と実験例9を比較しても、同様の結果が得られていることがわかる。これらの結果から正極活物質中のNi含有量は85mol%以上が好ましく、88mol%以上がより好ましいと考えられる。
 ただし、表1に示された結果も考慮すると、本発明の効果は正極合剤層の熱処理や負極活物質中のSiOによるところが大きいため、実験例に用いられたリチウムニッケル複合酸化物以外の正極活物質を用いた場合であっても同様な効果が得られることが期待される。
Figure JPOXMLDOC01-appb-T000003
 表3は、SiO以外のケイ素材料を用いた場合の影響を確認するために実験例10~15の結果をまとめたものである。表3から、ケイ素材料としてケイ素、ケイ素-黒鉛複合体、及びSi-LiSiO複合体のいずれを用いてもSiOの場合と同様の効果が得られることがわかる。そのため、本発明はリチウムを吸蔵、放出することができるケイ素含有化合物及びケイ素含有複合体に広く適用可能であると考えられる。
Figure JPOXMLDOC01-appb-T000004
 表4は、SiOを含まない負極活物質を用いた場合の正極合剤層の熱処理の効果を示すために実験例16と実験例17の結果をまとめたものである。表4から、実験例16と実験例17の間に容量維持率の差はみられないことがわかる。そのため、本発明の効果が発揮されるためには負極活物質がケイ素材料を含むことが必要である。
 以上の実験例の結果も参考にしつつ、本発明を実施するための形態についてさらに説明する。
 正極活物質としては、実験例に示したリチウムニッケル複合酸化物に限らず、リチウムイオンを吸蔵、放出することができるリチウム遷移金属複合酸化物を用いることができる。リチウム遷移金属複合酸化物としては、式LiMO(MはCo、Ni、及びMnの少なくとも一つ)、LiMn、及びLiFePOが挙げられる。これらのリチウム遷移金属複合酸化物は単独で又は2種以上を混合して用いることができる。さらに、これらのリチウム遷移金属複合酸化物はAl、Ti、Mg、及びZrからなる群から選ばれる少なくとも1つを添加して、又はその遷移金属元素の一部と置換して用いることもできる。
 例示したリチウム遷移金属複合酸化物の中でも、リチウムニッケル複合酸化物が好ましい。リチウムニッケル複合酸化物中のNi含有量は85mol%以上が好ましく、88mol%以上がより好ましい。リチウムニッケル複合酸化物の好ましい組成式として、式LiNiCo(1-b-c)(ただし、0<a≦1.2、0.8≦b≦1、0≦c≦0.2、MはAl、Mn、Mg、Ti、及びZrからなる群から選ばれる少なくとも1つ)が例示される。リチウムニッケル複合酸化物のより好ましい組成式として、式LiNiCo(1-b-c)(ただし、0<a≦1.2、0.85≦b≦1、0≦c≦0.15、MはAl、Mn、Mg、Ti、及びZrからなる群から選ばれる少なくとも1つ)が例示される。なお、式中のLi量を表すaは充放電中に変化することを考慮して上記の範囲としている。作製直後の非水電解質二次電池においては、aは0.95≦a≦1.2を満たすことが好ましい。
 ケイ素材料として、SiとOを構成元素に含む化合物であれば制限なく用いることができるが、式SiO(0.5≦x<1.6)で表される酸化ケイを用いることが好ましい。
 実験例のように酸化ケイ素の表面に炭素を被覆することは必ずしも必須でないが、酸化ケイ素の導電性を向上させることができるため炭素を酸化ケイ素の表面に被覆することが好ましい。炭素は酸化ケイ素の表面の一部を被覆していれば十分であり、炭素の被覆量は酸化ケイ素に対して0.1質量%以上10質量%以下が好ましく、0.1質量%以上5質量%以下がより好ましい。
 ケイ素材料として、ケイ素を単独で又は他の材料との複合体として用いることもできる。ケイ素には単結晶ケイ素、多結晶ケイ素、及び非晶質ケイ素のいずれも用いることができるが、結晶子の大きさが60nm以下の多結晶ケイ素及び非晶質ケイ素が好ましい。このようなケイ素を用いることで、充放電時の粒子の割れなどが抑制され、サイクル特性が向上する。ケイ素の平均粒径(メジアン径D50)は0.1μm以上10μm以下であることが好ましく、より好ましくは0.1μm以上5μm以下である。このような平均粒径を有するケイ素を得るための手段として、ジェットミルやボールミルを用いた乾式粉砕法やビーズミルやボールミルを用いた湿式粉砕法が挙げられる。ケイ素はニッケル、銅、コバルト、クロム、鉄、銀、チタン、モリブデン、及びタングステンからなる群から選ばれる少なくとも1つの金属元素と合金化することもできる。
 ケイ素と複合体を形成する材料として、ケイ素の充放電に伴う大きな体積変化を緩和する作用を有する材料を用いることが好ましい。そのような材料として、黒鉛及びケイ酸リチウムが例示される。
 ケイ素-黒鉛複合体は、実験例8で示したようにケイ素粒子と黒鉛粒子が互いに非晶質炭素で結着されていることが好ましい。黒鉛粒子として、人造黒鉛及び天然黒鉛のいずれの粒子も用いることができる。ケイ素粒子と黒鉛粒子を結着する非晶質炭素の前駆体として、ピッチ系材料、タール系材料、及び、樹脂系材料を用いることができる。樹脂系材料として、ビニル系樹脂、セルロース系樹脂、及びフェノール系樹脂が例示される。これらの非晶質炭素前駆体は、700~1300℃の熱処理を不活性ガス雰囲気中で行うことで非晶質炭素に変化させることができる。このように非晶質炭素がケイ素粒子と黒鉛粒子を結着する場合は、非晶質炭素はケイ素-黒鉛複合体の構成要素に含まれる。なお、ケイ素-黒鉛複合体中のケイ素含有量は10質量%以上60質量%以下であることが好ましい。
