WO2016128720A1 - Exhaust system for a compression ignition engine having a capture region for volatilised platinum - Google Patents
Exhaust system for a compression ignition engine having a capture region for volatilised platinum Download PDFInfo
- Publication number
- WO2016128720A1 WO2016128720A1 PCT/GB2016/050285 GB2016050285W WO2016128720A1 WO 2016128720 A1 WO2016128720 A1 WO 2016128720A1 GB 2016050285 W GB2016050285 W GB 2016050285W WO 2016128720 A1 WO2016128720 A1 WO 2016128720A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- capture
- oxidation catalyst
- substrate
- alumina
- catalyst
- Prior art date
Links
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 title claims abstract description 222
- 229910052697 platinum Inorganic materials 0.000 title claims abstract description 77
- 238000007906 compression Methods 0.000 title claims abstract description 26
- 230000006835 compression Effects 0.000 title claims abstract description 26
- 239000003054 catalyst Substances 0.000 claims abstract description 375
- 239000000463 material Substances 0.000 claims abstract description 327
- 230000003647 oxidation Effects 0.000 claims abstract description 229
- 238000007254 oxidation reaction Methods 0.000 claims abstract description 229
- 239000000758 substrate Substances 0.000 claims abstract description 166
- 230000003197 catalytic effect Effects 0.000 claims abstract description 160
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 146
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 113
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 87
- 229910052763 palladium Inorganic materials 0.000 claims description 67
- 239000002245 particle Substances 0.000 claims description 64
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 59
- 238000005275 alloying Methods 0.000 claims description 59
- 239000011449 brick Substances 0.000 claims description 55
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims description 45
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 claims description 44
- 229910052751 metal Inorganic materials 0.000 claims description 41
- 239000002184 metal Substances 0.000 claims description 41
- 238000011144 upstream manufacturing Methods 0.000 claims description 41
- 239000000203 mixture Substances 0.000 claims description 37
- 239000010931 gold Substances 0.000 claims description 35
- 239000000377 silicon dioxide Substances 0.000 claims description 35
- 239000010949 copper Substances 0.000 claims description 33
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 30
- 229910052737 gold Inorganic materials 0.000 claims description 30
- 239000010948 rhodium Substances 0.000 claims description 29
- 229910052802 copper Inorganic materials 0.000 claims description 27
- 239000000395 magnesium oxide Substances 0.000 claims description 25
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 25
- 239000004071 soot Substances 0.000 claims description 23
- 238000003860 storage Methods 0.000 claims description 23
- 229910045601 alloy Inorganic materials 0.000 claims description 22
- 239000000956 alloy Substances 0.000 claims description 22
- 239000002131 composite material Substances 0.000 claims description 18
- 239000006185 dispersion Substances 0.000 claims description 18
- 229910052703 rhodium Inorganic materials 0.000 claims description 14
- 238000001914 filtration Methods 0.000 claims description 8
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 claims description 5
- 239000007789 gas Substances 0.000 description 80
- 238000010531 catalytic reduction reaction Methods 0.000 description 51
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 42
- 229910002089 NOx Inorganic materials 0.000 description 41
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 40
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 39
- 239000010457 zeolite Substances 0.000 description 37
- 229910021536 Zeolite Inorganic materials 0.000 description 36
- 239000002019 doping agent Substances 0.000 description 26
- 239000003638 chemical reducing agent Substances 0.000 description 22
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 22
- JCXJVPUVTGWSNB-UHFFFAOYSA-N nitrogen dioxide Inorganic materials O=[N]=O JCXJVPUVTGWSNB-UHFFFAOYSA-N 0.000 description 21
- 239000010410 layer Substances 0.000 description 20
- 238000011068 loading method Methods 0.000 description 20
- 238000000034 method Methods 0.000 description 19
- 229910021529 ammonia Inorganic materials 0.000 description 18
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 17
- 229910052788 barium Inorganic materials 0.000 description 16
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 15
- 238000000576 coating method Methods 0.000 description 15
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 14
- 229910002091 carbon monoxide Inorganic materials 0.000 description 14
- 239000011248 coating agent Substances 0.000 description 14
- 239000011777 magnesium Substances 0.000 description 14
- 150000001342 alkaline earth metals Chemical class 0.000 description 13
- 239000002808 molecular sieve Substances 0.000 description 13
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 13
- -1 platinum group metals Chemical class 0.000 description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 11
- 229910052749 magnesium Inorganic materials 0.000 description 11
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 11
- 229910052710 silicon Inorganic materials 0.000 description 11
- 239000010703 silicon Substances 0.000 description 11
- 239000002002 slurry Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- 239000010936 titanium Substances 0.000 description 10
- 230000032683 aging Effects 0.000 description 9
- 239000011575 calcium Substances 0.000 description 9
- 239000000523 sample Substances 0.000 description 9
- 239000000843 powder Substances 0.000 description 8
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 7
- 229930195733 hydrocarbon Natural products 0.000 description 7
- 150000002430 hydrocarbons Chemical class 0.000 description 7
- 239000011148 porous material Substances 0.000 description 7
- 229910052712 strontium Inorganic materials 0.000 description 7
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- 239000000919 ceramic Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 229910052746 lanthanum Inorganic materials 0.000 description 5
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 5
- 229910052719 titanium Inorganic materials 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- 229910052684 Cerium Inorganic materials 0.000 description 4
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 4
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 4
- 229910052878 cordierite Inorganic materials 0.000 description 4
- JSKIRARMQDRGJZ-UHFFFAOYSA-N dimagnesium dioxido-bis[(1-oxido-3-oxo-2,4,6,8,9-pentaoxa-1,3-disila-5,7-dialuminabicyclo[3.3.1]nonan-7-yl)oxy]silane Chemical compound [Mg++].[Mg++].[O-][Si]([O-])(O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2)O[Al]1O[Al]2O[Si](=O)O[Si]([O-])(O1)O2 JSKIRARMQDRGJZ-UHFFFAOYSA-N 0.000 description 4
- MRELNEQAGSRDBK-UHFFFAOYSA-N lanthanum(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[La+3].[La+3] MRELNEQAGSRDBK-UHFFFAOYSA-N 0.000 description 4
- 229910000069 nitrogen hydride Inorganic materials 0.000 description 4
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 4
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 3
- 229910052779 Neodymium Inorganic materials 0.000 description 3
- 229910052777 Praseodymium Inorganic materials 0.000 description 3
- 229910052772 Samarium Inorganic materials 0.000 description 3
- 229910000323 aluminium silicate Inorganic materials 0.000 description 3
- 239000003344 environmental pollutant Substances 0.000 description 3
- 235000019253 formic acid Nutrition 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 description 3
- 231100000719 pollutant Toxicity 0.000 description 3
- PUDIUYLPXJFUGB-UHFFFAOYSA-N praseodymium atom Chemical compound [Pr] PUDIUYLPXJFUGB-UHFFFAOYSA-N 0.000 description 3
- 239000002243 precursor Substances 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- KZUNJOHGWZRPMI-UHFFFAOYSA-N samarium atom Chemical compound [Sm] KZUNJOHGWZRPMI-UHFFFAOYSA-N 0.000 description 3
- 229910052723 transition metal Inorganic materials 0.000 description 3
- 150000003624 transition metals Chemical class 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910052727 yttrium Inorganic materials 0.000 description 3
- VWQVUPCCIRVNHF-UHFFFAOYSA-N yttrium atom Chemical compound [Y] VWQVUPCCIRVNHF-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 239000005084 Strontium aluminate Substances 0.000 description 2
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 2
- QKYBEKAEVQPNIN-UHFFFAOYSA-N barium(2+);oxido(oxo)alumane Chemical compound [Ba+2].[O-][Al]=O.[O-][Al]=O QKYBEKAEVQPNIN-UHFFFAOYSA-N 0.000 description 2
- XFWJKVMFIVXPKK-UHFFFAOYSA-N calcium;oxido(oxo)alumane Chemical compound [Ca+2].[O-][Al]=O.[O-][Al]=O XFWJKVMFIVXPKK-UHFFFAOYSA-N 0.000 description 2
- 239000004202 carbamide Substances 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 229910001657 ferrierite group Inorganic materials 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 2
- 229910052741 iridium Inorganic materials 0.000 description 2
- 229910052680 mordenite Inorganic materials 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 150000002940 palladium Chemical class 0.000 description 2
- 239000013618 particulate matter Substances 0.000 description 2
- 230000002035 prolonged effect Effects 0.000 description 2
- 230000008929 regeneration Effects 0.000 description 2
- 238000011069 regeneration method Methods 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- FNWBQFMGIFLWII-UHFFFAOYSA-N strontium aluminate Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Al+3].[Al+3].[Sr+2].[Sr+2] FNWBQFMGIFLWII-UHFFFAOYSA-N 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- MGWGWNFMUOTEHG-UHFFFAOYSA-N 4-(3,5-dimethylphenyl)-1,3-thiazol-2-amine Chemical compound CC1=CC(C)=CC(C=2N=C(N)SC=2)=C1 MGWGWNFMUOTEHG-UHFFFAOYSA-N 0.000 description 1
- 241000269350 Anura Species 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910018879 Pt—Pd Inorganic materials 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 239000005864 Sulphur Substances 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- JYIBXUUINYLWLR-UHFFFAOYSA-N aluminum;calcium;potassium;silicon;sodium;trihydrate Chemical compound O.O.O.[Na].[Al].[Si].[K].[Ca] JYIBXUUINYLWLR-UHFFFAOYSA-N 0.000 description 1
- BVCZEBOGSOYJJT-UHFFFAOYSA-N ammonium carbamate Chemical compound [NH4+].NC([O-])=O BVCZEBOGSOYJJT-UHFFFAOYSA-N 0.000 description 1
- VZTDIZULWFCMLS-UHFFFAOYSA-N ammonium formate Chemical compound [NH4+].[O-]C=O VZTDIZULWFCMLS-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000004323 axial length Effects 0.000 description 1
- ITHZDDVSAWDQPZ-UHFFFAOYSA-L barium acetate Chemical compound [Ba+2].CC([O-])=O.CC([O-])=O ITHZDDVSAWDQPZ-UHFFFAOYSA-L 0.000 description 1
- 239000010953 base metal Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- KXDHJXZQYSOELW-UHFFFAOYSA-N carbonic acid monoamide Natural products NC(O)=O KXDHJXZQYSOELW-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 229910010293 ceramic material Inorganic materials 0.000 description 1
- 229910001603 clinoptilolite Inorganic materials 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Inorganic materials [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000001627 detrimental effect Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000012013 faujasite Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 229910000510 noble metal Inorganic materials 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000003921 particle size analysis Methods 0.000 description 1
- 238000004375 physisorption Methods 0.000 description 1
