WO2016132749A1 - 光二次電池 - Google Patents

光二次電池 Download PDF

Info

Publication number
WO2016132749A1
WO2016132749A1 PCT/JP2016/050249 JP2016050249W WO2016132749A1 WO 2016132749 A1 WO2016132749 A1 WO 2016132749A1 JP 2016050249 W JP2016050249 W JP 2016050249W WO 2016132749 A1 WO2016132749 A1 WO 2016132749A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic semiconductor
electrode
type organic
layer
semiconductor layer
Prior art date
Application number
PCT/JP2016/050249
Other languages
English (en)
French (fr)
Inventor
清水 尚
圭治 長井
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2016132749A1 publication Critical patent/WO2016132749A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/30Electrical components
    • H02S40/38Energy storage means, e.g. batteries, structurally associated with PV modules
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an optical secondary battery, and more particularly to an optical secondary battery that absorbs light, accumulates electricity, and repeats charge and discharge reactions.
  • a photovoltaic secondary battery that absorbs light energy, converts the light energy into electrochemical energy, and repeats charging and discharging has been conventionally known.
  • Patent Literature 1 proposes an optical air secondary battery as shown in FIG.
  • This photo-air secondary battery includes a positive electrode 101 having an oxygen catalyst, a negative electrode 102, an electrolyte 103 in contact with the positive electrode 101 and the negative electrode 102, and a battery case 104 in which the positive electrode 101, the negative electrode 102, and the electrolyte 103 are accommodated. And have.
  • the negative electrode 102 is electrically connected to the metal negative electrode member 102a, the metal layer 102b that is electrically connected to the negative electrode member 102a and reduces the barrier in the energy band of the metal-semiconductor interface, and the metal layer 102b. And an n-type semiconductor portion 102c connected to each other.
  • the negative electrode member 102a and the n-type semiconductor portion 102c are integrally joined to both surfaces of the metal layer 102b, and the light receiving portion 104a that allows light to enter the n-type semiconductor portion 102c of the negative electrode 102 is provided in the battery case 104. It has been.
  • a positive electrode 101 has Pt fine particles as an oxygen catalyst supported on a porous carbon plate having a thickness of 1 mm.
  • the negative electrode member 102a is made of Co having a thickness of 1 mm
  • the metal layer 102b is made of an alloy layer having a thickness of 0.3 ⁇ m (Au: 84%, Ge: 12%, Ni: 4%).
  • the part 102c is formed of a GaP single crystal having a thickness of 0.2 mm.
  • the electrolyte 103 is formed of a KOH aqueous solution having a concentration of 1 mol / L.
  • the discharge is caused by the oxidation reaction of the negative electrode member 102a made of Co, and the n-type semiconductor portion 102c made of GaP single crystal is immersed in the electrolyte 103, thereby converting light energy into electric energy by using the bending of the energy band. This is charging.
  • Patent Document 1 during discharge, Co constituting the negative electrode generates electrons by an oxidation reaction with the electrolyte, and the electrons are conducted to the positive electrode through an external circuit, and oxygen is reduced on the positive electrode to reduce hydroxyl. The thing is generated. Further, at the time of charging, light energy is induced in GaP by light irradiation to generate electrons and holes, and the electrons and holes are consumed by Co oxide reduction reaction and hydroxide ion oxidation reaction.
  • Patent Document 1 charging and discharging are performed by these reactions described above.
  • JP-A-6-325801 (Claim 1, paragraph numbers [0012], [0015], [0016], FIG. 1, etc.)
  • Patent Document 1 since the n-type semiconductor portion 102c constituting the negative electrode 102 is formed of a single crystal, the material cost is high, and the n-type semiconductor portion 102c and the negative electrode made of Co Since the member 102a is joined via the metal layer 102b, there is a problem that the manufacturing process is complicated and the productivity is poor.
  • the present invention has been made in view of such circumstances, and can efficiently perform conversion from light energy to electrochemical energy at low cost, has a large energy density, and requires flexibility.
  • An object of the present invention is to provide a photovoltaic secondary battery suitable for the above.
  • organic semiconductor materials have a large absorption coefficient for visible light, they have low carrier mobility compared to inorganic semiconductor materials and are generally inferior in durability, so that they have not been studied as materials for photovoltaic secondary batteries.
  • the carrier is a general term for electrons and holes responsible for charge conduction in a semiconductor. In the case of a p-type semiconductor, it mainly means a hole, and in the case of an n-type semiconductor, it mainly means an electron.
  • the organic semiconductor material is cheaper than the inorganic semiconductor single crystal and can be easily formed on the substrate by using a thin film forming method such as a vacuum evaporation method. It is not necessary to join the material and the n-type semiconductor part via a metal layer, the manufacturing process is simple, and the cost can be reduced.
  • the present inventors conducted intensive research aiming at practical application of a photovoltaic secondary battery using an organic semiconductor material, and by making the organic semiconductor layer that is a light absorption layer much thinner than before, It has been found that the movement distance of carriers generated by light absorption in the organic semiconductor can be shortened, thereby suppressing the disappearance of carriers due to recombination of electrons and holes in the organic semiconductor.
  • the organic semiconductor material has a large absorption coefficient of visible light, it is considered that even if it is thinned, it can absorb light energy of the same level as that of a conventional thick inorganic semiconductor material. That is, even if an organic semiconductor material is used, efficient conversion of light energy to electrochemical energy is possible.
  • organic semiconductor materials are more flexible than inorganic semiconductor materials, it is considered possible to realize a photovoltaic secondary battery suitable for applications requiring flexibility by reducing the thickness.
  • the present inventors repeated earnest research further, by making the light absorption layer into the thin film layer of the laminated structure which has a p-type organic-semiconductor layer and an n-type organic-semiconductor layer, a p-type organic-semiconductor layer or n-type Compared to a single-layered thin film layer composed of organic semiconductor layers, the current density during charging can be greatly increased, and light energy can be converted into electrochemical energy with high efficiency at low cost, and The inventor obtained that a secondary battery having a large energy density can be obtained.
  • the photovoltaic secondary battery according to the present invention has at least one of a partition wall and a salt bridge in a medium containing an electron acceptor and a hole acceptor. And a plurality of electrodes arranged in contact with the medium, wherein at least one of the plurality of electrodes includes a p-type organic semiconductor layer and an n-type organic semiconductor layer. It is formed by a layer, and incident light is absorbed by the thin film layer.
  • the p-type organic semiconductor layer preferably has a thickness of 10 to 300 nm, and the n-type organic semiconductor layer has a thickness of 10 to 260 nm. preferable.
  • the main surface of the n-type organic semiconductor layer of the thin film layer is in contact with the medium.
  • the p-type organic semiconductor layer preferably contains one or more of a macrocyclic compound, a polycyclic aromatic compound, and a polymer compound containing a thiophene skeleton. .
  • the n-type organic semiconductor layer contains one or more of a perylene derivative and a spherical molecular structure (including a derivative).
  • the partition wall or the salt bridge is formed of a polymer material having ionic conductivity.
  • the plurality of electrodes include a first electrode having the thin film layer, a second electrode electrically connectable to the first electrode, and the second electrode.
  • a third electrode electrically connectable to the first electrode, and the partition wall or the salt bridge is interposed between the first and third electrodes and the second electrode. Is preferred.
  • the second electrode is configured to be electrically switchable between the first electrode and the third electrode in response to charging and discharging.
  • At least one of the partition wall and the salt bridge is disposed in the medium containing the electron acceptor and the hole acceptor, and the plurality of electrodes are in contact with the medium.
  • at least one of the plurality of electrodes is formed of a thin film layer having a stacked structure including a p-type organic semiconductor layer and an n-type organic semiconductor layer, and incident light is absorbed by the thin film layer. Therefore, compared with the case where the thin film layer is formed of a single organic semiconductor layer, the current density during charging / discharging can be significantly increased.
  • the light energy absorbed by light irradiation can be converted into electrochemical energy with high efficiency, and a photovoltaic secondary battery having a large energy density can be obtained.
  • organic semiconductor materials are more flexible than inorganic semiconductor materials, are inexpensive, can simplify the manufacturing process, and are made thinner, making organic semiconductor materials thinner. It is possible to realize a photovoltaic secondary battery that is suitable for various applications at low cost.
  • FIG. 1 is a cross-sectional view schematically showing an embodiment (first embodiment) of a photovoltaic secondary battery according to the present invention. It is the A section enlarged view of FIG. It is a figure which shows the relationship between the oxidation reduction potential before light irradiation, and an energy level. It is a figure which shows the relationship between the oxidation reduction potential immediately after light irradiation, and an energy level. It is a figure which shows the relationship between the redox potential and energy level at the time of continuing light irradiation for a long time. It is a principal part enlarged view which shows 2nd Embodiment of the photovoltaic secondary battery which concerns on this invention.
  • FIG. 1 is a cross-sectional view of an optical air secondary battery described in Patent Document 1.
  • FIG. 1 is a cross-sectional view schematically showing an embodiment (first embodiment) of a photovoltaic secondary battery according to the present invention.
  • a tripolar photovoltaic secondary battery is shown. ing.
  • an electrolytic solution (medium) 2 is stored in a battery case 1, and a partition wall 3 is arranged in the battery case 1, and the first reaction chamber 4 and the second reaction are separated by the partition wall 3. It is defined in chamber 5.
  • the first electrode 6 and the third electrode 8 are immersed in the electrolytic solution 2 so as to be in contact with the electrolytic solution 2, respectively.
  • the second electrode 7, which is the counter electrode of the first and third electrodes 6, 8, is immersed in the electrolytic solution 2 so as to be in contact with the electrolytic solution 2.
  • the first to third electrodes 6 to 8 are connected to the first to third lead wires 6a to 8a, respectively, and the second electrode 7 is connected to the first electrode 6 or the second electrode via the changeover switch 9.
  • 3 electrodes 8 are configured to be conductive.
  • the electrolytic solution 2 contains an electron acceptor and a hole acceptor that transfer carriers (electrons or holes) to and from the first to third electrodes 6 to 8, and a supporting electrolyte that supports these carriers. Contains.
  • the electron acceptor is not particularly limited as long as the reduction potential is electrochemically nobler than the potential corresponding to the LUMO (Lowest Unoccupied Molecular Orbital) level of the organic semiconductor material.
  • LUMO Large Unoccupied Molecular Orbital
  • Complex salts containing 3+ , [OsCl 6 ] 2 ⁇ , metals such as Fe 3+ , Co 3+ , V 3+ , Ti 3+ , Cr 3+ , Ru 3+ , Sn 4+ , Yb 3+ Metal compounds containing ions can be used.
  • the hole acceptor is particularly limited as long as the oxidation potential has an electrochemically lower potential than the potential corresponding to the HOMO (Highest Occupied Molecular Orbital) level of the organic semiconductor material.
  • HOMO Highest Occupied Molecular Orbital
  • Metal compounds containing metal ions such as + , Sn 2+ and Yb 2+ can be used.
  • the first electrode 6 includes a transparent conductive film 11 formed on a transparent substrate 10 such as a glass substrate, a thin film layer 12 formed on the surface of the transparent conductive film 11, and the transparent conductive film 11 and The leading end of the first lead wire 6a is covered with an insulating layer 13 made of epoxy resin or the like.
  • the thin film layer 12 has a two-layer structure (laminated structure) including a p-type organic semiconductor layer 12a and an n-type organic semiconductor layer 12b.
  • an organic semiconductor material has not received attention as a material for an optical secondary battery because the carrier mobility indicating the ease of carrier movement in a solid substance is smaller than that of an inorganic semiconductor material.
  • the carrier mobility of an inorganic semiconductor material such as GaP is 110 cm 2 / Vs as described in Non-Patent Document 1, whereas the carrier mobility of an organic semiconductor material such as a phthalocyanine compound is used. As described in Non-Patent Document 2, it is 0.1 cm 2 / Vs, and the organic semiconductor material has a lower carrier mobility than the inorganic semiconductor material.
  • organic semiconductor materials have a larger absorption coefficient in visible light than inorganic semiconductor materials.
  • the absorption coefficient is 5.0 ⁇ 10 5 cm ⁇ 1 for a phthalocyanine-based compound and 5.0 ⁇ 10 4 cm ⁇ 1 for a C 60 fullerene.
  • the GaP used is 1.0 ⁇ 10 cm ⁇ 1 as described in Non-Patent Document 3.
  • the thin film layer 12 obtained by thinning the organic semiconductor material can be easily formed on the transparent conductive film 11 by using a thin film forming method such as a vacuum evaporation method.
  • a thin film forming method such as a vacuum evaporation method.
  • the manufacturing process can be simplified, productivity can be dramatically improved, and cost can be reduced.
  • inorganic semiconductor single crystals are rigid bodies, organic semiconductor materials are highly flexible, so by combining them with flexible packages such as resin films and flexible electrodes, flexible displays, wearable devices, etc. It can be applied to power supplies for applications that require flexibility.
  • the thin film layer 12 has a two-layer structure of the p-type organic semiconductor layer 12a and the n-type organic semiconductor layer 12b, thereby greatly increasing the density of carriers generated in the thin film layer 12 during light irradiation. As a result, the current density is remarkably increased, so that a photovoltaic secondary battery having a large energy density can be obtained.
  • the organic semiconductor layer is made thinner than the conventional inorganic semiconductor layer by making the organic semiconductor layer much thinner than the conventional inorganic semiconductor layer. Since the movement distance of the carriers in the inside becomes short, it is possible to suppress recombination of electrons and holes in the organic semiconductor.
  • the thin film layer 12 has a single-layer structure, it is difficult to obtain a photovoltaic secondary battery having a small current density and a large energy density.
  • the thin film layer 12 when the thin film layer 12 is irradiated with light, electron-hole pairs (excitons) are generated in the thin film layer 12 by light absorption, and these electron-hole pairs are converted into electrons and holes in the depletion layer.
  • the depletion layer is formed from the interface between the thin film layer 12 and the electrolytic solution 2 to the inside of the thin film layer 12.
  • the thin film layer 12 is formed of, for example, a p-type organic semiconductor material, electrons move from the interface of the thin film layer 12 to the electron acceptor, and the holes are holes through the second electrode 7 that is a counter electrode. Move to the receptor. In this way, each carrier is separated into electrons and holes, and these electrons and holes move from the first and second electrodes 6 and 7 to the electron acceptor or hole acceptor to enter the system. An electric current is generated.
  • the depletion layer is formed in a narrow region extending from the interface between the thin film layer 12 and the electrolyte solution 2 to the inside of the thin film layer 12. It is difficult to generate electrons and holes to such an extent that a large current density can be obtained. In addition, some of the electrons and holes are entrained and are consumed by reacting with the electron acceptor and the hole acceptor that are reaction substrates at the same location on the interface between the thin film layer 12 and the electrolyte solution 2. There are electrons and holes that disappear without contributing to generation.
  • the thin film layer 12 has a single-layer structure
  • electrons and holes disappear without contributing to the generation of current, and therefore, the number of carriers that can be effectively used decreases, and a desired large current density is obtained.
  • Have difficulty Moreover, since the light energy can be obtained depending on the absorption wavelength inherent to the material, the light energy obtained by the single layer structure is relatively small.
  • the depletion layer is p-type from the interface between the p-type organic semiconductor layer 12a and the n-type organic semiconductor layer 12b. It is formed so as to extend inside both the organic semiconductor layer 12a and the n-type organic semiconductor layer 12b. That is, in this case, the depletion layer is formed in a wide region about twice as large as the single layer structure, and thus the number of electrons and holes generated is increased.
  • the electrons and holes separated by the depletion layer move to the n-type organic semiconductor layer 12b side, and the holes move to the p-type organic semiconductor layer 12a side. There is no accompanying movement to the interface between the thin film layer 12 and the electrolytic solution 2. Therefore, electrons and holes do not react with the reaction substrate at the same place on the interface between the thin film layer 12 and the electrolytic solution 2, and the generated high-density carriers contribute to current generation efficiently.
  • the thin film layer 12 have a two-layer structure of the p-type organic semiconductor layer 12a and the n-type organic semiconductor layer 12b, it is possible to absorb light corresponding to the absorption wavelength of each organic semiconductor material and obtainable light. Energy also increases.
  • the thin film layer 12 has a two-layer structure of a p-type organic semiconductor layer 12a and an n-type organic semiconductor layer 12b, thereby greatly increasing the current density compared to the case of a single-layer structure, thereby reducing the light energy. Has been obtained with high energy density that can be converted into electrochemical energy with high efficiency.
  • the film thickness of the p-type organic semiconductor layer 12a and the n-type organic semiconductor layer 12b is not particularly limited as long as it is thin enough not to impair the desired light absorption.
  • the film thickness of the thin film layer 12 is preferably set in consideration of the number of generated carriers and the number of disappearances. From this viewpoint, the film thickness of the thin film layer 12 is 10 to 300 nm in the p-type organic semiconductor layer 12a.
  • the n-type organic semiconductor layer 12b is preferably 10 to 260 nm.
  • the film thickness of the p-type organic semiconductor layer 12a and the n-type organic semiconductor layer 12b is less than 10 nm, the absorbed light energy is reduced and the photocharge reaction occurs, but the amount of current to be charged / discharged is reduced.
  • the film thicknesses of the p-type organic semiconductor layer 12a and the n-type organic semiconductor layer 12b exceed 300 nm and 260 nm, respectively, the number of disappearances of carriers increases and a photocharge reaction occurs, but carriers involved in the redox reaction occur. The amount of current charged and discharged is reduced.
  • the preferable film thickness range is different between the p-type organic semiconductor layer 12a and the n-type organic semiconductor layer 12b because the light absorption efficiency is different between the p-type organic semiconductor material and the n-type organic semiconductor material.
  • the material for forming such a p-type organic semiconductor layer 12a is not particularly limited as long as it is a p-type organic semiconductor material.
  • a p-type organic semiconductor material For example, as shown in chemical formula (1), four phthalimides are used.
  • a metal phthalocyanine hereinafter referred to as “MePc”
  • ZPc a nonmetallic phthalocyanine
  • a nonmetallic compound Z such as TiO
  • macrocycle porphyrin substituents X 1 ⁇ X 8 such as an alkyl group is bonded to Porifin ring as shown by the chemical formula (4)
  • polycyclic aromatic such as pentacene
  • Hydrocarbons formula P3HT containing a thiophene skeleton such as shown by (6) (poly (3-hexylthiophene-2,5-diyl)) or the like of a polymer compound can be used.
  • the material for forming the n-type organic semiconductor layer 12b is not particularly limited as long as it is an n-type organic semiconductor material.
  • PTCBI (3,4,9,10-bis) represented by the chemical formula (7) is used.
  • Perylene derivatives such as (1H-benzimidazol-2,1-diylcarbonyl) perylene) and PTCDI-C8 (N, N'-dioctyl-3,4,9,10-perylenedicarboximide) represented by the chemical formula (8)
  • a spherical molecular structure such as C 60 fullerene having a truncated icosahedron structure composed of 60 C atoms as represented by the chemical formula (9) or a derivative thereof can be used.
  • the transparent conductive film 11 is not particularly limited as long as it is transparent and has good conductivity, and is not limited to ITO (indium doped tin oxide), ZAO (aluminum doped zinc oxide), Metal oxides such as FTO (fluorine-doped tin oxide) and ZnO can be used.
  • ITO indium doped tin oxide
  • ZAO aluminum doped zinc oxide
  • Metal oxides such as FTO (fluorine-doped tin oxide) and ZnO can be used.
  • the second and third electrodes 7 and 8 are not limited as long as the materials have good conductivity.
  • Pt, Au, Ag, Pd, Ir, W, Ni, Cu, Sn , Ru, Rh, stainless steel, or alloys thereof, metal oxides such as ITO, ZAO, FTO, and ZnO, and conductive organic materials such as carbon, polythiophene, and polyacetylene can be used.
  • the electrode shape is not particularly limited, and any shape such as a single plate, a porous plate, a rod shape, or a mesh shape can be selected.
  • the supporting electrolyte is not particularly limited, but usually a material such as KCl that has a high degree of ionization and does not exchange electrons or holes with the second electrode 7 is used.
  • partition wall 3 is not particularly limited, but in the present embodiment, a perfluorocarbon-based polymer material having ion conductivity is used.
  • the mixing ratio of the electron acceptor and the hole acceptor in the electrolytic solution 2 before photocharging is equimolar, but the electron acceptor and the hole do not affect the desired charge / discharge reaction. Any one of the receptors may be included more than the other.
  • FIG. 3 shows the relationship between the oxidation-reduction potential and the energy level before light irradiation.
  • the left vertical axis is the oxidation-reduction potential, and the right vertical axis is the energy level.
  • the electrolytic solution 2, the second electrode 7, and the transparent conductive film 11 are in contact with each other. Have the same potential V1.
  • FIG. 4 shows the relationship between the redox potential immediately after light irradiation and the energy level.
  • the left vertical axis is the oxidation-reduction potential, and the right vertical axis is the energy level.
  • an electron-hole pair (exciton) is generated by light absorption, and this electron-hole pair is an interface between the p-type organic semiconductor layer 12a and the n-type organic semiconductor layer 12b.
  • a depletion layer formed in the vicinity separates into electrons e ⁇ and holes h + .
  • the energy level of the electron e ⁇ becomes the LUMO level of the n-type organic semiconductor layer 12b, that is, the potential V2.
  • the energy level of the hole h + becomes the HOMO level of the p-type organic semiconductor layer 12a, that is, the potential V3.
  • the electron e ⁇ generated by the light absorption passes through the n-type organic semiconductor layer 12b and moves to the electron acceptor in the electrolytic solution 2 to cause a reduction reaction.
  • the holes h + are conducted from the p-type organic semiconductor layer 12a through the transparent conductive film 11, and further, the second h in the second reaction chamber 5 is passed through the first and second lead wires 6a and 7a. It moves to the electrode 7 and moves to the hole acceptor in the electrolytic solution 2 at the interface between the second electrode 7 and the electrolytic solution 2 to cause an oxidation reaction.
  • FIG. 5 shows the relationship between the oxidation-reduction potential and the energy level when the thin film layer 12 is irradiated with light for a long time.
  • the left vertical axis is the oxidation-reduction potential, and the right vertical axis is the energy level.
  • the electron acceptor in the electrolytic solution 2 is used as a reaction substrate, and a reduction reaction accompanying electron transfer occurs at the interface between the thin film layer 12 and the electrolytic solution 2, and the hole acceptor in the electrolytic solution 2 is used as a reaction substrate.
  • An oxidation reaction accompanying hole movement occurs at the interface between the second electrode 7, which is the counter electrode of the first electrode 6, and the electrolyte 2, whereby light energy is converted into electrochemical energy and charged.
  • the first electrode 6 has p
  • the electron e ⁇ that has passed through the organic semiconductor layer 12a reacts with potassium ferricyanide, and a reduction reaction represented by the chemical reaction formula (1) occurs.
  • the second electrode 7 that is the counter electrode
  • the holes h + react with potassium ferrocyanide, and an oxidation reaction represented by the chemical reaction formula (2) occurs. Thereby, light energy is converted into electrochemical energy.
  • the second electrode 7 becomes a positive electrode and a reduction reaction shown by the chemical reaction formula (3) occurs
  • the third electrode 8 becomes a negative electrode and an oxidation reaction shown by the chemical reaction formula (4) occurs and is discharged. .
  • the first electrode 6 includes the thin film layer 12 having a two-layer structure including the p-type organic semiconductor layer 12a and the n-type organic semiconductor layer 12b.
  • Can absorb light in different wavelength regions of the p-type organic semiconductor material and the n-type organic semiconductor material can acquire large light energy, and has a wide depletion region, generating electrons and holes. The number also increases. Also, electrons and holes react with the reaction substrate at the same place, and the electrons and holes are not wasted, and compared with the case where the thin film layer 12 is formed of a single organic semiconductor layer, the charge and discharge can be performed. The current density can be greatly increased.
  • the light energy absorbed by light irradiation can be converted into electrochemical energy with high efficiency, and a photovoltaic secondary battery having a large energy density can be obtained.
  • organic semiconductor materials are more flexible than inorganic semiconductor materials, are inexpensive, can simplify the manufacturing process, and are made thinner, making organic semiconductor materials thinner. It is possible to realize a photovoltaic secondary battery that is suitable for various applications at low cost.
  • FIG. 6 is a main part enlarged view showing a second embodiment of the photovoltaic secondary battery.
  • the n-type organic semiconductor layer 12b is formed on the surface of the p-type organic semiconductor layer 12a.
  • the surface of the n-type organic semiconductor layer 12b is formed.
  • a p-type organic semiconductor layer 12a is formed. In this case, holes from the p-type organic semiconductor layer 12a move into the electrolytic solution 2 and react with the hole acceptor to cause an oxidation reaction, while electrons from the n-type organic semiconductor layer 12b are transparently conductive.
  • the present invention can achieve the intended purpose as long as it has a laminated structure having the p-type organic semiconductor layer 12a and the n-type organic semiconductor layer 12b.
  • the first embodiment obtains a larger current density than the second embodiment. More preferred.
  • FIG. 7 is a cross-sectional view schematically showing a third embodiment of the photovoltaic secondary battery.
  • the first reaction chamber 4 and the second reaction chamber 5 are defined via a partition wall 3 formed of a polymer material having ion conductivity.
  • the first reaction chamber 15 and the second reaction chamber 16 are physically separated from each other, and the first and second reaction chambers 15 and 16 are provided in the first and second reaction chambers 15 and 16, respectively.
  • Electrolytic solutions 2a and 2b are respectively stored.
  • the first reaction chamber 15 and the second reaction chamber 16 are connected via a salt bridge 17.
  • the salt bridge 17 has ion conductivity, has a substantially U-shaped tube formed of a glass material or a resin material, and a gel-like substance obtained by swelling a polymer such as agar with an electrolytic solution is added to the tube. Filled.
  • the first reaction chamber 15 and the second reaction chamber 16 are connected by the salt bridge 17 having ion conductivity instead of the partition wall 3 having ion conductivity.
  • the same operations and effects as those of the first embodiment can be obtained.
  • FIG. 8 is a cross-sectional view schematically showing a fourth embodiment of the photovoltaic secondary battery.
  • the first reaction chamber 15 and the second reaction chamber 16 are physically separated from each other, and the first reaction chamber 15 and the second reaction chamber are arranged.
  • the partition wall 18 is formed of a porous ceramic or glass material such as alumina having no ion conductivity, and the first reaction chamber is connected to the first reaction chamber. 4 and the second reaction chamber 5 are connected by a salt bridge 19 having ion conductivity.
  • the partition wall 18 is formed of a material having no ion conductivity, and the first reaction chamber 4 and the second reaction chamber 5 are connected by the salt bridge 19 having ion conductivity.
  • the same operations and effects as those of the second embodiment can be achieved.
  • the present invention is not limited to the above embodiment.
  • the thin film layer 12 has a two-layer structure of the p-type organic semiconductor layer 12a and the n-type organic semiconductor layer 12b.
  • the thin-film layer 12 has a multi-layer structure including the p-type organic semiconductor layer 12a and the n-type organic semiconductor layer 12b. It is good also as a laminated structure.
  • a tripolar photovoltaic secondary battery has been described.
  • at least one of the plurality of electrodes has a thin film layer made of an organic semiconductor. It is not limited to.
  • sample No. 1 ⁇ Production of first electrode> A glass substrate (manufactured by Hiroshima Sanyo Vacuum Co., Ltd.) having a length of 20 mm, a width of 10 mm and a thickness of 1 mm on which an ITO film having a thickness of 170 nm was formed was prepared.
  • sublimation-purified grade Pc metal-free phthalocyanine
  • PTCBI manufactured by Tokyo Chemical Industry Co., Ltd.
  • the resin mask was given to the half area (length: 10 mm, width: 10 mm) of the said glass substrate.
  • the glass substrate is heated under a reduced pressure of 2.0 ⁇ 10 ⁇ 4 Pa, and the above-described Pc is vacuum-deposited at a deposition rate of 0.1 nm / s, and a film thickness of 70 nm is formed as a first layer on the ITO film.
  • a Pc film was prepared.
  • a 180-nm-thick PTCBI film was formed as a second layer on the Pc film under the same film formation conditions as described above, and a thin film layer having a two-layer structure was formed.
  • the resin mask was removed, and a first lead wire made of Cu was joined to the exposed surface of the ITO film using a conductive adhesive (trade name “Dotite” manufactured by Fujikura Kasei Co., Ltd.).
  • FIG. 9 is a perspective view schematically showing the photovoltaic secondary battery produced in this example.
  • an ITO film 53 as a transparent conductive film and a thin film layer 54 having a two-layer structure are formed on a glass substrate 52, and the ITO film 53 is first formed through the conductive adhesive 55.
  • the ITO film 53, the conductive adhesive 55, and the first lead 51a are covered with an epoxy resin 57 as an insulating layer.
  • an electrolytic solution 59 a mixed solution of K 3 [Fe (CN) 6 ], K 4 [Fe (CN) 6 ], and KCl (K 3 [Fe (CN) 6 ]: concentration 30 mmol / L, K 4 [Fe (CN) 6 ]: concentration 30 mmol / L, KCl: concentration 200 mM) was prepared, and this electrolyte solution 59 was stored in a glass container 58.
  • the first electrode 51 and the second and third electrodes 60 and 61 made of Pt net are immersed in the electrolytic solution 59, and the ion conductive film 62 (product name “Nafion” manufactured by Sigma-Aldrich) is made of glass.
  • the sample No. 1 was prepared by placing it in the container 58.
  • a second lead 60a and a third lead wire 61a are connected to the second electrode 60 and the third electrode 61, respectively.
  • the second electrode 60 is the first electrode 51 or the third electrode.
  • 61 and the change-over switch 63 can be connected.
  • the surface area of the second electrode 60 was 100 mm 2 .
  • sample No. 2 For the thin film layer of the first electrode, except that a PTCBI film having a film thickness of 180 nm was formed as the first layer and a Pc film having a film thickness of 70 nm was formed as the second layer under the same film formation conditions as in sample number 1, A sample of sample number 2 was prepared by the same method and procedure.
  • Sample No. 3 The same method and procedure as in Sample No. 1 except that a thin film layer made of a 70 nm-thick Pc film is formed on the ITO film under the same film formation conditions as in Sample No. 1 and the thin film layer has a single layer structure. Sample No. 3 was prepared.
  • Sample No. 4 The same method and procedure as in Sample No. 1 except that a thin film layer made of a 180 nm thick PTCBI film is formed on the ITO film under the same film formation conditions as in Sample No. 1 and the thin film layer has a single layer structure. Sample No. 4 was prepared.
  • Example evaluation A halogen lamp (manufactured by Schott Moritex, trade name “Megalight 100”) was prepared. Then, as shown in FIG. 9, the first electrode 51 and the second electrode 60 are connected via the first and second lead wires 51 a and 60 a, and a light source having an intensity of 100 mW / cm 2 from the halogen lamp 64. was applied to the first electrode 51 and charged for 5 minutes.
  • the changeover switch 63 was switched under dark conditions, the second electrode 60 and the third electrode 61 were connected via the second and third lead wires 60a and 61a, and discharged for 5 minutes.
  • Table 1 shows the configuration and film thickness of the thin film layer 54 of sample numbers 1 to 4 and the current density during charging and discharging.
  • the current density at the time of charging indicates a value 5 minutes after the start of charging
  • the current density at the time of discharging indicates a value 5 minutes after the start of discharging.
  • the current from the first electrode 51 to the second electrode 60 was a positive current (+)
  • the current from the second electrode 60 to the third electrode 61 was a negative current ( ⁇ ).
  • Sample No. 3 the current density is + 60 .mu.A / cm 2 at the time of charging, while the current density during discharge was -35 ⁇ A / cm 2, Sample No. 1, the current density during charge + 350 ⁇ A / cm 2, The current density at the time of discharge was ⁇ 210 ⁇ A / cm 2 , and it was found that the sample number 1 of the two-layer structure dramatically increased compared to the sample number 3 of the single-layer structure.
  • the thin film layer 54 has a two-layer structure in which a Pc film, which is a p-type organic semiconductor material, is a first layer and a PTCBI film, which is an n-type organic semiconductor material, is a second layer. This is probably because the amount of the carrier increased, the carrier generation efficiency increased, and the carrier density increased.
  • Sample No. 4 while the current density at the time of charging is -60 ⁇ A / cm 2, current density during discharge was + 35uA / cm 2, Sample No. 2, the current density during charging -150Myuei / cm 2 , the current density during discharge was +80 ⁇ A / cm 2. For the same reason as described above, it was found that the sample number 2 having the two-layer structure has a larger current density than the sample number 4 having the single-layer structure. .
  • the current density is larger than that of the single layer structure regardless of the lamination order.
  • the first layer is formed of a Pc film that is a p-type organic semiconductor material and the second layer is a PTCBI film that is an n-type organic semiconductor material
  • the first layer is It has been found that a larger current density can be obtained as compared with the case where the PTCBI film and the second layer are formed of the Pc film. Therefore, it was found that it is more preferable to form the thin film layer so that the main surface of the n-type organic semiconductor layer is in contact with the electrolytic solution.
  • Table 2 shows the film thicknesses of the first layer and the second layer in sample numbers 11 to 23, and the current density during charge and discharge.
  • Sample No. 18 since the thin film layer is a single layer structure consisting of PTCBI film, the current density at the time of charging is -50 ⁇ A / cm 2, current density during discharge was as small as + 30 ⁇ A / cm 2.
  • sample numbers 12 to 17 and sample numbers 19 to 23 have a two-layer structure of a Pc film and a PTCBI film, so that the current density during charging is +70 to +450 ⁇ A / cm 2 , and the current density during discharging is It was found that a large current density of ⁇ 40 to ⁇ 270 ⁇ A / cm 2 can be obtained.
  • the thin film layer has a two-layer structure of the p-type organic semiconductor layer and the n-type organic semiconductor layer, so that a larger current density can be obtained than in the case of the single-layer structure. It has been found that an extremely large current density can be obtained by setting the thickness to 10 to 300 nm and the thickness of the n-type organic semiconductor layer to 10 to 260 nm.
  • FePc iron phthalocyanine
  • TiO titanium phthalocyanine
  • C 60 fullerene (manufactured by Tokyo Chemical Industry Co., Ltd.) and PTCDI-C8 (manufactured by Tokyo Chemical Industry Co., Ltd.) were prepared as n-type organic semiconductor materials.
  • the film thickness of the first layer and the second layer is the same as that of Sample No. 1 so that the film thicknesses are as shown in Table 3.
  • Samples Nos. 31 to 35 were prepared in the same manner and procedure as in Example 1 except that one layer and the second layer were prepared.
  • Table 3 shows materials and film thicknesses used for the first layer and the second layer in sample numbers 31 to 35, and current densities during charge and discharge.
  • sample numbers 31 to 35 have a two-layer structure of a first layer made of a p-type organic semiconductor material and a second layer made of an n-type organic semiconductor material, so that the current density during charging is +180 ⁇ + 450 ⁇ A / cm 2, current density at the time of discharge was found that a large current density can be obtained with -100 ⁇ -270 ⁇ A / cm 2.
  • a p-type organic semiconductor material can obtain the same large current density other than Pc, and an n-type organic semiconductor material can obtain a similar large current density other than PTCBI.
  • Photovoltaic secondary batteries with high energy density that can be converted from light energy to electrochemical energy with high efficiency, low cost, good productivity, and suitable for applications that require flexibility.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Abstract

 電子受容体と正孔受容体とを含有した電解液2中にイオン伝導性を有する隔壁3が配され、該隔壁3を介して第1の反応室4と第2の反応室5に画成されている。第1の反応室4には第1及び第3の電極6、8が配され、第2の反応室5には第2の電極7が配されている。第1の電極6は、透明基板10上に透明導電膜11が形成され、該透明導電膜11上にp型有機半導体層12aとn型有機半導体層12bの二層構造からなる薄膜層12が形成されている。p型有機半導体層の膜厚は、好ましくは10~300nmであり、n型有機半導体層の膜厚は、好ましくは10~260nmである。これにより光エネルギーから電気化学エネルギーへの変換を低コストで効率よく行うことができ、大きなエネルギー密度を有し、柔軟性が要求される用途にも適した光二次電池を実現する。

Description

光二次電池
 本発明は、光二次電池に関し、より詳しくは光を吸収して電気を蓄積し、充放電反応を繰り返す光二次電池に関する。
 近年、地球環境負荷を軽減する観点から自然エネルギーを利用した技術の研究・開発が盛んに行われている。
 これら自然エネルギーを利用した技術のうち、光エネルギーを吸収して該光エネルギーを電気化学エネルギーに変換し、充放電を繰り返す光二次電池も従来から知られている。
 例えば、特許文献1には、図10に示すような光空気二次電池が提案されている。
 この光空気二次電池は、酸素触媒を有する正極101と、負極102と、これら正極101と負極102とに接触する電解質103と、正極101と負極102と電解質103とが収容される電池ケース104とを有している。また、負極102は、金属製の負極部材102aと、該負極部材102aに電気的に接続され、金属-半導体の界面のエネルギーバンドにおける障壁を低減させる金属層102bと、該金属層102bに電気的に接続されたn型半導体部102cとを有している。そして、金属層102bの両面には負極部材102aとn型半導体部102cとが一体的に接合され、かつ電池ケース104には負極102のn型半導体部102cに光を入射する受光部104aが設けられている。
 特許文献1では、正極101が、厚さ1mmの多孔性炭素板に酸素触媒としてのPt微粒子が担持されている。また、負極部材102aは厚さ1mmのCoで形成され、金属層102bは厚さ0.3μmの合金層(Au:84%、Ge:12%、Ni:4%)で形成され、n型半導体部102cは厚さ0.2mmのGaP単結晶で形成されている。さらに電解質103は濃度1mol/LのKOH水溶液で形成されている。
 そして、Co製の負極部材102aの酸化反応によって放電し、GaP単結晶からなるn型半導体部102cを電解質103に浸漬することにより、エネルギーバンドの曲がりを利用して光エネルギーを電気エネルギーに変換し、これにより充電している。
 すなわち、特許文献1では、放電時には負極を構成するCoが電解質との酸化反応によって電子を生成し、該電子は外部回路を介して正極に伝導し、該正極上で酸素を還元して水酸化物を生成している。また、充電時には光照射によりGaP内で光エネルギーを誘起して電子と正孔を生成し、Co酸化物の還元反応と水酸化物イオンの酸化反応で電子及び正孔を消費している。
 このように特許文献1では、上述したこれらの反応により充放電を行っている。
特開平6-325801号公報(請求項1、段落番号〔0012〕、〔0015〕、〔0016〕、図1等)
 しかしながら、特許文献1(図10)は、負極102を構成するn型半導体部102cが単結晶で形成されていることから、材料費が高価であり、しかもn型半導体部102cとCo製の負極部材102aとを金属層102bを介して接合しているため、製造工程が煩雑であり生産性にも劣るという問題があった。
 本発明はこのような事情に鑑みなされたものであって、光エネルギーから電気化学エネルギーへの変換を低コストで効率よく行うことができ、大きなエネルギー密度を有し、柔軟性が要求される用途にも適した光二次電池を提供することを目的とする。
 有機半導体材料は可視光の吸収係数は大きいものの、無機半導体材料に比べてキャリア移動度が小さく、一般的に耐久性に劣ることから、従来、光二次電池用の材料としては検討されてこなかった。ここで、キャリアとは、半導体中において電荷伝導を担う電子と正孔の総称をいい、p型半導体の場合は主として正孔をいい、n型半導体の場合は主として電子をいう。
 しかしながら、有機半導体材料は、無機半導体単結晶に比べて安価であり、しかも、真空蒸着法等の薄膜形成方法を使用することにより基板上に容易に膜形成できることから、特許文献1のように負極材料とn型半導体部とを金属層を介して接合する必要もなく、製造プロセスも簡素であり、低コスト化が可能である。
 そこで、本発明者らは、有機半導体材料を用いた光二次電池の実用化を目指して鋭意研究を行ったところ、光吸収層である有機半導体層を従来に比べて格段に薄くすることにより、光吸収により生じたキャリアの有機半導体内での移動距離を短くすることができ、これにより有機半導体内で電子と正孔が再結合してキャリアが消滅するのを抑制できることが分かった。そして、上述したように有機半導体材料は可視光の吸収係数が大きいことから、薄膜化しても従来の厚膜形成された無機半導体材料と同程度の光エネルギーを吸収することが可能と考えられる。すなわち、有機半導体材料を使用しても光エネルギーの電気化学エネルギーへの効率の良い変換が可能である。しかも、有機半導体材料は無機半導体材料に比べて可撓性に富むことから、薄膜化することにより、柔軟性が要求される用途にも適した光二次電池の実現が可能と考えられる。
 しかしながら一方で、有機半導体層を単に薄膜化しただけでは、十分な電流密度を得ることができず、エネルギー密度の大きな光二次電池を得ることができないことも分かった。 
 そこで、本発明者らが更に鋭意研究を重ねたところ、光吸収層をp型有機半導体層とn型有機半導体層を有する積層構造の薄膜層とすることにより、p型有機半導体層又はn型有機半導体層からなる単層構造の薄膜層に比べ、充電時の電流密度を大幅に増加させることができ、これにより光エネルギーを低コストで高効率に電気化学エネルギーに変換することができ、かつエネルギー密度の大きな光二次電池を得ることができるという知見を得た。
 本発明はこのような知見に基づきなされたものであって、本発明に係る光二次電池は、電子受容体と正孔受容体とを含有した媒体中に隔壁及び塩橋のうちの少なくとも一方が配されると共に、複数の電極が、前記媒体に接するように配され、前記複数の電極のうちの少なくとも一つの電極は、p型有機半導体層とn型有機半導体層とを有する積層構造の薄膜層で形成され、入射光が、前記薄膜層で吸収されることを特徴としている。
 また、本発明の光二次電池では、前記p型有機半導体層は、膜厚が10~300nmであるのが好ましく、また、前記n型有機半導体層は、膜厚が10~260nmであるのが好ましい。
 p型有機半導体層及びn型有機半導体層の各膜厚を上記範囲とすることにより、より大きな電流密度を得ることが可能となる。
 また、本発明の光二次電池では、前記薄膜層は、前記n型有機半導体層の主面が、前記媒体と接しているのが好ましい。
 これによりp型有機半導体層の主面が、前記媒体と接している場合に比べ、より大きな電流密度を得ることができる。
 また、本発明の光二次電池は、前記p型有機半導体層が、大環状化合物、多環芳香族化合物、及びチオフェン骨格を含有した高分子化合物のうちのいずれか1種以上を含むのが好ましい。
 さらに、本発明の光二次電池は、前記n型有機半導体層が、ペリレン誘導体、及び球状分子構造物(誘導体を含む。)のうちのいずれか1種以上を含むのが好ましい。
 また、本発明の光二次電池は、前記隔壁又は前記塩橋が、イオン導電性を有する高分子材料で形成されているのが好ましい。
 さらに、本発明の光二次電池は、前記複数の電極は、前記薄膜層を有する第1の電極と、該第1の電極に電気的に接続可能とされた第2の電極と、該第2の電極と電気的に接続可能とされた第3の電極とを有し、前記隔壁又は前記塩橋は、前記第1及び第3の電極と前記第2の電極との間に介在されているのが好ましい。
 また、本発明の光二次電池は、前記第2の電極が、充電時及び放電時に対応して前記第1の電極及び第3の電極と電気的に切替可能に構成されているのが好ましい。
 本発明の光二次電池によれば、電子受容体と正孔受容体とを含有した媒体中に隔壁及び塩橋のうちの少なくとも一方が配されると共に、複数の電極が、前記媒体に接するように配され、前記複数の電極のうちの少なくとも一つの電極は、p型有機半導体層とn型有機半導体層とを有する積層構造の薄膜層で形成され、入射光が、前記薄膜層で吸収されるので、薄膜層を有機半導体層単層で形成した場合に比べ、充放電時の電流密度を大幅に増加させることが可能となる。
 したがって、本発明によれば、光照射により吸収された光エネルギーを高効率で電気化学エネルギーに変換することができ、大きなエネルギー密度を有する光二次電池を得ることができる。
 しかも、有機半導体材料は無機半導体材料に比べて可撓性に富む上に安価であり、製造工程の簡素化が可能であり、さらに有機半導体材料を薄膜化していることから、柔軟性が要求される用途にも適した光二次電池を低コストで実現することが可能となる。
本発明に係る光二次電池の一実施の形態(第1の実施の形態)を模式的に示す断面図である。 図1のA部拡大図である。 光照射前の酸化還元電位とエネルギー準位との関係を示す図である。 光照射直後の酸化還元電位とエネルギー準位との関係を示す図である。 光照射を長時間持続した場合の酸化還元電位とエネルギー準位との関係を示す図である。 本発明に係る光二次電池の第2の実施の形態を示す要部拡大図である。 本発明に係る光二次電池の第3の実施の形態を模式的に示す断面図である。 本発明に係る光二次電池の第4の実施の形態を模式的に示す断面図である。 実施例で使用した光二次電池を模式的に示した斜視図である。 特許文献1に記載された光空気二次電池の断面図である。
 次に、本発明の実施の形態を詳説する。
 図1は、本発明に係る光二次電池の一実施の形態(第1の実施の形態)を模式的に示す断面図であって、本実施の形態では、三極式の光二次電池を示している。
 この光二次電池は、電池ケース1内に電解液(媒体)2が貯留されると共に、該電池ケース1には隔壁3が配され、該隔壁3により第1の反応室4と第2の反応室5に画成されている。
 そして、第1の反応室4には、第1の電極6と第3の電極8とがそれぞれ電解液2に接するように該電解液2に浸漬されている。
 また、第2の反応室5には、第1及び第3の電極6、8の対極となる第2の電極7が電解液2に接するように該電解液2に浸漬されている。
 そして、第1~第3の電極6~8は、それぞれ第1~第3のリード線6a~8aに接続され、第2の電極7は、切替スイッチ9を介して第1の電極6又は第3の電極8と導通可能に構成されている。
 電解液2は、第1~第3の電極6~8との間でキャリア(電子又は正孔)の授受を行う電子受容体及び正孔受容体を含有すると共に、これらキャリアを支持する支持電解質を含有している。
 電子受容体は、還元電位が有機半導体材料のLUMO(Lowest Unoccupied Molecular Orbital;最低空軌道)準位に対応する電位よりも電気化学的に貴な電位を有するものあれば特に限定されるものではなく、例えば[Fe(CN)3-、[Cr(CN)]3-、[Co(NH)]3+、[Ru(NH)]3+、[Co(bpy)]3+、[OsCl]2-等を含有した錯塩、Fe3+、Co3+、V3+、Ti3+、Cr3+、Ru3+、Sn4+、Yb3+等の金属イオンを含有した金属化合物を使用することができる。
 正孔受容体は、酸化電位が有機半導体材料のHOMO(Highest Occupied Molecular Orbital;最高被占軌道)準位に対応する電位よりも電気化学的に卑な電位を有するものであれば特に限定されるものではなく、例えば[Fe(CN)4-、[Cr(CN)]4-、[Cr(OH)]-、[Co(NH)]2+、[Ru(NH)]2+、[Co(bpy)]2+、[OsCl]3-等を含有した錯塩、Fe2+、Co2+、V2+、Ti2+、Cr2+、Ru2+、Sn2+、Yb2+等の金属イオンを含有した金属化合物を使用することができる。
 また、第1の電極6は、ガラス基板等の透明基板10上に透明導電膜11が形成されると共に、該透明導電膜11の表面に薄膜層12が形成され、さらに、透明導電膜11及び第1のリード線6aの先端部はエポキシ樹脂等からなる絶縁層13で被覆されている。
 薄膜層12は、具体的には図2に示すように、p型有機半導体層12aとn型有機半導体層12bからなる二層構造(積層構造)とされている。
 従来、有機半導体材料は、固体物質中でのキャリアの移動のし易さを示すキャリア移動度が、無機半導体材料に比べて小さいことから、光二次電池用材料としては注目されていなかった。
 すなわち、無機半導体材料、例えばGaPのキャリア移動度は、非特許文献1に記載されているように、110cm/Vsとされているのに対し、有機半導体材料、例えばフタロシアニン系化合物のキャリア移動度は、非特許文献2に記載されているように、0.1cm/Vsとされており、有機半導体材料は無機半導体材料に比べてキャリア移動度が小さい。
長倉三郎等編集、「岩波理化学辞典第5版」、岩波書店、1998年、p.1477
E.Harrison, Phys. Rev., 132, (1963), 2010
 したがって、有機半導体材料では、無機半導体材料と同程度のキャリア移動距離を有するとした場合、光吸収によりキャリアが生成されても、キャリア移動度が小さいため、有機半導体材料中で電子と正孔が再結合して消滅するキャリアが増加する。その結果、酸化還元反応速度の低下を招くことから、上述したように光二次電池用の材料には適さないと考えられていた。
 しかしながら一方で、有機半導体材料は、無機半導体材料に比べて可視光での吸収係数が大きい。例えば、波長600nmで実測したところ、吸収係数は、フタロシアニン系化合物が5.0×10cm-1、C60フラーレンが5.0×10cm-1であるのに対し、特許文献1で使用したGaPは、非特許文献3に記載されているように、1.0×10cm-1である。
Atundna, Phys. Rev.,27,(1983),p.985
 したがって、半導体材料に有機半導体を用いることにより、より薄い膜厚で無機半導体材料と同程度の光エネルギーを吸収することが可能と考えられる。しかも、有機半導体材料を薄膜化した薄膜層12は、真空蒸着法等の薄膜形成法を使用することにより、透明導電膜11上に容易に膜形成できることから、特許文献1のように電極材料と半導体材料とを金属性部材で接合させる必要もなく、製造工程も簡素化することが可能となり、生産性が飛躍的に向上すると共に、コストの低減化が可能となる。さらに、無機半導体単結晶は剛体であるのに対し、有機半導体材料は可撓性に富むことから、樹脂フィルム等の可撓性パッケージや可撓性電極と組み合わせることにより、フレキシブルディスプレイやウェアラブルデバイスなど柔軟性が要求される用途に対する電源などへの応用が可能と考えられる。
 そして、本実施の形態では、薄膜層12をp型有機半導体層12aとn型有機半導体層12bとの二層構造とすることにより、光照射時に薄膜層12中に生じるキャリアの密度を大幅に増加させることができ、これにより電流密度が格段に増加することから、エネルギー密度の大きな光二次電池を得ることが可能となる。
 すなわち、薄膜層12が単層構造で形成されている場合であっても、光吸収性を損なわない程度に、有機半導体層を従来の無機半導体層に比べ格段に薄くすることにより、有機半導体層内でのキャリアの移動距離が短くなることから、電子と正孔とが有機半導体内で再結合するのを抑制することができる。
 そして、このように有機半導体層を薄膜化することによりキャリアを有効活用することができ、これにより有機半導体材料を使用した場合であっても、光ネルギーを効率良く電気化学エネルギーに変換することが可能である。
 しかしながら、薄膜層12が単層構造の場合、得られる電流密度が小さく、大きなエネルギー密度を有する光二次電池を得るのは困難である。
 すなわち、薄膜層12に光が照射されると、光吸収により電子-正孔対(励起子)が薄膜層12内で生成し、この電子-正孔対は空乏層で電子と正孔とに分離する。薄膜層12が単層構造の場合、この空乏層は、薄膜層12と電解液2との界面から薄膜層12の内部に架けて形成される。そして、薄膜層12が例えばp型有機半導体材料で形成されている場合、電子は薄膜層12の界面から電子受容体に移動し、正孔は対極である第2の電極7を介して正孔受容体に移動する。このようにそれぞれのキャリアが電子と正孔とに分離し、この電子及び正孔は、第1及び第2の電極6、7から電子受容体又は正孔受容体に移動することで系内に電流が生じる。
 しかしながら、上述したように薄膜層12が単層構造の場合、空乏層は薄膜層12と電解液2との界面から薄膜層12の内部に架けての狭い領域に形成されることから、所望の大きな電流密度が得られる程度に電子や正孔を生成するのが困難である。しかも、電子及び正孔の一部は同伴され、薄膜層12と電解液2との界面の同一箇所で反応基質である電子受容体及び正孔受容体と反応し消費されることから、電流の生成に寄与せずに消滅する電子・正孔が存在する。
 このように薄膜層12が単層構造の場合、電流の生成に寄与せずに消滅する電子・正孔が存在し、このため有効活用できるキャリアが減少し、所望の大きな電流密度を得るのは困難である。しかも、光エネルギーは、材料に固有の吸収波長に依存して取得できることから、単層構造では得られる光エネルギーも比較的少ない。
 これに対し薄膜層12をp型有機半導体層12aとn型有機半導体層12bの二層構造とした場合、空乏層は、p型有機半導体層12aとn型有機半導体層12bの界面からp型有機半導体層12a及びn型有機半導体層12bの双方の内部に架けて形成される。すなわち、この場合、空乏層は、単層構造に比べ2倍程度の広い領域に形成されることから、生成される電子や正孔の個数が多くなる。しかも、空乏層で分離した電子及び正孔のうち、電子はn型有機半導体層12b側に移動し、正孔はp型有機半導体層12a側に移動することから、電子と正孔の双方が同伴して薄膜層12と電解液2との界面に移動することもない。したがって、電子及び正孔が薄膜層12と電解液2の界面上の同一場所で反応基質と反応することはなく、生成された高密度のキャリアは効率良く電流生成に寄与する。しかも、薄膜層12をp型有機半導体層12aとn型有機半導体層12bの二層構造とすることにより、それぞれの有機半導体材料の吸収波長に応じた光を吸収することができ、取得できる光エネルギーも増大する。
 そこで、本実施の形態では、薄膜層12をp型有機半導体層12aとn型有機半導体層12bの二層構造とし、これにより単層構造の場合に比べ電流密度を大幅に増加させ、光エネルギーを高効率で電気化学エネルギーに変換することができるエネルギー密度の大きな光二次電池を得ている。
 p型有機半導体層12a及びn型有機半導体層12bの膜厚は、所望の光吸収性を損なわない程度に十分に薄ければ特に限定されるものではない。 
 しかしながら、光充電反応は、光吸収により生成した電子と正孔が電解液2中の正孔受容体及び電子受容体と反応することにより行われることから、充電される電流量はキャリアの生成数に比例し、キャリアの消滅数に反比例する。そして、キャリアの生成数は、薄膜層12の膜厚が厚くなるほど多くなるが、薄膜層12の膜厚が厚くなれば、キャリアの消滅数も増加する。したがって、薄膜層12の膜厚は、キャリアの生成数と消滅数を考慮して設定するのが好ましく、斯かる観点から、薄膜層12の膜厚は、p型有機半導体層12aは10~300nm、n型有機半導体層12bは10~260nmが好ましい。
 すなわち、p型有機半導体層12a及びn型有機半導体層12bの膜厚が10nm未満になると、吸収される光エネルギーが少なくなり、光充電反応は生じるものの、充放電される電流量が少なくなる。一方、p型有機半導体層12a及びn型有機半導体層12bの膜厚がそれぞれ300nm、260nmを超えると、キャリアの消滅数も増加し、光充電反応は生じるものの、酸化還元反応に関与するキャリアが減少し、充放電される電流量が少なくなる。尚、p型有機半導体層12aとn型有機半導体層12bとで、好ましい膜厚範囲が異なるのは、p型有機半導体材料とn型有機半導体材料とで光吸収効率が異なるためと考えられる。
 そして、このようなp型有機半導体層12aを形成する材料としては、p型有機半導体材料であれば特に限定されるものではなく、例えば、化学式(1)で示すように4つのフタル酸イミドが窒素原子で架橋された無金属フタロシアニン(以下、「Pc」という。)、化学式(2)で示すように、Cu、Zn、Co、Fe、Pb等の金属原子Meが環状構造の中央に配された金属フタロシアニン(以下、「MePc」という。)、化学式(3)で示すようにTiO等の非金属化合物Zが環状構造の中央に配された非金属フタロシアニン(以下、「ZPc」という。)、化学式(4)で示すようにアルキル基等の置換基X~Xがポリフィン環に結合したポルフィリン等の大環状化合物、化学式(5)で示すようなペンタセン等の多環芳香族炭化水素、化学式(6)で示すようなチオフェン骨格を含有したP3HT(ポリ(3-ヘキシルチオフェン-2,5-ジイル))等の高分子化合物を使用することができる。
Figure JPOXMLDOC01-appb-C000001
 また、n型有機半導体層12bを形成する材料についても、n型有機半導体材料であれば特に限定されるものではなく、例えば、化学式(7)で示すPTCBI(3,4,9,10-ビス(1H-ベンゾイミダゾール-2,1-ジイルカルボニル)ペリレン)や化学式(8)で示すPTCDI-C8(N,N′-ジオクチル-3,4,9,10-ペリレンジカルボキミド)等のペリレン誘導体、化学式(9)で示すような60個のC原子からなる切頂二十面体構造のC60フラーレン等の球状分子構造物やその誘導体を使用することができる。
Figure JPOXMLDOC01-appb-C000002
 また、透明導電膜11としては、透明性を有し、かつ良導電性を有する材料であれば、特に限定されるものではなく、ITO(インジウムドープ酸化スズ)、ZAO(アルミニウムドープ酸化亜鉛)、FTO(フッ素ドープ酸化スズ)、ZnOなどの金属酸化物等を使用することができる。
 また、第2及び第3の電極7、8としては、良導電性を有する材料であれば限定されるものではなく、例えば、Pt、Au、Ag、Pd、Ir、W、Ni、Cu、Sn、Ru、Rh、ステンレス、或いはこれらの合金、ITO、ZAO、FTO、ZnOなどの金属酸化物、カーボンやポリチオフェン、ポリアセチレンなど導電性有機材料を使用することができる。
 また、電極形状についても特に限定されるものではなく、単板、多孔性板、棒状、網目形状など任意の形状を選択できる。
 また、支持電解質についても特に限定されるものではないが、通常はKClのように電離度が大きく、第2の電極7と電子又は正孔の授受を行わない材料が使用される。
 さら、隔壁3についても特に限定されるものではないが、本実施の形態では、イオン伝導性を有するパーフルオロカーボン系等の高分子材料が使用されている。
 尚、光充電前の電解液2中の電子受容体と正孔受容体の混合比率は等モルであるのが好ましいが、所望の充放電反応に影響を与えない程度に電子受容体及び正孔受容体のいずれか一方を他方よりも多く含んでいてもよい。
 次に、本光二次電池の充放電機構を詳述する。
 図3は、光照射前の酸化還元電位とエネルギー準位との関係を示している。左縦軸が酸化還元電位、右縦軸がエネルギー準位である。
 薄膜層12への光照射前は、電解液2、第2の電極7、透明導電膜11は互いに接しているため、これら電解液2の酸化還元電位、第2の電極7及び透明導電膜11のエネルギー準位は同一電位V1を有している。
 図4は、光照射直後の酸化還元電位とエネルギー準位との関係を示している。左縦軸が酸化還元電位、右縦軸がエネルギー準位である。
 薄膜層12に光が照射されると、光吸収により電子-正孔対(励起子)が生成し、この電子-正孔対はp型有機半導体層12aとn型有機半導体層12bとの界面付近に形成される空乏層で電子eと正孔hとに分離する。このとき、電子eのエネルギー準位は、n型有機半導体層12bのLUMO準位、すなわち電位V2となる。一方、正孔hのエネルギー準位は、p型有機半導体層12aのHOMO準位、すなわち電位V3となる。
 そして、光吸収により生成された電子eは、n型有機半導体層12bを通過して電解液2中の電子受容体に移動し、還元反応が生じる。一方、正孔hは、p型有機半導体層12aから透明導電膜11を伝導し、さらに、第1及び第2のリード線6a、7aを介して第2の反応室5内の第2の電極7に移動し、該第2の電極7と電解液2との界面で電解液2中の正孔受容体に移動し、酸化反応が生じる。
 このように薄膜層12に光が照射されると初期酸化還元反応が生じる。
 図5は、薄膜層12に長時間持続して光照射された場合の酸化還元電位とエネルギー準位との関係を示している。左縦軸が酸化還元電位、右縦軸がエネルギー準位である。
 すなわち、光吸収により生成した電子eが電子受容体に移動する電子移動反応が連続的に生じると、電解液2の酸化還元電位は電位V1から電位V1′へと卑側に変位する。
 同様に、光吸収により生成した正孔hが正孔受容体に移動する正孔移動反応が連続的に生じると、電解液2の酸化還元電位は電位V1から電位V1″へと貴側に変位する。
 このように電解液2内の電子受容体を反応基質として薄膜層12と電解液2との界面で電子移動に伴う還元反応が生じ、また、電解液2内の正孔受容体を反応基質として第1の電極6の対極である第2の電極7と電解質2との界面で正孔移動に伴う酸化反応が生じ、これにより光エネルギーが電気化学エネルギーに変換されて充電される。
 例えば、電子受容体にフェリシアン化カリウム(K[Fe(CN)])、正孔受容体にフェロシアン化カリウム(K[Fe(CN)])を使用した場合、第1の電極6ではp型有機半導体層12aを通過してきた電子eはフェリシアン化カリウムと反応し、化学反応式(1)で示す還元反応が生じる。一方、対極である第2の電極7では正孔hがフェロシアン化カリウムと反応し、化学反応式(2)で示す酸化反応が生じる。そして、これにより光エネルギーが電気化学エネルギーに変換される。
 e+[Fe(CN)]3-→[Fe(CN)]4- ...(1)
 h+[Fe(CN)]4-→[Fe(CN)]3- ...(2)
 また、充電後、切替スイッチ9を介して第2のリード7aと第3のリード線8aとが導通状態になると、以下に示す放電反応が生じる。すなわち、第2の電極7は正極となって化学反応式(3)で示す還元反応が生じ、第3の電極8は負極となって化学反応式(4)で示す酸化反応が生じ、放電する。
 e+[Fe(CN)3-→[Fe(CN)]4- ...(3)
 [Fe(CN)]4-→[Fe(CN)]3-+e ...(4)
 そして、本実施の形態では、第1の電極6が、p型有機半導層12aとn型有機半導体層12bとからなる二層構造の薄膜層12を有し、該薄膜層12で入射光が吸収されるので、p型有機半導体材料及びn型有機半導体材料のそれぞれの波長領域の異なる光を吸収でき、大きな光エネルギーを取得でき、かつ空乏層の領域も広く、電子及び正孔の生成数も多くなる。また、電子及び正孔が同一場所で反応基質と反応して電子及び正孔が無駄に消費されることもなく、薄膜層12を有機半導体層単層で形成した場合に比べ、充放電時の電流密度を大幅に増加させることが可能となる。
 そして、光照射により吸収された光エネルギーを高効率で電気化学エネルギーに変換することができ、大きなエネルギー密度を有する光二次電池を得ることができる。
 しかも、有機半導体材料は無機半導体材料に比べて可撓性に富む上に安価であり、製造工程の簡素化が可能であり、さらに有機半導体材料を薄膜化していることから、柔軟性が要求される用途にも適した光二次電池を低コストで実現することが可能となる。
 図6は光二次電池の第2の実施の形態を示す要部拡大図である。
 すなわち、第1の実施の形態では、p型有機半導体層12aの表面にn型有機半導体層12bを形成しているが、この第2の実施の形態では、n型有機半導体層12bの表面にp型有機半導体層12aを形成している。この場合は、p型有機半導体層12aからの正孔が電解液2中に移動して正孔受容体と反応し、酸化反応を生じる一方、n型有機半導体層12bからの電子は、透明導電膜11を伝導し、さらに、第1及び第2のリード線6a、7aを介して第2の反応室5内の第2の電極7に移動し、該第2の電極7と電解液2との界面で電解液2中の電子受容体に移動し、還元反応を生じる。
 このように本発明は、p型有機半導体層12aとn型有機半導体層12bとを有する積層構造であれば、所期の目的を達成することができる。
 尚、p型有機半導体層12aからの正孔の移動速度が電子の移動速度よりも遅いことから、第1の実施の形態の方が第2の実施の形態に比べ、より大きな電流密度を得ることができ、より好ましい。
 図7は、光二次電池の第3の実施の形態を模式的に示す断面図である。
 上記第1の実施の形態(図1)では、第1の反応室4と第2の反応室5とは、イオン伝導性を有する高分子材料で形成された隔壁3を介して画成されていたが、本第3の実施の形態では、第1の反応室15と第2の反応室16とが物理的に離間して配され、これら第1及び第2の反応室15、16には電解液2a、2bがそれぞれ貯留されている。そして、第1の反応室15と第2の反応室16とは塩橋17を介して接続されている。この塩橋17はイオン伝導性を有し、ガラス材料又は樹脂材料で形成された略U字状の管を有し、寒天等の高分子を電解液で膨潤させたゲル状物質が前記管に充填されている。
 このようにイオン伝導性を有する隔壁3に代えて、イオン伝導性を有する塩橋17で第1の反応室15と第2の反応室16とが接続されるように構成することによっても、第1の実施の形態と同様の作用・効果を奏することができる。
 図8は、光二次電池の第4の実施の形態を模式的に示す断面図である。
 上記第3の実施の形態(図7)では、第1の反応室15と第2の反応室16とを物理的に離間して配し、これら第1の反応室15と第2の反応室16とを塩橋17を介して接続したが、本第4の実施の形態では、イオン伝導性を有さないアルミナ等の多孔質セラミックやガラス材で隔壁18を形成し、第1の反応室4と第2の反応室5とを、イオン伝導性を有する塩橋19で接続している。
 このようにイオン伝導性を有さない材料で隔壁18を形成し、イオン伝導性を有する塩橋19で第1の反応室4と第2の反応室5とを接続することによっても、第1及び第2の実施の形態と同様の作用・効果を奏することができる。
 尚、本発明は上記実施の形態に限定されるものではない。
 上記実施の形態では、薄膜層12をp型有機半導体層12aとn型有機半導体層12bの二層構造としたが、p型有機半導体層12a及びn型有機半導体層12bを一組とした多層の積層構造としてもよい。
 また、上記各実施の形態では、三極式の光二次電池について説明したが、複数の電極のうち、少なくとも一つの電極が、有機半導体からなる薄膜層を有していればよく、三極式に限定されるものでない。
 次に、本発明の実施例を具体的に説明する。
[試料の作製]
(試料番号1)
<第1の電極の作製>
 膜厚170nmのITO膜が成膜された縦:20mm、横:10mm、厚さ:1mmのガラス基板(広島三容真空社製)を用意した。
 また、p型有機半導体材料として昇華精製グレードのPc(無金属フタロシアニン)(東京化成工業社製)を用意し、さらにn型有機半導体材料としてPTCBI(東京化成工業社製)を用意した。
 そして、上記ガラス基板の半分の面積(縦:10mm、横:10mm)に樹脂マスクを施した。次に、2.0×10-4Paの減圧下でガラス基板を加熱し、上述したPcを成膜速度0.1nm/sで真空蒸着を行い、ITO膜上に第1層として膜厚70nmのPc膜を作製した。次いで、上述と同様の成膜条件でPc膜上に第2層として膜厚180nmのPTCBI膜を作製し、二層構造の薄膜層を形成した。その後、樹脂マスクを除去し、導電性接着剤(藤倉化成社製、商品名「ドータイト」)を使用してITO膜の露出面にCuからなる第1のリード線を接合した。
 次いで、ITO膜の露出面、導電性接着剤及び第1のリード線をエポキシ樹脂で被覆し、これにより試料番号1の第1の電極を作製した。
<光二次電池の作製>
 試料番号1の第1の電極を使用して光二次電池を作製した。
 図9は本実施例で作製した光二次電池を模式的に示す斜視図である。
 すなわち、第1の電極51は、ガラス基板52上に透明導電膜としてのITO膜53、二層構造の薄膜層54が形成されると共に、導電性接着剤55を介してITO膜53が第1のリード線51aに接続され、さらにITO膜53、導電性接着剤55、及び第1のリード51aが絶縁層としてのエポキシ樹脂57で被覆されている。
 次に、電解液59として、K[Fe(CN)]、K[Fe(CN)]、及びKClの混合溶液(K[Fe(CN)]:濃度30mmol/L、K[Fe(CN)]:濃度30mmol/L、KCl:濃度200mM)を用意し、この電解液59をガラス容器58中に貯留した。次いで、電解液59中に前記第1の電極51、Pt網からなる第2及び第3の電極60、61を浸漬し、イオン伝導膜62(シグマアルドリッチ社製、商品名「ナフィオン」)をガラス容器58中に配し、試料番号1の試料を作製した。
 尚、第2の電極60、第3の電極61にはそれぞれ第2のリード60a、第3のリード線61aが接続されており、第2の電極60は第1の電極51又は第3の電極61と切替スイッチ63を介して導通可能となるようにした。また、第2の電極60の表面積は100mmとした。
(試料番号2)
 第1の電極の薄膜層について、第1層として膜厚180nmのPTCBI膜、第2層として膜厚70nmのPc膜を試料番号1と同様の成膜条件で作製した以外は、試料番号1と同様の方法・手順で試料番号2の試料を作製した。
(試料番号3)
 試料番号1と同様の成膜条件で、膜厚70nmのPc膜からなる薄膜層をITO膜上に形成し、薄膜層を単層構造とした以外は、試料番号1と同様の方法・手順で試料番号3の試料を作製した。
(試料番号4)
 試料番号1と同様の成膜条件で、膜厚180nmのPTCBI膜からなる薄膜層をITO膜上に形成し、薄膜層を単層構造とした以外は、試料番号1と同様の方法・手順で試料番号4の試料を作製した。
〔試料の評価〕
 ハロゲンランプ(ショットモリテックス社製、商品名「メガライト100」)を用意した。そして、図9に示すように、第1及び第2のリード線51a、60aを介して第1の電極51と第2の電極60を接続し、このハロゲンランプ64から強度100mW/cmの光源を第1の電極51に照射し、5分間充電した。
 その後、暗条件下で切替スイッチ63を切り替え、第2及び第3のリード線60a、61aを介して第2の電極60と第3の電極61とを接続し、5分間放電した。
 表1は、試料番号1~4の薄膜層54の構成及び膜厚、充放電時の電流密度を示している。尚、表1中、充電時の電流密度は充電開始後5分後の値を示し、放電時の電流密度は放電開始後5分後の値を示している。第1の電極51から第2の電極60への電流を正電流(+)とし、第2の電極60から第3の電極61への電流を負電流(-)とした。
Figure JPOXMLDOC01-appb-T000003
 試料番号3は、充電時の電流密度が+60μA/cm、放電時の電流密度が-35μA/cmであったのに対し、試料番号1は、充電時の電流密度が+350μA/cm、放電時の電流密度は-210μA/cmであり、二層構造の試料番号1は、単層構造の試料番号3に比べ、電流密度が飛躍的に増加することが分かった。これは薄膜層54が、p型有機半導体材料であるPc膜を第1層としn型有機半導体材料であるPTCBI膜を第2層とした二層構造であるので、単層構造に比べ光吸収量が増加し、更にはキャリア生成効率が大きくなってキャリアの密度が大きくなったためと思われる。
 また、試料番号4は、充電時の電流密度が-60μA/cm、放電時の電流密度が+35μA/cmであったのに対し、試料番号2は、充電時の電流密度が-150μA/cm、放電時の電流密度は+80μA/cmであり、上述と同様の理由から二層構造の試料番号2は、単層構造の試料番号4に比べ、電流密度が大きくなることが分かった。
 すなわち、薄膜層が積層構造であれば、積層順序に関わらず、単層構造よりも電流密度が大きくなることが分かった。
 また、試料番号1及び2から明らかなように、第1層をp型有機半導体材料であるPc膜、第2層をn型有機半導体材料であるPTCBI膜で形成した場合は、第1層をPTCBI膜、第2層をPc膜で形成した場合に比べ、より大きな電流密度が得られることが分かった。したがって、n型有機半導体層の主面が電解液と接するように薄膜層を形成するのがより好ましいことが分かった。
 試料番号1と同様の成膜条件で第1層をPc膜で作製し、第2層をPTCBI膜で作製し、かつPc膜及びPTCBI膜の膜厚を表2のようにした以外は、実施例1と同様の方法・手順で試料番号11~23の試料を作製した。
 次に、試料番号11~23の各試料について、実施例1と同様の方法・手順で充電時及び放電時の電流密度を測定した。
 表2は、試料番号11~23における第1層及び第2層の膜厚、充放電時の電流密度を示している。
Figure JPOXMLDOC01-appb-T000004
 試料番号11は、薄膜層がPc膜からなる単層構造であるため、充電時の電流密度は+65μA/cm、放電時の電流密度は-35μA/cmと小さかった。
 また、試料番号18は、薄膜層がPTCBI膜からなる単層構造であるため、充電時の電流密度は-50μA/cm、放電時の電流密度は+30μA/cmと小さかった。
 これに対し試料番号12~17、及び試料番号19~23は、Pc膜とPTCBI膜との二層構造であるため、充電時の電流密度は+70~+450μA/cm、放電時の電流密度は-40~-270μA/cmと大きな電流密度が得られることが分かった。
 特に、試料番号19~22から明らかなように、Pc膜の膜厚を10~300nmの範囲とすることにより、充電時の電流密度は+200~+400μA/cm、放電時の電流密度は-120~-240μA/cmと格段に大きな電流密度が得られることが分かった。
 また、試料番号12~16から明らかなように、PTCBI膜の膜厚を10~260nmの範囲とすることにより、充電時の電流密度は+190~+450μA/cm、放電時の電流密度は-125~-270μA/cmと格段に大きな電流密度が得られることが分かった。
 以上より薄膜層をp型有機半導体層とn型有機半導体層の二層構造とすることにより、単層構造の場合に比べ、大きな電流密度を得ることができ、さらにp型有機半導体層の膜厚を10~300nm、n型有機半導体層の膜厚を10~260nmとすることにより、格段に大きな電流密度が得られることが分かった。
 p型有機半導体材料としてPcの他、環状構造の中央の金属原子MeがFeで形成されたFePc(鉄フタロシアニン)(東京化成工業社製)、環状構造の中央の非金属化合物ZがTiOで形成されたTiOPc(チタニルフタロシアニン)(東京化成工業社製)を用意した。
 また、n型有機半導体材料としてPTCBIの他、C60フラーレン(東京化成工業社製)、PTCDI-C8(東京化成工業社製)を用意した。
 そして、これらp型有機半導体材料及びn型有機半導体材料を使用し、第1層及び第2層の膜厚が表3に示す値となるように、試料番号1と同様の成膜条件で第1層及び第2層を作製し、それ以外は、実施例1と同様の方法・手順で試料番号31~35の試料を作製した。
 次に、試料番号31~35の各試料について、実施例1と同様の方法・手順で充電時及び放電時の電流密度を測定した。
 表3は、試料番号31~35における第1層及び第2層に使用した材料及び膜厚、充放電時の電流密度を示している。
Figure JPOXMLDOC01-appb-T000005
 表3から明らかなように試料番号31~35は、p型有機半導体材料からなる第1層とn型有機半導体材料からなる第2層の二層構造であるので、充電時の電流密度は+180~+450μA/cm、放電時の電流密度は-100~-270μA/cmと大きな電流密度が得られることが分かった。
 すなわち、p型有機半導体材料であればPc以外でも同様の大きな電流密度を得ることができ、n型有機半導体材料であればPTCBI以外でも同様の大きな電流密度を得ることができることが分かった。
 光エネルギーから電気化学エネルギーに高効率で変換でき、低コストで生産性が良好で、柔軟性が要求される用途にも適したエネルギー密度の大きな光二次電池を実現できる。
2 電解液(媒体)
3 隔壁
6 第1の電極
7 第2の電極
8 第3の電極
12 薄膜層
12a p型有機半導体層
12b n型有機半導体層

Claims (9)

  1.  電子受容体と正孔受容体とを含有した媒体中に隔壁又は塩橋のうちのいずれか少なくとも一方が配されると共に、複数の電極が、前記媒体に接するように配され、
     前記複数の電極のうちの少なくとも一つの電極は、p型有機半導体層とn型有機半導体層とを有する積層構造の薄膜層で形成され、
     入射光が、前記薄膜層で吸収されることを特徴とする光二次電池。
  2.  前記p型有機半導体層は、膜厚が10~300nmであることを特徴とする請求項1記載の光二次電池。
  3.  前記n型有機半導体層は、膜厚が10~260nmであることを特徴とする請求項1又は請求項2記載の光二次電池。
  4.  前記薄膜層は、前記n型有機半導体層の主面が、前記媒体と接していることを特徴とする請求項1乃至請求項3のいずれかに記載の光二次電池。
  5.  前記p型有機半導体材料は、大環状化合物、多環芳香族炭化水素、及びチオフェン骨格を含有した高分子化合物のうちのいずれか1種以上を含むことを特徴とする請求項1乃至請求項4のいずれかに記載の光二次電池。
  6.  前記n型有機半導体材料は、ペリレン誘導体、及び球状分子構造物(誘導体を含む。)のうちのいずれか1種以上を含むことを特徴とする請求項1乃至請求項5のいずれかに記載の光二次電池。
  7.  前記隔壁又は前記塩橋は、イオン伝導性を有する高分子材料で形成されていることを特徴とする請求項1乃至請求項6のいずれかに記載の光二次電池。
  8.  前記複数の電極は、前記薄膜層を有する第1の電極と、該第1の電極に電気的に接続可能とされた第2の電極と、該第2の電極と電気的に接続可能とされた第3の電極とを有し、
     前記隔壁又は前記塩橋は、前記第1及び第3の電極と前記第2の電極との間に介在されていることを特徴とする請求項1乃至請求項7のいずれかに記載の光二次電池。
  9.  前記第2の電極は、充電時及び放電時に対応して前記第1の電極及び第3の電極と電気的に切替可能に構成されていることを特徴とする請求項8記載の光二次電池。
PCT/JP2016/050249 2015-02-18 2016-01-06 光二次電池 WO2016132749A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-029418 2015-02-18
JP2015029418 2015-02-18

Publications (1)

Publication Number Publication Date
WO2016132749A1 true WO2016132749A1 (ja) 2016-08-25

Family

ID=56692463

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050249 WO2016132749A1 (ja) 2015-02-18 2016-01-06 光二次電池

Country Status (1)

Country Link
WO (1) WO2016132749A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04171681A (ja) * 1990-11-06 1992-06-18 Nippon Telegr & Teleph Corp <Ntt> 光化学2次電池及び光化学2次電池の製造方法
JP2004288985A (ja) * 2003-03-24 2004-10-14 Japan Science & Technology Agency 太陽電池
JP2006172758A (ja) * 2004-12-13 2006-06-29 Univ Of Tokyo エネルギー貯蔵型色素増感太陽電池
JP2009081046A (ja) * 2007-09-26 2009-04-16 Nissan Chem Ind Ltd 三極二層型光二次電池
JP2010036109A (ja) * 2008-08-05 2010-02-18 Hirosaki Univ 有機光触媒フィルムの製造方法
JP2010050115A (ja) * 2008-08-19 2010-03-04 Hirosaki Univ 有機光応答素子用反応セル
JP2015088303A (ja) * 2013-10-30 2015-05-07 本田技研工業株式会社 光蓄電池及び光蓄電池システム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04171681A (ja) * 1990-11-06 1992-06-18 Nippon Telegr & Teleph Corp <Ntt> 光化学2次電池及び光化学2次電池の製造方法
JP2004288985A (ja) * 2003-03-24 2004-10-14 Japan Science & Technology Agency 太陽電池
JP2006172758A (ja) * 2004-12-13 2006-06-29 Univ Of Tokyo エネルギー貯蔵型色素増感太陽電池
JP2009081046A (ja) * 2007-09-26 2009-04-16 Nissan Chem Ind Ltd 三極二層型光二次電池
JP2010036109A (ja) * 2008-08-05 2010-02-18 Hirosaki Univ 有機光触媒フィルムの製造方法
JP2010050115A (ja) * 2008-08-19 2010-03-04 Hirosaki Univ 有機光応答素子用反応セル
JP2015088303A (ja) * 2013-10-30 2015-05-07 本田技研工業株式会社 光蓄電池及び光蓄電池システム

Similar Documents

Publication Publication Date Title
Chen et al. Pb‐based halide perovskites: recent advances in photo (electro) catalytic applications and looking beyond
Yan et al. Choline chloride-modified SnO2 achieving high output voltage in MAPbI3 perovskite solar cells
Son et al. Quinone and its derivatives for energy harvesting and storage materials
Zhang et al. Carbon Encapsulation of Organic–Inorganic Hybrid Perovskite toward Efficient and Stable Photo‐Electrochemical Carbon Dioxide Reduction
Chen et al. Cu (II) complexes as p-type dopants in efficient perovskite solar cells
Liu et al. Photoelectrochemical water splitting of CuInS2 photocathode collaborative modified with separated catalysts based on efficient photogenerated electron–hole separation
JP6880748B2 (ja) 光電変換素子及び太陽電池
Prajapat et al. The evolution of organic materials for efficient dye-sensitized solar cells
AU2019257470A1 (en) A Photovoltaic Device
Liang et al. A low-cost and high-efficiency integrated device toward solar-driven water splitting
JP6447754B2 (ja) 光電変換素子
US7943848B2 (en) Photoelectric conversion element, method of manufacturing the same and solar cell
KR20090061300A (ko) 복합형 리튬 2차 전지 및 이를 채용한 전자 장치
KR20070056581A (ko) 태양전지용 전극, 그의 제조방법 및 그를 포함하는태양전지
US20140212705A1 (en) Solid dye sensitization type solar cell and solid dye sensitization type solar cell module
US8859894B2 (en) Binuclear ruthenium complex dye, ruthenium-osmium complex dye, photoelectric conversion element using any one of the complex dyes, and photochemical cell
Ghadari et al. Phthalocyanine-silver nanoparticle structures for plasmon-enhanced dye-sensitized solar cells
JP6579480B2 (ja) 光電変換素子及び二次電池
JP6569495B2 (ja) 半導体電極、光エネルギー変換装置および半導体電極の製造方法
Chen et al. Light-assisted rechargeable zinc-air battery: mechanism, progress, and prospects
JP4716636B2 (ja) 複合半導体
WO2016132749A1 (ja) 光二次電池
CN110112299A (zh) 太阳能电池
WO2016132750A1 (ja) 光二次電池、及び光二次電池用電極の製造方法
WO2015174131A1 (ja) 光二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16752138

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 16752138

Country of ref document: EP

Kind code of ref document: A1