WO2016129273A1 - Method for manufacturing enzyme electrode, and enzyme electrode - Google Patents

Method for manufacturing enzyme electrode, and enzyme electrode Download PDF

Info

Publication number
WO2016129273A1
WO2016129273A1 PCT/JP2016/000677 JP2016000677W WO2016129273A1 WO 2016129273 A1 WO2016129273 A1 WO 2016129273A1 JP 2016000677 W JP2016000677 W JP 2016000677W WO 2016129273 A1 WO2016129273 A1 WO 2016129273A1
Authority
WO
WIPO (PCT)
Prior art keywords
enzyme electrode
binding molecule
group
enzyme
carbon material
Prior art date
Application number
PCT/JP2016/000677
Other languages
French (fr)
Japanese (ja)
Inventor
松彦 西澤
雄大 小川
Original Assignee
国立大学法人東北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東北大学 filed Critical 国立大学法人東北大学
Priority to JP2016574667A priority Critical patent/JPWO2016129273A1/en
Publication of WO2016129273A1 publication Critical patent/WO2016129273A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/88Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/16Biochemical fuel cells, i.e. cells in which microorganisms function as catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for producing an enzyme electrode and an enzyme electrode.
  • An electrode in which an enzyme is immobilized on an electrode material is known as a core component that determines the electrochemical performance of a biosensor or biobattery.
  • Biosensors are already used as indispensable tools for measurement in the medical, food, and environmental fields, and biocells (biofuel cells) are used in this field as an extremely safe power source that is friendly to living organisms and the environment. Future practical application is expected in the future.
  • an enzyme that catalyzes a redox reaction that accompanies exchange of electrons is usually used.
  • These enzymes oxidize and reduce organic molecules, which are sensing targets in biosensors and fuel in biocells, and generate electric currents in the above devices, so that electrical information and information can be obtained from the presence and / or amount of organic molecules. It functions as a transducer that obtains energy.
  • nanocarbons such as carbon nanotubes (CNT) and fine carbon materials such as particulate carbon have been used in recent years (Patent Documents 1 and 2 and Non-Patent Document 1). reference).
  • the conventional enzyme electrode production method inevitably includes a plurality of steps, so that the overall process becomes complicated and extra production costs are generated (Patent Document 1). 2).
  • the enzyme electrode manufactured by the conventional method for manufacturing an enzyme electrode it is difficult to obtain the uniformity of enzyme adsorption to the carbon material, and it is difficult to obtain the reproducibility of the performance of the enzyme electrode (Patent Document 1, 2), and there is room for improvement in that the carbon material such as CNT is likely to collapse or the enzyme leaks out and the structure of the enzyme electrode is low in stability (see Non-Patent Document 1).
  • an object of the present invention is to produce an enzyme electrode simply and at low cost.
  • the present inventor solved the above problems by applying and drying a mixture of an oxidoreductase and a carbon material on an electrode substrate in a one-step process. The inventors have found that this is possible and have completed the present invention.
  • the gist of the present invention is as follows.
  • the method for producing an enzyme electrode of the present invention is characterized in that an enzyme electrode containing a carbon material and an oxidoreductase is obtained by applying the carbon material to a substrate under conditions where the oxidoreductase is present.
  • oxidoreductase refers to an enzyme that catalyzes an oxidation reaction and / or an enzyme that catalyzes a reduction reaction.
  • an enzyme electrode of the present invention it is possible to include an electrode forming step of forming the enzyme electrode.
  • an electrode forming step of forming the enzyme electrode it is preferable to use a printing technique in the electrode forming step.
  • a suspension adjustment step of adjusting a suspension containing the carbon material and the oxidoreductase, and a suspension for applying the suspension to the substrate It is preferable that an application process is included.
  • a binding molecule A that binds the carbon materials and a binding molecule B that binds the carbon material and the oxidoreductase in addition to the oxidoreductase, a binding molecule A that binds the carbon materials and a binding molecule B that binds the carbon material and the oxidoreductase. It is preferable that the condition further includes at least one binding molecule selected from the group. At this time, the binding molecule is preferably the binding molecule A, and more preferably the binding molecule A and the binding molecule B.
  • the method for producing an enzyme electrode of the present invention includes a freeze-drying step in which trehalose is further present in addition to the oxidoreductase, and the enzyme electrode is freeze-dried.
  • the enzyme electrode of the present invention is selected from the group consisting of the carbon material, the oxidoreductase, a binding molecule A that binds the carbon materials, and a binding molecule B that binds the carbon material and the oxidoreductase. At least one binding molecule.
  • the binding molecule is preferably the binding molecule A, and more preferably the binding molecule A and the binding molecule B.
  • the enzyme electrode of the present invention preferably further contains trehalose.
  • the enzyme electrode of the present invention is preferably lyophilized.
  • the binding molecule A is at least one selected from the group consisting of a small molecule or polymer having an aromatic group, and a fluorine-substituted hydrocarbon.
  • it is at least one selected from the group consisting of polyvinylimidazole (PVI), poly (sodium 4-styrenesulfonate), and Nafion (registered trademark).
  • the binding molecule B has a small molecule having an aromatic group and at least one selected from the group consisting of an N-hydroxysuccinimide ester group, an aldehyde group, an epoxy group, a maleimide group, a carbodiimide group, and a hydrazide group, or It is preferably a polymer, and more preferably at least one selected from the group consisting of 1-pyrenebutyric acid N-hydroxysuccinimide ester (PBSE) and N-benzoyloxysuccinimide.
  • PBSE 1-pyrenebutyric acid N-hydroxysuccinimide ester
  • an enzyme electrode can be produced easily and at low cost.
  • FIG. (A) is a figure which shows the result of the output performance measurement by cyclic voltammetry of the enzyme electrode of Example 5
  • (b) is the figure which shows the result of output performance measurement by the chronoamperometry of the enzyme electrode of Example 5.
  • FIG. (A) is a figure which shows the result of the output performance measurement by the cyclic voltammetry of the enzyme electrode of Example 6,
  • (b) shows the result of the output performance measurement by the chronoamperometry of the enzyme electrode of Example 6.
  • FIG. (A) is a figure which shows the result of the output performance measurement by cyclic voltammetry of the enzyme electrode of Example 7
  • (b) is the result of the output performance measurement by chronoamperometry of the enzyme electrode of Example 7.
  • FIG. (A) is a figure which shows the result of the output performance measurement by cyclic voltammetry of the enzyme electrode of Example 8
  • (b) is the result of the output performance measurement by chronoamperometry of the enzyme electrode of Example 8.
  • FIG. (A) is a figure which shows the result of the output performance measurement by the cyclic voltammetry of the enzyme electrode of Example 9
  • (b) is the figure of the output performance measurement by the chronoamperometry of the enzyme electrode of Example 9.
  • FIG. (A) is a figure which shows the result of the output performance measurement by the cyclic voltammetry of the enzyme electrode of Example 10
  • (b) is the figure which shows the result of the output performance measurement by the chronoamperometry of the enzyme electrode of Example 10.
  • the method for producing an enzyme electrode according to an embodiment of the present invention includes applying a carbon material to a substrate under conditions where an oxidoreductase is present. And obtaining an enzyme electrode containing a carbon material and an oxidoreductase.
  • FIG. 1 shows an outline of the manufacturing method of the present embodiment.
  • a suspension containing a carbon material and an oxidoreductase is prepared, and this suspension is applied (described later), and a powder containing the carbon material and the oxidoreductase is prepared.
  • the powder can be applied to the base material, or a paste-like sol containing a carbon material and an oxidoreductase can be prepared, and the sol can be applied to the base material.
  • a carbon material such as nanocarbon or particulate carbon is formed into a porous structure, and then an enzyme solution is applied to the porous structure to thereby apply the enzyme to the carbon material.
  • Examples include a production method for adsorbing, a pretreatment step such as a degassing treatment or a surfactant treatment for carbon nanotubes, and then a production method for performing an enzyme inclusion step of immersing the pretreated carbon nanotubes in an enzyme solution. It is done.
  • these conventional manufacturing methods necessarily include a plurality of steps, the entire process becomes complicated and extra manufacturing costs are generated.
  • the application / drying of the mixture of the oxidoreductase and the carbon material on the electrode substrate can be performed in a single step, so that it is simple and low-cost.
  • the enzyme electrode can be manufactured with
  • the shape of the electrode is naturally determined according to the shape of the carbon material forming the skeleton of the electrode.
  • the manufacturing method of the present embodiment it is possible to include a step of forming an enzyme electrode (described later). In this respect, it is different from the conventional enzyme electrode manufacturing method.
  • an enzyme electrode can be formed by drafting a desired shape on the substrate and then applying the carbon material to the substrate in the presence of the enzyme according to the draft.
  • an enzyme electrode can be formed by forming a groove having a desired shape on a substrate and then applying a carbon material to the groove in the presence of an enzyme.
  • this process can also be performed using a printing technique.
  • an enzyme electrode is formed by applying a carbon material to a substrate so as to form a desired shape in the presence of an enzyme using a computer. be able to.
  • a binding molecule A that binds the carbon materials and a binding molecule B that binds the carbon material and the oxidoreductase include It is a condition that exists.
  • Both the binding molecule A and the binding molecule B exhibit the effect of stabilizing the electrode structure in the solution (described later).
  • the following effects can be obtained particularly under the condition that the binding molecule B that binds the carbon material and the oxidoreductase exists.
  • the method of applying and drying a mixture of oxidoreductase and carbon material on an electrode substrate in a single step has great significance in the production of enzyme electrodes, but has been almost studied so far. There wasn't.
  • the binding molecule B is used in the production method of the present embodiment, the risk of inactivation of the oxidoreductase during production can be reduced, and the effect of the present invention of producing an enzyme electrode simply and at low cost can be achieved. Easy to obtain.
  • both the binding molecule A and the binding molecule B are present.
  • the binding molecule A and the binding molecule A are not limited to this. Conditions under which at least one binding molecule selected from the group consisting of the binding molecules B is present are preferable conditions, and it is preferable that the binding molecule A is present rather than the binding molecule B (described later).
  • a suspension containing a carbon material and an oxidoreductase By using the suspension, the method for producing the enzyme electrode of the present invention can be easily carried out.
  • a carbon material, an oxidoreductase, and optionally a binding molecule are added to water to prepare a suspension.
  • Suspension methods include stirring with a stirrer, pipetting with a pipette or syringe, stirring by shaking (shaking) a container containing the suspension, such as a mixer, and a suspension using a rod-like device. Stirring by stirring can be mentioned.
  • the carbon material and the oxidoreductase can be brought into an environment suitable for the enzyme electrode to exhibit activity without substantially performing ultrasonic treatment on the suspension.
  • the application may be performed by hand using a spatula or the like, or by using a printing technique by a machine.
  • printing technologies include a type of press that uses a printing machine to directly or indirectly apply a sheet to a plate and applies pressure to the plate to print, and a type that does not use a plate (inkjet printing, etc.).
  • a press is preferable because the suspension has a certain viscosity.
  • the plate used in the press include a relief plate, a planographic plate, an intaglio plate, and a stencil plate (used for screen printing).
  • the carbon material content in the suspension may be 0.01 to 5 mg / mL, and preferably 0.1 to 1 mg / mL.
  • the content of the oxidoreductase in the suspension may be 0.05 to 50 mg / mL, and preferably 0.5 to 10 mg / mL.
  • the content of the binding molecule A in the suspension may be 0.005 to 5% by weight, and preferably 0.01 to 1% by weight.
  • the content of the binding molecule B in the suspension may be 1 to 100 mM, and preferably 2 to 200 mM.
  • the viscosity of the suspension is preferably 1 Pa ⁇ s or more, and preferably 20 Pa ⁇ s or more from the viewpoint of facilitating application to the substrate and facilitating application using a printing technique. Is more preferably 1000 Pa ⁇ s or less, more preferably 100 Pa ⁇ s or less.
  • the electrode forming step described above is included in the suspension applying step as shown in FIG.
  • the enzyme electrode may optionally be freeze-dried (lyophilization step), for example, following the electrode forming step described above.
  • the enzyme electrode can be impregnated with liquid nitrogen and then placed in a freeze dryer and dried under reduced pressure.
  • the trehalose content in the aforementioned suspension may be 1 to 30% by weight, preferably 5 to 20% by weight, for example, 10% by weight.
  • Carbon material examples include nanocarbons such as carbon nanotubes (hereinafter also referred to as CNT), graphene, and fullerene; particulate carbon such as ketjen black (activated carbon particles) and carbon fibers; and These mixtures etc. are mentioned. These may be used alone or in combination of two or more.
  • CNT carbon nanotubes
  • ketjen black activate carbon particles
  • carbon fibers carbon fibers
  • the CNT may be either a single-wall CNT (SWCNT) or a multi-wall CNT (MWCNT).
  • SWCNT single-wall CNT
  • MWCNT multi-wall CNT
  • Specific examples of SWCNT include CoMoCAT (registered trademark) (manufactured by South West Nano Technologies), and specific examples of MWCNT.
  • An example is Baytubes (registered trademark) (manufactured by Bayer Material Science).
  • the CNT is preferably SWCNT from the viewpoint of improving the electrical conductivity of the enzyme electrode and increasing the specific surface area of the electrode substrate.
  • the average length of CNTs may be 50 nm or more, preferably 1 ⁇ m or more, and may be 2 mm or less from the viewpoint of giving high conductivity to the enzyme electrode and giving high mechanical strength to the electrode structure,
  • the thickness is preferably 5 ⁇ m or less.
  • the average diameter of CNTs may be 0.5 nm or more, preferably 1 nm or more, and may be 1 ⁇ m or less.
  • the thickness is preferably 200 nm or less.
  • the specific surface area of CNT is preferably 10 m 2 / g or more, more preferably 600 m 2 / g or more, and may be 2000 m 2 / g or less. , 1000 m 2 / g or less is preferable.
  • the SWCNT production method is not particularly limited, and includes a chemical vapor synthesis method (CVD method), an arc discharge method, a laser ablation method, and the like.
  • the growth method is preferred.
  • the super-growth method is a method in which a raw material compound and a carrier gas are supplied onto a substrate having a catalyst layer for producing CNTs on the surface, and CNT is synthesized by chemical vapor deposition (CVD).
  • CVD chemical vapor deposition
  • the catalyst layer is formed on the surface of the base material by a wet process, and a gas mainly composed of acetylene is used as a raw material gas, and the units that perform the formation process, the growth process, and the cooling process are connected.
  • a gas mainly composed of acetylene is used as a raw material gas, and the units that perform the formation process, the growth process, and the cooling process are connected.
  • the average particle size of the particulate carbon may be 10 nm or more, and may be 1 ⁇ m or less.
  • Examples of the enzyme that catalyzes the oxidation reaction used in the production method of the present embodiment include fructose dehydrogenase (D-Fructose Dehydrogenase, FDH), glucose oxidase (Glucose Oxydase, GOD), glucose dehydrogenase (Glucose Dehydrogenase, GDH), Examples include oxidoreductases such as oxidase, alcohol dehydrogenase, lactate oxidase, and lactate dehydrogenase. Fructose dehydrogenase (FDH) is preferred because it has resistance to pH and does not require a mediator.
  • These enzymes are supported on a cathode (anode) in a biobattery including an enzyme electrode. These may be used alone or in combination of two or more.
  • the enzyme that catalyzes the reduction reaction used in the production method of this embodiment include bilirubin oxidase (Bilirubin Oxidase, BOD), laccase, Cu efflux oxidase (Cueo), ascorbate oxidase, and the like. From the standpoint of resistance to chloride ions and the like, bilirubin oxidase (BOD) is preferred.
  • BOD bilirubin Oxidase
  • laccase laccase
  • Ascorbate oxidase and the like.
  • bilirubin oxidase (BOD) is preferred.
  • These enzymes are supported on the anode (cathode) in a biocell including an enzyme electrode. These may be used alone or in combination of two or more.
  • the base material used in the manufacturing method of the present embodiment is not particularly limited, and plastic, metal, carbon, ceramic, glass, paper, wood, and a molded body using these materials (for example, plate, cloth) , Sticks, strings, fibers, films, other solid materials, etc.). Moreover, what has previously arrange
  • binding molecule used in the production method of the present embodiment, at least one binding molecule selected from the group consisting of a binding molecule A that binds carbon materials to each other and a binding molecule B that binds a carbon material and an oxidoreductase. It is. Both the binding molecule A and the binding molecule B exhibit an effect of stabilizing the structure of the electrode. For example, the structure of the electrode can be maintained even in a wet environment.
  • the binding molecule it is preferable to use the binding molecule A rather than the binding molecule B from the viewpoint of efficiently obtaining the effect of the present invention. From the viewpoint of obtaining the effect of the present invention more efficiently, the binding molecule A and the binding molecule are used. More preferably, both B are used.
  • the binding molecule A that binds the carbon materials may be a substituted or unsubstituted saturated or unsaturated aliphatic or aromatic hydrocarbon, and a ⁇ - ⁇ interaction ( ⁇ - ⁇ with the surface of the carbon material).
  • a molecule that exhibits a binding force by stacking is preferred.
  • Specific examples of molecules exhibiting a binding force due to ⁇ - ⁇ interaction with the surface of a carbon material include aromatic groups (phenyl group, naphthyl group, pyrenyl group, phenanthrenyl group) that are likely to cause ⁇ - ⁇ interaction.
  • examples of the polymer include polyolefin and polyether.
  • the weight average molecular weight of the polymer may be 500 to 500,000, and preferably 5000 to 50,000.
  • aliphatic hydrocarbon a fluorine-substituted hydrocarbon is preferable, and examples thereof include Nafion (registered trademark).
  • binding molecule A polyvinyl imidazole (PVI), poly (sodium 4-styrenesulfonate), and Nafion (registered trademark) are preferable from the viewpoint of water solubility and availability, and high output is obtained. From the viewpoint, PVI and poly (sodium 4-styrenesulfonate) are particularly preferable.
  • the binding molecule A has an effect of stabilizing the structure of the electrode. These may be used alone or in combination of two or more.
  • PVI allows ⁇ - ⁇ interaction with CNTs in aqueous solution. More specifically, PVI is highly water-soluble and exhibits the effect of increasing the dispersibility in water by physical adsorption between the imidazole group and the carbon material.
  • poly (sodium 4-styrenesulfonate) also has the effect of causing physical adsorption between the phenyl group and the carbon material and enhancing the adhesion between the carbon materials.
  • the binding molecule B that binds the carbon material and the oxidoreductase is a functional group (amino) present in the side chain of the amino acid constituting the enzyme while exhibiting a binding force due to ⁇ - ⁇ interaction with the surface of the carbon material.
  • a functional group amino
  • Group, hydroxyl group, carboxyl group, etc. is preferably a molecule that can be covalently bonded to an enzyme.
  • N-hydroxysuccinimide ester having the aforementioned aromatic group It is preferably a small molecule or a polymer having a group, an aldehyde group, an epoxy group, a maleimide group, a carbodiimide group, a hydrazide group, etc., and more specifically, 1-Pyrenebutyric acid N-hydroxysuccinimide ester (1-pyrenebutyric acid N -Hydroxysuccinimide ester) (PBSE), N-benzoyloxys Cincinimide, 4,4 ′-[(8,16-Dihydro-8,16-dioxodibenzo [a, j] perylene-2,10-diyl) dioxy] dibutylic acid di (N-succinimidyl ester) is preferred.
  • PBSE 1-Pyrenebutyric acid N-hydroxysuccinimide ester
  • PBSE 1-pyrenebutyric acid N -Hyd
  • PBSE and N-benzoyloxysuccinimide are particularly preferable, and the binding molecule B also has an effect of stabilizing the structure of the electrode. These may be used alone or in combination of two or more.
  • PBSE immobilizes the enzyme on the surface of the carbon material by reacting the N-hydroxysuccinimide ester group with the amino group of the enzyme while causing physical adsorption between the pyrenyl group and the carbon material.
  • N-benzoyloxysuccinimide the phenyl group physically adsorbs to the carbon material, and the succinimide ester group immobilizes the enzyme on the surface of the carbon material.
  • the binding molecule A is an osmium complex (Os (bpy) 2 Cl) (wherein bpy represents bipyridine) represented by the following formula instead of the aforementioned PVI.
  • Modified PVI PVI in which osmium is bonded at the 3-position of the imidazole part in a part of the side chain of PVI
  • the osmium complex represented by the above formula can function as a mediator with respect to an enzyme (for example, GOD) that requires a mediator (coenzyme) among the enzymes that catalyze the oxidation reaction described above.
  • GOD enzyme
  • coenzyme mediator
  • electrons generated by GOD oxidizing glucose are transferred to the osmium complex portion, and the electrons are transferred to the carbon material. Therefore, when PVI-Os is used as the binding molecule A, the range of enzymes that catalyze the oxidation reaction that can be used in the production method of the present embodiment can be expanded.
  • water examples include ultrapure water.
  • Trehalose used in the production method of the present embodiment is a kind of non-reducing disaccharide in which two glucose molecules are ⁇ , ⁇ -1, 1 linked, and has extremely high hydrophilicity.
  • Trehalose is widely present in nature and is not only used as an energy source in organisms such as algae, bacteria, fungi, yeasts, insects, and invertebrates, but also stress from the outside world (dry, frozen) , High osmotic pressure, heat, etc.).
  • a high-concentration (1M) trehalose solution with an enzyme electrode containing an oxidoreductase and then freeze-drying the enzyme electrode, the higher-order structure is destroyed when the oxidoreductase is frozen and thawed. Therefore, loss of catalytic activity can be prevented.
  • the hydroxyl group of trehalose is responsible for hydrogen bonds with the enzyme instead of water molecules during water sublimation, preventing the destruction of the higher-order structure of the enzyme, and the trehalose molecules concentrated during the water sublimation process This is probably because the enzyme was protected.
  • the enzyme electrode according to an embodiment of the present invention includes a carbon material, an oxidoreductase, a binding molecule A that binds the carbon materials, and the carbon material and the oxidation. And at least one binding molecule selected from the group consisting of binding molecules B that bind to a reductase.
  • the enzyme electrode of the present embodiment may be manufactured by the method for manufacturing an enzyme electrode according to the embodiment of the present invention.
  • the enzyme electrode of the present embodiment includes a base material used in the manufacturing method of the above-described present embodiment, but the enzyme electrode of the present invention is not limited to this, and does not include the base material. Also good.
  • an enzyme electrode manufactured by a conventional enzyme electrode manufacturing method a carbon material such as nanocarbon or particulate carbon is formed into a porous structure, and then an enzyme solution is applied to the porous structure.
  • sucks an enzyme to a carbon material by this is mentioned.
  • this enzyme electrode has a tendency that it is difficult to obtain the uniformity of enzyme adsorption to the carbon material, and it is difficult to obtain the reproducibility of the performance of the enzyme electrode.
  • the enzyme electrode manufactured by the manufacturing method of the present embodiment it is possible to sufficiently spread the enzyme solution in the gaps between the carbon materials during the manufacturing, so that the enzyme can be uniformly adsorbed on the carbon material. The performance of the enzyme electrode can be obtained with good reproducibility.
  • an enzyme electrode manufactured by a conventional enzyme electrode manufacturing method a pellet shape manufactured by a manufacturing method in which a mixture obtained by mixing enzyme powder and CNT powder is pressed (pressed) under pressure.
  • the enzyme electrode is also included.
  • this enzyme electrode has a high risk of collapse of a carbon material such as CNT and leakage of the enzyme, and the stability of the structure of the enzyme electrode tends to be low.
  • the stability of the structure of the enzyme electrode is achieved by the action of the binding molecules existing between the carbon materials and / or between the carbon material and the oxidoreductase. Can be increased.
  • the details of the carbon material, oxidoreductase, binding molecule A, and binding molecule B constituting the enzyme electrode of the present embodiment may be as described in the method for manufacturing the enzyme electrode of the present embodiment.
  • the content of the carbon material may be 0.1 to 10% by weight, with the whole enzyme electrode being 100% by weight, and 0.5 to 5% by weight. % Is preferred.
  • the content of the oxidoreductase may be 0.1 to 20% by weight, preferably 1 to 10% by weight, with the whole enzyme electrode being 100% by weight.
  • the content of the binding molecule A may be 0.1 to 10% by weight, preferably 0.5 to 5% by weight, with the whole enzyme electrode being 100% by weight.
  • the content of the binding molecule B may be 0.1 to 20% by weight with 100% by weight of the whole enzyme electrode, and preferably 1 to 10% by weight.
  • the enzyme electrode of this embodiment is preferably lyophilized, and the water content of the enzyme electrode of this embodiment in the lyophilized state may be 10% by weight or less, with the whole enzyme electrode being 100% by weight. It is preferably not more than wt%, and preferably not more than 1 wt%.
  • the enzyme electrode of the present embodiment preferably further contains trehalose.
  • the trehalose content in the enzyme electrode of the present embodiment in a dry state may be 10 to 98% by weight, preferably 70 to 95% by weight, with the whole enzyme electrode being 100% by weight.
  • Enzyme electrodes used in biosensors and biocells are usually disposable, and therefore need to be produced inexpensively with a small number of processes. Advantages in terms of production efficiency and cost obtained by the method for producing an enzyme electrode of the present embodiment are great. In particular, since the enzyme electrode manufacturing method of the present embodiment can be applied to printing technology, it can be integrated with the manufacturing process of printable electronics that is currently progressing rapidly. This will greatly contribute to the expansion of usage.
  • the enzyme electrode of the present embodiment can be suitably used as, for example, a core part of a biosensor or a bio battery in the medical, food, and environmental fields.
  • Example 1 Production of enzyme electrode A-1. Electrode material SGCNT (average length: 200 ⁇ m, provided by AIST Nanotube Research Center) was used as the carbon material. As an oxidoreductase, fructose dehydrogenase (D-fructose dehydrogenase (FDH), derived from Gluconobacter, EC number: 1.1.99.11, 20 U / mg, manufactured by Toyobo Co., Ltd.), an enzyme that catalyzes an oxidation reaction. Using. A ceramic plate-like member was used as the substrate. As the binding molecule A, synthesized polyvinyl imidazole (PVI) (molecular weight: about 60000) was used.
  • PVI polyvinyl imidazole
  • binding molecule B 1-pyrenebutyric acid N-hydroxysuccinimide ester (PBSE) (product number: 457078, manufactured by Sigma Aldrich) was used.
  • water ultrapure water was used.
  • trehalose 1 trehalose dihydrate (product number: 204-18451, manufactured by Wako Pure Chemical Industries, Ltd.) was used.
  • the buffer solution used in this example was prepared by the following procedure.
  • 50 mM citrate-phosphate buffer (McIVaine buffer solution, MAC buffer, pH 5.0): 0.1 M citrate solution and 0.2 M Na 2 HPO 4 solution were prepared using deionized water, 0
  • a 50 mM MAC buffer was obtained by mixing 242.5 mL of 0.1 M citric acid solution and 257.5 mL of 0.2 M Na 2 HPO 4 solution.
  • 50 mM phosphate buffer solution PBS buffer, pH 7.0
  • 0.1M KH 2 PO 4 solution is prepared using deionized water, and 14.5 mL of 2M NaOH solution is added to 500 mL of this solution. Thereafter, the solution was diluted to 1000 mL with distilled water to obtain 50 mM PBS buffer. In the following, these buffers were appropriately diluted and used.
  • A-2 Preparation of enzyme electrode and lyophilization 25 mM MAC buffer (pH 5.0) and PVI (final concentration (the final concentration refers to the concentration in the dispersion solution at the time of application to the substrate. The same applies hereinafter). : 0.1 wt%), 1 trehalose dihydrate (final concentration: 10.0 wt%), SGCNT (final concentration: 1 mg / mL) in this order, and sonicating the solution for 10 minutes By doing so, SGCNT was dispersed in the solution. Next, 1 M PBSE DMSO solution was added to the dispersion solution so that the final concentration of PBSE was 20 mM, and this solution was mixed by 50 tappings.
  • the mixed solution was allowed to stand for 1 hour to cause physical adsorption between the pyrenyl group of PBSE and SGCNT, and SGCNT was modified with PBSE. Thereafter, a 100 mg / mL FDH solution was prepared using a 50 mM MAC buffer. This FDH solution was added to the dispersion solution so that the final concentration of FDH was 5 mg / mL, and this solution was mixed by 50 tappings. Thereafter, the mixed solution was allowed to stand for 1 hour, and the N-hydroxysuccinimide ester group of PBSE was reacted with the amino group of the enzyme to immobilize the enzyme on the SGCNT surface.
  • the plastic plate is flash-frozen by immersing it in liquid nitrogen for about 5 minutes, and then 5 hours or more using a freeze dryer (product number: ALPHA 2-4 LSC, manufactured by CHRiST (Kubota Corporation)). Dried. Thus, a freeze-dried enzyme electrode was obtained. The weight of the enzyme electrode was about 0.56 mg.
  • Example 1 is indicated by a solid line, and control is indicated by a broken line).
  • the horizontal axis represents the sweep potential (V), and the vertical axis represents the current density (mA / cm 2 ).
  • V sweep potential
  • mA / cm 2 current density
  • Example 1 The results of chronoamperometry of Example 1 are shown in FIG.
  • the elapsed time (hour) is shown on the horizontal axis, and the current density (mA / cm 2 ) is shown on the vertical axis.
  • An increase in current density was observed for a few minutes immediately after immersing the enzyme electrode in the measurement solution. This seems to indicate that the enzyme involved in the reaction increased as the dry enzyme electrode was wetted with the fructose solution. Thereafter, although the current density gradually decreased, it kept 1 mA / cm 2 or more (80% or more of the initial current) even after 10 hours. This is probably because the binding molecule prevented the enzyme from leaking out of the electrode and the structure of the enzyme electrode was stable.
  • Example 2 The influence of the presence or absence of binding molecules PVI and PBSE on the output performance of the enzyme electrode was examined.
  • Example 2 Instead of using both PVI and PBSE as binding molecules, an enzyme electrode was prepared and the output performance was measured by chronoamperometry, as in Example 1, except that only PVI was used.
  • Example 3 Instead of using both PVI and PBSE as binding molecules, an enzyme electrode was prepared and the output performance was measured by chronoamperometry, as in Example 1, except that neither PVI nor PBSE was used. did.
  • Example 2 The results of Examples 2 and 3 are shown in FIG.
  • the elapsed time (hour) is shown on the horizontal axis, and the current density (mA / cm 2 ) is shown on the vertical axis.
  • the results of Example 1 are also shown again.
  • Example 1 is indicated by a solid line
  • Example 2 is indicated by an alternate long and short dash line
  • Example 3 is indicated by an intersection.
  • the collapse of the structure of the enzyme electrode is not observed by visual observation, and it is considered that the binding between the CNTs is maintained.
  • the activity of the enzyme electrode is smaller than that in Example 1, and the degree of decrease in activity over time is also large.
  • Example 2 it is considered that a large amount of enzyme leaked because CNT and FDH were not immobilized on the carbon material surface.
  • Example 3 immediately after the enzyme electrode was immersed in the measurement solution, it was observed that the dry enzyme electrode was wetted with the fructose solution, and an increase in current density was observed as shown in FIG. . However, as shown in FIG. 4, no current was observed in about 1 minute thereafter. In the case of Example 3, it was found by visual observation that the structure of the enzyme electrode collapsed as the fructose solution was wetted, and CNTs and the like were dissipated in the solution.
  • Examples 4 to 6 The output performance of the enzyme electrode when a material other than SGCNT was used as the carbon material was examined. The measurement was performed twice for each of Examples 4 to 6 and each control.
  • Example 4 Example 1 except that single-walled carbon nanotubes (average length: 1 ⁇ m, Single-Walled Carbon Nanotube (SWCNT), product number: 704121, manufactured by South West Nano Technologies) were used instead of SGCNT as the carbon material.
  • an enzyme electrode was prepared, and the output performance was measured by cyclic voltammetry and chronoamperometry.
  • Example 5 In the case of Example 1 except that multi-walled carbon nanotubes (average length: 5 ⁇ m, Multi-Walled Carbon Nanotube (MWCNT), product number: C70P, manufactured by Bayer Material Science) were used instead of SGCNT as the carbon material.
  • MWCNT Multi-Walled Carbon Nanotube
  • an enzyme electrode was prepared, and the output performance was measured by cyclic voltammetry and chronoamperometry.
  • An enzyme electrode was prepared in the same manner as in Example 1 except that Ketjenblack (Ketjenblack (KB), product number: EC-600JD, manufactured by Ketjen Black International) was used instead of SGCNT as the carbon material. The output performance was measured by cyclic voltammetry and chronoamperometry.
  • Each of Examples 4 to 6 is indicated by a solid line, and only the CV result of Example 5 is indicated by a broken line for control).
  • (a) shows the sweep potential (V) on the horizontal axis, the current density (mA / cm 2 ) on the vertical axis, and (b) shows the elapsed time (hours) on the horizontal axis.
  • the current density (mA / cm 2 ) is shown on the vertical axis.
  • Example 4 SWCNT
  • Example 5 MWCNT
  • the current density was maintained at 0.6 mA / cm 2 or more even after 10 hours from the immersion of the enzyme electrode in the measurement solution, and the effect of the binding molecule was clearly observed (FIG. 5 (b) and (Refer FIG.6 (b)).
  • Example 6 KB
  • the collapse of the structure of the enzyme electrode was not observed by visual observation, indicating the effect of the binding molecule.
  • Example 6 from the value of the current density and the state of the passage of time, the activity of the enzyme electrode is maintained to some extent even after 10 hours from the immersion of the enzyme electrode in the measurement solution. It was found that the structural stability was inferior to that of the CNTs of Examples 4 and 5 (see FIGS. 7A and 7B).
  • Example 4 SGCNT in which the most excellent performance was obtained, since the average length is extremely long as 200 ⁇ m and the aspect ratio is high, a structure in which the carbon materials are entangled with each other is formed, and the binding molecule is It is considered that the effect can be exhibited effectively.
  • Example 5 using CNT having a relatively short average length and Example 6 using fine carbon particles it is considered that bonding between carbon materials is relatively difficult to occur.
  • the binding molecules (PVI and PBSE) bind to the surface of the carbon material, particularly to the graphite structure, by the ⁇ - ⁇ interaction, the effect of the binding molecule is hardly exhibited in KB which is a carbon material having low crystallinity. it is conceivable that.
  • Example 7 Instead of using PVI as the binding molecule A, an enzyme electrode was prepared in the same manner as in Example 1 except that poly (sodium 4-styrenesulfonate) (product number: 243051, manufactured by Sigma Aldrich) was used. The output performance was measured by cyclic voltammetry and chronoamperometry. The results of cyclic voltammetry and chronoamperometry of Example 7 are shown in FIG. 8 (a) and FIG. 8 (b), respectively (Example 7 is indicated by a solid line. Note that only the CV result is controlled. Is indicated by a broken line).
  • the horizontal axis indicates the sweep potential (V)
  • the vertical axis indicates the current density (mA / cm 2 )
  • the horizontal axis indicates the elapsed time (hours)
  • the vertical axis indicates the current.
  • the density (mA / cm 2 ) is indicated.
  • the maximum current density was 0.12 mA / cm 2 , and although the activity of the enzyme electrode was lower than that of Example 1, it was shown to function as an electrode. Moreover, even after 10 hours, the current density was maintained at 0.07 mA / cm 2 or more, indicating that the durability of the enzyme electrode can be maintained.
  • Example 8 An enzyme electrode was prepared in the same manner as in Example 1 except that Nafion (registered trademark) (product number: 527122, Nafion perfluorinate resin solution 20 wt%) was used instead of PVI as the binding molecule A. Electrodes were prepared, and output performance was measured by cyclic voltammetry and chronoamperometry. The results of cyclic voltammetry and chronoamperometry of Example 8 are shown in FIG. 9 (a) and FIG. 9 (b), respectively (Example 8 is indicated by a solid line. Note that only the CV result is controlled. Is indicated by a broken line).
  • the horizontal axis indicates the sweep potential (V)
  • the vertical axis indicates the current density (mA / cm 2 )
  • the horizontal axis indicates the elapsed time (hours)
  • the vertical axis indicates the current.
  • the density (mA / cm 2 ) is indicated.
  • the maximum current density was 0.18 mA / cm 2 , and although the activity of the enzyme electrode was lower than that of Example 1, it was shown to function as an electrode. Moreover, even after 10 hours, the current density was maintained at 0.15 mA / cm 2 or more, indicating that the durability of the enzyme electrode can be maintained.
  • Example 9 An enzyme electrode was prepared in the same manner as in Example 1 except that N-benzoyloxysuccinimide (product number: 774324, manufactured by Sigma Aldrich) was used instead of PBSE as the binding molecule B. The output performance was measured by cyclic voltammetry and chronoamperometry. The results of cyclic voltammetry and chronoamperometry of Example 9 are shown in FIG. 10 (a) and FIG. 10 (b), respectively (Example 9 is indicated by a solid line. Note that only the CV result is controlled. Is indicated by a broken line).
  • the horizontal axis indicates the sweep potential (V)
  • the vertical axis indicates the current density (mA / cm 2 )
  • the horizontal axis indicates the elapsed time (hours)
  • the vertical axis indicates the current.
  • the density (mA / cm 2 ) is indicated.
  • the maximum current density was 1.5 mA / cm 2 , indicating that the activity of the enzyme electrode was as high as in Example 1.
  • the current density was maintained at 0.7 mA / cm 2 or more, indicating that the durability of the enzyme electrode can be maintained.
  • Example 10 A case where a binding molecule having a mediator part was used was examined. The measurement was performed twice for Example 10 and the control.
  • FIG. 11 (a) and 11 (b) Example 10 is indicated by a solid line. Only the CV result is indicated by a broken line for control). Show).
  • the horizontal axis indicates the sweep potential (V)
  • the vertical axis indicates the current density (mA / cm 2 )
  • the horizontal axis indicates the elapsed time (hours).
  • the vertical axis represents current density (mA / cm 2 ).
  • FIG. 11A in Example 10, a maximum current density of 0.25 mA / cm 2 (at a sweep potential of 0.6 V) was observed. Further, as shown in FIG.
  • Example 11 (b) also in Example 10, as in Example 1, an increase in current density was observed for several minutes immediately after the enzyme electrode was immersed in the measurement solution. Although the density gradually decreased, about 80% of the initial current density was maintained even after 10 hours. From this result, it was shown that PVI-Os can exert the function of a mediator of GOD in addition to the function as the binding molecule A.
  • an enzyme electrode can be produced easily and at low cost.
  • the enzyme electrode of the present invention produced by the production method of the present invention can be suitably used, for example, as a core part of a biosensor or a bio battery (biofuel cell) in the medical, food and environmental fields.

Abstract

A method for manufacturing an enzyme electrode characterized in that a substrate is imparted with a carbon material in the presence of an oxidoreductase whereby an enzyme electrode containing the carbon material and the oxidoreductase is obtained. An enzyme electrode characterized in containing a carbon material, an oxidoreductase, and at least one binding molecule selected from the group consisting of a binding molecule A for binding carbon materials to each other and a binding molecule B for binding the carbon material and the oxidoreductase to each other.

Description

酵素電極の製造方法及び酵素電極Method for producing enzyme electrode and enzyme electrode
 本発明は、酵素電極の製造方法及び酵素電極に関する。 The present invention relates to a method for producing an enzyme electrode and an enzyme electrode.
 バイオセンサやバイオ電池の電気化学性能を決定するコア部品として、酵素を電極素材に固定化した電極(酵素電極)が知られている。
 バイオセンサは、既に、医療、食品、環境分野における計測に必須のツールとして用いられており、また、バイオ電池(バイオ燃料電池)は、同分野において、生体、環境に優しく、極めて安全な電源として今後の早急な実用化が期待されている。
An electrode (enzyme electrode) in which an enzyme is immobilized on an electrode material is known as a core component that determines the electrochemical performance of a biosensor or biobattery.
Biosensors are already used as indispensable tools for measurement in the medical, food, and environmental fields, and biocells (biofuel cells) are used in this field as an extremely safe power source that is friendly to living organisms and the environment. Future practical application is expected in the future.
 酵素電極の酵素には、通常、電子の授受を伴う酸化還元反応を触媒する酵素が用いられる。これらの酵素は、バイオセンサにおけるセンシング対象やバイオ電池における燃料である有機物分子を酸化還元して、上記装置に電流を発生させることによって、有機物分子の存在及び/又はその量から電気的な情報やエネルギーを得るトランスデューサーとして機能する。 As the enzyme of the enzyme electrode, an enzyme that catalyzes a redox reaction that accompanies exchange of electrons is usually used. These enzymes oxidize and reduce organic molecules, which are sensing targets in biosensors and fuel in biocells, and generate electric currents in the above devices, so that electrical information and information can be obtained from the presence and / or amount of organic molecules. It functions as a transducer that obtains energy.
 一方、酵素電極の電極素材には、近年、カーボンナノチューブ(CNT)を代表とするナノカーボンや、微粒子状炭素等の微細な炭素材料が用いられている(特許文献1、2、非特許文献1参照)。 On the other hand, as an electrode material for enzyme electrodes, nanocarbons such as carbon nanotubes (CNT) and fine carbon materials such as particulate carbon have been used in recent years ( Patent Documents 1 and 2 and Non-Patent Document 1). reference).
特開2007-035437号公報JP 2007-035437 A 国際公開第2012/002290号International Publication No. 2012/002290
 しかしながら、上記従来の酵素電極の製造方法では、複数段階の工程を必然的に含むこととなるため、全体的な工程が煩雑となり、余分な製造コストが発生するという問題があった(特許文献1、2参照)。
 また、上記従来の酵素電極の製造方法により製造される酵素電極では、炭素材料への酵素吸着の均一性が得られにくく、酵素電極の性能の再現性が得られにくいという点(特許文献1、2参照)や、CNT等の炭素材料の崩壊や酵素の漏出の虞が高く、酵素電極の構造の安定性が低いという点(非特許文献1参照)で、改善の余地があった。
However, the conventional enzyme electrode production method inevitably includes a plurality of steps, so that the overall process becomes complicated and extra production costs are generated (Patent Document 1). 2).
Moreover, in the enzyme electrode manufactured by the conventional method for manufacturing an enzyme electrode, it is difficult to obtain the uniformity of enzyme adsorption to the carbon material, and it is difficult to obtain the reproducibility of the performance of the enzyme electrode (Patent Document 1, 2), and there is room for improvement in that the carbon material such as CNT is likely to collapse or the enzyme leaks out and the structure of the enzyme electrode is low in stability (see Non-Patent Document 1).
 そこで、本発明は、簡便に且つ低コストで酵素電極を製造することを目的とする。 Therefore, an object of the present invention is to produce an enzyme electrode simply and at low cost.
 本発明者は、上記課題を解決するため鋭意研究を行った結果、酸化還元酵素と炭素材料との混合物の電極基材上における塗布・乾燥を、一段階のプロセスで行えば、上記課題を解決できることを見出して、本発明を完成させるに至った。 As a result of diligent research to solve the above problems, the present inventor solved the above problems by applying and drying a mixture of an oxidoreductase and a carbon material on an electrode substrate in a one-step process. The inventors have found that this is possible and have completed the present invention.
 本発明の要旨は以下の通りである。
 本発明の酵素電極の製造方法は、炭素材料を、酸化還元酵素が存在する条件下で、基材に付与することによって、炭素材料及び酸化還元酵素を含む酵素電極を得ることを特徴とする。
 なお、本願明細書において「酸化還元酵素」とは、酸化反応を触媒する酵素及び/又は還元反応を触媒する酵素を指すものとする。
The gist of the present invention is as follows.
The method for producing an enzyme electrode of the present invention is characterized in that an enzyme electrode containing a carbon material and an oxidoreductase is obtained by applying the carbon material to a substrate under conditions where the oxidoreductase is present.
In the present specification, “oxidoreductase” refers to an enzyme that catalyzes an oxidation reaction and / or an enzyme that catalyzes a reduction reaction.
 本発明の酵素電極の製造方法では、前記酵素電極を成形する、電極成形工程を含むことが可能であり、ここで、前記電極成形工程において、印刷技術を用いることが好ましい。 In the method for producing an enzyme electrode of the present invention, it is possible to include an electrode forming step of forming the enzyme electrode. Here, it is preferable to use a printing technique in the electrode forming step.
 本発明の酵素電極の製造方法では、前記炭素材料と前記酸化還元酵素とを含む懸濁液を調整する、懸濁液調整工程と、前記懸濁液を前記基材に塗布する、懸濁液塗布工程とを含むことが好ましい。 In the method for producing an enzyme electrode of the present invention, a suspension adjustment step of adjusting a suspension containing the carbon material and the oxidoreductase, and a suspension for applying the suspension to the substrate It is preferable that an application process is included.
 ここで、本発明の酵素電極の製造方法では、前記酸化還元酵素に加えて、前記炭素材料どうしを結合する結合分子A、及び前記炭素材料と前記酸化還元酵素とを結合する結合分子Bからなる群から選択される少なくとも1つの結合分子が更に存在する条件とすることが好ましい。
 このとき、前記結合分子は、前記結合分子Aであることが好ましく、前記結合分子A及び前記結合分子Bであることが更に好ましい。
Here, in the method for producing an enzyme electrode of the present invention, in addition to the oxidoreductase, a binding molecule A that binds the carbon materials and a binding molecule B that binds the carbon material and the oxidoreductase. It is preferable that the condition further includes at least one binding molecule selected from the group.
At this time, the binding molecule is preferably the binding molecule A, and more preferably the binding molecule A and the binding molecule B.
 またここで、本発明の酵素電極の製造方法では、前記酸化還元酵素に加えて、トレハロースが更に存在する条件とし、酵素電極を凍結乾燥させる、凍結乾燥工程を含むことが好ましい。 Here, it is preferable that the method for producing an enzyme electrode of the present invention includes a freeze-drying step in which trehalose is further present in addition to the oxidoreductase, and the enzyme electrode is freeze-dried.
 本発明の酵素電極は、前記炭素材料と、前記酸化還元酵素と、前記炭素材料どうしを結合する結合分子A、及び前記炭素材料と前記酸化還元酵素とを結合する結合分子Bからなる群から選択される少なくとも1つの結合分子と、を含むことを特徴とする。
 このとき、前記結合分子は、前記結合分子Aであることが好ましく、前記結合分子A及び前記結合分子Bであることが更に好ましい。
The enzyme electrode of the present invention is selected from the group consisting of the carbon material, the oxidoreductase, a binding molecule A that binds the carbon materials, and a binding molecule B that binds the carbon material and the oxidoreductase. At least one binding molecule.
At this time, the binding molecule is preferably the binding molecule A, and more preferably the binding molecule A and the binding molecule B.
 ここで、本発明の酵素電極は、トレハロースを更に含むことが好ましい。また、本発明の酵素電極は、凍結乾燥されていることが好ましい。 Here, the enzyme electrode of the present invention preferably further contains trehalose. The enzyme electrode of the present invention is preferably lyophilized.
 本発明の酵素電極の製造方法及び本発明の酵素電極において、前記結合分子Aは、芳香族基を有する小分子又は高分子、フッ素置換された炭化水素からなる群から選択される少なくとも1つであることが好ましく、ポリビニルイミダゾール(PVI)、ポリ(4-スチレンスルホン酸ナトリウム)、ナフィオン(登録商標)からなる群から選択される少なくとも1つであることが更に好ましい。前記結合分子Bは、芳香族基を有しつつ、N-ヒドロキシスクシンイミドエステル基、アルデヒド基、エポキシ基、マレイミド基、カルボジイミド基、ヒドラジド基からなる群から選択される少なくとも1つを有する小分子又は高分子であることが好ましく、1-ピレン酪酸N-ヒドロキシスクシンイミドエステル(PBSE)、N-ベンゾイルオキシスクシンイミドからなる群から選択される少なくとも1つであることが更に好ましい。 In the method for producing an enzyme electrode of the present invention and the enzyme electrode of the present invention, the binding molecule A is at least one selected from the group consisting of a small molecule or polymer having an aromatic group, and a fluorine-substituted hydrocarbon. Preferably, it is at least one selected from the group consisting of polyvinylimidazole (PVI), poly (sodium 4-styrenesulfonate), and Nafion (registered trademark). The binding molecule B has a small molecule having an aromatic group and at least one selected from the group consisting of an N-hydroxysuccinimide ester group, an aldehyde group, an epoxy group, a maleimide group, a carbodiimide group, and a hydrazide group, or It is preferably a polymer, and more preferably at least one selected from the group consisting of 1-pyrenebutyric acid N-hydroxysuccinimide ester (PBSE) and N-benzoyloxysuccinimide.
 本発明によれば、簡便に且つ低コストで酵素電極を製造することができる。 According to the present invention, an enzyme electrode can be produced easily and at low cost.
本発明の実施形態の酵素電極の製造方法の概要について示す図である。It is a figure shown about the outline | summary of the manufacturing method of the enzyme electrode of embodiment of this invention. 実施例1の酵素電極のサイクリックボルタンメトリーによる出力性能測定の結果を示す図である。It is a figure which shows the result of the output performance measurement by the cyclic voltammetry of the enzyme electrode of Example 1. 実施例1の酵素電極のクロノアンペロメトリーによる出力性能測定の結果を示す図である。It is a figure which shows the result of the output performance measurement by the chronoamperometry of the enzyme electrode of Example 1. 実施例2、3の酵素電極のクロノアンペロメトリーによる出力性能測定の結果を(実施例1の結果と共に)示す図である。It is a figure which shows the result of the output performance measurement by the chronoamperometry of the enzyme electrode of Example 2, 3 (together with the result of Example 1). (a)は、実施例4の酵素電極のサイクリックボルタンメトリーによる出力性能測定の結果を示す図であり、(b)は、実施例4の酵素電極のクロノアンペロメトリーによる出力性能測定の結果を示す図である。(A) is a figure which shows the result of the output performance measurement by cyclic voltammetry of the enzyme electrode of Example 4, (b) is the result of the output performance measurement by chronoamperometry of the enzyme electrode of Example 4. FIG. (a)は、実施例5の酵素電極のサイクリックボルタンメトリーによる出力性能測定の結果を示す図であり、(b)は、実施例5の酵素電極のクロノアンペロメトリーによる出力性能測定の結果を示す図である。(A) is a figure which shows the result of the output performance measurement by cyclic voltammetry of the enzyme electrode of Example 5, (b) is the figure which shows the result of output performance measurement by the chronoamperometry of the enzyme electrode of Example 5. FIG. (a)は、実施例6の酵素電極のサイクリックボルタンメトリーによる出力性能測定の結果を示す図であり、(b)は、実施例6の酵素電極のクロノアンペロメトリーによる出力性能測定の結果を示す図である。(A) is a figure which shows the result of the output performance measurement by the cyclic voltammetry of the enzyme electrode of Example 6, (b) shows the result of the output performance measurement by the chronoamperometry of the enzyme electrode of Example 6. FIG. (a)は、実施例7の酵素電極のサイクリックボルタンメトリーによる出力性能測定の結果を示す図であり、(b)は、実施例7の酵素電極のクロノアンペロメトリーによる出力性能測定の結果を示す図である。(A) is a figure which shows the result of the output performance measurement by cyclic voltammetry of the enzyme electrode of Example 7, (b) is the result of the output performance measurement by chronoamperometry of the enzyme electrode of Example 7. FIG. (a)は、実施例8の酵素電極のサイクリックボルタンメトリーによる出力性能測定の結果を示す図であり、(b)は、実施例8の酵素電極のクロノアンペロメトリーによる出力性能測定の結果を示す図である。(A) is a figure which shows the result of the output performance measurement by cyclic voltammetry of the enzyme electrode of Example 8, (b) is the result of the output performance measurement by chronoamperometry of the enzyme electrode of Example 8. FIG. (a)は、実施例9の酵素電極のサイクリックボルタンメトリーによる出力性能測定の結果を示す図であり、(b)は、実施例9の酵素電極のクロノアンペロメトリーによる出力性能測定の結果を示す図である。(A) is a figure which shows the result of the output performance measurement by the cyclic voltammetry of the enzyme electrode of Example 9, (b) is the figure of the output performance measurement by the chronoamperometry of the enzyme electrode of Example 9. FIG. (a)は、実施例10の酵素電極のサイクリックボルタンメトリーによる出力性能測定の結果を示す図であり、(b)は、実施例10の酵素電極のクロノアンペロメトリーによる出力性能測定の結果を示す図である。(A) is a figure which shows the result of the output performance measurement by the cyclic voltammetry of the enzyme electrode of Example 10, (b) is the figure which shows the result of the output performance measurement by the chronoamperometry of the enzyme electrode of Example 10. FIG.
 以下、図面を参照して、本発明の酵素電極の製造方法及び本発明の酵素電極の実施形態について詳細に例示説明する。 Hereinafter, with reference to the drawings, a method for producing an enzyme electrode of the present invention and an embodiment of the enzyme electrode of the present invention will be described in detail.
(酵素電極の製造方法)
 本発明の実施形態に係る酵素電極の製造方法(以下、「本実施形態の製造方法」ともいう。)は、炭素材料を、酸化還元酵素が存在する条件下で、基材に付与することによって、炭素材料及び酸化還元酵素を含む酵素電極を得ることを特徴とする。
 図1に、本実施形態の製造方法の概要について示す。
(Method for producing enzyme electrode)
The method for producing an enzyme electrode according to an embodiment of the present invention (hereinafter, also referred to as “the production method of the present embodiment”) includes applying a carbon material to a substrate under conditions where an oxidoreductase is present. And obtaining an enzyme electrode containing a carbon material and an oxidoreductase.
FIG. 1 shows an outline of the manufacturing method of the present embodiment.
 本実施形態の製造方法では、例えば、炭素材料と酸化還元酵素とを含む懸濁液を調製し、この懸濁液を塗布すること(後述)、炭素材料と酸化還元酵素とを含む粉末を調整し、これら粉末を基材に付与すること、炭素材料と酸化還元酵素とを含むペースト状のゾルを調整し、このゾルを基材に付与すること等によって行うことができる。 In the manufacturing method of the present embodiment, for example, a suspension containing a carbon material and an oxidoreductase is prepared, and this suspension is applied (described later), and a powder containing the carbon material and the oxidoreductase is prepared. The powder can be applied to the base material, or a paste-like sol containing a carbon material and an oxidoreductase can be prepared, and the sol can be applied to the base material.
 以下、本発明により得られる効果について記載する。
 従来の酵素電極の製造方法としては、ナノカーボンや微粒子状炭素等の炭素材料を多孔質の構造体に成形し、その後、この多孔質の構造体に酵素溶液を与えることによって炭素材料に酵素を吸着させる製造方法や、カーボンナノチューブに脱気処理や界面活性剤による処理等の前処理工程を行い、その後、前処理後のカーボンナノチューブを酵素溶液に浸漬する酵素包含工程を行う製造方法等が挙げられる。
 しかしながら、これらの従来の製造方法は、複数段階の工程を必然的に含むこととなるため、全体的な工程が煩雑となり、余分な製造コストが発生する。
 本実施形態の製造方法によれば、前述の通り、酸化還元酵素と炭素材料との混合物の電極基材上における塗布・乾燥を、一段階の工程で行うことができるため、簡便に且つ低コストで酵素電極を製造することができる。
Hereinafter, effects obtained by the present invention will be described.
As a conventional method for producing an enzyme electrode, a carbon material such as nanocarbon or particulate carbon is formed into a porous structure, and then an enzyme solution is applied to the porous structure to thereby apply the enzyme to the carbon material. Examples include a production method for adsorbing, a pretreatment step such as a degassing treatment or a surfactant treatment for carbon nanotubes, and then a production method for performing an enzyme inclusion step of immersing the pretreated carbon nanotubes in an enzyme solution. It is done.
However, since these conventional manufacturing methods necessarily include a plurality of steps, the entire process becomes complicated and extra manufacturing costs are generated.
According to the manufacturing method of the present embodiment, as described above, the application / drying of the mixture of the oxidoreductase and the carbon material on the electrode substrate can be performed in a single step, so that it is simple and low-cost. The enzyme electrode can be manufactured with
 また、上記従来の酵素電極の製造方法では、電極の骨格をなす炭素材料の形状に従って電極の形状も自ずと定まってしまう。一方、本実施形態の製造方法によれば、酵素電極を成形する工程(後述)を含めることが可能になる。この点、従来の酵素電極の製造方法とは一線を画している。 Also, in the above conventional method for producing an enzyme electrode, the shape of the electrode is naturally determined according to the shape of the carbon material forming the skeleton of the electrode. On the other hand, according to the manufacturing method of the present embodiment, it is possible to include a step of forming an enzyme electrode (described later). In this respect, it is different from the conventional enzyme electrode manufacturing method.
 本実施形態の製造方法では、図1に示すように、酵素電極を成形する、電極成形工程を含むことが可能である。なお、本発明の酵素電極の製造方法では、これに限定されることなく、電極成形工程を含んでいなくてもよい。 In the manufacturing method of this embodiment, as shown in FIG. 1, it is possible to include an electrode forming step of forming an enzyme electrode. In addition, in the manufacturing method of the enzyme electrode of this invention, it is not limited to this, The electrode shaping | molding process may not be included.
[[電極成形工程]]
 この工程では、例えば、基材上に所望の形状を下書きしておき、その後、この下書きに従って炭素材料を酵素存在下で基材に付与することによって、酵素電極を成形することができる。また、例えば、基材上に所望の形状の溝を形成しておき、その後、この溝に炭素材料を酵素存在下で付与することによって、酵素電極を成形することができる。
 更に、この工程は、印刷技術を用いて行うこともでき、例えば、コンピュータを用いて、炭素材料を酵素存在下で所望の形状をなすように基材に付与することによって、酵素電極を成形することができる。
[[Electrode forming step]]
In this step, for example, an enzyme electrode can be formed by drafting a desired shape on the substrate and then applying the carbon material to the substrate in the presence of the enzyme according to the draft. In addition, for example, an enzyme electrode can be formed by forming a groove having a desired shape on a substrate and then applying a carbon material to the groove in the presence of an enzyme.
Furthermore, this process can also be performed using a printing technique. For example, an enzyme electrode is formed by applying a carbon material to a substrate so as to form a desired shape in the presence of an enzyme using a computer. be able to.
 以下、図1に示す本実施形態の製造方法について更に詳細に例示説明する。 Hereinafter, the manufacturing method of this embodiment shown in FIG. 1 will be described in more detail.
 ここで、本実施形態の製造方法では、図1に示すように、酸化還元酵素に加えて、炭素材料どうしを結合する結合分子A、及び炭素材料と酸化還元酵素とを結合する結合分子Bが存在する条件としている。 Here, in the production method of the present embodiment, as shown in FIG. 1, in addition to the oxidoreductase, a binding molecule A that binds the carbon materials and a binding molecule B that binds the carbon material and the oxidoreductase include It is a condition that exists.
 上記結合分子A及び上記結合分子Bは共に、溶液中における電極の構造を安定化させる効果(後述)を示す。 Both the binding molecule A and the binding molecule B exhibit the effect of stabilizing the electrode structure in the solution (described later).
 また、本実施形態の製造方法において、特に、炭素材料と酸化還元酵素とを結合する結合分子Bが存在する条件とすれば、下記の効果を得ることができる。
 前述の通り、酸化還元酵素と炭素材料との混合物の電極基材上における塗布・乾燥を、一段階の工程で行う手法は、酵素電極の製造において大きな意義を有するが、これまで殆ど検討されてこなかった。
 上記手法としては、微細な炭素材料と酵素とを含む溶液を調製することが考えられる。
 ここで、単にこれらを混合した溶液を基材に塗布・乾燥させる場合、そもそも、カーボンナノチューブ等の微細な炭素材料の表面は疎水性であるため、炭素材料と酵素とは、吸着することなく、酵素電極を形成しない。また、これを踏まえて、炭素材料と酵素とを水中にて互いに吸着させた状態で含む溶液を調製することが考えられるが、炭素材料と酵素とを互いに吸着させるためには、炭素材料を界面活性剤溶液に超音波を与えながら浸漬する処理等を要することがあり、この場合、酵素は超音波処理により変性・失活してしまう。
 本実施形態の製造方法において上記結合分子Bを用いれば、製造中における酸化還元酵素の失活の虞を低減することができ、簡便に且つ低コストで酵素電極を製造するという本発明の効果が得られやすい。
Further, in the production method of the present embodiment, the following effects can be obtained particularly under the condition that the binding molecule B that binds the carbon material and the oxidoreductase exists.
As described above, the method of applying and drying a mixture of oxidoreductase and carbon material on an electrode substrate in a single step has great significance in the production of enzyme electrodes, but has been almost studied so far. There wasn't.
As the above method, it is conceivable to prepare a solution containing a fine carbon material and an enzyme.
Here, when a solution obtained by simply mixing these is applied to a substrate and dried, the surface of a fine carbon material such as a carbon nanotube is hydrophobic in the first place, so that the carbon material and the enzyme do not adsorb, Does not form an enzyme electrode. Based on this, it is conceivable to prepare a solution containing the carbon material and the enzyme adsorbed to each other in water. In order to adsorb the carbon material and the enzyme to each other, the carbon material is interfaced. In some cases, it is necessary to immerse the activator solution while applying ultrasonic waves. In this case, the enzyme is denatured and deactivated by the ultrasonic treatment.
If the binding molecule B is used in the production method of the present embodiment, the risk of inactivation of the oxidoreductase during production can be reduced, and the effect of the present invention of producing an enzyme electrode simply and at low cost can be achieved. Easy to obtain.
 なお、図1に示す本実施形態の製造方法では、結合分子A及び結合分子Bの両方が存在する条件としているが、本発明の製造方法では、これに限定されることなく、結合分子A及び結合分子Bからなる群から選択される少なくとも1つの結合分子が存在する条件が、好ましい条件となり、また、結合分子Bよりも結合分子Aが存在することが好ましい(後述)。 In the production method of the present embodiment shown in FIG. 1, both the binding molecule A and the binding molecule B are present. However, in the production method of the present invention, the binding molecule A and the binding molecule A are not limited to this. Conditions under which at least one binding molecule selected from the group consisting of the binding molecules B is present are preferable conditions, and it is preferable that the binding molecule A is present rather than the binding molecule B (described later).
 具体的には、本実施形態の製造方法では、炭素材料と酸化還元酵素とを含む懸濁液を用いることが好ましい。懸濁液を用いることによって、本発明の酵素電極の製造方法が実施しやすくなる。
 特に、この実施形態の製造方法では、図1に示すように、炭素材料と酸化還元酵素とを含む懸濁液を調整する懸濁液調整工程と、懸濁液を基材に塗布する懸濁液塗布工程とを含む。
Specifically, in the production method of the present embodiment, it is preferable to use a suspension containing a carbon material and an oxidoreductase. By using the suspension, the method for producing the enzyme electrode of the present invention can be easily carried out.
In particular, in the manufacturing method of this embodiment, as shown in FIG. 1, a suspension adjusting step for adjusting a suspension containing a carbon material and an oxidoreductase, and a suspension for applying the suspension to a substrate. A liquid coating process.
[[懸濁液調整工程]]
 この工程では、例えば、水中に、炭素材料と、酸化還元酵素と、任意選択的に結合分子とを加えて、懸濁液を調製する。
 懸濁させる手法としては、攪拌機を用いた撹拌、ピペットやシリンジによるピペッティング、ミキサー等の懸濁液を含む容器を揺らす(振盪させる)ことによる撹拌、棒状の機器等を用いて懸濁液をかき混ぜることによる撹拌等が挙げられる。このとき、懸濁液に超音波処理を実質的に行うことなく、炭素材料と酸化還元酵素とを酵素電極が活性を発揮するのに適した環境にすることができる。
[[Suspension adjustment process]]
In this step, for example, a carbon material, an oxidoreductase, and optionally a binding molecule are added to water to prepare a suspension.
Suspension methods include stirring with a stirrer, pipetting with a pipette or syringe, stirring by shaking (shaking) a container containing the suspension, such as a mixer, and a suspension using a rod-like device. Stirring by stirring can be mentioned. At this time, the carbon material and the oxidoreductase can be brought into an environment suitable for the enzyme electrode to exhibit activity without substantially performing ultrasonic treatment on the suspension.
[[懸濁液塗布工程]]
 この工程では、塗布は、例えば、ヘラ等を用いて手で行う手法、印刷技術を用いて機械で行う手法等が挙げられる。
 印刷技術としては、例えば、印刷機を用いて、版に直接又は間接的に用紙を当てて、ここに圧力をかけて印字するタイプのプレス、版を用いないタイプのプリント(インクジェットプリント等)が挙げられ、懸濁液はある程度の粘度を有するため、プレスが好ましい。なお、プレスにて用いられる版としては、凸版、平版、凹版、(スクリーン印刷等に用いる)孔版等が挙げられる。
[[Suspension application process]]
In this step, the application may be performed by hand using a spatula or the like, or by using a printing technique by a machine.
Examples of printing technologies include a type of press that uses a printing machine to directly or indirectly apply a sheet to a plate and applies pressure to the plate to print, and a type that does not use a plate (inkjet printing, etc.). For example, a press is preferable because the suspension has a certain viscosity. Examples of the plate used in the press include a relief plate, a planographic plate, an intaglio plate, and a stencil plate (used for screen printing).
 懸濁液における炭素材料の含有量としては、0.01~5mg/mLとしてよく、0.1~1mg/mLとすることが好ましい。
 懸濁液における酸化還元酵素の含有量としては、0.05~50mg/mLとしてよく、0.5~10mg/mLとすることが好ましい。
 懸濁液における結合分子Aの含有量としては、0.005~5重量%としてよく、0.01~1重量%とすることが好ましい。
 懸濁液における結合分子Bの含有量としては、1~100mMとしてよく、2~200mMとすることが好ましい。
 懸濁液の粘度としては、基材への塗布を容易にする観点、及び印刷技術を用いた塗布を容易にする観点から、1Pa・s以上であることが好ましく、20Pa・s以上であることが更に好ましく、また、1000Pa・s以下であることが好ましく、100Pa・s以下であることが更に好ましい。
The carbon material content in the suspension may be 0.01 to 5 mg / mL, and preferably 0.1 to 1 mg / mL.
The content of the oxidoreductase in the suspension may be 0.05 to 50 mg / mL, and preferably 0.5 to 10 mg / mL.
The content of the binding molecule A in the suspension may be 0.005 to 5% by weight, and preferably 0.01 to 1% by weight.
The content of the binding molecule B in the suspension may be 1 to 100 mM, and preferably 2 to 200 mM.
The viscosity of the suspension is preferably 1 Pa · s or more, and preferably 20 Pa · s or more from the viewpoint of facilitating application to the substrate and facilitating application using a printing technique. Is more preferably 1000 Pa · s or less, more preferably 100 Pa · s or less.
 なお、上記懸濁液調整工程及び上記懸濁液塗布工程を含む本実施形態の製造方法では、図1に示す通り、前述の電極成形工程は、懸濁液塗布工程に含まれる。 In addition, in the manufacturing method of this embodiment including the suspension adjusting step and the suspension applying step, the electrode forming step described above is included in the suspension applying step as shown in FIG.
[凍結乾燥工程]
 本実施形態の製造方法では、任意選択的に、例えば、前述の電極成形工程に次いで、酵素電極を凍結乾燥させてもよい(凍結乾燥工程)。
 この工程では、例えば、酵素電極を液体窒素に含浸した後、これを凍結乾燥機に入れて減圧条件下で乾燥させることによって行うことができる。
[Freeze drying process]
In the manufacturing method of the present embodiment, the enzyme electrode may optionally be freeze-dried (lyophilization step), for example, following the electrode forming step described above.
In this step, for example, the enzyme electrode can be impregnated with liquid nitrogen and then placed in a freeze dryer and dried under reduced pressure.
 ここで、本実施形態の製造方法では、図1に示すように、前述の懸濁液塗布工程において、酸化還元酵素に加えて、トレハロースが存在する条件としている。
 トレハロース存在下で酵素電極を凍結乾燥させれば、酸化還元酵素の凍結時及び融解時に触媒活性を失うことを防ぐ効果を得ることができる(後述)。
 前述の懸濁液におけるトレハロースの含有量としては、1~30重量%としてよく、5~20重量%とすることが好ましく、例えば、10重量%とすることができる。
Here, in the manufacturing method of this embodiment, as shown in FIG. 1, in the above-mentioned suspension application | coating process, it is set as the conditions where trehalose exists in addition to an oxidoreductase.
If the enzyme electrode is freeze-dried in the presence of trehalose, an effect of preventing loss of catalytic activity during freezing and thawing of the oxidoreductase can be obtained (described later).
The trehalose content in the aforementioned suspension may be 1 to 30% by weight, preferably 5 to 20% by weight, for example, 10% by weight.
 以下、本発明の実施形態に係る酵素電極の製造方法に用いられる各要素について詳細に記載する。 Hereinafter, each element used in the method for producing an enzyme electrode according to an embodiment of the present invention will be described in detail.
-炭素材料-
 本実施形態の製造方法において用いられる炭素材料としては、カーボンナノチューブ(以下、CNTともいう。)、グラフェン、フラーレン等のナノカーボン;ケッチェンブラック(活性炭粒子)、カーボンファイバ等の微粒子状炭素;及びこれらの混合物等が挙げられる。これらは、1種単独で用いてもよく、2種以上を組み合わせて併用してもよい。
-Carbon material-
Examples of the carbon material used in the manufacturing method of the present embodiment include nanocarbons such as carbon nanotubes (hereinafter also referred to as CNT), graphene, and fullerene; particulate carbon such as ketjen black (activated carbon particles) and carbon fibers; and These mixtures etc. are mentioned. These may be used alone or in combination of two or more.
 ナノカーボンとしては、CNTが好ましい。
 CNTは、単層CNT(SWCNT)及び多層CNT(MWCNT)のいずれであってもよく、SWCNTの具体例としては、CoMoCAT(登録商標)(South West Nano Technologies社製)が挙げられ、MWCNTの具体例としては、Baytubes(登録商標)(Bayer Material Science社製)が挙げられる。
 CNTは、酵素電極の導電率を向上させる観点、及び電極基材の比表面積を高くする観点から、SWCNTであることが好ましい。
As the nanocarbon, CNT is preferable.
The CNT may be either a single-wall CNT (SWCNT) or a multi-wall CNT (MWCNT). Specific examples of SWCNT include CoMoCAT (registered trademark) (manufactured by South West Nano Technologies), and specific examples of MWCNT. An example is Baytubes (registered trademark) (manufactured by Bayer Material Science).
The CNT is preferably SWCNT from the viewpoint of improving the electrical conductivity of the enzyme electrode and increasing the specific surface area of the electrode substrate.
 CNTの平均長さは、酵素電極に高い導電率を与える観点、及び電極構造に高い機械的強度を与える観点から、50nm以上としてよく、1μm以上とすることが好ましく、また、2mm以下としてよく、5μm以下とすることが好ましい。
 CNTの平均直径は、電極基材の比表面積を高めて、酵素電極に固定できる酵素量を増やす観点から、0.5nm以上としてよく、1nm以上とするのが好ましく、また、1μm以下としてよく、200nm以下とすることが好ましい。
 CNTの比表面積は、酵素電極に固定できる酵素量を増やす観点から、10m/g以上とすることが好ましく、600m/g以上とすることが更に好ましく、また、2000m/g以下としてよく、1000m/g以下とすることが好ましい。
The average length of CNTs may be 50 nm or more, preferably 1 μm or more, and may be 2 mm or less from the viewpoint of giving high conductivity to the enzyme electrode and giving high mechanical strength to the electrode structure, The thickness is preferably 5 μm or less.
From the viewpoint of increasing the specific surface area of the electrode substrate and increasing the amount of enzyme that can be immobilized on the enzyme electrode, the average diameter of CNTs may be 0.5 nm or more, preferably 1 nm or more, and may be 1 μm or less. The thickness is preferably 200 nm or less.
From the viewpoint of increasing the amount of enzyme that can be immobilized on the enzyme electrode, the specific surface area of CNT is preferably 10 m 2 / g or more, more preferably 600 m 2 / g or more, and may be 2000 m 2 / g or less. , 1000 m 2 / g or less is preferable.
 SWCNTの製造方法としては、特に限定されることなく、化学気相合成法(CVD法)、アーク放電法、レーザーアブレーション法等が挙げられ、特に、平均長さを比較的大きくする観点から、スーパーグロース法が好ましい。
 スーパーグロース法とは、表面にCNT製造用触媒層を有する基材上に、原料化合物及びキャリアガスを供給して、化学的気相成長法(CVD法)によりCNTを合成する際に、系内に微量の酸化剤を存在させることで、CNT製造用触媒層の触媒活性を飛躍的に向上させるという方法である(国際公開第2006/011655号参照)。この方法では、基材表面への触媒層の形成をウェットプロセスにより行い、原料ガスとしてアセチレンを主成分とするガスを用い、フォーメーション工程、成長工程及び冷却工程のそれぞれ行う各ユニットを連結してなる連続式のCNT製造装置を用いることによって、SWCNTを効率的に製造することができる。
 本願明細書では、スーパーグロース法により製造されたSWCNTを、特に、SGCNTともいう。
The SWCNT production method is not particularly limited, and includes a chemical vapor synthesis method (CVD method), an arc discharge method, a laser ablation method, and the like. In particular, from the viewpoint of relatively increasing the average length, The growth method is preferred.
The super-growth method is a method in which a raw material compound and a carrier gas are supplied onto a substrate having a catalyst layer for producing CNTs on the surface, and CNT is synthesized by chemical vapor deposition (CVD). In this method, the catalytic activity of the catalyst layer for producing CNTs is drastically improved by the presence of a small amount of oxidizing agent (see International Publication No. 2006/011655). In this method, the catalyst layer is formed on the surface of the base material by a wet process, and a gas mainly composed of acetylene is used as a raw material gas, and the units that perform the formation process, the growth process, and the cooling process are connected. By using a continuous CNT manufacturing apparatus, SWCNTs can be efficiently manufactured.
In the specification of the present application, SWCNT manufactured by the super-growth method is also particularly referred to as SGCNT.
 微粒子状炭素としては、ケッチェンブラックが好ましい。
 微粒子状炭素の平均粒径としては、10nm以上としてよく、1μm以下としてよい。
As the particulate carbon, ketjen black is preferable.
The average particle size of the particulate carbon may be 10 nm or more, and may be 1 μm or less.
-酸化還元酵素-
 本実施形態の製造方法において用いられる酸化反応を触媒する酵素としては、例えば、フルクトースデヒドロゲナーゼ(D-Fructose Dehydrogenase,FDH)、グルコースオキシダーゼ(Glucose Oxydase,GOD)、グルコースデヒドロゲナーゼ(Glucose Dehydrogenase,GDH)、アルコールオキシダーゼ、アルコールデヒドロゲナーゼ、乳酸オキシダーゼ、乳酸デヒドロゲナーゼ等の酸化還元酵素が挙げられる、特に、pHに対する耐性を有し、メディエータを必要としないという理由により、フルクトースデヒドロゲナーゼ(FDH)が好ましい。これらの酵素は、酵素電極を含むバイオ電池において陰極(アノード)に担持される。これらは、1種単独で用いてもよく、2種以上を組み合わせて併用してもよい。
 本実施形態の製造方法において用いられる還元反応を触媒する酵素としては、例えば、ビルリビンオキシダーゼ(Bilirubin Oxidase、BOD)、ラッカーゼ、Cu efflux oxidase(Cueo)、アスコルビン酸オキシダーゼ等が挙げられ、特に、pHや塩化物イオン等に対する耐性の観点から、ビリルビンオキシダーゼ(BOD)が好ましい。これらの酵素は、酵素電極を含むバイオ電池において陽極(カソード)に担持される。これらは、1種単独で用いてもよく、2種以上を組み合わせて併用してもよい。
-Redox enzyme-
Examples of the enzyme that catalyzes the oxidation reaction used in the production method of the present embodiment include fructose dehydrogenase (D-Fructose Dehydrogenase, FDH), glucose oxidase (Glucose Oxydase, GOD), glucose dehydrogenase (Glucose Dehydrogenase, GDH), Examples include oxidoreductases such as oxidase, alcohol dehydrogenase, lactate oxidase, and lactate dehydrogenase. Fructose dehydrogenase (FDH) is preferred because it has resistance to pH and does not require a mediator. These enzymes are supported on a cathode (anode) in a biobattery including an enzyme electrode. These may be used alone or in combination of two or more.
Examples of the enzyme that catalyzes the reduction reaction used in the production method of this embodiment include bilirubin oxidase (Bilirubin Oxidase, BOD), laccase, Cu efflux oxidase (Cueo), ascorbate oxidase, and the like. From the standpoint of resistance to chloride ions and the like, bilirubin oxidase (BOD) is preferred. These enzymes are supported on the anode (cathode) in a biocell including an enzyme electrode. These may be used alone or in combination of two or more.
-基材-
 本実施形態の製造方法において用いられる基材としては、特に限定されることなく、プラスチック、金属、炭素、セラミック、ガラス、紙、木材、これらの材料を用いてなる成形体(例えば、板、布、棒、紐、繊維、フィルム、その他固形物等)等が挙げられる。また、上記基材の表面に酵素電極以外の電極が予め配置されているものも基材としてよい。
-Base material-
The base material used in the manufacturing method of the present embodiment is not particularly limited, and plastic, metal, carbon, ceramic, glass, paper, wood, and a molded body using these materials (for example, plate, cloth) , Sticks, strings, fibers, films, other solid materials, etc.). Moreover, what has previously arrange | positioned electrodes other than an enzyme electrode on the surface of the said base material is good also as a base material.
-結合分子-
 本実施形態の製造方法において用いられる結合分子としては、炭素材料どうしを結合する結合分子A、及び炭素材料と酸化還元酵素とを結合する結合分子Bからなる群から選択される少なくとも1つの結合分子である。
 結合分子A及び結合分子Bは共に電極の構造を安定化させる効果を示し、例えば、湿潤環境下でも電極の構造を維持することが可能となる。結合分子としては、本発明の効果を効率的に得る観点から、結合分子Bよりも結合分子Aを用いることが好ましく、本発明の効果を更に効率的に得る観点から、結合分子A及び結合分子Bの両方を用いることが更に好ましい。
-Binding molecule-
As a binding molecule used in the production method of the present embodiment, at least one binding molecule selected from the group consisting of a binding molecule A that binds carbon materials to each other and a binding molecule B that binds a carbon material and an oxidoreductase. It is.
Both the binding molecule A and the binding molecule B exhibit an effect of stabilizing the structure of the electrode. For example, the structure of the electrode can be maintained even in a wet environment. As the binding molecule, it is preferable to use the binding molecule A rather than the binding molecule B from the viewpoint of efficiently obtaining the effect of the present invention. From the viewpoint of obtaining the effect of the present invention more efficiently, the binding molecule A and the binding molecule are used. More preferably, both B are used.
 炭素材料どうしを結合する結合分子Aとしては、置換又は非置換の飽和又は不飽和の脂肪族又は芳香族の炭化水素としてよく、炭素材料の表面との間でπ-π相互作用(π-πスタッキング)による結合力を示す分子であることが好ましい。
 炭素材料の表面との間でπ-π相互作用による結合力を示す分子としては、具体的には、π-π相互作用を生じやすい芳香族基(フェニル基、ナフチル基、ピレニル基、フェナントレニル基、アントラセニル基等の芳香族炭化水素基;イミダゾール基、ピラゾール基、オキサゾール基、チアゾール基、ピラジン基、キノリン、イソキノリン等の複素芳香族基)を有する小分子又は高分子であることが好ましい。ここで、高分子としては、ポリオレフィン、ポリエーテル等が挙げられる。高分子の重量平均分子量は、500~500000としてよく、5000~50000であることが好ましい。
 脂肪族の炭化水素としては、フッ素置換された炭化水素が好ましく、かかる例としては、ナフィオン(登録商標)が挙げられる。
 より具体的には、結合分子Aとしては、水溶性や入手容易性の観点から、ポリビニルイミダゾール(PVI)、ポリ(4-スチレンスルホン酸ナトリウム)、ナフィオン(登録商標)が好ましく、高い出力を得る観点から、PVI、ポリ(4-スチレンスルホン酸ナトリウム)が特に好ましい。
 結合分子Aは、電極の構造を安定化させる効果を有する。
 これらは、1種単独で用いてもよく、2種以上を組み合わせて併用してもよい。
 特に、PVIは、水溶液中においてCNTとの間でのπ-π相互作用を可能にする。より詳細には、PVIは、水溶性が高く、イミダゾール基と炭素材料との間の物理吸着により水への分散性を高める効果を示すのに加えて、凍結乾燥後の酵素電極において炭素材料どうしの接着性を高めて、電極の構造を安定化させる効果も示す。また、ポリ(4-スチレンスルホン酸ナトリウム)も、同様に、フェニル基と炭素材料との間の物理吸着を生じさせると共に、炭素材料どうしの接着性を高める効果を示す。
The binding molecule A that binds the carbon materials may be a substituted or unsubstituted saturated or unsaturated aliphatic or aromatic hydrocarbon, and a π-π interaction (π-π with the surface of the carbon material). A molecule that exhibits a binding force by stacking is preferred.
Specific examples of molecules exhibiting a binding force due to π-π interaction with the surface of a carbon material include aromatic groups (phenyl group, naphthyl group, pyrenyl group, phenanthrenyl group) that are likely to cause π-π interaction. And a small molecule or a polymer having an aromatic hydrocarbon group such as anthracenyl group; a heteroaromatic group such as imidazole group, pyrazole group, oxazole group, thiazole group, pyrazine group, quinoline and isoquinoline). Here, examples of the polymer include polyolefin and polyether. The weight average molecular weight of the polymer may be 500 to 500,000, and preferably 5000 to 50,000.
As the aliphatic hydrocarbon, a fluorine-substituted hydrocarbon is preferable, and examples thereof include Nafion (registered trademark).
More specifically, as binding molecule A, polyvinyl imidazole (PVI), poly (sodium 4-styrenesulfonate), and Nafion (registered trademark) are preferable from the viewpoint of water solubility and availability, and high output is obtained. From the viewpoint, PVI and poly (sodium 4-styrenesulfonate) are particularly preferable.
The binding molecule A has an effect of stabilizing the structure of the electrode.
These may be used alone or in combination of two or more.
In particular, PVI allows π-π interaction with CNTs in aqueous solution. More specifically, PVI is highly water-soluble and exhibits the effect of increasing the dispersibility in water by physical adsorption between the imidazole group and the carbon material. The effect of improving the adhesion of the electrode and stabilizing the electrode structure is also shown. Similarly, poly (sodium 4-styrenesulfonate) also has the effect of causing physical adsorption between the phenyl group and the carbon material and enhancing the adhesion between the carbon materials.
 炭素材料と酸化還元酵素とを結合する結合分子Bとしては、炭素材料の表面との間でπ-π相互作用による結合力を示しつつ、酵素を構成するアミノ酸側鎖に存在する官能基(アミノ基、ヒドロキシル基、カルボキシル基等)と反応することによって酵素との間で共有結合し得る分子であることが好ましく、具体的には、前述の芳香族基を有しつつ、N-ヒドロキシスクシンイミドエステル基、アルデヒド基、エポキシ基、マレイミド基、カルボジイミド基、ヒドラジド基等を有する小分子又は高分子であることが好ましく、より具体的には、1-Pyrenebutyric acid N-hydroxysuccinimide ester(1-ピレン酪酸N-ヒドロキシスクシンイミドエステル)(PBSE)、N-ベンゾイルオキシスクシンイミド、4,4’-[(8,16-Dihydro-8,16-dioxodibenzo[a,j]perylene-2,10-diyl)dioxy] dibutyric acid di(N-succinimidyl esterが好ましく、酵素活性への影響の観点から、PBSE、N-ベンゾイルオキシスクシンイミドが特に好ましい。結合分子Bも、電極の構造を安定化させる効果を有する。
 これらは、1種単独で用いてもよく、2種以上を組み合わせて併用してもよい。
 特に、PBSEは、ピレニル基が炭素材料との間の物理吸着を生じさせつつ、N-ヒドロキシスクシンイミドエステル基が酵素のアミノ基と反応することによって酵素を炭素材料表面に固定化する。また、N-ベンゾイルオキシスクシンイミドは、フェニル基が炭素材料と物理吸着しつつ、スクシンイミドエステル基が酵素を炭素材料表面に固定化する。
The binding molecule B that binds the carbon material and the oxidoreductase is a functional group (amino) present in the side chain of the amino acid constituting the enzyme while exhibiting a binding force due to π-π interaction with the surface of the carbon material. Group, hydroxyl group, carboxyl group, etc.), and is preferably a molecule that can be covalently bonded to an enzyme. Specifically, N-hydroxysuccinimide ester having the aforementioned aromatic group It is preferably a small molecule or a polymer having a group, an aldehyde group, an epoxy group, a maleimide group, a carbodiimide group, a hydrazide group, etc., and more specifically, 1-Pyrenebutyric acid N-hydroxysuccinimide ester (1-pyrenebutyric acid N -Hydroxysuccinimide ester) (PBSE), N-benzoyloxys Cincinimide, 4,4 ′-[(8,16-Dihydro-8,16-dioxodibenzo [a, j] perylene-2,10-diyl) dioxy] dibutylic acid di (N-succinimidyl ester) is preferred. From the viewpoint of influence, PBSE and N-benzoyloxysuccinimide are particularly preferable, and the binding molecule B also has an effect of stabilizing the structure of the electrode.
These may be used alone or in combination of two or more.
In particular, PBSE immobilizes the enzyme on the surface of the carbon material by reacting the N-hydroxysuccinimide ester group with the amino group of the enzyme while causing physical adsorption between the pyrenyl group and the carbon material. In N-benzoyloxysuccinimide, the phenyl group physically adsorbs to the carbon material, and the succinimide ester group immobilizes the enzyme on the surface of the carbon material.
 本実施形態の製造方法では、結合分子Aとして、前述のPVIの代わりに、下記式で表される、オスミウム錯体(Os(bpy)Cl)(式中、bpyは、ビピリジンを表す。)で修飾したPVI(PVIの側鎖の一部でオスミウムがイミダゾール部の3位において結合しているPVI)(以下、「PVI-Os」ともいう。)を用いることもできる。なお、式中のm及びnについて、特に限定されることなく、例えば、m:n=100:1~1:100としてよい。
Figure JPOXMLDOC01-appb-C000001
  上記式で表されるオスミウム錯体は、前述の酸化反応を触媒する酵素のうちメディエーター(補酵素)を必要とする酵素(例えば、GOD等)に対して、メディエーターとして機能することができる。このとき、例えば、GODがグルコースを酸化することによって生じた電子が、オスミウム錯体部分に伝達され、その電子が炭素材料に伝達される。
 そのため、結合分子AとしてPVI-Osを用いれば、本実施形態の製造方法において用いることができる酸化反応を触媒する酵素の範囲を拡大することが可能となる。
In the production method of the present embodiment, the binding molecule A is an osmium complex (Os (bpy) 2 Cl) (wherein bpy represents bipyridine) represented by the following formula instead of the aforementioned PVI. Modified PVI (PVI in which osmium is bonded at the 3-position of the imidazole part in a part of the side chain of PVI) (hereinafter also referred to as “PVI-Os”) can also be used. Note that m and n in the formula are not particularly limited, and may be, for example, m: n = 100: 1 to 1: 100.
Figure JPOXMLDOC01-appb-C000001
The osmium complex represented by the above formula can function as a mediator with respect to an enzyme (for example, GOD) that requires a mediator (coenzyme) among the enzymes that catalyze the oxidation reaction described above. At this time, for example, electrons generated by GOD oxidizing glucose are transferred to the osmium complex portion, and the electrons are transferred to the carbon material.
Therefore, when PVI-Os is used as the binding molecule A, the range of enzymes that catalyze the oxidation reaction that can be used in the production method of the present embodiment can be expanded.
-水-
 水としては、例えば、超純水等が挙げられる。
-water-
Examples of water include ultrapure water.
-トレハロース-
 本実施形態の製造方法において用いられるトレハロースは、グルコース2分子がα,α-1,1結合した非還元性の二糖の一種であり、極めて高い親水性を備える。
 トレハロースは、自然界に広く存在しており、藻類、細菌類、真菌類、酵母、昆虫、無脊椎動物等の生物において、エネルギー源として利用されているだけではなく、外界からのストレス(乾燥、凍結、高浸透圧、熱等)に対して働いている分子である。
 例えば、高濃度(1M)のトレハロース溶液に酸化還元酵素を含む酵素電極を含浸させ、その後、酵素電極を凍結乾燥させることによって、酸化還元酵素の凍結時及び融解時に、高次構造が破壊されてしまい、触媒活性を失うことを防ぐことができる。トレハロースのヒドロキシル基が水の昇華の際に水分子の代わりに酵素と水素結合を担い、酵素の高次構造の破壊が防がれるため、また、水の昇華の過程で濃縮されたトレハロース分子により酵素が保護されたためであると考えられる。
-Trehalose-
Trehalose used in the production method of the present embodiment is a kind of non-reducing disaccharide in which two glucose molecules are α, α-1, 1 linked, and has extremely high hydrophilicity.
Trehalose is widely present in nature and is not only used as an energy source in organisms such as algae, bacteria, fungi, yeasts, insects, and invertebrates, but also stress from the outside world (dry, frozen) , High osmotic pressure, heat, etc.).
For example, by impregnating a high-concentration (1M) trehalose solution with an enzyme electrode containing an oxidoreductase and then freeze-drying the enzyme electrode, the higher-order structure is destroyed when the oxidoreductase is frozen and thawed. Therefore, loss of catalytic activity can be prevented. The hydroxyl group of trehalose is responsible for hydrogen bonds with the enzyme instead of water molecules during water sublimation, preventing the destruction of the higher-order structure of the enzyme, and the trehalose molecules concentrated during the water sublimation process This is probably because the enzyme was protected.
(酵素電極)
 本発明の実施形態に係る酵素電極(以下、「本実施形態の酵素電極」ともいう。)は、炭素材料と、酸化還元酵素と、炭素材料どうしを結合する結合分子A、及び炭素材料と酸化還元酵素とを結合する結合分子Bからなる群から選択される少なくとも1つの結合分子とを含む、ことを特徴とする。
(Enzyme electrode)
The enzyme electrode according to an embodiment of the present invention (hereinafter also referred to as “enzyme electrode of the present embodiment”) includes a carbon material, an oxidoreductase, a binding molecule A that binds the carbon materials, and the carbon material and the oxidation. And at least one binding molecule selected from the group consisting of binding molecules B that bind to a reductase.
 本実施形態の酵素電極は、本発明の実施形態に係る酵素電極の製造方法により製造されるものとしてよい。 The enzyme electrode of the present embodiment may be manufactured by the method for manufacturing an enzyme electrode according to the embodiment of the present invention.
 本実施形態の酵素電極は、前述の本実施形態の製造方法において用いられる基材も含んでいるが、本発明の酵素電極は、これに限定されることなく、基材を含んでいなくてもよい。 The enzyme electrode of the present embodiment includes a base material used in the manufacturing method of the above-described present embodiment, but the enzyme electrode of the present invention is not limited to this, and does not include the base material. Also good.
 従来の酵素電極の製造方法により製造される酵素電極としては、ナノカーボンや微粒子状炭素等の炭素材料を多孔質の構造体に成型し、その後、この多孔質の構造体に酵素溶液を与えることによって炭素材料に酵素を吸着させる製造方法により製造される酵素電極が挙げられる。
 しかしながら、この酵素電極は、炭素材料への酵素吸着の均一性が得られにくく、酵素電極の性能の再現性が得られにくい傾向がある。
 本実施形態の製造方法により製造される酵素電極によれば、製造中に炭素材料どうしの隙間に酵素溶液を十分に行き渡らせることが可能であるため、炭素材料に酵素を均一に吸着させることができ、再現よく酵素電極の性能を得ることができる。
As an enzyme electrode manufactured by a conventional enzyme electrode manufacturing method, a carbon material such as nanocarbon or particulate carbon is formed into a porous structure, and then an enzyme solution is applied to the porous structure. The enzyme electrode manufactured by the manufacturing method which adsorb | sucks an enzyme to a carbon material by this is mentioned.
However, this enzyme electrode has a tendency that it is difficult to obtain the uniformity of enzyme adsorption to the carbon material, and it is difficult to obtain the reproducibility of the performance of the enzyme electrode.
According to the enzyme electrode manufactured by the manufacturing method of the present embodiment, it is possible to sufficiently spread the enzyme solution in the gaps between the carbon materials during the manufacturing, so that the enzyme can be uniformly adsorbed on the carbon material. The performance of the enzyme electrode can be obtained with good reproducibility.
 また、従来の酵素電極の製造方法により製造される酵素電極としては、酵素粉末とCNT粉末とを混合してなる混合物を加圧条件下で押し固める(プレスする)製造方法により製造されるペレット形状の酵素電極も挙げられる。
 しかしながら、この酵素電極は、CNT等の炭素材料の崩壊や酵素の漏出の虞が高く、酵素電極の構造の安定性が低い傾向がある。
 本実施形態の製造方法により製造される酵素電極によれば、炭素材料どうしの間、及び/又は炭素材料と酸化還元酵素との間に存在する結合分子の働きにより、酵素電極の構造の安定性を高めることができる。
In addition, as an enzyme electrode manufactured by a conventional enzyme electrode manufacturing method, a pellet shape manufactured by a manufacturing method in which a mixture obtained by mixing enzyme powder and CNT powder is pressed (pressed) under pressure. The enzyme electrode is also included.
However, this enzyme electrode has a high risk of collapse of a carbon material such as CNT and leakage of the enzyme, and the stability of the structure of the enzyme electrode tends to be low.
According to the enzyme electrode manufactured by the manufacturing method of the present embodiment, the stability of the structure of the enzyme electrode is achieved by the action of the binding molecules existing between the carbon materials and / or between the carbon material and the oxidoreductase. Can be increased.
 本実施形態の酵素電極を構成する、炭素材料、酸化還元酵素、結合分子A、結合分子Bの詳細については、本実施形態の酵素電極の製造方法において記載した通りとしてよい。 The details of the carbon material, oxidoreductase, binding molecule A, and binding molecule B constituting the enzyme electrode of the present embodiment may be as described in the method for manufacturing the enzyme electrode of the present embodiment.
 乾燥状態における本実施形態の酵素電極における各要素の含有量としては、炭素材料の含有量は、酵素電極全体を100重量%として、0.1~10重量%としてよく、0.5~5重量%であることが好ましい。
 酸化還元酵素の含有量としては、酵素電極全体を100重量%として、0.1~20重量%としてよく、1~10重量%であることが好ましい。
 結合分子Aの含有量としては、酵素電極全体を100重量%として、0.1~10重量%としてよく、0.5~5重量%であることが好ましい。
 結合分子Bの含有量としては、酵素電極全体を100重量%として、0.1~20重量%としてよく、1~10重量%であることが好ましい。
As the content of each element in the enzyme electrode of the present embodiment in a dry state, the content of the carbon material may be 0.1 to 10% by weight, with the whole enzyme electrode being 100% by weight, and 0.5 to 5% by weight. % Is preferred.
The content of the oxidoreductase may be 0.1 to 20% by weight, preferably 1 to 10% by weight, with the whole enzyme electrode being 100% by weight.
The content of the binding molecule A may be 0.1 to 10% by weight, preferably 0.5 to 5% by weight, with the whole enzyme electrode being 100% by weight.
The content of the binding molecule B may be 0.1 to 20% by weight with 100% by weight of the whole enzyme electrode, and preferably 1 to 10% by weight.
 本実施形態の酵素電極は凍結乾燥されていることが好ましく、凍結乾燥状態における個本実施形態の酵素電極の含水量としては、酵素電極全体を100重量%として、10重量%以下としてよく、4重量%以下であることが好ましく、1重量%以下であることが好ましい。 The enzyme electrode of this embodiment is preferably lyophilized, and the water content of the enzyme electrode of this embodiment in the lyophilized state may be 10% by weight or less, with the whole enzyme electrode being 100% by weight. It is preferably not more than wt%, and preferably not more than 1 wt%.
 前述の通り、本実施形態の酵素電極は、トレハロースを更に含むことが好ましい。
 この場合、乾燥状態における本実施形態の酵素電極におけるトレハロースの含有量としては、酵素電極全体を100重量%として、10~98重量%としてよく、70~95重量%であることが好ましい。
As described above, the enzyme electrode of the present embodiment preferably further contains trehalose.
In this case, the trehalose content in the enzyme electrode of the present embodiment in a dry state may be 10 to 98% by weight, preferably 70 to 95% by weight, with the whole enzyme electrode being 100% by weight.
 バイオセンサやバイオ電池(バイオ燃料電池)に用いられる酵素電極は、通常、使い捨てであるため、少ない工程で安価に生産する必要がある。本実施形態の酵素電極の製造方法により得られる生産の効率及びコストの面でのメリットは大きい。また、特に、本実施形態の酵素電極の製造方法は、印刷技術に適用することが可能であるため、現在急速に進んでいるプリンタブルエレクトロニクスの製造プロセスとの融合が可能となり、バイオセンサやバイオ電池の使途拡大に大きな貢献をもたらす。
 本実施形態の酵素電極は、医療、食品、環境分野において、例えば、バイオセンサやバイオ電池のコア部品として、好適に用いることができる。
Enzyme electrodes used in biosensors and biocells (biofuel cells) are usually disposable, and therefore need to be produced inexpensively with a small number of processes. Advantages in terms of production efficiency and cost obtained by the method for producing an enzyme electrode of the present embodiment are great. In particular, since the enzyme electrode manufacturing method of the present embodiment can be applied to printing technology, it can be integrated with the manufacturing process of printable electronics that is currently progressing rapidly. This will greatly contribute to the expansion of usage.
The enzyme electrode of the present embodiment can be suitably used as, for example, a core part of a biosensor or a bio battery in the medical, food, and environmental fields.
 以下、実施例により本発明を更に詳細に説明するが、本発明は下記の実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.
(実施例1)
A.酵素電極の作製
A-1.電極の素材
 炭素材料として、SGCNT(平均長さ:200μm、産業技術総合研究所ナノチューブ応用研究センターから提供されたもの)を用いた。
 酸化還元酵素として、酸化反応を触媒する酵素である、フルクトース脱水素酵素(D-フルクトースデヒドロゲナーゼ(FDH)、Gluconobacter由来、EC番号:1.1.99.11、20U/mg、東洋紡社製)を用いた。
 基材として、セラミック製の板状部材を用いた。
 結合分子Aとして、合成したポリビニルイミダゾール(PVI)(分子量:約60000)を用いた。
 結合分子Bとして、1-ピレン酪酸N-ヒドロキシスクシンイミドエステル(PBSE)(品番:457078、Sigma Aldrich社製)を用いた。
 水としては、超純水を用いた。
 トレハロースとしては、1トレハロース二水和物(品番:204-18451、和光純薬工業株式会社製)を用いた。
(Example 1)
A. Production of enzyme electrode A-1. Electrode material SGCNT (average length: 200 μm, provided by AIST Nanotube Research Center) was used as the carbon material.
As an oxidoreductase, fructose dehydrogenase (D-fructose dehydrogenase (FDH), derived from Gluconobacter, EC number: 1.1.99.11, 20 U / mg, manufactured by Toyobo Co., Ltd.), an enzyme that catalyzes an oxidation reaction. Using.
A ceramic plate-like member was used as the substrate.
As the binding molecule A, synthesized polyvinyl imidazole (PVI) (molecular weight: about 60000) was used.
As the binding molecule B, 1-pyrenebutyric acid N-hydroxysuccinimide ester (PBSE) (product number: 457078, manufactured by Sigma Aldrich) was used.
As water, ultrapure water was used.
As trehalose, 1 trehalose dihydrate (product number: 204-18451, manufactured by Wako Pure Chemical Industries, Ltd.) was used.
 本実施例で使用した緩衝溶液は以下の手順で調製した。
 50mM クエン酸-リン酸緩衝液(McIlVaine buffer solution、MAC buffer、pH 5.0):0.1M クエン酸溶液、及び0.2M NaHPO溶液を、脱イオン水を用いて調製し、0.1 Mクエン酸溶液242.5mLと、0.2M NaHPO溶液257.5mLとを混合することによって、50mM MAC bufferを得た。
 50mM リン酸緩衝液(Phosphate buffer solution、PBS buffer、pH 7.0):0.1M KHPO溶液を、脱イオン水を用いて調製し、この溶液500mLに2M NaOH溶液14.5mLを加え、その後、溶液を、蒸留水を用いて1000mLまで希釈することによって、50mM PBS bufferを得た。
 以下では、これらの緩衝液を適宜希釈して用いた。
The buffer solution used in this example was prepared by the following procedure.
50 mM citrate-phosphate buffer (McIVaine buffer solution, MAC buffer, pH 5.0): 0.1 M citrate solution and 0.2 M Na 2 HPO 4 solution were prepared using deionized water, 0 A 50 mM MAC buffer was obtained by mixing 242.5 mL of 0.1 M citric acid solution and 257.5 mL of 0.2 M Na 2 HPO 4 solution.
50 mM phosphate buffer solution (PBS buffer, pH 7.0): 0.1M KH 2 PO 4 solution is prepared using deionized water, and 14.5 mL of 2M NaOH solution is added to 500 mL of this solution. Thereafter, the solution was diluted to 1000 mL with distilled water to obtain 50 mM PBS buffer.
In the following, these buffers were appropriately diluted and used.
A-2.酵素電極の調製及び凍結乾燥
 25mM MAC buffer(pH 5.0)に、PVI(終濃度(なお、終濃度とは、基材への塗布時の分散溶液中での濃度を指す。以下同じ。):0.1重量%)、1トレハロース二水和物(終濃度:10.0重量%)、SGCNT(終濃度:1mg/mL)を、この順番で加え、この溶液に超音波処理を10分間行うことによって、SGCNTを溶液中に分散させた。
 次いで、上記分散溶液に、1M PBSE DMSO溶液を、PBSEの終濃度が20mMとなるように加え、この溶液を50回のタッピングにより混合した。その後、混合後の溶液をそのまま1時間静置させて、PBSEのピレニル基とSGCNTとの間で物理吸着を生じさせ、SGCNTをPBSEで修飾した。
 その後、50mM MAC bufferを用いて、100mg/mLのFDH溶液を調製した。上記分散溶液に、このFDH溶液をFDHの終濃度が5mg/mLとなるように加え、この溶液を50回のタッピングにより混合した。その後、混合後の溶液をそのまま1時間静置させて、PBSEのN-ヒドロキシスクシンイミドエステル基を酵素のアミノ基と反応させ、SGCNT表面に酵素を固定化した。
 基材上に、上記分散溶液5μL(約5.5mg)を、所望の形状をなすように、塗布した。
 その後、このSGCNT及びFDHを含むプラスチック板を、常温で10分間静置させて余分な水分を除去することによって、半乾き状態にした。
 こうして、SGCNT及び酸化反応を触媒する酵素(FDH)を含む負極(アノード)用酵素電極を作製した。
A-2. Preparation of enzyme electrode and lyophilization 25 mM MAC buffer (pH 5.0) and PVI (final concentration (the final concentration refers to the concentration in the dispersion solution at the time of application to the substrate. The same applies hereinafter). : 0.1 wt%), 1 trehalose dihydrate (final concentration: 10.0 wt%), SGCNT (final concentration: 1 mg / mL) in this order, and sonicating the solution for 10 minutes By doing so, SGCNT was dispersed in the solution.
Next, 1 M PBSE DMSO solution was added to the dispersion solution so that the final concentration of PBSE was 20 mM, and this solution was mixed by 50 tappings. Thereafter, the mixed solution was allowed to stand for 1 hour to cause physical adsorption between the pyrenyl group of PBSE and SGCNT, and SGCNT was modified with PBSE.
Thereafter, a 100 mg / mL FDH solution was prepared using a 50 mM MAC buffer. This FDH solution was added to the dispersion solution so that the final concentration of FDH was 5 mg / mL, and this solution was mixed by 50 tappings. Thereafter, the mixed solution was allowed to stand for 1 hour, and the N-hydroxysuccinimide ester group of PBSE was reacted with the amino group of the enzyme to immobilize the enzyme on the SGCNT surface.
On the base material, 5 μL (about 5.5 mg) of the above dispersion solution was applied so as to have a desired shape.
Thereafter, the plastic plate containing SGCNT and FDH was allowed to stand at room temperature for 10 minutes to remove excess water, thereby making it semi-dry.
Thus, an enzyme electrode for negative electrode (anode) containing SGCNT and an enzyme (FDH) that catalyzes the oxidation reaction was produced.
 そして、上記プラスチック板を、液体窒素に5分間程度浸漬することによって、瞬間凍結させ、その後、凍結乾燥機(品番:ALPHA 2-4 LSC、CHRiST社製(久保田商事))を用いて5時間以上乾燥させた。
 こうして、凍結乾燥した酵素電極を得た。酵素電極の重量は約0.56mgであった。
Then, the plastic plate is flash-frozen by immersing it in liquid nitrogen for about 5 minutes, and then 5 hours or more using a freeze dryer (product number: ALPHA 2-4 LSC, manufactured by CHRiST (Kubota Corporation)). Dried.
Thus, a freeze-dried enzyme electrode was obtained. The weight of the enzyme electrode was about 0.56 mg.
B.出力性能測定
 作製した電極に対して、3極式電気化学測定システム(品番:730C electrochemical analyzer、BAS社製)を用いて、出力性能の評価を行った。
 具体的には、掃引電位:-0.2~0.6V、掃引速度:10mV/sの条件でのサイクリックボルタンメトリー(Cyclic voltammetry、CV)、及び0.5Vに電位を固定した条件でのクロノアンペロメトリー(電極活性の安定性評価)を行った。
 参照電極にAg/AgCl(飽和KCl)を、対極に白金電極を用いた。また、100mM MAC bufferを用いて調製した、0.2M フルクトース溶液を測定溶液として用いた。コントロールとして、フルクトースを含まない100mM MAC bufferを用いた。
 なお、上記測定の全ては溶液を撹拌しながら行った。また、上記測定は、実施例1及びコントロールについてそれぞれ2回行った。
 上記両測定において電流密度を求めるための面積(cm)には、酵素電極の基材である板状の部材の面積(片面のみ)(直径4mmの円の面積として計算)を用いた。
B. Output Performance Measurement The output performance was evaluated using a three-electrode electrochemical measurement system (product number: 730C electroanalyzer, manufactured by BAS) for the produced electrode.
Specifically, cyclic voltammetry (CV) under the conditions of sweep potential: −0.2 to 0.6 V, sweep speed: 10 mV / s, and chrono under the condition that the potential is fixed at 0.5 V. Amperometry (evaluation of stability of electrode activity) was performed.
Ag / AgCl (saturated KCl) was used for the reference electrode, and a platinum electrode was used for the counter electrode. Moreover, the 0.2M fructose solution prepared using 100 mM MAC buffer was used as a measurement solution. As a control, 100 mM MAC buffer not containing fructose was used.
All of the above measurements were performed while stirring the solution. The measurement was performed twice for Example 1 and the control.
As the area (cm 2 ) for determining the current density in both measurements, the area (one side only) (calculated as the area of a circle with a diameter of 4 mm) of the plate-like member that is the substrate of the enzyme electrode was used.
 実施例1のCVの結果を図2に示す(実施例1については実線で示し、コントロールについては破線で示す)。横軸に掃引電位(V)を示し、縦軸に電流密度(mA/cm)を示す。
 図2に示す通り、実施例1の場合、最大で1.5mA/cm(掃引電位:0.6Vにおいて)の電流密度が観測された。この値は、従来の報告に記載される値と遜色のない値であった。一方、コントロールの場合、電流密度はほぼ0mA/cmであった。
The CV results of Example 1 are shown in FIG. 2 (Example 1 is indicated by a solid line, and control is indicated by a broken line). The horizontal axis represents the sweep potential (V), and the vertical axis represents the current density (mA / cm 2 ).
As shown in FIG. 2, in the case of Example 1, a maximum current density of 1.5 mA / cm 2 (at a sweep potential of 0.6 V) was observed. This value is comparable to the value described in the previous report. On the other hand, in the case of control, the current density was approximately 0 mA / cm 2 .
 実施例1のクロノアンペロメトリーの結果を図3に示す。横軸に経過時間(時間)を示し、縦軸に電流密度(mA/cm)を示す。
 酵素電極を測定溶液に浸した直後の数分間、電流密度の増加が観測された。これは、乾燥状態の酵素電極がフルクトース溶液で湿潤するに従って、反応に関わる酵素が増大していったことを示すと思われる。その後、電流密度は、徐々に低下するものの、10時間後であっても1mA/cm以上(初期電流の80%以上)を保持していた。結合分子の働きにより電極からの酵素の漏出が防がれ、酵素電極の構造が安定していたためと考えられる。
The results of chronoamperometry of Example 1 are shown in FIG. The elapsed time (hour) is shown on the horizontal axis, and the current density (mA / cm 2 ) is shown on the vertical axis.
An increase in current density was observed for a few minutes immediately after immersing the enzyme electrode in the measurement solution. This seems to indicate that the enzyme involved in the reaction increased as the dry enzyme electrode was wetted with the fructose solution. Thereafter, although the current density gradually decreased, it kept 1 mA / cm 2 or more (80% or more of the initial current) even after 10 hours. This is probably because the binding molecule prevented the enzyme from leaking out of the electrode and the structure of the enzyme electrode was stable.
(実施例2、実施例3)
 結合分子であるPVI及びPBSEの有無の酵素電極の出力性能に対する影響について調べた。
(Example 2, Example 3)
The influence of the presence or absence of binding molecules PVI and PBSE on the output performance of the enzyme electrode was examined.
(実施例2)
 結合分子としてPVI及びPBSEの両方を用いる代わりに、PVIのみを用いたこと以外は、実施例1の場合と同様に、酵素電極を作製し、クロノアンペロメトリーにより出力性能を測定した。
(実施例3)
 結合分子としてPVI及びPBSEの両方を用いる代わりに、PVI及びPBSEの両方とも用いなかったこと以外は、実施例1の場合と同様に、酵素電極を作製し、クロノアンペロメトリーにより出力性能を測定した。
(Example 2)
Instead of using both PVI and PBSE as binding molecules, an enzyme electrode was prepared and the output performance was measured by chronoamperometry, as in Example 1, except that only PVI was used.
(Example 3)
Instead of using both PVI and PBSE as binding molecules, an enzyme electrode was prepared and the output performance was measured by chronoamperometry, as in Example 1, except that neither PVI nor PBSE was used. did.
 実施例2、3の結果を図4に示す。横軸に経過時間(時間)を示し、縦軸に電流密度(mA/cm)を示す。なお、図4には、実施例1の結果も再掲する。実施例1についは実線で示し、実施例2については一点鎖線で示し、実施例3については交差点で示す。
 実施例2の場合、酵素電極の構造の崩れは、目視観察では認められず、CNTどうしの結合は保持されているものと考えられる。しかしながら、図4に示す通り、酵素電極の活性は、実施例1の場合と比較して小さく、また、時間経過による活性の低下の程度も大きい。これは、実施例2の場合、CNTとFDHの炭素材料表面への固定化を行っていないため、多量の酵素が漏出してしまったためと考えられる。
 実施例3の場合、酵素電極を測定溶液に浸した直後には、乾燥状態の酵素電極がフルクトース溶液で湿潤する様子が観察され、また、図4に示す通り、電流密度の増加が観測された。しかしながら、図4に示す通り、その後1分程度で、電流が観測されなくなった。そして、実施例3の場合、目視観察により、酵素電極の構造がフルクトース溶液の湿潤が進むに従って崩れ、CNT等が溶液中に散逸することがわかった。
The results of Examples 2 and 3 are shown in FIG. The elapsed time (hour) is shown on the horizontal axis, and the current density (mA / cm 2 ) is shown on the vertical axis. In FIG. 4, the results of Example 1 are also shown again. Example 1 is indicated by a solid line, Example 2 is indicated by an alternate long and short dash line, and Example 3 is indicated by an intersection.
In the case of Example 2, the collapse of the structure of the enzyme electrode is not observed by visual observation, and it is considered that the binding between the CNTs is maintained. However, as shown in FIG. 4, the activity of the enzyme electrode is smaller than that in Example 1, and the degree of decrease in activity over time is also large. In the case of Example 2, it is considered that a large amount of enzyme leaked because CNT and FDH were not immobilized on the carbon material surface.
In Example 3, immediately after the enzyme electrode was immersed in the measurement solution, it was observed that the dry enzyme electrode was wetted with the fructose solution, and an increase in current density was observed as shown in FIG. . However, as shown in FIG. 4, no current was observed in about 1 minute thereafter. In the case of Example 3, it was found by visual observation that the structure of the enzyme electrode collapsed as the fructose solution was wetted, and CNTs and the like were dissipated in the solution.
(実施例4~実施例6)
 炭素材料としてSGCNT以外のものを用いた場合の酵素電極の出力性能について調べた。
 なお、測定は、実施例4~6及びそれぞれのコントロールについてそれぞれ2回行った。
(Examples 4 to 6)
The output performance of the enzyme electrode when a material other than SGCNT was used as the carbon material was examined.
The measurement was performed twice for each of Examples 4 to 6 and each control.
(実施例4)
 炭素材料としてSGCNTを用いる代わりに、単層カーボンナノチューブ(平均長さ:1μm、Single-Walled Carbon Nanotube(SWCNT)、品番:704121、South West Nano Technologies社製)を用いたこと以外は、実施例1の場合と同様に、酵素電極を作製し、サイクリックボルタンメトリー及びクロノアンペロメトリーにより出力性能を測定した。
(実施例5)
 炭素材料としてSGCNTを用いる代わりに、多層カーボンナノチューブ(平均長さ:5μm、Multi-Walled Carbon Nanotube(MWCNT)、品番:C70P、Bayer Material Science社製)を用いたこと以外は、実施例1の場合と同様に、酵素電極を作製し、サイクリックボルタンメトリー及びクロノアンペロメトリーにより出力性能を測定した。
(実施例6)
 炭素材料としてSGCNTを用いる代わりに、ケッチェンブラック(Ketjenblack(KB)、品番:EC-600JD、Ketjen Black International社製)を用いたこと以外は、実施例1の場合と同様に、酵素電極を作製し、サイクリックボルタンメトリー及びクロノアンペロメトリーにより出力性能を測定した。
Example 4
Example 1 except that single-walled carbon nanotubes (average length: 1 μm, Single-Walled Carbon Nanotube (SWCNT), product number: 704121, manufactured by South West Nano Technologies) were used instead of SGCNT as the carbon material. In the same manner as described above, an enzyme electrode was prepared, and the output performance was measured by cyclic voltammetry and chronoamperometry.
(Example 5)
In the case of Example 1 except that multi-walled carbon nanotubes (average length: 5 μm, Multi-Walled Carbon Nanotube (MWCNT), product number: C70P, manufactured by Bayer Material Science) were used instead of SGCNT as the carbon material. Similarly, an enzyme electrode was prepared, and the output performance was measured by cyclic voltammetry and chronoamperometry.
(Example 6)
An enzyme electrode was prepared in the same manner as in Example 1 except that Ketjenblack (Ketjenblack (KB), product number: EC-600JD, manufactured by Ketjen Black International) was used instead of SGCNT as the carbon material. The output performance was measured by cyclic voltammetry and chronoamperometry.
 実施例4~実施例6におけるサイクリックボルタンメトリーの結果及びクロノアンペロメトリーの結果を、それぞれ図5(a)及び図5(b)~図7(a)及び図7(b)に示す(実施例4~6についてはそれぞれ実線で示す。なお、実施例5のCVの結果についてのみコントロールについて破線で示す)。いずれの図においても、(a)では、横軸に掃引電位(V)を示し、縦軸に電流密度(mA/cm)を示し、(b)では、横軸に経過時間(時間)を示し、縦軸に電流密度(mA/cm)を示す。
 まず、実施例4(SWCNT)及び実施例5(MWCNT)の場合、最大で1mA/cm前後の電流密度(掃引電位:0.6Vにおいて)が観測された(図5(a)及び図6(a)参照)。また、電流密度は、酵素電極を測定溶液に浸してから10時間後においても0.6mA/cm以上を保持しており、明らかに結合分子の効果が見受けられた(図5(b)及び図6(b)参照)。
 また、実施例6(KB)の場合、酵素電極の構造の崩れは、目視観察では認められず、結合分子の効果がうかがえた。しかしながら、実施例6の場合、電流密度の値、及びその時間経過の様子から、酵素電極の活性は、酵素電極を測定溶液に浸してから10時間後においてもある程度保持されるものの、酵素電極の構造の安定性の点において、実施例4及び実施例5のCNTの場合と比較して、劣っていることがわかった(図7(a)及び図7(b)参照)。
The results of cyclic voltammetry and chronoamperometry in Examples 4 to 6 are shown in FIG. 5 (a), FIG. 5 (b) to FIG. 7 (a), and FIG. 7 (b), respectively. Each of Examples 4 to 6 is indicated by a solid line, and only the CV result of Example 5 is indicated by a broken line for control). In each figure, (a) shows the sweep potential (V) on the horizontal axis, the current density (mA / cm 2 ) on the vertical axis, and (b) shows the elapsed time (hours) on the horizontal axis. The current density (mA / cm 2 ) is shown on the vertical axis.
First, in the case of Example 4 (SWCNT) and Example 5 (MWCNT), a current density of about 1 mA / cm 2 at maximum (at a sweep potential of 0.6 V) was observed (FIGS. 5A and 6). (See (a)). Further, the current density was maintained at 0.6 mA / cm 2 or more even after 10 hours from the immersion of the enzyme electrode in the measurement solution, and the effect of the binding molecule was clearly observed (FIG. 5 (b) and (Refer FIG.6 (b)).
Moreover, in the case of Example 6 (KB), the collapse of the structure of the enzyme electrode was not observed by visual observation, indicating the effect of the binding molecule. However, in the case of Example 6, from the value of the current density and the state of the passage of time, the activity of the enzyme electrode is maintained to some extent even after 10 hours from the immersion of the enzyme electrode in the measurement solution. It was found that the structural stability was inferior to that of the CNTs of Examples 4 and 5 (see FIGS. 7A and 7B).
 但し、実施例4~実施例6のいずれの場合でも、結合分子を用いないコントロールの場合には、酵素電極を測定溶液に浸すと同時に酵素電極の構造が崩れる様子が観察された(図示せず)。この点、実施例4~実施例6のいずれの場合でも、10時間後にも活性を有していたことから、結合分子の効果が確認されたと言える。 However, in any of Examples 4 to 6, in the case of the control without using the binding molecule, it was observed that the structure of the enzyme electrode collapsed as soon as the enzyme electrode was immersed in the measurement solution (not shown). ). In this respect, in any of Examples 4 to 6, it was confirmed that the effect of the binding molecule was confirmed since it had activity even after 10 hours.
 炭素材料の種類が酵素電極の性能に与える影響は、炭素材料の形状と結晶性から議論可能である。
 最も優れた性能が得られた実施例4(SGCNT)では、平均長さが200μmと極端に長いことからアスペクト比が高い形状であるため、炭素材料どうしが互いに絡み合う構造が形成され、結合分子が有効に効果を発揮できると考えられる。一方、平均長さが比較的短いCNTを用いた実施例5や、微粒子状炭素を用いた実施例6では、炭素材料間の結合が比較的生じにくいと考えられる。
 更に、結合分子(PVI及びPBSE)は、炭素材料の表面の特にグラファイト構造に対してπ-π相互作用により結合するため、結晶性の低い炭素材料であるKBでは、結合分子の効果が表れにくいと考えられる。
The effect of the type of carbon material on the performance of the enzyme electrode can be discussed from the shape and crystallinity of the carbon material.
In Example 4 (SGCNT) in which the most excellent performance was obtained, since the average length is extremely long as 200 μm and the aspect ratio is high, a structure in which the carbon materials are entangled with each other is formed, and the binding molecule is It is considered that the effect can be exhibited effectively. On the other hand, in Example 5 using CNT having a relatively short average length and Example 6 using fine carbon particles, it is considered that bonding between carbon materials is relatively difficult to occur.
Furthermore, since the binding molecules (PVI and PBSE) bind to the surface of the carbon material, particularly to the graphite structure, by the π-π interaction, the effect of the binding molecule is hardly exhibited in KB which is a carbon material having low crystallinity. it is conceivable that.
(実施例7)
 結合分子AとしてPVIを用いる代わりに、ポリ(4-スチレンスルホン酸ナトリウム)(品番: 243051、Sigma Aldrich社製)を用いたこと以外は、実施例1の場合と同様に、酵素電極を作製し、サイクリックボルタンメトリー及びクロノアンペロメトリーにより出力性能を測定した。
 実施例7のサイクリックボルタンメトリーの結果及びクロノアンペロメトリーの結果を、それぞれ図8(a)及び図8(b)に示す(実施例7については実線で示す。なお、CVの結果についてのみコントロールについて破線で示す)。(a)では、横軸に掃引電位(V)を示し、縦軸に電流密度(mA/cm)を示し、(b)では、横軸に経過時間(時間)を示し、縦軸に電流密度(mA/cm)を示す。
 実施例7の場合、最大の電流密度が0.12mA/cmであり、酵素電極の活性は実施例1の場合と比較して低いものの、電極として機能することが示された。また、10時間後においても電流密度が0.07mA/cm以上を保持しており、酵素電極の耐久性も維持できることが示された。
(Example 7)
Instead of using PVI as the binding molecule A, an enzyme electrode was prepared in the same manner as in Example 1 except that poly (sodium 4-styrenesulfonate) (product number: 243051, manufactured by Sigma Aldrich) was used. The output performance was measured by cyclic voltammetry and chronoamperometry.
The results of cyclic voltammetry and chronoamperometry of Example 7 are shown in FIG. 8 (a) and FIG. 8 (b), respectively (Example 7 is indicated by a solid line. Note that only the CV result is controlled. Is indicated by a broken line). In (a), the horizontal axis indicates the sweep potential (V), the vertical axis indicates the current density (mA / cm 2 ), and in (b), the horizontal axis indicates the elapsed time (hours), and the vertical axis indicates the current. The density (mA / cm 2 ) is indicated.
In the case of Example 7, the maximum current density was 0.12 mA / cm 2 , and although the activity of the enzyme electrode was lower than that of Example 1, it was shown to function as an electrode. Moreover, even after 10 hours, the current density was maintained at 0.07 mA / cm 2 or more, indicating that the durability of the enzyme electrode can be maintained.
(実施例8)
 結合分子AとしてPVIを用いる代わりに、ナフィオン(登録商標)(品番:527122、Nafion perfluorinate resin solution 20wt%)を用いたこと以外は、実施例1の場合と同様に、酵素電極を作製し、酵素電極を作製し、サイクリックボルタンメトリー及びクロノアンペロメトリーにより出力性能を測定した。
 実施例8のサイクリックボルタンメトリーの結果及びクロノアンペロメトリーの結果を、それぞれ図9(a)及び図9(b)に示す(実施例8については実線で示す。なお、CVの結果についてのみコントロールについて破線で示す)。(a)では、横軸に掃引電位(V)を示し、縦軸に電流密度(mA/cm)を示し、(b)では、横軸に経過時間(時間)を示し、縦軸に電流密度(mA/cm)を示す。
 実施例8の場合、最大の電流密度が0.18mA/cmであり、酵素電極の活性は実施例1の場合と比較して低いものの、電極として機能することが示された。また、10時間後においても電流密度が0.15mA/cm以上を保持しており、酵素電極の耐久性も維持できることが示された。
(Example 8)
An enzyme electrode was prepared in the same manner as in Example 1 except that Nafion (registered trademark) (product number: 527122, Nafion perfluorinate resin solution 20 wt%) was used instead of PVI as the binding molecule A. Electrodes were prepared, and output performance was measured by cyclic voltammetry and chronoamperometry.
The results of cyclic voltammetry and chronoamperometry of Example 8 are shown in FIG. 9 (a) and FIG. 9 (b), respectively (Example 8 is indicated by a solid line. Note that only the CV result is controlled. Is indicated by a broken line). In (a), the horizontal axis indicates the sweep potential (V), the vertical axis indicates the current density (mA / cm 2 ), and in (b), the horizontal axis indicates the elapsed time (hours), and the vertical axis indicates the current. The density (mA / cm 2 ) is indicated.
In the case of Example 8, the maximum current density was 0.18 mA / cm 2 , and although the activity of the enzyme electrode was lower than that of Example 1, it was shown to function as an electrode. Moreover, even after 10 hours, the current density was maintained at 0.15 mA / cm 2 or more, indicating that the durability of the enzyme electrode can be maintained.
(実施例9)
 結合分子BとしてPBSEを用いる代わりに、N-ベンゾイルオキシスクシンイミド(品番: 774324、Sigma Aldrich社製)を用いたこと以外は、実施例1の場合と同様に、酵素電極を作製し、酵素電極を作製し、サイクリックボルタンメトリー及びクロノアンペロメトリーにより出力性能を測定した。
 実施例9のサイクリックボルタンメトリーの結果及びクロノアンペロメトリーの結果を、それぞれ図10(a)及び図10(b)に示す(実施例9については実線で示す。なお、CVの結果についてのみコントロールについて破線で示す)。(a)では、横軸に掃引電位(V)を示し、縦軸に電流密度(mA/cm)を示し、(b)では、横軸に経過時間(時間)を示し、縦軸に電流密度(mA/cm)を示す。
 実施例9の場合、最大の電流密度が1.5mA/cmであり、酵素電極の活性は実施例1の場合と同等程度に高いことが示された。
また、10時間後においても電流密度が0.7mA/cm以上を保持しており、酵素電極の耐久性も維持できることが示された。
Example 9
An enzyme electrode was prepared in the same manner as in Example 1 except that N-benzoyloxysuccinimide (product number: 774324, manufactured by Sigma Aldrich) was used instead of PBSE as the binding molecule B. The output performance was measured by cyclic voltammetry and chronoamperometry.
The results of cyclic voltammetry and chronoamperometry of Example 9 are shown in FIG. 10 (a) and FIG. 10 (b), respectively (Example 9 is indicated by a solid line. Note that only the CV result is controlled. Is indicated by a broken line). In (a), the horizontal axis indicates the sweep potential (V), the vertical axis indicates the current density (mA / cm 2 ), and in (b), the horizontal axis indicates the elapsed time (hours), and the vertical axis indicates the current. The density (mA / cm 2 ) is indicated.
In the case of Example 9, the maximum current density was 1.5 mA / cm 2 , indicating that the activity of the enzyme electrode was as high as in Example 1.
Moreover, even after 10 hours, the current density was maintained at 0.7 mA / cm 2 or more, indicating that the durability of the enzyme electrode can be maintained.
(実施例10)
 結合分子としてメディエーター部を有するものを用いた場合について調べた。
 なお、測定は、実施例10及びコントロールについてそれぞれ2回行った。
(Example 10)
A case where a binding molecule having a mediator part was used was examined.
The measurement was performed twice for Example 10 and the control.
 結合分子としてPVIの代わりに、合成したPVI-Os(分子量:約120000、m:n=5:1)を用いたこと、FDHの代わりに、グルコースオキシダーゼ(GOD、EC番号:1.1.3.4、240U/mg、東洋紡社製)を用いたこと以外は、実施例1の場合と同様に、酵素電極を作製し、サイクリックボルタンメトリー及びクロノアンペロメトリーにより出力性能を測定した。
 実施例10では、50mM PBSを用いて調製した0.2M グルコースを測定溶液として用いた。コントロールとして、グルコースを含まない100mM MAC bufferを用いた。
 実施例10におけるサイクリックボルタンメトリーの結果及びクロノアンペロメトリーの結果を、図11(a)及び(b)に示す(実施例10については実線で示す。なお、CVの結果についてのみコントロールについて破線で示す)。図11(a)では、横軸に掃引電位(V)を示し、縦軸に電流密度(mA/cm)を示し、図11(b)では、横軸に経過時間(時間)を示し、縦軸に電流密度(mA/cm)を示す。
 図11(a)に示す通り、実施例10の場合、最大で0.25mA/cm(掃引電位:0.6Vにおいて)の電流密度が観測された。
 また、図11(b)に示す通り、実施例10においても、実施例1の場合と同様に、酵素電極を測定溶液に浸した直後の数分間、電流密度の増加が観測され、その後、電流密度は、徐々に低下するものの、10時間後であっても初期電流密度の80%程度を保持していた。
 この結果から、PVI-Osが、結合分子Aとしての機能に加えて、GODのメディエーターの機能をも発揮できることが示された。
Instead of PVI as a binding molecule, synthesized PVI-Os (molecular weight: about 120,000, m: n = 5: 1) was used, glucose oxidase (GOD, EC number: 1.1.3) instead of FDH. .4, 240 U / mg, manufactured by Toyobo Co., Ltd.), an enzyme electrode was prepared in the same manner as in Example 1, and the output performance was measured by cyclic voltammetry and chronoamperometry.
In Example 10, 0.2 M glucose prepared using 50 mM PBS was used as a measurement solution. As a control, 100 mM MAC buffer containing no glucose was used.
The results of cyclic voltammetry and chronoamperometry in Example 10 are shown in FIGS. 11 (a) and 11 (b) (Example 10 is indicated by a solid line. Only the CV result is indicated by a broken line for control). Show). In FIG. 11 (a), the horizontal axis indicates the sweep potential (V), the vertical axis indicates the current density (mA / cm 2 ), and in FIG. 11 (b), the horizontal axis indicates the elapsed time (hours). The vertical axis represents current density (mA / cm 2 ).
As shown in FIG. 11A, in Example 10, a maximum current density of 0.25 mA / cm 2 (at a sweep potential of 0.6 V) was observed.
Further, as shown in FIG. 11 (b), also in Example 10, as in Example 1, an increase in current density was observed for several minutes immediately after the enzyme electrode was immersed in the measurement solution. Although the density gradually decreased, about 80% of the initial current density was maintained even after 10 hours.
From this result, it was shown that PVI-Os can exert the function of a mediator of GOD in addition to the function as the binding molecule A.
 本発明によれば、簡便に且つ低コストで酵素電極を製造することができる。
 本発明の製造方法により製造される本発明の酵素電極は、医療、食品、環境分野において、例えば、バイオセンサやバイオ電池(バイオ燃料電池)のコア部品として、好適に用いることができる。
According to the present invention, an enzyme electrode can be produced easily and at low cost.
The enzyme electrode of the present invention produced by the production method of the present invention can be suitably used, for example, as a core part of a biosensor or a bio battery (biofuel cell) in the medical, food and environmental fields.

Claims (21)

  1.  炭素材料を、酸化還元酵素が存在する条件下で、基材に付与することによって、炭素材料及び酸化還元酵素を含む酵素電極を得ることを特徴とする、酵素電極の製造方法。 A method for producing an enzyme electrode, characterized in that an enzyme electrode containing a carbon material and an oxidoreductase is obtained by applying a carbon material to a substrate under conditions where the oxidoreductase is present.
  2.  前記酵素電極を成形する、電極成形工程を含む、請求項1に記載の酵素電極の製造方法。 The method for producing an enzyme electrode according to claim 1, comprising an electrode forming step of forming the enzyme electrode.
  3.  前記電極成形工程において、印刷技術を用いる、請求項2に記載の酵素電極の製造方法。 The method for producing an enzyme electrode according to claim 2, wherein a printing technique is used in the electrode forming step.
  4.  前記炭素材料と前記酸化還元酵素とを含む懸濁液を調整する、懸濁液調整工程と、
     前記懸濁液を前記基材に塗布する、懸濁液塗布工程と
    を含む、請求項1~3のいずれか一項に記載の酵素電極の製造方法。
    A suspension adjusting step of adjusting a suspension containing the carbon material and the oxidoreductase;
    The method for producing an enzyme electrode according to any one of claims 1 to 3, further comprising a suspension application step of applying the suspension to the substrate.
  5.  前記酸化還元酵素に加えて、前記炭素材料どうしを結合する結合分子A、及び前記炭素材料と前記酸化還元酵素とを結合する結合分子Bからなる群から選択される少なくとも1つの結合分子が更に存在する条件とする、請求項1~4のいずれか一項に記載の酵素電極の製造方法。 In addition to the oxidoreductase, there is further at least one binding molecule selected from the group consisting of a binding molecule A that binds the carbon materials and a binding molecule B that binds the carbon material and the oxidoreductase. The method for producing an enzyme electrode according to any one of Claims 1 to 4, which is a condition for conducting the enzyme electrode treatment.
  6.  前記結合分子は、前記結合分子Aである、請求項5に記載の酵素電極の製造方法。 The method for producing an enzyme electrode according to claim 5, wherein the binding molecule is the binding molecule A.
  7.  前記結合分子は、前記結合分子A及び前記結合分子Bである、請求項5に記載の酵素電極の製造方法。 The method for producing an enzyme electrode according to claim 5, wherein the binding molecules are the binding molecule A and the binding molecule B.
  8.  前記結合分子Aは、芳香族基を有する小分子又は高分子、フッ素置換された炭化水素からなる群から選択される少なくとも1つである、請求項5~7のいずれか一項に記載の酵素電極の製造方法。 The enzyme according to any one of claims 5 to 7, wherein the binding molecule A is at least one selected from the group consisting of a small molecule or a polymer having an aromatic group, and a fluorine-substituted hydrocarbon. Electrode manufacturing method.
  9.  前記結合分子Aは、ポリビニルイミダゾール(PVI)、ポリ(4-スチレンスルホン酸ナトリウム)、ナフィオン(登録商標)からなる群から選択される少なくとも1つである、請求項8に記載の酵素電極の製造方法。 The enzyme electrode production according to claim 8, wherein the binding molecule A is at least one selected from the group consisting of polyvinylimidazole (PVI), poly (sodium 4-styrenesulfonate), and Nafion (registered trademark). Method.
  10.  前記結合分子Bは、芳香族基を有しつつ、N-ヒドロキシスクシンイミドエステル基、アルデヒド基、エポキシ基、マレイミド基、カルボジイミド基、ヒドラジド基からなる群から選択される少なくとも1つを有する小分子又は高分子である、請求項5又は7に記載の酵素電極の製造方法。 The binding molecule B has a small molecule having an aromatic group and at least one selected from the group consisting of an N-hydroxysuccinimide ester group, an aldehyde group, an epoxy group, a maleimide group, a carbodiimide group, and a hydrazide group, or The method for producing an enzyme electrode according to claim 5 or 7, which is a polymer.
  11.  前記結合分子Bは、1-ピレン酪酸N-ヒドロキシスクシンイミドエステル(PBSE)、N-ベンゾイルオキシスクシンイミドからなる群から選択される少なくとも1つである、請求項10に記載の酵素電極の製造方法。 The method for producing an enzyme electrode according to claim 10, wherein the binding molecule B is at least one selected from the group consisting of 1-pyrenebutyric acid N-hydroxysuccinimide ester (PBSE) and N-benzoyloxysuccinimide.
  12.  前記酸化還元酵素に加えて、トレハロースが更に存在する条件とし、
     前記酵素電極を凍結乾燥させる、凍結乾燥工程を含む、
    請求項1~11のいずれか一項に記載の酵素電極の製造方法。
    In addition to the oxidoreductase, a condition where trehalose is further present,
    Freeze-drying the enzyme electrode, comprising a freeze-drying step;
    The method for producing an enzyme electrode according to any one of claims 1 to 11.
  13.  前記炭素材料と、前記酸化還元酵素と、前記炭素材料どうしを結合する結合分子A、及び前記炭素材料と前記酸化還元酵素とを結合する結合分子Bからなる群から選択される少なくとも1つの結合分子と、を含む
    ことを特徴とする、酵素電極。
    At least one binding molecule selected from the group consisting of the carbon material, the oxidoreductase, a binding molecule A that binds the carbon materials, and a binding molecule B that binds the carbon material and the oxidoreductase. And an enzyme electrode.
  14.  前記結合分子は、前記結合分子Aである、請求項13に記載の酵素電極。 The enzyme electrode according to claim 13, wherein the binding molecule is the binding molecule A.
  15.  前記結合分子は、前記結合分子A及び前記結合分子Bである、請求項13に記載の酵素電極。 The enzyme electrode according to claim 13, wherein the binding molecules are the binding molecule A and the binding molecule B.
  16.  前記結合分子Aは、芳香族基を有する小分子又は高分子、フッ素置換された炭化水素からなる群から選択される少なくとも1つである、請求項13~16のいずれか一項に記載の酵素電極。 The enzyme according to any one of claims 13 to 16, wherein the binding molecule A is at least one selected from the group consisting of a small molecule or a polymer having an aromatic group, and a fluorine-substituted hydrocarbon. electrode.
  17.  前記結合分子Aは、ポリビニルイミダゾール(PVI)、ポリ(4-スチレンスルホン酸ナトリウム)、ナフィオン(登録商標)からなる群から選択される少なくとも1つである、請求項16に記載の酵素電極。 The enzyme electrode according to claim 16, wherein the binding molecule A is at least one selected from the group consisting of polyvinylimidazole (PVI), poly (sodium 4-styrenesulfonate), and Nafion (registered trademark).
  18.  前記結合分子Bは、芳香族基を有しつつ、N-ヒドロキシスクシンイミドエステル基、アルデヒド基、エポキシ基、マレイミド基、カルボジイミド基、ヒドラジド基からなる群から選択される少なくとも1つを有する小分子又は高分子である、請求項13又は15に記載の酵素電極。 The binding molecule B has a small molecule having an aromatic group and at least one selected from the group consisting of an N-hydroxysuccinimide ester group, an aldehyde group, an epoxy group, a maleimide group, a carbodiimide group, and a hydrazide group, or The enzyme electrode according to claim 13 or 15, which is a polymer.
  19.  前記結合分子Bは、1-ピレン酪酸N-ヒドロキシスクシンイミドエステル(PBSE)、N-ベンゾイルオキシスクシンイミドからなる群から選択される少なくとも1つである、請求項18に記載の酵素電極。 The enzyme electrode according to claim 18, wherein the binding molecule B is at least one selected from the group consisting of 1-pyrenebutyric acid N-hydroxysuccinimide ester (PBSE) and N-benzoyloxysuccinimide.
  20.  トレハロースを更に含む、請求項13~19のいずれか一項に記載の酵素電極。 The enzyme electrode according to any one of claims 13 to 19, further comprising trehalose.
  21.  凍結乾燥されている請求項20に記載の酵素電極。 The enzyme electrode according to claim 20, which is freeze-dried.
PCT/JP2016/000677 2015-02-09 2016-02-09 Method for manufacturing enzyme electrode, and enzyme electrode WO2016129273A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016574667A JPWO2016129273A1 (en) 2015-02-09 2016-02-09 Method for producing enzyme electrode and enzyme electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-023437 2015-02-09
JP2015023437 2015-02-09

Publications (1)

Publication Number Publication Date
WO2016129273A1 true WO2016129273A1 (en) 2016-08-18

Family

ID=56614306

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/000677 WO2016129273A1 (en) 2015-02-09 2016-02-09 Method for manufacturing enzyme electrode, and enzyme electrode

Country Status (2)

Country Link
JP (1) JPWO2016129273A1 (en)
WO (1) WO2016129273A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018036201A (en) * 2016-09-01 2018-03-08 東洋インキScホールディングス株式会社 Electrode paste composition for self generation type sensor, electrode for self generation type sensor, and self generation type sensor
JP2018147833A (en) * 2017-03-08 2018-09-20 国立大学法人東北大学 Electrode and use of the same
CN109860675A (en) * 2019-01-08 2019-06-07 杨记周 A kind of new-energy automobile fuel cell ion exchange membrane and preparation method thereof
JP2020085759A (en) * 2018-11-29 2020-06-04 東洋紡株式会社 Glucose sensor reagent
CN113330532A (en) * 2019-01-24 2021-08-31 奥爽乐股份有限公司 Emitter having excellent structural stability and enhanced electron emission efficiency and X-ray tube including the same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06503472A (en) * 1990-10-10 1994-04-21 ノボ ノルディスク アクティーゼルスカブ Utilization of benzene derivatives as charge transfer mediators
JPH0777510A (en) * 1993-09-08 1995-03-20 Toppan Printing Co Ltd Enzyme electrode
JP2006292495A (en) * 2005-04-08 2006-10-26 Toray Ind Inc Carbon nanotube composition, biosensor and manufacturing method of them
JP2008060067A (en) * 2006-08-04 2008-03-13 Sony Corp Fuel cell and electronic equipment
JP2009515303A (en) * 2005-11-02 2009-04-09 セント・ルイス・ユニバーシティ Direct electron transfer using enzymes in bioanodes, biocathodes, and biofuel cells
JP2010516017A (en) * 2007-01-05 2010-05-13 アケルミン・インコーポレイテッド Bioanode and biocathode stack assembly
JP2013518255A (en) * 2010-01-22 2013-05-20 バイエル・ヘルスケア・エルエルシー Accuracy improving desiccant
JP2013254724A (en) * 2012-05-07 2013-12-19 Sony Corp Enzyme ink, enzyme fuel cell and electronic apparatus
JP2014006154A (en) * 2012-06-25 2014-01-16 Bioengineering Laboratories Llc Enzyme electrode

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06503472A (en) * 1990-10-10 1994-04-21 ノボ ノルディスク アクティーゼルスカブ Utilization of benzene derivatives as charge transfer mediators
JPH0777510A (en) * 1993-09-08 1995-03-20 Toppan Printing Co Ltd Enzyme electrode
JP2006292495A (en) * 2005-04-08 2006-10-26 Toray Ind Inc Carbon nanotube composition, biosensor and manufacturing method of them
JP2009515303A (en) * 2005-11-02 2009-04-09 セント・ルイス・ユニバーシティ Direct electron transfer using enzymes in bioanodes, biocathodes, and biofuel cells
JP2008060067A (en) * 2006-08-04 2008-03-13 Sony Corp Fuel cell and electronic equipment
JP2010516017A (en) * 2007-01-05 2010-05-13 アケルミン・インコーポレイテッド Bioanode and biocathode stack assembly
JP2013518255A (en) * 2010-01-22 2013-05-20 バイエル・ヘルスケア・エルエルシー Accuracy improving desiccant
JP2013254724A (en) * 2012-05-07 2013-12-19 Sony Corp Enzyme ink, enzyme fuel cell and electronic apparatus
JP2014006154A (en) * 2012-06-25 2014-01-16 Bioengineering Laboratories Llc Enzyme electrode

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018036201A (en) * 2016-09-01 2018-03-08 東洋インキScホールディングス株式会社 Electrode paste composition for self generation type sensor, electrode for self generation type sensor, and self generation type sensor
JP2018147833A (en) * 2017-03-08 2018-09-20 国立大学法人東北大学 Electrode and use of the same
JP2020085759A (en) * 2018-11-29 2020-06-04 東洋紡株式会社 Glucose sensor reagent
CN109860675A (en) * 2019-01-08 2019-06-07 杨记周 A kind of new-energy automobile fuel cell ion exchange membrane and preparation method thereof
CN109860675B (en) * 2019-01-08 2020-12-01 戴金燕 New energy automobile fuel cell ion exchange membrane and preparation method thereof
CN113330532A (en) * 2019-01-24 2021-08-31 奥爽乐股份有限公司 Emitter having excellent structural stability and enhanced electron emission efficiency and X-ray tube including the same
JP2022518511A (en) * 2019-01-24 2022-03-15 オーエックスオーム レイ, インコーポレイテッド Emitter with excellent structural stability and improved electron emission efficiency and X-ray tube containing it
JP7319492B2 (en) 2019-01-24 2023-08-02 オーエックスオーム レイ, インコーポレイテッド Emitter with excellent structural stability and improved electron emission efficiency and X-ray tube including the same
US11798773B2 (en) 2019-01-24 2023-10-24 Awexome Ray, Inc. Emitter with excellent structural stability and enhanced efficiency of electron emission and X-ray tube comprising the same

Also Published As

Publication number Publication date
JPWO2016129273A1 (en) 2017-11-24

Similar Documents

Publication Publication Date Title
Kumar et al. Nanoengineered material based biosensing electrodes for enzymatic biofuel cells applications
Gong et al. Electrochemistry and electroanalytical applications of carbon nanotubes: a review
Rivas et al. Carbon nanotubes for electrochemical biosensing
Zhang et al. Immobilizing haemoglobin on gold/graphene–chitosan nanocomposite as efficient hydrogen peroxide biosensor
Campbell et al. Membrane/mediator-free rechargeable enzymatic biofuel cell utilizing graphene/single-wall carbon nanotube cogel electrodes
Le Goff et al. Enzymatic biosensors based on SWCNT-conducting polymer electrodes
De Poulpiquet et al. New trends in enzyme immobilization at nanostructured interfaces for efficient electrocatalysis in biofuel cells
Feng et al. Development of glucose biosensors based on nanostructured graphene-conducting polyaniline composite
WO2016129273A1 (en) Method for manufacturing enzyme electrode, and enzyme electrode
Razmi et al. Graphene quantum dots as a new substrate for immobilization and direct electrochemistry of glucose oxidase: application to sensitive glucose determination
Guo et al. A three-dimensional nitrogen-doped graphene structure: a highly efficient carrier of enzymes for biosensors
Liu et al. Direct electrochemistry based biosensors and biofuel cells enabled with nanostructured materials
Kumar-Krishnan et al. Chitosan supported silver nanowires as a platform for direct electrochemistry and highly sensitive electrochemical glucose biosensing
Xu et al. Biosensor Based on Self‐Assembling Glucose Oxidase and Dendrimer‐Encapsulated Pt Nanoparticles on Carbon Nanotubes for Glucose Detection
CN101908630B (en) Mediator type biological fuel cell anode and preparation method thereof
Gao et al. Electrocatalytic activity of carbon spheres towards NADH oxidation at low overpotential and its applications in biosensors and biofuel cells
Garcia-Perez et al. Entrapping cross-linked glucose oxidase aggregates within a graphitized mesoporous carbon network for enzymatic biofuel cells
Uzak et al. Reduced graphene oxide/Pt nanoparticles/Zn‐MOF‐74 nanomaterial for a glucose biosensor construction
Jeykumari et al. Functionalized carbon nanotube-bienzyme biocomposite for amperometric sensing
Campbell et al. Improved power density of an enzymatic biofuel cell with fibrous supports of high curvature
KR101581120B1 (en) Enzyme -graphine oxide complex for electrochemical applications and method for fabricating the same
Korani et al. High performance glucose/O2 compartment-less biofuel cell using DNA/CNTs as platform for immobilizing bilirubin oxidase as novel biocathode and integrated NH2-CNTs/dendrimer/glucose dehydrogenase/nile blue as bioanode
Chen et al. Comparison of commercial and lab‐made MWCNT buckypaper: physicochemical properties and bioelectrocatalytic O2 reduction
Im et al. The effects of carbon nanotube addition and oxyfluorination on the glucose-sensing capabilities of glucose oxidase-coated carbon fiber electrodes
Filip et al. Effective bioelectrocatalysis of bilirubin oxidase on electrochemically reduced graphene oxide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16748918

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016574667

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16748918

Country of ref document: EP

Kind code of ref document: A1