- 150000003057 platinum Chemical class 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 239000013074 reference sample Substances 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 239000006254 rheological additive Substances 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 229910001256 stainless steel alloy Inorganic materials 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- GPPXJZIENCGNKB-UHFFFAOYSA-N vanadium Chemical compound [V]#[V] GPPXJZIENCGNKB-UHFFFAOYSA-N 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/42—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/944—Simultaneously removing carbon monoxide, hydrocarbons or carbon making use of oxidation catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9459—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
- B01D53/9463—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9459—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
- B01D53/9463—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick
- B01D53/9468—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick in different layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9459—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
- B01D53/9463—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick
- B01D53/9472—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on one brick in different zones
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/92—Chemical or biological purification of waste gases of engine exhaust gases
- B01D53/94—Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
- B01D53/9459—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts
- B01D53/9477—Removing one or more of nitrogen oxides, carbon monoxide, or hydrocarbons by multiple successive catalytic functions; systems with more than one different function, e.g. zone coated catalysts with catalysts positioned on separate bricks, e.g. exhaust systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/02—Boron or aluminium; Oxides or hydroxides thereof
- B01J21/04—Alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J21/00—Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
- B01J21/12—Silica and alumina
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/44—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J23/00—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
- B01J23/38—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
- B01J23/40—Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
- B01J23/46—Ruthenium, rhodium, osmium or iridium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/7007—Zeolite Beta
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/74—Noble metals
- B01J29/7415—Zeolite Beta
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/76—Iron group metals or copper
- B01J29/763—CHA-type, e.g. Chabazite, LZ-218
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/19—Catalysts containing parts with different compositions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/20—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
- B01J35/23—Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/391—Physical properties of the active metal ingredient
- B01J35/393—Metal or metal oxide crystallite size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/30—Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
- B01J35/391—Physical properties of the active metal ingredient
- B01J35/394—Metal dispersion value, e.g. percentage or fraction
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/40—Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/50—Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
- B01J35/56—Foraminous structures having flow-through passages or channels, e.g. grids or three-dimensional monoliths
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/612—Surface area less than 10 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J35/00—Catalysts, in general, characterised by their form or physical properties
- B01J35/60—Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
- B01J35/61—Surface area
- B01J35/613—10-100 m2/g
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/0215—Coating
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J37/00—Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
- B01J37/02—Impregnation, coating or precipitation
- B01J37/03—Precipitation; Co-precipitation
- B01J37/038—Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1021—Platinum
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/10—Noble metals or compounds thereof
- B01D2255/102—Platinum group metals
- B01D2255/1023—Palladium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/204—Alkaline earth metals
- B01D2255/2042—Barium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/207—Transition metals
- B01D2255/20761—Copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/20—Metals or compounds thereof
- B01D2255/209—Other metals
- B01D2255/2092—Aluminium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/30—Silica
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/50—Zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/50—Zeolites
- B01D2255/502—Beta zeolites
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/902—Multilayered catalyst
- B01D2255/9022—Two layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2255/00—Catalysts
- B01D2255/90—Physical characteristics of catalysts
- B01D2255/903—Multi-zoned catalysts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2258/00—Sources of waste gases
- B01D2258/01—Engine exhaust gases
- B01D2258/012—Diesel engines and lean burn gasoline engines
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J29/00—Catalysts comprising molecular sieves
- B01J29/04—Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
- B01J29/06—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
- B01J29/70—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
- B01J29/72—Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing iron group metals, noble metals or copper
- B01J29/723—CHA-type, e.g. Chabazite, LZ-218
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01N—GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
- F01N3/00—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
- F01N3/08—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
- F01N3/10—Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/20—Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
Definitions
- the trapped Pt can consume the NH 3 that is intended for the selective catalytic reduction of NO x (thereby decreasing NO x conversion) and undesirable, secondary emissions may be produced.
- Each of the above methods of the invention comprise the step of passing an exhaust gas produced by a compression ignition engine through an exhaust system comprising:
- Figure 1 is a schematic drawing of a laboratory reactor used for testing platinum contamination on a Cu/CHA zeolite SCR catalyst.
- FIG. 2 is a schematic drawing showing an exhaust system embodiment of the invention.
- Exhaust gas (20) passes through an oxidation catalyst (1) of the invention, which has a capture zone (3).
- oxidation catalyst (1) After exhaust gas (20) has passed through the oxidation catalyst (1), it passes through a second emissions control device (10), such as a selective catalytic reduction (SCR) catalyst or a selective catalytic reduction filter (SCRFTM) catalyst.
- SCR selective catalytic reduction
- SCRFTM selective catalytic reduction filter
- FIG. 6 is a schematic drawing showing an exhaust system embodiment of the invention.
- Exhaust gas (20) passes through an oxidation catalyst (1) of the invention, which has a capture material (3) disposed at an outlet end surface of the substrate.
- a second emissions control device (10) such as a selective catalytic reduction (SCR) catalyst or a selective catalytic reduction filter (SCRFTM) catalyst.
- SCR selective catalytic reduction
- SCRFTM selective catalytic reduction filter
- FIG 8 is a schematic drawing of an oxidation catalyst of the invention.
- the oxidation catalyst has a catalytic material (2) disposed on a substrate (1).
- the invention relates to a region for capturing volatilised platinum (Pt), which comprises, or consists essentially of, a capture material.
- the region can be arranged in a variety of ways to trap or capture volatilised Pt in an exhaust gas that has passed through an upstream catalytic material, typically of an oxidation catalyst.
- the region is arranged to prevent the volatilised Pt from condensing on a second, downstream emissions control device, such as a SCR catalyst or SCRFTM catalyst.
- the capture material comprises or consists essentially of:
- the inventors have found that the use of a capture material in accordance with the invention can reduce or prevent volatilised Pt from becoming deposited on a downstream SCR catalyst or SCRFTM catalyst when the capture material is arranged within the exhaust system in an appropriate manner.
- the capture material of the invention has low catalytic activity, particularly toward the oxidation of CO and/or unburned HCs, and especially toward the oxidation of NO x .
- the capture material does not, in general, comprise a base metal, such as barium or vanadium.
- the region for capturing volatilised platinum (Pt) or the capture material thereof comprises a loading of the refractory oxide of 0.1 to 3.5 g in “3 , preferably 0.2 to 2.5 g in “3 , still more preferably 0.3 to 2.0 g in “3 , and even more preferably 0.5 to 1.75 g in “3 (e.g. 0.75 to 1.5 g in “3 ).
- the refractory oxide has a d90 of > 0.1 micron. It is preferred that the refractory oxide has a d90 of >1.0 micron, such as > 5.0 micron.
- the particles of a refractory oxide for use in accordance with the invention have a relatively low mean specific surface area compared to the mean specific surface area of particles of the same refractory oxide that are used as a support material (e.g. for a catalytically active metal, such as a platinum group metal) in prior art emissions control devices (e.g. DOC, CSF or NSC).
- a support material e.g. for a catalytically active metal, such as a platinum group metal
- prior art emissions control devices e.g. DOC, CSF or NSC
- small refractory oxide particles having a large mean specific surface area are used to maximise catalytic activity.
- the particles of the refractory oxide for use in accordance with the invention are relatively large (i.e. generally much larger than when used as a support material in prior art emissions control devices).
- Refractory oxides having a mean specific surface area ⁇ about 50 m 2 /g are known in the art and may be commercially available. It may also be possible to prepare such a refractory oxide by heating a refractory oxide having a mean specific surface area > 50 m 2 /g to a high temperature, usually a temperature (e.g. 1200 °C or more) that is significantly higher than the temperature that the refractory oxide would encounter in an exhaust system of a vehicle during normal use. Thus, the refractory oxide (i.e. having a low surface area) is not formed in situ during use of the oxidation catalyst.
- the refractory oxide may optionally be doped (e.g. with a dopant).
- the dopant may be selected from the group consisting of zirconium (Zr), titanium (Ti), silicon (Si), yttrium (Y), lanthanum (La), praseodymium (Pr), samarium (Sm), neodymium (Nd) and an oxide thereof.
- the inclusion of a dopant can thermally stabilise the refractory oxide.
- any reference to "doped” in this context refers to a material where the bulk or host lattice of the refractory oxide is substitution doped or interstitially doped with a dopant.
- small amounts of the dopant may be present at a surface of the refractory oxide. However, most of the dopant will generally be present in the body of the refractory oxide.
