WO2016129469A1 - 超電導線材の製造方法および超電導線材接合用部材 - Google Patents

超電導線材の製造方法および超電導線材接合用部材 Download PDF

Info

Publication number
WO2016129469A1
WO2016129469A1 PCT/JP2016/053182 JP2016053182W WO2016129469A1 WO 2016129469 A1 WO2016129469 A1 WO 2016129469A1 JP 2016053182 W JP2016053182 W JP 2016053182W WO 2016129469 A1 WO2016129469 A1 WO 2016129469A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting
oxide superconducting
film
bonding
joining
Prior art date
Application number
PCT/JP2016/053182
Other languages
English (en)
French (fr)
Inventor
康太郎 大木
永石 竜起
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to KR1020177022386A priority Critical patent/KR102096697B1/ko
Priority to EP16749113.3A priority patent/EP3258471B1/en
Priority to JP2016574752A priority patent/JP6675590B2/ja
Priority to CN201680010056.2A priority patent/CN107210099B/zh
Priority to US15/547,813 priority patent/US10706991B2/en
Publication of WO2016129469A1 publication Critical patent/WO2016129469A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/68Connections to or between superconductive connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B12/00Superconductive or hyperconductive conductors, cables, or transmission lines
    • H01B12/02Superconductive or hyperconductive conductors, cables, or transmission lines characterised by their form
    • H01B12/06Films or wires on bases or cores
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Definitions

  • the present invention relates to a method for producing a superconducting wire that is elongated by sequentially joining a plurality of superconducting wires, and a superconducting wire joining member used in the lengthening.
  • the oxide superconducting material forming the superconducting film of the superconducting wire has a characteristic that it has a stable phase up to the vicinity of the melting point, but is easily decomposed when the melting point is exceeded. For this reason, even if it is going to join a some superconducting wire material between superconducting film surfaces, the method like the heat diffusion joining generally used for joining of a metal cannot be applied.
  • the present inventors have developed a joining technique in which a superconducting layer made of an oxide superconducting material is formed on the joint surface, and the superconducting film surfaces of the superconducting wire are joined through this joint surface (see Patent Document 3). . Thereby, it can connect in the superconducting state which does not generate
  • this joining technique applies a coating pyrolysis method (MOD method: Metal Organic Deposition), and a solution containing a metal organic compound constituting an oxide superconducting material on a joining surface of a superconducting wire ( MOD solution) is applied and calcined heat treatment is performed to form a calcined film as a precursor of the oxide superconducting material, and the calcined film is bonded to each other to perform two calcined heat treatments.
  • a superconducting layer of an oxide superconducting material is formed as a joining layer between the superconducting films of the superconducting wire, and the superconducting film surfaces are joined to each other.
  • the superconducting layer to be the joining layer may not be formed properly, so the yield in the step of joining the superconducting wires is not good. There was a problem.
  • this invention makes it a subject to provide the manufacturing technology of the superconducting wire which can improve the yield in the process of joining a superconducting wire rather than before by forming the superconducting layer used as a joining layer stably. To do.
  • a method for producing a superconducting wire according to an aspect of the present invention includes: A superconducting wire manufacturing method for manufacturing an elongated superconducting wire by joining ends of superconducting wires having an oxide superconducting film as a joining surface, Providing a microcrystal of an oxide superconducting material on the oxide superconducting film on the joint surface; A bonding step in which the bonding surfaces provided with the microcrystals are stacked and bonded together; A heating and joining step of joining the joining surfaces together by forming the superconducting layer of the oxide superconducting material as a joining layer by heating the superposed joining surfaces to grow the microcrystals. It is a manufacturing method of a superconducting wire.
  • the superconducting wire joining member is The two superconducting wires are joined to each other by being heated so as to straddle the oxide superconducting films located at the ends of the two superconducting wires having the oxide superconducting films.
  • a superconducting wire joining member to be A superconducting wire joining member in which microcrystals of an oxide superconducting material are provided on a joining surface attached to the oxide superconducting film.
  • the present invention it is possible to provide a manufacturing technique of a superconducting wire that can improve the yield in the process of joining superconducting wires as compared with the prior art by stably forming a superconducting layer as a joining layer.
  • a method for producing a superconducting wire includes: A superconducting wire manufacturing method for manufacturing an elongated superconducting wire by joining ends of superconducting wires having an oxide superconducting film as a joining surface, Providing a microcrystal of an oxide superconducting material on the oxide superconducting film on the joint surface; A bonding step in which the bonding surfaces provided with the microcrystals are stacked and bonded together; A heating and joining step of joining the joining surfaces together by forming the superconducting layer of the oxide superconducting material as a joining layer by heating the superposed joining surfaces to grow the microcrystals. It is a manufacturing method of a superconducting wire.
  • the step of providing the microcrystal is preferably a microcrystal generation step of generating a microcrystal of the oxide superconducting material on the oxide superconducting film on the bonding surface.
  • the microcrystal production step includes A coating film forming step of forming a coating film by applying a solution containing a metal organic compound constituting the oxide superconducting material on the oxide superconducting film on the bonding surface; A calcining heat treatment step in which the coating film is thermally decomposed by heat treatment to form a precursor of the oxide superconducting material as a calcined film; The calcined film is heat-treated in an oxygen concentration atmosphere of 1 to 100% at a temperature equal to or higher than the decomposition temperature of the calcined film, thereby decomposing the calcined film and generating microcrystals of the oxide superconducting material. It is preferable to provide a calcined film decomposition step.
  • the present inventor has found that the superconducting layer of the oxide superconducting material to be a bonding layer is not properly formed even if the joining technique for joining the superconducting wires using the MOD method described above is used, and the yield in the step of joining the superconducting wires is increased.
  • CO 2 generated when the carbon compound produced in the calcined film (precursor of oxide superconducting material) formed by the calcining heat treatment is decomposed by the calcining heat treatment was found to be the cause.
  • a carbon compound such as BaCO 3 is generated in a calcined film formed by a calcining heat treatment, and this carbon CO 2 is generated by the decomposition of the compound and residual carbon during the main heat treatment.
  • the main heat treatment is performed in a closed system atmosphere in which the calcined films are bonded together as in the prior art.
  • CO 2 generated by the decomposition of the carbon compound cannot escape to the outside.
  • the CO 2 concentration increases and the production of the oxide superconducting material is hindered, and the superconducting film surfaces are stuck together without sufficiently forming the superconducting layer on the joint surface. As a result, resistance is generated.
  • the present inventor can increase the CO 2 concentration in the post-bonding heat treatment if the carbon compound in the calcined film is sufficiently decomposed and removed before the superconducting film surfaces are bonded together.
  • An experiment was conducted on the assumption that an oxide superconducting material could be sufficiently produced.
  • the carbon compound in the calcined film could be decomposed, on the other hand, the crystal of the oxide superconducting material grew and the bonding surfaces could not be bonded together.
  • the present inventor conducted further experiments and studies on a method for suppressing the crystal growth of the oxide superconducting material at the same time as appropriately discharging CO 2 generated along with the decomposition of the calcined film.
  • the carbon compound in the calcined film is generated while being sufficiently decomposed.
  • the present inventors have found that not only can CO 2 be appropriately discharged to the outside, but also the crystal growth of the oxide superconducting material can be suppressed to remain in microcrystals, and the present invention has been completed.
  • the CO 2 concentration atmosphere is also preferably a low concentration.
  • the crystallites of the oxide superconducting material grow during the annealing process.
  • the superconducting layer of the material superconducting material is stably formed and can be connected in a superconducting state where no resistance is generated.
  • the oxygen atmosphere in the microcrystal production step is 1 to 100% as described above compared to the oxygen concentration (100 ppm: 10 ⁇ 4 ) in the general pyrolysis film thermal decomposition.
  • a high-concentration oxygen atmosphere is set, but 10 to 100% is more preferable, and 50 to 100% is more preferable.
  • microcrystals are not limited to the above-described MOD method, and microcrystals can be similarly generated even when other methods such as a PLD method and an electron beam evaporation method are applied.
  • an organometallic compound containing no fluorine is preferably used.
  • the step of providing the microcrystals includes A bonding material manufacturing step of previously manufacturing a bonding material containing microcrystals of the oxide superconducting material; It is preferable to include a bonding material arranging step of arranging the bonding material prepared in advance on the oxide superconducting film on the bonding surface.
  • a microcrystal generation process for generating microcrystals on the surface of the oxide superconducting film as described above is performed. It was not limited to the method, and it was found that microcrystals should be provided on the surface of the oxide superconducting film before performing the bonding step.
  • a method for separately producing a bonding material containing microcrystals and arranging this bonding material on the oxide superconducting film is employed. It has been found that it is not necessary to provide a microcrystal generation step in the operation of connecting the superconducting wires to each other, and it is possible to improve the working efficiency.
  • the bonding material manufacturing step includes A coating film forming step of forming a coating film by applying a solution containing a metal organic compound constituting the oxide superconducting material on the base material for generating the bonding material; A calcining heat treatment step in which the coating film is thermally decomposed by heat treatment to form a precursor of the oxide superconducting material as a calcined film; The calcined film is heat-treated in an oxygen concentration atmosphere of 1 to 100% at a temperature equal to or higher than the decomposition temperature of the calcined film, thereby decomposing the calcined film and generating microcrystals of the oxide superconducting material.
  • a calcined film decomposition step It is preferable to include a peeling step for producing the bonding material by peeling the generated microcrystals from the base material for generating the bonding material.
  • the bonding material used in the above-described aspect (5) is manufactured using the MOD method. Specifically, a coating film is formed on a base material for generating a bonding material, and microcrystals are generated by performing a calcination heat treatment step and a calcination film decomposition step, and the generated microcrystals are used as a base material.
  • the bonding material containing microcrystals can be manufactured by peeling off the film.
  • an organometallic compound containing no fluorine is preferably used.
  • the oxide superconducting material constituting the bonding layer is an oxide superconducting material in which crystals grow at the same temperature as the oxide superconducting material constituting the oxide superconducting film of the superconducting wire or at a lower temperature. preferable.
  • the structure of the oxide superconducting thin film is destroyed by forming the bonding layer with an oxide superconducting material in which crystals grow at the same temperature as or lower than that of the oxide superconducting material constituting the oxide superconducting film.
  • the adhesion between the bonding layer and the oxide superconducting film can be improved, and the superconducting wire can be bonded more appropriately.
  • the bonding layer preferably contains particles of Ag, Au, or Pt.
  • the bonding layer made of the oxide superconducting material described in the above aspects (1) to (8) has a problem that the superconducting wires can be bonded together in a superconducting state, but the bonding strength may not be sufficiently secured.
  • any one of Ag, Au, and Pt particles is contained in the bonding layer, and the bonding layer and the oxide superconducting film are bonded with these metal materials. Thereby, it is possible to reliably prevent the joining portion from peeling off by assisting the joining strength.
  • the microcrystal provided on the oxide superconducting film can be grown while maintaining the solid phase by performing a heat treatment at a predetermined temperature, but a part of the microcrystal, preferably 30% by mass or less. By performing the heat treatment under the condition that the microcrystals once pass through the liquid phase, the microcrystals can be grown in a shorter time to form the bonding layer.
  • the microcrystals are provided so as to be scattered on the oxide superconducting film on the bonding surface.
  • voids are formed around the bonding layer by providing microcrystals so as to be scattered on the oxide superconducting film.
  • a gas introduction path for introducing oxygen into the bonding layer is formed, so that oxygen can be easily introduced into the c-axis oriented superconducting material contained in the bonding layer, and the time for oxygen introduction treatment can be reduced. It can be shortened.
  • microcrystals When microcrystals are provided so as to be scattered on the oxide superconducting film, a void of 10% or more of the area of the joint surface is formed in order to introduce oxygen more efficiently. Is preferred.
  • the proportion of the non-c-axis oriented superconducting material in the bonding layer is preferably 10 to 95% by volume with respect to the total of the c-axis oriented superconducting material and the non-c-axis oriented superconducting material.
  • the bonding layer contains not only the c-axis oriented superconducting material but also the non-c-axis oriented superconducting material in an appropriate ratio (10 to 95% by volume, preferably 10 to 90% by volume). Is preferred. Accordingly, the oxygen diffusion path is formed between the grains of the non-c-axis oriented crystal and the c-axis oriented crystal, and oxygen can be appropriately introduced.
  • the non-c-axis-oriented superconducting material refers to a material other than the c-axis-oriented superconducting material such as a-axis-oriented superconducting material and a compound having a phase different from that of the superconducting material.
  • the volume ratio of the c-axis oriented superconducting material and the non-c-axis oriented superconducting material in the bonding layer can be calculated based on the peak value by X-ray diffraction.
  • the area of the c-axis oriented superconducting material at the interface between the bonding layer and the oxide superconducting film is preferably 10 times or more the cross-sectional area of the superconducting layer of the superconducting wire.
  • the c-axis oriented superconducting material into which oxygen has been introduced becomes a portion through which a current can flow in a superconducting state. For this reason, unless the area of the c-axis oriented superconducting material at the interface between the bonding layer and the oxide superconducting film is not sufficient, sufficient Ic cannot be secured between the connected superconducting wires.
  • the critical current density of the oxide superconductor differs between the ab plane and the c-axis direction, and the critical current density in the c-axis direction is 1/10 compared to the ab plane.
  • the area of the c-axis oriented superconducting material at the interface between the bonding layer and the oxide superconducting film is 10 times or more the cross-sectional area of the superconducting layer of the superconducting wire, Ic equal to or higher than that can be secured in the bonding layer.
  • the oxide superconducting material forming the bonding layer is preferably a REBCO-based oxide superconducting material.
  • the bonding layer containing yttria-stabilized zirconia is formed by adding the nanopowder of yttria-stabilized zirconia to the solution used for preparing the bonding layer. Since this YSZ has low reactivity with the oxide superconducting material and excellent oxygen permeability, when such YSZ is contained, oxygen is appropriately introduced into the c-axis oriented superconducting material. be able to.
  • a superconducting wire joining member comprises: The two superconducting wires are joined to each other by being heated so as to straddle the oxide superconducting films located at the ends of the two superconducting wires having the oxide superconducting films.
  • a superconducting wire joining member to be A superconducting wire joining member in which microcrystals of an oxide superconducting material are provided on a joining surface attached to the oxide superconducting film.
  • the microcrystal is On the bonding surface, a coating film forming step of forming a coating film by applying a solution containing an organic compound of a metal constituting the oxide superconducting material; A calcining heat treatment step in which the coating film is thermally decomposed by heat treatment to form a precursor of the oxide superconducting material as a calcined film; The calcined film is heat-treated in an oxygen concentration atmosphere of 1 to 100% at a temperature equal to or higher than the decomposition temperature of the calcined film, thereby decomposing the calcined film and generating microcrystals of the oxide superconducting material. It is preferable to be produced through a calcined film decomposition step.
  • an oxide superconducting film located at the end of two superconducting wires in addition to the method of forming a joining layer between the superconducting layers of the superconducting wires described above
  • a short superconducting bonding member is attached so as to straddle each other and heat-bonded.
  • two superconducting wires are used by using a short superconducting joining member in which fine crystals of the oxide superconducting material from which the carbon compound is sufficiently decomposed and removed are generated in advance on the joining surface.
  • the joining surface of the superconducting joining member is pasted so as to straddle the oxide superconducting films located at the ends of the superconducting films.
  • a crystallite on the joining surface of the superconducting joining member grows to form a superconducting layer of an oxide superconducting material, thereby generating resistance.
  • Two superconducting wires can be connected and lengthened in a non-superconducting state.
  • Such a superconducting bonding member is preferably produced by the MOD method, but may be produced by a method other than the MOD method.
  • the bonding material according to one aspect of the present invention is It is a bonding material containing microcrystals of the oxide superconducting material used in the method for producing a superconducting wire according to the above aspect (5).
  • FIG. 1 is a longitudinal sectional view schematically showing a superconducting wire according to this embodiment.
  • two superconducting wires 11 and 21 are shown.
  • the oxide superconducting films 14 and 24 are bonded to each other through the bonding layer 31, and the elongated superconducting wire 1 is manufactured.
  • a superconducting layer of an oxide superconducting material is formed as a joining layer 31 on a joining surface where the oxide superconducting film 14 of the superconducting wire 11 and the oxide superconducting film 24 of the superconducting wire 21 are opposed to each other.
  • 12 and 22 are metal substrates
  • 13 and 23 are intermediate layers.
  • the two superconducting wires 11 and 21 are joined via the joining layer 31 which is a superconducting layer of an oxide superconducting material, it is different from the case where they are joined via a protective layer, a stabilization layer, or the like. Thus, it is possible to produce a long superconducting wire 1 in which the generation of resistance at the joint is sufficiently suppressed.
  • the formation method of the superconducting layer of the oxide superconducting material in the joining layer 31 is different from the method using the conventional MOD method.
  • FIG. 2 is a diagram showing a process of a method for producing a superconducting wire according to this embodiment.
  • the step of providing microcrystals of the oxide superconducting material on the oxide superconducting film includes a microcrystal generation step of generating microcrystals of the oxide superconducting material.
  • the superconducting wire manufacturing method performs a bonding step after performing a coating film forming step, a calcination heat treatment step, and a calcination film decomposition step as a microcrystal generation step. Then, a superconducting layer of an oxide superconducting material is formed on the bonding layer 31 shown in FIG. 1 through a main heat treatment process as a heat bonding process, so that the two superconducting wires 11 and 21 are formed via the bonding layer 31.
  • the oxide superconducting films 14 and 24 are joined together to produce the elongated superconducting wire 1.
  • each process is demonstrated in order.
  • Microcrystal generation step In this embodiment, unlike the conventional method, a microcrystal generation step is provided prior to the step of bonding the bonding layers on which the calcined films are formed. And in this microcrystal production
  • (A) Coating film forming process First, the organic metal of the metal constituting the oxide superconducting material on the oxide superconducting films 14 and 24 at both ends in the longitudinal direction of the two superconducting wires 11 and 21 to be the joint surfaces After applying the solution containing the compound, it is dried to form a coating film.
  • a raw material solution in the MOD method that is, a metal constituting REBCO (RE: rare earth elements such as Y and Gd) based oxide superconducting material, that is, RE, Ba, Cu
  • REBCO rare earth elements such as Y and Gd
  • the coating method include a die coating method and an ink jet method, but other coating methods may be employed.
  • the coating is applied over the entire surface of the oxide superconducting films 14 and 24 to be the bonding surfaces, and the coating thickness is appropriately set.
  • the dried coating film is subjected to heat treatment (calcination heat treatment) at a temperature higher than the decomposition temperature of the organometallic compound and lower than the generation temperature of the oxide superconducting material.
  • the organometallic compound of the coating film is thermally decomposed and is composed of BaO 3 which is a carbon compound of Ba and rare earth element oxides such as Y 2 O 3 and CuO as a precursor of the oxide superconducting material.
  • the film is formed as a calcined film.
  • the specific heating temperature is preferably about 500 ° C.
  • the heating rate is preferably about 10 to 20 ° C./min.
  • the treatment atmosphere is preferably an atmosphere having a dew point of 15 to 20 ° C. and an oxygen concentration of 20% or more.
  • the heat treatment time is preferably about 30 minutes.
  • (C) Calcined film decomposition step As described above, the calcined film that is the precursor of the oxide superconducting material contains a carbon compound such as BaCO 3, and the oxide superconducting material is generated from this precursor. For this purpose, it is necessary to decompose the carbon compound contained in the calcined film.
  • the bonding layers on which the calcined films are formed are immediately bonded together and the main heat treatment is performed, so that the decomposition of the carbon compound is performed in a closed atmosphere, and is generated by the decomposition.
  • the oxide superconducting material was generated in a state where the CO 2 was not sufficiently discharged to the outside.
  • FIG. 3 shows the present invention based on the “dissociation curve of carbonate group of alkaline earth salt” shown on page 387 of “Takaki Tachiki, Toshizo Fujita”, “Science of High-Temperature Superconductivity” (published by Hanafusa, 2001). It is the figure created by extracting the dissociation curve of BaCO 3 related to.
  • a microcrystal generation step is provided prior to bonding of the bonding layers on which the calcined film is formed, and the carbon compound is sufficiently decomposed in an open atmosphere before bonding. Yes.
  • the generation of the oxide superconducting material is not hindered during the main annealing process, and the oxide superconducting material is sufficiently formed in the bonding layer 31.
  • a superconducting layer can be formed.
  • the oxide superconducting material crystal grows too much and becomes coarse. Will not join.
  • FIG. 8 is a phase diagram of YBCO shown in FIG.
  • the carbon compound in the calcined film can be decomposed and the crystallites of the oxide superconducting material can be sufficiently formed.
  • the heating temperature in the microcrystal production step is preferably 650 to 800 ° C., more preferably 650 to 700 ° C., and the heating time is preferably about 10 to 120 minutes.
  • a heat treatment process is performed as a heat bonding process for bonding the bonding surfaces together.
  • the joining surfaces are joined by heating at a temperature equal to or higher than the generation temperature of the oxide superconducting material. Specifically, as shown in FIG. 5, the temperature is raised to about 800 ° C. at a rate of temperature increase of about 100 ° C./min in an Ar atmosphere with a low oxygen concentration (for example, oxygen concentration of 100 ppm), and then the same level. The temperature is lowered to room temperature at the rate of temperature decrease.
  • the microcrystal of the oxide superconducting material generated in the previous step grows coarsely in a form straddling the bonded layers 31 bonded together.
  • a superconducting layer of an oxide superconducting material is formed on the bonding layer 31, and the oxide superconducting films 14 and 24 are bonded in a state of being superconductively connected via the bonding layer 31.
  • the microcrystal generation process is performed before the bonding process to complete the decomposition process of BaCO 3 accompanied by the discharge of CO 2 and the oxide superconducting material.
  • the superconducting layer of the oxide superconducting material is sufficiently formed in the joining layer 31 and the superconducting wires are joined to each other. Can be manufactured.
  • the raw material solution for forming the bonding layer 31 includes an organic compound of a metal constituting the oxide superconducting material, for example, an organic metal compound not containing fluorine such as an acetylacetone metal complex, and an organic solvent such as alcohol.
  • an organic compound of a metal constituting the oxide superconducting material for example, an organic metal compound not containing fluorine such as an acetylacetone metal complex, and an organic solvent such as alcohol.
  • a solution dissolved in is preferable.
  • the oxide superconducting film 14 , 24 is preferably an oxide superconducting material in which crystals grow at the same temperature as the oxide superconducting material or a lower temperature.
  • the MOD method has been described as an example.
  • a gas phase method or the like can be employed.
  • Specific vapor deposition methods include physical vapor deposition (PVD) methods such as pulsed laser deposition (PLD: Pulsed Laser Deposition) and electron beam deposition, metal organic chemical vapor deposition (MOCVD), and metal organic chemical vapor deposition (MOCVD).
  • PVD physical vapor deposition
  • MOCVD metal organic chemical vapor deposition
  • MOCVD metal organic chemical vapor deposition
  • a chemical vapor deposition (CVD) method such as a deposition method can be preferably used.
  • the bonding layer is formed between the superconducting layers of the superconducting wire to increase the length.
  • the superconducting wire may be lengthened by preparing a joining member and attaching it to the oxide superconducting thin film positioned at the ends of the two superconducting wires so as to straddle each other.
  • microcrystals for generating microcrystals of the oxide superconducting material are produced.
  • the generation process is performed, the present invention is not limited to this.
  • a bonding material including microcrystals of an oxide superconducting material may be prepared in advance in another step, and the bonding material may be disposed on the oxide superconducting film. Even in such a case, the superconducting layer of the oxide superconducting material can be stably formed on the bonding surface, and the superconducting wires can be connected in a superconducting state where no resistance is generated.
  • the above-mentioned bonding material containing microcrystals for example, separately prepare a base material for bonding material preparation, apply a solution on this base material to form a coating film, It can be easily produced by carrying out a calcination heat treatment step and a calcination film decomposition step to produce fine crystals and peeling the produced fine crystals from the substrate.
  • a method using electron beam evaporation may be mentioned.
  • a base material for preparing a bonding material is separately prepared, and a raw material is vapor-deposited on the base material at room temperature using electron beam evaporation, and then heated to 800 ° C. in a 1 to 100% oxygen atmosphere.
  • the joining material containing a microcrystal can be easily produced by peeling the produced
  • such a joining auxiliary material is made of Ag, Au, Pt in the raw material solution of the MOD method used for generating the microcrystal. It can be easily formed by adding the granules.
  • a bonding material containing microcrystals is separately manufactured or when microcrystals are generated by a method other than the MOD method, Ag, Au, and Pt particles are placed between the bonding material and the oxide superconducting film.
  • a bonding auxiliary material including any of Ag, Au, and Pt can be formed at the interface between the bonding layer and the oxide superconducting film.
  • the microcrystals are temporarily melted so that a part of the microcrystals, preferably 30% by mass or less of the microcrystals have a liquid phase. It is preferable to set the conditions so as to grow after passing through. In this way, by growing the microcrystal after passing through the liquid phase, it is possible to grow the microcrystal in a short time and form the bonding layer.
  • the heating temperature and the heating atmosphere in the heating and bonding step it is preferable to adjust the heating temperature and the heating atmosphere in the heating and bonding step.
  • the oxygen concentration in the heat bonding process can be accurately controlled, the oxygen concentration is changed to about 1000 ppm after the temperature is raised with the oxygen concentration set to several ppm to melt the microcrystals into a liquid phase.
  • the crystallites are coarsened and crystallized at once. Thereby, the microcrystal can be grown in a short time.
  • the conditions for melting the microcrystals are appropriately set according to the type and composition of the oxide superconducting material.
  • the raw material solution of the MOD method is sprayed on the oxide superconducting film by spraying or the like.
  • Microcrystals can be interspersed.
  • a bonding material containing microcrystals is separately manufactured, it is preferable to provide a granular bonding material so as to be scattered on the oxide superconducting film.
  • microcrystals it is preferable to provide microcrystals so that a void of 10% or more of the area of the joint surface is formed.
  • Ratio of non-c-axis-oriented superconducting material to c-axis-oriented superconducting material In order to form a bonding layer containing a large amount of c-axis-oriented superconducting material into which oxygen has been introduced,
  • the ratio of the axially oriented superconducting material is preferably 10 to 95% by volume with respect to the total of the c-axis oriented superconducting material and the non-c-axis oriented superconducting material.
  • the non-c-axis oriented superconducting material is formed in the bonding layer at such a ratio, the c-axis oriented superconductivity is formed between the grains of the non-c-axis oriented crystal and the c-axis oriented crystal.
  • a sufficient amount of c-axis oriented superconducting material into which oxygen is introduced can be formed by supplying sufficient oxygen to the material.
  • the critical current density of the oxide superconductor is different between the ab plane and the c-axis direction, and the critical current density in the c-axis direction is 1/10 of that of the ab plane.
  • the area of the c-axis oriented superconducting material at the interface between the bonding layer and the oxide superconducting film needs to be at least 10 times the cross-sectional area of the superconducting layer of the superconducting wire. Thereby, the critical current value equal to or higher than that of the superconducting wire can be obtained in the bonding layer.
  • Non-c-axis oriented superconducting material When producing a joining layer having an oxide superconducting material, yttria-stabilized zirconia nanopowder is added to the solution used to produce the joining layer, thereby adding yttria to the joining layer. Stabilized zirconia can be included. Since this yttria-stabilized zirconia has low reactivity with the superconducting material and has oxygen permeability, oxygen can be appropriately introduced into the c-axis oriented superconducting material.
  • a metal substrate in which an intermediate layer having a thickness of 600 nm is formed on a clad type oriented metal substrate made of Ni / Cu / SUS having a thickness of 150 ⁇ m is prepared, and a YBCO superconducting film having a thickness of 3 ⁇ m is formed on the metal substrate.
  • a superconducting wire having a width of 4 mm and a length of 100 mm was produced.
  • an alcohol solution containing an acetylacetone metal complex of Y, Ba, and Cu in which the molar ratio of Y: Ba: Cu is 1: 2: 3 and the total ion concentration of Y + Ba + Cu is 1 mol / L is prepared.
  • the solution was applied to the surface of the YBCO superconducting film at both ends of the superconducting wire with a thickness of about 25 ⁇ m, and dried in the atmosphere at a temperature of about 150 ° C. for about 10 minutes to form a coating film (application area: 120 mm 2 ). .
  • the superconducting film on which the coating film is formed is placed in an atmosphere having a dew point of 15 ° C. to 20 ° C. and an oxygen concentration of 20%, and the temperature is raised to 500 ° C. at a rate of 2.5 ° C./min. A fired film was formed.
  • the heating atmosphere is set to a high oxygen atmosphere with an oxygen concentration of 100% (oxygen partial pressure of 1 atm), the temperature is raised to 800 ° C. for 8 minutes at a temperature rising rate of 100 ° C./min, The temperature was lowered to room temperature at a temperature lowering rate for 8 minutes (microcrystal production step). Thereafter, the heating atmosphere was switched to an oxygen concentration of 100 ppm, and heat treatment was performed for 16 minutes under the same temperature rise and temperature drop conditions as in the microcrystal production step (main heat treatment step).
  • Experimental Example 1 to Experimental Example 6 (A) Experimental example 1 As in the first experiment described above, two superconducting wires (width 4 mm, length 100 mm) are formed by forming microcrystals on the oxide superconducting film and forming a bonding layer from the generated microcrystals. A long superconducting wire was produced by bonding. The conditions for forming the bonding layer were the same as those in the first experiment described above, and a superconducting wire having a long length was prepared by bonding the bonding layers together using a jig.
  • the resistivity at the bonding interface is 0 n ⁇ , and the critical current value in the bonding layer is the same as that of the oxide superconducting film of the superconducting wire. 200A. From this, when a superconducting layer is formed as a bonding layer using the MOD method as in Experimental Examples 1 to 3, bonding is performed using a bonding material containing microcrystals of superconducting material as in Experimental Example 6. In this case, it was confirmed that the superconducting wire can be joined in a superconducting state.
  • the present invention stably joins a plurality of superconducting wires in a superconducting state, and makes it possible to produce a long superconducting wire with a high yield.
  • a superconducting cable or superconducting used in a permanent current mode is provided. This can contribute to an improvement in manufacturing efficiency of coils and the like.

Abstract

 超電導線材を接合する工程における歩留りを従来よりも向上させることができる超電導線材の製造技術を提供する。 酸化物超電導膜を有する超電導線材の端部同士を接合面として接合して長尺化された超電導線材を製造する超電導線材の製造方法であって、接合面の酸化物超電導膜上に、酸化物超電導材料の微結晶を設ける工程と、結晶が設けられた接合面同士を重ね合わせて貼り合わせる貼り合わせ工程と、重ね合わされた接合面を加熱して微結晶を成長させることにより酸化物超電導材料の超電導層を接合層として形成して接合面同士を接合する加熱接合工程とを備えている超電導線材の製造方法。2本の超電導線材の酸化物超電導薄膜同士を跨ぐように貼り付けられた状態で加熱することにより超電導線材を接合して長尺化させる超電導線材接合用部材であって、接合面上に酸化物超電導材料の微結晶が設けられている超電導線材接合用部材。

Description

超電導線材の製造方法および超電導線材接合用部材
 本発明は、複数本の超電導線材を順次接合して長尺化された超電導線材の製造方法および前記長尺化において使用される超電導線材接合用部材に関する。
 液体窒素の温度で超電導性を有する酸化物超電導材料の発見以来、ケーブル、限流器、マグネットなどの電力機器への応用を目指した超電導線材の開発が活発に行われている。
 そして、超電導機器用の超電導ケーブルや超電導コイル等の製造には、長尺の超電導線材が必要とされるため、複数の超電導線材を順次接続することにより長尺化が図られている(例えば、特許文献1、2参照)。
 しかし、超電導線材の超電導膜を形成する酸化物超電導材料は、融点付近までは安定した相を持つ一方で、融点を超えると分解し易いという特性を有している。このため、複数の超電導線材を超電導膜面同士で接合しようとしても、金属の接合に一般的に用いられる加熱拡散接合のような方法を適用することができない。
 このため、従来は超電導膜の上に成膜された保護層や安定化層同士を、Agによる拡散接合やはんだを用いて接合する方法が一般的に用いられていたが、このような方法では有限の抵抗が発生して超電導状態で接続されないため、永久電流モードで使用できないという問題があった。
 そこで、本発明者らは、接合面に酸化物超電導材料からなる超電導層を形成し、この接合面を介して超電導線材の超電導膜面同士を接合する接合技術を開発した(特許文献3参照)。これにより、抵抗の発生がない超電導状態で接続することができる。
 具体的には、この接合技術は、塗布熱分解法(MOD法:Metal Organic Deposition)を応用しており、超電導線材の接合面上に酸化物超電導材料を構成する金属の有機化合物を含む溶液(MOD溶液)を塗布して仮焼熱処理を行うことにより酸化物超電導材料の前駆体としての仮焼膜を形成し、この仮焼膜同士を貼り合わせた状態で本焼熱処理を行うことにより2つの超電導線材の各超電導膜の間に酸化物超電導材料の超電導層を接合層として形成させて超電導膜面同士を接合している。
特許4810268号公報 特開2011-228065号公報 特開2013-235699号公報
 しかしながら、上記したMOD法を利用して超電導線材を接合する接合技術を用いた場合、接合層となる超電導層が適切に形成されないことがあったため、超電導線材を接合する工程における歩留りが良くないという問題があった。
 そこで、本発明は、接合層となる超電導層を安定して形成させることにより、超電導線材を接合する工程における歩留りを従来よりも向上させることができる超電導線材の製造技術を提供することを課題とする。
 本発明の一態様に係る超電導線材の製造方法は、
 酸化物超電導膜を有する超電導線材の端部同士を接合面として接合して長尺化された超電導線材を製造する超電導線材の製造方法であって、
 前記接合面の前記酸化物超電導膜上に、酸化物超電導材料の微結晶を設ける工程と、
 前記微結晶が設けられた前記接合面同士を重ね合わせて貼り合わせる貼り合わせ工程と、
 重ね合わされた前記接合面を加熱して前記微結晶を成長させることにより、前記酸化物超電導材料の超電導層を接合層として形成して、前記接合面同士を接合する加熱接合工程とを備えている超電導線材の製造方法である。
 本発明の一態様に係る超電導線材接合用部材は、
 酸化物超電導膜を有する2本の超電導線材の端部に位置する酸化物超電導膜同士を跨ぐように貼り付けられた状態で加熱されることにより、前記2本の超電導線材を接合して長尺化させる超電導線材接合用部材であって、
 前記酸化物超電導膜に貼り付けられる接合面上に、酸化物超電導材料の微結晶が設けられている超電導線材接合用部材である。
 本発明によれば、接合層となる超電導層を安定して形成させることにより、超電導線材を接合する工程における歩留りを従来よりも向上させることができる超電導線材の製造技術を提供することができる。
本発明の一実施形態に係る超電導線材を模式的に示す縦断面図である。 本発明の一実施形態に係る超電導線材の製造方法の工程を示す図である。 BaCOの分解曲線を示す図である。 YBCOの相図である。 熱処理パターンと熱処理後の接合面のSEM画像を示す図である。 熱処理生成物の2D-XRDによる回折ピークのパターンおよび強度を示す図である。
[本発明の実施形態の説明]
 最初に本発明の実施態様を列記して説明する。
(1)本発明の一態様に係る超電導線材の製造方法は、
 酸化物超電導膜を有する超電導線材の端部同士を接合面として接合して長尺化された超電導線材を製造する超電導線材の製造方法であって、
 前記接合面の前記酸化物超電導膜上に、酸化物超電導材料の微結晶を設ける工程と、
 前記微結晶が設けられた前記接合面同士を重ね合わせて貼り合わせる貼り合わせ工程と、
 重ね合わされた前記接合面を加熱して前記微結晶を成長させることにより、前記酸化物超電導材料の超電導層を接合層として形成して、前記接合面同士を接合する加熱接合工程とを備えている超電導線材の製造方法である。
(2)また、上記の超電導線材の製造方法において、
 前記微結晶を設ける工程は、前記接合面の前記酸化物超電導膜上に、酸化物超電導材料の微結晶を生成させる微結晶生成工程であることが好ましい。
(3)また、上記した(2)の態様の超電導線材の製造方法において、
 前記微結晶生成工程は、
 前記接合面の前記酸化物超電導膜上に、前記酸化物超電導材料を構成する金属の有機化合物を含む溶液を塗布して塗膜を形成する塗膜形成工程と、
 前記塗膜を熱処理することにより熱分解して、前記酸化物超電導材料の前駆体を仮焼膜として形成する仮焼熱処理工程と、
 前記仮焼膜を、1~100%の酸素濃度雰囲気下、前記仮焼膜の分解温度以上の温度で熱処理することにより、前記仮焼膜を分解して前記酸化物超電導材料の微結晶を生成させる仮焼膜分解工程と
を備えていることが好ましい。
 本発明者は、上記したMOD法を利用して超電導線材を接合する接合技術を用いても接合層となる酸化物超電導材料の超電導層が適切に形成されなく、超電導線材を接合する工程において歩留りが良くない原因について検討を行った結果、仮焼熱処理により形成された仮焼膜(酸化物超電導材料の前駆体)中に生成された炭素化合物を本焼熱処理により分解する際に発生するCOが原因であることが分かった。
 即ち、MOD法を用いて酸化物超電導材料の超電導層を接合層として形成する場合、一般的に、仮焼熱処理により形成された仮焼膜中にBaCOなどの炭素化合物が生成され、この炭素化合物や残留した炭素が本焼熱処理中に分解されることによりCOが発生するが、このとき、従来技術のように、仮焼膜同士を貼り合わせた閉鎖系の雰囲気で本焼熱処理を行うと、炭素化合物の分解により発生するCOが外部に抜けきれない。この結果、本焼熱処理工程における酸化物超電導材料の生成過程においてCO濃度が上昇し酸化物超電導材料の生成が妨げられ、接合面に超電導層が充分に形成されないまま、超電導膜面同士が貼り合わされることになり、抵抗が発生する。
 そこで、本発明者は、超電導膜面同士を貼り合わせる前に仮焼膜中の炭素化合物を充分に分解、除去しておけば、貼り合わせ後の本焼熱処理においてCO濃度の上昇が発生せず酸化物超電導材料を充分に生成させることができると考え、実験を行った。しかし、この場合には、仮焼膜中の炭素化合物は分解できたものの、その一方で、酸化物超電導材料の結晶が成長してしまい、接合面同士を貼り合わせることができなくなった。
 このため、本発明者は、仮焼膜の分解に伴い発生するCOを適切に外部に排出すると同時に、酸化物超電導材料の結晶成長を抑制する方法について、さらに実験と検討を重ねた。
 その結果、仮焼膜を、1~100%の酸素濃度雰囲気下、仮焼膜の分解温度以上の温度で熱処理した場合には、仮焼膜中の炭素化合物を充分に分解しながらも発生するCOを適切に外部に排出することができるだけでなく、酸化物超電導材料の結晶成長を抑制して微結晶に留めることができることを見出し、本発明を完成するに至った。なお、この時、CO濃度雰囲気も低濃度であることが好ましい。
 そして、接合面上に酸化物超電導材料の微結晶を生成させて、接合面同士を貼り合わせることにより、本焼熱処理時、この酸化物超電導材料の微結晶が成長するため、接合面上に酸化物超電導材料の超電導層が安定して形成され、抵抗の発生がない超電導状態で接続することができる。
 なお、本実施態様において、微結晶生成工程における酸素雰囲気は、一般的な仮焼膜の熱分解における酸素濃度(100ppm:10-4)に比べて、上記したように、1~100%というより高濃度の酸素雰囲気に設定するが、10~100%であるとより好ましく、50~100%であるとさらに好ましい。
 このような微結晶の生成は、上記したMOD法に限定されず、PLD法や電子ビーム蒸着法などの他の方法を適用した場合であっても同様に微結晶を生成させることができる。
(4)また、上記した(3)の態様の超電導線材の製造方法において、
 前記金属の有機化合物として、フッ素を含まない有機金属化合物を用いることが好ましい。
 酸化物超電導材料の微結晶を生成させる際に、フッ素を含む有機金属化合物を有機溶媒に溶解した溶液を用いた場合、このフッ素が接合面の超電導層を溶かしてしまい、溶液の塗膜から良好な結晶性を得ることができないため、抵抗を充分に抑制することができない。フッ素を含まない有機金属化合物を有機溶媒に溶解した溶液を用いた場合には、これらの問題が発生しないため好ましい。
(5)また、上記した(1)の態様の超電導線材の製造方法において、
 前記微結晶を設ける工程は、
 前記酸化物超電導材料の微結晶を含む接合材を予め作製する接合材作製工程と、
 予め作製された前記接合材を、前記接合面の前記酸化物超電導膜上に配置する接合材配置工程とを備えていることが好ましい。
 本発明者がさらに検討を重ねたところ、超電導線材同士を超電導状態で安定して接続するためには、上記したような酸化物超電導膜の表面に微結晶を生成する微結晶生成工程を行うという方法に限定されず、貼り合わせ工程を行う前に酸化物超電導膜の表面に微結晶が設けられていればよいことが分かった。そして、このように酸化物超電導膜上に微結晶を設ける他の方法として、微結晶を含む接合材を別途作製し、この接合材を酸化物超電導膜上に配置するという方法を採用した場合には、超電導線材同士を接続する作業において、微結晶生成工程を設ける必要がなくなり、作業効率の向上を図ることができ好ましいことが分かった。
(6)また、上記した(5)の態様の超電導線材の製造方法において、
 前記接合材作製工程は、
 接合材生成用の基材上に、前記酸化物超電導材料を構成する金属の有機化合物を含む溶液を塗布して塗膜を形成する塗膜形成工程と、
 前記塗膜を熱処理することにより熱分解して、前記酸化物超電導材料の前駆体を仮焼膜として形成する仮焼熱処理工程と、
 前記仮焼膜を、1~100%の酸素濃度雰囲気下、前記仮焼膜の分解温度以上の温度で熱処理することにより、前記仮焼膜を分解して前記酸化物超電導材料の微結晶を生成させる仮焼膜分解工程と、
 生成された微結晶を、前記接合材生成用の基材から剥がすことにより前記接合材を作製する剥離工程とを備えていることが好ましい。
 上記した(5)の態様において用いられる接合材は、MOD法を用いて作製することが好ましい。具体的には、接合材生成用の基材上に塗膜を形成し、この仮焼熱処理工程と仮焼膜分解工程とを施すことにより微結晶を生成し、生成された微結晶を基材から剥がすことにより微結晶を含んだ接合材を作製することができる。
(7)また、上記した(6)の態様の超電導線材の製造方法において、
 前記金属の有機化合物として、フッ素を含まない有機金属化合物を用いることが好ましい。
 MOD法を用いて接合材を作製する場合には、上記した超電導線材の酸化物超電導膜上に微結晶を直接生成する態様と同様に、フッ素を含まない有機金属化合物を有機溶媒に溶解した溶液を用いることが好ましい。
(8)上記した(1)~(7)の態様において、
 前記接合層を構成する酸化物超電導材料は、前記超電導線材の前記酸化物超電導膜を構成する酸化物超電導材料と同じ温度、もしくは、より低い温度で結晶が成長する酸化物超電導材料であることが好ましい。
 このように接合層を、酸化物超電導膜を構成する酸化物超電導材料と同じ温度、もしくは、より低い温度で結晶が成長する酸化物超電導材料で形成することにより、酸化物超電導薄膜の構造を破壊することなく接合層と酸化物超電導膜との密着性を向上させることができ、超電導線材をより適切に接合させることができる。
(9)上記した(1)~(8)の態様において、
 前記接合層には、Ag、Au、Ptの何れかの粒子を含有させることが好ましい。
 上記した(1)~(8)の態様に記載の酸化物超電導材料からなる接合層は、超電導線材同士を超電導状態で接合できる一方で、接合の強度を十分に確保できない場合があるという問題を有している。そこで、本態様においては、接合層にAg、Au、Ptの何れかの粒子を含有させて、これらの金属材料で接合層と酸化物超電導膜とを接合させている。これにより接合の強度を補助して接合部分が剥がれることを確実に防止することができる。このとき、接合層と前記酸化物超電導膜との界面に、上記したAg、Au、Ptの何れかの粒子を配置することがより好ましい。
(10)上記した(1)~(9)の態様において、
 前記加熱接合工程においては、前記微結晶の一部が液相を経由して成長するように設定することが好ましい。
(11)上記した(10)の態様において、
 前記加熱接合工程においては、前記微結晶の30質量%以下が液相を経由して成長するように設定することが好ましい。
 酸化物超電導膜上に設けられた微結晶は、所定の温度で加熱処理を施すことにより固相を維持したままで成長させることができるが、微結晶の一部、好ましくは30質量%以下の微結晶が液相を一度経由するような条件の下で加熱処理を施すことにより、より短時間で微結晶を成長させて接合層を形成することができる。
(12)上記した(1)~(11)の態様において、
 前記微結晶を設ける工程において、前記接合面の前記酸化物超電導膜上に点在するように前記微結晶を設けることが好ましい。
(13)上記した(12)の態様において、
 前記接合面の面積の10%以上の空隙が形成されるように、前記微結晶を設けることが好ましい。
 一般に酸化物超電導材料を生成すると、c軸配向の超電導材料やa軸配向の超電導材料などが生成され、これらの内のc軸配向の超電導材料に酸素を導入することにより超電導状態で電流を流すことができるようになる。しかし、接合層は、超電導線材の酸化物超電導膜に挟まれているため、接合層に含まれるc軸配向の超電導材料に酸素を十分に導入することが難しく、長時間の酸素導入処理を行う必要がある。
 本態様においては、酸化物超電導膜上に点在するように微結晶を設けることにより接合層の周囲に空隙が形成されるようにしている。これにより、接合層に酸素を導入するためのガス導入の経路が形成されるため、接合層に含まれるc軸配向の超電導材料に酸素を容易に導入することができ、酸素導入処理の時間を短縮させることができる。
 そして、酸化物超電導膜上に点在するように微結晶を設ける場合には、より効率的に酸素を導入するために、接合面の面積の10%以上の空隙が形成されるようにすることが好ましい。
(14)上記した(1)~(13)の態様において、
 前記接合層における非c軸配向の超電導材料の占める割合は、c軸配向の超電導材料および非c軸配向の超電導材料の合計に対して10~95体積%であることが好ましい。
 上記したように、接合層に含まれる酸化物超電導材料の内、c軸配向の超電導材料に酸素を導入することにより、超電導状態で電流を流すことができるようになる。しかし、接合層がc軸配向の超電導材料のみで構成されていると、密になりすぎて酸素の拡散経路が無くなるので酸素を導入し難くなる。このため、接合層には、c軸配向の超電導材料だけでなく、非c軸配向の超電導材料が適度な割合(10~95体積%、好ましくは10~90体積%)で含まれていることが好ましい。これにより、非c軸配向の結晶とc軸配向の結晶の粒間が酸素拡散経路となり、適切に酸素を導入させることができる。
 なお、本態様において、非c軸配向の超電導材料とは、a軸配向の超電導材料、超電導材料とは異なる相の化合物などのc軸配向の超電導材料以外の材料を指す。また、接合層中のc軸配向の超電導材料および非c軸配向の超電導材料の体積の割合は、X線回折によるピーク値に基づいて算出することができる。
(15)上記した(1)~(14)の態様において、
 前記接合層と前記酸化物超電導膜との界面における前記c軸配向超電導材料の面積が、前記超電導線材の前記超電導層の断面積の10倍以上であることが好ましい。
 上記したように、接合層の内、酸素が導入されたc軸配向の超電導材料が超電導状態で電流を流すことができる部分となる。このため、接合層と酸化物超電導膜との界面におけるc軸配向の超電導材料の面積が十分でないと、接続された超電導線材の間で十分なIcを確保することができない。そして、酸化物超電導体の臨界電流密度はab面とc軸方向で異なり、c軸方向の臨界電流密度はab面に比べて1/10となる。このため、本態様においては、接合層と酸化物超電導膜との界面におけるc軸配向の超電導材料の面積を、超電導線材の超電導層の断面積の10倍以上にし、接合対象である超電導線材と同等以上のIcが接合層において確保できるようにしている。
(16)上記した(1)~(15)の態様において、
 前記接合層を形成する前記酸化物超電導材料は、REBCO系の酸化物超電導材料であることが好ましい。
(17)上記した(16)の態様において、
 前記接合層として、イットリア安定化ジルコニアを含む接合層を形成することが好ましい。
 本態様においては、イットリア安定化ジルコニアのナノ粉末を接合層を作製する際の溶液に添加することにより、イットリア安定化ジルコニア(YSZ)が含まれる接合層を形成している。このYSZは、酸化物超電導材料との反応性が低く、かつ、酸素透過性に優れているため、このようなYSZが含まれていると、c軸配向の超電導材料に適切に酸素を導入することができる。
(18)本発明の一態様に係る超電導線材接合用部材は、
 酸化物超電導膜を有する2本の超電導線材の端部に位置する酸化物超電導膜同士を跨ぐように貼り付けられた状態で加熱されることにより、前記2本の超電導線材を接合して長尺化させる超電導線材接合用部材であって、
 前記酸化物超電導膜に貼り付けられる接合面上に、酸化物超電導材料の微結晶が設けられている超電導線材接合用部材である。
(19)また、上記の(18)の態様の超電導線材接合用部材において、
 前記微結晶は、
 前記接合面上に、酸化物超電導材料を構成する金属の有機化合物を含む溶液を塗布して塗膜を形成する塗膜形成工程と、
 前記塗膜を熱処理することにより熱分解して、前記酸化物超電導材料の前駆体を仮焼膜として形成する仮焼熱処理工程と、
 前記仮焼膜を、1~100%の酸素濃度雰囲気下、前記仮焼膜の分解温度以上の温度で熱処理することにより、前記仮焼膜を分解して前記酸化物超電導材料の微結晶を生成させる仮焼膜分解工程と
を経て作製されていることが好ましい。
 2本の超電導線材を接合して長尺化する方法としては、前記した超電導線材の超電導層間に接合層を形成させる方法の他に、2本の超電導線材の端部に位置する酸化物超電導膜同士を跨ぐように短尺の超電導接合用部材を貼り付けて加熱接合する方法もある。
 具体的には、上記と同様に、炭素化合物が充分に分解、除去された酸化物超電導材料の微結晶が接合面に予め生成された短尺の超電導接合用部材を用いて、2本の超電導線材の端部に位置する酸化物超電導膜同士を跨ぐように、超電導接合用部材の接合面を貼り付ける。その後、超電導接合用部材と2本の超電導線材とを加熱接合することにより、超電導接合用部材の接合面の微結晶が成長して酸化物超電導材料の超電導層が形成されて、抵抗の発生がない超電導状態で2本の超電導線材を接続して長尺化することができる。なお、このような超電導接合用部材は、MOD法により作製されることが好ましいが、MOD法以外の方法を用いて作製してもよい。
(20)本発明の一態様に係る接合材は、
 上記した(5)の態様の超電導線材の製造方法において用いられる前記酸化物超電導材料の微結晶を含む接合材である。
[本発明の実施形態の詳細]
 以下、本発明を実施形態に基づき、図面を参照して説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1.本実施形態に係る超電導線材
 図1は本実施形態に係る超電導線材を模式的に示す縦断面図であり、図1に示すように、本実施形態においては、2本の超電導線材11、21の酸化物超電導膜14、24が接合層31を介して貼り合わされて、長尺化された超電導線材1が製造される。具体的には、超電導線材11の酸化物超電導膜14と、超電導線材21の酸化物超電導膜24とを対向させて重ね合わせた接合面に酸化物超電導材料の超電導層が接合層31として形成されている。なお、図1中の12、22は金属基板であり、13、23は中間層である。
 このように、酸化物超電導材料の超電導層である接合層31を介して、2本の超電導線材11、21が接合させているため、保護層や安定化層などを介して接合した場合と異なり、接合部における抵抗の発生が充分に抑制された長尺の超電導線材1を製造することができる。
 そして、本実施形態においては、接合層31における酸化物超電導材料の超電導層の形成方法が、従来のMOD法を利用する方法とは異なっている。
2.本実施形態に係る超電導線材の製造方法
 図2は本実施形態に係る超電導線材の製造方法の工程を示す図である。本実施形態においては、酸化物超電導膜上に酸化物超電導材料の微結晶を設ける工程として、酸化物超電導材料の微結晶を生成させる微結晶生成工程を有している。
 なお、ここではMOD法を例に挙げて説明する。図2に示すように、本実施形態に係る超電導線材の製造方法は、微結晶生成工程として塗膜形成工程、仮焼熱処理工程、仮焼膜分解工程を行った後、貼り合わせ工程を行う。そして、加熱接合工程としての本焼熱処理工程を経て、図1に示す接合層31に酸化物超電導材料の超電導層を形成することにより、接合層31を介して2本の超電導線材11、21の酸化物超電導膜14、24同士を接合して長尺化された超電導線材1を製造する。以下、それぞれの工程を順に説明する。
(1)微結晶生成工程
 本実施形態においては、従来の方法とは異なり、仮焼膜が形成された接合層同士を貼り合わせる工程に先立って、微結晶生成工程を設けている。そして、この微結晶生成工程においては、以下に示すように、塗膜形成工程、仮焼熱処理工程、仮焼膜分解工程を経て微結晶を生成させている。
(a)塗膜形成工程
 最初に、接合面となる2本の超電導線材11、21の長尺方向の両端部の酸化物超電導膜14、24上に、酸化物超電導材料を構成する金属の有機化合物を含む溶液を塗布した後、乾燥させて塗膜を形成する。
 このような溶液として、具体的には、MOD法における原料溶液、即ち、REBCO(RE:YやGdなどの希土類元素)系の酸化物超電導材料を構成する金属、即ち、RE、Ba、Cuの有機化合物を有機溶媒に溶解した溶液が用いられる。
 具体的な塗布方法としては、例えば、ダイコート方式やインクジェット方式などを挙げることができるが、それ以外の塗布方法を採用してもよい。また、塗布に際しては、接合面となる酸化物超電導膜14、24上の全面に塗布するが、塗布厚みは適宜設定する。
(b)仮焼熱処理工程
 次に、乾燥した塗膜を熱処理することにより熱分解して、酸化物超電導材料の前駆体を仮焼膜として形成する。
 具体的には、乾燥した塗膜に対して、有機金属化合物の分解温度以上、かつ酸化物超電導材料の生成温度より低い温度で加熱処理(仮焼熱処理)する。これにより、塗膜の有機金属化合物が熱分解して、酸化物超電導材料の前駆体として、Baの炭素化合物であるBaCO、およびYなどの希土類元素酸化物、CuOから構成される膜が仮焼膜として形成される。
 このとき、具体的な加熱温度としては500℃程度が好ましく、昇温速度としては10~20℃/分程度が好ましい。また、処理雰囲気としては、露点が15~20℃、酸素濃度が20%以上の雰囲気が好ましい。そして、加熱処理時間は30分程度が好ましい。
(c)仮焼膜分解工程
 上記したように、酸化物超電導材料の前駆体である仮焼膜にはBaCOなどの炭素化合物が含まれており、この前駆体から酸化物超電導材料を生成させるためには、仮焼膜に含まれる炭素化合物を分解させる必要がある。
 しかし、従来の方法では、仮焼膜が形成された接合層同士を直ちに貼り合わせて、本焼熱処理を行っていたため、炭素化合物の分解が閉鎖系の雰囲気で行われることになり、分解により発生したCOを外部に充分に排出されない状態で酸化物超電導材料が生成されていた。
 このため、酸化物超電導材料の生成過程においてCO濃度が上昇して、酸化物超電導材料の生成が妨げられていた。即ち、図3に示すように、CO濃度が高い雰囲気下では、加熱温度を高く設定してもBaCOが分解し難くなる。なお、図3は、立木昌、藤田敏三編「高温超電導の科学」(裳華房、2001年発行)の387ページに示された「アルカリ土類塩の炭酸基の解離曲線」より本発明に関係するBaCOの解離曲線を抜き出して作成した図である。
 そこで、本実施形態においては、仮焼膜が形成された接合層同士の貼り合わせに先立って微結晶生成工程を設けて、貼り合わせの前に開放系の雰囲気で炭素化合物を充分に分解している。このように、貼り合わせ前にCOの排出を伴う工程を完了しておくことにより、本焼熱処理時、酸化物超電導材料の生成が妨げられず、接合層31に充分に酸化物超電導材料の超電導層を形成させることができる。
 しかしながら、このとき、酸素濃度が従来のように100ppm程度であると、酸化物超電導材料の結晶が成長し過ぎて粗大化してしまい、貼り合わせ工程および本焼熱処理工程を経ても、仮焼膜同士が接合しなくなる。
 そこで、本微結晶生成工程においては、図4の(2)の矢印で示すような一般的なBaCOの分解において設定される酸素濃度(100ppm)よりも高い酸素濃度、即ち、酸素濃度1%から、図中の(1)の矢印で示す酸素濃度100%(酸素分圧1atm)までの高酸素濃度の雰囲気下で加熱を行っている。なお、図4は、J.Am.Ceram.Soc.,89[3]914-920(2006)のFig.8に示されたYBCOの相図であり、一部加筆している。
 これにより、仮焼膜中の炭素化合物を分解すると共に、酸化物超電導材料の微結晶を充分に形成させることができる。
 なお、本微結晶生成工程における加熱温度としては、650~800℃が好ましく、650~700℃であるとより好ましく、加熱時間は10~120分程度が好ましい。
(2)貼り合わせ工程
 次に、酸化物超電導材料の微結晶が生成された接合面同士を重ね合わせて押圧治具等で固定し、さらに、接合面同士を1MPa以上の圧力で押し付けることにより、貼り合わせる。
(3)加熱接合工程
 次に、接合面同士を接合する加熱接合工程として、本焼熱処理工程を行う。この本焼熱処理工程では、酸化物超電導材料の生成温度以上の温度で加熱することにより接合面同士を接合する。具体的には、図5に示すように、低酸素濃度(例えば、酸素濃度100ppm)のAr雰囲気下において、100℃/分程度の昇温速度で800℃程度まで昇温し、その後、同程度の降温速度で常温まで降温する。
 これにより、前工程において生成された酸化物超電導材料の微結晶が、貼り合わされた互いの接合層31を跨ぐ形で粗大化して成長していく。この結果、接合層31に酸化物超電導材料の超電導層が形成されて、酸化物超電導膜14と24とが接合層31を介して超電導接続された状態で接合される。
 以上のように、本実施形態に係る製造方法によれば、貼り合わせ工程の前に微結晶生成工程を行って、COの排出を伴うBaCOの分解工程を完了させると共に、酸化物超電導材料の微結晶を生成させているため、その後の本焼熱処理工程において、接合層31に酸化物超電導材料の超電導層を充分に形成させて、超電導線材同士を接合し、長尺化された超電導線材を製造することができる。
 なお、本実施形態において、接合層31を形成する原料溶液としては、酸化物超電導材料を構成する金属の有機化合物、例えば、アセチルアセトン金属錯体などのフッ素を含まない有機金属化合物をアルコールなどの有機溶媒に溶解させた溶液が好ましい。
 そして、このとき接合面に形成される超電導層における酸化物超電導材料は、酸化物超電導膜14、24の結晶構造を破壊することなく接合層を結晶化させることを考慮すると、酸化物超電導膜14、24を構成する酸化物超電導材料と同じ温度、もしくは、より低い温度で結晶が成長する酸化物超電導材料であることが好ましい。
 また、上記の実施の形態においてはMOD法を例に挙げて説明したが、塗布熱分解法としてのMOD法以外に、気相法などを採用することもできる。具体的な気相法としては、パルスレーザ蒸着(PLD:Pulsed Laser Deposition)法や電子ビーム蒸着法などの物理蒸着(PVD:Physical Vapor Deposition)法、有機金属気相成長(MOCVD:Metal Organic Chemical Vapor Deposition)法などの化学蒸着(CVD:Chemical Vapor Deposition)法などを好ましく用いることができる。
 さらに、上記の実施の形態においては、超電導線材の超電導層間に接合層を形成させて長尺化を図っているが、別途、接合面に酸化物超電導材料の微結晶が生成された短尺の超電導接合用部材を作製し、これを2本の超電導線材の端部に位置する酸化物超電導薄膜同士を跨ぐように貼り付けて加熱接合することにより、超電導線材を長尺化させてもよい。
3.本発明の他の実施形態
(1)微結晶を設ける工程の他の形態
 上記した実施形態では、酸化物超電導膜上に微結晶を設ける工程として、酸化物超電導材料の微結晶を生成させる微結晶生成工程を行っているが、本発明はこれに限定されない。例えば、酸化物超電導材料の微結晶を含む接合材を別の工程で予め作製し、この接合材を酸化物超電導膜上に配置してもよい。このような場合であっても、接合面上に酸化物超電導材料の超電導層を安定して形成することができ、抵抗の発生がない超電導状態で超電導線材同士を接続することができる。
 上記した微結晶を含む接合材は、例えば、接合材作製用の基材を別途準備して、この基材上に溶液を塗布して塗膜を形成した後、上記した実施形態と同様に、仮焼熱処理工程と仮焼膜分解工程を行って微結晶を生成させ、生成された微結晶を基材から剥がすことにより容易に作製することができる。
 また、上記した微結晶を含む接合材を作製する方法の別の実施形態としては、電子ビーム蒸着を用いた方法が挙げられる。例えば、接合材作製用の基材を別途準備して、この基材上に電子ビーム蒸着を用いて室温で原料を蒸着させた後、1~100%の酸素雰囲気で800℃まで昇温することで微結晶を生成させることができる。そして、生成された微結晶を基材から剥がすことにより、微結晶を含む接合材を容易に作製することができる。
(2)接合補助材の配置
 上記した実施形態においては、酸化物超電導材料からなる接合層のみで超電導線材同士を接合しているが、この接合を補強するという観点から、接合層にAg、Au、Ptの何れかを含む接合補助材を配置することが好ましい。
 このような接合補助材は、例えば、MOD法を用いて酸化物超電導膜上に微結晶を直接生成する場合には、微結晶を生成する際に用いるMOD法の原料溶液にAg、Au、Ptの粒体を添加することにより容易に形成することができる。
 また、微結晶を含む接合材を別途作製する場合や、MOD法以外の方法で微結晶を生成する場合には、Ag、Au、Ptの粒子を、接合材と酸化物超電導膜との間に配置させてから加熱接合工程を行うことにより、接合層と酸化物超電導膜との界面にAg、Au、Ptの何れかを含む接合補助材を形成することができる。
(3)加熱接合工程の条件
 また、接合面同士を接合する加熱接合工程は、微結晶を一時的に溶融させて、微結晶の一部、好ましくは30質量%以下の微結晶が液相を経由してから成長するような条件に設定することが好ましい。このように液相を経由してから微結晶を成長させることにより、短時間で微結晶を成長させて接合層を形成することができる。
 液相を経由してから微結晶を成長させるには、加熱接合工程における加熱温度や加熱雰囲気を調整することが好ましい。例えば、加熱接合工程における酸素濃度を精度良く制御できる場合には、酸素濃度を数ppmに設定した状態で昇温させて微結晶を溶融させて液相にした後、酸素濃度を1000ppm程度に変化させて微結晶を一気に粗大化・配向結晶化させる。これにより、微結晶の成長を短時間で行なうことができる。なお、微結晶を溶融させる際の条件は、酸化物超電導材料の種類、組成などに応じて適宜適切な条件に設定される。
(4)空隙の形成
 また、接合層に含まれるc軸配向の超電導材料に十分な量の酸素を導入するという観点から、微結晶を設ける工程において、酸化物超電導膜上に点在するように微結晶を設けることが好ましい。
 例えば、上記した実施形態のように、MOD法を用いて酸化物超電導膜上に微結晶を直接生成する場合には、MOD法の原料溶液を酸化物超電導膜上にスプレーなどで吹き付けることにより、微結晶を点在させることができる。また、微結晶を含む接合材を別途作製する場合には、粒状の接合材を酸化物超電導膜上に点在するように設けることが好ましい。
 なお、c軸配向の超電導材料に酸素をより適切に導入するという観点から、接合面の面積の10%以上の空隙が形成されるように微結晶を設けることが好ましい。
(5)c軸配向の超電導材料に対する非c軸配向の超電導材料の割合
 また、酸素が導入されたc軸配向の超電導材料を多く含んだ接合層を形成するためには、接合層における非c軸配向の超電導材料の割合を、c軸配向の超電導材料および非c軸配向の超電導材料の合計に対して10~95体積%にすることが好ましい。このような割合で接合層に非c軸配向の超電導材料が形成されている場合、非c軸配向の結晶とc軸配向の結晶の粒間が酸素拡散経路となるため、c軸配向の超電導材料に十分な酸素を供給して、酸素が導入されたc軸配向の超電導材料を多く形成することができる。
(6)c軸配向の超電導材料の面積
 また、酸化物超電導体の臨界電流密度はab面とc軸方向で異なり、c軸方向の臨界電流密度はab面に比べて1/10となるので、接合層と酸化物超電導膜との界面におけるc軸配向超電導材料の面積は、超電導線材の超電導層の断面積の10倍以上であることが必要である。これにより、接合層が超電導線材と同等以上の臨界電流値を得ることができる。
(7)非c軸配向の超電導材料
 酸化物超電導材料を有する接合層を生成する際に、イットリア安定化ジルコニアのナノ粉末を接合層を作製する際の溶液に添加することにより、接合層にイットリア安定化ジルコニアを含ませることができる。このイットリア安定化ジルコニアは、超電導材料との反応性が低く、かつ、酸素透過性を有しているため、c軸配向の超電導材料に適切に酸素を導入することができる。
[実験例]
 次に実験例に基づき、本発明をより具体的に説明する。
1.第1の実験
 第1の実験として、下記のように、酸化物超電導膜上に酸化物超電導材料の微結晶を生成させ、超電導線材を貼り合わせた後、微結晶を成長させて接合層を形成して2本の超電導線材を接合することにより長尺化された超電導線材を作製し、接合層に酸化物超電導材料の超電導層が形成されているかを調べた。
 最初に、厚み150μmのNi/Cu/SUSからなるクラッドタイプ配向金属基板の上に厚み600nmの中間層が形成された金属基板を用意し、この金属基板上に厚み3μmのYBCO超電導膜を形成することにより、幅4mm、長さ100mmの超電導線材を作製した。
 次に、Y:Ba:Cuのモル比が1:2:3であって、Y+Ba+Cuの合計イオン濃度が1mol/Lの、Y、Ba、Cuのアセチルアセトン金属錯体を含むアルコール溶液を用意し、各超電導線材の両端部におけるYBCO超電導膜の表面に、溶液を約25μmの厚みで塗布し、大気中、150℃程度の温度で10分程度乾燥し塗膜を形成させた(塗布面積:120mm)。
 その後、塗膜が形成された超電導膜を露点が15℃~20℃、酸素濃度が20%の雰囲気下に置き、2.5℃/分の昇温速度で500℃まで昇温することにより仮焼膜を形成した。
 次に、形成した仮焼膜に対して、図5の熱処理パターンで示すような2種類の熱処理を順に行った。具体的には、先ず、加熱雰囲気を酸素濃度100%(酸素分圧1atm)の高酸素雰囲気に設定し、100℃/分の昇温速度で800℃まで8分間昇温した後、同程度の降温速度で常温まで8分間降温させた(微結晶生成工程)。その後、加熱雰囲気を酸素濃度100ppmに切替えて、微結晶生成工程と同様の昇温、降温条件で16分間の熱処理を行った(本焼熱処理工程)。
 そして、微結晶生成工程を行った後の仮焼膜と、本焼熱処理工程を行った後の接合層に対して、走査型電子顕微鏡(SEM:Scanning Electron Microscope)を用いた表面観察と、2D-XRD(X-ray Diffraction)を用いた解析とを行った。SEMにより撮影した画像を図5の左上と右下に、2D-XRDによる解析結果を図6に示す。
 図5左上のSEM画像より、微結晶生成工程後では接合層の表面に、c軸配向したYBCOとは異なる表面モフォロジーを有する層が生成されていることが分かる。一方、図5の右下のSEM画像より、本焼熱処理工程後では接合層の表面に平均粒径10μm以上の粗大化した結晶が生成されていることが分かる。
 また、2D-XRDで解析した結果、微結晶生成工程後の接合層では、図6(a)の写真で示すように、BaCOが分解されてYBCO化合物が形成されていると共に、無配向の微結晶を示すYBaCu7-x(103)のリング状のパターンが生じていることが分かる。一方、本焼熱処理工程後の接合層では、図6(b)の写真で示すように、リング状のパターンが消失し、かつYBaCu7-x(002、003、005、006)のピーク強度が増加していることが分かる。
 上記したSEMによる観察と2D-XRDによる解析の結果、微結晶生成工程により、仮焼膜中のBaCOが分解されて無配向のYBCO微結晶が生成され、本焼熱処理工程により、無配向の微結晶が粗大化して配向したYBCO結晶が生成されて、接合層に酸化物超電導材料の超電導層が形成されていることが確認できた。
2.第2の実験
 次に、上記した実施形態に係る製造方法を含む種々の方法を用いて2本の超電導線材を接合して長尺化された超電導線材を作製し、作製後の超電導線材の性能を評価した。
(1)実験例1~実験例6
(a)実験例1
 上記した第1の実験と同様に、酸化物超電導膜上に微結晶を生成させ、生成された微結晶から接合層を形成することにより、2本の超電導線材(幅4mm、長さ100mm)を接合して長尺の超電導線材を作製した。なお、接合層を形成させる際の条件は上記した第1の実験と同じ条件とし、治具を用いて接合層同士を貼りあわせて長尺化された超電導線材を作製した。
(b)実験例2
 微結晶生成工程における加熱雰囲気を酸素濃度1%にしたことを除いて、実験例1と同じ条件で2本の超電導線材を接合し、長尺の超電導線材を作製した。
(c)実験例3
 実験例1、2のような微結晶生成工程を行なわずに、仮焼熱処理後の仮焼膜同士を貼り合わせて本焼熱処理を行うことにより2本の超電導線材を接合し、長尺の超電導線材を作製した。なお、他の条件は実験例1、2と同様に設定した。
(d)実験例4
 実験例1~3で用いた超電導線材と同じ超電導線材をAgによる拡散接合で接合し、長尺の超電導線材を作製した。
(e)実験例5
 実験例4と同様に、超電導線材にAg保護層とCu安定化層を設け、Cu安定化層同士をはんだを用いて接合し、長尺の超電導線材を作製した。
(f)実験例6
 予め作製した超電導材料の微結晶を含む接合材を2本の超電導線材の超電導層の間に配置した後、接合面を加熱して微結晶を成長させることにより接合面同士を接合して長尺の超電導線材を作製した。なお、他の条件は実験例1と同じ条件に設定した。
(2)評価
 それぞれの実験例について、2本の超電導線材の接合部分における抵抗率(接合界面の抵抗率)と臨界電流値(I)を測定した。なお、測定は、液体窒素温度(77K)における4端子法を用いて行った。
(3)評価結果
 上記した評価の結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1より、実験例1~実験例3、実験例6の何れにおいても、接合界面における抵抗率が0nΩであり、かつ、接合層における臨界電流値が、超電導線材の酸化物超電導膜と同様の200Aであった。このことから、実験例1~実験例3のように、MOD法を用いて接合層として超電導層を形成した場合や実験例6のように超電導材料の微結晶を含む接合材を用いて接合した場合には、超電導線材を超電導状態で接合できることが確認できた。
3.第3の実験
 次に、上記した実験例1~実験例3、実験例6に記載のそれぞれの方法で、長尺化された超電導線材を20本作製して、各方法における歩留まりを評価した。
 具体的には、作製後の各超電導線材のIcを第2の実験と同じ条件で測定し、測定されたIcが10Aを下回った超電導線材の本数を数え、歩留まり(%)を求めた。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2より、実験例1では90%、実験例2では90%、実験例6では90%という高い歩留まりを得ることができた一方で、実験例3では歩留まりが50%に留まった。このことから、実験例1および実験例2のように、貼り合わせ前の仮焼膜をO濃度1~100%という高酸素雰囲気下で加熱する微結晶生成工程を行ったり、実験例6のように、予め準備した微結晶を含む接合材を用いたりすることにより、酸化物超電導材料の超電導層を接合層として安定して形成できることが確認できた。
 本発明は、複数の超電導線材を超電導状態で安定して接合させて、長尺の超電導線材を高い歩留りで製造することを可能にするものであり、永久電流モードで使用される超電導ケーブルや超電導コイルなどの製造効率の向上などに寄与することができる。
 1       長尺化された超電導線材
 11、21   超電導線材
 12、22   金属基板
 13、23   中間層
 14、24   酸化物超電導膜
 31      接合層

Claims (20)

  1.  酸化物超電導膜を有する超電導線材の端部同士を接合面として接合して長尺化された超電導線材を製造する超電導線材の製造方法であって、
     前記接合面の前記酸化物超電導膜上に、酸化物超電導材料の微結晶を設ける工程と、
     前記微結晶が設けられた前記接合面同士を重ね合わせて貼り合わせる貼り合わせ工程と、
     重ね合わされた前記接合面を加熱して前記微結晶を成長させることにより、前記酸化物超電導材料の超電導層を接合層として形成して、前記接合面同士を接合する加熱接合工程とを備えている超電導線材の製造方法。
  2.  前記微結晶を設ける工程が、前記接合面の前記酸化物超電導膜上に、酸化物超電導材料の微結晶を生成させる微結晶生成工程である請求項1に記載の超電導線材の製造方法。
  3.  前記微結晶生成工程が、
     前記接合面の前記酸化物超電導膜上に、前記酸化物超電導材料を構成する金属の有機化合物を含む溶液を塗布して塗膜を形成する塗膜形成工程と、
     前記塗膜を熱処理することにより熱分解して、前記酸化物超電導材料の前駆体を仮焼膜として形成する仮焼熱処理工程と、
     前記仮焼膜を、1~100%の酸素濃度雰囲気下、前記仮焼膜の分解温度以上の温度で熱処理することにより、前記仮焼膜を分解して前記酸化物超電導材料の微結晶を生成させる仮焼膜分解工程と
    を備えている請求項2に記載の超電導線材の製造方法。
  4.  前記金属の有機化合物として、フッ素を含まない有機金属化合物を用いる請求項3に記載の超電導線材の製造方法。
  5.  前記微結晶を設ける工程が、
     前記酸化物超電導材料の微結晶を含む接合材を予め作製する接合材作製工程と、
     予め作製された前記接合材を、前記接合面の前記酸化物超電導膜上に配置する接合材配置工程とを備えている請求項1に記載の超電導線材の製造方法。
  6.  前記接合材作製工程が、
     接合材生成用の基材上に、前記酸化物超電導材料を構成する金属の有機化合物を含む溶液を塗布して塗膜を形成する塗膜形成工程と、
     前記塗膜を熱処理することにより熱分解して、前記酸化物超電導材料の前駆体を仮焼膜として形成する仮焼熱処理工程と、
     前記仮焼膜を、1~100%の酸素濃度雰囲気下、前記仮焼膜の分解温度以上の温度で熱処理することにより、前記仮焼膜を分解して前記酸化物超電導材料の微結晶を生成させる仮焼膜分解工程と、
     生成された微結晶を、前記接合材生成用の基材から剥がすことにより前記接合材を作製する剥離工程とを備えている請求項5に記載の超電導線材の製造方法。
  7.  前記金属の有機化合物として、フッ素を含まない有機金属化合物を用いる請求項6に記載の超電導線材の製造方法。
  8.  前記接合層を構成する酸化物超電導材料が、前記超電導線材の前記酸化物超電導膜を構成する酸化物超電導材料と同じ温度、もしくは、より低い温度で結晶が成長する酸化物超電導材料である請求項1~請求項7のいずれか1項に記載の超電導線材の製造方法。
  9.  前記接合層に、Ag、Au、Ptの何れかの粒子を含有させる請求項1~請求項8のいずれか1項に記載の超電導線材の製造方法。
  10.  前記加熱接合工程において、前記微結晶の一部が液相を経由して成長するように設定する請求項1~請求項9のいずれか1項に記載の超電導線材の製造方法。
  11.  前記加熱接合工程において、前記微結晶の30質量%以下が液相を経由して成長するように設定する請求項10に記載の超電導線材の製造方法。
  12.  前記微結晶を設ける工程において、前記接合面の前記酸化物超電導膜上に点在するように前記微結晶を設ける請求項1~請求項11のいずれか1項に記載の超電導線材の製造方法。
  13.  前記接合面の面積の10%以上の空隙が形成されるように、前記微結晶を設ける請求項12に記載の超電導線材の製造方法。
  14.  前記接合層における非c軸配向の超電導材料の占める割合が、c軸配向の超電導材料および非c軸配向の超電導材料の合計に対して10~95体積%である請求項1~請求項13のいずれか1項に記載の超電導線材の製造方法。
  15.  前記接合層と前記酸化物超電導膜との界面における前記c軸配向超電導材料の面積が、前記超電導線材の前記超電導層の断面積の10倍以上である請求項1~請求項14に記載の超電導線材の製造方法。
  16.  前記接合層を形成する前記酸化物超電導材料は、REBCO系の酸化物超電導材料である請求項1~請求項15に記載の超電導線材の製造方法。
  17.  前記接合層として、イットリア安定化ジルコニアを含む接合層を形成する請求項16に記載の超電導線材の製造方法。
  18.  酸化物超電導膜を有する2本の超電導線材の端部に位置する酸化物超電導膜同士を跨ぐように貼り付けられた状態で加熱されることにより、前記2本の超電導線材を接合して長尺化させる超電導線材接合用部材であって、
     前記酸化物超電導膜に貼り付けられる接合面上に、酸化物超電導材料の微結晶が設けられている超電導線材接合用部材。
  19.  前記微結晶が、
     前記接合面上に、酸化物超電導材料を構成する金属の有機化合物を含む溶液を塗布して塗膜を形成する塗膜形成工程と、
     前記塗膜を熱処理することにより熱分解して、前記酸化物超電導材料の前駆体を仮焼膜として形成する仮焼熱処理工程と、
     前記仮焼膜を、1~100%の酸素濃度雰囲気下、前記仮焼膜の分解温度以上の温度で熱処理することにより、前記仮焼膜を分解して前記酸化物超電導材料の微結晶を生成させる仮焼膜分解工程と
    を経て作製されている請求項18に記載の超電導線材接合用部材。
  20.  請求項5に記載の超電導線材の製造方法において用いられる前記酸化物超電導材料の微結晶を含む接合材。
PCT/JP2016/053182 2015-02-12 2016-02-03 超電導線材の製造方法および超電導線材接合用部材 WO2016129469A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020177022386A KR102096697B1 (ko) 2015-02-12 2016-02-03 초전도 선재의 제조 방법 및 초전도 선재 접합용 부재
EP16749113.3A EP3258471B1 (en) 2015-02-12 2016-02-03 Superconducting wire material production method and superconducting wire material joining member
JP2016574752A JP6675590B2 (ja) 2015-02-12 2016-02-03 超電導線材の製造方法および超電導線材接合用部材
CN201680010056.2A CN107210099B (zh) 2015-02-12 2016-02-03 用于制造超导线材的方法和超导线材接合构件
US15/547,813 US10706991B2 (en) 2015-02-12 2016-02-03 Method for producing a superconducting wire material lengthened

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015025326 2015-02-12
JP2015-025326 2015-02-12

Publications (1)

Publication Number Publication Date
WO2016129469A1 true WO2016129469A1 (ja) 2016-08-18

Family

ID=56614747

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053182 WO2016129469A1 (ja) 2015-02-12 2016-02-03 超電導線材の製造方法および超電導線材接合用部材

Country Status (6)

Country Link
US (1) US10706991B2 (ja)
EP (1) EP3258471B1 (ja)
JP (2) JP6675590B2 (ja)
KR (1) KR102096697B1 (ja)
CN (1) CN107210099B (ja)
WO (1) WO2016129469A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018211766A1 (ja) * 2017-05-19 2018-11-22 住友電気工業株式会社 超電導線材、超電導コイル、超電導マグネット及び超電導機器
WO2018211764A1 (ja) * 2017-05-19 2018-11-22 住友電気工業株式会社 超電導線材、超電導コイル、超電導マグネットおよび超電導機器
WO2019074095A1 (ja) * 2017-10-12 2019-04-18 株式会社フジクラ 酸化物超電導線材の接続構造体
CN110582815A (zh) * 2017-05-19 2019-12-17 住友电气工业株式会社 超导线、超导线圈、超导磁体和超导设备
KR20200004813A (ko) 2017-05-15 2020-01-14 고쿠리쓰 겐큐 가이하쓰 호징 리가가쿠 겐큐소 초전도 마그넷
WO2020161909A1 (ja) * 2019-02-08 2020-08-13 住友電気工業株式会社 超電導線材接続構造
JP2021068583A (ja) * 2019-10-23 2021-04-30 住友電気工業株式会社 超電導線材接続構造
JP7342310B2 (ja) 2019-05-28 2023-09-12 国立大学法人東北大学 電源装置、超伝導装置、超伝導デバイス、及び超伝導デバイスの製造方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015219956A1 (de) * 2015-10-14 2017-04-20 Bruker Hts Gmbh Supraleiterstruktur zur Verbindung von Bandleitern, insbesondere mit einer gewellt oder gezackt verlaufenden Naht
JP2018142409A (ja) * 2017-02-27 2018-09-13 古河電気工業株式会社 超電導線材の接続構造
JP6904875B2 (ja) * 2017-10-13 2021-07-21 株式会社フジクラ 酸化物超電導線材の接続構造および酸化物超電導線材の接続方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279028A (ja) * 1992-03-31 1993-10-26 Ngk Insulators Ltd 希土類系超電導性組成物及びその製造方法
JP2001155566A (ja) * 1999-12-01 2001-06-08 Internatl Superconductivity Technology Center 超電導体の接合方法及び超電導体接合部材

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3434021A (en) 1967-01-13 1969-03-18 Rca Corp Insulated gate field effect transistor
JPH1167523A (ja) * 1997-08-21 1999-03-09 Toshiba Corp 酸化物超電導線材の接続方法、酸化物超電導コイル装置およびそれを用いた超電導装置
US6383989B2 (en) * 2000-06-21 2002-05-07 The Regents Of The University Of California Architecture for high critical current superconducting tapes
JP4810268B2 (ja) 2006-03-28 2011-11-09 株式会社東芝 超電導線材の接続方法及び超電導線材
US20100210468A1 (en) 2008-08-04 2010-08-19 Haigun Lee Method for joining second-generation high-temperature superconducting wires by melting diffusion
JP5400416B2 (ja) 2009-02-20 2014-01-29 中部電力株式会社 超電導線材
JP5568361B2 (ja) 2010-04-16 2014-08-06 株式会社フジクラ 超電導線材の電極部接合構造、超電導線材、及び超電導コイル
JP5615616B2 (ja) * 2010-07-27 2014-10-29 昭和電線ケーブルシステム株式会社 テープ状酸化物超電導体及びその製造方法
JP5828299B2 (ja) 2012-05-08 2015-12-02 住友電気工業株式会社 高温超電導薄膜線材の接合方法および高温超電導薄膜線材
EP3104374B1 (en) * 2014-02-04 2019-12-18 Riken Low-resistance connection body for high-temperature superconducting wire material and connection method
JP6371395B2 (ja) * 2014-08-12 2018-08-08 国立研究開発法人理化学研究所 高温超伝導多芯テープ線、その製造方法、および製造装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05279028A (ja) * 1992-03-31 1993-10-26 Ngk Insulators Ltd 希土類系超電導性組成物及びその製造方法
JP2001155566A (ja) * 1999-12-01 2001-06-08 Internatl Superconductivity Technology Center 超電導体の接合方法及び超電導体接合部材

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3258471A4 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200004813A (ko) 2017-05-15 2020-01-14 고쿠리쓰 겐큐 가이하쓰 호징 리가가쿠 겐큐소 초전도 마그넷
WO2018211766A1 (ja) * 2017-05-19 2018-11-22 住友電気工業株式会社 超電導線材、超電導コイル、超電導マグネット及び超電導機器
WO2018211764A1 (ja) * 2017-05-19 2018-11-22 住友電気工業株式会社 超電導線材、超電導コイル、超電導マグネットおよび超電導機器
CN110582815A (zh) * 2017-05-19 2019-12-17 住友电气工业株式会社 超导线、超导线圈、超导磁体和超导设备
KR20200009011A (ko) 2017-05-19 2020-01-29 스미토모 덴키 고교 가부시키가이샤 초전도 선재, 초전도 코일, 초전도 마그넷 및 초전도 기기
CN110582815B (zh) * 2017-05-19 2021-01-01 住友电气工业株式会社 超导线、超导线圈、超导磁体和超导设备
US11715586B2 (en) 2017-05-19 2023-08-01 Sumitomo Electric Industries, Ltd. Superconducting wire, superconducting coil, superconducting magnet, and superconducting device
WO2019074095A1 (ja) * 2017-10-12 2019-04-18 株式会社フジクラ 酸化物超電導線材の接続構造体
JP2019075201A (ja) * 2017-10-12 2019-05-16 株式会社フジクラ 酸化物超電導線材の接続構造
WO2020161909A1 (ja) * 2019-02-08 2020-08-13 住友電気工業株式会社 超電導線材接続構造
JP7342310B2 (ja) 2019-05-28 2023-09-12 国立大学法人東北大学 電源装置、超伝導装置、超伝導デバイス、及び超伝導デバイスの製造方法
JP2021068583A (ja) * 2019-10-23 2021-04-30 住友電気工業株式会社 超電導線材接続構造

Also Published As

Publication number Publication date
JPWO2016129469A1 (ja) 2017-11-24
CN107210099A (zh) 2017-09-26
EP3258471B1 (en) 2020-09-30
JP6675590B2 (ja) 2020-04-01
CN107210099B (zh) 2019-04-12
JP6804050B2 (ja) 2020-12-23
US20180025812A1 (en) 2018-01-25
US10706991B2 (en) 2020-07-07
EP3258471A4 (en) 2018-02-21
KR20170117414A (ko) 2017-10-23
KR102096697B1 (ko) 2020-04-02
EP3258471A1 (en) 2017-12-20
JP2020057607A (ja) 2020-04-09

Similar Documents

Publication Publication Date Title
WO2016129469A1 (ja) 超電導線材の製造方法および超電導線材接合用部材
JP5697845B2 (ja) 高温超電導体ワイヤのためのアーキテクチャ
KR101242007B1 (ko) 고온 초전도체 적층 와이어용의 양면 접합부
US20070179063A1 (en) Fabrication of sealed high temperature superconductor wires
JP2009507358A (ja) 高温超電導ワイヤ及びコイル
JP2011165568A (ja) 酸化物超電導線材及び酸化物超電導線材の製造方法
JP6324202B2 (ja) 超電導線材の接続構造、接続方法及び超電導線材
JP2011134610A (ja) 超電導接続構造体および超電導線材の接続方法、超電導コイル装置
CN105684103B (zh) 氧化物超导线材及氧化物超导线材的制造方法
JPWO2017057483A1 (ja) 超電導線材の接続構造
JP6258775B2 (ja) 超電導線材の接続構造及び接続方法
JP6356046B2 (ja) 超電導線材の接続構造、超電導線材及び接続方法
WO2015166936A1 (ja) 超電導線材の接続構造、接続方法及び超電導線材
JP2013064194A (ja) 複合酸化物膜及びその製造方法
JP2011018596A (ja) 超電導線材の製造方法および超電導線材の接続方法
JP2012022882A (ja) 酸化物超電導導体用基材及びその製造方法と酸化物超電導導体及びその製造方法
JP2005001935A (ja) 酸化物薄膜の製造方法
JP2016149248A (ja) 超電導線材の製造方法および超電導線材
JP2006236652A (ja) 安定化層付き酸化物超電導線材とその製造方法
JP5556410B2 (ja) 酸化物超電導薄膜の製造方法
JP5764421B2 (ja) 酸化物超電導導体
JP2010123433A (ja) Re123超電導薄膜線材の製造方法およびre123超電導薄膜線材
JP2011096593A (ja) 酸化物超電導薄膜の製造方法
WO2020161909A1 (ja) 超電導線材接続構造
JP4732162B2 (ja) 酸化物超電導導体とその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16749113

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016574752

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15547813

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2016749113

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177022386

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE