WO2016132951A1 - Polishing composition - Google Patents

Polishing composition Download PDF

Info

Publication number
WO2016132951A1
WO2016132951A1 PCT/JP2016/053718 JP2016053718W WO2016132951A1 WO 2016132951 A1 WO2016132951 A1 WO 2016132951A1 JP 2016053718 W JP2016053718 W JP 2016053718W WO 2016132951 A1 WO2016132951 A1 WO 2016132951A1
Authority
WO
WIPO (PCT)
Prior art keywords
polishing
site
silicon
polishing composition
group
Prior art date
Application number
PCT/JP2016/053718
Other languages
French (fr)
Japanese (ja)
Inventor
晃仁 安井
Original Assignee
株式会社フジミインコーポレーテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社フジミインコーポレーテッド filed Critical 株式会社フジミインコーポレーテッド
Publication of WO2016132951A1 publication Critical patent/WO2016132951A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting

Definitions

  • the present invention relates to a polishing composition.
  • CMP chemical mechanical polishing
  • LSI manufacturing process particularly shallow trench isolation (STI), planarization of interlayer insulating film (ILD film), tungsten plug formation
  • CMP is used in processes such as the formation of multilayer wiring composed of copper and a low dielectric constant film.
  • polishing a polishing object such as polysilicon, silicon oxide, silicon nitride, or a composite material thereof at high speed.
  • the particle diameter, shape and concentration of the abrasive grains are generally improved by surface modification with a coupling agent or the like.
  • Patent Document 1 cannot sufficiently control the polishing rate of a polishing object having a silicon-oxygen bond such as a silicon oxide film, and further improvement has been desired.
  • An object of the present invention is to provide a polishing composition capable of sufficiently controlling the polishing rate of a polishing object having a silicon-oxygen bond such as a silicon oxide film.
  • the present inventor has intensively studied to solve the above problems.
  • a polishing composition capable of sufficiently controlling the polishing rate of a polishing object having a silicon-oxygen bond such as a silicon oxide film in at least one of acidic, neutral and basic regions. Can be provided.
  • X to Y indicating a range means “X or more and Y or less”.
  • operations and physical properties are measured under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
  • the present invention includes (1) an action site that interacts with a polishing object having a silicon-oxygen bond, and a suppression part that suppresses a polishing component that polishes the polishing object from approaching the polishing object; And (2) abrasive grains; and (3) a dispersion medium, wherein the polishing object having the silicon-oxygen bond in at least one of acidic, neutral, and basic regions.
  • a polishing composition that suppresses the polishing rate is also referred to as “polishing composition of the present invention”.
  • the organic compound of the present invention polishes the polishing object with an action site that interacts with a polishing object having a silicon-oxygen bond (hereinafter, also simply referred to as “polishing object”).
  • a polishing component that suppresses the approach of the polishing component to the polishing object also referred to as “organic compound of the present invention” in the present specification.
  • the organic compound of the present invention suppresses the action site that interacts with the polishing object having a silicon-oxygen bond in one molecule and the polishing component that polishes the polishing object from approaching the polishing object. And having a suppression site at the same time. Therefore, the site of action in the organic compound interacts with the object to be polished, and on the other hand, the suppression site prevents the polishing component that polishes the object to be polished from approaching the object to be polished. Therefore, a polishing composition containing such an organic compound sufficiently controls a polishing object having a silicon-oxygen bond, such as a silicon oxide film, in at least one of acidic, neutral and basic regions. In other words, a compound that does not have an action site and a suppression site simultaneously in one molecule is distinguished from the organic compound of the present invention.
  • polishing the polishing rate of the polishing object having a silicon-oxygen bond in at least one of acidic, neutral or basic regions as shown in the examples, A polishing object having a silicon-oxygen bond such as a silicon oxide film in any region as compared with the case where no additives (that is, components other than “abrasive grains, dispersion medium, and pH adjuster as necessary”) are added at all. This means that the polishing rate is suppressed.
  • the “polishing component” is a component capable of polishing an object to be polished, and means, for example, abrasive grains.
  • the organic compound of the present invention has an action site that interacts with a polishing object having a silicon-oxygen bond.
  • the “action site” may have any structure as long as it is a site that interacts with an object to be polished having a silicon-oxygen bond, preferably a nitrogen atom, an oxygen atom, It has at least one selected from the group consisting of a sulfur atom and a phosphorus atom. By having such a structure, it is possible to interact with a polishing object having a silicon-oxygen bond.
  • the action site may be in the form of a salt, and a sodium salt, potassium salt, ammonium salt, amine salt or the like is preferable as the salt.
  • the number of action sites is not particularly limited as long as it is 1 or more per molecule, and may be 2 or more, or 3 or more.
  • the action site has at least a nitrogen atom and an oxygen atom.
  • the site of action includes a sulfide group, an amino group, a phosphonic acid group or a salt group thereof, an N-oxide structure, a carboxyl group or a salt group thereof, a phenol structure, an alkylene oxide structure (a diether structure). And at least one selected from the group consisting of betaine structures.
  • the alkylene oxide is preferably methylene oxide.
  • a plurality of alkylene oxide structures may be contained in one molecule.
  • the “amino group” means a group having the structure of —NH 2 .
  • the action site has a structure in which a nitrogen atom and an oxygen atom are directly bonded, or a divalent organic group having 3 or less carbon atoms between the nitrogen atom and the oxygen atom. Is intervening.
  • a structure in which a nitrogen atom and an oxygen atom are directly bonded, or a divalent organic group having 3 or less carbon atoms between the nitrogen atom and the oxygen atom. Is intervening.
  • This relationship is determined based on the relationship between the electronegativity of the elements, which tends to be positively charged or easily negatively charged.
  • the interaction of electrons in the molecule of the same organic compound influences each other as the distance between the atoms becomes shorter. Therefore, the charge intensity of each atom becomes stronger. . From such a theory, it is inferred that the range of strength that can sufficiently act on the oxygen-silicon structure at the site of action is 3 or less in terms of carbon number.
  • the mechanism of action of the structures having the respective electron densities is such that the nitrogen atoms in a state where the electron density is low become oxygen atoms on the surface of the film having an oxygen-silicon structure, and the state where the electron density is high It is considered that the site of action of the organic compound is chemically adsorbed on the surface of the film having an oxygen-silicon structure because each oxygen atom acts on a silicon atom.
  • the action site is preferably at least one of an N-oxide structure and a betaine structure.
  • the organic group of the suppression site is particularly preferably a site having an alkyl group having 8 or more carbon atoms.
  • the functional site when the functional site has an N-oxide structure, it is preferable that the functional site does not have a carboxyl group at the same time.
  • the organic compound is preferably a tertiary amine oxide.
  • the oxidizing agents enumerated below such as hydrogen peroxide.
  • the action site is an N-oxide structure
  • the suppression site is an alkyl group or an acyl group having 8 or more carbon atoms.
  • the N-oxide structure has a strong chemisorption action on the surface of the object to be polished having a silicon-oxygen bond
  • the alkyl group or acyl group having 8 or more carbon atoms is a three-dimensional structure. It has a function of obstructing the action of the polishing component.
  • the above mechanism is only speculation and does not limit the technical scope of the present invention.
  • the carbon number of the alkyl group or acyl group may be 9 or more, 10 or more, and the upper limit may be 20 or less, or 15 or less.
  • the alkyl group those listed below are suitable.
  • the acyl group preferably has a “—COR” structure, and R is preferably a similar alkyl group.
  • the action site when an action site has a nitrogen atom and the N-oxide structure and the betaine structure are not adopted, the action site is bonded to a hydrogen atom without a carbon atom. It is preferable.
  • an aromatic substance such as benzene or naphthalene is used. It is preferably bonded to a group ring.
  • an oxygen atom when used as an action site, when the N-oxide structure and the betaine structure are not adopted, when there are three oxygen atoms, a phosphorus atom is contained. Preferably it is.
  • the organic compound of the present invention has a suppression site for suppressing the polishing component that polishes the polishing object from approaching the polishing object.
  • the “suppressed part” may have any structure as long as the polishing component for polishing the polishing object has an action of suppressing the approach to the polishing object.
  • the number of suppression sites is not particularly limited as long as it is 1 or more per molecule, and may be 2 or more, or 3 or more.
  • the suppression site is preferably a site having a total of 3 or more carbon atoms. In one embodiment of the present invention, the suppression sites have a total of 4 or more carbon atoms. In one embodiment of the present invention, the suppression sites have a total of 6 or more carbon atoms. In one embodiment of the present invention, the suppression sites have a total of 8 or more carbon atoms.
  • the total number of carbon atoms is 3 or more, it is easy to produce a molecular arrangement film that is a suppression film by suppressing a decrease in hydrophobicity at the suppression site. Further, when the total number of carbon atoms is 3 or more, the polishing component is further prevented from approaching the surface of the object to be polished (substrate), so that the suppression effect is improved.
  • total means that, for example, when the organic compound is “laurylphosphonic acid”, “action site” is “phosphonic acid group” and “suppression site” is “lauryl group”.
  • the carbon number of the “suppression site” is 12.
  • the organic compound is “betaine”
  • the “action site” is “betaine structure”
  • the “action site” is three “methyl groups”, so the total number of carbon atoms is 3.
  • the suppression sites have a total of 20 or less carbon atoms. On the other hand, in one embodiment of the present invention, the suppression sites have a total of 18 or less carbon atoms. On the other hand, in one embodiment of the present invention, the suppression sites have a total of 16 or less carbon atoms. If the organic chain (carbon number) of the suppression site is too large, the solubility in the slurry (polishing composition) will be low, so an amount of inhibitor (organic compound of the present invention) sufficient to suppress can be added. There is a risk of disappearing.
  • the suppression site tends to bend (a state where it is bent not in a straight line), and the density of the suppression film and the generation rate of the molecular arrangement film decrease, resulting in a suppression effect. There is also a risk of lowering.
  • part is a site
  • the suppression site is a site having an alkyl group having 4 or more carbon atoms.
  • the suppression site is a site having an alkyl group having 7 or more carbon atoms.
  • the site of action when the suppression site is a relatively short alkyl group having 1 to 6 carbon atoms, the site of action has a betaine structure.
  • the suppression site is a site having an alkyl group having 8 or more carbon atoms.
  • the polishing component for polishing the object to be polished has the action of suppressing the approach to the object to be polished more reliably.
  • part is a site
  • the organic compound of the present invention is important in that the action site and the suppression site coexist in one molecule.
  • the suppression site is a site having an alkyl group having 11 or more carbon atoms, and according to a further preferred embodiment of the present invention, the suppression site is an alkyl group having 12 or more carbon atoms. It is a site
  • the alkyl group may be linear or branched, but in the case of branching, the number of organic molecules that can act on the same area decreases (the density of organic molecules decreases). There is a possibility that the suppression ability may be reduced. Moreover, in the case of a branched alkyl group, it is conceivable that the molecular arrangement speed of the suppression film composed of an organic compound (an organic molecule of the inhibitor) decreases due to the complexity of the structure. Therefore, it is preferably linear.
  • alkyl group may be substituted with a hydroxyl group, a halogen atom, or the like.
  • alkyl group having 1 to 20 carbon atoms are not particularly limited, but are methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl.
  • the number of suppression sites is not particularly limited, but the number of alkyl groups having 4 or more carbon atoms in the suppression sites in the organic compound of the present invention is 1 to 3. It is preferable that there is one, and more preferably one from the viewpoint of ease of molecular alignment film of the inhibitor organic molecule (organic compound of the present invention). Further, according to a more preferred embodiment of the present invention, the number of alkyl groups having 10 or more carbon atoms in the suppression site in the organic compound of the present invention is preferably 1 to 3, and the inhibitor organic molecule (present From the viewpoint of easiness of the molecular alignment film of the organic compound) of the invention, it is more preferably one.
  • examples of the organic compound of the present invention include lauryl betaine, 4-laurylpyridine N-oxide, N, N-dimethyldodecylamine N-oxide, N, N-dihydroxyethyllaurylamine N-oxide, 4-heptylphenol, n-octylamine, nonanoic acid, laurylphosphonic acid, betaine, 4-n-octylbenzenecarboxylic acid, ethylene glycol dibutyl ether, heptylmethyl sulfide, 4-octylpyridine N-oxide, 4-hexylpyridine N-oxide, 4- Butylpyridine N-oxide, 4-ethylpyridine N-oxide, carboxylatomethyloctyldimethylammonium, carboxylatomethylhexyldimethylammonium, carboxylatomethylbutyldimethylammonium N, N-dimethyl Silamine N-oxide, N, N-dimethyl
  • the interaction is due to a chemical bond selected from at least one of an ionic bond, a covalent bond and a hydrogen bond.
  • a chemical bond selected from at least one of an ionic bond, a covalent bond and a hydrogen bond.
  • the interaction is due to, for example, a hydrophobic interaction or an intermolecular force (van der Waals force)
  • the interaction is not firmly adsorbed to the polishing object having a silicon-oxygen bond, and the effect of the present invention is achieved. May not.
  • the organic compound (polishing rate inhibitor) of the present invention adsorbed on the surface of the polishing object (substrate) to be removed from the surface of the polishing object (substrate) by abrasive grains or a polishing pad.
  • at least one of strong bonds such as covalent bonds.
  • the polishing rate of the polishing object having a silicon-oxygen bond can be suppressed in any of acidic, neutral and basic regions.
  • the polishing object having the silicon-oxygen bond in all the acidic, neutral or basic regions It is preferable to suppress the polishing rate.
  • the content of the organic compound in the polishing composition of the present invention is not particularly limited, but is preferably 0.01 mM or more, more preferably 0.1 mM or more, and even more preferably 0.5 mM or more from the viewpoint of controlling polishing efficiency.
  • it is 1.0 mM or more, more preferably 1.5 mM or more, still more preferably 2.0 mM or more, and particularly preferably 2.5 mM or more.
  • 100 mM or less is preferable, 50 mM or less is more preferable, 30 mM or less is more preferable, 20 mM or less is further more preferable, 15 mM or less is even more preferable, and 10 mM. More preferably, it is more preferably 5 mM or less.
  • the action site of the present invention can be chemically bonded to the surface of the polishing object having a silicon-oxygen bond, while the suppression site of the organic compound is the polishing object.
  • a molecular alignment film is formed so as to face the liquid contact side from the surface of the object, or to cover the surface, thereby inhibiting the action of the polishing component for polishing the object to be polished. Since the suppression part of the organic compound is highly hydrophobic, organic compounds having the same action part and the suppression part are aggregated by hydrophobic interaction, so that the surface of the polishing object having a silicon-oxygen bond is collected. A suppression film is formed.
  • polishing of an object to be polished having a silicon-oxygen bond such as a silicon oxide film, in at least one region (preferably in two or more regions) of acidic, neutral or basic.
  • a polishing composition capable of sufficiently controlling the speed can be provided.
  • a polishing composition capable of sufficiently controlling the polishing rate of an object to be polished having a silicon-oxygen bond such as a silicon oxide film can be provided.
  • a silicon-oxygen bond such as a silicon oxide film
  • the polishing composition of the present invention contains abrasive grains.
  • the abrasive used may be any of inorganic particles, organic particles, and organic-inorganic composite particles.
  • the inorganic particles include particles made of metal oxides such as silica, alumina, ceria, titania, silicon nitride particles, silicon carbide particles, and boron nitride particles.
  • Specific examples of the organic particles include latex particles, polystyrene particles, and polymethyl methacrylate (PMMA) particles.
  • PMMA polymethyl methacrylate
  • the object to be polished is removed by mechanical action by scraping the object to be polished with abrasive grains, but this mechanical action is dependent on the material, shape and particle diameter of the abrasive grains. , The particle size distribution has a great influence. With abrasive grains having a low Mohs hardness or a material that is easily crushed, the mechanical action is weakened, and the polishing rate of a polishing object having a silicon-oxygen bond such as a silicon oxide film can be suppressed.
  • the trapping with the object to be polished is weakened, so that the polishing rate of the object to be polished having a silicon-oxygen bond such as a silicon oxide film can be suppressed.
  • Abrasive grains having a small particle diameter can reduce the strain applied to the surface of the object to be polished, so that the polishing rate of an object to be polished having a silicon-oxygen bond such as a silicon oxide film can be suppressed.
  • Abrasive grains having a narrower particle size distribution can reduce the force applied to each particle, so that the polishing rate of a polishing object having a silicon-oxygen bond such as a silicon oxide film can be suppressed.
  • the electrostatic repulsive force acting between the particle and the substrate surface increases or the electrostatic attractive force decreases.
  • the polishing rate of a polishing object having a silicon-oxygen bond such as a silicon oxide film can be suppressed.
  • the mechanical action is adjusted by these methods to suppress the polishing rate of the silicon oxide film, the polishing efficiency of other film types is often also suppressed, so that polishing is performed by the effect of the additive. It is desirable to control efficiency.
  • silica is preferable, and colloidal silica is particularly preferable from the viewpoint of suppressing generation of polishing flaws.
  • colloidal silica that can be used is not particularly limited, and for example, surface-modified colloidal silica can be used.
  • Surface modification of colloidal silica (supported colloidal silica) can be performed, for example, by mixing a metal such as aluminum, titanium or zirconium, or an oxide thereof with colloidal silica and doping the surface of silica particles.
  • it can be carried out by chemically bonding the functional group of the organic acid to the surface of the silica particles, that is, by immobilizing the organic acid.
  • the immobilization of the organic acid on the colloidal silica is not achieved simply by the coexistence of the colloidal silica and the organic acid.
  • sulfonic acid which is a kind of organic acid
  • colloidal silica see, for example, “Sulphonic acid-functionalized silica through of thiol groups”, Chem. Commun. 246-247 (2003).
  • a silane coupling agent having a thiol group such as 3-mercaptopropyltrimethoxysilane is coupled to colloidal silica and then oxidized with hydrogen peroxide to fix the sulfonic acid on the surface.
  • the colloidal silica thus obtained can be obtained.
  • the colloidal silica used in the examples is also modified with sulfonic acid groups in this way.
  • colloidal silica which is a kind of organic acid
  • carboxylic acid which is a kind of organic acid
  • colloidal silica for example, “Novel Silane Coupling Agents Containing a Photobolizable 2-Nitrobenzoyl Sterfotrophic Induction of CarbodisulfideCarbon Letters, 3, 228-229 (2000).
  • colloidal silica having a carboxylic acid immobilized on the surface can be obtained by irradiating light after coupling a silane coupling agent containing a photoreactive 2-nitrobenzyl ester to colloidal silica.
  • colloidal silica to which sulfonic acid is fixed is particularly preferable from the viewpoint of easy production. Further, in the form in which sulfonic acid is immobilized on colloidal silica, the polishing rate of a polishing object having a silicon-oxygen bond such as a silicon oxide film can be suppressed by the following mechanism.
  • the surface of a polishing object having a silicon-oxygen bond such as a general silicon oxide film, has an isoelectric point where the surface zeta potential is zero near pH 2, and is negatively charged at a pH higher than that.
  • the absolute value of the value increases as the pH increases. Although it is slightly positively charged at a lower pH, it takes a value almost equal to the isoelectric point.
  • the surface of an object to be polished having a silicon-oxygen bond such as a general silicon oxide film is negatively charged in a wide pH range.
  • it is effective to use abrasive grains having a negative zeta potential in a wide range.
  • abrasive grains having a negative zeta potential in a wide range As particles having a negative zeta potential in such a wide pH range, it is effective to modify acid groups having a low functional group pKa on the surface of the abrasive grains.
  • a general acid group having a low pKa a sulfonic acid group is preferable. The reason for this is that a general sulfonic acid group has a pKa value of 1 or less.
  • a negative abrasive grain having a pH of 1 or more is obtained. It is done.
  • a polishing object having a silicon-oxygen bond such as a silicon oxide film
  • an electrical connection between the abrasive grains and the substrate is possible in a wide pH range. Since a repulsive force is generated, it is an effective means for suppressing the polishing efficiency of the object to be polished.
  • an abrasive produced by a method for producing a cation sol may be used.
  • composite abrasive grains and abrasive grains having a core-shell structure can also be used.
  • the lower limit of the average primary particle diameter of the abrasive grains in the polishing composition is preferably 5 nm or more, more preferably 7 nm or more, further preferably 10 nm or more, and more preferably 15 nm or more. More preferably, it is particularly preferably 25 nm or more.
  • the upper limit of the average primary particle diameter of the abrasive grains is preferably 200 nm or less, more preferably 150 nm or less, further preferably 100 nm or less, still more preferably 70 nm or less, and 60 nm. More preferably, it is more preferably 50 nm or less.
  • the average primary particle diameter of an abrasive grain is calculated based on the specific surface area of the abrasive grain measured by BET method, for example. This is also calculated in the embodiment of the present invention.
  • the lower limit of the average secondary particle diameter of the abrasive grains in the polishing composition is preferably 5 nm or more, more preferably 7 nm or more, further preferably 10 nm or more, and preferably 26 nm or more. Still more preferably, it is more preferably 36 nm or more, still more preferably 45 nm or more, and particularly preferably 55 nm or more.
  • the upper limit of the average secondary particle diameter of the abrasive grains is preferably 300 nm or less, more preferably 260 nm or less, further preferably 220 nm or less, still more preferably 150 nm or less, It is more preferably 120 nm or less, still more preferably 100 nm or less, and particularly preferably 80 nm or less. If it is such a range, it can suppress more that a surface defect arises on the surface of the grinding
  • the secondary particles refer to particles formed by association of abrasive grains in the polishing composition
  • the average secondary particle diameter of the secondary particles is represented by, for example, a laser diffraction scattering method. It can be measured by a dynamic light scattering method. This is also calculated in the embodiment of the present invention.
  • the lower limit of the ratio with the diameter D10 of the particles when reaching 10% is preferably 1.1 or more, and preferably 1.2 or more. More preferably, it is more preferably 1.3 or more, and particularly preferably 1.4 or more.
  • the upper limit of D90 / D10 is not particularly limited, but is preferably 5.0 or less, more preferably 3.0 or less, still more preferably 2.5 or less, and 2.0 or less.
  • the lower limit of the content of abrasive grains in the polishing composition is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and more preferably 0.1% by mass or more. More preferably, it is more preferably 0.5% by mass or more, and particularly preferably 1% by mass or more. When the lower limit is such, it is preferable for obtaining sufficient polishing efficiency for a polishing object other than a polishing object having a silicon-oxygen bond such as a silicon oxide film.
  • the upper limit of the content of the abrasive grains in the polishing composition is preferably 50% by mass or less, more preferably 20% by mass or less, further preferably 10% by mass or less, and 8 More preferably, it is more preferably 6% by mass or less, and particularly preferably 4% by mass or less.
  • the cost of the polishing composition can be suppressed, and the occurrence of surface defects on the surface of the object to be polished after polishing using the polishing composition can be further suppressed.
  • Dispersion medium In the polishing composition of the present invention, a dispersion medium is used for dispersing each component.
  • a dispersion medium an organic solvent and water are conceivable.
  • water containing as little impurities as possible is preferable. Specifically, pure water, ultrapure water, or distilled water from which foreign ions are removed through a filter after removing impurity ions with an ion exchange resin is preferable.
  • the present invention provides a polishing composition capable of sufficiently controlling a polishing object having a silicon-oxygen bond in at least one of acidic, neutral and basic regions.
  • polishing objects having a silicon-oxygen bond examples include silicon oxide films, BD (black diamond: SiOCH), FSG (fluorosilicate glass), HSQ (hydrogen silsesquioxane), CYCLOTENE, SiLK, MSQ (Methyl silsesquioxane), and the like. Is mentioned.
  • the polishing composition of the present invention may further contain other components such as a pH adjuster, an oxidizing agent, a reducing agent, a surfactant, a water-soluble polymer, and an antifungal agent, if necessary.
  • a compound having an action site that interacts with a polishing object having a silicon-oxygen bond, and a suppression part that suppresses a polishing component that polishes the polishing object from approaching the polishing object when it can also act as “another component”, the present invention classifies it as an organic compound of the present invention.
  • the polishing composition of the present invention suppresses the polishing rate of the polishing object having a silicon-oxygen bond in at least one of acidic, neutral and basic regions. Therefore, the pH adjuster is preferably used for adjusting to an acidic or basic region.
  • the acidic region means that the pH is less than 7, and preferably 1 to 4.
  • the neutral region means pH 7.
  • the basic region means a pH of more than 7, preferably a pH of 8-13.
  • the value of pH in this invention shall say the value measured on the conditions as described in an Example.
  • pH adjusting agent for adjusting to the acidic region may be any of an inorganic compound and an organic compound.
  • sulfuric acid H 2 SO 4
  • nitric acid nitric acid
  • boric acid carbonic acid
  • hypoxia Inorganic acids such as phosphoric acid, phosphorous acid and phosphoric acid
  • citric acid formic acid, acetic acid, propionic acid, benzoic acid, salicylic acid, glyceric acid, oxalic acid, malonic acid, succinic acid, maleic acid, phthalic acid, malic acid
  • carboxylic acids such as tartaric acid and lactic acid
  • organic acids such as organic sulfuric acid such as methanesulfonic acid, ethanesulfonic acid and isethionic acid.
  • the above acid is a divalent or higher acid (for example, sulfuric acid, carbonic acid, phosphoric acid, oxalic acid, etc.), it may be in a salt state as long as one or more protons (H + ) can be released.
  • a divalent or higher acid for example, sulfuric acid, carbonic acid, phosphoric acid, oxalic acid, etc.
  • protons H +
  • ammonium hydrogen carbonate, ammonium hydrogen phosphate the type of the cation species of the counter is basically arbitrary, but a weak base cation (ammonium, triethanolamine, etc.) is preferred).
  • the salt concentration (the conductivity of the slurry) increases, and the thickness of the electric double layer on the abrasive grain surface decreases. Therefore, since the electrostatic repulsive force of the abrasive grains is weakened, there is a concern that the polishing rate of a polishing object having a silicon-oxygen bond such as a silicon oxide film may be improved. For this reason, in the polishing composition of the present invention, it is more preferable that the pH adjuster for adjusting to the acidic region does not contain a salt.
  • salts include halogen acids such as hydrochloric acid, ammonium salts of inorganic acids such as sulfuric acid, nitric acid, phosphoric acid, and carbonic acid, potassium salts, amine salts, acetic acid, citric acid, oxalic acid, maleic acid, and other organic acids. Ammonium salt, potassium salt, amine salt.
  • pH adjusting agent for adjusting to the basic region may be any of an inorganic compound and an organic compound, but alkali metal hydroxides or salts thereof, quaternary ammonium, hydroxide hydroxide Quaternary ammonium or a salt thereof, ammonia, amine and the like can be mentioned.
  • alkali metal examples include potassium and sodium.
  • Specific examples of the salt include carbonate, hydrogen carbonate, sulfate, acetate, and the like.
  • quaternary ammonium examples include tetramethylammonium, tetraethylammonium, tetrabutylammonium and the like.
  • quaternary ammonium hydroxide or a salt thereof examples include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, and the like.
  • the polishing composition contains ammonia, amine, or potassium as a base from the viewpoint of prevention of metal contamination and ease of diffusion of metal ions into the semiconductor device structure.
  • Specific examples include potassium hydroxide (KOH), potassium carbonate, potassium hydrogen carbonate, potassium sulfate, potassium acetate, and potassium chloride.
  • oxidizing agent examples include hydrogen peroxide, peracetic acid, percarbonate, urea peroxide, perchloric acid; sodium persulfate, potassium persulfate, ammonium persulfate, potassium monopersulfate, oxone (2KHSO 5 ⁇ KHSO 4 ⁇ Persulfates such as double salts with peroxides such as K 2 SO 4 ), hypochlorite, chlorite, chlorate, perchlorate, hypobromite, bromite Halogen-based oxidants such as salts, bromate, perbromate, hypoiodite, iodate, iodate, periodate, cerium ammonium nitrate, potassium permanganate, potassium chromate, etc. And compounds of metal elements that can take a wide range of oxidation numbers. These oxidizing agents may be used alone or in combination of two or more.
  • the lower limit of the content (concentration) of the oxidizing agent in the polishing composition is preferably 0.001% by mass or more, more preferably 0.01% by mass or more.
  • the material cost of the polishing composition can be suppressed, and in addition, there is an advantage that the load of the treatment of the polishing composition after polishing use, that is, the waste liquid treatment can be reduced. . In addition, there is an advantage that excessive oxidation of the surface of the object to be polished by the oxidizing agent hardly occurs.
  • the polishing composition of the present invention may contain a reducing agent.
  • a reducing agent conventionally known ones used in polishing compositions can be included.
  • organic substances hydrazine, formic acid, oxalic acid, formaldehyde aqueous solution, ascorbic acid, glucose and other reducing sugars, inorganic substances In, nitrous acid or its salt, phosphorous acid or its salt, hypophosphorous acid or its salt, sulfurous acid or its salt, thiosulfuric acid or its salt, lithium aluminum hydride, sodium borohydride, multiple stable valences Metal and its compounds.
  • the lower limit of the content (concentration) of the reducing agent in the polishing composition is preferably 0.001% by mass or more, and more preferably 0.01% by mass or more.
  • polishing target other than the polishing target having a silicon-oxygen bond is polished such that the polishing efficiency is improved by adding a reducing agent by making the lower limit in this way, polishing is performed without increasing the abrasive concentration.
  • the efficiency can be increased.
  • the upper limit of content (concentration) of the reducing agent in polishing composition is 30 mass% or less, More preferably, it is 10 mass% or less.
  • a surfactant may be contained in the polishing composition.
  • the surfactant improves the cleaning efficiency after polishing by imparting hydrophilicity to the polished surface after polishing, and can prevent the adhesion of dirt.
  • step performance such as dishing can be improved by selecting an appropriate surfactant.
  • the surfactant may be any of an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant.
  • One of these surfactants may be used alone, or two or more thereof may be used in combination.
  • the content of the surfactant in the polishing composition is preferably 0.001 g / L or more, more preferably 0.005 g / L or more. By setting it as such a lower limit, the cleaning efficiency after polishing is further improved. Further, by selecting an appropriate surfactant, step performance such as dishing can be improved.
  • the water-soluble polymer is a temperature at which the water-soluble polymer is most dissolved and when it is dissolved in water at a concentration of 0.5% by mass and filtered through a G2 glass filter (maximum pores 40 to 50 ⁇ m). The mass of the insoluble matter to be filtered out is within 50 mass% of the added water-soluble polymer.
  • a water-soluble polymer When a water-soluble polymer is added to the polishing composition, the surface roughness of the polishing object after polishing using the polishing composition is further reduced.
  • One of these water-soluble polymers may be used alone, or two or more thereof may be used in combination.
  • the content of the water-soluble polymer in the polishing composition is preferably 0.01 g / L or more, more preferably 0.05 g / L or more. By setting it as such a lower limit, the surface roughness of the polishing surface by the polishing composition is further reduced.
  • the content of the water-soluble polymer in the polishing composition is preferably 100 g / L or less, more preferably 50 g / L or less. By setting such an upper limit, the remaining amount of the water-soluble polymer on the polishing surface is reduced, and the cleaning efficiency is further improved.
  • antiseptic and fungicide examples include 2-methyl-4-isothiazolin-3-one and 5-chloro-2-methyl-4-isothiazolin-3-one. And the like, isothiazoline-based preservatives such as paraoxybenzoates, and phenoxyethanol. These antiseptics and fungicides may be used alone or in combination of two or more.
  • the polishing rate of a polishing object having a silicon-oxygen bond can be sufficiently controlled.
  • the polishing environment is appropriately adjusted depending on the polishing application or the like. That is, polishing may be performed in an acidic environment, polishing may be performed in a neutral environment, and polishing may be performed in a basic environment.
  • polishing rate of the polishing object having a silicon-oxygen bond is suppressed in at least one of the acidic, neutral or basic regions of the present invention, a specific pH region is selected depending on the polishing application and the like.
  • a polishing composition capable of sufficiently controlling the polishing rate of a polishing object having a silicon-oxygen bond such as a silicon oxide film may be appropriately selected and used. Therefore, from another point of view, it is added that it is not meaningful to compare the polishing rate between different pH ranges.
  • the polishing rate of a polishing object having a silicon-oxygen bond such as a silicon oxide film in an acidic environment is preferably less than 155 [55 / min], and more preferably 150 [ ⁇ / min] or less. More preferably 135 [ ⁇ / min] or less, still more preferably 100 [ ⁇ / min] or less, still more preferably 80 [ ⁇ / min] or less, and even more preferably 70 [[/ min] or less. ⁇ / min] or less, more preferably 50 [ ⁇ / min] or less, and particularly preferably 30 [ ⁇ / min] or less.
  • the lower limit is not particularly limited, but is substantially 0 [ ⁇ ⁇ / min] or more.
  • the colloidal silica of the abrasive grains used in the verification experiment of the example / comparative example has a negative charge on the acidic side of the zeta potential.
  • colloidal silica when colloidal silica is used as the abrasive grains, it is difficult to suppress the polishing rate in an acidic environment, but the point to which the present invention should be focused is that it is suppressed even in acidic conditions.
  • the polishing rate of a polishing object having a silicon-oxygen bond such as a silicon oxide film in a neutral environment is preferably less than 15 [ ⁇ / min], more preferably 14 [14 / min] or less. More preferably, it is 13 [ ⁇ / min] or less.
  • the lower limit is not particularly limited, but is substantially 0 [ ⁇ ⁇ / min] or more.
  • the polishing rate of an object to be polished having a silicon-oxygen bond such as a silicon oxide film in a basic environment is preferably less than 10 [ ⁇ / min], more preferably 9 [ ⁇ / min] or less. More preferably, it is 8 [ ⁇ / min] or less.
  • the lower limit is not particularly limited, but is substantially 0 [ ⁇ ⁇ / min] or more.
  • the polishing rate means a value measured by the method described in the examples.
  • the polishing target having a silicon-oxygen bond such as a silicon oxide film
  • the polishing target includes polysilicon
  • the polishing rate of a polishing object having a silicon-oxygen bond can be suppressed while maintaining the same polishing rate.
  • a method for producing a polishing composition that suppresses the polishing rate of the polishing object having a silicon-oxygen bond in at least one of acidic, neutral and basic regions, An organic compound; (2) abrasive grains; and (3) a dispersion medium, wherein the organic compound interacts with a polishing object having a silicon-oxygen bond, and the polishing.
  • a method for producing a polishing composition comprising: a suppression part that suppresses a polishing component that polishes an object from approaching the polishing object.
  • polishing composition is not restrict
  • the temperature at the time of mixing each component is not particularly limited, but is preferably 10 to 40 ° C., and may be heated to increase the dissolution rate. Further, the mixing time is not particularly limited.
  • ⁇ Polishing method> there is provided a polishing method in which a polishing object having a silicon-oxygen bond is polished with the above polishing composition or the polishing composition obtained by the above production method.
  • a polishing apparatus As a polishing apparatus, a general holder having a polishing surface plate on which a holder for holding a substrate having a polishing object and a motor capable of changing the number of rotations are attached and a polishing pad (polishing cloth) can be attached A polishing apparatus can be used.
  • polishing pad a general nonwoven fabric, polyurethane, porous fluororesin, or the like can be used without particular limitation. It is preferable that the polishing pad is grooved so that the polishing composition accumulates.
  • the polishing conditions are not particularly limited.
  • the rotation speed of the polishing surface plate is preferably 10 to 500 rpm
  • the rotation speed of the head (carrier) is preferably 10 to 500 rpm
  • the pressure applied to the substrate having the object to be polished is preferably 0.1 to 10 psi.
  • the method of supplying the polishing composition to the polishing pad is not particularly limited, and for example, a method of continuously supplying with a pump or the like is employed. Although the supply amount is not limited, it is preferable that the surface of the polishing pad is always covered with the polishing composition of the present invention. Also, the polishing time is not particularly limited.
  • ⁇ Method for suppressing polishing rate of polishing object having silicon-oxygen bond (1) an action site that interacts with a polishing object having a silicon-oxygen bond, and a suppression part that suppresses a polishing component that polishes the polishing object from approaching the polishing object. And (2) abrasive grains; (3) a dispersion medium; and polishing the object to be polished with an abrasive, an acidic, neutral or basic There is also provided a method for suppressing the polishing rate of a polishing object having a silicon-oxygen bond in at least one region.
  • Polishing compositions of Examples and Comparative Examples were prepared by using 2% by mass of abrasive grains (sulfonic acid group-modified colloidal silica; average primary particle size: 35 nm, average secondary particle size: 65 nm D90 / D10: 1.6), pH adjuster.
  • the organic compound 3 mM shown in Table 1 was prepared by mixing in pure water (mixing temperature: about 25 ° C., mixing time: about 10 minutes).
  • the concentration of the tertiary amine of the following raw materials was 3 mM.
  • N-lauroylsarcosine N-oxide, N, N-dimethyllaurylamine N-oxide (N, N-dimethyldodecylamine N-oxide) and N, N of Examples 13 to 15 -Dihydroxyethyllaurylamine N-oxide was prepared as follows.
  • the pH of the polishing composition was adjusted to 2, 7, and 10 by adding appropriate amounts of H 2 SO 4 and KOH.
  • the pH of the polishing composition (liquid temperature: 25 ° C.) was confirmed by a pH meter (manufactured by Horiba, Ltd., model number: LAQUA).
  • polishing performance evaluation Using the obtained polishing compositions of Examples and Comparative Examples, the polishing rate when the polishing object (wafer with a silicon oxide film) was polished under the following polishing conditions was measured.
  • Polishing machine Single-side CMP polishing machine (ENGIS) Polishing pad: Polyurethane pad (IC1010: manufactured by Rohm and Haas) Pressure: 3.04 psi Platen (surface plate) rotation speed: 90rpm Head (carrier) rotation speed: 40 rpm Flow rate of polishing composition: 100 ml / min Polishing time: 60 sec ⁇ Polishing speed> The polishing rate (polishing rate) was calculated by the following formula.
  • the film thickness was evaluated by obtaining by a light interference type film thickness measuring device (model number: Lambda Ace manufactured by Dainippon Screen Mfg. Co., Ltd.) and dividing the difference by the polishing time.
  • the polishing composition of the comparative example does not have an action site on the surface of the polishing object having a silicon-oxygen structure, suggesting that the polishing rate of the silicon oxide film cannot be suppressed. .
  • these organic compounds have a structure that improves the polishing rate of the silicon oxide film. Is suggested.
  • Comparative Example 10 and Comparative Example 11 are tertiary amines, they do not have an action site on the surface of the polishing object having a silicon-oxygen structure, and are comparative examples. However, these comparative organic compounds were converted to tertiary amine-N-oxides and N, N-dimethyldodecylamine N-oxide, N, N-dihydroxyethyl as shown in Examples 14 and 15, respectively. When laurylamine N-oxide is used, it is suggested that the polishing rate is suppressed. As for Example 14 and Example 15, the same organic compounds as in Examples 3 and 4 are used as the organic compounds. However, the former is an oxidant that has not reacted in the synthesis process ( Since H 2 O 2 ) is included, it is presumed that differences have been observed in the numerical values of the respective polishing rates.

Abstract

[Problem] To provide a polishing composition with which it is possible, in at least one of the acidic, neutral, and basic ranges, to sufficiently control the polishing rate for an object to be polished having a silicon-oxygen bond, such as a silicon oxide film. [Solution] Provided is a polishing composition comprising (1) an organic compound having an active site that interacts with an object to be polished having a silicon-oxygen bond, and a suppression site that suppresses the approach of a polishing constituent for polishing the object to be polished toward the object to be polished, (2) abrasive particles, and (3) a dispersion medium, wherein the polishing rate for the object to be polished having a silicon-oxygen bond is suppressed in at least one of the acidic, neutral, and basic ranges.

Description

研磨用組成物Polishing composition
 本発明は、研磨用組成物に関する。 The present invention relates to a polishing composition.
 従来、LSI(Large Scale Integration)の高集積化、高性能化に伴って新たな微細加工技術が開発されている。化学機械研磨(以下、chemical mechanical polishing;単にCMPとも記す)法もその一つであり、LSI製造工程、特にシャロートレンチ分離(STI)、層間絶縁膜(ILD膜)の平坦化、タングステンプラグ形成、銅と低誘電率膜とからなる多層配線の形成などの工程でCMPは用いられている。 Conventionally, a new fine processing technology has been developed along with higher integration and higher performance of LSI (Large Scale Integration). Chemical mechanical polishing (hereinafter, also referred to as chemical mechanical polishing; simply referred to as CMP) is one of them, LSI manufacturing process, particularly shallow trench isolation (STI), planarization of interlayer insulating film (ILD film), tungsten plug formation, CMP is used in processes such as the formation of multilayer wiring composed of copper and a low dielectric constant film.
 かような半導体デバイス製造プロセスにおいては、ポリシリコン、酸化ケイ素、窒化珪素、またはこれらの複合材料などの研磨対象物を高速で研磨する要求が存在している。 In such a semiconductor device manufacturing process, there is a demand for polishing a polishing object such as polysilicon, silicon oxide, silicon nitride, or a composite material thereof at high speed.
 その一方で、半導体デバイスの構造によっては各Si含有材料の研磨速度を制御することが求められており、それを目的として、選択比を改善する試みもなされている。 On the other hand, depending on the structure of the semiconductor device, it is required to control the polishing rate of each Si-containing material, and an attempt to improve the selection ratio has been made for that purpose.
 選択比を改善するために、他膜種の研磨速度を向上させる場合、一般的に砥粒の粒子径、形状、濃度、砥粒表面をカップリング剤等で表面改質することによる砥粒のゼータ電位を変更することなどで、研磨速度を向上させる手法は存在する。このように、当業界では、研磨速度を如何にして向上させるかの検討はなされている。 When improving the polishing rate of other film types in order to improve the selection ratio, the particle diameter, shape and concentration of the abrasive grains are generally improved by surface modification with a coupling agent or the like. There are methods for improving the polishing rate by changing the zeta potential. Thus, in this industry, examination of how to improve the polishing rate has been made.
 その一方で、当業界においては、他方の材料の研磨速度を抑制する手法については十分に検討されていない。数少ない他方の材料の研磨速度を抑制する手法としては、シリコン含有誘電体層が除去される速度を抑制する薬剤として、少なくとも2つの官能性アミノ基(NH)と少なくとも1つの官能性カルボン酸基(COOH)を有する化合物を用いている例というものはある(特許文献1)。 On the other hand, in the industry, a method for suppressing the polishing rate of the other material has not been sufficiently studied. As a technique for suppressing the polishing rate of the other few materials, there are at least two functional amino groups (NH 2 ) and at least one functional carboxylic acid group as agents for suppressing the removal rate of the silicon-containing dielectric layer. There is an example using a compound having (COOH) (Patent Document 1).
 しかしながら、特許文献1に開示されている技術では、酸化ケイ素膜などのケイ素-酸素結合を有する研磨対象物の研磨速度を十分に制御することができず、さらなる改良が望まれていた。 However, the technique disclosed in Patent Document 1 cannot sufficiently control the polishing rate of a polishing object having a silicon-oxygen bond such as a silicon oxide film, and further improvement has been desired.
特表2004-512681号公報Japanese translation of PCT publication No. 2004-512681
 本発明は、酸化ケイ素膜などのケイ素-酸素結合を有する研磨対象物の研磨速度を十分に制御することができる研磨用組成物を提供することを目的とする。 An object of the present invention is to provide a polishing composition capable of sufficiently controlling the polishing rate of a polishing object having a silicon-oxygen bond such as a silicon oxide film.
 本発明者は、上記課題を解決すべく鋭意研究を積み重ねた。その結果、(1)ケイ素-酸素結合を有する研磨対象物に相互作用する作用部位と、前記研磨対象物を研磨する研磨成分が、前記研磨対象物に接近することを抑制する、抑制部位と、を有する、有機化合物と;(2)砥粒と;(3)分散媒と;を有する、酸性、中性または塩基性の少なくとも一つの領域で、前記ケイ素-酸素結合を有する研磨対象物の研磨速度を抑制する、研磨用組成物を提供することによって上記課題が解決されることを見出した。 The present inventor has intensively studied to solve the above problems. As a result, (1) an action site that interacts with the polishing object having a silicon-oxygen bond, and a suppression part that suppresses the polishing component that polishes the polishing object from approaching the polishing object; Polishing of a polishing object having a silicon-oxygen bond in at least one of acidic, neutral or basic regions, comprising: (2) abrasive grains; and (3) a dispersion medium. It has been found that the above problems can be solved by providing a polishing composition that suppresses the speed.
 本発明によれば、酸性、中性または塩基性の少なくとも一つの領域で、酸化ケイ素膜などのケイ素-酸素結合を有する研磨対象物の研磨速度を十分に制御することができる研磨用組成物を提供することができる。 According to the present invention, there is provided a polishing composition capable of sufficiently controlling the polishing rate of a polishing object having a silicon-oxygen bond such as a silicon oxide film in at least one of acidic, neutral and basic regions. Can be provided.
 以下、本発明を説明する。なお、本発明は、以下の実施の形態のみには限定されない。また、本明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。また、特記しない限り、操作および物性等の測定は室温(20~25℃)/相対湿度40~50%RHの条件で測定する。 Hereinafter, the present invention will be described. In addition, this invention is not limited only to the following embodiment. In this specification, “X to Y” indicating a range means “X or more and Y or less”. Unless otherwise specified, operations and physical properties are measured under conditions of room temperature (20 to 25 ° C.) / Relative humidity 40 to 50% RH.
 <研磨用組成物>
 本発明は、(1)ケイ素-酸素結合を有する研磨対象物に相互作用する作用部位と、前記研磨対象物を研磨する研磨成分が、前記研磨対象物に接近することを抑制する、抑制部位と、を有する、有機化合物と;(2)砥粒と;(3)分散媒と;を有する、酸性、中性または塩基性の少なくとも一つの領域で、前記ケイ素-酸素結合を有する研磨対象物の研磨速度を抑制する、研磨用組成物である。本明細書中、かかる「研磨用組成物」を「本発明の研磨用組成物」とも称する。
<Polishing composition>
The present invention includes (1) an action site that interacts with a polishing object having a silicon-oxygen bond, and a suppression part that suppresses a polishing component that polishes the polishing object from approaching the polishing object; And (2) abrasive grains; and (3) a dispersion medium, wherein the polishing object having the silicon-oxygen bond in at least one of acidic, neutral, and basic regions. A polishing composition that suppresses the polishing rate. In the present specification, such “polishing composition” is also referred to as “polishing composition of the present invention”.
 [有機化合物]
 上記のとおり、本発明の有機化合物は、ケイ素-酸素結合を有する研磨対象物(本明細書中、単に「研磨対象物」とも称する。)に相互作用する作用部位と、前記研磨対象物を研磨する研磨成分が、前記研磨対象物に接近することを抑制する、抑制部位と、を有する(本明細書中、「本発明の有機化合物」とも称する)。
[Organic compounds]
As described above, the organic compound of the present invention polishes the polishing object with an action site that interacts with a polishing object having a silicon-oxygen bond (hereinafter, also simply referred to as “polishing object”). A polishing component that suppresses the approach of the polishing component to the polishing object (also referred to as “organic compound of the present invention” in the present specification).
 本発明の有機化合物は、一分子中に、ケイ素-酸素結合を有する研磨対象物に相互作用する作用部位と、前記研磨対象物を研磨する研磨成分が、前記研磨対象物に接近することを抑制する、抑制部位とを同時に有している。そのため、有機化合物における作用部位が、研磨対象物に相互作用し、他方では、研磨対象物を研磨する研磨成分が、前記研磨対象物に接近することを、抑制部位が抑制する。そのため、かような有機化合物を含む研磨用組成物は、酸性、中性または塩基性の少なくとも一つの領域で、酸化ケイ素膜などのケイ素-酸素結合を有する研磨対象物を十分に制御する。換言すれば、一分子中に、作用部位と、抑制部位とを同時に有していないような化合物は、本発明の有機化合物とは区別されるということである。 The organic compound of the present invention suppresses the action site that interacts with the polishing object having a silicon-oxygen bond in one molecule and the polishing component that polishes the polishing object from approaching the polishing object. And having a suppression site at the same time. Therefore, the site of action in the organic compound interacts with the object to be polished, and on the other hand, the suppression site prevents the polishing component that polishes the object to be polished from approaching the object to be polished. Therefore, a polishing composition containing such an organic compound sufficiently controls a polishing object having a silicon-oxygen bond, such as a silicon oxide film, in at least one of acidic, neutral and basic regions. In other words, a compound that does not have an action site and a suppression site simultaneously in one molecule is distinguished from the organic compound of the present invention.
 また、本明細書において、「酸性、中性または塩基性の少なくとも一つの領域で、前記ケイ素-酸素結合を有する研磨対象物の研磨速度を抑制する」とは、実施例で示されるように、添加剤(つまり「砥粒、分散媒、必要に応じpH調整剤」以外の成分)を一切添加しない場合と比べて、いずれかの領域で酸化ケイ素膜などのケイ素-酸素結合を有する研磨対象物の研磨速度を抑制していることを意味する。 Further, in the present specification, “suppressing the polishing rate of the polishing object having a silicon-oxygen bond in at least one of acidic, neutral or basic regions” as shown in the examples, A polishing object having a silicon-oxygen bond such as a silicon oxide film in any region as compared with the case where no additives (that is, components other than “abrasive grains, dispersion medium, and pH adjuster as necessary”) are added at all. This means that the polishing rate is suppressed.
 また、本明細書において、「研磨成分」とは、研磨対象物を研磨しうる成分であって、例えば、砥粒等を意味する。 Further, in this specification, the “polishing component” is a component capable of polishing an object to be polished, and means, for example, abrasive grains.
 (作用部位)
 上記のように、本発明の有機化合物は、ケイ素-酸素結合を有する研磨対象物に相互作用する作用部位を有する。ここで、「作用部位」とは、ケイ素-酸素結合を有する研磨対象物に相互作用する部位であれば、どのような構造を有していてもよいが、好ましくは、窒素原子、酸素原子、硫黄原子およびリン原子からなる群から選択される少なくとも一つを有する。かような構造を有することで、ケイ素-酸素結合を有する研磨対象物に相互作用しうる。なお、作用部位は、塩の形態になっていてもよく、塩としては、ナトリウム塩、カリウム塩、アンモニウム塩、アミン塩などが好適である。
(Action site)
As described above, the organic compound of the present invention has an action site that interacts with a polishing object having a silicon-oxygen bond. Here, the “action site” may have any structure as long as it is a site that interacts with an object to be polished having a silicon-oxygen bond, preferably a nitrogen atom, an oxygen atom, It has at least one selected from the group consisting of a sulfur atom and a phosphorus atom. By having such a structure, it is possible to interact with a polishing object having a silicon-oxygen bond. The action site may be in the form of a salt, and a sodium salt, potassium salt, ammonium salt, amine salt or the like is preferable as the salt.
 なお、作用部位の数も1分子中に1個以上であれば特には制限されず、2個以上であってもよいし、3個以上であってもよい。 Note that the number of action sites is not particularly limited as long as it is 1 or more per molecule, and may be 2 or more, or 3 or more.
 本発明の好ましい形態においては、作用部位は、少なくとも窒素原子および酸素原子を有している。かような構造を有することで、ケイ素-酸素結合を有する研磨対象物により確実に相互作用しうる。 In a preferred embodiment of the present invention, the action site has at least a nitrogen atom and an oxygen atom. By having such a structure, the polishing object having a silicon-oxygen bond can interact more reliably.
 本発明の好ましい形態においては、前記作用部位が、スルフィド基、アミノ基、ホスホン酸基またはその塩の基、N-オキシド構造、カルボキシル基またはその塩の基、フェノール構造、アルキレンオキシド構造(ジエーテル構造)およびベタイン構造からなる群から選択される少なくとも一種である。かような構造を有することで、ケイ素-酸素結合を有する研磨対象物により確実に相互作用しうる。なお、アルキレンオキシドとしては、メチレンオキシドであることが好ましい。一分子内にアルキレンオキシド構造を複数有していてもよい。なお、本発明において「アミノ基」は、-NHの構造を有するものを言う。 In a preferred embodiment of the present invention, the site of action includes a sulfide group, an amino group, a phosphonic acid group or a salt group thereof, an N-oxide structure, a carboxyl group or a salt group thereof, a phenol structure, an alkylene oxide structure (a diether structure). And at least one selected from the group consisting of betaine structures. By having such a structure, the polishing object having a silicon-oxygen bond can interact more reliably. The alkylene oxide is preferably methylene oxide. A plurality of alkylene oxide structures may be contained in one molecule. In the present invention, the “amino group” means a group having the structure of —NH 2 .
 また、本発明の好ましい形態においては、前記作用部位が、窒素原子および酸素原子が直接結合している構造を有する、または、窒素原子および酸素原子の間に炭素数3以下の2価の有機基が介在している。かような構造を有することで、以下のメカニズムで、ケイ素-酸素結合を有する研磨対象物によりさらに確実に相互作用しうる。ただし、下記のメカニズムは推測に過ぎず、本発明の技術的範囲を制限しないことは言うまでもない。すなわち、窒素原子はわずかにプラスに帯電(電子密度が低くなった状態)し、酸素原子はわずかにマイナスに帯電(電子密度が高くなった状態)した状態となっている。この関係は、元素の電気陰性度の関係から、どちらがプラスに帯電しやすいかマイナスに帯電しやすいかが決まる。このような同一の有機化合物の分子中での電子の相互作用は、それぞれの原子間距離が近ければ近いほど、強く互いに影響をおよぼしあうため、それぞれの原子の電荷の強さが強くなっていく。このような理論から、作用部位において、酸素-ケイ素構造に十分に作用しうる強さの範囲が炭素数で3以下の範囲になると推測される。また、それぞれの電子密度を有する構造の作用機構であるが、電子密度が低くなった状態の窒素原子が酸素-ケイ素構造を有する膜の表面の酸素原子に、また、電子密度が高くなった状態の酸素原子がケイ素原子に、それぞれ作用することで、有機化合物の作用部位が酸素-ケイ素構造を有する膜の表面に化学吸着しているものと考えられる。 In a preferred embodiment of the present invention, the action site has a structure in which a nitrogen atom and an oxygen atom are directly bonded, or a divalent organic group having 3 or less carbon atoms between the nitrogen atom and the oxygen atom. Is intervening. By having such a structure, it is possible to further reliably interact with a polishing object having a silicon-oxygen bond by the following mechanism. However, it is needless to say that the following mechanism is merely speculation and does not limit the technical scope of the present invention. That is, the nitrogen atom is slightly positively charged (in a state where the electron density is low), and the oxygen atom is slightly negatively charged (in a state where the electron density is high). This relationship is determined based on the relationship between the electronegativity of the elements, which tends to be positively charged or easily negatively charged. The interaction of electrons in the molecule of the same organic compound influences each other as the distance between the atoms becomes shorter. Therefore, the charge intensity of each atom becomes stronger. . From such a theory, it is inferred that the range of strength that can sufficiently act on the oxygen-silicon structure at the site of action is 3 or less in terms of carbon number. In addition, the mechanism of action of the structures having the respective electron densities is such that the nitrogen atoms in a state where the electron density is low become oxygen atoms on the surface of the film having an oxygen-silicon structure, and the state where the electron density is high It is considered that the site of action of the organic compound is chemically adsorbed on the surface of the film having an oxygen-silicon structure because each oxygen atom acts on a silicon atom.
 上記のうち、作用部位としては、N-オキシド構造およびベタイン構造の少なくとも一方であることが好ましい。このうち、前記作用部位が、ベタイン構造である場合において、前記抑制部位の有機基が、炭素数8以上のアルキル基を有する部位であると、特に好ましい。また、本発明の好ましい実施形態によれば、作用部位として、N-オキシド構造を有する場合、同時に、作用部位として、カルボキシル基を有していないことが好ましい。 Of the above, the action site is preferably at least one of an N-oxide structure and a betaine structure. Among these, when the action site has a betaine structure, the organic group of the suppression site is particularly preferably a site having an alkyl group having 8 or more carbon atoms. Further, according to a preferred embodiment of the present invention, when the functional site has an N-oxide structure, it is preferable that the functional site does not have a carboxyl group at the same time.
 また、本発明の好ましい実施形態によれば、有機化合物は、3級アミンの酸化物であることが好ましい。なお、3級アミンから3級アミンの酸化物にする方法にも特に制限はないが、例えば、過酸化水素などの下記に列挙する酸化剤を用いて行うことができる。 Moreover, according to a preferred embodiment of the present invention, the organic compound is preferably a tertiary amine oxide. In addition, there is no restriction | limiting in particular in the method of converting from tertiary amine to tertiary amine oxide, For example, it can carry out using the oxidizing agents enumerated below, such as hydrogen peroxide.
 また、本発明の一実施形態によると、前記作用部位が、N-オキシド構造であり、前記抑制部位が、炭素数8以上を有する、アルキル基またはアシル基である。このような構造を有すると、N-オキシド構造が、ケイ素-酸素結合を有する研磨対象物の表面に強固な化学吸着作用をし、また、炭素数8以上を有する、アルキル基またはアシル基が立体障害的に研磨成分の作用を抑制する働きを持つようになる。ただし、上記のメカニズムは推測に過ぎず、本発明の技術的範囲を制限しないことは言うまでもない。 Also, according to one embodiment of the present invention, the action site is an N-oxide structure, and the suppression site is an alkyl group or an acyl group having 8 or more carbon atoms. With such a structure, the N-oxide structure has a strong chemisorption action on the surface of the object to be polished having a silicon-oxygen bond, and the alkyl group or acyl group having 8 or more carbon atoms is a three-dimensional structure. It has a function of obstructing the action of the polishing component. However, it goes without saying that the above mechanism is only speculation and does not limit the technical scope of the present invention.
 アルキル基またはアシル基の炭素数は、9以上であっても、10以上であってもよいし、上限としては、20以下であっても、15以下であってもよい。ここで、アルキル基の具体例は、以下に列挙したものが好適である。また、アシル基は、「-COR」の構造を有し、Rは、同様のアルキル基であることが好ましい。 The carbon number of the alkyl group or acyl group may be 9 or more, 10 or more, and the upper limit may be 20 or less, or 15 or less. Here, as specific examples of the alkyl group, those listed below are suitable. The acyl group preferably has a “—COR” structure, and R is preferably a similar alkyl group.
 また、本発明の他の形態においては、作用部位として窒素原子を有する場合であって、上記N-オキシド構造およびベタイン構造を採らないとき、作用部位は、炭素原子を介さず水素原子と結合していることが好ましい。 In another embodiment of the present invention, when an action site has a nitrogen atom and the N-oxide structure and the betaine structure are not adopted, the action site is bonded to a hydrogen atom without a carbon atom. It is preferable.
 また、本発明の他の形態においては、作用部位として酸素原子を有する場合であって、上記N-オキシド構造およびベタイン構造を採らないとき、三重結合を分子内に有さず、かつ、酸素原子は2つ有していることが好ましい。 Further, in another embodiment of the present invention, when an oxygen atom is used as an action site, and when the N-oxide structure and the betaine structure are not adopted, no triple bond is present in the molecule, and the oxygen atom It is preferable to have two.
 また、本発明の他の形態においては、作用部位として酸素原子を有する場合であって、上記N-オキシド構造およびベタイン構造を採らないときで、酸素原子が1つのとき、ベンゼンやナフタレンなどの芳香族環と結合していることが好ましい。 In another embodiment of the present invention, when an oxygen atom is used as an action site and the N-oxide structure and the betaine structure are not used, and there is one oxygen atom, an aromatic substance such as benzene or naphthalene is used. It is preferably bonded to a group ring.
 また、本発明の他の形態においては、作用部位として酸素原子を有する場合であって、上記N-オキシド構造およびベタイン構造を採らないときで、酸素原子が3つのとき、リン原子を有していることが好ましい。 Further, in another embodiment of the present invention, when an oxygen atom is used as an action site, when the N-oxide structure and the betaine structure are not adopted, when there are three oxygen atoms, a phosphorus atom is contained. Preferably it is.
 (抑制部位)
 また上記のように、本発明の有機化合物は、研磨対象物を研磨する研磨成分が、研磨対象物に接近することを抑制するための抑制部位を有する。ここで、「抑制部位」とは、研磨対象物を研磨する研磨成分が、研磨対象物に接近することを抑制する作用を有すれば、どのような構造を有していてもよい。なお、抑制部位の数も1分子中に1個以上であれば特には制限されず、2個以上であってもよいし、3個以上であってもよい。
(Suppression site)
In addition, as described above, the organic compound of the present invention has a suppression site for suppressing the polishing component that polishes the polishing object from approaching the polishing object. Here, the “suppressed part” may have any structure as long as the polishing component for polishing the polishing object has an action of suppressing the approach to the polishing object. The number of suppression sites is not particularly limited as long as it is 1 or more per molecule, and may be 2 or more, or 3 or more.
 本発明の一形態では、抑制部位は、合計で炭素数3以上を有する部位であることが好ましい。本発明の一形態では、抑制部位は、合計で炭素数4以上を有する。また、本発明の一形態では、抑制部位は、合計で炭素数6以上を有する。また、本発明の一形態では、抑制部位は、合計で炭素数8以上を有する。特に、合計で炭素数が3以上であると、抑制部位の疎水性の低下を抑止し、抑制膜である分子配列膜を作製し易くなる。また、合計で炭素数が3以上であると、研磨対象物(基板)の表面に研磨成分が接近することをより抑止するので、抑制効果を向上させる。 In one embodiment of the present invention, the suppression site is preferably a site having a total of 3 or more carbon atoms. In one embodiment of the present invention, the suppression sites have a total of 4 or more carbon atoms. In one embodiment of the present invention, the suppression sites have a total of 6 or more carbon atoms. In one embodiment of the present invention, the suppression sites have a total of 8 or more carbon atoms. In particular, when the total number of carbon atoms is 3 or more, it is easy to produce a molecular arrangement film that is a suppression film by suppressing a decrease in hydrophobicity at the suppression site. Further, when the total number of carbon atoms is 3 or more, the polishing component is further prevented from approaching the surface of the object to be polished (substrate), so that the suppression effect is improved.
 ここで「合計で」とは、例えば、有機化合物が、「ラウリルホスホン酸」である場合、「作用部位」が「ホスホン酸基」で、「抑制部位」が「ラウリル基」となるので、「抑制部位」の炭素数は12となる。また、有機化合物が、「ベタイン」である場合、「作用部位」が「ベタイン構造」で、「作用部位」が3つの「メチル基」であるので、炭素数の合計は3となる。 Here, “total” means that, for example, when the organic compound is “laurylphosphonic acid”, “action site” is “phosphonic acid group” and “suppression site” is “lauryl group”. The carbon number of the “suppression site” is 12. When the organic compound is “betaine”, the “action site” is “betaine structure”, and the “action site” is three “methyl groups”, so the total number of carbon atoms is 3.
 また他方で、本発明の一形態では、抑制部位は、合計で炭素数20以下を有する。また他方で、本発明の一形態では、抑制部位は、合計で炭素数18以下を有する。また他方で、本発明の一形態では、抑制部位は、合計で炭素数16以下を有する。抑制部位の有機鎖(炭素数)が大き過ぎると、スラリー(研磨用組成物)への溶解性が低くなるため、抑制するのに十分な抑制剤(本発明の有機化合物)の量を添加できなくなる虞がある。また、有機鎖が長くなりすぎた場合、抑制部位が曲がりやすくなり(直線ではなく、あちこちに曲がった状態)、抑制膜の密度の低下や分子配列膜の生成速度の低下が起こり、抑制効果が低下する虞もある。 On the other hand, in one embodiment of the present invention, the suppression sites have a total of 20 or less carbon atoms. On the other hand, in one embodiment of the present invention, the suppression sites have a total of 18 or less carbon atoms. On the other hand, in one embodiment of the present invention, the suppression sites have a total of 16 or less carbon atoms. If the organic chain (carbon number) of the suppression site is too large, the solubility in the slurry (polishing composition) will be low, so an amount of inhibitor (organic compound of the present invention) sufficient to suppress can be added. There is a risk of disappearing. In addition, if the organic chain becomes too long, the suppression site tends to bend (a state where it is bent not in a straight line), and the density of the suppression film and the generation rate of the molecular arrangement film decrease, resulting in a suppression effect. There is also a risk of lowering.
 また、本発明の一形態によれば、前記抑制部位が、炭素数1以上のアルキル基を有する部位である。本発明の一形態によれば、前記抑制部位が、炭素数4以上のアルキル基を有する部位である。本発明の一形態によれば、前記抑制部位が、炭素数7以上のアルキル基を有する部位である。本発明の好ましい実施形態によれば、前記抑制部位が、炭素数1~6の比較的短いアルキル基である場合、前記作用部位は、ベタイン構造である。 Moreover, according to one form of this invention, the said suppression site | part is a site | part which has a C1-C1 or more alkyl group. According to one embodiment of the present invention, the suppression site is a site having an alkyl group having 4 or more carbon atoms. According to one embodiment of the present invention, the suppression site is a site having an alkyl group having 7 or more carbon atoms. According to a preferred embodiment of the present invention, when the suppression site is a relatively short alkyl group having 1 to 6 carbon atoms, the site of action has a betaine structure.
 本発明の好ましい形態によれば、前記抑制部位が、炭素数8以上のアルキル基を有する部位である。このようにアルキル基が有意に長いことによって、研磨対象物を研磨する研磨成分が、研磨対象物に接近することを抑制する作用をより確実に有する。また、本発明の好ましい形態によれば、前記抑制部位が、炭素数10以上のアルキル基を有する部位である。 According to a preferred embodiment of the present invention, the suppression site is a site having an alkyl group having 8 or more carbon atoms. As described above, when the alkyl group is significantly long, the polishing component for polishing the object to be polished has the action of suppressing the approach to the object to be polished more reliably. Moreover, according to the preferable form of this invention, the said suppression site | part is a site | part which has a C10 or more alkyl group.
 他方で、ある有機化合物が、かような有意に長いアルキル基を有していたとしても、ケイ素-酸素結合を有する研磨対象物に相互作用する作用部位を有していなければ、酸化ケイ素膜などのケイ素-酸素結合を有する研磨対象物を十分に制御することはできない。つまりは、かような有機化合物を研磨用組成物に含有させたとしても、酸性、中性または塩基性の少なくとも一つの領域で、酸化ケイ素膜などのケイ素-酸素結合を有する研磨対象物を十分に制御する効果を期待できない。このように、本発明の有機化合物は、作用部位と、抑制部位とを一分子中に共存させている点が重要である。 On the other hand, even if a certain organic compound has such a significantly long alkyl group, if it does not have an action site that interacts with a polishing object having a silicon-oxygen bond, a silicon oxide film, etc. It is not possible to sufficiently control a polishing object having a silicon-oxygen bond. In other words, even when such an organic compound is contained in the polishing composition, a polishing target having a silicon-oxygen bond such as a silicon oxide film in at least one of acidic, neutral and basic regions is sufficient. I cannot expect the effect to control. Thus, the organic compound of the present invention is important in that the action site and the suppression site coexist in one molecule.
 本発明のより好ましい形態によれば、前記抑制部位が、炭素数11以上のアルキル基を有する部位であり、本発明のさらに好ましい形態によれば、前記抑制部位が、炭素数12以上のアルキル基を有する部位である。本発明の好ましい形態によれば、前記抑制部位が、炭素数20以下のアルキル基を有する部位であり、本発明のより好ましい形態によれば、前記抑制部位が、炭素数18以下のアルキル基を有する部位であり、本発明のより好ましい形態によれば、炭素数16以下のアルキル基を有する部位である。このように、前記抑制部位におけるアルキル基の炭素数の上限をこのようなものとすることによって、抑制に十分な量の添加剤を添加でき、かつ、研磨成分と、研磨対象物(基板)の表面との間の距離を十分に離しながら密度が高い分子配列膜により、研磨対象物(基板)の表面が保護される。 According to a more preferred embodiment of the present invention, the suppression site is a site having an alkyl group having 11 or more carbon atoms, and according to a further preferred embodiment of the present invention, the suppression site is an alkyl group having 12 or more carbon atoms. It is a site | part which has. According to the preferable form of this invention, the said suppression site | part is a site | part which has a C20 or less alkyl group, According to the more preferable form of this invention, the said suppression site | part has a C18 or less alkyl group. According to a more preferred embodiment of the present invention, it is a site having an alkyl group having 16 or less carbon atoms. Thus, by setting the upper limit of the carbon number of the alkyl group in the suppression site as described above, a sufficient amount of additive for suppression can be added, and the polishing component and the polishing object (substrate) can be added. The surface of the object to be polished (substrate) is protected by the molecular arrangement film having a high density while sufficiently separating the distance from the surface.
 なお、アルキル基は直鎖状であっても、分岐状であってもよいが、分岐状の場合、同一面積に作用できる有機分子の個数が低下する(有機分子の密度が低下する)ため、抑制能が低下する虞がある。また、分岐状のアルキル基では、構造の複雑さゆえに、有機化合物(抑制剤の有機分子)で構成される抑制膜の分子配列速度が低下することが考えられる。よって、直鎖状であることが好ましい。 The alkyl group may be linear or branched, but in the case of branching, the number of organic molecules that can act on the same area decreases (the density of organic molecules decreases). There is a possibility that the suppression ability may be reduced. Moreover, in the case of a branched alkyl group, it is conceivable that the molecular arrangement speed of the suppression film composed of an organic compound (an organic molecule of the inhibitor) decreases due to the complexity of the structure. Therefore, it is preferably linear.
 なお、アルキル基は、水酸基、ハロゲン原子などで置換されていてもよい。 Note that the alkyl group may be substituted with a hydroxyl group, a halogen atom, or the like.
 炭素数1~20のアルキル基の具体例についての特に制限はないが、メチル基、エチル基、プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、2-エチルヘキシル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基(ミリスチル基)、ペンタデシル基、ヘキサデシル基(パルミチル基)、ヘプタデシル基、オクタデシル基(ステアリル基)、ノナデシル基、イコシル基などを挙げることができる。また、ベヘニル基などの炭素数20以上であってもよい。また、オレイル基など一部不飽和結合があってもよい。また、実施例で使用した有機化合物におけるアルキル基も好適な例として挙げることができる。 Specific examples of the alkyl group having 1 to 20 carbon atoms are not particularly limited, but are methyl group, ethyl group, propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl. Group, isopentyl group, neopentyl group, 2-ethylhexyl group, hexyl group, heptyl group, octyl group, nonyl group, decyl group, undecyl group, dodecyl group, tridecyl group, tetradecyl group (myristyl group), pentadecyl group, hexadecyl group ( Palmityl group), heptadecyl group, octadecyl group (stearyl group), nonadecyl group, icosyl group and the like. Moreover, carbon number 20 or more, such as a behenyl group, may be sufficient. Moreover, there may be a partially unsaturated bond such as an oleyl group. Moreover, the alkyl group in the organic compound used in the Example can also be mentioned as a suitable example.
 また、本発明の好ましい形態によれば、抑制部位の数には特に制限はないが、本発明の有機化合物中における、抑制部位における炭素数4以上のアルキル基の数は、1~3つであることが好ましく、抑制剤有機分子(本発明の有機化合物)の分子配列膜のしやすさの観点から、より好ましくは1つである。また、本発明のより好ましい形態によれば、本発明の有機化合物中における、抑制部位における炭素数10以上のアルキル基の数は、1~3つであることが好ましく、抑制剤有機分子(本発明の有機化合物)の分子配列膜のしやすさの観点から、より好ましくは1つである。 According to a preferred embodiment of the present invention, the number of suppression sites is not particularly limited, but the number of alkyl groups having 4 or more carbon atoms in the suppression sites in the organic compound of the present invention is 1 to 3. It is preferable that there is one, and more preferably one from the viewpoint of ease of molecular alignment film of the inhibitor organic molecule (organic compound of the present invention). Further, according to a more preferred embodiment of the present invention, the number of alkyl groups having 10 or more carbon atoms in the suppression site in the organic compound of the present invention is preferably 1 to 3, and the inhibitor organic molecule (present From the viewpoint of easiness of the molecular alignment film of the organic compound) of the invention, it is more preferably one.
 以上より、本発明の有機化合物としては、ラウリルベタイン、4-ラウリルピリジンN-オキシド、N,N-ジメチルドデシルアミンN-オキシド、N,N-ジヒドロキシエチルラウリルアミンN-オキシド、4-ヘプチルフェノール、n-オクチルアミン、ノナン酸、ラウリルホスホン酸、ベタイン、4-n-オクチルベンゼンカルボン酸、エチレングリコールジブチルエーテル、ヘプチルメチルスルフィド、4-オクチルピリジンN-オキシド、4-ヘキシルピリジンN-オキシド、4-ブチルピリジンN-オキシド、4-エチルピリジンN-オキシド、カルボキシラトメチルオクチルジメチルアンモニウム、カルボキシラトメチルヘキシルジメチルアンモニウム、カルボキシラトメチルブチルジメチルアンモニウムN,N-ジメチルデシルアミンN-オキシド、N,N-ジメチルオクチルアミンN-オキシド、N,N-ジメチルヘキシルアミンN-オキシド、N,N-ジメチルブチルアミンN-オキシド、N,N-ジメチルエチルアミンN-オキシド、N-ラウロイルサルコシンN-オキシド(N-Lauroylsarcosine N-oxide)、N,N-ジメチルラウリルアミンN-オキシド(N,N-ジメチルドデシルアミンN-オキシド)およびN,N-ジヒドロキシエチルラウリルアミンN-オキシドなどが好適である。これらは、1種または2種以上を組み合わせてもよい。 From the above, examples of the organic compound of the present invention include lauryl betaine, 4-laurylpyridine N-oxide, N, N-dimethyldodecylamine N-oxide, N, N-dihydroxyethyllaurylamine N-oxide, 4-heptylphenol, n-octylamine, nonanoic acid, laurylphosphonic acid, betaine, 4-n-octylbenzenecarboxylic acid, ethylene glycol dibutyl ether, heptylmethyl sulfide, 4-octylpyridine N-oxide, 4-hexylpyridine N-oxide, 4- Butylpyridine N-oxide, 4-ethylpyridine N-oxide, carboxylatomethyloctyldimethylammonium, carboxylatomethylhexyldimethylammonium, carboxylatomethylbutyldimethylammonium N, N-dimethyl Silamine N-oxide, N, N-dimethyloctylamine N-oxide, N, N-dimethylhexylamine N-oxide, N, N-dimethylbutylamine N-oxide, N, N-dimethylethylamine N-oxide, N-lauroyl Sarcosine N-oxide (N-Lauroylsarcosine N-oxide), N, N-dimethyllaurylamine N-oxide (N, N-dimethyldodecylamine N-oxide) and N, N-dihydroxyethyllaurylamine N-oxide are suitable. It is. These may be used alone or in combination of two or more.
 また、本発明の好ましい形態によれば、相互作用が、イオン結合、共有結合および水素結合の少なくとも一つから選ばれる化学結合によるものであることが好ましい。相互作用が、例えば、疎水性相互作用や分子間力(ファンデルワールス力)のようなものによる場合は、ケイ素-酸素結合を有する研磨対象物に強固に吸着せず、本発明の効果を奏しない場合がある。特には、研磨対象物(基板)の表面に吸着した本発明の有機化合物(研磨速度抑制剤)が、砥粒や研磨パッドにより研磨対象物(基板)表面から除去されにくくする観点から、イオン結合および共有結合のような強固な結合の少なくとも一方であることが好ましい。 Further, according to a preferred embodiment of the present invention, it is preferable that the interaction is due to a chemical bond selected from at least one of an ionic bond, a covalent bond and a hydrogen bond. When the interaction is due to, for example, a hydrophobic interaction or an intermolecular force (van der Waals force), the interaction is not firmly adsorbed to the polishing object having a silicon-oxygen bond, and the effect of the present invention is achieved. May not. In particular, from the viewpoint of making it difficult for the organic compound (polishing rate inhibitor) of the present invention adsorbed on the surface of the polishing object (substrate) to be removed from the surface of the polishing object (substrate) by abrasive grains or a polishing pad. And at least one of strong bonds such as covalent bonds.
 本発明においては、酸性、中性または塩基性のいずれかの領域で、前記ケイ素-酸素結合を有する研磨対象物の研磨速度を抑制することができればよいが、様々な用途に適用できるという汎用性の観点、また他の研磨対象物の研磨効率の制御を優先したい場合等でpHを変更する場合、酸性、中性または塩基性のすべての領域で、前記ケイ素-酸素結合を有する研磨対象物の研磨速度を抑制することが好ましい。 In the present invention, it suffices if the polishing rate of the polishing object having a silicon-oxygen bond can be suppressed in any of acidic, neutral and basic regions. In the case of changing the pH in order to prioritize the control of the polishing efficiency of other polishing objects, etc., the polishing object having the silicon-oxygen bond in all the acidic, neutral or basic regions It is preferable to suppress the polishing rate.
 本発明の研磨用組成物における有機化合物の含有量にも特に制限はないが、研磨効率をコントロールする観点から、0.01mM以上が好ましく、0.1mM以上がより好ましく、0.5mM以上がさらに好ましく、1.0mM以上であることがよりさらに好ましく、1.5mM以上であることがよりさらに好ましく、2.0mM以上であることがよりさらに好ましく、2.5mM以上であることが特に好ましい。また一方で、溶解性やコストの観点から、100mM以下が好ましく、50mM以下がより好ましく、30mM以下がさらに好ましく、20mM以下であることがよりさらに好ましく、15mM以下であることがよりさらに好ましく、10mM以下であることがよりさらに好ましく、5mM以下であることが特に好ましい。 The content of the organic compound in the polishing composition of the present invention is not particularly limited, but is preferably 0.01 mM or more, more preferably 0.1 mM or more, and even more preferably 0.5 mM or more from the viewpoint of controlling polishing efficiency. Preferably, it is 1.0 mM or more, more preferably 1.5 mM or more, still more preferably 2.0 mM or more, and particularly preferably 2.5 mM or more. On the other hand, from the viewpoint of solubility and cost, 100 mM or less is preferable, 50 mM or less is more preferable, 30 mM or less is more preferable, 20 mM or less is further more preferable, 15 mM or less is even more preferable, and 10 mM. More preferably, it is more preferably 5 mM or less.