- the capture material may comprise, or consist essentially of, particles of a Pt-alloying material (PAM), such as palladium (Pd).
- PAM Pt-alloying material
- Pd palladium
- PAM Pt-alloying material
- a metal that can act as a Pt-alloying material is included in an oxidation catalyst for its catalytic activity.
- the mean particle size of such metals (e.g. palladium) in conventional emissions control devices is much smaller than 10 nm.
- the particles of the Pt-alloying material for use in the capture material in accordance with the invention are relatively large. It has surprisingly been found that such large particles of the Pt-alloying material are able to trap or capture volatilised Pt whilst being relatively catalytically inactive.
- the Pt-alloying material has a mean particle size of from 10 nm to 1000 micron. It is preferred that the Pt-alloying material has a mean particle size of from 15 nm to 100 micron, more preferably 20 nm to 20 micron, particularly 50 nm to 5 micron, such as 75 nm to 3 micron.
- the particles of the Pt-alloying material particles typically have a dispersion of ⁇ about 10 % (e.g. ⁇ about 10 %), preferably ⁇ about 7.5 %, such as ⁇ about 5 %, more preferably ⁇ about 2.5 %.
- the measurement of the dispersion refers to unused Pt- alloying material particles (i.e. fresh particles, which have not been subjected to repeated or prolonged use).
- ICP-OES Inductively Coupled Plasma Optical Emission Spectroscopy
- the CO uptake of the sample was measured using a Micromeritics Autochem 2920 instrument.
- the sample was pre-treated with hydrogen gas at 300°C.
- Carbon monoxide uptake was measured by pulse chemisorption at 50°C.
- the Pt-alloying material dispersion and particle size were then calculated using the Autochem 2920 software based on the CO uptake and Pt-alloying material content for the sample.
- a chemisorption ratio for CO:Pd of 1 :1 was used in the calculation.
- the dispersion of the Pt-alloying material is a measurement of the particle size of the Pt- alloying material. Large particles with a low surface area have a low dispersion.
- the capture material or capture region has a total loading of Pt-alloying material (e.g. the metal content of the Pt-alloying material) of 1 g ft "3 to 50 g ft "3 , preferably 4 g ft "3 to 40 g ft “3 , even more preferably 8 g ft "3 to 30 g ft “3 .
- Pt-alloying material e.g. the metal content of the Pt-alloying material
- the Pt-alloying material is disposed or supported on a support material (e.g. a particulate support material).
- the Pt-alloying material may be disposed directly onto or is directly supported by the support material (e.g. there is no intervening support material between the Pt-alloying material and the support material).
- the Pt- alloying material such as palladium, can be dispersed on a surface of and/or
- the support material comprises, or consists essentially of, a refractory oxide.
- the refractory oxide is not a material that promotes the catalytic activity of the Pt-alloying material, particularly when the Pt-alloying material comprises palladium (e.g. the catalytic activity of the palladium in the oxidation of CO and/or unburned HCs).
- At least one particle of the Pt-alloying material may be disposed or supported on at least one particle of the refractory oxide.
- a plurality of particles of Pt-alloying material are disposed or supported on at least one particle of the refractory oxide.
- there is a plurality of particles of the refractory oxide wherein a plurality of particles of Pt-alloying material are disposed or supported on each particle of the refractory oxide.
- the refractory oxide may be as defined above.
- the refractory oxide may be selected from the group consisting of alumina, silica, titania, zirconia, ceria and a mixed or composite oxide thereof, such as a mixed or composite oxide of two or more thereof.
- the refractory oxide may be selected from the group consisting of alumina, silica, titania, zirconia, ceria, silica-alumina, titania-alumina, zirconia-alumina, ceria- alumina, titania-silica, zirconia-silica, zirconia-titania, ceria-zirconia and alumina- magnesium oxide.
- the refractory oxide may optionally be doped (e.g. with a dopant).
- the dopant may be selected from the group consisting of zirconium (Zr), titanium (Ti), silicon (Si), yttrium (Y), lanthanum (La), praseodymium (Pr), samarium (Sm), neodymium (Nd) and an oxide thereof.
- the ceria-zirconia may consist essentially of 20 to 95 % by weight of ceria and 5 to 80 % by weight of zirconia (e.g. 50 to 95 % by weight ceria and 5 to 50 % by weight zirconia), preferably 35 to 80 % by weight of ceria and 20 to 65 % by weight zirconia (e.g. 55 to 80 % by weight ceria and 20 to 45 % by weight zirconia), even more preferably 45 to 75 % by weight of ceria and 25 to 55 % by weight zirconia.
- zirconia e.g. 50 to 95 % by weight ceria and 5 to 50 % by weight zirconia
- zirconia e.g. 50 to 95 % by weight ceria and 5 to 50 % by weight zirconia
- preferably 35 to 80 % by weight of ceria and 20 to 65 % by weight zirconia e.g. 55 to 80 % by weight c
- the refractory oxide is selected from the group consisting of alumina, silica, ceria, silica-alumina, ceria-alumina, ceria-zirconia and alumina-magnesium oxide. More preferably, the refractory oxide is selected from the group consisting of alumina, ceria, silica-alumina and ceria-zirconia. Even more preferably, the refractory oxide is alumina or silica-alumina, particularly silica-alumina.
- the particles of the refractory oxide are of the type that would be used as a support material for a catalytic material (e.g. they are relatively small and have a high surface area).
- the particles of the refractory oxide typically have a mean specific surface area > about 50 m 2 /g, preferably ⁇ about 60 m 2 /g, such as ⁇ about 100 m 2 /g.
- the refractory oxide is selected from the group consisting of alumina, silica, titania, zirconia, silica-alumina, titania-alumina, zirconia-alumina, titania-silica, zirconia-silica, zirconia-titania, and alumina-magnesium oxide. More preferably, the refractory oxide is selected from the group consisting of alumina, silica, silica-alumina and alumina-magnesium oxide.
- the Pt-alloying material is typically disposed or supported on a support material (e.g. a particulate support material), which support material comprises, or consists essentially of, the refractory oxide having a mean specific surface area ⁇ about 50 m 2 /g or as otherwise defined above.
- the Pt-alloying material may be disposed directly onto or is directly supported by the support material (e.g. there is no intervening support material between the Pt-alloying material and the support material).
- the Pt-alloying material such as palladium, can be dispersed on a surface of and/or impregnated into the support material.
- At least one particle of the Pt-alloying material may be disposed or supported on at least one particle of the refractory oxide.
- a plurality of particles of Pt-alloying material are disposed or supported on at least one particle of the refractory oxide. More preferably, there is a plurality of particles of the refractory oxide, wherein a plurality of particles of Pt-alloying material are disposed or supported on each particle of the refractory oxide.
- the invention includes various arrangements of the capture material in relation to the catalytic material comprising (Pt), which is part of an oxidation catalyst. In principle, the capture material could be used with an oxidation catalyst comprising such a catalytic material.
- the oxidation catalyst is an oxidation catalyst of the invention.
- the capture material is part of a capture brick, then the oxidation catalyst may be an oxidation catalyst of the invention or an oxidation catalyst without a region comprising a capture material.
- the oxidation catalyst is an oxidation catalyst of the invention, then it may comprise a region comprising a first capture material and the capture brick may comprise a second capture material.
- the first capture material may have a composition that is the same or different to the composition of the second capture material.
- each capture material may independently have a composition as defined above.
- the oxidation catalyst is an oxidation catalyst without a region comprising a capture material
- the oxidation catalyst comprises, or consists essentially of, a catalytic material disposed on the substrate, wherein the catalytic material comprises platinum (Pt).
- the oxidation catalyst may be a diesel oxidation catalyst (DOC), a catalysed soot filter (CSF), a ⁇ storage catalyst (NSC), a passive NO x adsorber (PNA), a diesel exotherm catalyst (DEC), a cold start concept (CSCTM) catalyst [see WO 2012/166868 and International patent application no. PCT/US14/69079, which are each incorporated herein by reference] or an ammonia slip catalyst (ASC).
- DOC diesel oxidation catalyst
- CSF catalysed soot filter
- NSC ⁇ storage catalyst
- PNA passive NO x adsorber
- DEC diesel exotherm catalyst
- CSCTM cold start concept
- ASC ammonia slip catalyst
- the oxidation catalyst is a DOC, a CSF, a NSC, a PNA or a DEC. More preferably, the oxidation catalyst is a DOC or a CSF.
- the catalytic material comprises platinum (Pt) disposed or supported on a support material (referred to herein as the support material of the catalytic material or "CM support material").
- the platinum may be disposed directly onto or is directly supported by the support material (e.g. there is no intervening support material between the platinum and the support material).
- platinum can be dispersed over a surface of and/or impregnated within the support material.
- the CM support material comprises, or consists essentially of, a refractory oxide (referred to herein as the refractory oxide of the catalytic material). Particles of the refractory oxide typically have a mean specific surface area ⁇ 75 m 2 /g, such as ⁇ 100 m 2 /g, and preferably ⁇ 100 m 2 /g.
- the refractory oxide of the CM support material is typically selected from the group consisting of alumina, silica, titania, zirconia, ceria and a mixed or composite oxide thereof, such as a mixed or composite oxide of two or more thereof.
- the refractory oxide may be selected from the group consisting of alumina, silica, titania, zirconia, ceria, silica-alumina, titania-alumina, zirconia-alumina, ceria-alumina, titania- silica, zirconia-silica, zirconia-titania, ceria-zirconia and alumina-magnesium oxide.
- the CM support material or the refractory oxide thereof comprises or consists essentially of a mixed or composite oxide of alumina (e.g. silica-alumina, alumina- magnesium oxide or a mixture of alumina and ceria), then preferably the mixed or composite oxide of alumina comprises at least 50 to 99 % by weight of alumina, more preferably 70 to 95 % by weight of alumina, even more preferably 75 to 90 % by weight of alumina.
- alumina e.g. silica-alumina, alumina- magnesium oxide or a mixture of alumina and ceria
- the CM support material or the refractory oxide thereof comprises or consists essentially of ceria-zirconia
- the ceria-zirconia may consist essentially of 20 to 95 % by weight of ceria and 5 to 80 % by weight of zirconia (e.g. 50 to 95 % by weight ceria and 5 to 50 % by weight zirconia), preferably 35 to 80 % by weight of ceria and 20 to 65 % by weight zirconia (e.g. 55 to 80 % by weight ceria and 20 to 45 % by weight zirconia), even more preferably 45 to 75 % by weight of ceria and 25 to 55 % by weight zirconia.
- the CM support material or the refractory oxide thereof may optionally be doped (e.g. with a dopant).
- the dopant may be selected from the group consisting of zirconium (Zr), titanium (Ti), silicon (Si), yttrium (Y), lanthanum (La), praseodymium (Pr), samarium (Sm), neodymium (Nd) and an oxide thereof.
- the total amount of dopant is 0.25 to 5 % by weight, preferably 0.5 to 3 % by weight (e.g. about 1 % by weight).
- the CM support material or the refractory oxide thereof may comprise or consist essentially of alumina doped with a dopant. It is particularly preferred that the CM support material or the refractory oxide thereof comprises, or consists essentially of, alumina doped with a dopant when the catalytic material comprises an alkaline earth metal, preferably when the oxidation catalyst is a diesel oxidation catalyst (DOC) or a catalysed soot filter (CSF).
- DOC diesel oxidation catalyst
- CSF catalysed soot filter
- the alumina may be doped with a dopant comprising silicon (Si), magnesium (Mg), barium (Ba), lanthanum (La), cerium (Ce), titanium (Ti), or zirconium (Zr) or a dopant comprising silicon (Si), magnesium (Mg), barium (Ba), lanthanum (La), cerium (Ce), titanium (Ti), or zirconium (Zr) or a dopant comprising silicon (Si), magnesium (Mg), barium (Ba), lanthanum (La), cerium (Ce), titanium (Ti), or zirconium (Zr) or a dopant comprising silicon (Si), magnesium (Mg), barium (Ba), lanthanum (La), cerium (Ce), titanium (Ti), or zirconium (Zr) or a dopant comprising silicon (Si), magnesium (Mg), barium (Ba), lanthanum (La), cerium (Ce), titanium (Ti),
- the dopant may comprise, or consist essentially of, an oxide of silicon, an oxide of magnesium, an oxide of barium, an oxide of lanthanum, an oxide of cerium, an oxide of titanium or an oxide of zirconium.
- the dopant comprises, or consists essentially of, silicon, magnesium, barium, cerium, or an oxide thereof, particularly silicon, or cerium, or an oxide thereof.
- the dopant comprises, or consists essentially of, silicon, magnesium, barium, or an oxide thereof; particularly silicon, magnesium, or an oxide thereof; especially silicon or an oxide thereof.
- alumina doped with a dopant examples include alumina doped with silica, alumina doped with magnesium oxide, alumina doped with barium or barium oxide, alumina doped with lanthanum oxide, or alumina doped with ceria, particularly alumina doped with silica, alumina doped with lanthanum oxide, or alumina doped with ceria. It is preferred that the alumina doped with a dopant is alumina doped with silica, alumina doped with barium or barium oxide, or alumina doped with magnesium oxide. More preferably, the alumina doped with a dopant is alumina doped with silica or alumina doped with magnesium oxide. Even more preferably, the alumina doped with a dopant is alumina doped with silica.
- the alumina is doped with magnesium oxide
- the alumina is doped with magnesium oxide in an amount as defined above or an amount of 1 to 40 % by weight (i.e. % by weight of the alumina), such as 5 to 28 % by weight. More preferably, the alumina is doped with magnesium oxide in amount of 10 to 25 % by weight.
- the CM support material or refractory oxide thereof may comprise, or consist essentially of, an alkaline earth metal aluminate.
- alkaline earth metal aluminate generally refers to a compound of the formula MAI 2 0 4 where "M" represents the alkaline earth metal, such as Mg, Ca, Sr or Ba. Such compounds may comprise a spinel structure.
- the alkaline earth metal aluminate is magnesium aluminate (MgAI 2 0 4 ), calcium aluminate (CaAI 2 0 4 ), strontium aluminate (SrAI 2 0 4 ), barium aluminate (BaAI 2 0 4 ), or a mixture of two or more thereof.
- the alkaline earth metal aluminate is magnesium aluminate (MgAI 2 0 4 ).
- the catalytic material may comprise a single platinum group metal (PGM), which is platinum (e.g. the catalytic material comprises platinum as the only platinum group metal).
- PGM platinum group metal
- the catalytic material may comprise (i) platinum (Pt), and (ii) palladium (Pd) and/or rhodium (Rh).
- the catalytic material comprises palladium (Pd)
- typically the catalytic material comprises particles of palladium (Pd) having a mean particle size ⁇ 10 nm, preferably ⁇ 8 nm.
- the catalytic material comprises palladium (Pd)
- the catalytic material comprises particles of palladium (Pd) having a dispersion > 10 %, preferably ⁇ 15 % (e.g. 15 to 35 %), such as ⁇ 20 % (e.g. 20 to 30 %).
- the ratio by mass of Pt to Pd is ⁇ 1 : 1.
- the catalytic material may comprise Pt and optionally Pd, such that the ratio by mass of Pt to Pd is from 1 :0 to 1 : 1. It has been found that volatilisation of platinum occurs when the catalytic material is relatively Pt rich.
- the ratio by mass of Pt to Pd is ⁇ 1.5: 1 , more preferably ⁇ 2:1 (e.g. ⁇ 3: 1), even more preferably ⁇ 4:1 , such as ⁇ 10:1.
- the ratio by mass (i.e. mass ratio) of Pt to Pd is preferably 50: 1 to 1 : 1 , more preferably 30: 1 to 2: 1 (e.g. 25:1 to 4: 1), even more preferably 20: 1 to 5: 1 , such as 15: 1 to 7.5: 1.
- the ratio by mass of Pt to Rh is ⁇ 1 : 1.
- the catalytic material may comprise Pt and optionally Rh, such that the ratio by mass of Pt to Rh is from 1 :0 to 1 : 1.
- the ratio by mass of Pt to Rh is ⁇ 1.5:1 , more preferably ⁇ 2: 1 (e.g. ⁇ 3:1), even more preferably ⁇ 4: 1 , such as ⁇ 10: 1.
- the ratio by mass (i.e. mass ratio) of Pt to Rh is preferably 50: 1 to 1 : 1 , more preferably 30: 1 to 2: 1 (e.g. 25: 1 to 4: 1), even more preferably 20: 1 to 5: 1 , such as 15:1 to 7.5: 1.
- the catalytic material comprises Pd (and optionally Rh)
- the catalytic material may comprise Pd disposed or supported on the CM support material. If Rh is also present, then the catalytic material may comprise Pd and Rh disposed or supported on the CM support material.
- the oxidation catalyst has a total loading of PGM of 5 to 500 g ft "3 .
- the total loading of PGM is 10 to 400 g ft "3 , more preferably 20 to 300 g ft "3 , still more preferably, 25 to 250 g ft "3 , and even more preferably 30 to 200 g ft "3 .
- the oxidation catalyst is a diesel oxidation catalyst (DOC), a diesel exotherm catalyst (DEC) or a passive NO x adsorber (PNA).
- DOC diesel oxidation catalyst
- DEC diesel exotherm catalyst
- PNA passive NO x adsorber
- the oxidation catalyst is a catalysed soot filter (CSF)
- the oxidation catalyst or the catalytic material thereof has a total loading of PGM is 1 to 100 g ft "3 , more preferably 5 to 50 g ft "3 .
- the catalytic material in the first and second oxidation catalyst embodiments may further comprise a catalyst promoter.
- the catalyst promoter may comprise, or consist essentially of, an alkaline earth metal.
- the alkaline earth metal may be selected from the group consisting of magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba) and a combination of two or more thereof. It is preferred that the alkaline earth metal is calcium (Ca), strontium (Sr), or barium (Ba), more preferably strontium (Sr) or barium (Ba), and most preferably the alkaline earth metal is barium (Ba).
- the catalytic material comprises a total amount of the alkaline earth metal of 10 to 500 g ft “3 (e.g. 60 to 400 g ft “3 or 10 to 450 g ft “3 ), particularly 20 to 400 g ft “3 , more particularly 35 to 350 g ft “3 , such as 50 to 300 g ft "3 , especially 75 to 250 g ft “3 .
- the catalyst promoter e.g. alkaline earth metal
- platinum and optionally palladium
- the oxidation catalyst is a NO x storage catalyst (NSC).
- NSC NO x storage catalyst
- the oxidation catalyst is a NO x storage catalyst (NSC)
- NSC NO x storage catalyst
- the oxidation catalyst is a NO x storage catalyst (NSC)
- the oxidation catalyst or the catalytic material thereof has a total loading of PGM is 20 to 200 g ft "3 , more preferably 40 to 160 g ft "3 .
- the catalytic material comprises Pd, then the Pd may be disposed or supported on the CM support material.
- the Pd may be disposed or supported on the CM support material.
- the CM support comprises, or consists essentially of, a refractory oxide selected from the group consisting of alumina-magnesium oxide (e.g. a mixed or composite oxide thereof), alumina doped with magnesium oxide and magnesium aluminate (MgAI 2 0 4 ). More preferably, the refractory oxide is selected from the group consisting of alumina-magnesium oxide (e.g. a mixed or composite oxide thereof) and alumina doped with magnesium oxide.
- the alumina- magnesium oxide or the alumina doped with magnesium oxide comprise magnesium oxide in an amount of 1 to 40 % by weight (i.e. % by weight of the alumina), such as 5 to 28 % by weight. More preferably, the alumina is doped with magnesium oxide in amount of 10 to 25 % by weight.
- the oxidation catalyst is a NO x storage catalyst (NSC)
- the oxidation catalyst or the catalytic material thereof comprises a NO x storage component.
- the ⁇ storage component comprises an alkaline earth metal selected from the group consisting of magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba) and a combination of two or more thereof. It is preferred that the alkaline earth metal is calcium (Ca), strontium (Sr), or barium (Ba), more preferably strontium (Sr) or barium (Ba), and most preferably the alkaline earth metal is barium (Ba).
- the NO x storage component consists of an oxide, a carbonate or a hydroxide of the alkaline earth metal.
- the oxidation catalyst is a NO x storage catalyst (NSC)
- NSC NO x storage catalyst
- the oxidation catalyst or the catalytic material thereof comprises a total amount of NO x storage component (e.g. alkaline earth metal) of 100 to 6000 g ft “3 , preferably 250 to 900 g ft “3 (e.g. 250 to 500 g ft “3 ), particularly 300 to 850 g ft “3 (e.g. 300 to 450 g ft “3 ), more particularly 400 to 800 g ft "3 , such as 450 to 600 g ft "3 .
- NO x storage component e.g. alkaline earth metal
- the CM support material and/or the NSC support material may provide some NO x storage activity, such as when the support material comprises ceria.
- the total amount of NO x storage component typically does not include the amount of the CM support material and/or the amount of the NSC support material.
- the ⁇ storage component may be disposed or supported on the CM support material.
- the oxidation catalyst or the catalytic material thereof may further comprise a NO x storage component support material (referred to herein as "NSC support material").
- NSC support material a NO x storage component support material
- the NO x storage component may be disposed or supported on the NSC support material.
- the NSC support material comprises, or consists essentially of, refractory oxide, such as a refractory oxide selected from the group consisting of ceria and a mixed or composite oxide thereof.
- the mixed or composite oxide of ceria may be selected from the group consisting of ceria-alumina and ceria-zirconia. It is preferred that the refractory oxide is selected from the group consisting of ceria and ceria-zirconia.
- the ceria-zirconia may consist essentially of 20 to 95 % by weight of ceria and 5 to 80 % by weight of zirconia (e.g. 50 to 95 % by weight ceria and 5 to 50 % by weight zirconia), preferably 35 to 80 % by weight of ceria and 20 to 65 % by weight zirconia (e.g. 55 to 80 % by weight ceria and 20 to 45 % by weight zirconia), even more preferably 45 to 75 % by weight of ceria and 25 to 55 % by weight zirconia.
- zirconia e.g. 50 to 95 % by weight ceria and 5 to 50 % by weight zirconia
- zirconia e.g. 50 to 95 % by weight ceria and 5 to 50 % by weight zirconia
- preferably 35 to 80 % by weight of ceria and 20 to 65 % by weight zirconia e.g. 55 to 80 % by weight c
- the oxidation catalyst (including the first to third oxidation catalyst embodiments) or the catalytic material thereof may further comprise a zeolite.
- the zeolite is a medium pore zeolite (e.g. a zeolite having a maximum ring size of ten tetrahedral atoms) or a large pore zeolite (e.g. a zeolite having a maximum ring size of twelve tetrahedral atoms).
- zeolites or types of zeolite include faujasite, clinoptilolite, mordenite, silicalite, ferrierite, zeolite X, zeolite Y, ultrastable zeolite Y, AEI zeolite, ZSM-5 zeolite, ZSM-12 zeolite, ZSM-20 zeolite, ZSM-34 zeolite, CHA zeolite, SSZ-3 zeolite, SAPO-5 zeolite, offretite, a beta zeolite or a copper CHA zeolite.
- the zeolite is preferably ZSM-5, a beta zeolite or a Y zeolite.
- the zeolite has a silica to alumina molar ratio of at least 25: 11 , preferably at least 25 : 1 , with useful ranges of from 25: 1 to 1000: 1 , 50:1 to 500: 1 as well as 25: 1 to 100: 1 , 25: 1 to 300: 1 , from 100: 1 to 250: 1.
- the oxidation catalyst or catalytic material thereof comprises a zeolite
- typically the total loading of zeolite is 0.05 to 3.00 g in "3 , particularly 0.10 to 2.00 g in "3 , more particularly 0.2 to 0.8 g in "3 .
- the capture region is disposed or supported on a plurality of channel walls of the substrate (i.e. each channel wall within the substrate).
- the oxidation catalyst of the invention also comprises a region comprising the capture material, which is arranged to contact the exhaust gas after the exhaust gas has contacted and/or passed through the catalytic material.
- the region comprising the capture material is referred to herein as the "capture region".
- the capture region is arranged to contact the exhaust gas as it leaves the oxidation catalyst.
- the catalytic region may be arranged or oriented to contact exhaust gas before the capture region.
- the capture region is arranged to contact the exhaust gas as it leaves the oxidation catalyst and optionally the catalytic region is arranged or oriented to contact exhaust gas before the capture region. It is preferred that the capture region is a capture zone. More preferably, the capture zone is disposed or supported at or near an outlet end of the substrate.
- the capture zone has a length of ⁇ 1 inch ( ⁇ 25.4 mm). This length of the capture zone is independent of the length of the substrate.
- the catalytic region is a catalytic layer. It is preferred that the catalytic layer extends for substantially an entire length of the substrate, particularly the entire length of the channels of a monolith substrate.
- the capture zone is typically disposed or supported on the catalytic layer.
- the capture zone is disposed directly on to the catalytic layer (i.e. the capture zone is in contact with a surface of the catalytic layer).
- the entire length of the capture zone is disposed or supported on the catalytic layer.
- the length of the capture zone is less than the length of the catalytic layer.
- the capture region arranged to contact the exhaust gas after the exhaust gas has contacted and/or passed through the catalytic material is a capture material disposed or supported on the outlet end surface (i.e. of the substrate).
- the oxidation catalyst comprises: a substrate having an inlet end surface and an outlet end surface; the catalytic material disposed on the substrate; and a capture material, wherein the capture material is disposed or supported on the outlet end surface (i.e. of the substrate).
- the third oxidation catalyst arrangement provides a cost effective solution of reducing or preventing volatilised platinum from escaping a platinum-containing oxidation catalyst (which can also avoid decreasing the amount of N0 2 that has been generated by the catalyst) because it does not require the use of large quantities of expensive materials, such as noble metals or rare earth metals.
- the oxidation catalyst when the capture material comprises, or consists essentially of, a Pt- alloying material, then preferably the oxidation catalyst has a total loading of Pt-alloying material (e.g. the metal content of the Pt-alloying material) of 1 g ft "3 to 500 g ft "3 (e.g. 50 to 400 g ft "3 ), preferably 4 g ft "3 to 250 g ft "3 (e.g. 75 to 250 g ft “3 ), even more preferably 8 g ft "3 to 150 g ft “3 (e.g. 100 to 150 g ft “3 ).
- the capture material can occupy a relatively small volume of the substrate and it may be necessary for a high loading of the Pt- alloying material to be present.
- the Pt-alloying material such as palladium, may be disposed or supported on an outlet end surface of the substrate (e.g. the Pt-alloying material is directly coated onto the outlet end surface of the substrate).
- the capture material is disposed or supported on an outlet end surface of the substrate (e.g. the downstream, end face of the substrate).
- the outlet end surface of a substrate typically comprises a plurality of channel wall edges.
- the outlet end surface of the substrate may be planar (e.g. as in conventional honeycomb substrates) or non-planar. When the outlet end surface of the substrate is non-planar, then the outlet end surface may have a three-dimensional topographical configuration. Examples of substrates having a non-planar end surface are described in US 8,257,659. Substrates having non-planar end surfaces may provide a larger surface area for the capture material to trap volatilised platinum than substrates having planar end surfaces. In general, it is preferred that the outlet end surface of the substrate is planar.
- the capture material may be disposed or supported on a plurality of channel walls within the substrate. During application of the capture material, some of the capture material may enter the channels of the substrate thereby partially coating the channel walls within the substrate.
- the oxidation catalyst comprises a capture zone, wherein the capture zone comprises, or consists essentially of, the capture material.
- the capture zone typically has a mean length (e.g. from the outlet end surface of the substrate) of ⁇ 25 mm, preferably ⁇ 20 mm, such as ⁇ 15 mm, more preferably ⁇ 10 mm (e.g. ⁇ 5 mm), and even more preferably ⁇ 3 mm (e.g. ⁇ 3 mm).
- the mean length refers to a length in the axial direction of the substrate.
- the oxidation catalyst comprises a catalytic material disposed on the substrate. The catalytic material is disposed or supported on a plurality of channel walls within the substrate.
- the catalytic material when the substrate is a filtering monolith substrate, the catalytic material may be disposed or supported on a plugged or sealed end of an inlet channel. It is preferred that the catalytic material is disposed or supported on the plugged or sealed ends of a plurality of inlet channels. Each plugged or sealed end of an inlet channel is at a downstream end (i.e. exhaust gas outlet side) of the substrate.
- the oxidation catalyst of the invention is a diesel oxidation catalyst (DOC), a diesel exotherm catalyst (DEC), passive NO x adsorber (PNA), a NO x storage catalyst (NSC), a CSCTM catalyst, an ASC or a catalysed soot filter (CSF), then the oxidation catalyst may have the first, second or third oxidation catalyst arrangement above.
- DOC diesel oxidation catalyst
- DEC diesel exotherm catalyst
- PNA passive NO x adsorber
- NSC NO x storage catalyst
- CSCTM catalyst a CSCTM catalyst
- ASC catalysed soot filter
- both the catalytic region (or catalytic layer or catalytic zone) and the capture region (or capture zone) may be disposed or supported on (i) a plurality of inlet channel walls of the substrate, and/or (ii) a plurality of outlet channel walls of the substrate.
- CSF catalysed soot filter
- the oxidation catalyst of the invention is a catalysed soot filter (CSF)
- the catalytic region or catalytic layer or catalytic zone
- the capture region or capture zone
- Substrates for supporting oxidation catalysts are well known in the art. Methods for making washcoats to apply the catalytic material or capture material onto a substrate and methods for applying washcoats onto a substrate are also known in the art (see, for example, our WO 99/47260, WO 2007/077462 and WO 2011/080525).
- the substrate typically has a plurality of channels (e.g. for the exhaust gas to flow through).
- the substrate is a ceramic material or a metallic material.
- the substrate is made or composed of cordierite (Si0 2 -AI 2 0 3 -MgO), silicon carbide (SiC), Fe-Cr-AI alloy, Ni-Cr-AI alloy, or a stainless steel alloy.
- the substrate is a monolith (also referred to herein as a monolith substrate).
- Such monolith substrates are well-known in the art.
- the monolith substrate may be a flow-through monolith substrate or a filtering monolith substrate.
- a flow-through monolith substrate typically comprises a honeycomb monolith (e.g. a metal or ceramic honeycomb monolith) having a plurality of channels extending therethrough, which channels are open at both ends.
- the oxidation catalyst of the invention is typically a diesel oxidation catalyst (DOC), a NO x storage catalyst (NSC), a passive NO x adsorber (PNA), a diesel exotherm catalyst (DEC), a cold start concept (CSCTM) catalyst or an ammonia slip catalyst (ASC).
- DOC diesel oxidation catalyst
- NSC NO x storage catalyst
- PNA passive NO x adsorber
- DEC diesel exotherm catalyst
- CSCTM cold start concept
- ASC ammonia slip catalyst
- a filtering monolith substrate generally comprises a plurality of inlet channels and a plurality of outlet channels, wherein the inlet channels are open at an upstream end (i.e. exhaust gas inlet side) and are plugged or sealed at a downstream end (i.e. exhaust gas outlet side), the outlet channels are plugged or sealed at an upstream end and are open at a downstream end, and wherein each inlet channel is separated from an outlet channel by a porous structure.
- the oxidation catalyst of the invention is typically a catalysed soot filter (CSF) or a NO x storage catalyst (NSC) on a filter, preferably a catalysed soot filter (CSF).
- the filtering monolith substrate is a wall-flow filter.
- each inlet channel is alternately separated from an outlet channel by a wall of the porous structure and vice versa. It is preferred that the inlet channels and the outlet channels are arranged in a honeycomb arrangement. When there is a honeycomb arrangement, it is preferred that the channels vertically and laterally adjacent to an inlet channel are plugged at an upstream end and vice versa (i.e. the channels vertically and laterally adjacent to an outlet channel are plugged at a downstream end). When viewed from either end, the alternately plugged and open ends of the channels take on the appearance of a chessboard.
- the exhaust system comprises the oxidation catalyst of the invention (e.g. as a CSF, DOC, a DEC, a NSC, a PNA, a CSCTM catalyst or an ASC) and a selective catalytic reduction (SCR) catalyst and optionally either a catalysed soot filter (CSF) or a diesel particulate filter (DPF).
- the oxidation catalyst of the invention e.g. as a CSF, DOC, a DEC, a NSC, a PNA, a CSCTM catalyst or an ASC
- SCR selective catalytic reduction
- CSF catalysed soot filter
- DPF diesel particulate filter
- the oxidation catalyst of the invention is typically followed by (e.g. is upstream of) the selective catalytic reduction (SCR) catalyst.
- a nitrogenous reductant injector may be arranged between the oxidation catalyst and the selective catalytic reduction (SCR) catalyst.
- the oxidation catalyst may be followed by (e.g. is upstream of) a nitrogenous reductant injector, and the nitrogenous reductant injector may be followed by (e.g. is upstream of) the selective catalytic reduction (SCR) catalyst.
- the selective catalytic reduction (SCR) catalyst may be followed by (e.g. are upstream of) the catalysed soot filter (CSF) or the diesel particulate filter (DPF).
- a third embodiment of the first exhaust arrangement relates to an exhaust system comprising a diesel oxidation catalyst (DOC), the oxidation catalyst of the invention, preferably as a catalysed soot filter (CSF), and a selective catalytic reduction (SCR) catalyst.
- the diesel oxidation catalyst (DOC) is typically followed by (e.g. is upstream of) the oxidation catalyst of the invention.
- the oxidation catalyst of the invention is typically followed by (e.g. is upstream of) the selective catalytic reduction (SCR) catalyst.
- a nitrogenous reductant injector may be arranged between the oxidation catalyst and the selective catalytic reduction (SCR) catalyst.
- the oxidation catalyst may be followed by (e.g. is upstream of) a nitrogenous reductant injector, and the nitrogenous reductant injector may be followed by (e.g. is upstream of) the selective catalytic reduction (SCR) catalyst.
- the exhaust system comprises (i) an oxidation catalyst for treating the exhaust gas, wherein the oxidation catalyst comprises a first substrate and a catalytic material disposed on the first substrate, wherein the catalytic material comprises platinum (Pt); and (ii) a capture brick of the invention; wherein the capture brick is arranged to contact exhaust gas after the exhaust gas has passed through the oxidation catalyst.
- the oxidation catalyst may or may not be an oxidation catalyst of the invention.
- the exhaust system comprises an oxidation catalyst (e.g. as a DOC, a DEC, a NSC, a PNA, a CSCTM catalyst or an ASC), such as an oxidation catalyst as defined above or an oxidation catalyst of the invention, the capture brick of the invention and a selective catalytic reduction filter (SCRFTM) catalyst.
- oxidation catalyst e.g. as a DOC, a DEC, a NSC, a PNA, a CSCTM catalyst or an ASC
- SCRFTM selective catalytic reduction filter
- a nitrogenous reductant injector may be arranged between the oxidation catalyst and the selective catalytic reduction filter (SCRFTM) catalyst, preferably between the capture brick and the selective catalytic reduction filter (SCRFTM) catalyst.
- SCRFTM selective catalytic reduction filter
- the oxidation catalyst may be followed by (e.g. is upstream of) a capture brick
- the capture brick may be followed by (e.g. is upstream of) a nitrogenous reductant injector
- the nitrogenous reductant injector may be followed by (e.g. is upstream of) the selective catalytic reduction filter (SCRFTM) catalyst.
- the exhaust system comprises an oxidation catalyst (e.g. as a CSF, DOC, a DEC, a NSC, a PNA, a CSCTM catalyst or an ASC), such as an oxidation catalyst as described above or an oxidation catalyst of the invention, the capture brick of the invention and a selective catalytic reduction (SCR) catalyst and optionally either a catalysed soot filter (CSF) or a diesel particulate filter (DPF).
- the oxidation catalyst is typically followed by (e.g. is upstream of) the capture brick, and the capture brick is typically followed by (e.g.
- a nitrogenous reductant injector may be arranged between the oxidation catalyst and the selective catalytic reduction (SCR) catalyst, preferably the nitrogenous reductant injector is arranged between the capture brick and the selective catalytic reduction (SCR) catalyst.
- the oxidation catalyst may be followed by (e.g. is upstream of) the capture brick, and the capture brick may be followed by (e.g. is upstream of) a nitrogenous reductant injector, and the nitrogenous reductant injector may be followed by (e.g. is upstream of) the selective catalytic reduction (SCR) catalyst.
- the selective catalytic reduction (SCR) catalyst may be followed by (e.g. are upstream of) the catalysed soot filter (CSF) or the diesel particulate filter (DPF).
- a nitrogenous reductant injector may be arranged between the oxidation catalyst and the selective catalytic reduction (SCR) catalyst, preferably the nitrogenous reductant injector is arranged between the capture brick and the selective catalytic reduction (SCR) catalyst.
- the oxidation catalyst may be followed by (e.g. is upstream of) the capture brick, and the capture brick may be followed by (e.g. is upstream of) a nitrogenous reductant injector, and the nitrogenous reductant injector may be followed by (e.g. is upstream of) the selective catalytic reduction (SCR) catalyst.
- an ASC catalyst can be disposed downstream from the SCR catalyst or the SCRFTM catalyst (i.e. as a separate substrate monolith), or more preferably as a zone on a downstream or trailing end of the substrate monolith comprising the SCR catalyst can be used as a support for the ASC.
- the vehicle may be a heavy-duty diesel vehicle (HDV), such as a diesel vehicle having a gross weight of > 8,500 pounds (US lbs), as defined in US legislation.
- the emissions control device having a filtering substrate may be selected from the group consisting of a diesel particulate filter (DPF), a catalysed soot filter (CSF), a selective catalytic reduction filter (SCRFTM) catalyst and a combination of two or more thereof.
- DPF diesel particulate filter
- CSF catalysed soot filter
- SCRFTM selective catalytic reduction filter
- carrier metal refers to the metals copper (Cu), silver (Ag) and gold (Au).
- capture region is a synonym for the “region for capturing volatilised platinum (Pt)".
- washcoat slurries comprising silica-alumina milled to d90 of less than 20 micron.
- the washcoats were applied to a 1.9 litre ceramic flow through substrate having 600 cells per square inch (cpsi) using conventional coating techniques.
- the resulting coated part was dried and calcined at 500°C to produce an oxidation catalyst.
- the resulting oxidation catalyst had a total PGM loading of 150 g ft "3 and a Pt:Pd weight ratio of 3: 1.
- Alpha alumina with a specific surface area (SSA) ⁇ 10 m 2 /g was impregnated with a Pd salt and formic acid. The mixture was dried and calcined at 500°C. The resulting powder had a measured Pd dispersion of 1 % by CO chemisorption. The powder was milled to a d90 of less than 20 micron and applied to a depth of 1" on the outlet end of the part. The coating was dried and calcined at 500°C. The Pd loading over the 1 inch depth was 20 g ft "3 . Exam le 3
- Alpha alumina with a SSA ⁇ 10 m 2 /g was impregnated with a Pd salt without formic acid. The mixture was dried and calcined at 500°C. The resulting powder had a measured dispersion of 13% by CO chemisorption. The powder was milled to a d90 of less than 20 micron and applied to a depth of 1" on the outlet end of the part. The coating was dried and calcined at 500°C. The Pd loading over the 1 inch depth was 20 g ft "3 . Experimental Results
- the aged catalysts of Examples 1 , 2 and 3 were assessed for NO oxidation performance by testing on the 2.4 litre bench mounted engine running at an engine speed of
- a 400 cpsi cordierite flow-through substrate monolith was coated with an aqueous slurry of the 3wt% Cu/CHA zeolite sample using the method disclosed in WO 99/47260.
- This coated product (coated from one end only) is dried and then calcined and this process is repeated from the other end so that substantially the entire substrate monolith is coated, with a minor overlap in the axial direction at the join between the two coatings.
- the coated substrate monolith was aged in a furnace in air at 500°C for 5 hours. A core of 1 inch (2.54cm) diameter x 3 inches long (7.62cm) was cut from the finished article.
- Alpha alumina with a specific surface area (SSA) ⁇ 10 m 2 /g was impregnated with a Pd salt and formic acid. The mixture was dried and calcined at 500°C. The resulting powder had a measured Pd dispersion of 1 % by CO chemisorption. The powder was milled to a d90 of less than 20 micron and applied to the outlet end of a catalyst made according to Example 5 using conventional coating techniques to a coating depth of 1 inch. The coating was dried and calcined at 500°C. The Pd loading over the 1 inch depth was 20 g ft "3 .
- Tests were performed on a first synthetic catalytic activity test (SCAT) laboratory reactor illustrated in Figure 1 , in which an aged core of the coated Cu/CHA zeolite SCR catalyst of Example 4 was disposed in a conduit downstream of a catalyst core of either Example 5, 6 or 7. A synthetic gas mixture was passed through the conduit at a rate of 6 litres per minute. A furnace was used to heat (or "age") the oxidation catalyst samples at steady- state temperature at a catalyst outlet temperature of 900°C for 2 hours. The SCR catalyst was disposed downstream of the oxidation catalyst sample and was held at a catalyst temperature of 300°C during the ageing process by adjusting the length of tube between the furnace outlet and the SCR inlet, although a water cooled heat exchanger jacket could be used as appropriate. Temperatures were determined using appropriately positioned thermocouples (Ti and T 2 ). The gas mixture used during the ageing was 40% air, 50% N 2 , 10% H 2 0.
- the SCR catalysts were removed from the first SCAT reactor and inserted into a second SCAT reactor specifically to test the NH 3 -SCR activity of the aged samples.
- Table 2 shows the NO x conversion activity of aged SCR catalyst cores taken from Example 4 after ageing with upstream oxidation catalyst cores at 900°C for 2 hours.
- the "blank" sample is a reference sample where no platinum containing oxidation catalyst was placed upstream of the SCR core in the ageing apparatus. That is, the blank ageing was carried out in the absence of a platinum containing catalyst and hence platinum volatilisation could not occur.
- the NO x conversion at 500°C was 60% and represents the baseline conversion that is achieved after ageing without platinum volatilisation.
- the SCR sample that was aged with a core from Example 5 in the upstream location shows a significant reduction on NO x conversion.
- the catalyst of Example 5 has no platinum capture material.
- the SCR sample that was aged with a core from Example 6 in the upstream location shows similar NO x conversion performance as the blank run.
- Example 6 comprises a capture material using a high surface area oxide support.
- the SCR sample that was aged with a core from Example 7 in the upstream location shows similar NO x conversion performance as the blank run.
- Example 7 comprises a capture material using a low surface area oxide support and a Pd dispersion ⁇ 1 %. The use of palladium with a low surface area support is still effect as a capture material to capture volatile platinum.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Combustion & Propulsion (AREA)
- Health & Medical Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- Biomedical Technology (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Crystallography & Structural Chemistry (AREA)
- Mechanical Engineering (AREA)
- Toxicology (AREA)
- General Engineering & Computer Science (AREA)
- Catalysts (AREA)
- Exhaust Gas Treatment By Means Of Catalyst (AREA)
- Exhaust Gas After Treatment (AREA)
- Dispersion Chemistry (AREA)
- Processes For Solid Components From Exhaust (AREA)
Abstract
Description
Claims
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020177022232A KR102329476B1 (en) | 2015-02-13 | 2016-02-08 | Exhaust System for Compression Ignition Engine with Capture Area for Volatile Platinum |
EP16703846.2A EP3256251B8 (en) | 2015-02-13 | 2016-02-08 | Exhaust system for a compression ignition engine having a capture region for volatilised platinum |
JP2017541706A JP6803843B2 (en) | 2015-02-13 | 2016-02-08 | Exhaust system for compression ignition engine with volatile platinum capture area |
CN201680009226.5A CN107206357B (en) | 2015-02-13 | 2016-02-08 | Exhaust system for compression ignition engine with capture zone of volatilized platinum |
BR112017017080A BR112017017080A2 (en) | 2015-02-13 | 2016-02-08 | Oxidation catalyst, exhaust system, and capture brick. |
RU2017131594A RU2730511C2 (en) | 2015-02-13 | 2016-02-08 | Exhaust system for an engine with compression ignition having a gripping region for evaporating platinum |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
GB1502465.6 | 2015-02-13 | ||
GBGB1502465.6A GB201502465D0 (en) | 2015-02-13 | 2015-02-13 | Exhaust system for a compression ignition engine having a capture region for volatilised platinum |
GB1504663.4 | 2015-03-19 | ||
GBGB1504663.4A GB201504663D0 (en) | 2015-03-19 | 2015-03-19 | Exhaust system for a compression ignition engine having a capture region for volatilised platinum |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016128720A1 true WO2016128720A1 (en) | 2016-08-18 |
Family
ID=55346139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/GB2016/050285 WO2016128720A1 (en) | 2015-02-13 | 2016-02-08 | Exhaust system for a compression ignition engine having a capture region for volatilised platinum |
Country Status (10)
Country | Link |
---|---|
US (1) | US10179325B2 (en) |
EP (1) | EP3256251B8 (en) |
JP (1) | JP6803843B2 (en) |
KR (1) | KR102329476B1 (en) |
CN (1) | CN107206357B (en) |
BR (1) | BR112017017080A2 (en) |
DE (1) | DE102016102121A1 (en) |
GB (3) | GB2552424B (en) |
RU (1) | RU2730511C2 (en) |
WO (1) | WO2016128720A1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2555678A (en) * | 2016-08-12 | 2018-05-09 | Johnson Matthey Plc | Exhaust system for a compression ignition engine having a capture region for volatilised platinum |
US10029239B2 (en) | 2016-04-22 | 2018-07-24 | Johnson Matthey Public Limited Company | Methods of producing SAPO-56, an AFX-containing molecular sieve |
US10125646B2 (en) | 2016-04-13 | 2018-11-13 | Johnson Matthey Public Limited Company | Exhaust system for a diesel engine |
EP3895797A1 (en) | 2016-04-11 | 2021-10-20 | Johnson Matthey Public Limited Company | Method of coating a substrate with a particle stabilized foam |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB201504658D0 (en) * | 2015-03-19 | 2015-05-06 | Johnson Matthey Plc | Exhaust system for a compression ignition engine having a capture face for volatilised platinum |
DE102017117695A1 (en) * | 2016-08-05 | 2018-02-08 | Johnson Matthey Public Limited Company | Diesel oxidation catalyst having a trap region for sulfur-containing impurities |
GB2553339A (en) * | 2016-09-02 | 2018-03-07 | Johnson Matthey Plc | Improved NOx trap |
JP6693406B2 (en) * | 2016-12-20 | 2020-05-13 | 三菱自動車工業株式会社 | Exhaust gas purification device |
CN113646065A (en) * | 2019-04-11 | 2021-11-12 | 巴斯夫公司 | Selective ammonia oxidation catalyst |
GB201911702D0 (en) * | 2019-08-15 | 2019-10-02 | Johnson Matthey Plc | Particulate filters |
EP3782727A1 (en) * | 2019-08-20 | 2021-02-24 | Umicore Ag & Co. Kg | Ammonia emissions reduction catalyst |
RU2745091C1 (en) * | 2020-05-21 | 2021-03-19 | Общество с ограниченной ответственностью "Экострим" | Ammonia oxidation catalyst system |
WO2023235314A2 (en) * | 2022-05-31 | 2023-12-07 | Cummins Inc. | Aftertreatment system |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080125308A1 (en) * | 2006-11-27 | 2008-05-29 | Fujdala Kyle L | Engine Exhaust Catalysts Containing Palladium-Gold |
US20130149221A1 (en) * | 2011-12-12 | 2013-06-13 | Johnson Matthey Public Limited Company | Catalysed substrate monolith |
US20130149223A1 (en) * | 2011-12-12 | 2013-06-13 | Johnson Matthey Public Limited Company | Exhaust system for a lean-burn internal combustion engine including scr catalyst |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1469079A (en) | 1922-08-10 | 1923-09-25 | Kenneth B Glenn | Floating jewel bearing |
US3966790A (en) | 1973-12-10 | 1976-06-29 | Engelhard Minerals & Chemicals Corporation | Compositions and methods for high temperature stable catalysts |
GB2122912A (en) * | 1982-06-29 | 1984-01-25 | Johnson Matthey Plc | Exhaust gas purification catalyst |
GB2142253A (en) | 1983-06-27 | 1985-01-16 | Johnson Matthey Plc | Exhaust gas purification catalysts |
JPH11169728A (en) * | 1997-12-15 | 1999-06-29 | Toho Gas Co Ltd | Methane oxidation catalyst |
GB9805815D0 (en) | 1998-03-19 | 1998-05-13 | Johnson Matthey Plc | Manufacturing process |
GB0013609D0 (en) * | 2000-06-06 | 2000-07-26 | Johnson Matthey Plc | Emission control |
GB0600130D0 (en) | 2006-01-06 | 2006-02-15 | Johnson Matthey Plc | Exhaust system comprising zoned oxidation catalyst |
US20080125313A1 (en) * | 2006-11-27 | 2008-05-29 | Fujdala Kyle L | Engine Exhaust Catalysts Containing Palladium-Gold |
WO2008088649A1 (en) * | 2007-01-17 | 2008-07-24 | Nanostellar, Inc. | Engine exhaust catalysts containing palladium-gold |
US8257659B2 (en) | 2007-07-02 | 2012-09-04 | Cummins Filtration Ip, Inc. | Prevention of face-plugging on aftertreatment devices in exhaust |
KR101571659B1 (en) * | 2008-03-27 | 2015-11-25 | 우미코레 아게 운트 코 카게 | Base metal and base metal modified diesel oxidation catalysts |
GB0903262D0 (en) * | 2009-02-26 | 2009-04-08 | Johnson Matthey Plc | Filter |
GB201000019D0 (en) | 2010-01-04 | 2010-02-17 | Johnson Matthey Plc | Coating a monolith substrate with catalyst component |
US8137648B2 (en) | 2010-10-12 | 2012-03-20 | Ford Global Technologies, Llc | Diesel engine exhaust treatment system and method including a platinum group metal trapping device |
US20120308439A1 (en) | 2011-06-01 | 2012-12-06 | Johnson Matthey Public Limited Company | Cold start catalyst and its use in exhaust systems |
JP5938819B2 (en) | 2011-10-06 | 2016-06-22 | ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company | Oxidation catalyst for exhaust gas treatment |
GB201200781D0 (en) | 2011-12-12 | 2012-02-29 | Johnson Matthey Plc | Exhaust system for a lean-burn ic engine comprising a pgm component and a scr catalyst |
EP2674584B2 (en) | 2012-06-14 | 2020-04-29 | Umicore AG & Co. KG | Use of an oxidation catalyst for preventing the contamination of an SCR catalyst with platinum |
GB201220912D0 (en) * | 2012-11-21 | 2013-01-02 | Johnson Matthey Plc | Oxidation catalyst for treating the exhaust gas of a compression ignition engine |
EP2969191B1 (en) * | 2013-03-12 | 2021-11-10 | BASF Corporation | Catalyst materials for no oxidation |
US9511355B2 (en) * | 2013-11-26 | 2016-12-06 | Clean Diesel Technologies, Inc. (Cdti) | System and methods for using synergized PGM as a three-way catalyst |
EP3024574B1 (en) | 2013-07-26 | 2021-11-24 | Johnson Matthey Public Limited Company | Tungsten/titania oxidation catalyst |
KR102339265B1 (en) | 2013-12-06 | 2021-12-14 | 존슨 맛쎄이 퍼블릭 리미티드 컴파니 | Cold start catalyst and its use in exhaust systems |
-
2016
- 2016-02-08 EP EP16703846.2A patent/EP3256251B8/en active Active
- 2016-02-08 GB GB1710940.6A patent/GB2552424B/en active Active
- 2016-02-08 JP JP2017541706A patent/JP6803843B2/en active Active
- 2016-02-08 GB GB1602179.2A patent/GB2535327B/en active Active
- 2016-02-08 CN CN201680009226.5A patent/CN107206357B/en active Active
- 2016-02-08 US US15/017,681 patent/US10179325B2/en active Active
- 2016-02-08 KR KR1020177022232A patent/KR102329476B1/en active IP Right Grant
- 2016-02-08 WO PCT/GB2016/050285 patent/WO2016128720A1/en active Application Filing
- 2016-02-08 RU RU2017131594A patent/RU2730511C2/en active
- 2016-02-08 BR BR112017017080A patent/BR112017017080A2/en not_active Application Discontinuation
- 2016-02-08 GB GB1805545.9A patent/GB2560115B/en active Active
- 2016-02-08 DE DE102016102121.0A patent/DE102016102121A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080125308A1 (en) * | 2006-11-27 | 2008-05-29 | Fujdala Kyle L | Engine Exhaust Catalysts Containing Palladium-Gold |
US20130149221A1 (en) * | 2011-12-12 | 2013-06-13 | Johnson Matthey Public Limited Company | Catalysed substrate monolith |
US20130149223A1 (en) * | 2011-12-12 | 2013-06-13 | Johnson Matthey Public Limited Company | Exhaust system for a lean-burn internal combustion engine including scr catalyst |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3895797A1 (en) | 2016-04-11 | 2021-10-20 | Johnson Matthey Public Limited Company | Method of coating a substrate with a particle stabilized foam |
US11618014B2 (en) | 2016-04-11 | 2023-04-04 | Johnson Matthey Public Limited Company | Method of coating a substrate with a particle stabilized foam |
US10125646B2 (en) | 2016-04-13 | 2018-11-13 | Johnson Matthey Public Limited Company | Exhaust system for a diesel engine |
US10029239B2 (en) | 2016-04-22 | 2018-07-24 | Johnson Matthey Public Limited Company | Methods of producing SAPO-56, an AFX-containing molecular sieve |
GB2555678A (en) * | 2016-08-12 | 2018-05-09 | Johnson Matthey Plc | Exhaust system for a compression ignition engine having a capture region for volatilised platinum |
GB2555678B (en) * | 2016-08-12 | 2021-01-13 | Johnson Matthey Plc | Exhaust system for a compression ignition engine having a capture region for volatilised platinum |
EP3496857B1 (en) * | 2016-08-12 | 2024-02-28 | Johnson Matthey Public Limited Company | Exhaust system for a compression ignition engine having a capture region for a volatilised platinum |
Also Published As
Publication number | Publication date |
---|---|
JP6803843B2 (en) | 2020-12-23 |
GB2560115A (en) | 2018-08-29 |
GB201602179D0 (en) | 2016-03-23 |
GB2535327B (en) | 2017-08-16 |
EP3256251B8 (en) | 2024-04-03 |
US10179325B2 (en) | 2019-01-15 |
CN107206357B (en) | 2020-01-03 |
RU2730511C2 (en) | 2020-08-24 |
DE102016102121A1 (en) | 2016-08-18 |
US20160236179A1 (en) | 2016-08-18 |
CN107206357A (en) | 2017-09-26 |
RU2017131594A (en) | 2019-03-13 |
BR112017017080A2 (en) | 2018-04-10 |
EP3256251B1 (en) | 2023-07-05 |
GB2552424A (en) | 2018-01-24 |
GB2560115B (en) | 2019-10-09 |
GB201805545D0 (en) | 2018-05-16 |
EP3256251A1 (en) | 2017-12-20 |
RU2017131594A3 (en) | 2019-04-30 |
KR102329476B1 (en) | 2021-11-23 |
GB201710940D0 (en) | 2017-08-23 |
JP2018511725A (en) | 2018-04-26 |
GB2552424B (en) | 2018-05-16 |
KR20170117410A (en) | 2017-10-23 |
GB2535327A (en) | 2016-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3256251B1 (en) | Exhaust system for a compression ignition engine having a capture region for volatilised platinum | |
US20200206721A1 (en) | Oxidation Catalyst for a Compression Ignition Engine | |
EP2922630B2 (en) | Oxidation catalyst for treating the exhaust gas of a compression ignition engine | |
US10240500B2 (en) | Exhaust system for a compression ignition engine having a capture face for volatilised platinum | |
EP3496857B1 (en) | Exhaust system for a compression ignition engine having a capture region for a volatilised platinum |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 16703846 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2016703846 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2017541706 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20177022232 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112017017080 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 2017131594 Country of ref document: RU Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 112017017080 Country of ref document: BR Kind code of ref document: A2 Effective date: 20170809 |