WO2016127370A1 - 聚光式太阳能系统 - Google Patents

聚光式太阳能系统 Download PDF

Info

Publication number
WO2016127370A1
WO2016127370A1 PCT/CN2015/072943 CN2015072943W WO2016127370A1 WO 2016127370 A1 WO2016127370 A1 WO 2016127370A1 CN 2015072943 W CN2015072943 W CN 2015072943W WO 2016127370 A1 WO2016127370 A1 WO 2016127370A1
Authority
WO
WIPO (PCT)
Prior art keywords
double
solar energy
photovoltaic panel
reflective
sided
Prior art date
Application number
PCT/CN2015/072943
Other languages
English (en)
French (fr)
Inventor
胡笑平
Original Assignee
博立多媒体控股有限公司
胡笑平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 博立多媒体控股有限公司, 胡笑平 filed Critical 博立多媒体控股有限公司
Priority to MX2017010375A priority Critical patent/MX2017010375A/es
Priority to CA2976287A priority patent/CA2976287A1/en
Priority to PCT/CN2015/072943 priority patent/WO2016127370A1/zh
Priority to AU2015382917A priority patent/AU2015382917B2/en
Priority to RU2017131585A priority patent/RU2676214C1/ru
Priority to JP2017560848A priority patent/JP2018512839A/ja
Priority to US15/549,660 priority patent/US20180026578A1/en
Priority to EP15881532.4A priority patent/EP3260894A4/en
Priority to CN201580075241.5A priority patent/CN107209294A/zh
Publication of WO2016127370A1 publication Critical patent/WO2016127370A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/71Arrangements for concentrating solar-rays for solar heat collectors with reflectors with parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • F24S23/31Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S25/00Arrangement of stationary mountings or supports for solar heat collector modules
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/08Mirrors
    • G02B5/10Mirrors with curved faces
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/20Optical components
    • H02S40/22Light-reflecting or light-concentrating means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/40Optical elements or arrangements
    • H10F77/42Optical elements or arrangements directly associated or integrated with photovoltaic cells, e.g. light-reflecting means or light-concentrating means
    • H10F77/484Refractive light-concentrating means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F77/00Constructional details of devices covered by this subclass
    • H10F77/40Optical elements or arrangements
    • H10F77/42Optical elements or arrangements directly associated or integrated with photovoltaic cells, e.g. light-reflecting means or light-concentrating means
    • H10F77/488Reflecting light-concentrating means, e.g. parabolic mirrors or concentrators using total internal reflection
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/74Arrangements for concentrating solar-rays for solar heat collectors with reflectors with trough-shaped or cylindro-parabolic reflective surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/47Mountings or tracking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Definitions

  • the invention relates to the field of clean energy technologies, and in particular to a concentrating solar energy system utilizing solar energy.
  • solar systems With the increasing emphasis on environmental protection, solar systems have become more widely used. Commonly used are solar systems installed on the roof or on the road surface, such as solar water heating systems for photothermal conversion and solar power generation systems for photoelectric conversion.
  • CN101640502A In order to improve the ability to collect solar energy, a concentrating solar system has emerged, for example, the publication number is CN101640502A.
  • the method for assembling a concentrator photovoltaic solar cell array disclosed in the Chinese patent application which focuses sunlight on a photovoltaic panel through a lens, so that a smaller area of the photovoltaic panel can obtain a lens from a larger area. Converging sunlight.
  • a concentrating solar energy system comprises a convergence system, a double-sided photovoltaic panel and a support member; wherein the convergence system comprises at least one tooth surface and a reflection surface, each tooth surface comprises at least one Fresnel unit, and the reflection surface is disposed on the tooth surface in a direction in which the sunlight is incident
  • the double-sided photovoltaic panel is disposed above the reflective surface in the direction in which the sunlight is incident, and is substantially located at a focus position of the convergence system, and the double-sided photovoltaic panel is used to absorb incident sunlight from both the front and the back; the support member Used to support the convergence system and double-sided photovoltaic panels and maintain their relative positional relationship.
  • the concentrating solar system uses a double-sided photovoltaic panel and places it in a direction in which the sunlight is incident above a reflecting surface, so that on the one hand, the opposite side of the photovoltaic panel can absorb the sunlight concentrated by the convergence system, and on the other hand, the front side thereof
  • the ability to absorb direct sunlight (or converge via other converging systems) allows for the ability of photovoltaic panels to absorb and utilize solar energy in the same spatial dimensions.
  • the Fresnel refractive surface and the reflecting surface are simultaneously used, the entire system can be placed in a small space, so it is suitable for many typical mounting forms, such as roof mounting, utility pole installation, umbrella mounting, etc. .
  • the present invention uses a large-area low-cost convergence system to increase the concentrating area, so that the area of the high-cost photovoltaic panel can be reduced, thereby greatly reducing the cost of the solar system.
  • the effect is more pronounced when a reflective lens that also has a concentrating ability is provided to provide a reflecting surface.
  • Figure 1 is a schematic view of two coaxial faces for generating a Fresnel refractive surface in the present invention
  • FIG. 2 is a schematic view showing several arrangements of a composite Fresnel refractive surface in the present invention
  • Figure 3 is a schematic illustration of a converging system having two flank surfaces in the present invention.
  • Figure 4 is a schematic view of a Fresnel type reflecting lens in the present invention.
  • Figure 5 is a schematic illustration of several original lenses for making reflective lenses in the present invention.
  • Figure 6 is a schematic view showing the basic structure of a concentrating solar energy system according to the present invention.
  • Figure 7 is a schematic view of a concentrating solar energy system of Embodiment 1;
  • Figure 8 is a schematic view of a concentrating solar energy system of Embodiment 2.
  • Figure 9 is a schematic view of a concentrating solar energy system of Embodiment 3.
  • Figure 10 is a schematic illustration of a concentrating solar energy system of Example 4.
  • the concentrating system used in the concentrating solar system according to the present invention employs a Fresnel lens.
  • a Fresnel lens For ease of understanding, the related concepts will be described below.
  • Fresnel The lens is a thin lens.
  • the Fresnel lens is formed by placing each segment surface on the same plane or the same substantially smooth surface after reducing the thickness of each segment.
  • a discontinuous refractive surface evolved from the original surface may be referred to as a Fresnel refractive surface, generally in the form of a step or a tooth.
  • the Fresnel refractive surface has similar optical properties compared to the corresponding original curved surface, but the thickness is greatly reduced.
  • the Fresnel refraction surface generated by an original surface can be called a Fresnel unit.
  • the original original surface used to generate the Fresnel refractive surface is generally a curved surface that is symmetrical about the optical axis, such as a spherical surface, a rotating paraboloid, and the like.
  • the focus of a traditional original surface is at a point, so it can be called a 'common point' .
  • the original curved surface can be any form of coaxial surface, which can be specifically set according to the needs of the application.
  • the so-called coaxial plane refers to the surface whose focus is on the same line (not necessarily at the same point), which can be called ' Coaxial '.
  • the traditional common point surface can be regarded as a special case when the coaxial axis of the coaxial plane degenerates into one point.
  • Original surfaces that are coaxial but not co-pointed can be used to set in focus
  • the sensing element expands from a small area (corresponding to the focus) to a long strip (corresponding to a common axis composed of focal points), thereby improving signal collection and helping to solve local problems without significantly increasing cost.
  • Typical coaxial surfaces include rotating surfaces (including secondary or higher-order rotating surfaces), cylinders, cones, and so on.
  • the cylindrical surface can also be called the equal-section coaxial surface.
  • the curved surface is cut at any point along the vertical direction of the common axis, and the resulting cross-section is uniform in shape and size.
  • the cylindrical surface is a special case of the cylindrical surface.
  • Figure 1 shows the above two kinds of coaxial planes, where Figure 1(a) is an isometric coaxial surface, and Figure 1(b) is a conical coaxial surface with focal points F located on their respective co-axial axes. On.
  • a macroscopic refractive surface composed of one or more Fresnel cells may be referred to as a tooth surface, and a substantially smooth or flat surface opposite thereto may be referred to as a back surface.
  • a tooth surface containing only one Fresnel unit can be referred to as a 'simple Fresnel refractive surface', and a tooth surface containing two or more Fresnel elements can be referred to as a 'composite Fresnel refractive surface'.
  • composite Fresnel The basic parameters of each Fresnel unit on the refractive surface (for example, the area, the focal length, the shape of the corresponding original surface, the number of concentric rings used to divide the original surface, etc.) can be flexibly arranged, and can be identical and partially identical. Or completely different.
  • Composite Fresnel refractive surface Each Fresnel unit has its own optical center, but the focus falls on the same point, either in a straight line or in a limited area. This can be achieved by spatially arranging each Fresnel cell constituting the composite Fresnel refractive surface.
  • Figure 2 shows the arrangement of Fresnel elements in several typical composite Fresnel refractive surfaces, in which Figure 2(a) is a circularly symmetric arrangement, and Figure 2(b) is a determinant arrangement, Figure 2 ( c) It is a honeycomb arrangement. It can be considered that these Fresnel elements are arranged on a macroscopic surface, such as a plane, a quadric surface (including Spherical, ellipsoidal, cylindrical, parabolic, hyperbolic cylinders, high-order polynomial surfaces (a common implementation of aspheric surfaces), and creases and terraces from multiple planes.
  • a macroscopic surface such as a plane, a quadric surface (including Spherical, ellipsoidal, cylindrical, parabolic, hyperbolic cylinders, high-order polynomial surfaces (a common implementation of aspheric surfaces), and creases and terraces from multiple planes.
  • the flank and the back can be flexibly combined to form different types of components.
  • the tooth surface and a Fresnel lens on the back side can be called a 'single-sided Fresnel lens'.
  • the lens is a 'single-sided simple Fresnel lens'
  • the tooth surface is 'Composite Fresnel refractive surface'
  • the lens is 'single-sided composite Fresnel lens'.
  • Fresnel lenses with tooth flanks on both sides can be called 'double-sided Fresnel lenses' and can be further divided according to the type of tooth flanks.
  • 'Double-sided simple Fresnel lens' and 'double-sided composite Fresnel lens' If one tooth surface of the double-sided Fresnel lens is a simple Fresnel refractive surface and the other tooth surface is a composite Fresnel refractive surface, it can be called ' Double-sided hybrid Fresnel lens '. Further, as a variant, in a double-sided Fresnel lens, if one of the tooth faces is a 'simple Fresnel refractive surface' The tooth surface can be replaced by a conventional convex lens surface or a concave lens surface.
  • the reflecting surface used in the convergence system of the present invention may be a planar reflecting surface or a curved reflecting surface, such as a concave or convex reflecting surface, or may be a tooth surface shaped reflecting surface.
  • the reflective surface can be provided by an element having only a single reflective function, such as a flat plate with a reflective coating, the light being reflected directly on the surface of the element.
  • the reflective surface can also be provided by a reflective lens.
  • the so-called reflective lens refers to a lens having a reflective coating on one side, and the light is refracted from the transmitting surface into the lens and then reflected by the reflecting surface, and is again refracted through the transmitting surface.
  • a reflective lens place the type of reflective surface in front of the type of refractive surface.
  • combining a planar reflecting surface with a planar transmitting surface is a common planar mirror, and combining a planar reflecting surface with a concave or convex transmitting surface is 'Flat-concave' or 'flat-convex' reflective lens, and so on, can have 'concave-flat', 'convex-flat', 'concave-concave', 'convex-convex Reflective lenses of the type ', 'concave-convex', 'convex-concave'.
  • a Fresnel-type reflective lens can be obtained by replacing one or both of the curved surfaces with the corresponding tooth flanks.
  • a kind of ' The flat-convex 'Fresnel-type reflecting lens can be referred to Fig. 4, wherein the element L1 has a plane reflecting surface s3 and a simple Fresnel refractive surface s4. Due to reflection, the incident light path passes through the physical refraction interface twice S4, the physical interface is actually equivalent to two tooth flanks, so element L1 can also be referred to as a reflective double-sided Fresnel lens.
  • Component L1 It can be formed by plating a reflective film on the back side of a single-sided Fresnel lens or pasting a patch having reflective ability. Other types of reflective lenses can also be formed by changing either side of the original lens to a reflective surface.
  • Fig. 5(a) is a 'concave-convex' lens
  • Fig. 5(b) is a 'convex-convex' lens and one convex surface is a Fresnel refractive surface
  • Fig. 5(a) is a 'concave-convex' lens
  • Fig. 5(b) is a 'convex-convex' lens and one convex surface is a Fresnel refractive surface
  • the basic structure of the concentrating solar energy system according to the present invention can be referred to FIG. 6, including a convergence system and a double-sided photovoltaic panel p1.
  • the convergence system includes a tooth surface s5 and a reflection surface s6 Wherein the tooth surface contains at least one Fresnel unit, and the reflecting surface is disposed below the tooth surface in a direction in which the sunlight is incident.
  • the double-sided photovoltaic panel is disposed above the reflective surface in the direction in which the sunlight is incident.
  • the double-sided photovoltaic panel can also be attached to the tooth surface or embedded on the macroscopic surface of the tooth surface, as shown in FIG. 7 Shown.
  • the double-sided photovoltaic panel may be disposed on the path of the focused light, preferably substantially at a focus position of the convergence system, the focus position being determined by the combination of the flank and the reflective surface.
  • the focus position is a small area of dots or strips, and the double-sided photovoltaic panel is located near the area to receive sunlight that has been concentrated and increased in energy density.
  • the flank and the reflecting surface may be provided by various types of elements as described above, for example, different elements may be used to provide the tooth surface and the reflecting surface, respectively.
  • the elements shown provide both a toothed surface and a reflective surface.
  • the convergence system can further enhance the convergence ability by increasing the tooth surface.
  • the double-sided photovoltaic panel used in the present invention can absorb incident sunlight from both the front side and the back side.
  • a simple method is to stack two single-sided photovoltaic panels back to back to obtain a double-sided photovoltaic panel, of course, It is also possible to directly fabricate photovoltaic devices having double-sided light absorbing capabilities.
  • Appropriate support members may be employed to support the convergence system and the double sided photovoltaic panels to maintain a relative positional relationship therebetween. Depending on the specific application scenario, the support members can have a variety of suitable configurations and can be designed as needed.
  • the converging system and the double-sided photovoltaic panel can have the same symmetrical dividing surface.
  • the symmetric split surface refers to a plane that divides the geometric shape into two parts, and the divided two parts are symmetric with respect to the plane, and the circumferentially symmetric object has an infinite symmetrical dividing plane, all planes passing through the center normal Both are symmetrically split faces, and rectangular planes have only two symmetric split faces.
  • the advantage of having the same symmetrical dividing plane between the elements is that the spatial size can be fully utilized to achieve a compact arrangement.
  • FIG. 7 An embodiment of the concentrating solar energy system according to the present invention can be referred to FIG. 7 and includes a first Fresnel lens 111.
  • the reflective element 112 the double-sided photovoltaic panel 120 and the support member 130.
  • First Fresnel lens 111 A tooth surface (using a single-sided Fresnel lens) or two tooth faces (using a double-sided Fresnel lens) may be provided, the shape of the macroscopic surface of the tooth surface being a folded surface.
  • the shape of the macroscopic curved surface of the tooth flanks of the first Fresnel lens may also be a coaxial surface of other shapes, such as a curved curved surface.
  • the first Fresnel lens is used as a roof of a building, and can be formed by pressing a rigid transparent material such as hard plastic, resin, glass, or the like.
  • the first Fresnel lens can be divided into a plurality of small parts for fabrication and then spliced together. For example, a large number of simple Fresnel lenses can be made and assembled into the entire roof. Of course, each widget can also contain multiple Fresnel units based on the manufacturing method. These small parts that can be used to assemble a concentrating roof can be called 'Gathering tile'.
  • First Fresnel lens 111 and reflective element 112 A convergence system is formed whose strip-shaped focus position is designed at the ridge, ie on the macroscopic surface of the first Fresnel lens. This design will greatly facilitate the installation of double-sided photovoltaic panels, and the entire solar system will form a relatively closed space.
  • the sun that is concentrated by the first Fresnel lens will be The tooth surface, the reflecting surface, and the photovoltaic panel are reflected multiple times until they are absorbed or reflected back into the sky.
  • the solar roof of the present embodiment can efficiently absorb sunlight, and is suitable for use as a roof of a house in a cold area, and is also suitable for use as a tropical zone because the reflecting surface can effectively reflect heat energy.
  • the roof of the district house is preferably of a type that is transparent to the radio signal to avoid the impact of the quality of the radio communication in the room.
  • the support member 130 The wall of the house includes a bracket (not shown) for supporting and mounting the first Fresnel lens and the photovoltaic panel, and the like.
  • the convergence system (including the first Fresnel lens and the reflective element) has the same symmetrical dividing plane as the double-sided photovoltaic panel ss1 As shown by the dotted line in the figure, this makes the space well utilized.
  • a second Fresnel lens (not shown) is placed over the double-sided photovoltaic panel to concentrate the sunlight directly on the front side of the photovoltaic panel.
  • the second Fresnel lens can not only improve the utilization of solar energy, but also play the role of dustproof and snowproof.
  • the solar energy system of the present embodiment can be directly used as a roof of a newly built building, or can be modified on the roof of an existing building.
  • FIG. 8 Another embodiment of the concentrating solar energy system according to the present invention can be referred to FIG. 8 and includes a first Fresnel lens 211.
  • the macroscopic curved surface of the tooth surface is a circumferentially symmetrical shape and can be used as the top surface of the tent or the top surface of the umbrella.
  • This embodiment can be regarded as an application scenario in which the solar energy system is used as an outdoor parasol.
  • the first Fresnel lens can be pressed by a flexible transparent material such as a soft plastic or a flexible crystal plate.
  • the entire canopy can be divided into multiple small parts for fabrication and then stitched together.
  • Reflective element 212 Provided below the canopy, since in this type of application the convergence system is required to have a shorter focal length, the reflective element can employ a reflective lens with enhanced convergence capabilities, such as the 'convex-shown in Figure 5(b) Convex Fresnel-type reflective lens, for easy processing, can be coated with a reflective film on a smooth convex surface.
  • the convergence system is composed, and the point-like focusing position is designed between the umbrella surface and the reflecting element, so that the double-sided photovoltaic panel can obtain the physical protection of the umbrella surface.
  • the parasol of the structure of the embodiment not only has excellent shading effect, but also enables the photovoltaic panel to obtain most of the light energy irradiated onto the umbrella surface with a small area, and has good solar energy collection capability.
  • the convergence system has the same symmetrical centerline as the double-sided photovoltaic panel, ie the support component
  • the location of the 230 allows for maximum space utilization and the installation of converging systems and photovoltaic panels on the support components.
  • Such an umbrella solar system can be used as a home solar power plant with good mobility, for example, can be placed on a roof instead of an embodiment The solar roof in 1 .
  • This umbrella solar system can also be used as a solar power generation system in a parking lot, a highway rest station, and the like.
  • it is possible to install such an umbrella type by using various existing utility poles and streetlight poles. Solar systems provide a large amount of clean energy.
  • the additional components listed below are also included in the embodiment. In other embodiments, only one or several of the additional components may be selectively included according to the needs of the application. .
  • the energy storage 240 is electrically connected to the double-sided photovoltaic panel 220 for storing electrical energy.
  • Energy storage can be selected from Super capacitors, rechargeable batteries and air compressors;
  • AC inverter 250 electrically connected to the energy storage (in other embodiments) In the middle, it can also be directly connected to the double-sided photovoltaic panel) for connecting its power output to the networked switch cabinet 251.
  • Networked switchgear and external AC grid 252 Connected so that the electrical energy generated by the solar system can be incorporated into the external power grid; the AC inverter can also be externally connected to the AC patch panel 253 to provide an AC output directly to the user;
  • DC voltage output device 260 electrically connected to the energy storage (in other embodiments) In the middle, it can also be directly connected to the double-sided photovoltaic panel) for outputting DC voltage for the user to use, and the DC voltage outputted by the output device can include, for example, 12V, 9V, 5V, 3V, 1.5V. Wait;
  • Status indicator 270 It is used to detect and display the operating parameters of the system. These operating parameters can be voltage, current, power, temperature, etc., so that the user can grasp the operating condition of the solar energy system; it can be obtained by setting the detecting device corresponding to the required parameter type. These parameters are, for example, temperature probes.
  • FIG. 9 Another embodiment of the concentrating solar energy system according to the present invention can be referred to FIG. 9 and includes a first Fresnel lens 311. a reflective element 312, a double sided photovoltaic panel 320 and a support member 330.
  • the single-sided or double-sided composite Fresnel lens has a macroscopic curved surface that is circumferentially symmetrical.
  • the first Fresnel lens is used as a top cover of the tent, and may be formed by pressing a flexible transparent material or by splicing small parts made of a flexible transparent material.
  • the reflective element can be a reflective lens having a concave surface, such as the 'concave-convex' shown in FIG. 5(c).
  • Fresnel-type reflective lens for easy processing, can be coated with a reflective film on a smooth concave surface.
  • First Fresnel lens 311 and reflective element 312 It forms a convergence system, and its point-like focus position is designed above the top cover. This structure can improve the utilization efficiency of sunlight and facilitate the installation and maintenance of double-sided photovoltaic panels.
  • the second embodiment also includes a second Fresnel lens 313 and a water heater 380 made of a transparent material.
  • a second Fresnel lens 313 is disposed above the double-sided photovoltaic panel 320 for concentrating sunlight incident on the front side.
  • the double-sided photovoltaic panel 320 is used as a heat source to be thermally conducted by the water heater 380
  • the package for example, is in intimate contact with the water heater through a thermally conductive material for heat exchange. Cold water enters the water heater from the water inlet 381 and exchanges heat with the double-sided photovoltaic panel from the water outlet 382 Flow out.
  • the second Fresnel lens teeth are placed face down on the top of the water heater such that the water in the water heater forms a liquid Fresnel lens.
  • the center line of the convergence system, the photovoltaic panel, the second Fresnel lens, the water heater, etc., and the support member 330 Coincidence also has good space efficiency.
  • a hook or a hanging hole (not shown) is provided around the top cover, that is, a wall 331 can be installed on the hook or the hanging hole, thereby turning the solar system of the embodiment into one Solar tent with electricity and hot water supply.
  • FIG. 10 Another embodiment of the concentrating solar energy system according to the present invention can be referred to FIG. 10, including a first Fresnel lens 411. , a reflective element 412, a double-sided photovoltaic panel 420 and a support member 430.
  • First Fresnel lens 411 For a single-sided or double-sided composite Fresnel lens, the reflective element 412 is a reflective lens or a Fresnel-type reflective lens. Can also use Figure 4 The elements shown provide both a toothed surface and a reflective surface, and the tooth flanks can be replaced with a composite Fresnel refractive surface.
  • the first Fresnel lens 411 and the reflective element 412 are disposed at the bottom of the wind turbine 490, such as on the ground.
  • Two-way photovoltaic panel The 420 is mounted in the lower middle portion of the support member 430, which is also a support member for the wind turbine 490.
  • support components A hollow steel bracket can be used to avoid blocking sunlight from concentrating the convergence system. If the solar system according to the present invention is attached to the bracket of the existing wind turbine, the existing support member can be placed in the first Fresnel lens 411.
  • a section 431 between the two-way photovoltaic panel 420 is treated with a reflective film.
  • the wind power generation system and the solar power generation system are integrated, and the same space, the same bracket, the same power transmission system, the same set of inverter, control, and storage devices are used, and the wind and solar energy are two different natural energy sources. Combined use can reduce system cost and improve the climate adaptability of the integrated system.
  • the above embodiments are intended to be illustrative of the principles and embodiments of the present invention. It is understood that the above embodiments are only intended to aid the understanding of the invention and are not to be construed as limiting. Variations to the above-described embodiments may be made in accordance with the teachings of the present invention. For example, if the reflecting surface in the above embodiment is disposed on a roof, a ground, a road surface, a water surface, or a window, the corresponding solar energy system becomes a solar roof, a ground/road solar system, a solar artificial island, and a solar window.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Photovoltaic Devices (AREA)
  • Mounting And Adjusting Of Optical Elements (AREA)

Abstract

一种聚光式太阳能系统,包括会聚系统,双面光伏板 (p1) 和支撑部件;其中,会聚系统包括至少一个齿面 (s5) 和一个反射面 (s6) ,每个齿面含有至少一个菲涅尔单元,反射面沿太阳光入射的方向设置于齿面的下方,双面光伏板沿太阳光入射的方向设置于反射面的上方,且基本位于会聚系统的聚焦位置。由于使用了双面光伏板并将其沿太阳光入射的方向设置于一个反射面的上方,使得一方面光伏板的反面可以吸收经由会聚系统会聚的太阳光,另一方面其正面也可以吸收直接照射的太阳光,这使得在相同的空间尺寸下,光伏板吸收和利用太阳能的能力得到了有效提升。

Description

聚光式太阳能系统 技术领域
本发明涉及清洁能源技术领域,具体涉及一种对太阳能进行利用的聚光式太阳能系统。
背景技术
随着对环境保护的日益重视,太阳能系统得到了越来越广泛的应用。目前常见的是安装在屋顶上或路面上的太阳能系统,例如进行光热转换的太阳能热水系统以及进行光电转换的太阳能发电系统等。
在这些常见的太阳能系统中,其能量转换器件,例如太阳能真空管( Solar vacuum tube )或光伏板( Photovoltaic panel )等,一般直接面对太阳光,其自身的工作表面的面积就是能够接收到太阳光的最大面积,这使得传统太阳能系统收集到的能量十分有限,并且光伏板面越大,成本也越高。
为提高收集太阳能的能力,出现了聚光式太阳能系统,例如公布号为 CN101640502A 的中国专利申请所公开的《用于组装聚光器光电太阳能电池阵列的方法》,其通过透镜将太阳光聚焦在光伏板上,使得较小面积的光伏板能够得到来自较大面积的透镜所汇聚的太阳光。
但是,现有聚光透镜的使用方式受到很多安装条件的限制,导致性价比不高。为能够更好地利用有限的空间并降低成本,仍希望能提高光伏板收集和利用太阳能的能力。
技术解决方案
依据本发明提供一种 聚光式太阳能系统 , 包括会聚系统,双面光伏板和支撑部件;其中,会聚系统包括至少一个齿面和一个反射面,每个齿面含有至少一个菲涅尔单元,反射面沿太阳光入射的方向设置于齿面的下方;双面光伏板沿太阳光入射的方向设置于反射面的上方,且基本位于会聚系统的聚焦位置,双面光伏板用于从正面和反面两个方向吸收入射的太阳光;支撑部件用于支撑会聚系统和双面光伏板,并保持它们之间的相对位置关系。
依据本发明的 聚光式太阳能系统使用双面光伏板并将其沿太阳光入射的方向设置于一个反射面的上方,使得一方面光伏板的反面可以吸收经由会聚系统会聚的太阳光,另一方面其正面也可以吸收直接照射(或经由其他会聚系统会聚)的太阳光,这使得在相同的空间尺寸下,光伏板吸收和利用太阳能的能力得到了有效提升。并且,由于同时采用了菲涅尔折射面和反射面,使得可以将整个系统设置在一个较小的空间内,因此适合于许多典型的安装形态,例如屋顶安装、电线杆安装、伞面安装等。
有益效果
由于会聚系统的成本比光伏板的成本低得多,因此本发明用大面积低成本的会聚系统来增加聚光面积,使得高成本的光伏板的面积可以缩小,从而大幅降低了太阳能系统的成本。优选地,当使用本身也具备聚光能力的反射透镜来提供反射面的时候,效果更加明显。
以下结合附图,对依据本发明的具体示例进行详细说明。
附图说明
图 1 是本发明中用于生成菲涅尔折射面的两种共轴面的示意图;
图 2 是本发明中复合菲涅尔折射面的几种布置方式的示意图;
图 3 是本发明中具有两个齿面的会聚系统的示意图;
图 4 是本发明中的一种 菲涅尔式反射透镜 的示意图;
图 5 是本发明中几种 用于制作反射透镜的原始透镜的示意图;
图 6 是 依据本发明的聚光式太阳能系统的基本结构示意图;
图 7 是实施例 1 的 聚光式太阳能系统 的示意图;
图 8 是实施例 2 的 聚光式太阳能系统 的示意图;
图 9 是实施例 3 的聚光式太阳能系统的示意图;
图10是实施例4的聚光式太阳能系统的示意图。
本发明的实施方式
依据本发明的聚光式太阳能系统中所使用的会聚系统采用了菲涅尔透镜,为便于理解,以下先对相关概念进行介绍。
菲涅尔( Fresnel )透镜是一种薄型透镜。通过将普通透镜连续的原始曲面分割成若干段,在减少每段的厚度后将各段曲面置于同一平面或同一基本光滑的曲面上即形成为菲涅尔透镜。这种由原始曲面演变而来的不连续的折射面可称为菲涅尔折射面,一般呈阶梯状或齿状。理论上菲涅尔折射面与相应的原始曲面相比具有近似的光学性能,但厚度却大为减少。可以将由一个原始曲面生成的菲涅尔折射面称为一个菲涅尔单元。
传统的用于生成菲涅尔折射面的原始曲面一般为绕光轴对称的曲面,例如球面、旋转抛物面等旋转曲面。传统的原始曲面的焦点在一个点上,因此,可称为 ' 共点面 ' 。在本发明中,原始曲面可以是任何形式的共轴面,可根据应用的需要具体设置。所称共轴面是指焦点在同一直线上(而不一定是在同一个点上)的曲面,该直线可称为 ' 共轴线 ' 。传统的共点面可视为共轴面的共轴线退化为一个点时的特例 。采用共轴但不共点的原始曲面,可以将用于设置在 聚焦位置 的感应元件从较小的面积(对应于焦点)扩展为长条形(对应于由焦点组成的共轴线),从而在不显著增加成本的情况下,提升信号收集的能力并有助于解决局部过热问题。 典型的共轴面包括旋转曲面(含二次或高阶旋转曲面)、柱面、锥面等。其中柱面又可称为等截面共轴面,这种 曲面沿着共轴线的垂直方向在任何一点切开,所得到的横截面的形状和大小都是一致的,圆柱面是柱面的一种特例。锥面沿着共轴线的横截面则具有相似的形状但大小不同,圆锥面是 锥面的一种特例 。图 1 示出了以上两种共轴面, 其中图 1(a) 为等截面共轴面,图 1(b) 为锥形共轴面,其焦点 F 均位于各自的共轴线 L 上。
由一个或多个菲涅尔单元组成的宏观折射面可称为齿面,与之相对的基本光滑或平坦的面则可称为背面。 可将只含有一个菲涅尔单元的齿面称为 ' 简单菲涅尔折射面 ' ,而将含有两个以上菲涅尔单元的齿面称为 ' 复合菲涅尔折射面 ' 。 一般而言,复合菲涅 尔折射面上各个菲涅尔单元的基本参数(例如,面积、焦距、所对应的原始曲面的形状、分割原始曲面所使用的同心环的数量等)均可以灵活布置,可以完全相同、部分相同或完全不同。在一种实施方式中, 复合菲涅尔折射面上的 每个菲涅尔单元各自有自己的光学中心,但焦点落在同一个点,或者一条直线,或者一个有限的区域内。这可以通过对构成该复合菲涅尔折射面的每个菲涅尔单元进行空间布置来实现。图 2 显示了几种典型的复合菲涅尔折射面中菲涅尔单元的布置方式,其中图 2(a) 为圆对称的布置方式,图 2(b) 为行列式的布置方式,图 2(c) 为蜂窝式的布置方式。可以认为这些菲涅尔单元被布置在一个宏观曲面上,例如平面、二次曲面(包括 球面、椭球面、圆柱面、抛物柱面、双曲柱面)、高阶多项式曲面(非球面的通常实现方式)、以及由多个平面拼接成的折面以及梯台面等。
一般而言,齿面和背面可以灵活地组合以形成不同类型的元件。例如 具有一个 齿面和一个背面的菲涅尔透镜可称为 ' 单面菲涅尔透镜 ' ,进一步的,若齿面为 ' 简单菲涅尔折射面 ' ,则透镜为 ' 单面简单菲涅尔透镜 ' ,若齿面为 ' 复合菲涅尔折射面 ' ,则透镜为 ' 单面复合菲涅尔透镜 ' 。两面都是齿面的菲涅尔透镜可称为 ' 双面菲涅尔透镜 ' ,并同样可根据齿面的类型进一步分为 ' 双面简单菲涅尔透镜 ' 和 ' 双面复合菲涅尔透镜 ' 。若双面菲涅尔透镜的一个齿面为简单菲涅尔折射面,而另一个齿面为复合菲涅尔折射面,则可称为 ' 双面混合菲涅尔透镜 ' 。此外,作为一种变形,在双面菲涅尔透镜中,若齿面之一为 ' 简单菲涅尔折射面 ' ,则该齿面可以由一个传统的凸透镜面或凹透镜面来取代。
在同一光路上设置两个或更多的齿面可以使会聚系统具有更好的会聚能力。图 3 示出了一种具有两个齿面的会聚系统,其中, 复合菲涅尔折射面 s1 和简单菲涅尔折射面 s2 既可以由一个双面菲涅尔透镜同时提供,也可以由两个单面菲涅尔透镜分别提供。
用于本发明的会聚系统的反射面可以是平面反射面或曲面反射面,例如凹面或凸面反射面,还可以是齿面形状的反射面。反射面可以由仅具有单一反射功能的元件来提供,例如具有反射镀膜的平板,光线直接在元件表面进行反射。反射面也可以由反射透镜来提供。所称反射透镜指一面具有反射镀膜的透镜,光线从透射面折射进入透镜后再由反射面反射,并再次经过透射面折射出元件。
将不同类型的反射面与不同类型的透射面灵活组合可以形成不同类型的反射透镜。简明起见,在为反射透镜命名时,将反射面的类型放在折射面的类型前面。例如,将平面反射面与平面透射面组合即为常见的平面反射镜,将平面反射面与凹面或凸面透射面组合即为 ' 平 - 凹 ' 或 ' 平 - 凸 ' 反射透镜,以此类推,可以有 ' 凹 - 平 ' 、 ' 凸 - 平 ' 、 ' 凹 - 凹 ' 、 ' 凸 - 凸 ' 、 ' 凹 - 凸 ' 、 ' 凸 - 凹 ' 等类型的反射透镜。特别地,将反射透镜中的一个或两个曲面替换为相应的齿面,即可得到菲涅尔式反射透镜。一种 ' 平 - 凸 ' 菲涅尔式反射透镜可参考图 4 ,其中,元件 L1 具有平面反射面 s3 和简单菲涅尔折射面 s4 。由于反射,入射光路两次经过物理折射界面 s4 ,该物理界面实际上等效于两个齿面,因此元件 L1 也可被称为反射式双面菲涅尔透镜。元件 L1 可以通过在单面菲涅尔透镜的背面镀反射膜或者粘贴具有反射能力的贴片来形成,其他类型的反射透镜也可以通过将原始透镜的任意一面变为反射面来形成。几种典型的可用于制作反射透镜的原始透镜参考图 5 ,其中,图 5(a) 为 ' 凹 - 凸 ' 透镜,图 5(b) 为 ' 凸 - 凸 ' 透镜且一个凸面为菲涅尔折射面,图 5(c) 为 ' 凹 - 凸 ' 透镜且凸面为菲涅尔折射面,图 5(d) 为 ' 凹 - 凹 ' 透镜且两面均为菲涅尔折射面。
依据本发明的聚光式太阳能系统的基本结构可参考图 6 ,包括会聚系统和双面光伏板 p1 。会聚系统包括一个齿面 s5 和一个反射面 s6 ,其中齿面含有至少一个菲涅尔单元,反射面沿太阳光入射的方向设置于齿面的下方。双面光伏板沿太阳光入射的方向设置于反射面的上方。如图 6(a) 所示,双面光伏板可位于齿面与反射面之间;或者如图 6(b) 所示,双面光伏板可位于齿面之上。在某些实施例中,双面光伏板还可以紧贴齿面或者嵌在齿面所在的宏观曲面上,如图 7 所示。双面光伏板可以设置在聚焦后的光线的通路上,优选地,可基本位于会聚系统的聚焦位置,该聚焦位置是由齿面和反射面综合确定的。一般而言,聚焦位置是点状或条带状的小区域,双面光伏板位于该区域附近即可接收到经过会聚而能量密度增加的太阳光。在各种不同的实施例中,齿面和反射面可以由前述各种种类的元件来提供,例如可采用不同的元件来分别提供齿面和反射面,也可采用例如图 4 所示的元件来同时提供齿面和反射面。此外,会聚系统中还可以进一步通过增加齿面的方式来增强会聚能力。本发明中所采用的双面光伏板能够从正面和反面两个方向吸收入射的太阳光,一种简单的做法是,将两个单面光伏板背靠背叠放以获得双面光伏板,当然,也可以直接制作具有双面吸光能力的光伏器件。可采用适当的支撑部件(未图示)来支撑会聚系统和双面光伏板,以保持它们之间的相对位置关系。根据具体应用场景的不同,支撑部件可以有各种适合的形态,可根据需要进行设计。
在一些优选的实施方式中,会聚系统与双面光伏板可具有相同的对称分割面。所称对称分割面是指将几何形状分割成两部分的平面,且分割后的两部分相对于该平面是对称的,圆周对称的物体具有无限个对称分割面,所有经过其中心法线的平面均为其对称分割面,矩形平面则只有两个对称分割面。元件之间具有相同的对称分割面的好处在于能够充分地利用空间尺寸,实现紧凑的布置。
以下结合具体的应用场景对依据本发明的聚光式太阳能系统的几种使用形态进行举例说明。
实施例 1
依据本发明的 聚光式太阳能系统 的一种实施方式可参考图 7 , 包括 第一菲涅尔透镜 111 ,反射元件 112 ,双面光伏板 120 和支撑部件 130 。
第一菲涅尔透镜 111 可以提供一个齿面(采用单面菲涅尔透镜)或两个齿面(采用双面菲涅尔透镜),其齿面的宏观曲面的形状为折面。在其他实施方式中,第一菲涅尔透镜的齿面的宏观曲面的形状也可以是其他形状的共轴面,例如弧形曲面。在本实施例中,第一菲涅尔透镜被用作建筑的屋顶,可采用刚性透明材料压制而成,例如硬塑胶、树脂、玻璃等。由于屋顶面积通常较大,第一菲涅尔透镜可以被分割成多个小部件进行制造,然后再拼接起来。例如,可以制作大量的简单菲涅尔透镜,再将它们拼装成整个屋顶。当然,基于制造方式,每个小部件也可以包含多个菲涅尔单元。可以将这些用于拼装聚光屋顶的小部件称为 ' 聚光瓦 ' 。
反射元件 112 平铺在屋顶下方,由于面积较大,可采用简单的具有反射平面的元件,例如,镀有反射层的平板或薄膜。
第一菲涅尔透镜 111 和反射元件 112 组成会聚系统,其条形聚焦位置设计在屋脊处,即位于第一菲涅尔透镜的宏观曲面上。这种设计将非常便于双面光伏板的安装,并且整个太阳能系统形成一个相对封闭的空间。被第一菲涅尔透镜会聚的太阳光将在 齿面、反射面以及光伏板之间多次反射,直到被吸收或被反射回天空。由于被反射回天空的太阳光很少,因此本实施例的太阳能屋顶能高效率地吸收太阳光,适宜用作寒冷地区房屋的屋顶,同时由于反射面能有效地反射热能,也适宜用作热带地区房屋的屋顶。不过需要注意的是,制作反射面的材料最好选取对无线电信号透明的类型,以免室内的无线电通信质量收到影响。
在本实施例的应用场景中,支撑 部件 130 包括房屋的墙体以及用于支撑和安装第一菲涅尔透镜以及光伏板的支架(未图示)等。
本实施例中,会聚系统(包括第一菲涅尔透镜和反射元件)与双面光伏板具有相同的对称分割面 ss1 ,如图中虚线所示,这使得空间得到了很好的利用。
作为一种优选的实施方式, 为了进一步提高太阳能的利用率,还可以 沿太阳光入射的方向 在双面光伏板的上方设置第二菲涅尔透镜(未图示),以会聚直接照射在光伏板正面的太阳光。第二菲涅尔透镜不仅可以提高太阳能的利用率,还可起到防尘防雪等作用。
本实施例的太阳能系统可以直接作为新建建筑的屋顶,也可以在已有建筑的屋顶上改造而成。
实施例 2
依据本发明的 聚光式太阳能系统 的另一种实施方式可参考图 8 , 包括 第一菲涅尔透镜 211 ,反射元件 212 ,双面光伏板 220 和支撑部件 230 。
第一菲涅尔透镜 211 的齿面的宏观曲面为圆周对称的形状,可用于作为帐篷的顶面或伞的顶面,本实施例可以视为将太阳能系统用作户外遮阳伞的应用场景。第一菲涅尔透镜可采用柔性透明材料压制而成,例如软质塑胶、柔性水晶板等。整个伞面可以被分割成多个小部件进行制造,然后再拼接起来。
反射元件 212 设置在伞面下方,由于在这种类型的应用中,需要会聚系统具有较短的焦距,因此反射元件可采用具有增强的会聚能力的反射透镜,例如图 5(b) 所示的 ' 凸 - 凸 ' 菲涅尔式反射透镜,为便于加工,可在光滑的凸面上镀反射膜。
第一菲涅尔透镜 211 和反射元件 212 组成会聚系统,其点状聚焦位置设计在伞面与反射元件之间,使得双面光伏板能得到伞面的物理保护。本实施例结构的遮阳伞不仅遮阳效果极佳,而且能够使光伏板以较小的面积得到照射到伞面上的大部分光能,具有很好的太阳能收集能力。且会聚系统与双面光伏板具有相同的对称中心线,即支撑部件 230 所在的位置,使得空间得到了最大化的利用,也便于在支撑部件上安装会聚系统和光伏板。
这种伞型太阳能系统可用于充当家庭式太阳能发电站,其具有良好的可移动性,例如,可以放置在屋顶代替实施例 1 中的太阳能屋顶。这种伞型太阳能系统 还可用于安装在停车场、高速公路休息站等作为太阳能发电系统。特别地,可以利用已经存在的各种电线杆、路灯杆来安装这种伞型 太阳能系统,能够提供大量的 清洁能源。
为更好地存储和利用由太阳能转换得到的电能,本实施例中还包含以下列出的附加元件,在其他实施方式中,可以根据应用的需要选择性地只包含其中的一种或几种。
能量存储器 240 ,与双面光伏板 220 电连接,用于储存电能。能量存储器可选自 超级电容、可充电电池和空气压缩机;
交流逆变器 250 ,与能量存储器电连接(在其他实施 方式 中,也可以直接与双面光伏板电连接),用于将其电力输出连接至连网开关柜 251 。连网开关柜与外部交流电网 252 相连,使得太阳能系统产生的电能可以并入到外部电网中;交流逆变器还可以外接交流接线板 253 ,以便于直接向用户提供交流输出;
直流电压输出装置 260 ,与能量存储器电连接(在其他实施 方式 中,也可以直接与双面光伏板电连接),用于输出直流电压,以便于用户使用,输出装置输出的直流电压例如可包括 12V 、 9V 、 5V 、 3V 、 1.5V 等;
状态指示器 270 ,用于检测并显示系统的运行参数,这些运行参数可以是电压、电流、功率、温度等,以便于用户掌握太阳能系统的运行状况;可通过设置与所需要的参数类型对应的检测器件来获得这些参数,例如温度探头等。
实施例 3
依据本发明的 聚光式太阳能系统 的另一种实施方式可参考图 9 , 包括 第一菲涅尔透镜 311 ,反射元件 312 ,双面光伏板 320 和支撑部件 330 。
第一菲涅尔透镜 311 为单面或双面复合菲涅尔透镜,其宏观曲面为圆周对称的形状。本实施例中,第一菲涅尔透镜用作帐篷的顶盖,可采用柔性透明材料压制而成,或由柔性透明材料制成的小部件拼接而成。
反射元件 312 设置在顶盖下方,由于本实施例中需要会聚系统具有较长的焦距,因此反射元件可采用一个面为凹面的反射透镜,例如图 5(c) 所示的 ' 凹 - 凸 ' 菲涅尔式反射透镜,为便于加工,可在光滑的凹面上镀反射膜。
第一菲涅尔透镜 311 和反射元件 312 组成会聚系统,其点状聚焦位置设计在顶盖的上方,这种结构能提高太阳光的利用效率,且便于安装和维修双面光伏板。
为更充分地利用太阳能,本实施例中还包括第二菲涅尔透镜 313 和以透明材料制作的热水器 380 。第二菲涅尔透镜 313 设置在双面光伏板 320 上方,用于会聚正面入射的太阳光。双面光伏板 320 作为热源以热传导的方式被热水器 380 包裹,例如通过导热材质与热水器紧密接触以进行热交换。冷水从进水口 381 进入热水器,与双面光伏板进行热交换后从出水口 382 流出。第二菲涅尔透镜齿面向下设置在热水器顶部,使得热水器中的水形成为液体菲涅尔透镜。
本实施例中,会聚系统、光伏板、第二菲涅尔透镜、热水器等的中心线均与支撑部件 330 重合,同样具有很好的空间使用效率。在顶盖的周围设置挂钩或挂孔(未图示),即 可在挂钩或挂孔上安装围帐 331 ,从而将本实施例的太阳能系统变成一个 带有电力和热水供应的太阳能帐篷。
由于本实施例主要考虑野外使用,无需连接外部交流电网,因此在附加元件方面只选择了能量存储器 340 、交流逆变器 350 、直流电压输出装置 360 和 状态指示器 370 , 交流逆变器外接交流接线板 353 , 各附加元件的描述与实施例 2 相同。
实施例 4
依据本发明的 聚光式太阳能系统 的另一种实施方式可参考图 10 , 包括 第一菲涅尔透镜 411 ,反射元件 412 ,双面光伏板 420 和支撑部件 430 。
本实施例是将本发明太阳能系统与风力发电机结合的一种应用例。第一菲涅尔透镜 411 为单面或双面复合菲涅尔透镜,反射元件 412 为反射透镜或菲涅尔式反射透镜。也可采用图 4 所示的元件来同时提供齿面和反射面,并且其齿面可以替换成复合菲涅尔折射面。
第一菲涅尔透镜 411 和反射元件 412 设置在风力发电机 490 的底部,例如地面上。双向光伏板 420 安装在支撑部件 430 的中下部,该支撑部件同样是风力发电机 490 的支撑部件。 对于新建的太阳能风力发电系统, 支撑部件 可采用缕空的钢支架,以避免阻挡太阳光对会聚系统的照射。如果是在已有风力发电机的支架上加装依据本发明的太阳能系统,则可对已有支撑部件处于 第一菲涅尔透镜 411 与 双向光伏板 420 之间的一段 431 ,进行镀反射膜的处理。
本实施例将风力发电系统与太阳能发电系统集成在一起,利用同一个空间、同一个支架、同一套电力传输系统、同一套逆变、控制、存储器件,将风力和太阳能两种不同的自然能源结合在一起利用,能够降低系统成本,也提高了集成系统的对气候的适应能力。
以上应用具体个例对本发明的原理及实施方式进行了阐述,应该理解,以上实施方式只是用于帮助理解本发明,而不应理解为对本发明的限制。对于本领域的一般技术人员,依据本发明的思想,可以对上述具体实施方式进行变化。例如,将上述实施例中的反射面设置在屋顶、地面\路面、水面、窗户,则相应的太阳能系统就成为太阳能屋顶,地面/路面太阳能系统,太阳能人工岛、太阳能窗户。

Claims (12)

  1. 一种聚光式太阳能系统,其特征在于,包括,
    会聚系统,其包括至少一个齿面 (s5) 和一个反射面 (s6) ,每个齿面含有至少一个菲涅尔单元,所述反射面沿 太阳光入射的方向设置于所述齿面的下方,
    双面光伏板 (p1) ,沿太阳光入射的方向设置于所述反射面的上方,且基本位于所述会聚系统的聚焦位置,所述双面光伏板用于从正面和反面两个方向吸收入射的太阳光,
    支撑部件,用于支撑所述会聚系统和双面光伏板,并保持它们之间的相对位置关系。
  2. 如权利要求 1 所述的太阳能系统,其特征在于,所述会聚系统与所述双面光伏板 (120, 220, 320, 420) 具有相同的对称分割面。
  3. 如权利要求 1 所述的太阳能系统,其特征在于,所述齿面的宏观曲面的形状为圆周对称面或共轴面。
  4. 如权利要求 1 所述的太阳能系统,其特征在于,所述聚焦位置位于所述齿面与所述反射面之间,或者沿太阳光入射的方向位于所述齿面的上方,或者位于所述齿面的宏观曲面上。
  5. 如权利要求1~4 任意一项所述的太阳能系统,其特征在于,所述会聚系统包括第一菲涅尔透镜 (111, 211, 311, 411) 和反射元件 (112, 212, 312, 412) ,其中,
    第一菲涅尔透镜的类型选自: 单面简单菲涅尔透镜、单面复合菲涅尔透镜、双面简单菲涅尔透镜、双面复合菲涅尔透镜、 双面混合菲涅尔透镜;
    所述 反 射元件的类型选自:仅具有单一反射平面或反射曲面的反射元件、平面反射镜、由平面反射面与 凹面或凸面透射面组合成的反射透镜 、菲涅尔式反射透镜。
  6. 如权利要求1~4 任意一项所述的太阳能系统,其特征在于,还包括第二菲涅尔透镜 (313) ,沿太阳光入射的方向设置于所述双面光伏板 (320) 的上方。
  7. 如权利要求1~4 任意一项所述的太阳能系统,其特征在于,还包括以下元件中的一种或多种:
    能量存储器,与所述双面光伏板电连接,用于储存电能,所述能量存储器选自 超级电容、可充电电池和空气压缩机;
    交流逆变器,与所述双面光伏板电连接,用于将其电力输出连接至连网开关柜;
    直流电压输出装置,与所述双面光伏板电连接,用于输出 直流电压;
    状态指示器,用于检测并显示系统的运行参数,所述运行参数选自电压、电流、功率、温度。
  8. 如权利要求 5 所述的太阳能系统,其特征在于,第一菲涅尔透镜采用刚性或柔性透明材料压制而成,或者由刚性或柔性透明材料制成的小部件拼接而成。
  9. 如权利要求 5 所述的太阳能系统,其特征在于,第一菲涅尔透镜用于充当建筑的屋顶,或者伞的伞面,或者帐篷的顶盖。
  10. 如权利要求1~4 任意一项所述的太阳能系统,其特征在于,所述反射面用于设置于屋顶,或者地面,或者水面,或者窗户。
  11. 如权利要求1~4 任意一项所述的太阳能系统,其特征在于,还包括以透明材料制作的热水器 (380) ,所述双面光伏板作为热源以热传导的方式被所述热水器包裹。
  12. 如权利要求1~4任意一项所述的太阳能系统,其特征在于, 所述太阳能系统与一个风力发电机 (490) 共用所述支撑部件 (430) 以及电力传输、逆变、控制和存储器件。
PCT/CN2015/072943 2015-02-12 2015-02-12 聚光式太阳能系统 WO2016127370A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
MX2017010375A MX2017010375A (es) 2015-02-12 2015-02-12 Sistema de energía solar concentrado.
CA2976287A CA2976287A1 (en) 2015-02-12 2015-02-12 Concentrated solar energy system
PCT/CN2015/072943 WO2016127370A1 (zh) 2015-02-12 2015-02-12 聚光式太阳能系统
AU2015382917A AU2015382917B2 (en) 2015-02-12 2015-02-12 Concentrated solar energy system
RU2017131585A RU2676214C1 (ru) 2015-02-12 2015-02-12 Система концентрированной солнечной энергии
JP2017560848A JP2018512839A (ja) 2015-02-12 2015-02-12 集光型ソーラーシステム
US15/549,660 US20180026578A1 (en) 2015-02-12 2015-02-12 Concentrated solar energy system
EP15881532.4A EP3260894A4 (en) 2015-02-12 2015-02-12 Concentrated solar energy system
CN201580075241.5A CN107209294A (zh) 2015-02-12 2015-02-12 聚光式太阳能系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/072943 WO2016127370A1 (zh) 2015-02-12 2015-02-12 聚光式太阳能系统

Publications (1)

Publication Number Publication Date
WO2016127370A1 true WO2016127370A1 (zh) 2016-08-18

Family

ID=56614984

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/072943 WO2016127370A1 (zh) 2015-02-12 2015-02-12 聚光式太阳能系统

Country Status (9)

Country Link
US (1) US20180026578A1 (zh)
EP (1) EP3260894A4 (zh)
JP (1) JP2018512839A (zh)
CN (1) CN107209294A (zh)
AU (1) AU2015382917B2 (zh)
CA (1) CA2976287A1 (zh)
MX (1) MX2017010375A (zh)
RU (1) RU2676214C1 (zh)
WO (1) WO2016127370A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110677114A (zh) * 2019-11-05 2020-01-10 联动天翼新能源有限公司 一种可收放式树状光伏组件及其使用方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10662929B2 (en) * 2013-05-24 2020-05-26 Engineering Manufacturing Contractors, LLC Thermal transpiration generator system
CN112240815A (zh) * 2019-07-01 2021-01-19 威卡亚力山大维甘德欧洲两合公司 具有柔性窗盖的仪表
KR20210059820A (ko) * 2019-11-15 2021-05-26 씨이티코스모 주식회사 리니어 프레넬 렌즈를 사용한 pv 태양광발전 모듈 및 장치
JP2020049353A (ja) * 2020-01-06 2020-04-02 株式会社三洋物産 遊技機
JP7652537B2 (ja) * 2020-04-06 2025-03-27 三協立山株式会社 太陽光パネルユニットおよび建築部材
JP2022007644A (ja) * 2020-06-26 2022-01-13 三協立山株式会社 太陽光パネルユニットおよび建築部材
RU2739876C1 (ru) * 2020-07-08 2020-12-29 Общество с ограниченной ответственностью "ХелиоРэк" Плавучий модуль для фотоэлектрической панели
WO2022205375A1 (zh) 2021-04-01 2022-10-06 博立码杰通讯(深圳)有限公司 太阳能利用装置
RU2767411C1 (ru) * 2021-11-23 2022-03-17 Общество с ограниченной ответственностью "ХелиоРэк" Плавучий модуль для фотоэлектрических панелей
KR102763604B1 (ko) * 2023-06-23 2025-02-07 주식회사 대창콘텍 태양광의 굴절률 조절을 통한 태양광 입사각 수직 유도 패널 결합형 옹벽 시스템

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101278408A (zh) * 2005-09-30 2008-10-01 通用电气公司 光伏屋顶屋脊盖和安装方法
CN202524328U (zh) * 2012-01-10 2012-11-07 容云 太阳能光热混合利用系统
CN102800729A (zh) * 2011-05-26 2012-11-28 夏普株式会社 用于高效太阳辐射收集的光伏系统及并入该系统的太阳能电池板
CN203116311U (zh) * 2012-12-20 2013-08-07 深圳市动静追日太阳能科技有限公司 一种太阳能光伏光热一体化装置
US20140041708A1 (en) * 2012-08-07 2014-02-13 Pu Ni Tai Yang Neng (Hangzhou) Co., Limited Low-cost thin-film concentrator solar cells
CN103912994A (zh) * 2013-01-06 2014-07-09 北京兆阳光热技术有限公司 一种太阳能线性聚集装置及系统控制方法

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4315671A (en) * 1977-10-03 1982-02-16 Bunch Jesse C Lenticulated lens
JPS60208725A (ja) * 1984-04-03 1985-10-21 Hiroyoshi Mori 偏・集光装置
JPS6190473A (ja) * 1984-10-09 1986-05-08 Nec Corp 集光式太陽光発電装置
JPH08158702A (ja) * 1994-12-07 1996-06-18 Kanazawa Jushi Kogyo Kk 屋外仮設具
JP3738929B2 (ja) * 1997-07-28 2006-01-25 本田技研工業株式会社 エネルギ供給システム
JP3174549B2 (ja) * 1998-02-26 2001-06-11 株式会社日立製作所 太陽光発電装置及び太陽光発電モジュール並びに太陽光発電システムの設置方法
JP2000156518A (ja) * 1998-09-17 2000-06-06 Nippon Telegr & Teleph Corp <Ntt> 太陽光発電システム
JP2004186437A (ja) * 2002-12-03 2004-07-02 Ebara Corp 発電装置
US20070137691A1 (en) * 2005-12-19 2007-06-21 Cobb Joshua M Light collector and concentrator
JP4863792B2 (ja) * 2006-07-05 2012-01-25 日軽金アクト株式会社 太陽光発電装置
JP5290597B2 (ja) * 2007-03-02 2013-09-18 岡本硝子株式会社 集光型太陽電池モジュールに用いる反射鏡
US20100307565A1 (en) * 2007-12-10 2010-12-09 Yoshinori Suga Solar cell module
JP2010190565A (ja) * 2009-02-18 2010-09-02 Palo Alto Research Center Inc 太陽エネルギ収集装置及び方法
TW201032339A (en) * 2009-02-20 2010-09-01 Aussmak Optoelectronic Corp Solar cell
US8511006B2 (en) * 2009-07-02 2013-08-20 Owens Corning Intellectual Capital, Llc Building-integrated solar-panel roof element systems
US20120160302A1 (en) * 2010-12-27 2012-06-28 Jeffrey Michael Citron Trough shaped fresnel reflector solar concentrator
JP2012248776A (ja) * 2011-05-31 2012-12-13 Dainippon Printing Co Ltd 集光素子及び太陽電池システム
JP5043244B1 (ja) * 2012-02-20 2012-10-10 立山科学工業株式会社 太陽光発電システム
US20130219812A1 (en) * 2012-02-24 2013-08-29 Georgia Tech Research Corporation Solar panel roof-ridge mounting systems and methods
CN103378647A (zh) * 2012-04-16 2013-10-30 北京兆阳能源技术有限公司 一种风力发电和太阳能发电一体化复合发电系统
CN202663325U (zh) * 2012-05-09 2013-01-09 山东中科捷高光电科技有限公司 太阳能风能发电系统
US20140102519A1 (en) * 2012-10-11 2014-04-17 Building Materials Investment Corporation Roof Integrated Solar Panel System with Ridge Mounted Micro Inverters
CN104797765B (zh) * 2012-11-08 2017-08-25 D·卡梅伦 用于太阳能板安装的模块结构系统
US10050163B2 (en) * 2013-04-10 2018-08-14 Panasonic Intellectual Property Management Co., Ltd. Solar cell apparatus and method for manufacturing same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101278408A (zh) * 2005-09-30 2008-10-01 通用电气公司 光伏屋顶屋脊盖和安装方法
CN102800729A (zh) * 2011-05-26 2012-11-28 夏普株式会社 用于高效太阳辐射收集的光伏系统及并入该系统的太阳能电池板
CN202524328U (zh) * 2012-01-10 2012-11-07 容云 太阳能光热混合利用系统
US20140041708A1 (en) * 2012-08-07 2014-02-13 Pu Ni Tai Yang Neng (Hangzhou) Co., Limited Low-cost thin-film concentrator solar cells
CN203116311U (zh) * 2012-12-20 2013-08-07 深圳市动静追日太阳能科技有限公司 一种太阳能光伏光热一体化装置
CN103912994A (zh) * 2013-01-06 2014-07-09 北京兆阳光热技术有限公司 一种太阳能线性聚集装置及系统控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110677114A (zh) * 2019-11-05 2020-01-10 联动天翼新能源有限公司 一种可收放式树状光伏组件及其使用方法
CN110677114B (zh) * 2019-11-05 2024-05-31 联动天翼新能源有限公司 一种可收放式树状光伏组件及其使用方法

Also Published As

Publication number Publication date
US20180026578A1 (en) 2018-01-25
MX2017010375A (es) 2018-05-07
CN107209294A (zh) 2017-09-26
AU2015382917B2 (en) 2018-09-13
RU2676214C1 (ru) 2018-12-26
JP2018512839A (ja) 2018-05-17
AU2015382917A1 (en) 2017-09-28
CA2976287A1 (en) 2016-08-18
EP3260894A1 (en) 2017-12-27
EP3260894A4 (en) 2018-10-03

Similar Documents

Publication Publication Date Title
WO2016127370A1 (zh) 聚光式太阳能系统
US10554168B2 (en) Light-concentrating solar system
CN106288437B (zh) 多功能太阳能系统
CN103199743A (zh) 一种可控双状态反光聚光太阳能集热发电装置
WO2016133484A1 (ru) Солнечно-ветровая установка
WO2016138642A1 (zh) 表面太阳能系统
WO2015018132A1 (zh) 一种管状跟踪聚光光伏组件
CN108011580A (zh) 一种管状聚光光伏电池组件及阵列
CN105577105B (zh) 一种可固定安装的非对称聚光光伏光热系统
CN103134204A (zh) 一种太阳能热发电的光学系统
CN207995024U (zh) 一种聚光型太阳能接收组件及太阳能电池装置
CN103138631A (zh) 一种太阳能聚焦光热分离元件
CN206977381U (zh) 一种宽角度光导聚光太阳能热电联合供能系统
CN209982428U (zh) 一种多面折射的新型太阳能光伏板
WO2010102514A1 (zh) 高效太阳能立体电池及其制造方法
CN112050481A (zh) 一种锯齿形集热器
WO2019024080A1 (zh) 立式太阳能装置
CN103367511A (zh) 棱镜阵列式光电、热能混合式电热系统
CN205066192U (zh) 一种机电一体化蝶式太阳能聚热装置
CN203491966U (zh) 棱镜阵列、阳光接收器、电热系统以及电热系统组
CN107302341A (zh) 一种宽角度光导聚光太阳能热电联合供能系统
CN101841267A (zh) 一种太阳能发电集热装置的高能模组
TW201114050A (en) A device with solar cell unit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881532

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15549660

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2976287

Country of ref document: CA

Ref document number: 2017560848

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2017/010375

Country of ref document: MX

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015881532

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017131585

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2015382917

Country of ref document: AU

Date of ref document: 20150212

Kind code of ref document: A