 ケイ素-ケイ酸リチウム複合体は、実験例14で示したように、ケイ酸リチウム相中にケイ素粒子が分散した構造を有することが好ましい。ケイ素-ケイ酸リチウム複合体の表面を、SiOと同様に炭素で被覆してもよい。その場合の炭素は任意の成分であり、ケイ素-ケイ酸リチウム複合体の構成要素ではない。なお、ケイ素-ケイ酸リチウム複合体中のケイ素含有量は40質量%以上60質量%以下であることが好ましい。
 ところで、SiOは微視的にはSiO相中にSi粒子が分散した構造を有している。このSiOがSiの充放電時の膨張、収縮を緩和するように作用していると考えられる。しかし、SiOを負極活物質に用いた場合、充電時にSiOが式(1)のようにリチウム(Li)と反応する。
 2SiO+8Li+8e → LiSi+LiSiO ・・・ (1)
 SiOとLiの反応によって生成したLiSiOは可逆的にリチウムを挿入、脱離することができない。そのため、SiOを負極活物質として含む負極には、初回充電時にLiSiOの生成に伴う不可逆容量が蓄積される。一方、ケイ酸リチウムはSiOのような不可逆容量を蓄積する化学反応が起きないため、負極の初回充放電効率を低下させることなくSiの充放電時の体積変化を緩和することができる。
 ケイ酸リチウムとして、実験例14で示したLiSiOに限定されず、一般式Li2zSiO(2+z)(0<z<2)で表されるケイ酸リチウムを用いることができる。また、XRDパターンにおけるケイ酸リチウムの(111)面の回折ピークの半値幅が0.05°以上であることが好ましい。これにより、ケイ素-ケイ酸リチウム複合体粒子内のリチウムイオン伝導性やSiの体積変化の緩和効果がさらに向上する。
 正極合剤層の熱処理により、ケイ素材料を含む非水電解質二次電池のサイクル特性を向上することができるため、負極活物質中のケイ素材料の含有量は特に限定されない。ただし、電池容量とサイクル特性のバランスを考慮すると、ケイ素材料の含有量は黒鉛と酸化ケイ素の合計質量に対して4質量%以上20質量%以下が好ましく、4質量%以上10質量%以下がより好ましい。
 非水電解質としては、非水溶媒中に電解質塩としてのリチウム塩を溶解させたものを用いることができる。非水溶媒に代えて、又は非水溶媒とともにゲル状のポリマーを用いた非水電解質を用いることもできる。
 非水溶媒としては、環状炭酸エステル、鎖状炭酸エステル、環状カルボン酸エステル及び鎖状カルボン酸エステルを用いることができ、これらは2種以上を混合して用いることが好ましい。環状炭酸エステルとしては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)及びブチレンカーボネート(BC)が例示される。また、フルオロエチレンカーボネート(FEC)のように、水素の一部をフッ素で置換した環状炭酸エステルを用いることもできる。鎖状炭酸エステルとしては、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)及びメチルプロピルカーボネート(MPC)などが例示される。環状カルボン酸エステルとしてはγ-ブチロラクトン(γ-BL)及びγ-バレロラクトン(γ-VL)が例示され、鎖状カルボン酸エステルとしてはピバリン酸メチル、ピバリン酸エチル、メチルイソブチレート及びメチルプロピオネートが例示される。
 リチウム塩としては、LiPF、LiBF、LiCFSO、LiN(CFSO、LiN(CSO、LiN(CFSO)(CSO)、LiC(CFSO、LiC(CSO、LiAsF、LiClO、Li10Cl10及びLi12Cl12が例示される。これらの中でもLiPFが特に好ましく、非水電解質中の濃度は0.5~2.0mol/Lであることが好ましい。LiPFにLiBFなど他のリチウム塩を混合することもできる。
 正極合剤層の熱処理の好ましい温度範囲はポリフッ化ビニリデンの融点より20℃以上、ポリフッ化ビニリデンの分解温度以下である。より具体的には、熱処理の好ましい温度範囲は160℃以上350℃以下であり、より好ましくは200℃以上300℃以下である。熱処理方法は正極合剤層が上述の温度範囲の環境下に置かれる方法であれば特に限定されないが、熱風や加熱されたロールを正極合剤層に接触させる方法が簡便であり好ましい。特に、加熱されたロールを用いる方法は短時間で熱処理を行うことができるためより好ましい。正極合剤層の熱処理時間は熱処理方法に応じて適宜決定することができる。例えば、加熱されたロールを用いる方法であれば、0.1秒以上20秒以下であることが好ましい。
 正極合剤層を圧縮する場合は正極合剤層の熱処理を圧縮前及び圧縮後のいずれに行ってもよいが、圧縮後に正極合剤層の熱処理を行うことが好ましい。
 本発明によれば、高容量でサイクル特性に優れた非水電解質二次電池を提供することができる。そのため、本発明の産業上の利用可能性は大きい。
10   非水電解質二次電池
11   正極板
12   正極リード
13   負極板
14   負極リード
15   セパレータ
16   電極体
17   上部絶縁板
18   下部絶縁板
19   ガスケット
20   封口体
21   外装缶

Claims (9)

  1.  正極板と、黒鉛とケイ素材料を含む負極合剤層が形成された負極板と、を有する非水電解質二次電池の製造方法であって、
     リチウム遷移金属複合酸化物とポリフッ化ビニリデンを含む正極合剤スラリーを正極集電体上に塗布するステップと、
     前記正極合剤スラリーを乾燥して正極合剤層を形成するステップと、
     前記正極合剤層を熱処理するステップと、
     を備える非水電解質二次電池の製造方法。
  2.  前記リチウム遷移金属複合酸化物が式LiNiCo(1-b-c)2(ただし、0<a≦1.2、0.8≦b≦1、0≦c≦0.2、MはAl、Mn、Mg、Ti、及びZrからなる群から選ばれる少なくとも1つ)で表される請求項1に記載の非水電解質二次電池の製造方法。
  3.  前記リチウム遷移金属複合酸化物が式LiNiCo(1-b-c)(ただし、0<a≦1.2、0.85≦b≦1、0≦c≦0.15、MはAl、Mn、Mg、Ti、及びZrからなる群から選ばれる少なくとも1つ)で表される請求項1に記載の非水電解質二次電池の製造方法。
  4.  前記熱処理は、熱風又は加熱されたロールを前記正極合剤層に接触させることによって行われる請求項1から3のいずれかに記載の非水電解質二次電池の製造方法。
  5.  前記熱処理は160℃以上350℃以下で行われる請求項1から4のいずれかに記載の非水電解質二次電池の製造方法。
  6.  前記ケイ素材料が式SiO(0.5≦x<1.6)で表される酸化ケイ素である請求項1から5のいずれかに記載の非水電解質二次電池の製造方法。
  7.  前記ケイ材料が、ケイ素粒子と黒鉛粒子が非晶質炭素で互いに結着している複合体である請求項1から5のいずれかに記載の非水電解質二次電池。
  8.  前記ケイ素材料が、式Li2zSiO(2+z)(0<z<2)で表されるケイ酸リチウム相にケイ素粒子が分散している複合体である請求項1から5のいずれかに記載の非水電解質二次電池。
  9.  前記ケイ素材料の含有量は、前記黒鉛と前記ケイ素材料の合計質量に対して4質量%以上20質量%以下である請求項1から8のいずれかに記載の非水電解質二次電池。
PCT/JP2016/000920 2015-02-27 2016-02-22 非水電解質二次電池の製造方法 WO2016136226A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/546,374 US20180013132A1 (en) 2015-02-27 2016-02-22 Method for manufacturing nonaqueous electrolyte secondary battery
CN201680012197.8A CN107431249A (zh) 2015-02-27 2016-02-22 非水电解质二次电池的制造方法
JP2017501929A JPWO2016136226A1 (ja) 2015-02-27 2016-02-22 非水電解質二次電池の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-038617 2015-02-27
JP2015038617 2015-02-27

Publications (1)

Publication Number Publication Date
WO2016136226A1 true WO2016136226A1 (ja) 2016-09-01

Family

ID=56788282

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000920 WO2016136226A1 (ja) 2015-02-27 2016-02-22 非水電解質二次電池の製造方法

Country Status (4)

Country Link
US (1) US20180013132A1 (ja)
JP (1) JPWO2016136226A1 (ja)
CN (1) CN107431249A (ja)
WO (1) WO2016136226A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135253A1 (ja) * 2017-01-20 2018-07-26 Necエナジーデバイス株式会社 正極活物質、正極およびリチウムイオン二次電池
CN109716563A (zh) * 2016-09-19 2019-05-03 优美科公司 可再充电电化学电池和电池组
WO2019245286A1 (ko) * 2018-06-20 2019-12-26 주식회사 엘지화학 리튬 이차 전지용 양극 활물질 및 리튬 이차 전지
WO2021153526A1 (ja) * 2020-01-31 2021-08-05 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極、非水電解質二次電池および非水電解質二次電池用負極の製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3709405B1 (en) 2018-01-30 2024-08-07 LG Energy Solution, Ltd. Negative electrode active material, preparation method thereof, negative electrode including the negative electrode active material, and secondary battery including the negative electrode
WO2020170543A1 (ja) * 2019-02-19 2020-08-27 三洋電機株式会社 非水電解質二次電池、および、それに用いる正極板の製造方法
CN109950510A (zh) * 2019-04-10 2019-06-28 珠海冠宇电池有限公司 一种负极极片及含有该极片的锂离子电池

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273259A (ja) * 2006-03-31 2007-10-18 Sanyo Electric Co Ltd 非水電解質二次電池の製造方法
WO2010029675A1 (ja) * 2008-09-09 2010-03-18 パナソニック株式会社 非水電解質二次電池及びその製造方法
WO2012132387A1 (ja) * 2011-03-28 2012-10-04 株式会社豊田自動織機 電極材料及びその製造方法、並びに電極、二次電池及び車両
JP2013073764A (ja) * 2011-09-27 2013-04-22 Toshiba Corp 非水電解質二次電池用負極活物質、非水電解質二次電池、電池パック及び非水電解質二次電池用負極活物質の製造方法
WO2014119790A1 (ja) * 2013-02-04 2014-08-07 日本ゼオン株式会社 リチウムイオン二次電池正極用スラリー

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095568A (ja) * 2005-09-29 2007-04-12 Sanyo Electric Co Ltd リチウム二次電池及びその製造方法
JP5369120B2 (ja) * 2009-01-30 2013-12-18 パナソニック株式会社 非水電解質二次電池用正極及びその製造方法、並びに該非水電解質二次電池用正極を備えた非水電解質二次電池及びその製造方法
JP5573082B2 (ja) * 2009-09-30 2014-08-20 日本ゼオン株式会社 二次電池電極用バインダー、二次電池電極および二次電池
JP2011165480A (ja) * 2010-02-09 2011-08-25 Fujifilm Corp 二次電池用組成物、二次電池用電極、及び二次電池
JP2012094354A (ja) * 2010-10-26 2012-05-17 Dainippon Printing Co Ltd リチウムイオン二次電池、および電池パック
CN103443970A (zh) * 2011-03-16 2013-12-11 三洋电机株式会社 非水电解质二次电池及其制造方法
JP5867044B2 (ja) * 2011-12-12 2016-02-24 株式会社村田製作所 絶縁性接着層およびそれを用いた蓄電デバイス
US20140356724A1 (en) * 2011-12-22 2014-12-04 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery
JP5831268B2 (ja) * 2012-02-07 2015-12-09 株式会社豊田自動織機 二次電池用活物質およびその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007273259A (ja) * 2006-03-31 2007-10-18 Sanyo Electric Co Ltd 非水電解質二次電池の製造方法
WO2010029675A1 (ja) * 2008-09-09 2010-03-18 パナソニック株式会社 非水電解質二次電池及びその製造方法
WO2012132387A1 (ja) * 2011-03-28 2012-10-04 株式会社豊田自動織機 電極材料及びその製造方法、並びに電極、二次電池及び車両
JP2013073764A (ja) * 2011-09-27 2013-04-22 Toshiba Corp 非水電解質二次電池用負極活物質、非水電解質二次電池、電池パック及び非水電解質二次電池用負極活物質の製造方法
WO2014119790A1 (ja) * 2013-02-04 2014-08-07 日本ゼオン株式会社 リチウムイオン二次電池正極用スラリー

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102271220B1 (ko) * 2016-09-19 2021-07-01 유미코아 재충전이 가능한 전기화학 셀 및 배터리(rechargeable electrochemical cell and battery)
CN109716563A (zh) * 2016-09-19 2019-05-03 优美科公司 可再充电电化学电池和电池组
KR20190060792A (ko) * 2016-09-19 2019-06-03 유미코아 재충전이 가능한 전기화학 셀 및 배터리(rechargeable electrochemical cell and battery)
JP2019530161A (ja) * 2016-09-19 2019-10-17 ユミコア 再充電可能な電気化学セル及び電池
US11502285B2 (en) 2016-09-19 2022-11-15 Umicore Rechargeable electrochemical cell and battery
JP7107923B2 (ja) 2016-09-19 2022-07-27 ユミコア 再充電可能な電気化学セル及び電池
CN109716563B (zh) * 2016-09-19 2022-02-11 优美科公司 可再充电电化学电池和电池组
TWI727096B (zh) * 2016-09-19 2021-05-11 比利時商烏明克公司 可充電之電化學電池及電池組
US10998542B2 (en) 2017-01-20 2021-05-04 Envision Aesc Energy Devices Ltd. Positive electrode active material, positive electrode, and lithium ion secondary battery
WO2018135253A1 (ja) * 2017-01-20 2018-07-26 Necエナジーデバイス株式会社 正極活物質、正極およびリチウムイオン二次電池
JPWO2018135253A1 (ja) * 2017-01-20 2019-11-07 株式会社エンビジョンAescエナジーデバイス 正極活物質、正極およびリチウムイオン二次電池
WO2019245286A1 (ko) * 2018-06-20 2019-12-26 주식회사 엘지화학 리튬 이차 전지용 양극 활물질 및 리튬 이차 전지
WO2021153526A1 (ja) * 2020-01-31 2021-08-05 パナソニックIpマネジメント株式会社 非水電解質二次電池用負極、非水電解質二次電池および非水電解質二次電池用負極の製造方法

Also Published As

Publication number Publication date
CN107431249A (zh) 2017-12-01
US20180013132A1 (en) 2018-01-11
JPWO2016136226A1 (ja) 2017-12-28

Similar Documents

Publication Publication Date Title
JP6652125B2 (ja) 非水電解質二次電池
KR101465490B1 (ko) 안전성과 안정성이 향상된 리튬 이차 전지
WO2016136226A1 (ja) 非水電解質二次電池の製造方法
JP5611453B2 (ja) リチウムイオン二次電池用負極及びその負極を用いたリチウムイオン二次電池
JP6429172B2 (ja) 優れた電気化学的性能を有する正極活物質及びこれを含むリチウム二次電池
CN107408725B (zh) 非水电解质二次电池
US20210111395A1 (en) Negative electrode active material, negative electrode including the same and lithium secondary battery including the same
JP2009224307A (ja) 非水電解質二次電池及びその製造方法
KR20170048210A (ko) 음극 활물질 및 이를 포함하는 리튬 이차전지
JP2013101921A (ja) リチウムイオン二次電池用負極及びその負極を用いたリチウムイオン二次電池
CN111656580B (zh) 锂二次电池用负极活性材料、包含其的负极以及包含所述负极的锂离子二次电池
CN110892562A (zh) 锂二次电池用负极活性材料、其制造方法和通过使用其而获得的锂二次电池
WO2016104024A1 (ja) リチウムイオン電池
JP2013110104A (ja) リチウムイオン二次電池用負極及びその負極を用いたリチウムイオン二次電池
WO2012127548A1 (ja) リチウムイオン二次電池用負極およびリチウムイオン二次電池
KR102227102B1 (ko) 리튬이차전지 전극 코팅 방법, 및 이에 따라 제조한 전극을 포함하는 리튬이차전지
JP7214662B2 (ja) 非水電解質二次電池
KR102320977B1 (ko) 실리콘 복합체를 포함하는 음극 활물질 및 이를 포함하는 리튬 이차전지
JP2005056581A (ja) 非水電解質二次電池用炭素材料及びそれを用いた非水電解質二次電池
CN115152048A (zh) 非水电解质二次电池用负极和非水电解质二次电池
JP2017016773A (ja) リチウムイオン二次電池負極及び二次電池
JP7471738B2 (ja) 負極活物質、これを含む負極および二次電池
JP5621868B2 (ja) リチウムイオン二次電池
EP4411871A1 (en) Anode active material for lithium secondary battery and lithium secondary battery including the same
EP4250420A1 (en) Cathode composition for lithium secondary battery and lithium secondary battery manufactured using the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16754977

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15546374

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017501929

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16754977

Country of ref document: EP

Kind code of ref document: A1