 上記のように、本発明の作用部位(特に、N-オキシド、ベタイン)がケイ素-酸素結合を有する研磨対象物の表面に化学結合することができ、他方で、有機化合物の抑制部位が研磨対象物の表面から接液側に向く形で、あるいは、表面を覆うように、分子配列膜を形成し、研磨対象物を研磨する研磨成分の作用を阻害する。この有機化合物の抑制部位は、疎水性が高いため、同様の作用部位と抑制部位とを有する有機化合物が、疎水性相互作用により集合することで、ケイ素-酸素結合を有する研磨対象物の表面に抑制膜を形成する。そのため、本発明によれば、酸性、中性または塩基性の少なくとも一つの領域で(好ましくは、二以上またはすべての領域で)、酸化ケイ素膜などのケイ素-酸素結合を有する研磨対象物の研磨速度を十分に制御することができる研磨用組成物を提供することができる。 As described above, the action site of the present invention (particularly N-oxide, betaine) can be chemically bonded to the surface of the polishing object having a silicon-oxygen bond, while the suppression site of the organic compound is the polishing object. A molecular alignment film is formed so as to face the liquid contact side from the surface of the object, or to cover the surface, thereby inhibiting the action of the polishing component for polishing the object to be polished. Since the suppression part of the organic compound is highly hydrophobic, organic compounds having the same action part and the suppression part are aggregated by hydrophobic interaction, so that the surface of the polishing object having a silicon-oxygen bond is collected. A suppression film is formed. Therefore, according to the present invention, polishing of an object to be polished having a silicon-oxygen bond, such as a silicon oxide film, in at least one region (preferably in two or more regions) of acidic, neutral or basic. A polishing composition capable of sufficiently controlling the speed can be provided.
 また、本発明によれば、酸化ケイ素膜などのケイ素-酸素結合を有する研磨対象物の研磨速度を十分に制御することができる研磨用組成物を提供することができるため、例えば、半導体のトランジスター構造の設計にあたり、意図しない層が研磨されることを抑制することができる。よってひいては、デバイスの高さが変わってしまうことを抑制し、電気特性やデバイスの信頼性を向上させることができる。 Further, according to the present invention, a polishing composition capable of sufficiently controlling the polishing rate of an object to be polished having a silicon-oxygen bond such as a silicon oxide film can be provided. In designing the structure, it is possible to prevent unintended layers from being polished. Therefore, it is possible to suppress the change in the height of the device and improve the electrical characteristics and the reliability of the device.
 [砥粒]
 本発明の研磨用組成物は、砥粒を含む。
[Abrasive grain]
The polishing composition of the present invention contains abrasive grains.
 使用される砥粒は、無機粒子、有機粒子、および有機無機複合粒子のいずれであってもよい。無機粒子の具体例としては、例えば、シリカ、アルミナ、セリア、チタニア等の金属酸化物からなる粒子、窒化ケイ素粒子、炭化ケイ素粒子、窒化ホウ素粒子が挙げられる。有機粒子の具体例としては、例えば、ラテックス粒子、ポリスチレン粒子、ポリメタクリル酸メチル(PMMA)粒子が挙げられる。該砥粒は、単独でもまたはこれらの複合物でもまたは2種以上混合して用いてもよい。また、該砥粒は、市販品を用いてもよいし合成品を用いてもよい。 The abrasive used may be any of inorganic particles, organic particles, and organic-inorganic composite particles. Specific examples of the inorganic particles include particles made of metal oxides such as silica, alumina, ceria, titania, silicon nitride particles, silicon carbide particles, and boron nitride particles. Specific examples of the organic particles include latex particles, polystyrene particles, and polymethyl methacrylate (PMMA) particles. These abrasive grains may be used singly or as a composite thereof or as a mixture of two or more thereof. The abrasive grains may be commercially available products or synthetic products.
 砥粒の作用としては、研磨対象物を砥粒でかきとることで研磨対象物を機械的な作用で除去を行っているが、この機械的な作用は、砥粒の素材や形状、粒子径、粒度分布、が大きく影響を与える。モース硬度が低い砥粒や、解砕されやすい素材では、機械的な作用が弱まり、酸化ケイ素膜などのケイ素-酸素結合を有する研磨対象物の研磨速度を抑制できる。粒子の形状が、表面凹凸が無く、真球に近い粒子では、研磨対象物との引っかかりが弱まるため、酸化ケイ素膜などのケイ素-酸素結合を有する研磨対象物の研磨速度を抑制できる。粒子径が小さな砥粒では、研磨対象物表面に与える歪を小さくすることができるため、酸化ケイ素膜などのケイ素-酸素結合を有する研磨対象物の研磨速度を抑制できる。粒度分布の幅が狭い砥粒ほど、1粒子あたりにかかる力を軽減できるため、酸化ケイ素膜などのケイ素-酸素結合を有する研磨対象物の研磨速度を抑制できる。 As the action of the abrasive grains, the object to be polished is removed by mechanical action by scraping the object to be polished with abrasive grains, but this mechanical action is dependent on the material, shape and particle diameter of the abrasive grains. , The particle size distribution has a great influence. With abrasive grains having a low Mohs hardness or a material that is easily crushed, the mechanical action is weakened, and the polishing rate of a polishing object having a silicon-oxygen bond such as a silicon oxide film can be suppressed. When the shape of the particles has no surface irregularity and is close to a true sphere, the trapping with the object to be polished is weakened, so that the polishing rate of the object to be polished having a silicon-oxygen bond such as a silicon oxide film can be suppressed. Abrasive grains having a small particle diameter can reduce the strain applied to the surface of the object to be polished, so that the polishing rate of an object to be polished having a silicon-oxygen bond such as a silicon oxide film can be suppressed. Abrasive grains having a narrower particle size distribution can reduce the force applied to each particle, so that the polishing rate of a polishing object having a silicon-oxygen bond such as a silicon oxide film can be suppressed.
 特に、砥粒のゼータ電位が酸化ケイ素膜と同符号になったり、ゼータ電位差が同符号で大きくなったりすると、粒子-基板表面間に働く静電気的な斥力の増大もしくは、静電気的な引力の低下により、酸化ケイ素膜などのケイ素-酸素結合を有する研磨対象物の研磨速度を抑制できる。しかし、これらの手法で機械的な作用を調整して酸化ケイ素膜の研磨レートを抑制した場合、他の膜種の研磨効率も合わせて抑制されることが多いことから、添加剤の効果で研磨効率を制御することが望ましい。 In particular, when the zeta potential of the abrasive grains has the same sign as that of the silicon oxide film or the zeta potential difference increases with the same sign, the electrostatic repulsive force acting between the particle and the substrate surface increases or the electrostatic attractive force decreases. As a result, the polishing rate of a polishing object having a silicon-oxygen bond such as a silicon oxide film can be suppressed. However, when the mechanical action is adjusted by these methods to suppress the polishing rate of the silicon oxide film, the polishing efficiency of other film types is often also suppressed, so that polishing is performed by the effect of the additive. It is desirable to control efficiency.
 これら砥粒の中でも、シリカが好ましく、研磨傷の発生を抑制する観点から、特に好ましいのはコロイダルシリカである。 Among these abrasive grains, silica is preferable, and colloidal silica is particularly preferable from the viewpoint of suppressing generation of polishing flaws.
 使用しうるコロイダルシリカの種類は特に限定されないが、例えば、表面修飾したコロイダルシリカの使用が可能である。コロイダルシリカの表面修飾(担持コロイダルシリカ)は、例えば、アルミニウム、チタンまたはジルコニウムなどの金属、あるいはそれらの酸化物をコロイダルシリカと混合してシリカ粒子の表面にドープさせることにより行うことができる。 The type of colloidal silica that can be used is not particularly limited, and for example, surface-modified colloidal silica can be used. Surface modification of colloidal silica (supported colloidal silica) can be performed, for example, by mixing a metal such as aluminum, titanium or zirconium, or an oxide thereof with colloidal silica and doping the surface of silica particles.
 あるいは、シリカ粒子の表面に有機酸の官能基を化学的に結合させること、すなわち有機酸の固定化により行うこともできる。 Alternatively, it can be carried out by chemically bonding the functional group of the organic acid to the surface of the silica particles, that is, by immobilizing the organic acid.
 なお、コロイダルシリカと有機酸とを単に共存させただけではコロイダルシリカへの有機酸の固定化は果たされない。例えば、有機酸の一種であるスルホン酸をコロイダルシリカに固定化するのであれば、例えば、“Sulfonic acid-functionalized silica through of thiol groups”, Chem. Commun. 246-247 (2003)に記載の方法で行うことができる。具体的には、3-メルカプトプロピルトリメトキシシランなどのチオール基を有するシランカップリング剤をコロイダルシリカにカップリングさせた後に過酸化水素でチオール基を酸化することにより、スルホン酸が表面に固定化されたコロイダルシリカを得ることができる。実施例で使用したコロイダルシリカも、このようにしてスルホン酸基を修飾されている。 In addition, the immobilization of the organic acid on the colloidal silica is not achieved simply by the coexistence of the colloidal silica and the organic acid. For example, if sulfonic acid, which is a kind of organic acid, is immobilized on colloidal silica, see, for example, “Sulphonic acid-functionalized silica through of thiol groups”, Chem. Commun. 246-247 (2003). Specifically, a silane coupling agent having a thiol group such as 3-mercaptopropyltrimethoxysilane is coupled to colloidal silica and then oxidized with hydrogen peroxide to fix the sulfonic acid on the surface. The colloidal silica thus obtained can be obtained. The colloidal silica used in the examples is also modified with sulfonic acid groups in this way.
 あるいは、有機酸の一種であるカルボン酸をコロイダルシリカに固定化するのであれば、例えば、“Novel Silane Coupling Agents Containing a Photolabile 2-Nitrobenzyl Ester for Introduction of a Carboxy Group on the Surface of Silica Gel”, Chemistry Letters, 3, 228-229 (2000)に記載の方法で行うことができる。具体的には、光反応性2-ニトロベンジルエステルを含むシランカップリング剤をコロイダルシリカにカップリングさせた後に光照射することにより、カルボン酸が表面に固定化されたコロイダルシリカを得ることができる。 Alternatively, if carboxylic acid, which is a kind of organic acid, is immobilized on colloidal silica, for example, “Novel Silane Coupling Agents Containing a Photobolizable 2-Nitrobenzoyl Sterfotrophic Induction of CarbodisulfideCarbon Letters, 3, 228-229 (2000). Specifically, colloidal silica having a carboxylic acid immobilized on the surface can be obtained by irradiating light after coupling a silane coupling agent containing a photoreactive 2-nitrobenzyl ester to colloidal silica. .
 この中で特に好ましいのは、容易に製造できるという観点からスルホン酸を固定したコロイダルシリカである。また、スルホン酸をコロイダルシリカに固定化した形態であれば、以下のメカニズムで酸化ケイ素膜などのケイ素-酸素結合を有する研磨対象物の研磨速度を抑制できる。 Of these, colloidal silica to which sulfonic acid is fixed is particularly preferable from the viewpoint of easy production. Further, in the form in which sulfonic acid is immobilized on colloidal silica, the polishing rate of a polishing object having a silicon-oxygen bond such as a silicon oxide film can be suppressed by the following mechanism.
 一般的な酸化ケイ素膜などのケイ素-酸素結合を有する研磨対象物の表面は、pH2付近に表面ゼータ電位がゼロとなる等電点を持っており、それ超のpHではマイナスに帯電しており、pHが高くなるにつれてその値の絶対値は大きくなる。それ以下のpHではわずかにプラスに帯電するものの、ほぼ等電点と同等の値をとる。 The surface of a polishing object having a silicon-oxygen bond, such as a general silicon oxide film, has an isoelectric point where the surface zeta potential is zero near pH 2, and is negatively charged at a pH higher than that. The absolute value of the value increases as the pH increases. Although it is slightly positively charged at a lower pH, it takes a value almost equal to the isoelectric point.
 このことから、一般的な酸化ケイ素膜などのケイ素-酸素結合を有する研磨対象物の表面は広いpH範囲でマイナスに帯電している。このような研磨対象物の研磨効率を抑制したい場合、広い範囲でマイナスのゼータ電位をとる砥粒を用いることが有効である。このような広いpH範囲でマイナスのゼータ電位をとる粒子として、砥粒表面に官能基のpKaが低い酸基を修飾することが有効である。一般的なpKaが低い酸基として、スルホン酸基が好ましい。この理由として、一般的なスルホン酸基は、pKaが1以下の値をとることから、このものを砥粒表面に修飾することで、pHが1以上の範囲でマイナスを帯びた砥粒が得られる。このようなpHが1以上でマイナスの値を有する砥粒を用いて酸化ケイ素膜などのケイ素-酸素結合を有する研磨対象物を研磨する場合、広いpH領域で砥粒-基板間に電気的な反発力が発生することから、研磨対象物の研磨効率を抑制する上で有効な手段となる。 For this reason, the surface of an object to be polished having a silicon-oxygen bond such as a general silicon oxide film is negatively charged in a wide pH range. In order to suppress the polishing efficiency of such an object to be polished, it is effective to use abrasive grains having a negative zeta potential in a wide range. As particles having a negative zeta potential in such a wide pH range, it is effective to modify acid groups having a low functional group pKa on the surface of the abrasive grains. As a general acid group having a low pKa, a sulfonic acid group is preferable. The reason for this is that a general sulfonic acid group has a pKa value of 1 or less. By modifying this to the abrasive grain surface, a negative abrasive grain having a pH of 1 or more is obtained. It is done. When a polishing object having a silicon-oxygen bond, such as a silicon oxide film, is polished using such abrasive grains having a negative value with a pH of 1 or more, an electrical connection between the abrasive grains and the substrate is possible in a wide pH range. Since a repulsive force is generated, it is an effective means for suppressing the polishing efficiency of the object to be polished.
 上記では、好ましい形態としてアニオンゾルの製法についても記載したが、カチオンゾルの製法によって作製した砥粒であってもよい。その他に、複合砥粒や、コアシェル構造を有する砥粒を使用することもできる。 In the above description, the method for producing an anion sol was also described as a preferred form, but an abrasive produced by a method for producing a cation sol may be used. In addition, composite abrasive grains and abrasive grains having a core-shell structure can also be used.
 研磨用組成物中の砥粒の平均一次粒子径の下限は、5nm以上であることが好ましく、7nm以上であることがより好ましく、10nm以上であることがさらに好ましく、15nm以上であることがよりさらに好ましく、25nm以上であることが特に好ましい。また、砥粒の平均一次粒子径の上限は、200nm以下であることが好ましく、150nm以下であることがより好ましく、100nm以下であることがさらに好ましく、70nm以下であることがよりさらに好ましく、60nm以下であることがよりさらに好ましく、50nm以下であることが特に好ましい。 The lower limit of the average primary particle diameter of the abrasive grains in the polishing composition is preferably 5 nm or more, more preferably 7 nm or more, further preferably 10 nm or more, and more preferably 15 nm or more. More preferably, it is particularly preferably 25 nm or more. The upper limit of the average primary particle diameter of the abrasive grains is preferably 200 nm or less, more preferably 150 nm or less, further preferably 100 nm or less, still more preferably 70 nm or less, and 60 nm. More preferably, it is more preferably 50 nm or less.
 このような範囲であれば、研磨用組成物を用いて研磨した後の研磨対象物の表面にスクラッチなどのディフェクトを抑えることができる。なお、砥粒の平均一次粒子径は、例えば、BET法で測定される砥粒の比表面積に基づいて算出される。本発明の実施例でもそのように算出される。 In such a range, defects such as scratches can be suppressed on the surface of the object to be polished after polishing with the polishing composition. In addition, the average primary particle diameter of an abrasive grain is calculated based on the specific surface area of the abrasive grain measured by BET method, for example. This is also calculated in the embodiment of the present invention.
 研磨用組成物中の砥粒の平均二次粒子径の下限は、5nm以上であることが好ましく、7nm以上であることがより好ましく、10nm以上であることがさらに好ましく、26nm以上であることがよりさらに好ましく、36nm以上あることがよりさらに好ましく、45nm以上であることがよりさらに好ましく、55nm以上であることが特に好ましい。また、砥粒の平均二次粒子径の上限は、300nm以下であることが好ましく、260nm以下であることがより好ましく、220nm以下であることがさらに好ましく、150nm以下であることがよりさらに好ましく、120nm以下であることがよりさらに好ましく、100nm以下であることがよりさらに好ましく、80nm以下であることが特に好ましい。このような範囲であれば、研磨用組成物を用いて研磨した後の研磨対象物の表面に表面欠陥が生じるのをより抑えることができる。特に、砥粒の平均二次粒子径を小さくすると、酸化ケイ素膜などのケイ素-酸素結合を有する研磨対象物の研磨速度を抑制できると考えられる。 The lower limit of the average secondary particle diameter of the abrasive grains in the polishing composition is preferably 5 nm or more, more preferably 7 nm or more, further preferably 10 nm or more, and preferably 26 nm or more. Still more preferably, it is more preferably 36 nm or more, still more preferably 45 nm or more, and particularly preferably 55 nm or more. Further, the upper limit of the average secondary particle diameter of the abrasive grains is preferably 300 nm or less, more preferably 260 nm or less, further preferably 220 nm or less, still more preferably 150 nm or less, It is more preferably 120 nm or less, still more preferably 100 nm or less, and particularly preferably 80 nm or less. If it is such a range, it can suppress more that a surface defect arises on the surface of the grinding | polishing target object after grind | polishing using polishing composition. In particular, it is considered that when the average secondary particle diameter of the abrasive grains is reduced, the polishing rate of a polishing object having a silicon-oxygen bond such as a silicon oxide film can be suppressed.
 なお、ここでいう二次粒子とは、砥粒が研磨用組成物中で会合して形成する粒子をいい、この二次粒子の平均二次粒子径は、例えばレーザー回折散乱法に代表される動的光散乱法により測定することができる。本発明の実施例でもそのように算出される。 Here, the secondary particles refer to particles formed by association of abrasive grains in the polishing composition, and the average secondary particle diameter of the secondary particles is represented by, for example, a laser diffraction scattering method. It can be measured by a dynamic light scattering method. This is also calculated in the embodiment of the present invention.
 研磨用組成物中の砥粒における、レーザー回折散乱法により求められる粒度分布において微粒子側から積算粒子質量が全粒子質量の90%に達するときの粒子の直径D90と、全粒子の全粒子質量の10%に達するときの粒子の直径D10との比(本明細書中、単に「D90/D10」とも称する)の下限は、1.1以上であることが好ましく、1.2以上であることがより好ましく、1.3以上であることがよりさらに好ましく、1.4以上であることが特に好ましい。D90/D10の上限は特に制限はないが、5.0以下であることが好ましく、3.0以下であることがより好ましく、2.5以下であることがよりさらに好ましく、2.0以下であることがよりさらに好ましく、1.8以下であることが特に好ましい。本発明の実施例でもそのように算出される。このような範囲であれば、研磨用組成物を用いて研磨した後の研磨対象物の表面に表面欠陥が生じるのをより抑えることができる。D90/D10が小さい(1.0に近い)ものでは、粒度分布幅が狭いことを表し、この値が大きくなるにつれて粒度分布の幅が広いことを表す。酸化ケイ素研磨効率に及ぼすD90/D10の値の影響に関しては、D90/D10が小さくなるほど、粒子1個(作用点)にかかる応力が分散される(作用点ごとに均一に力がかかる)ことから、D90/D10の値が小さくするほど抑制効果は高くなる。一方で、D90/D10の値が大きい(粒度分布が広い)場合では、大きな粒子と小さな粒子で粒径差が大きくなり、大きな粒子に集中して力がかかるため、基板表面への歪が大きくなり、研磨効率は向上してしまう。 The particle diameter D90 when the accumulated particle mass reaches 90% of the total particle mass from the fine particle side in the particle size distribution obtained by the laser diffraction scattering method in the abrasive grains in the polishing composition, and the total particle mass of all the particles The lower limit of the ratio with the diameter D10 of the particles when reaching 10% (also simply referred to as “D90 / D10” in the present specification) is preferably 1.1 or more, and preferably 1.2 or more. More preferably, it is more preferably 1.3 or more, and particularly preferably 1.4 or more. The upper limit of D90 / D10 is not particularly limited, but is preferably 5.0 or less, more preferably 3.0 or less, still more preferably 2.5 or less, and 2.0 or less. More preferably, it is particularly preferably 1.8 or less. This is also calculated in the embodiment of the present invention. If it is such a range, it can suppress more that a surface defect arises on the surface of the grinding | polishing target object after grind | polishing using polishing composition. When D90 / D10 is small (close to 1.0), the particle size distribution width is narrow, and as this value increases, the particle size distribution width is wide. Regarding the influence of the value of D90 / D10 on the silicon oxide polishing efficiency, the smaller the D90 / D10, the more the stress applied to one particle (action point) is dispersed (the force is applied uniformly at each action point). The suppression effect increases as the value of D90 / D10 decreases. On the other hand, in the case where the value of D90 / D10 is large (the particle size distribution is wide), the particle size difference between large particles and small particles becomes large, and force is concentrated on the large particles, so the strain on the substrate surface is large. Thus, the polishing efficiency is improved.
 研磨用組成物中の砥粒の含有量の下限は、0.01質量%以上であることが好ましく、0.05質量%以上であるとより好ましく、0.1質量%以上であることがよりさらに好ましく、0.5質量%以上であるとよりさらに好ましく、1質量%以上であることが特に好ましい。下限がこのようであると、酸化ケイ素膜などのケイ素-酸素結合を有する研磨対象物以外の研磨対象物に対して十分な研磨効率を得る上で好ましい。 The lower limit of the content of abrasive grains in the polishing composition is preferably 0.01% by mass or more, more preferably 0.05% by mass or more, and more preferably 0.1% by mass or more. More preferably, it is more preferably 0.5% by mass or more, and particularly preferably 1% by mass or more. When the lower limit is such, it is preferable for obtaining sufficient polishing efficiency for a polishing object other than a polishing object having a silicon-oxygen bond such as a silicon oxide film.
 また、研磨用組成物中の砥粒の含有量の上限は、50質量%以下であることが好ましく、20質量%以下であることがより好ましく、10質量%以下であることがさらに好ましく、8質量%以下であることがよりさらに好ましく、6質量%以下であることがよりさらに好ましく、4質量%以下であることが特に好ましい。上限がこのようであると、研磨用組成物のコストを抑えることができ、研磨用組成物を用いて研磨した後の研磨対象物の表面に表面欠陥が生じるのをより抑えることができる。特に、研磨用組成物中の砥粒の含有量を少なくすると、酸化ケイ素膜などのケイ素-酸素結合を有する研磨対象物の研磨速度を抑制できると考えられる。 Further, the upper limit of the content of the abrasive grains in the polishing composition is preferably 50% by mass or less, more preferably 20% by mass or less, further preferably 10% by mass or less, and 8 More preferably, it is more preferably 6% by mass or less, and particularly preferably 4% by mass or less. When the upper limit is such, the cost of the polishing composition can be suppressed, and the occurrence of surface defects on the surface of the object to be polished after polishing using the polishing composition can be further suppressed. In particular, it is considered that when the content of abrasive grains in the polishing composition is reduced, the polishing rate of an object to be polished having a silicon-oxygen bond such as a silicon oxide film can be suppressed.
 [分散媒]
 本発明の研磨用組成物は、各成分の分散のために分散媒が用いられる。分散媒としては有機溶媒、水が考えられるが、その中でも水を含むことが好ましい。
[Dispersion medium]
In the polishing composition of the present invention, a dispersion medium is used for dispersing each component. As the dispersion medium, an organic solvent and water are conceivable.
 研磨対象物の汚染や他の成分の作用を阻害するという観点から、不純物をできる限り含有しない水が好ましい。具体的には、イオン交換樹脂にて不純物イオンを除去した後フィルタを通して異物を除去した純水や超純水、または蒸留水が好ましい。 From the viewpoint of inhibiting the contamination of the object to be polished and the action of other components, water containing as little impurities as possible is preferable. Specifically, pure water, ultrapure water, or distilled water from which foreign ions are removed through a filter after removing impurity ions with an ion exchange resin is preferable.
 [研磨対象物]
 上記のように、本発明においては、酸性、中性または塩基性の少なくとも一つの領域で、ケイ素-酸素結合を有する研磨対象物を十分に制御することができる研磨用組成物を提供する。
[Polishing object]
As described above, the present invention provides a polishing composition capable of sufficiently controlling a polishing object having a silicon-oxygen bond in at least one of acidic, neutral and basic regions.
 ケイ素-酸素結合を有する研磨対象物としては、酸化ケイ素膜、BD(ブラックダイヤモンド:SiOCH)、FSG(フルオロシリケートグラス)、HSQ(水素シルセスキオキサン)、CYCLOTENE、SiLK、MSQ(Methyl silsesquioxane)などが挙げられる。 Examples of polishing objects having a silicon-oxygen bond include silicon oxide films, BD (black diamond: SiOCH), FSG (fluorosilicate glass), HSQ (hydrogen silsesquioxane), CYCLOTENE, SiLK, MSQ (Methyl silsesquioxane), and the like. Is mentioned.
 [他の成分]
 本発明の研磨用組成物は、必要に応じて、pH調整剤、酸化剤、還元剤、界面活性剤、水溶性高分子、防カビ剤等の他の成分をさらに含んでもよい。
[Other ingredients]
The polishing composition of the present invention may further contain other components such as a pH adjuster, an oxidizing agent, a reducing agent, a surfactant, a water-soluble polymer, and an antifungal agent, if necessary.
 以下、pH調整剤、酸化剤、還元剤、界面活性剤、水溶性高分子、防カビ剤について説明する。 Hereinafter, the pH adjuster, oxidizing agent, reducing agent, surfactant, water-soluble polymer, and fungicide will be described.
 なお仮に、ケイ素-酸素結合を有する研磨対象物に相互作用する作用部位と、前記研磨対象物を研磨する研磨成分が、前記研磨対象物に接近することを抑制する、抑制部位と、を有する化合物であって、それが「他の成分」としても作用しうる場合、本発明では、本発明の有機化合物に分類する。 Temporarily, a compound having an action site that interacts with a polishing object having a silicon-oxygen bond, and a suppression part that suppresses a polishing component that polishes the polishing object from approaching the polishing object. However, when it can also act as “another component”, the present invention classifies it as an organic compound of the present invention.
 (pH調整剤)
 本発明の研磨用組成物は、酸性、中性または塩基性の少なくとも一つの領域で、前記ケイ素-酸素結合を有する研磨対象物の研磨速度を抑制する。よって、pH調整剤は、特に酸性または塩基性の領域へと調整するために用いることが好ましい。
(PH adjuster)
The polishing composition of the present invention suppresses the polishing rate of the polishing object having a silicon-oxygen bond in at least one of acidic, neutral and basic regions. Therefore, the pH adjuster is preferably used for adjusting to an acidic or basic region.
 本発明において酸性領域とは、pHが7未満を意味し、好ましくはpH1~4である。また、本発明において中性領域とは、pH7を意味する。また、本発明において塩基性領域とは、pH7超を意味し、好ましくはpH8~13である。なお、本発明におけるpHの値は、実施例に記載の条件で測定した値を言うものとする。 In the present invention, the acidic region means that the pH is less than 7, and preferably 1 to 4. In the present invention, the neutral region means pH 7. In the present invention, the basic region means a pH of more than 7, preferably a pH of 8-13. In addition, the value of pH in this invention shall say the value measured on the conditions as described in an Example.
 酸性の領域に調整するためのpH調整剤の具体例としては、無機化合物および有機化合物のいずれであってもよいが、例えば、硫酸(HSO)、硝酸、ホウ酸、炭酸、次亜リン酸、亜リン酸およびリン酸等の無機酸;クエン酸、ギ酸、酢酸、プロピオン酸、安息香酸、サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、および乳酸などのカルボン酸、ならびにメタンスルホン酸、エタンスルホン酸およびイセチオン酸等の有機硫酸等の有機酸等が挙げられる。また、上記の酸で2価以上の酸(たとえば、硫酸、炭酸、リン酸、シュウ酸など)の場合、プロトン(H)が1つ以上放出できるようであれば、塩の状態でもよい。具体的には、例えば、炭酸水素アンモニウム、リン酸水素アンモニウム(カウンターの陽イオン種の種類は基本的に何でもよいが、弱塩基の陽イオン(アンモニウム、トリエタノールアミンなど)が好ましい)。 Specific examples of the pH adjusting agent for adjusting to the acidic region may be any of an inorganic compound and an organic compound. For example, sulfuric acid (H 2 SO 4 ), nitric acid, boric acid, carbonic acid, hypoxia Inorganic acids such as phosphoric acid, phosphorous acid and phosphoric acid; citric acid, formic acid, acetic acid, propionic acid, benzoic acid, salicylic acid, glyceric acid, oxalic acid, malonic acid, succinic acid, maleic acid, phthalic acid, malic acid, Examples thereof include carboxylic acids such as tartaric acid and lactic acid, and organic acids such as organic sulfuric acid such as methanesulfonic acid, ethanesulfonic acid and isethionic acid. In addition, in the case where the above acid is a divalent or higher acid (for example, sulfuric acid, carbonic acid, phosphoric acid, oxalic acid, etc.), it may be in a salt state as long as one or more protons (H + ) can be released. Specifically, for example, ammonium hydrogen carbonate, ammonium hydrogen phosphate (the type of the cation species of the counter is basically arbitrary, but a weak base cation (ammonium, triethanolamine, etc.) is preferred).
 特に塩の形態を使用した場合は、塩濃度(スラリーの電導度)が低いほどポリシリコンなどのケイ素-酸素素結合を有する研磨対象物の研磨速度を抑制できると考えられる。 In particular, when a salt form is used, it is considered that the lower the salt concentration (slurry conductivity), the more the polishing rate of a polishing object having a silicon-oxygen bond such as polysilicon can be suppressed.
 また、塩濃度(スラリーの電導度)が高くなり、砥粒表面の電気二重層の厚さが薄くなる。そのため、砥粒の静電気的な反発力が弱まることから、酸化ケイ素膜などのケイ素-酸素結合を有する研磨対象物の研磨速度が向上する虞がある。このことから、本発明の研磨用組成物では、酸性の領域に調整するためのpH調整剤には、塩を含まないものがより好ましい。かかる塩としては、例えば、塩酸等のハロゲン酸、硫酸、硝酸、リン酸、炭酸等の無機酸のアンモニウム塩、カリウム塩、アミン塩、酢酸、クエン酸、シュウ酸、マレイン酸等の有機酸のアンモニウム塩、カリウム塩、アミン塩である。 Also, the salt concentration (the conductivity of the slurry) increases, and the thickness of the electric double layer on the abrasive grain surface decreases. Therefore, since the electrostatic repulsive force of the abrasive grains is weakened, there is a concern that the polishing rate of a polishing object having a silicon-oxygen bond such as a silicon oxide film may be improved. For this reason, in the polishing composition of the present invention, it is more preferable that the pH adjuster for adjusting to the acidic region does not contain a salt. Examples of such salts include halogen acids such as hydrochloric acid, ammonium salts of inorganic acids such as sulfuric acid, nitric acid, phosphoric acid, and carbonic acid, potassium salts, amine salts, acetic acid, citric acid, oxalic acid, maleic acid, and other organic acids. Ammonium salt, potassium salt, amine salt.
 塩基性の領域に調整するためのpH調整剤の具体例としては、無機化合物および有機化合物のいずれであってもよいが、アルカリ金属の水酸化物またはその塩、第四級アンモニウム、水酸化第四級アンモニウムまたはその塩、アンモニア、アミン等が挙げられる。 Specific examples of the pH adjusting agent for adjusting to the basic region may be any of an inorganic compound and an organic compound, but alkali metal hydroxides or salts thereof, quaternary ammonium, hydroxide hydroxide Quaternary ammonium or a salt thereof, ammonia, amine and the like can be mentioned.
 アルカリ金属の具体例としては、カリウム、ナトリウム等が挙げられる。塩の具体例としては、炭酸塩、炭酸水素塩、硫酸塩、酢酸塩等が挙げられる。 Specific examples of the alkali metal include potassium and sodium. Specific examples of the salt include carbonate, hydrogen carbonate, sulfate, acetate, and the like.
 第四級アンモニウムの具体例としては、テトラメチルアンモニウム、テトラエチルアンモニウム、テトラブチルアンモニウム等が挙げられる。 Specific examples of quaternary ammonium include tetramethylammonium, tetraethylammonium, tetrabutylammonium and the like.
 水酸化第四級アンモニウムまたはその塩としては、具体例としては、水酸化テトラメチルアンモニウム、水酸化テトラエチルアンモニウム、水酸化テトラブチルアンモニウム等が挙げられる。 Specific examples of the quaternary ammonium hydroxide or a salt thereof include tetramethylammonium hydroxide, tetraethylammonium hydroxide, tetrabutylammonium hydroxide, and the like.
 中でも、研磨用組成物には、塩基として、金属汚染防止や半導体デバイス構造中への金属イオンの拡散のしやすさの観点から、アンモニア、アミンまたはカリウムを含むことがさらに好ましい。具体的には水酸化カリウム(KOH)、炭酸カリウム、炭酸水素カリウム、硫酸カリウム、酢酸カリウム、塩化カリウム等が挙げられる。 Among these, it is more preferable that the polishing composition contains ammonia, amine, or potassium as a base from the viewpoint of prevention of metal contamination and ease of diffusion of metal ions into the semiconductor device structure. Specific examples include potassium hydroxide (KOH), potassium carbonate, potassium hydrogen carbonate, potassium sulfate, potassium acetate, and potassium chloride.
 (酸化剤)
 酸化剤の具体例としては、過酸化水素、過酢酸、過炭酸塩、過酸化尿素、過塩素酸;過硫酸ナトリウム、過硫酸カリウム、過硫酸アンモニウム、一過硫酸カリウム、オキソン(2KHSO・KHSO・KSO)等の過酸化物との複塩などの過硫酸塩、次亜塩素酸塩、亜塩素酸塩、塩素酸塩、過塩素酸塩、次亜臭素酸塩、亜臭素酸塩、臭素酸塩、過臭素酸塩、次亜ヨウ素酸塩、亜ヨウ素酸塩、ヨウ素酸塩、過ヨウ素酸塩等のハロゲン系酸化剤、硝酸セリウムアンモニウム、過マンガン酸カリウム、クロム酸カリウム等の幅広い酸化数を取りうる金属元素の化合物などが挙げられる。これら酸化剤は、単独でもまたは2種以上混合して用いてもよい。
(Oxidant)
Specific examples of the oxidizing agent include hydrogen peroxide, peracetic acid, percarbonate, urea peroxide, perchloric acid; sodium persulfate, potassium persulfate, ammonium persulfate, potassium monopersulfate, oxone (2KHSO 5 · KHSO 4・ Persulfates such as double salts with peroxides such as K 2 SO 4 ), hypochlorite, chlorite, chlorate, perchlorate, hypobromite, bromite Halogen-based oxidants such as salts, bromate, perbromate, hypoiodite, iodate, iodate, periodate, cerium ammonium nitrate, potassium permanganate, potassium chromate, etc. And compounds of metal elements that can take a wide range of oxidation numbers. These oxidizing agents may be used alone or in combination of two or more.
 研磨用組成物中の酸化剤の含有量(濃度)の下限は、0.001質量%以上であることが好ましく、より好ましくは0.01質量%以上である。下限をこのようにすることで、酸化剤を添加すると研磨効率が向上するような研磨対象物を研磨する際に、砥粒濃度を上げることなくケイ素-酸素結合を有する研磨対象物以外の研磨対象物の研磨効率を上げることができるという利点がある。また、研磨用組成物中の酸化剤の含有量(濃度)の上限は、30質量%以下であることが好ましく、より好ましくは10質量%以下である。上限をこのようにすることで、研磨用組成物の材料コストを抑えることができるのに加え、研磨使用後の研磨用組成物の処理、すなわち廃液処理の負荷を軽減することができる利点を有する。また、酸化剤による研磨対象物表面の過剰な酸化が起こりにくくなる利点も有する。 The lower limit of the content (concentration) of the oxidizing agent in the polishing composition is preferably 0.001% by mass or more, more preferably 0.01% by mass or more. By setting the lower limit in this way, when polishing an object whose polishing efficiency is improved by adding an oxidant, the object to be polished other than the object having a silicon-oxygen bond is not increased without increasing the abrasive concentration. There is an advantage that the polishing efficiency of an object can be increased. Moreover, it is preferable that the upper limit of content (concentration) of the oxidizing agent in polishing composition is 30 mass% or less, More preferably, it is 10 mass% or less. By setting the upper limit in this way, the material cost of the polishing composition can be suppressed, and in addition, there is an advantage that the load of the treatment of the polishing composition after polishing use, that is, the waste liquid treatment can be reduced. . In addition, there is an advantage that excessive oxidation of the surface of the object to be polished by the oxidizing agent hardly occurs.
 (還元剤)
 また、本発明の研磨用組成物は、還元剤を含有させてもよい。還元剤としては、研磨用組成物に使用されている従来公知のものを含有させることができ、例えば、有機物では、ヒドラジン、ギ酸、シュウ酸、ホルムアルデヒド水溶液、アスコルビン酸、グルコース等の還元糖類、無機物では、亜硝酸またはその塩、亜リン酸またはその塩、次亜リン酸またはその塩、亜硫酸またはその塩、チオ硫酸またはその塩、水素化アルミニウムリチウム、水素化ホウ素ナトリウム、複数の安定な価数をとる金属とその化合物などがある。任意の金属の酸化を還元剤で抑制することで、その金属の腐食を抑制したり、研磨効率を制御できたりする。
(Reducing agent)
Moreover, the polishing composition of the present invention may contain a reducing agent. As the reducing agent, conventionally known ones used in polishing compositions can be included. For example, in the case of organic substances, hydrazine, formic acid, oxalic acid, formaldehyde aqueous solution, ascorbic acid, glucose and other reducing sugars, inorganic substances In, nitrous acid or its salt, phosphorous acid or its salt, hypophosphorous acid or its salt, sulfurous acid or its salt, thiosulfuric acid or its salt, lithium aluminum hydride, sodium borohydride, multiple stable valences Metal and its compounds. By suppressing oxidation of any metal with a reducing agent, corrosion of the metal can be suppressed and polishing efficiency can be controlled.
 研磨用組成物中の還元剤の含有量(濃度)の下限は、0.001質量%以上であることが好ましく、より好ましくは0.01質量%以上である。下限をこのようにすることで、還元剤を添加すると研磨効率が向上するような、ケイ素-酸素結合を有する研磨対象物以外の研磨対象物を研磨する際に、砥粒濃度を上げることなく研磨効率を上げることができるという利点がある。これ以外にも、還元剤を添加することで、研磨対象物に任意の金属が含まれている場合の腐食を抑制することができる。また、研磨用組成物中の還元剤の含有量(濃度)の上限は、30質量%以下であることが好ましく、より好ましくは10質量%以下である。上限をこのようにすることで、研磨用組成物の材料コストを抑えることができるのに加え、研磨使用後の研磨用組成物の処理、すなわち廃液処理の負荷を軽減することができる利点を有する。 The lower limit of the content (concentration) of the reducing agent in the polishing composition is preferably 0.001% by mass or more, and more preferably 0.01% by mass or more. When the polishing target other than the polishing target having a silicon-oxygen bond is polished such that the polishing efficiency is improved by adding a reducing agent by making the lower limit in this way, polishing is performed without increasing the abrasive concentration. There is an advantage that the efficiency can be increased. In addition to this, by adding a reducing agent, it is possible to suppress corrosion when an arbitrary metal is contained in the object to be polished. Moreover, it is preferable that the upper limit of content (concentration) of the reducing agent in polishing composition is 30 mass% or less, More preferably, it is 10 mass% or less. By setting the upper limit in this way, the material cost of the polishing composition can be suppressed, and in addition, there is an advantage that the load of the treatment of the polishing composition after polishing use, that is, the waste liquid treatment can be reduced. .
 (界面活性剤)
 研磨用組成物中には界面活性剤が含まれてもよい。界面活性剤は、研磨後の研磨表面に親水性を付与することにより研磨後の洗浄効率を良くし、汚れの付着等を防ぐことが出来る。また、洗浄性を良くするだけでなく、適切な界面活性剤を選択することで、ディッシング等の段差性能も向上できる。
(Surfactant)
A surfactant may be contained in the polishing composition. The surfactant improves the cleaning efficiency after polishing by imparting hydrophilicity to the polished surface after polishing, and can prevent the adhesion of dirt. In addition to improving the cleanability, step performance such as dishing can be improved by selecting an appropriate surfactant.
 界面活性剤は、陰イオン性界面活性剤、陽イオン性界面活性剤、両性界面活性剤、および非イオン性界面活性剤のいずれであってもよい。これらの界面活性剤は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。 The surfactant may be any of an anionic surfactant, a cationic surfactant, an amphoteric surfactant, and a nonionic surfactant. One of these surfactants may be used alone, or two or more thereof may be used in combination.
 研磨用組成物中の界面活性剤の含有量は、0.001g/L以上であることが好ましく、より好ましくは0.005g/L以上である。このような下限とすることによって、研磨後の洗浄効率がより向上する。また、適切な界面活性剤を選択することで、ディッシング等の段差性能も向上できる。 The content of the surfactant in the polishing composition is preferably 0.001 g / L or more, more preferably 0.005 g / L or more. By setting it as such a lower limit, the cleaning efficiency after polishing is further improved. Further, by selecting an appropriate surfactant, step performance such as dishing can be improved.
 (水溶性高分子)
 水溶性高分子とは、該水溶性高分子が最も溶解する温度で、0.5質量%の濃度に水に溶解させた際、G2グラスフィルタ(最大細孔40~50μm)で濾過した場合に濾別される不溶物の質量が、加えた該水溶性高分子の50質量%以内であるものを言う。
(Water-soluble polymer)
The water-soluble polymer is a temperature at which the water-soluble polymer is most dissolved and when it is dissolved in water at a concentration of 0.5% by mass and filtered through a G2 glass filter (maximum pores 40 to 50 μm). The mass of the insoluble matter to be filtered out is within 50 mass% of the added water-soluble polymer.
 研磨用組成物中に水溶性高分子を加えた場合には、研磨用組成物を用いた研磨した後の研磨対象物の表面粗さがより低減する。これらの水溶性高分子は、一種を単独で用いてもよく、二種以上を組み合わせて用いてもよい。 When a water-soluble polymer is added to the polishing composition, the surface roughness of the polishing object after polishing using the polishing composition is further reduced. One of these water-soluble polymers may be used alone, or two or more thereof may be used in combination.
 研磨用組成物中の水溶性高分子の含有量は、0.01g/L以上であることが好ましく、より好ましくは0.05g/L以上である。このような下限とすることで、研磨用組成物による研磨面の表面粗さがより低減する。 The content of the water-soluble polymer in the polishing composition is preferably 0.01 g / L or more, more preferably 0.05 g / L or more. By setting it as such a lower limit, the surface roughness of the polishing surface by the polishing composition is further reduced.
 研磨用組成物中の水溶性高分子の含有量は、100g/L以下であることが好ましく、より好ましくは50g/L以下である。このような上限とすることによって、研磨面への水溶性高分子の残存量が低減され洗浄効率がより向上する。 The content of the water-soluble polymer in the polishing composition is preferably 100 g / L or less, more preferably 50 g / L or less. By setting such an upper limit, the remaining amount of the water-soluble polymer on the polishing surface is reduced, and the cleaning efficiency is further improved.
 (防カビ剤)
 本発明に係る研磨用組成物に添加し得る防腐剤および防カビ剤としては、例えば、2-メチル-4-イソチアゾリン-3-オンや5-クロロ-2-メチル-4-イソチアゾリン-3-オン等のイソチアゾリン系防腐剤、パラオキシ安息香酸エステル類、およびフェノキシエタノール等が挙げられる。これら防腐剤および防カビ剤は、単独でもまたは2種以上混合して用いてもよい。
(Anti-mold agent)
Examples of the antiseptic and fungicide that can be added to the polishing composition according to the present invention include 2-methyl-4-isothiazolin-3-one and 5-chloro-2-methyl-4-isothiazolin-3-one. And the like, isothiazoline-based preservatives such as paraoxybenzoates, and phenoxyethanol. These antiseptics and fungicides may be used alone or in combination of two or more.
 以上のように、特に、ケイ素-酸素結合を有する研磨対象物に相互作用する作用部位と、前記研磨対象物を研磨する研磨成分が、前記研磨対象物に接近することを抑制する、抑制部位と、を有する、有機化合物を、研磨用組成物に含有するとの構成を有することによって、酸化ケイ素膜などのケイ素-酸素結合を有する研磨対象物の研磨速度を十分に制御することができる。ここで、研磨用途等によって、研磨環境を適宜調整する。すなわち、酸性環境で研磨する場合もあれば、中性環境で研磨する場合もあれば、塩基性環境で研磨する場合もある。つまりは、本発明の酸性、中性または塩基性の少なくとも一つの領域で、前記ケイ素-酸素結合を有する研磨対象物の研磨速度を抑制するので、その研磨用途等に応じて、特定のpH領域で酸化ケイ素膜などのケイ素-酸素結合を有する研磨対象物の研磨速度を十分に制御することができる研磨用組成物を適宜選択して使用すればよい。よって別の観点で考えると、異なるpH領域間で、研磨速度を比較するということは意味のあることではないことを付言する。 As described above, in particular, an action site that interacts with a polishing object having a silicon-oxygen bond, and a suppression part that suppresses a polishing component that polishes the polishing object from approaching the polishing object; In the polishing composition, the polishing rate of a polishing object having a silicon-oxygen bond, such as a silicon oxide film, can be sufficiently controlled. Here, the polishing environment is appropriately adjusted depending on the polishing application or the like. That is, polishing may be performed in an acidic environment, polishing may be performed in a neutral environment, and polishing may be performed in a basic environment. That is, since the polishing rate of the polishing object having a silicon-oxygen bond is suppressed in at least one of the acidic, neutral or basic regions of the present invention, a specific pH region is selected depending on the polishing application and the like. A polishing composition capable of sufficiently controlling the polishing rate of a polishing object having a silicon-oxygen bond such as a silicon oxide film may be appropriately selected and used. Therefore, from another point of view, it is added that it is not meaningful to compare the polishing rate between different pH ranges.
 ここで、酸性環境下における酸化ケイ素膜などのケイ素-酸素結合を有する研磨対象物の研磨速度は、155[Å/min]未満であることが好ましく、より好ましくは、150[Å/min]以下であり、さらに好ましくは135[Å/min]以下であり、よりさらに好ましくは100[Å/min]以下であり、よりさらに好ましくは80[Å/min]以下であり、よりさらに好ましくは70[Å/min]以下であり、よりさらに好ましくは50[Å/min]以下であり、特に好ましくは30[Å/min]以下である。下限としては、特に制限ないが、実質、0[Å/min]以上である。 Here, the polishing rate of a polishing object having a silicon-oxygen bond such as a silicon oxide film in an acidic environment is preferably less than 155 [55 / min], and more preferably 150 [Å / min] or less. More preferably 135 [Å / min] or less, still more preferably 100 [Å / min] or less, still more preferably 80 [Å / min] or less, and even more preferably 70 [[/ min] or less. Å / min] or less, more preferably 50 [Å / min] or less, and particularly preferably 30 [Å / min] or less. The lower limit is not particularly limited, but is substantially 0 [実 質 / min] or more.
 なお、実施例/比較例の検証実験で用いた砥粒のコロイダルシリカは、ゼータ電位が酸性側で、マイナスチャージを有している。ここで、砥粒としてコロイダルシリカを使用した場合、酸性環境下では、研磨速度を抑制しにくい条件ではあるが、本発明の着目すべき点は、酸性でも抑制しているところである。 In addition, the colloidal silica of the abrasive grains used in the verification experiment of the example / comparative example has a negative charge on the acidic side of the zeta potential. Here, when colloidal silica is used as the abrasive grains, it is difficult to suppress the polishing rate in an acidic environment, but the point to which the present invention should be focused is that it is suppressed even in acidic conditions.
 中性環境下における酸化ケイ素膜などのケイ素-酸素結合を有する研磨対象物の研磨速度は、15[Å/min]未満であることが好ましく、より好ましくは、14[Å/min]以下であり、さらに好ましくは13[Å/min]以下である。下限としては、特に制限ないが、実質、0[Å/min]以上である。 The polishing rate of a polishing object having a silicon-oxygen bond such as a silicon oxide film in a neutral environment is preferably less than 15 [Å / min], more preferably 14 [14 / min] or less. More preferably, it is 13 [Å / min] or less. The lower limit is not particularly limited, but is substantially 0 [実 質 / min] or more.
 塩基性環境下における酸化ケイ素膜などのケイ素-酸素結合を有する研磨対象物の研磨速度は、10[Å/min]未満であることが好ましく、より好ましくは、9[Å/min]以下であり、さらに好ましくは8[Å/min]以下である。下限としては、特に制限ないが、実質、0[Å/min]以上である。 The polishing rate of an object to be polished having a silicon-oxygen bond such as a silicon oxide film in a basic environment is preferably less than 10 [Å / min], more preferably 9 [Å / min] or less. More preferably, it is 8 [Å / min] or less. The lower limit is not particularly limited, but is substantially 0 [実 質 / min] or more.
 なお、研磨速度は、実施例に記載の方法によって測定された値を意味するものとする。 The polishing rate means a value measured by the method described in the examples.
 また、本発明の技術的効果はこれだけでなく、このように酸化ケイ素膜などのケイ素-酸素結合を有する研磨対象物を十分に制御することができるだけではなく、研磨対象物に、ポリシリコンや、窒化膜が含まれる場合でも、これらの研磨速度と同等程度としながら、酸化ケイ素膜などのケイ素-酸素結合を有する研磨対象物の研磨速度を抑制できる。 In addition to the technical effects of the present invention, not only can the polishing target having a silicon-oxygen bond, such as a silicon oxide film, be sufficiently controlled, but the polishing target includes polysilicon, Even when a nitride film is included, the polishing rate of a polishing object having a silicon-oxygen bond, such as a silicon oxide film, can be suppressed while maintaining the same polishing rate.
 <研磨用組成物の製造方法>
 本発明においては、酸性、中性または塩基性の少なくとも一つの領域で、前記ケイ素-酸素結合を有する研磨対象物の研磨速度を抑制する、研磨用組成物の製造方法であって、(1)有機化合物と;(2)砥粒と;(3)分散媒と;を混合することを有し、前記有機化合物が、ケイ素-酸素結合を有する研磨対象物に相互作用する作用部位と、前記研磨対象物を研磨する研磨成分が、前記研磨対象物に接近することを抑制する、抑制部位と、を有する、研磨用組成物の製造方法をも提供する。
<Method for producing polishing composition>
In the present invention, there is provided a method for producing a polishing composition that suppresses the polishing rate of the polishing object having a silicon-oxygen bond in at least one of acidic, neutral and basic regions, An organic compound; (2) abrasive grains; and (3) a dispersion medium, wherein the organic compound interacts with a polishing object having a silicon-oxygen bond, and the polishing. There is also provided a method for producing a polishing composition, comprising: a suppression part that suppresses a polishing component that polishes an object from approaching the polishing object.
 上記の研磨用組成物の製造方法は、特に制限されないが、本発明の研磨用組成物を構成する各成分、および必要に応じて他の成分を、分散媒中で攪拌混合することにより得ることができる。 Although the manufacturing method of said polishing composition is not restrict | limited, Obtaining by stirring and mixing each component which comprises the polishing composition of this invention, and another component as needed in a dispersion medium. Can do.
 各成分を混合する際の温度は特に制限されないが、10~40℃が好ましく、溶解速度を上げるために加熱してもよい。また、混合時間も特に制限されない。 The temperature at the time of mixing each component is not particularly limited, but is preferably 10 to 40 ° C., and may be heated to increase the dissolution rate. Further, the mixing time is not particularly limited.
 <研磨方法>
 本発明においては、ケイ素-酸素結合を有する研磨対象物を、上記の研磨用組成物または上記の製造方法によって得た研磨用組成物で研磨する、研磨方法が提供される。
<Polishing method>
In the present invention, there is provided a polishing method in which a polishing object having a silicon-oxygen bond is polished with the above polishing composition or the polishing composition obtained by the above production method.
 研磨装置としては、研磨対象物を有する基板等を保持するホルダーと回転数を変更可能なモータ等とが取り付けてあり、研磨パッド(研磨布)を貼り付け可能な研磨定盤を有する一般的な研磨装置を使用することができる。 As a polishing apparatus, a general holder having a polishing surface plate on which a holder for holding a substrate having a polishing object and a motor capable of changing the number of rotations are attached and a polishing pad (polishing cloth) can be attached A polishing apparatus can be used.
 前記研磨パッドとしては、一般的な不織布、ポリウレタン、および多孔質フッ素樹脂等を特に制限なく使用することができる。研磨パッドには、研磨用組成物が溜まるような溝加工が施されていることが好ましい。 As the polishing pad, a general nonwoven fabric, polyurethane, porous fluororesin, or the like can be used without particular limitation. It is preferable that the polishing pad is grooved so that the polishing composition accumulates.
 研磨条件にも特に制限はなく、例えば、研磨定盤の回転速度は、10~500rpmが好ましく、ヘッド(キャリア)の回転速度は、10~500rpmが好ましく、研磨対象物を有する基板にかける圧力(研磨圧力)は、0.1~10psiが好ましい。研磨パッドに研磨用組成物を供給する方法も特に制限されず、例えば、ポンプ等で連続的に供給する方法が採用される。この供給量に制限はないが、研磨パッドの表面が常に本発明の研磨用組成物で覆われていることが好ましい。また研磨時間も特には制限されない。 The polishing conditions are not particularly limited. For example, the rotation speed of the polishing surface plate is preferably 10 to 500 rpm, the rotation speed of the head (carrier) is preferably 10 to 500 rpm, and the pressure applied to the substrate having the object to be polished ( The polishing pressure is preferably 0.1 to 10 psi. The method of supplying the polishing composition to the polishing pad is not particularly limited, and for example, a method of continuously supplying with a pump or the like is employed. Although the supply amount is not limited, it is preferable that the surface of the polishing pad is always covered with the polishing composition of the present invention. Also, the polishing time is not particularly limited.
 <ケイ素-酸素結合を有する研磨対象物の研磨速度を抑制する方法>
 本発明においては、(1)ケイ素-酸素結合を有する研磨対象物に相互作用する作用部位と、前記研磨対象物を研磨する研磨成分が、前記研磨対象物に接近することを抑制する、抑制部位とを有する、有機化合物と;(2)砥粒と;(3)分散媒と;を有する、研磨用組成物を用いて、前記研磨対象物を研磨することによって、酸性、中性または塩基性の少なくとも一つの領域で、ケイ素-酸素結合を有する研磨対象物の研磨速度を抑制する方法もが提供される。
<Method for suppressing polishing rate of polishing object having silicon-oxygen bond>
In the present invention, (1) an action site that interacts with a polishing object having a silicon-oxygen bond, and a suppression part that suppresses a polishing component that polishes the polishing object from approaching the polishing object. And (2) abrasive grains; (3) a dispersion medium; and polishing the object to be polished with an abrasive, an acidic, neutral or basic There is also provided a method for suppressing the polishing rate of a polishing object having a silicon-oxygen bond in at least one region.
 かかる発明の構成要件の具体的な説明については、上記のものが同様に妥当するので、ここではその説明を割愛する。 As for the specific description of the constituent elements of the invention, the above description is equally applicable, and the description is omitted here.
 本発明を、以下の実施例および比較例を用いてさらに詳細に説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。 The present invention will be described in further detail using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples.
 (研磨用組成物の調製)
 実施例および比較例の研磨用組成物を、砥粒(スルホン酸基修飾コロイダルシリカ;平均一次粒子径:35nm 平均二次粒子径:65nm D90/D10:1.6)2質量%、pH調整剤、表1に示す有機化合物 3mMを純水中で混合することにより調製した(混合温度:約25℃、混合時間:約10分)。
(Preparation of polishing composition)
Polishing compositions of Examples and Comparative Examples were prepared by using 2% by mass of abrasive grains (sulfonic acid group-modified colloidal silica; average primary particle size: 35 nm, average secondary particle size: 65 nm D90 / D10: 1.6), pH adjuster. The organic compound 3 mM shown in Table 1 was prepared by mixing in pure water (mixing temperature: about 25 ° C., mixing time: about 10 minutes).
 なお、実施例13~15については、下記の原料の3級アミンの濃度を3mMとした。 In Examples 13 to 15, the concentration of the tertiary amine of the following raw materials was 3 mM.
 また、実施例13~15のN-ラウロイルサルコシンN-オキシド(N-Lauroylsarcosine N-oxide)、N,N-ジメチルラウリルアミンN-オキシド(N,N-ジメチルドデシルアミンN-オキシド)およびN,N-ジヒドロキシエチルラウリルアミンN-オキシドについては、以下のように調製した。 In addition, N-lauroylsarcosine N-oxide, N, N-dimethyllaurylamine N-oxide (N, N-dimethyldodecylamine N-oxide) and N, N of Examples 13 to 15 -Dihydroxyethyllaurylamine N-oxide was prepared as follows.
 すなわち、原料の3級アミン(つまり、N-ラウロイルサルコシン(N-Lauroylsarcosine)、N,N-ジメチルラウリルアミン(N,N-Dimethyllaurylamine)およびN-ラウリルジエタノールアミン(N-Lauryldiethanolamine))をそれぞれ10gはかり取り、これに31wt% Hを90g添加し溶液を調製した。その後、この溶液を2時間攪拌し、実施例13~15の有機化合物を調製した。 That is, 10 g each of raw material tertiary amines (that is, N-lauroylsarcosine, N, N-dimethyllaurylamine, and N-lauryldiethanolamine) are weighed. Then, 90 g of 31 wt% H 2 O 2 was added thereto to prepare a solution. Thereafter, this solution was stirred for 2 hours to prepare organic compounds of Examples 13 to 15.
 なお、pHは、HSOおよびKOHを適量選択して添加することによって、研磨用組成物のpHを2、7および10に調製した。 The pH of the polishing composition was adjusted to 2, 7, and 10 by adding appropriate amounts of H 2 SO 4 and KOH.
 研磨用組成物(液温:25℃)のpHは、pHメータ(堀場製作所社製 型番:LAQUA)により確認した。 The pH of the polishing composition (liquid temperature: 25 ° C.) was confirmed by a pH meter (manufactured by Horiba, Ltd., model number: LAQUA).
 (研磨性能評価)
 得られた、実施例および比較例の研磨用組成物を用い、研磨用対象物(酸化ケイ素膜つきウェーハ)を以下の研磨条件で研磨した際の研磨速度を測定した。
(Polishing performance evaluation)
Using the obtained polishing compositions of Examples and Comparative Examples, the polishing rate when the polishing object (wafer with a silicon oxide film) was polished under the following polishing conditions was measured.
 <研磨条件>
 研磨機:片面CMP研磨機(ENGIS)
 研磨パッド:ポリウレタン製パッド(IC1010:ロームアンドハース社製)
 圧力:3.04psi
 プラテン(定盤)回転数:90rpm
 ヘッド(キャリア)回転数:40rpm
 研磨用組成物の流量:100ml/min
 研磨時間:60sec
 <研磨速度>
 研磨速度(研磨レート)は、以下の式により計算した。
<Polishing conditions>
Polishing machine: Single-side CMP polishing machine (ENGIS)
Polishing pad: Polyurethane pad (IC1010: manufactured by Rohm and Haas)
Pressure: 3.04 psi
Platen (surface plate) rotation speed: 90rpm
Head (carrier) rotation speed: 40 rpm
Flow rate of polishing composition: 100 ml / min
Polishing time: 60 sec
<Polishing speed>
The polishing rate (polishing rate) was calculated by the following formula.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 膜厚は、光干渉式膜厚測定装置(大日本スクリーン製造株式会社製 型番:ラムダエース)によって求めて、その差を研磨時間で除することにより評価した。 The film thickness was evaluated by obtaining by a light interference type film thickness measuring device (model number: Lambda Ace manufactured by Dainippon Screen Mfg. Co., Ltd.) and dividing the difference by the polishing time.
 研磨速度の測定結果を下記表1に示す。 The results of polishing rate measurement are shown in Table 1 below.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 <考察>
 表1より明らかなように、本発明の研磨用組成物によれば、比較例の研磨用組成物に比べて、酸化ケイ素膜の研磨速度を抑制させることができることが分かる。
<Discussion>
As can be seen from Table 1, according to the polishing composition of the present invention, the polishing rate of the silicon oxide film can be suppressed as compared with the polishing composition of the comparative example.
 他方、比較例の研磨用組成物は、ケイ素-酸素構造を有する研磨対象物の表面に作用部位を有していないので、酸化ケイ素膜の研磨速度を抑制することができないことを示唆している。寧ろ、比較例1と比較して、酸化ケイ素膜の研磨速度を向上してしまっているので、これらの有機化合物は、却って、酸化ケイ素膜の研磨速度を向上する構造を有しているということが示唆される。 On the other hand, the polishing composition of the comparative example does not have an action site on the surface of the polishing object having a silicon-oxygen structure, suggesting that the polishing rate of the silicon oxide film cannot be suppressed. . On the contrary, since the polishing rate of the silicon oxide film has been improved as compared with Comparative Example 1, these organic compounds have a structure that improves the polishing rate of the silicon oxide film. Is suggested.
 なお、比較例10、比較例11の有機化合物は、3級アミンであるため、ケイ素-酸素構造を有する研磨対象物の表面に作用部位を有さず、比較例である。しかし、これら比較例の有機化合物を、3級アミン-N-オキシド化し、実施例14および実施例15にそれぞれ示されるように、N,N-ジメチルドデシルアミンN-オキシド、N,N-ジヒドロキシエチルラウリルアミンN-オキシドにすると、研磨速度の抑制効果を発揮することが示唆される。なお、実施例14、実施例15に関して、有機化合物としては、それぞれ実施例3、4と同じものを使用していることになるが、前者は、その合成過程で反応しきらなかった酸化剤(H)が含まれているため、それぞれの研磨速度の数値に違いが見られたものと推測される。 Since the organic compounds of Comparative Example 10 and Comparative Example 11 are tertiary amines, they do not have an action site on the surface of the polishing object having a silicon-oxygen structure, and are comparative examples. However, these comparative organic compounds were converted to tertiary amine-N-oxides and N, N-dimethyldodecylamine N-oxide, N, N-dihydroxyethyl as shown in Examples 14 and 15, respectively. When laurylamine N-oxide is used, it is suggested that the polishing rate is suppressed. As for Example 14 and Example 15, the same organic compounds as in Examples 3 and 4 are used as the organic compounds. However, the former is an oxidant that has not reacted in the synthesis process ( Since H 2 O 2 ) is included, it is presumed that differences have been observed in the numerical values of the respective polishing rates.
 なお、本出願は、2015年2月19日に出願された日本国特許出願第2015-31036号および2015年9月30日に出願された日本国特許出願第2015-192756号に基づいており、その開示内容は、参照により全体として引用されている。 The present application is based on Japanese Patent Application No. 2015-31036 filed on February 19, 2015 and Japanese Patent Application No. 2015-192756 filed on September 30, 2015. That disclosure is incorporated by reference in its entirety.

Claims (10)

  1.  (1)ケイ素-酸素結合を有する研磨対象物に相互作用する作用部位と、前記研磨対象物を研磨する研磨成分が、前記研磨対象物に接近することを抑制する、抑制部位と、を有する、有機化合物と;
     (2)砥粒と;
     (3)分散媒と;
    を有する、酸性、中性または塩基性の少なくとも一つの領域で、前記ケイ素-酸素結合を有する研磨対象物の研磨速度を抑制する、研磨用組成物。
    (1) having an action site that interacts with a polishing object having a silicon-oxygen bond, and a suppression part that suppresses a polishing component that polishes the polishing object from approaching the polishing object; With organic compounds;
    (2) abrasive grains;
    (3) a dispersion medium;
    A polishing composition that suppresses the polishing rate of the polishing object having a silicon-oxygen bond in at least one of acidic, neutral, and basic regions.
  2.  前記抑制部位が、炭素数3以上を有する部位である、請求項1に記載の研磨用組成物。 The polishing composition according to claim 1, wherein the suppression site is a site having 3 or more carbon atoms.
  3.  前記作用部位が、窒素原子、酸素原子、硫黄原子およびリン原子からなる群から選択される少なくとも一つを有する、請求項1または2に記載の研磨用組成物。 The polishing composition according to claim 1 or 2, wherein the action site has at least one selected from the group consisting of a nitrogen atom, an oxygen atom, a sulfur atom and a phosphorus atom.
  4.  前記作用部位が、窒素原子および酸素原子が直接結合している構造を有する、または、窒素原子および酸素原子の間に炭素数3以下の2価の有機基が介在している、請求項1~3のいずれか1項に記載の研磨用組成物。 The working site has a structure in which a nitrogen atom and an oxygen atom are directly bonded, or a divalent organic group having 3 or less carbon atoms is interposed between the nitrogen atom and the oxygen atom. 4. The polishing composition according to any one of 3 above.
  5.  前記作用部位が、スルフィド基、アミノ基、ホスホン酸基またはその塩の基、N-オキシド構造、カルボキシル基またはその塩の基、フェノール構造、アルキレンオキシド構造およびベタイン構造からなる群から選択される少なくとも一種である、請求項1~3のいずれか1項に記載の研磨用組成物。 The active site is at least selected from the group consisting of sulfide groups, amino groups, phosphonic acid groups or salts thereof, N-oxide structures, carboxyl groups or salts thereof, phenol structures, alkylene oxide structures, and betaine structures. The polishing composition according to any one of claims 1 to 3, which is a kind.
  6.  前記作用部位が、N-オキシド構造およびベタイン構造の少なくとも一方である、請求項5に記載の研磨用組成物。 The polishing composition according to claim 5, wherein the action site is at least one of an N-oxide structure and a betaine structure.
  7.  酸性、中性または塩基性のすべての領域で、前記ケイ素-酸素結合を有する研磨対象物の研磨速度を抑制する、請求項1~6のいずれか1項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 6, which suppresses the polishing rate of the polishing object having a silicon-oxygen bond in all acidic, neutral or basic regions.
  8.  前記作用部位が、ベタイン構造である場合において、前記抑制部位の有機基が、炭素数8以上のアルキル基を有する部位である、請求項5~7のいずれか1項に記載の研磨用組成物。 The polishing composition according to any one of claims 5 to 7, wherein when the action site has a betaine structure, the organic group of the suppression site is a site having an alkyl group having 8 or more carbon atoms. .
  9.  前記抑制部位が、炭素数10以上のアルキル基を有する部位である、請求項1~8のいずれか1項に記載の研磨用組成物。 The polishing composition according to any one of claims 1 to 8, wherein the suppression site is a site having an alkyl group having 10 or more carbon atoms.
  10.  請求項1~9のいずれか1項に記載の研磨用組成物を用いて、ケイ素-酸素結合を有する研磨対象物を研磨することによって、酸性、中性または塩基性の少なくとも一つの領域で、前記研磨対象物の研磨速度を抑制する方法。 By polishing a polishing object having a silicon-oxygen bond using the polishing composition according to any one of claims 1 to 9, in at least one region of acid, neutral or basic, A method for suppressing the polishing rate of the object to be polished.
PCT/JP2016/053718 2015-02-19 2016-02-08 Polishing composition WO2016132951A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-031036 2015-02-19
JP2015031036 2015-02-19
JP2015-192756 2015-09-30
JP2015192756 2015-09-30

Publications (1)

Publication Number Publication Date
WO2016132951A1 true WO2016132951A1 (en) 2016-08-25

Family

ID=56692555

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053718 WO2016132951A1 (en) 2015-02-19 2016-02-08 Polishing composition

Country Status (2)

Country Link
TW (1) TW201638290A (en)
WO (1) WO2016132951A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193916A1 (en) * 2017-04-17 2018-10-25 日産化学株式会社 Polishing composition containing amphoteric surfactant

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269577A (en) * 2003-03-05 2004-09-30 Kao Corp Improving agent for selectivity ratio of polishing speed
JP2004273547A (en) * 2003-03-05 2004-09-30 Kao Corp Polishing rate selectivity enhancer
WO2009096495A1 (en) * 2008-02-01 2009-08-06 Fujimi Incorporated Polishing composition and polishing method using the same
JP2012015353A (en) * 2010-07-01 2012-01-19 Hitachi Chem Co Ltd Polishing liquid for cmp and polishing method using the same
WO2013138558A1 (en) * 2012-03-14 2013-09-19 Cabot Microelectronics Corporation Cmp compositions selective for oxide and nitride with high removal rate and low defectivity

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004269577A (en) * 2003-03-05 2004-09-30 Kao Corp Improving agent for selectivity ratio of polishing speed
JP2004273547A (en) * 2003-03-05 2004-09-30 Kao Corp Polishing rate selectivity enhancer
WO2009096495A1 (en) * 2008-02-01 2009-08-06 Fujimi Incorporated Polishing composition and polishing method using the same
JP2012015353A (en) * 2010-07-01 2012-01-19 Hitachi Chem Co Ltd Polishing liquid for cmp and polishing method using the same
WO2013138558A1 (en) * 2012-03-14 2013-09-19 Cabot Microelectronics Corporation Cmp compositions selective for oxide and nitride with high removal rate and low defectivity

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018193916A1 (en) * 2017-04-17 2018-10-25 日産化学株式会社 Polishing composition containing amphoteric surfactant
KR20190141132A (en) * 2017-04-17 2019-12-23 닛산 가가쿠 가부시키가이샤 Polishing composition comprising an amphoteric surfactant
JPWO2018193916A1 (en) * 2017-04-17 2020-04-23 日産化学株式会社 Polishing composition containing amphoteric surfactant
US11459486B2 (en) 2017-04-17 2022-10-04 Nissan Chemical Corporation Polishing composition containing amphoteric surfactant
JP7148849B2 (en) 2017-04-17 2022-10-06 日産化学株式会社 Polishing composition containing amphoteric surfactant
KR102634780B1 (en) 2017-04-17 2024-02-07 닛산 가가쿠 가부시키가이샤 Polishing composition containing amphoteric surfactant

Also Published As

Publication number Publication date
TW201638290A (en) 2016-11-01

Similar Documents

Publication Publication Date Title
KR102632890B1 (en) polishing composition
JP6762390B2 (en) Polishing composition, polishing method and substrate manufacturing method
TWI779169B (en) Abrasive composition
TWI701322B (en) Polishing composition
US10759969B2 (en) Polishing composition, polishing method, and method for manufacturing semiconductor substrate
KR102444499B1 (en) Polishing composition and polishing method using same
JP7250530B2 (en) Polishing composition, method for producing polishing composition, polishing method, and method for producing semiconductor substrate
TW201723139A (en) Chemical mechanical polishing slurry and application thereof
TW200804575A (en) Metal polishing composition and chemical mechanical polishing method using the same
JP2022109944A (en) Polishing composition
WO2016129508A1 (en) Polishing composition
JP6908592B2 (en) Polishing composition
JP6279156B2 (en) Polishing composition
JP2016157913A (en) Polishing composition
WO2016132951A1 (en) Polishing composition
WO2016136342A1 (en) Polishing composition
JP7133401B2 (en) Polishing composition, method for producing polishing composition, polishing method, and method for producing semiconductor substrate
TWI734803B (en) Manufacturing method of polishing composition and polishing method
WO2016132952A1 (en) Polishing composition
TW201400598A (en) Polish composition, method of manufacturing the same, and method of manufacturing substrate
KR101279970B1 (en) CMP slurry composition for polishing metal wiring
WO2021124771A1 (en) Composition for chemical mechanical polishing, chemical mechanical polishing method, and method for manufacturing particles for chemical mechanical polishing
KR20220043854A (en) Polishing composition, method for producing the same, polishing method, and method for producing substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16752337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP