WO2016132455A1 - 電動過給システム及び電動過給機の制御方法 - Google Patents

電動過給システム及び電動過給機の制御方法 Download PDF

Info

Publication number
WO2016132455A1
WO2016132455A1 PCT/JP2015/054320 JP2015054320W WO2016132455A1 WO 2016132455 A1 WO2016132455 A1 WO 2016132455A1 JP 2015054320 W JP2015054320 W JP 2015054320W WO 2016132455 A1 WO2016132455 A1 WO 2016132455A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric supercharger
electric
accelerator opening
control unit
engine
Prior art date
Application number
PCT/JP2015/054320
Other languages
English (en)
French (fr)
Inventor
邦彦 肥喜里
靖男 浅海
健一郎 今岡
Original Assignee
ボルボ トラック コーポレーション
邦彦 肥喜里
靖男 浅海
健一郎 今岡
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ボルボ トラック コーポレーション, 邦彦 肥喜里, 靖男 浅海, 健一郎 今岡 filed Critical ボルボ トラック コーポレーション
Priority to EP15882559.6A priority Critical patent/EP3260681B1/en
Priority to PCT/JP2015/054320 priority patent/WO2016132455A1/ja
Priority to US15/548,780 priority patent/US10655548B2/en
Publication of WO2016132455A1 publication Critical patent/WO2016132455A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • F02D23/02Controlling engines characterised by their being supercharged the engines being of fuel-injection type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B33/00Engines characterised by provision of pumps for charging or scavenging
    • F02B33/32Engines with pumps other than of reciprocating-piston type
    • F02B33/34Engines with pumps other than of reciprocating-piston type with rotary pumps
    • F02B33/40Engines with pumps other than of reciprocating-piston type with rotary pumps of non-positive-displacement type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/04Engines with exhaust drive and other drive of pumps, e.g. with exhaust-driven pump and mechanically-driven second pump
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B37/00Engines characterised by provision of pumps driven at least for part of the time by exhaust
    • F02B37/12Control of the pumps
    • F02B37/14Control of the alternation between or the operation of exhaust drive and other drive of a pump, e.g. dependent on speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B39/00Component parts, details, or accessories relating to, driven charging or scavenging pumps, not provided for in groups F02B33/00 - F02B37/00
    • F02B39/02Drives of pumps; Varying pump drive gear ratio
    • F02B39/08Non-mechanical drives, e.g. fluid drives having variable gear ratio
    • F02B39/10Non-mechanical drives, e.g. fluid drives having variable gear ratio electric
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D23/00Controlling engines characterised by their being supercharged
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/0002Controlling intake air
    • F02D41/0007Controlling intake air for control of turbo-charged or super-charged engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/045Detection of accelerating or decelerating state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/10Introducing corrections for particular operating conditions for acceleration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/101Engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/10Parameters related to the engine output, e.g. engine torque or engine speed
    • F02D2200/1012Engine speed gradient
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/602Pedal position
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/60Input parameters for engine control said parameters being related to the driver demands or status
    • F02D2200/606Driving style, e.g. sporty or economic driving
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • the present invention relates to an electric supercharging system and an electric supercharger control method.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2007-71137 (Patent Document 1), it is determined whether or not the engine is in the supercharging region based on the engine speed and the accelerator opening, and the determination result The electric supercharger was controlled accordingly.
  • an object of the present invention is to provide an electric supercharging system and an electric supercharger control method in which an operation delay of the electric supercharger during acceleration is suppressed.
  • the electric supercharging system has an electric supercharger disposed in the intake passage of the engine and a control unit.
  • the control unit changes the operation timing of the electric supercharger based on the engine speed and the amount of change in the accelerator opening.
  • control unit for controlling the electric supercharger disposed in the intake passage of the engine is based on the amount of change in the engine speed and the accelerator opening. Change the operation timing.
  • the operation delay of the electric supercharger during acceleration can be suppressed.
  • FIG. 1 shows an example of an electric supercharging system mounted on a vehicle such as a truck.
  • an air cleaner 130 In the intake pipe 120 connected to the intake manifold 110 of the diesel engine 100, an air cleaner 130, an electric supercharger 140, a compressor 152 of the turbocharger 150, an intercooler 160, and an intake throttle 170 are arranged in this order along the intake air circulation direction. It is arranged by.
  • the engine is not limited to the diesel engine 100 but may be a gasoline engine.
  • the intake pipe 120 is an example of the intake passage.
  • the air cleaner 130 filters and removes dust and the like in the intake air with an air element.
  • the electric supercharger 140 rotates the compressor 144 by an electric motor 142 such as a brushless motor, for example, and supercharges intake air from which dust and the like have been removed by the air cleaner 130.
  • the turbocharger 150 supercharges intake air by a compressor 152 that is rotationally driven by exhaust energy.
  • the intercooler 160 cools the intake air that has passed through the compressor 152 using, for example, traveling air and cooling water.
  • the intake throttle 170 for example, throttles intake air when the diesel engine 100 is stopped, thereby suppressing vibration generated when the diesel engine 100 is stopped.
  • the intake pipe 120 of the diesel engine 100 is provided with a bypass passage 180 that bypasses the compressor 144 of the electric supercharger 140.
  • the bypass passage 180 is provided with a remotely operable flow path switching valve 190 that opens and closes the intake flow path at least fully open and fully closed.
  • a remotely operable flow path switching valve 190 that opens and closes the intake flow path at least fully open and fully closed.
  • the flow path switching valve 190 for example, a butterfly valve whose valve body is rotated by a servo motor or the like can be used.
  • the opening degree of the flow path switching valve 190 when the opening degree of the flow path switching valve 190 is fully opened, the entire amount of intake air that has passed through the air cleaner 130 is not directly introduced into the compressor 144 of the electric supercharger 140 but is directly introduced into the compressor 152 of the turbocharger 150.
  • the opening degree of the flow rate switching valve 190 when the opening degree of the flow rate switching valve 190 is fully closed, the entire amount of intake air that has passed through the air cleaner 130 is introduced into the compressor 152 of the turbocharger 150 via the compressor 144 of the electric supercharger 140.
  • the flow path switching valve 190 when the flow path switching valve 190 is set to an intermediate opening between the fully open state and the fully closed state, the intake air that has passed through the air cleaner 130 flows to the compressor 142 of the electric supercharger 140 and the compressor 152 of the turbocharger 150.
  • the flow is divided according to the opening degree of the path switching valve 190.
  • a turbine 154 and an exhaust purification device (not shown) of the turbocharger 150 are disposed along the exhaust circulation direction.
  • the turbine 154 of the turbocharger 150 is rotationally driven by exhaust flowing through the exhaust pipe 210, and rotationally drives the compressor 152 connected through a shaft (not shown).
  • the exhaust purification device uses, for example, a urea aqueous solution as a reducing agent precursor, and selectively purifies nitrogen oxides in the exhaust.
  • a constant-mesh transmission 230 is attached to the output shaft of the diesel engine 100 via a clutch or torque converter (not shown) and a motor generator 220.
  • the output shaft of the transmission 230 is connected to a pair of left and right rear wheels 260 as drive wheels via a propeller shaft 240 and a differential carrier 250.
  • the motor generator 220 can also be attached in parallel with the transmission 230, for example.
  • a power storage device that supplies driving power to the electric motor 142 and the motor generator 220 of the electric supercharger 140 and stores the electric power generated by the electric motor 142 and the motor generator 220 at predetermined locations of the vehicle.
  • Energy Storage System 270 is installed.
  • the power storage device 270 is communicably connected to an electronic control device 290 having a built-in microcomputer via an in-vehicle network 280 such as CAN (Controller Area Network).
  • the electronic control unit 290 is an example of the control unit.
  • the electronic control unit 290 includes a processor A such as a CPU (Central Processing Unit), a non-volatile memory B such as a flash ROM (Read Only Memory), and a volatile property such as a RAM (Random Access Memory). It has a memory C, an input / output circuit D serving as an interface with an external device, and a bus E that connects these to each other so that they can communicate with each other.
  • a processor A such as a CPU (Central Processing Unit)
  • a non-volatile memory B such as a flash ROM (Read Only Memory)
  • RAM Random Access Memory
  • the electronic control device 290 has output signals from a rotation speed sensor 300 that detects the rotation speed Ne of the diesel engine 100 and an accelerator opening sensor 310 that detects an opening (accelerator opening) ACC of an accelerator pedal (not shown). Have been entered. Note that the rotational speed Ne and the accelerator opening degree ACC can also be read from, for example, an electronic control device (not shown) of the diesel engine 100 connected via the in-vehicle network 280.
  • the electronic control device 290 outputs control signals to the flow path switching valve 190 and the power storage device 270 based on the output signals of the rotation speed sensor 300 and the accelerator opening sensor 310, and operates and stops the electric supercharger 140.
  • the electronic control is not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, but not limited to, buty of the flow path switching valve 190 and the power storage device 270 based on the output signals of the rotation speed sensor 300 and the accelerator opening sensor 310, and operates and stops the electric supercharger 140.
  • the electronic control is not limited to control signals of the rotation speed sensor 300 and the accelerator opening sensor 310.
  • the non-volatile memory B of the electronic control unit 290 stores an operation opening degree map 292 shown in FIG. 3, a stop opening degree map 294 shown in FIG. 4, and a correction coefficient map 296 shown in FIG.
  • the operating opening map 292 is a map that defines the timing for operating the electric supercharger 140 during steady operation, and as shown in FIG. 3, the operating opening (accelerator opening) according to the engine speed. Is set.
  • the operation opening gradually increases (gradual increase) as the engine speed increases, and after reaching a certain engine rotation speed, the operation opening is 100% (fully open). . Therefore, it can be understood from the operation opening degree map 292 that the operation timing is early when the engine rotation speed is low and the operation timing is late when the engine rotation speed is high.
  • the operation opening degree map 292 is an engine characteristic map shown in FIG. 6, that is, a map that defines an operation area and a stop area of the electric supercharger 140 in the full load area of the diesel engine 100. It is calculated in consideration.
  • the stop opening map 294 is a map that defines the timing at which the electric supercharger 140 is stopped. As shown in FIG. 4, a stop opening (accelerator opening) corresponding to the engine speed is set. .
  • the stop opening degree map 294 is, for example, a map having a predetermined hysteresis ( ⁇ 5%) with respect to the operation opening degree map 292 in order to suppress hunting and the like. Therefore, the stop opening degree map 294 has the same characteristics as the operating opening degree map.
  • the correction coefficient map 296 is a map that defines a correction coefficient (coefficient) for correcting the operation timing during steady operation during transient operation such as acceleration, and as shown in FIG.
  • the correction coefficient corresponding to is set.
  • the correction coefficient takes a value greater than 0.0 and less than or equal to 1.0 in order to advance the operation timing as necessary. It gradually decreases (decreases) as the degree of change increases.
  • the correction coefficient map 296 obtains an optimal correction coefficient by, for example, experiments for each of a plurality of acceleration states corresponding to the change rate of the accelerator opening, and plots this on the map (broken line) To see).
  • the electronic control unit 290 refers to the operation opening map 292 and obtains the operation opening START_ACC at the time of steady operation according to the rotational speed Ne.
  • the electronic control unit 290 monitors the accelerator opening ACC and obtains, for example, an accelerator opening change amount TRN_ACC per unit time.
  • the electronic control unit 290 refers to the correction coefficient map 296 and obtains a correction coefficient K_TRN_ACC corresponding to the accelerator opening change amount TRN_ACC.
  • the electronic control unit 290 obtains the operation timing START_ACC_eSC of the electric supercharger 140 in consideration of the transient state by multiplying the operation opening START_ACC during the steady operation by the correction coefficient K_TRN_ACC.
  • the electronic control unit 290 operates the electric supercharger 140 when the accelerator opening ACC becomes greater than the operation timing START_ACC_eSC.
  • the electronic control unit 290 outputs a control signal to the flow path switching valve 190 and introduces the entire amount of intake air that has passed through the air cleaner 130 into the electric supercharger 140.
  • the electronic control unit 290 After the operation of the electric supercharger 140, the electronic control unit 290 refers to the stop opening map 294 and obtains a stop opening STOP_ACC corresponding to the rotational speed Ne. The electronic control unit 290 stops the electric supercharger 140 when the accelerator opening ACC becomes larger than the operation opening START_ACC and then the accelerator opening ACC becomes less than the stop opening STOP_ACC. In short, after the accelerator opening ACC exceeds the operating opening START_ACC corresponding to the rotational speed Ne, the electronic control unit 290 performs the electric supercharging when the accelerator opening ACC becomes less than the stop opening STOP_ACC corresponding to the rotational speed Ne. The machine 140 is stopped. Here, when the electric supercharger 140 is stopped, the electronic control unit 290 outputs a control signal to the flow path switching valve 190 and directly introduces the entire amount of intake air that has passed through the air cleaner 130 into the turbocharger 150.
  • the electronic control device 290 appropriately controls the power storage device 270 by the motor generator 220 when the engine torque according to the rotational speed Ne and the accelerator opening ACC cannot be exhibited even when the electric supercharger 140 is operated. Torque can also be assisted. Further, for example, when the engine torque has a margin, the electronic control device 290 appropriately controls the flow path switching valve 190 and the power storage device 270 so that the electric power generated by the electric motor 142 and the motor generator 220 is supplied to the power storage device 270. It can be charged. At this time, the electronic control unit 290 can control the power generation amount of the electric motor 142 by setting the flow path switching valve 190 to an intermediate opening.
  • FIGS. 9 and 10 show a control program for the electric supercharger 140 that is repeatedly executed by the processor A of the electronic control device 290 when the electronic control device 290 is activated.
  • the control program of the electric supercharger 140 is stored in advance in the nonvolatile memory B of the electronic control unit 290, for example.
  • step 1 the processor A of the electronic control unit 290 reads the rotational speed Ne from the rotational speed sensor 300.
  • step 2 the processor A of the electronic control unit 290 refers to the operation opening map 292 (FIG. 3) stored in the nonvolatile memory B and obtains the operation opening START_ACC corresponding to the rotational speed Ne.
  • step 3 the processor A of the electronic control unit 290 reads the accelerator opening ACC from the accelerator opening sensor 310.
  • step 4 the processor A of the electronic control unit 290 obtains the accelerator opening change amount TRN_ACC per unit time from the change state of the accelerator opening ACC, for example.
  • step 5 the processor A of the electronic control unit 290 refers to the correction coefficient map 296 (FIG. 5) stored in the nonvolatile memory B and obtains a correction coefficient K_TRN_ACC corresponding to the accelerator opening change amount TRN_ACC.
  • the processor A of the electronic control unit 290 corrects the operation opening START_ACC corresponding to the rotational speed Ne with the correction coefficient K_TRN_ACC corresponding to the accelerator opening change amount TRN_ACC.
  • step 7 the processor A of the electronic control unit 290 determines whether or not the accelerator opening ACC is larger than the operation opening START_ACC_eSC. If the processor A of the electronic control unit 290 determines that the accelerator opening ACC is larger than the operation opening START_ACC_eSC (Yes), the process proceeds to step 8. On the other hand, if the processor A of the electronic control unit 290 determines that the accelerator opening ACC is equal to or less than the operation opening START_ACC_eSC (No), the process returns to step 1.
  • the processor A of the electronic control unit 290 operates the electric supercharger 140. Specifically, the processor A of the electronic control unit 290 outputs an operation signal to the flow path switching valve 190 and introduces the entire amount of intake air that has passed through the air cleaner 130 into the electric supercharger 140. In addition, the processor A of the electronic control device 290 outputs an operation signal to the power storage device 270 to operate the electric motor 142 of the electric supercharger 140. When the electric motor 142 is operated, the compressor 144 is driven to rotate, and supercharging of the intake air is started.
  • step 9 the processor A of the electronic control unit 290 reads the rotational speed Ne from the rotational speed sensor 300.
  • step 10 the processor A of the electronic control unit 290 reads the accelerator opening degree ACC from the accelerator opening degree sensor 310.
  • step 11 the processor A of the electronic control unit 290 refers to the operation opening map 292 (FIG. 3) stored in the nonvolatile memory B and obtains the operation opening START_ACC corresponding to the rotational speed Ne.
  • the operation opening START_ACC is an example of a first predetermined value that defines the operation timing according to the rotational speed of the engine.
  • step 12 the processor A of the electronic control unit 290 determines whether or not the accelerator opening ACC is larger than the operation opening START_ACC. If the processor A of the electronic control unit 290 determines that the accelerator opening ACC is larger than the operation opening START_ACC (Yes), the process proceeds to step 13. On the other hand, if the processor A of the electronic control unit 290 determines that the accelerator opening ACC is equal to or smaller than the operation opening START_ACC (No), the process returns to step 9.
  • step 13 the processor A of the electronic control unit 290 reads the rotational speed Ne from the rotational speed sensor 300.
  • step 14 the processor A of the electronic control unit 290 reads the accelerator opening ACC from the accelerator opening sensor 310.
  • step 15 the processor A of the electronic control unit 290 refers to the stop opening map 294 (FIG. 4) stored in the nonvolatile memory B, and stops the electric supercharger 140 according to the rotational speed Ne.
  • the opening STOP_ACC is an example of a second predetermined value that defines the stop timing according to the rotational speed of the engine.
  • step 16 the processor A of the electronic control unit 290 determines whether or not the accelerator opening ACC is less than the stop opening STOP_ACC. If the processor A of the electronic control unit 290 determines that the accelerator opening ACC is less than the stop opening STOP_ACC (Yes), the process proceeds to step 17. On the other hand, if the processor A of the electronic control unit 290 determines that the accelerator opening ACC is equal to or larger than the stop opening STOP_ACC (No), the process returns to step 13.
  • step 17 the processor A of the electronic control unit 290 stops the electric supercharger 140. Specifically, the processor A of the electronic control unit 290 outputs an operation signal to the flow path switching valve 190 and introduces the entire amount of intake air that has passed through the air cleaner 130 into the turbocharger 150. In addition, the processor A of the electronic control device 290 outputs an operation signal to the power storage device 270 and stops the electric motor 142 of the electric supercharger 140. At this time, the processor A of the electronic control device 290 can store the power generated until the electric motor 142 stops in the power storage device 270 by appropriately controlling the power storage device 270.
  • the electric supercharger 140 when the electric supercharger 140 is not operating, the entire amount of intake air that has passed through the air cleaner 130 is introduced into the compressor 152 of the turbocharger 150 and is supercharged using the exhaust energy.
  • the accelerator pedal when the accelerator pedal is depressed to accelerate the vehicle, the required torque increases as the accelerator opening degree ACC increases, and the turbocharger 150 alone cannot cope with it, and the electric supercharger 140 operates.
  • the electric supercharger 140 is operated, the supercharged intake air is introduced into the compressor 152 of the turbocharger 150, so that the response speed of the turbocharger 150 is improved and so-called turbo lag can be reduced.
  • the operation timing of the electric supercharger 140 is changed by correcting the operation opening START_ACC during steady operation according to the engine rotational speed Ne with a correction coefficient K_TRN_ACC corresponding to the accelerator opening change amount TRA_ACC. . Therefore, by appropriately setting the correction coefficient K_TRN_ACC, the operation timing of the electric supercharger 140 can be advanced, and in particular, the operation delay of the electric supercharger 140 during acceleration can be suppressed. And if the operation
  • the electric supercharger 140 when the accelerator opening ACC exceeds the operation opening START_ACC, it is determined whether or not a condition for stopping the electric supercharger 140 is satisfied. The start / stop condition is satisfied. Then, after the stop determination condition is satisfied, when the accelerator opening ACC becomes less than the stop opening STOP_ACC corresponding to the engine speed Ne, the electric supercharger 140 is stopped.
  • the electric power generated by the electric motor 142 and the motor generator 220 of the electric supercharger 140 can be stored in the power storage device 270 by appropriately controlling the flow path switching valve 190 and the power storage device 270. The fuel consumption of the diesel engine 100 can be improved.
  • the stop determination condition for the electric supercharger 140 is satisfied, so that the operation opening START_ACC_eSC and the stop opening STOP_ACC Even if the difference is small, hunting can be suppressed. Further, the condition for stopping the electric supercharger 140 is that the stop opening STOP_ACC in the steady operation can be used. Therefore, the electric supercharger 140 is stopped earlier when decelerating, and the power consumption of the electric supercharger 140 is suppressed. be able to.
  • motor generator 220 or the turbocharger 150 is not necessarily required as the electric supercharging system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supercharger (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

 電動過給システムは、エンジンの吸気通路に配設された電動過給機と、マイクロコンピュータを内蔵したコントロールユニットと、を有する。そして、コントロールユニットは、エンジンの回転速度及びアクセル開度の変化量に基づいて、電動過給機の作動タイミングを変更する。このとき、コントロールユニットは、エンジンの回転速度に応じた電動過給機の作動タイミングを、アクセル開度の変化量に応じた係数で補正して、電動過給機の作動タイミングを変更する。

Description

電動過給システム及び電動過給機の制御方法
 本発明は、電動過給システム及び電動過給機の制御方法に関する。
 電動過給システムでは、特開2007-71137号公報(特許文献1)に記載されるように、エンジン回転速度及びアクセル開度に基づいて過給領域にあるか否かを判定し、その判定結果に応じて電動過給機を制御していた。
特開2007-71137号公報
 しかしながら、エンジン回転速度及びアクセル開度に基づいて過給領域にあるか否かを判定した場合、アクセル開度が急増する加速状態が考慮されないため、電動過給機の作動に遅れが生じるおそれがあった。電動過給機の作動に遅れが生じると、アクセル開度の変化に連動してトルクが増加せず、例えば、ドライバビリティが低下してしまう。
 そこで、本発明は、加速時における電動過給機の作動遅れを抑制した、電動過給システム及び電動過給機の制御方法を提供することを目的とする。
 このため、電動過給システムは、エンジンの吸気通路に配設された電動過給機と、コントロールユニットと、を有する。そして、コントロールユニットは、エンジンの回転速度及びアクセル開度の変化量に基づいて、電動過給機の作動タイミングを変更する。
 また、電動過給機の制御方法では、エンジンの吸気通路に配設された電動過給機を制御するコントロールユニットが、エンジンの回転速度及びアクセル開度の変化量に基づいて、電動過給機の作動タイミングを変更する。
 本発明によれば、加速時における電動過給機の作動遅れを抑制することができる。
電動過給システムの一例を示す概要図である。 電子制御装置の一例を示す機能ブロック図である。 作動開度マップの一例を示す説明図である。 停止開度マップの一例を示す説明図である。 補正係数マップの一例を示す説明図である。 エンジン特性マップの一例を示す説明図である。 複数の加速状態において最適な補正係数を求めた状態の説明図である。 電動過給機を制御する機能の一例を示す機能ブロック図である。 電動過給機の制御プログラムの一例を示すフローチャートである。 電動過給機の制御プログラムの一例を示すフローチャートである。 電動過給機を停止させる過程の説明図である。
 以下、添付された図面を参照し、本発明を実施するための実施形態について詳述する。
 図1は、トラックなどの車両に搭載された、電動過給システムの一例を示す。
 ディーゼルエンジン100の吸気マニフォールド110に接続された吸気管120には、吸気流通方向に沿って、エアクリーナ130、電動過給機140、ターボチャージャ150のコンプレッサ152、インタークーラ160及び吸気スロットル170がこの順番で配設されている。なお、エンジンとしては、ディーゼルエンジン100に限らず、ガソリンエンジンとすることもできる。ここで、吸気管120が、吸気通路の一例として挙げられる。
 エアクリーナ130は、エアエレメントにより吸気中の埃などを濾過して除去する。電動過給機140は、例えば、ブラシレスモータなどの電動モータ142でコンプレッサ144を回転駆動し、エアクリーナ130によって埃などが除去された吸気を過給する。ターボチャージャ150は、排気エネルギーによって回転駆動するコンプレッサ152で吸気を過給する。インタークーラ160は、コンプレッサ152を通過した吸気を、例えば、走行風、冷却水を用いて冷却する。吸気スロットル170は、例えば、ディーゼルエンジン100の停止時に吸気を絞ることで、ディーゼルエンジン100の停止時に発生する振動を抑制する。
 ディーゼルエンジン100の吸気管120には、電動過給機140のコンプレッサ144をバイパスするバイパス通路180が併設されている。バイパス通路180には、吸気流路を少なくとも全開と全閉に開閉する、遠隔操作可能な流路切替弁190が配設されている。ここで、流路切替弁190としては、例えば、サーボモータなどによって弁体が回転する、バタフライ弁などを使用することができる。
 従って、流路切替弁190の開度を全開にすると、エアクリーナ130を通過した吸気の全量は、電動過給機140のコンプレッサ144へと導入されずに、ターボチャージャ150のコンプレッサ152に直接導入される。一方、流量切替弁190の開度を全閉にすると、エアクリーナ130を通過した吸気の全量は、電動過給機140のコンプレッサ144を経由して、ターボチャージャ150のコンプレッサ152に導入される。ここで、流路切替弁190を全開と全閉との間の中間開度にすると、エアクリーナ130を通過した吸気は、電動過給機140のコンプレッサ142及びターボチャージャ150のコンプレッサ152へと、流路切替弁190の開度に応じて分流される。
 ディーゼルエンジン100の排気マニフォールド200に接続された排気管210には、排気流通方向に沿って、ターボチャージャ150のタービン154及び排気浄化装置(図示せず)が配設されている。ターボチャージャ150のタービン154は、排気管210を流れる排気によって回転駆動し、図示しないシャフトを介して連結されたコンプレッサ152を回転駆動する。排気浄化装置は、例えば、還元剤前駆体としての尿素水溶液を使用し、排気中の窒素酸化物を選択的に浄化する。
 ディーゼルエンジン100の出力軸には、クラッチ若しくはトルクコンバータ(図示せず)並びにモータジェネレータ220を介して、例えば、常時噛合式の変速機230が取り付けられている。変速機230の出力軸は、プロペラシャフト240及びディファレンシャルキャリア250を介して、駆動輪としての左右一対の後輪260に連結されている。なお、モータジェネレータ220は、例えば、変速機230と並列に取り付けることもできる。
 また、車両の所定箇所には、電動過給機140の電動モータ142及びモータジェネレータ220に駆動電力を供給すると共に、電動モータ142及びモータジェネレータ220で発電された電力を蓄電する、蓄電装置(ESS;Energy Storage System)270が搭載されている。蓄電装置270は、例えば、CAN(Controller Area Network)などの車載ネットワーク280を介して、マイクロコンピュータを内蔵した電子制御装置290と通信可能に接続されている。ここで、電子制御装置290が、コントロールユニットの一例として挙げられる。
 電子制御装置290は、図2に示すように、CPU(Central Processing Unit)などのプロセッサAと、フラッシュROM(Read Only Memory)などの不揮発性メモリBと、RAM(Random Access Memory)などの揮発性メモリCと、外部機器とのインターフェースとなる入出力回路Dと、これらを相互に通信可能に接続するバスEと、を有する。
 電子制御装置290には、ディーゼルエンジン100の回転速度Neを検出する回転速度センサ300、及び、図示しないアクセルペダルの開度(アクセル開度)ACCを検出するアクセル開度センサ310の各出力信号が入力されている。なお、回転速度Ne及びアクセル開度ACCは、車載ネットワーク280を介して接続された、例えば、ディーゼルエンジン100の電子制御装置(図示せず)から読み込むこともできる。
 電子制御装置290は、回転速度センサ300及びアクセル開度センサ310の各出力信号に基づいて、流路切替弁190及び蓄電装置270に制御信号を夫々出力し、電動過給機140の作動及び停止を電子制御する。
 電子制御装置290の不揮発性メモリBには、図3に示す作動開度マップ292、図4に示す停止開度マップ294、及び、図5に示す補正係数マップ296が夫々格納されている。
 作動開度マップ292は、定常運転時において、電動過給器140を作動させるタイミングを規定するマップであって、図3に示すように、エンジン回転速度に応じた作動開度(アクセル開度)が設定されている。図示の作動開度マップ292では、エンジン回転速度が増加するにつれて作動開度が徐々に増加(漸増)し、あるエンジン回転速度に達した後は作動開度が100%(全開)となっている。従って、この作動開度マップ292から、エンジン回転速度が低いときには作動タイミングが早く、エンジン回転速度が高いときには作動タイミングが遅いことが把握できる。なお、作動開度マップ292は、図6に示すエンジン特性マップ、即ち、ディーゼルエンジン100の全負荷領域において、電動過給機140の作動領域と停止領域とを画定したマップから、アクセル開度を考慮して求められる。
 停止開度マップ294は、電動過給機140を停止させるタイミングを規定するマップであって、図4に示すように、エンジン回転速度に応じた停止開度(アクセル開度)が設定されている。停止開度マップ294は、ハンチングなどを抑制するために、例えば、作動開度マップ292に対して所定のヒステリシス(-5%)を持たせたマップである。従って、停止開度マップ294は、作動開度マップと同様な特性を有している。
 補正係数マップ296は、加速時などの過渡運転時において、定常運転時の作動タイミングを補正する補正係数(係数)を規定するマップであって、図5に示すように、アクセル開度の変化量に応じた補正係数が設定されている。補正係数は、過渡運転時における電動過給機140の作動遅れを抑制するために、必要に応じて作動タイミングを早めるべく、0.0より大きく、1.0以下である値をとり、アクセル開度の変化量が大きくなるにつれて徐々に減少(漸減)する。なお、補正係数マップ296は、図7に示すように、アクセル開度の変化速度に応じた複数の加速状態ごとに、例えば、実験などによって最適な補正係数を求め、これをマップにプロット(破線参照)することで得られる。
 電子制御装置290は、図8に示すように、作動開度マップ292を参照し、回転速度Neに応じた定常運転時の作動開度START_ACCを求める。電子制御装置290は、アクセル開度ACCを監視し、例えば、単位時間当たりのアクセル開度変化量TRN_ACCを求める。また、電子制御装置290は、補正係数マップ296を参照し、アクセル開度変化量TRN_ACCに応じた補正係数K_TRN_ACCを求める。さらに、電子制御装置290は、定常運転時の作動開度START_ACCと補正係数K_TRN_ACCとを乗算することで、過渡状態を考慮した、電動過給機140の作動タイミングSTART_ACC_eSCを求める。そして、電子制御装置290は、アクセル開度ACCが作動タイミングSTART_ACC_eSCより大きくなると、電動過給機140を作動させる。ここで、電動過給機140を作動させるときには、電子制御装置290は、流路切替弁190に制御信号を出力し、エアクリーナ130を通過した吸気の全量を電動過給機140に導入する。
 電動過給機140の作動後には、電子制御装置290は、停止開度マップ294を参照し、回転速度Neに応じた停止開度STOP_ACCを求める。そして、電子制御装置290は、アクセル開度ACCが作動開度START_ACCより大きくなり、その後、アクセル開度ACCが停止開度STOP_ACC未満になると、電動過給機140を停止させる。要するに、電子制御装置290は、アクセル開度ACCが回転速度Neに応じた作動開度START_ACCを越えた後、アクセル開度ACCが回転速度Neに応じた停止開度STOP_ACC未満になると、電動過給機140を停止させる。ここで、電動過給機140を停止させるときには、電子制御装置290は、流路切替弁190に制御信号を出力し、エアクリーナ130を通過した吸気の全量をターボチャージャ150に直接導入する。
 なお、電子制御装置290は、電動過給機140を作動させても、回転速度Ne及びアクセル開度ACCに応じたエンジントルクを発揮できないときには、蓄電装置270を適宜制御して、モータジェネレータ220によってトルクをアシストすることもできる。また、電子制御装置290は、例えば、エンジントルクに余裕があるときには、流路切替弁190及び蓄電装置270を適宜制御して、電動モータ142及びモータジェネレータ220で発電された電力を蓄電装置270に蓄電することができる。このとき、電子制御装置290は、流路切替弁190を中間開度にすることで、電動モータ142の発電量を制御することができる。
 図9及び図10は、電子制御装置290が起動されたことを契機として、電子制御装置290のプロセッサAが繰り返し実行する、電動過給機140の制御プログラムを示す。ここで、電動過給機140の制御プログラムは、例えば、電子制御装置290の不揮発性メモリBに前もって格納されている。
 ステップ1(図では「S1」と略記する。以下同様。)では、電子制御装置290のプロセッサAが、回転速度センサ300から回転速度Neを読み込む。
 ステップ2では、電子制御装置290のプロセッサAが、不揮発性メモリBに格納された作動開度マップ292(図3)を参照し、回転速度Neに応じた作動開度START_ACCを求める。
 ステップ3では、電子制御装置290のプロセッサAが、アクセル開度センサ310からアクセル開度ACCを読み込む。
 ステップ4では、電子制御装置290のプロセッサAが、例えば、アクセル開度ACCの変化状態から、単位時間当たりのアクセル開度変化量TRN_ACCを求める。
 ステップ5では、電子制御装置290のプロセッサAが、不揮発性メモリBに格納された補正係数マップ296(図5)を参照し、アクセル開度変化量TRN_ACCに応じた補正係数K_TRN_ACCを求める。
 ステップ6では、電子制御装置290のプロセッサAが、作動開度START_ACCと補正係数K_TRN_ACCとを乗算することで、過渡状態を考慮した、電動過給機140の作動開度START_ACC_eSCを求める(START_ACC_eSC=START_ACC×K_TAN_ACC)。要するに、電子制御装置290のプロセッサAは、回転速度Neに応じた作動開度START_ACCを、アクセル開度変化量TRN_ACCに応じた補正係数K_TRN_ACCで補正する。
 ステップ7では、電子制御装置290のプロセッサAが、アクセル開度ACCが作動開度START_ACC_eSCより大きいか否かを判定する。そして、電子制御装置290のプロセッサAは、アクセル開度ACCが作動開度START_ACC_eSCより大きいと判定すれば(Yes)、処理をステップ8へと進める。一方、電子制御装置290のプロセッサAは、アクセル開度ACCが作動開度START_ACC_eSC以下であると判定すれば(No)、処理をステップ1へと戻す。
 ステップ8では、電子制御装置290のプロセッサAが、電動過給機140を作動させる。具体的には、電子制御装置290のプロセッサAは、流路切替弁190に作動信号を出力し、エアクリーナ130を通過した吸気の全量を電動過給機140に導入する。また、電子制御装置290のプロセッサAは、蓄電装置270に作動信号を出力し、電動過給機140の電動モータ142を作動させる。電動モータ142が作動すると、コンプレッサ144が回転駆動し、吸気の過給が開始される。
 ステップ9では、電子制御装置290のプロセッサAが、回転速度センサ300から回転速度Neを読み込む。
 ステップ10では、電子制御装置290のプロセッサAが、アクセル開度センサ310からアクセル開度ACCを読み込む。
 ステップ11では、電子制御装置290のプロセッサAが、不揮発性メモリBに格納された作動開度マップ292(図3)を参照し、回転速度Neに応じた作動開度START_ACCを求める。ここで、作動開度START_ACCが、エンジンの回転速度に応じた作動タイミングを規定する第1の所定値の一例として挙げられる。
 ステップ12では、電子制御装置290のプロセッサAが、アクセル開度ACCが作動開度START_ACCより大きいか否かを判定する。そして、電子制御装置290のプロセッサAは、アクセル開度ACCが作動開度START_ACCより大きいと判定すれば(Yes)、処理をステップ13へと進める。一方、電子制御装置290のプロセッサAは、アクセル開度ACCが作動開度START_ACC以下であると判定すれば(No)、処理をステップ9へと戻す。
 ステップ13では、電子制御装置290のプロセッサAが、回転速度センサ300から回転速度Neを読み込む。
 ステップ14では、電子制御装置290のプロセッサAが、アクセル開度センサ310からアクセル開度ACCを読み込む。
 ステップ15では、電子制御装置290のプロセッサAが、不揮発性メモリBに格納された停止開度マップ294(図4)を参照し、回転速度Neに応じた、電動過給機140を停止させる停止開度STOP_ACCを求める。ここで、停止開度STOP_ACCが、エンジンの回転速度に応じた停止タイミングを規定する第2の所定値の一例として挙げられる。
 ステップ16では、電子制御装置290のプロセッサAが、アクセル開度ACCが停止開度STOP_ACC未満であるか否かを判定する。そして、電子制御装置290のプロセッサAは、アクセル開度ACCが停止開度STOP_ACC未満であると判定すれば(Yes)、処理をステップ17へと進める。一方、電子制御装置290のプロセッサAは、アクセル開度ACCが停止開度STOP_ACC以上であると判定すれば(No)、処理をステップ13へと戻す。
 ステップ17では、電子制御装置290のプロセッサAが、電動過給機140を停止させる。具体的には、電子制御装置290のプロセッサAは、流路切替弁190に作動信号を出力し、エアクリーナ130を通過した吸気の全量をターボチャージャ150に導入する。また、電子制御装置290のプロセッサAは、蓄電装置270に作動信号を出力し、電動過給機140の電動モータ142を停止させる。このとき、電子制御装置290のプロセッサAは、蓄電装置270を適宜制御することで、電動モータ142が停止するまでに発電した電力を蓄電装置270に蓄電することができる。
 かかる電動過給システムによれば、電動過給機140が作動していないとき、エアクリーナ130を通過した吸気の全量は、ターボチャージャ150のコンプレッサ152に導入され、排気エネルギーを利用して過給される。そして、例えば、車両加速のためにアクセルペダルが踏み込まれると、アクセル開度ACCの増加に伴って要求トルクが増加し、ターボチャージャ150のみでは対応できなくなって、電動過給機140が作動する。電動過給機140が作動すると、ここで過給された吸気がターボチャージャ150のコンプレッサ152に導入されるので、ターボチャージャ150の応答速度が向上し、いわゆるターボラグを低減することができる。
 このとき、電動過給機140の作動タイミングは、エンジン回転速度Neに応じた定常運転時の作動開度START_ACCを、アクセル開度変化量TRA_ACCに応じた補正係数K_TRN_ACCで補正することで変更される。このため、補正係数K_TRN_ACCを適切に設定することで、電動過給機140の作動タイミングを早めることができ、特に、加速時における電動過給機140の作動遅れを抑制することができる。そして、電動過給機140の作動遅れが抑制されると、アクセル開度ACCの変化に連動してトルクが増加し、例えば、ドライバビリティを向上させることができる。
 一方、電動過給機140の作動後では、図11に示すように、アクセル開度ACCが作動開度START_ACCを越えると、電動過給機140を停止させる条件が成立したか否かの判定を開始する、停止判定条件が成立する。そして、停止判定条件が成立した後、アクセル開度ACCがエンジン回転速度Neに応じた停止開度STOP_ACC未満になると、電動過給機140が停止される。電動過給機140を停止させるとき、流路切替弁190及び蓄電装置270を適宜制御することで、電動過給機140の電動モータ142及びモータジェネレータ220で発電した電力を蓄電装置270に蓄電でき、ディーゼルエンジン100の燃費を向上させることができる。
 また、電動過給機140の作動後、アクセル開度ACCが作動開度START_ACCを越えたときに電動過給機140の停止判定条件が成立するので、作動開度START_ACC_eSCと停止開度STOP_ACCとの差が小さくとも、ハンチングを抑制することができる。また、電動過給機140を停止させる条件は、定常運転時における停止開度STOP_ACCを使用できるので、減速時に早めに電動過給機140が停止し、電動過給機140の消費電力を抑制することができる。
 なお、電動過給システムとしては、モータジェネレータ220又はターボチャージャ150は必ずしも必要でない。
  100 ディーゼルエンジン(エンジン)
  120 吸気管(吸気通路)
  140 電動過給機
  150 ターボチャージャ
  290 電子制御装置(コントロールユニット)
  296 補正係数マップ(マップ)
  300 回転速度センサ
  310 アクセル開度センサ

Claims (10)

  1.  エンジンの吸気通路に配設された電動過給機と、
     前記エンジンの回転速度及びアクセル開度の変化量に基づいて、前記電動過給機の作動タイミングを変更するコントロールユニットと、
     を有することを特徴とする電動過給システム。
  2.  前記コントロールユニットは、前記エンジンの回転速度に応じた前記電動過給機の作動タイミングを、前記アクセル開度の変化量に応じた係数で補正して、前記電動過給機の作動タイミングを変更する、
     ことを特徴とする請求項1に記載の電動過給システム。
  3.  前記コントロールユニットは、アクセル開度の変化量が大きくなるにつれて漸減する係数が設定されたマップを参照し、前記アクセル開度の変化量に応じた係数を求める、
     ことを特徴とする請求項2に記載の電動過給システム。
  4.  前記コントロールユニットは、前記電動過給機を作動させた場合、前記アクセル開度が前記エンジンの回転速度に応じた作動タイミングを規定する第1の所定値を越えた後、前記アクセル開度が前記エンジンの回転速度に応じた停止タイミングを規定する第2の所定値未満になると、前記電動過給機を停止させる、
     ことを特徴とする請求項1~請求項3のいずれか1つに記載の電動過給システム。
  5.  前記第1の所定値は、前記第2の所定値より大きい、
     ことを特徴とする請求項4に記載の電動過給システム。
  6.  前記電動過給機の下流に位置する吸気通路には、ターボチャージャが配設されている、
     ことを特徴とする請求項1~請求項5のいずれか1つに記載の電動過給システム。
  7.  エンジンの吸気通路に配設された電動過給機を制御するコントロールユニットが、前記エンジンの回転速度及びアクセル開度の変化量に基づいて、前記電動過給機の作動タイミングを変更する、
     ことを特徴とする電動過給機の制御方法。
  8.  前記コントロールユニットが、前記エンジンの回転速度に応じた前記電動過給機の作動タイミングを、前記アクセル開度の変化量に応じた係数で補正して、前記電動過給機の作動タイミングを変更する、
     ことを特徴とする請求項7に記載の電動過給機の制御方法。
  9.  前記コントロールユニットが、アクセル開度の変化量が大きくなるにつれて漸減する係数が設定されたマップを参照し、前記アクセル開度の変化量に応じた係数を求める、
     ことを特徴とする請求項8に記載の電動過給機の制御方法。
  10.  前記コントロールユニットが、前記電動過給機を作動させた場合、前記アクセル開度が前記エンジンの回転速度に応じた作動タイミングを規定する第1の所定値を越えた後、前記アクセル開度が前記エンジンの回転速度に応じた停止タイミングを規定する第2の所定値未満になると、前記電動過給機を停止させる、
     ことを特徴とする請求項7~請求項9のいずれか1つに記載の電動過給機の制御方法。
PCT/JP2015/054320 2015-02-17 2015-02-17 電動過給システム及び電動過給機の制御方法 WO2016132455A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP15882559.6A EP3260681B1 (en) 2015-02-17 2015-02-17 Electric supercharging system and method for controlling electric supercharger
PCT/JP2015/054320 WO2016132455A1 (ja) 2015-02-17 2015-02-17 電動過給システム及び電動過給機の制御方法
US15/548,780 US10655548B2 (en) 2015-02-17 2015-02-17 Electric supercharging system and method for controlling electric supercharger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/054320 WO2016132455A1 (ja) 2015-02-17 2015-02-17 電動過給システム及び電動過給機の制御方法

Publications (1)

Publication Number Publication Date
WO2016132455A1 true WO2016132455A1 (ja) 2016-08-25

Family

ID=56688828

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/054320 WO2016132455A1 (ja) 2015-02-17 2015-02-17 電動過給システム及び電動過給機の制御方法

Country Status (3)

Country Link
US (1) US10655548B2 (ja)
EP (1) EP3260681B1 (ja)
WO (1) WO2016132455A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109139236A (zh) * 2017-06-16 2019-01-04 云杉智慧新能源技术有限公司 一种电动增压系统及其控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11280510A (ja) * 1998-03-26 1999-10-12 Hitachi Ltd 内燃機関のターボチャージャ制御装置
JP2007132288A (ja) * 2005-11-11 2007-05-31 Toyota Motor Corp 内燃機関の制御装置
JP2013108475A (ja) * 2011-11-24 2013-06-06 Toyota Motor Corp 内燃機関の運転制御方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4556038A (en) 1983-03-04 1985-12-03 Aisin Seiki Kabushiki Kaisha Supercharged internal combustion engine having control means responsive to engine speed and accelerator pedal velocity
JPH0610416B2 (ja) * 1987-12-28 1994-02-09 いすゞ自動車株式会社 回転電機付ターボチャージャの制御装置
JPH0715263B2 (ja) * 1988-10-31 1995-02-22 いすゞ自動車株式会社 ターボチャージャの制御装置
DE10140120A1 (de) * 2001-08-16 2003-03-06 Bosch Gmbh Robert Verfahren und Vorrichtung zum Betreiben eines Verbrennungsmotors
US6938420B2 (en) * 2002-08-20 2005-09-06 Nissan Motor Co., Ltd. Supercharger for internal combustion engine
EP1462629B1 (en) * 2003-03-27 2006-06-14 Nissan Motor Co., Ltd. Supercharging device for internal combustion engine
JP4389739B2 (ja) * 2004-09-29 2009-12-24 三菱自動車工業株式会社 過給機付き内燃機関
US7478533B2 (en) * 2005-08-03 2009-01-20 Honda Motor Co., Ltd. Engine system with a supercharger
EP2050943B1 (en) * 2006-08-10 2011-11-23 Toyota Jidosha Kabushiki Kaisha Control device for internal combustion engine with supercharger
US7765806B2 (en) * 2006-08-21 2010-08-03 Gm Global Technology Operations, Inc. Atkinson cycle powertrain
US8051661B2 (en) * 2006-12-19 2011-11-08 Toyota Jidosha Kabushiki Kaisha Supercharging control system of an internal combustion engine
JP4877200B2 (ja) * 2007-11-06 2012-02-15 トヨタ自動車株式会社 内燃機関の制御装置
JP5243637B1 (ja) * 2012-03-29 2013-07-24 三菱電機株式会社 内燃機関システム
JP2016011641A (ja) * 2014-06-30 2016-01-21 トヨタ自動車株式会社 過給システム
JP2016048061A (ja) * 2014-08-28 2016-04-07 株式会社豊田自動織機 電動過給機
JP6128081B2 (ja) * 2014-09-02 2017-05-17 トヨタ自動車株式会社 内燃機関システム
JP6015724B2 (ja) * 2014-09-02 2016-10-26 トヨタ自動車株式会社 内燃機関システム
EP2995798A1 (en) * 2014-09-11 2016-03-16 Toyota Jidosha Kabushiki Kaisha Control apparatus for internal combustion engine
JP6228938B2 (ja) * 2015-01-05 2017-11-08 三菱重工業株式会社 内燃機関の起動装置及び方法
JP6245221B2 (ja) * 2015-06-01 2017-12-13 トヨタ自動車株式会社 内燃機関の制御装置
JP6287979B2 (ja) * 2015-07-01 2018-03-07 トヨタ自動車株式会社 内燃機関の制御装置
WO2017104033A1 (ja) * 2015-12-16 2017-06-22 ボルボ トラック コーポレーション ハイブリッドシステムの制御装置及び制御方法
JP6672785B2 (ja) * 2015-12-25 2020-03-25 三菱自動車工業株式会社 エンジンの制御装置
CN109154230B (zh) * 2016-07-15 2021-06-18 三菱重工发动机和增压器株式会社 增压系统及内燃机
JP6635011B2 (ja) * 2016-12-13 2020-01-22 株式会社豊田自動織機 内燃機関の制御システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11280510A (ja) * 1998-03-26 1999-10-12 Hitachi Ltd 内燃機関のターボチャージャ制御装置
JP2007132288A (ja) * 2005-11-11 2007-05-31 Toyota Motor Corp 内燃機関の制御装置
JP2013108475A (ja) * 2011-11-24 2013-06-06 Toyota Motor Corp 内燃機関の運転制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3260681A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109139236A (zh) * 2017-06-16 2019-01-04 云杉智慧新能源技术有限公司 一种电动增压系统及其控制方法

Also Published As

Publication number Publication date
US20180216544A1 (en) 2018-08-02
EP3260681A4 (en) 2018-08-01
EP3260681A1 (en) 2017-12-27
US10655548B2 (en) 2020-05-19
EP3260681B1 (en) 2020-07-15

Similar Documents

Publication Publication Date Title
JP4844342B2 (ja) 車両の制御装置
CN108430846B (zh) 混合动力系统的控制装置及控制方法
US9726092B2 (en) Methods and systems for boost control
US10731577B2 (en) Method and system for a boosted engine
JP2008232069A (ja) 車両駆動制御装置
JP2010048225A (ja) 内燃機関の過給システム
JP2007262970A (ja) ターボチャージャの制御装置
US10619581B2 (en) Control device of internal-combustion engine
JP6848840B2 (ja) ウェイストゲートバルブの制御装置
JP2007154809A (ja) 内燃機関の制御装置
WO2016132455A1 (ja) 電動過給システム及び電動過給機の制御方法
JP2008075574A (ja) 過給制御装置
JP6128425B2 (ja) 内燃機関の過給機制御装置
JP4099160B2 (ja) ハイブリッド車両のモータトルク制御方法
JP7026217B2 (ja) 制御装置および制御方法
JP5808152B2 (ja) 内燃機関の制御装置
JP2009149229A (ja) ハイブリッド車両の出力制御装置
JP5319319B2 (ja) ハイブリッドスーパーチャージャーシステム
JP6344327B2 (ja) 内燃機関用過給システム
JP5565378B2 (ja) 内燃機関の制御システム
JP2019148184A (ja) 車両の制御装置
JP6962244B2 (ja) 車両の制御装置
JP4582054B2 (ja) 車両用エンジンシステムの制御装置
JP3938140B2 (ja) 内燃機関の制御装置
JP5598416B2 (ja) 内燃機関の制御システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15882559

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015882559

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15548780

Country of ref document: US