WO2016125993A1 - Ultraviolet light emitting diode - Google Patents

Ultraviolet light emitting diode Download PDF

Info

Publication number
WO2016125993A1
WO2016125993A1 PCT/KR2015/011997 KR2015011997W WO2016125993A1 WO 2016125993 A1 WO2016125993 A1 WO 2016125993A1 KR 2015011997 W KR2015011997 W KR 2015011997W WO 2016125993 A1 WO2016125993 A1 WO 2016125993A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light emitting
emitting diode
composition ratio
ultraviolet light
Prior art date
Application number
PCT/KR2015/011997
Other languages
French (fr)
Korean (ko)
Inventor
박승환
서대웅
Original Assignee
서울바이오시스 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020150031807A external-priority patent/KR20160097098A/en
Application filed by 서울바이오시스 주식회사 filed Critical 서울바이오시스 주식회사
Publication of WO2016125993A1 publication Critical patent/WO2016125993A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/04Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction
    • H01L33/06Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a quantum effect structure or superlattice, e.g. tunnel junction within the light emitting region, e.g. quantum confinement structure or tunnel barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/12Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a stress relaxation structure, e.g. buffer layer

Definitions

  • the present invention relates to an ultraviolet light emitting diode, and more particularly, to an ultraviolet light emitting diode having an active layer structure in which internal quantum efficiency can be improved.
  • an active layer is made of a material having a bandgap energy corresponding to the emission wavelength of the ultraviolet band.
  • an active layer of an ultraviolet light emitting diode manufactured using a nitride semiconductor includes a nitride semiconductor including Al, for example, an active layer in which a well layer is formed of AlGaN and a barrier layer of AlGaN or AlN is adopted for the ultraviolet light emitting diode.
  • a nitride semiconductor layer having a higher Al composition ratio is required to be applied to the active layer.
  • the characteristics of the active layer including AlGaN are different from those of general blue light emitting diodes, and thus, an active layer structure capable of increasing the internal quantum efficiency of the ultraviolet light emitting diodes is required.
  • the problem to be solved by the present invention is to provide an ultraviolet light emitting diode having a high luminous efficiency, in particular, the internal quantum efficiency is improved to increase the amount of light.
  • the barrier layer may include Al z Ga (1-z) N (0 ⁇ z ⁇ 1), and the barrier layer may have a greater bandgap energy than the well layer.
  • Y may be greater than or equal to 0 and less than or equal to 0.2 and 0 ⁇ x ⁇ 0.12.
  • the y may be 0.2 or more and 0.4 or less and 0 ⁇ x ⁇ 0.07.
  • the amount of TE-polarized light in the light emitted from the active layer, may be greater than the amount of TM-polarized light.
  • an ultraviolet light emitting diode includes a well layer including BAlGaN, thereby providing an ultraviolet light emitting diode having improved internal quantum efficiency. Also, by forming a BAlGaN well layer having a composition ratio of Al and B in a predetermined range, the light amount of TE-polarized light can be increased, so that the substantial light amount of light emitted from the ultraviolet light emitting diode can be increased.
  • FIG. 1 is a cross-sectional view illustrating a structure of an ultraviolet light emitting diode according to an embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view illustrating the structure of an active layer according to an embodiment of the present invention.
  • 3 to 6 are graphs for explaining characteristics of light emitting diodes according to exemplary embodiments of the present invention and a comparative example.
  • composition ratio, growth method, growth conditions, thickness, etc. for the semiconductor layers described below correspond to an example, and the present invention is not limited as described below.
  • the composition ratio of Al and Ga may be variously applied according to the needs of those skilled in the art.
  • the semiconductor layers described below can be grown using a variety of methods generally known to those skilled in the art (hereinafter referred to as "normal technician"), for example, MOCVD (Metal Organic Chemical) It may be grown using techniques such as Vapor Deposition, Molecular Beam Epitaxy (MBE), or Hydride Vapor Phase Epitaxy (HVPE).
  • sources introduced into the chamber may use a source known to a person skilled in the art.
  • TMGa, TEGa, etc. may be used as a Ga source. and, as an Al source, and you can take advantage of a TMA, TEA, etc., as the In source may be used, and TMI, TEI, NH 3 may be used as the N source.
  • TMGa, TEGa, etc. may be used as a Ga source.
  • Al source and you can take advantage of a TMA, TEA, etc., as the In source may be used, and TMI, TEI, NH 3 may be used as the N source.
  • TMI, TEI, NH 3 may be used as the N source.
  • the present invention is not limited thereto.
  • FIG. 1 is a cross-sectional view illustrating a structure of a light emitting diode according to an embodiment of the present invention
  • FIG. 2 is an enlarged cross-sectional view illustrating a structure of an active layer 400 according to an embodiment of the present invention.
  • the ultraviolet light emitting diode includes a first conductive semiconductor layer 300, an active layer 400, and a second conductive semiconductor layer 500.
  • the light emitting diode may further include a substrate 100 and a buffer layer 200.
  • the substrate 100 is not limited as long as it is a substrate for growing a nitride semiconductor layer, and may be, for example, a sapphire substrate, a silicon carbide substrate, a spinel substrate, or a nitride substrate such as a GaN substrate or an AlN substrate.
  • the substrate 100 may be omitted as necessary.
  • the substrate 100 may be separated and removed from the semiconductor layers.
  • the substrate 100 may be removed through laser lift off, stress lift off, chemical lift off, or physicochemical methods through lapping or polishing.
  • the buffer layer 200 is located on the substrate 100.
  • the buffer layer 200 may include a nuclear layer that helps other semiconductor layers grown on the substrate 100 to grow into a single crystal, and may include a three-dimensional growth layer and a recovery layer positioned on the nuclear layer.
  • the buffer layer 200 may also serve to alleviate stress caused by a difference in lattice constant between the substrate 100 and other semiconductor layers grown on the buffer layer 200.
  • the buffer layer 200 may include a nitride semiconductor such as (Al, Ga, In) N, and may include, for example, at least one of GaN, AlGaN, and AlN. In the present embodiment, the buffer layer 200 may include AlN.
  • the buffer layer 200 may be omitted.
  • the first conductive semiconductor layer 300 is grown on the substrate 100 without additionally forming the buffer layer 200. Can be.
  • the buffer layer 200 may also be removed in the process of separating the substrate 100.
  • the first conductivity type semiconductor layer 300 may include a nitride semiconductor such as (Al, Ga, In) N. Since the ultraviolet light emitting diode according to the present embodiment emits light in the ultraviolet band, the first conductivity type semiconductor layer 300 may include a nitride semiconductor that does not absorb light in the ultraviolet band. Specifically, when the bandgap energy of the nitride semiconductor forming the first conductivity type semiconductor layer 300 is smaller than the energy corresponding to the wavelength of the light of the ultraviolet band, the light of the ultraviolet band may be absorbed by the nitride semiconductor. When the light is absorbed by the nitride semiconductor, the luminous efficiency of the ultraviolet light emitting diode may be very low.
  • a nitride semiconductor such as (Al, Ga, In) N. Since the ultraviolet light emitting diode according to the present embodiment emits light in the ultraviolet band, the first conductivity type semiconductor layer 300 may include a nitride semiconductor that does not absorb light in the ultraviolet band. Specifically, when
  • the first conductivity type semiconductor layer 300 may include Al, and in particular, may include AlGaN.
  • the Al composition ratio of the AlGaN may be adjusted according to the wavelength of light emitted from the active layer 400. For example, when the peak wavelength of the light emitted from the active layer 400 is 400 nm or less, the AlGaN may have an Al composition ratio of about 0.2 or more. When the peak wavelength of the light emitted from the active layer 400 is 300 nm or less, the AlGaN is about 0.4. It may have an Al composition ratio of more than.
  • the present invention is not limited thereto.
  • the first conductive semiconductor layer 300 may have an n-type or p-type conductive type, including an n-type or p-type dopant.
  • the first conductivity type semiconductor layer 300 may be doped to n-type by including impurities such as Si, Ge, and the like as a dopant.
  • the first conductivity type semiconductor layer 300 may be a single layer or may be formed of multiple layers including a plurality of layers.
  • the first conductivity type semiconductor layer 300 may include a clad layer, a contact layer, a superlattice layer, or the like.
  • the first conductivity type semiconductor layer 300 may include a gradient layer in which the composition ratio continuously changes.
  • the active layer 400 may include a nitride semiconductor such as (Al, Ga, In) N, and may control the composition ratio of the nitride semiconductor to emit light having a peak wavelength in a desired ultraviolet region.
  • the active layer 400 may include a multi-quantum well structure (MQW) in which the well layer 410 and the barrier layer 420 are alternately stacked.
  • MQW multi-quantum well structure
  • the barrier layer 420 may include a nitride semiconductor having a greater bandgap energy than the well layer 410, and may include Al z Ga (1-z) N (0 ⁇ z ⁇ 1).
  • the barrier layer 420 may be formed of AlN.
  • the barrier layer 420 is formed of a nitride semiconductor having a relatively higher bandgap energy than the well layer 410, thereby allowing a plurality of carriers (electrons and holes) to concentrate on the well layer 410. This increases the probability that electrons and holes combine.
  • the well layer 410 may include a nitride semiconductor having a bandgap energy smaller than the barrier layer 420.
  • the well layer 410 includes B (boron), for example, B x Al y Ga (1-xy) N (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1 and x ⁇ y). have. Since the well layer 410 further includes B in addition to AlGaN, an absolute value of an internal field inside the well layer 410 may be reduced. This is achieved by the well layer 410 further comprising B, whereby the degree of lattice mismatch is reduced. Accordingly, spatial separation of the conduction and valence bands in the active layer 400 may be reduced, thereby improving recombination efficiency of electrons and holes. In addition, as the spatial separation of the conduction band and the valence band is reduced, the phenomenon of increasing the transition wavelength of the light emitting diode can be prevented.
  • the composition ratio of Al may be greater than 0 and less than 0.5. In this case, the effect of increasing the luminous efficiency when B is added to AlGaN can be further improved.
  • the composition ratio of Al is 0.5 or more, the addition of B causes the uppermost subband in the valence band to change from a heavy-hole band to a crystal-field splittoff hole band, thus transverse-electric ) -Polarized light is reduced and transverse-magnetic (TM) -polarized light is increased. That is, when the composition ratio of Al is 0.5 or more, the luminous efficiency of the light emitting diode is reduced. Therefore, in the ultraviolet light emitting diode emitted light of this embodiment, the light amount of TE-polarized light is larger than the light amount of TM-polarized light.
  • the composition ratio of B has a constant dependency on the composition ratio of Al.
  • the composition ratio x of B in B x Al y Ga (1-xy) N is lower than the composition ratio y of Al.
  • the composition ratio x of B may be greater than 0 and 0.12 or less, and further, the composition ratio x of B may be 0.06 or more and 0.10 or less.
  • the composition ratio (y) of Al when the composition ratio (y) of Al is 0.2 or more and 0.4 or less, the composition ratio (x) of B may be more than 0 and 0.07 or less, and further, the composition ratio (x) of B may be 0.02 or more and 0.06 or less.
  • the higher the Al composition ratio, the lower the optimum composition ratio of B, and the Al composition ratio and the B composition ratio may be in a linear relationship with each other. The relation of -5x + (0.5 ⁇ 0.7) can be satisfied.
  • the AlGaN well layer containing no B is determined by determining the composition ratio x of B and the composition ratio y of Al in the above-mentioned ranges. Luminous efficiency can be improved compared with the case where it is used.
  • FIGS. 3 to 6 are graphs for explaining characteristics of light emitting diodes according to exemplary embodiments of the present invention and a comparative example.
  • 4A shows an optical matrix element value (
  • 4B shows the strain and the internal field of the well layer according to the composition ratio of B.
  • FIG. 5A shows a spontaneous emission coefficient according to the wavelength when x is 0, 0.02, 0.06, 0.10 and 0.12
  • FIG. 5B shows the spontaneous emission coefficient according to the composition ratio of B. (spontaneous emission coefficient).
  • 6 (a) to 6 (c) show potential profiles and wave functions when x is 0, 0.06, and 0.12 according to positions
  • FIG. 6 (d) shows pseudo Fermi levels according to the composition ratio of B (Quasi ⁇ ).
  • the graph of FIG. 3 was derived according to a self-consistent solution, which was calculated assuming a carrier density (N 2D ) of 20 ⁇ 10 12 cm ⁇ 2 .
  • 'HHn', 'LHn' and 'CHn' in FIGS. 3 and 6 are 'n-th heavy-hole subband', 'n-th light-hole subband' and 'n-th crystal splitting hole subband (crystal), respectively.
  • -field splittoff hole subband) ' '.
  • the energy of each subband changes according to the composition ratio x of B.
  • the uppermost subband of the valence band is represented by HH1.
  • the energy of the crystal splitting hole subband CH1 increases and is located between LH1 and HH2.
  • the heavy-hole effective mass increases as B is added to AlGaN.
  • the composition ratio (x) of B in the BAlGaN / AlN quantum well structure is 0 and 0.12
  • the heavy-hole effective mass is respectively. 1.75m 0 and 2.97m 0 .
  • the light amount of TE-polarized light increases as the composition ratio x of B increases.
  • the x value is 0.1 or more
  • the amount of light of the TE-polarized light is drastically reduced when the plane wave vector k ⁇ increases above a certain size. This is interpreted as the uppermost subband in the valence band is changed from the heavy-hole band (HH) to the crystal splitting hole band (CH) when the amount of B added is more than a predetermined value.
  • the emission wavelength is shortened as the composition ratio x of B increases from 0 to 0.12, and the amount of light of TE-polarized light increases.
  • the composition ratio y of Al is less than 0.5, the amount of light of TE-polarized light increases by adding B to the well layer. That is, as described with reference to FIGS. 3 and 4, by adding B to the well layer, the luminous efficiency of the ultraviolet light emitting diode is improved.
  • composition ratio x of B exceeds the threshold of the predetermined ratio, it can be seen that the amount of light emitted from the light emitting diode is reduced.
  • the composition ratio y of Al is 0.2
  • B Increasing the composition ratio (x) from 0 to 0.08 increases the amount of light
  • the composition ratio (x) of B is more than 0.08, the amount of light decreases with the increase in the B composition ratio.
  • composition ratio y of Al when the composition ratio y of Al is 0.4, when the composition ratio x of B is increased from 0 to 0.04, the amount of light increases, but the composition ratio x of B is greater than 0.04.
  • the amount of light decreases with the increase in the B composition ratio.
  • the composition ratio y of Al is 0.6, the amount of light decreases even if B is added.
  • the amount of light decreases.
  • the uppermost subband in the valence band has a heavy-hole band ( It is interpreted as changing from HH) to crystal splitting hole band (CH). It is also interpreted that the light amount of the TM-polarized light increases simultaneously with the decrease in the light amount of the TE-polarized light.
  • B x Al 0 B x Al 0 .
  • Increasing the B composition ratio (x) from 2 Ga (0.8-x) N to 0.12 reduces the spatial separation of the energy bands and the spatial separation of the wavefunction. As described above, this is an effect due to the reduction of the internal field, and thus, by adding B, the internal quantum efficiency of the ultraviolet light emitting diode can be increased.
  • FIG. 6D it can be seen that the pseudo Fermi level separation ( ⁇ E fc + ⁇ E f ⁇ ) decreases as the B composition ratio increases.
  • the pseudo Fermi level separation ( ⁇ E fc + ⁇ E f ⁇ ) is defined as the difference between the energy of the pseudo Fermi level and the energy of the ground state. Accordingly, it can be seen that the luminous efficiency improves with the addition of B. However, when the composition ratio of B exceeds 0.8, the value of ⁇ E fc + ⁇ E f ⁇ is lower than ⁇ E fc , and it is interpreted that the amount of light of TE-polarized light decreases with increasing B again.
  • the matrix element is related to the transition probability of electrons and holes, and as the TE optical matrix element increases, the emission intensity increases, but the maximum value is determined because the separation energy of the quasi fermi level gradually decreases. .
  • the Al component exceeds 0.5, the optimum point disappears because the TE optical matrix element suddenly decreases regardless of the separation energy of the pseudo Fermi level. Therefore, while satisfying the above relation, satisfying 0 ⁇ y ⁇ 0.5 and 0 ⁇ x ⁇ y, the TE optical matrix element can be maximized to obtain higher luminous efficiency.
  • the second conductivity type semiconductor layer 500 is located on the active layer 400.
  • the second conductivity-type semiconductor layer 500 may include a nitride semiconductor such as (Al, Ga, In) N, and may include, for example, AlGaN or GaN.
  • the second conductivity-type semiconductor layer 500 may be doped with a conductivity type opposite to that of the first conductivity-type semiconductor layer 300, and may have, for example, a p-type conductivity type including an Mg dopant.
  • the second conductivity-type semiconductor layer 500 may further include a delta doping layer (not shown) for lowering ohmic contact resistance, and may further include an electron blocking layer (not shown).
  • an ultraviolet light emitting diode having improved internal quantum efficiency, increased TE polarized light, improved light extraction efficiency, and increased emission intensity can be provided.
  • the ultraviolet light emitting diode may implement ultraviolet light of various wavelengths, and in particular, an ultraviolet light emitting diode that emits deep ultraviolet light (including light in the UVC band) may be provided.
  • the structure of the ultraviolet light emitting diode of FIG. 1 may be modified in various forms. For example, by performing an additional process to the ultraviolet light emitting diode structure of FIG. 1, light emitting diodes having various known structures, such as a horizontal type, a vertical type, or a flip chip type, may be implemented.

Abstract

Disclosed is an ultraviolet light emitting diode. The ultraviolet light emitting diode comprises: a first conductive semiconductor layer; an active layer which is disposed on the first conductive semiconductor layer and includes a well layer including BxAlyGa(1-x-y)N and a barrier layer; and a second conductive semiconductor layer disposed on the active layer. The ultraviolet light emitting diode satisfies a relational expression of 0<y<0.5, 0<x<y, and y = -5x + (0.5~0.7).

Description

자외선 발광 다이오드Ultraviolet light emitting diode
본 발명은 자외선 발광 다이오드에 관한 것으로, 특히, 내부 양자 효율이 향상될 수 있는 활성층 구조를 갖는 자외선 발광 다이오드에 관한 것이다.The present invention relates to an ultraviolet light emitting diode, and more particularly, to an ultraviolet light emitting diode having an active layer structure in which internal quantum efficiency can be improved.
발광 다이오드는 전자와 정공의 재결합으로 발생하는 광을 방출하는 무기 반도체 소자로, 특히, 자외선 발광 다이오드는 UV 경화, 살균, 백색 광원, 의학 분야, 및 장비 부속 부품 등으로 이용될 수 있어서, 그 이용 범위가 증가하고 있다. 특히, 근자외선(약 340nm 내지 약 300nm 범위의 피크 파장을 갖는 광) 발광 다이오드에 비해, 더 짧은 파장의 광을 방출하는 심자외선(약 340nm 이하의 피크 파장을 갖는 광, 나아가, 약 200nm 내지 약 340nm 범위의 피크 파장을 갖는 광) 발광 다이오드는 UV-C 영역의 광에 대한 발광 강도가 강하다. 따라서, 이러한 심자외선 발광 다이오드는 살균, 정수, 생화학 분야에서의 검출 수단, 의학 등 다양한 분야에서 다양한 역할을 할 수 있을 것으로 기대된다.Light emitting diodes are inorganic semiconductor devices that emit light generated by recombination of electrons and holes. In particular, ultraviolet light emitting diodes can be used for UV curing, sterilization, white light source, medical field, and equipment accessory parts. The range is increasing. In particular, deep ultraviolet (light having a peak wavelength of about 340 nm or less, furthermore, about 200 nm to about light) emits shorter wavelengths of light, compared to near ultraviolet (light having a peak wavelength in the range of about 340 nm to about 300 nm) light emitting diodes. A light emitting diode having a peak wavelength in the range of 340 nm has a strong emission intensity with respect to light in the UV-C region. Therefore, such a deep ultraviolet light emitting diode is expected to play various roles in various fields such as sterilization, water purification, detection means in the biochemical field, medicine.
자외선 발광 다이오드를 제조하기 위해서, 자외선 대역의 발광 파장에 대응하는 밴드갭 에너지를 갖는 물질로 활성층을 제조한다. 따라서, 질화물 반도체를 이용하여 제조되는 자외선 발광 다이오드의 활성층은 Al을 포함하는 질화물 반도체를 포함하고, 예컨대, 우물층이 AlGaN으로 형성되고 장벽층이 AlGaN 또는 AlN로 형성된 활성층이 자외선 발광 다이오드에 채택된다. 이때, 상대적으로 짧은 피크 파장의 광을 방출시키기 위해서 더 높은 Al 조성비를 갖는 질화물 반도체층이 활성층에 적용될 것이 요구된다.In order to manufacture an ultraviolet light emitting diode, an active layer is made of a material having a bandgap energy corresponding to the emission wavelength of the ultraviolet band. Accordingly, an active layer of an ultraviolet light emitting diode manufactured using a nitride semiconductor includes a nitride semiconductor including Al, for example, an active layer in which a well layer is formed of AlGaN and a barrier layer of AlGaN or AlN is adopted for the ultraviolet light emitting diode. . At this time, in order to emit light of a relatively short peak wavelength, a nitride semiconductor layer having a higher Al composition ratio is required to be applied to the active layer.
또한, AlGaN 기반의 활성층을 포함하는 자외선 발광 다이오드는, GaN 또는 InGaN 기반의 활성층과 달리 TM(transverse-magnetic) 편광된 광이 방출된다. 일반적으로, AlGaN 기반의 활성층에서 Al의 함량이 높아질수록 TM 편광된 광의 비율이 높은 것으로 알려져 있으며, AlN의 경우 거의 90% 이상의 광이 TM 편광된 광으로 방출된다. TM 편광된 광은 활성층의 평면에 수평한 방향으로 방출되고, TE(transverse-electric) 편광된 광은 활성층의 평면에 수직한(normal)한 방향으로 방출되므로, 이러한 방향적 특징에 따라 TM 편광된 광은 TE 편광된 광에 비해 광 추출 효율이 낮다. 따라서 TM 편광된 광의 비율이 높아질수록 자외선 발광 다이오드의 발광 효율이 저하된다.In addition, unlike the GaN or InGaN-based active layer, the ultraviolet light emitting diode including the AlGaN-based active layer emits TM-polarized light. In general, as the Al content increases in the AlGaN-based active layer, the ratio of TM polarized light is known to be higher, and in the case of AlN, almost 90% or more of the light is emitted as TM polarized light. TM polarized light is emitted in a direction horizontal to the plane of the active layer, and TE (transverse-electric) polarized light is emitted in a direction normal to the plane of the active layer, and thus TM polarized light The light has a lower light extraction efficiency than TE polarized light. Therefore, the higher the ratio of TM polarized light, the lower the luminous efficiency of the ultraviolet light emitting diode.
이와 같이, AlGaN을 포함하는 활성층의 특성은 일반적인 청색 발광 다이오드의 특성과 달라, 자외선 발광 다이오드의 내부 양자 효율을 증가시킬 수 있는 활성층의 구조가 필요하다.As such, the characteristics of the active layer including AlGaN are different from those of general blue light emitting diodes, and thus, an active layer structure capable of increasing the internal quantum efficiency of the ultraviolet light emitting diodes is required.
본 발명이 해결하고자 하는 과제는, 발광 효율이 높은, 특히, 내부 양자 효율이 향상되어 광량이 증가된 자외선 발광 다이오드를 제공하는 것이다.The problem to be solved by the present invention is to provide an ultraviolet light emitting diode having a high luminous efficiency, in particular, the internal quantum efficiency is improved to increase the amount of light.
본 발명의 일 측면에 따른 자외선 발광 다이오드는, 제1 도전형 반도체층; 상기 제1 도전형 반도체층 상에 위치하며, 장벽층 및 BxAlyGa(1-x-y)N을 포함하는 우물층을 포함하는 활성층; 및 상기 활성층 상에 위치하는 제2 도전형 반도체층을 포함하고, 0<y<0.5 및 0<x<y이며, y = -5x + (0.5~0.7)의 관계식을 만족한다.Ultraviolet light emitting diode according to an aspect of the present invention, the first conductivity type semiconductor layer; An active layer on the first conductivity type semiconductor layer, the active layer including a barrier layer and a well layer including B x Al y Ga (1-xy) N; And a second conductivity-type semiconductor layer located on the active layer, wherein 0 <y <0.5 and 0 <x <y, satisfying a relational expression of y = -5x + (0.5 to 0.7).
상기 장벽층은 AlzGa(1-z)N (0<z≤1)을 포함할 수 있고, 상기 장벽층은 상기 우물층보다 큰 밴드갭 에너지를 가질 수 있다.The barrier layer may include Al z Ga (1-z) N (0 < z ≦ 1), and the barrier layer may have a greater bandgap energy than the well layer.
상기 y는 0초과 0.2이하이고, 0<x≤0.12일 수 있다.Y may be greater than or equal to 0 and less than or equal to 0.2 and 0 <x≤0.12.
또한, 0.06≤x≤0.10일 수 있다.Also, 0.06 ≦ x ≦ 0.10.
상기 y는 0.2이상 0.4이하이고, 0<x≤0.07일 수 있다.The y may be 0.2 or more and 0.4 or less and 0 <x ≦ 0.07.
나아가, 0.02≤x≤0.06일 수 있다.Furthermore, 0.02 ≦ x ≦ 0.06.
몇몇 실시예들에 있어서, 상기 활성층에서 방출되는 광에서, TE-편광된 광의 광량은 TM-편광된 광의 광량보다 클 수 있다.In some embodiments, in the light emitted from the active layer, the amount of TE-polarized light may be greater than the amount of TM-polarized light.
본 발명에 따르면, 자외선 발광 다이오드가 BAlGaN을 포함하는 우물층을 포함하여, 내부 양자 효율이 향상된 자외선 발광 다이오드가 제공된다. 또한, 소정 범위의 Al 및 B의 조성비를 갖는 BAlGaN 우물층이 형성됨으로써, TE-편광된 광의 광량이 증가될 수 있어, 자외선 발광 다이오드로부터 방출된 광의 실질적인 광량이 증가될 수 있다.According to the present invention, an ultraviolet light emitting diode includes a well layer including BAlGaN, thereby providing an ultraviolet light emitting diode having improved internal quantum efficiency. Also, by forming a BAlGaN well layer having a composition ratio of Al and B in a predetermined range, the light amount of TE-polarized light can be increased, so that the substantial light amount of light emitted from the ultraviolet light emitting diode can be increased.
도 1은 본 발명의 일 실시예에 따른 자외선 발광 다이오드의 구조를 설명하기 위한 단면도이다.1 is a cross-sectional view illustrating a structure of an ultraviolet light emitting diode according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에 따른 활성층의 구조를 설명하기 위한 확대 단면도이다.2 is an enlarged cross-sectional view illustrating the structure of an active layer according to an embodiment of the present invention.
도 3 내지 도 6은 본 발명의 실시예들과 비교예에 따른 발광 다이오드들의 특성을 설명하기 위한 그래프들이다. 3 to 6 are graphs for explaining characteristics of light emitting diodes according to exemplary embodiments of the present invention and a comparative example.
이하, 첨부한 도면들을 참조하여 본 발명의 실시예들을 상세히 설명한다. 다음에 소개되는 실시예들은 본 발명이 속하는 기술분야의 통상의 기술자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 예로서 제공되는 것이다. 따라서, 본 발명은 이하 설명되는 실시예들에 한정되지 않고 다른 형태로 구체화될 수도 있다. 그리고 도면들에 있어서, 구성요소의 폭, 길이, 두께 등은 편의를 위하여 과장되어 표현될 수도 있다. 또한, 하나의 구성요소가 다른 구성요소의 "상부에" 또는 "상에" 있다고 기재된 경우 각 부분이 다른 부분의 "바로 상부" 또는 "바로 상에" 있는 경우뿐만 아니라 각 구성요소와 다른 구성요소 사이에 또 다른 구성요소가 개재된 경우도 포함한다. 명세서 전체에 걸쳐서 동일한 참조번호들은 동일한 구성요소들을 나타낸다.Hereinafter, with reference to the accompanying drawings will be described embodiments of the present invention; The following embodiments are provided as examples to sufficiently convey the spirit of the present invention to those skilled in the art to which the present invention pertains. Accordingly, the present invention is not limited to the embodiments described below and may be embodied in other forms. In the drawings, the width, length, thickness, etc. of the components may be exaggerated for convenience. In addition, when one component is described as "on" or "on" another component, each component is different from each other as well as when the component is "just above" or "on" the other component. It also includes a case where another component is interposed therebetween. Like numbers refer to like elements throughout.
이하 설명되는 반도체층들에 대한 각 조성비, 성장 방법, 성장 조건, 두께 등은 예시에 해당하며, 하기 기재된 바에 따라 본 발명이 제한되는 것은 아니다. 예를 들어, AlGaN로 표기되는 경우, Al과 Ga의 조성비는 통상의 기술자의 필요에 따라 다양하게 적용될 수 있다. 또한, 이하 설명되는 반도체층들은 이 기술 분야의 통상의 지식을 가진 자(이하, "통상의 기술자")에게 일반적으로 알려진 다양한 방법을 이용하여 성장될 수 있으며, 예를 들어, MOCVD(Metal Organic Chemical Vapor Deposition), MBE(Molecular Beam Epitaxy) 또는 HVPE(Hydride Vapor Phase Epitaxy) 등의 기술을 이용하여 성장될 수 있다. 반도체층들의 성장 과정에서, 챔버 내에 유입되는 소스들은 통상의 기술자에게 알려진 소스를 이용할 수 있으며, 예를 들어, MOCVD를 이용하여 질화물 반도체층을 성장시키는 경우, Ga 소스로서 TMGa, TEGa 등을 이용할 수 있고, Al 소스로서 TMA, TEA 등을 이용할 수 있으며, In 소스로서 TMI, TEI 등을 이용할 수 있으며, N 소스로서 NH3를 이용할 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니다.Each composition ratio, growth method, growth conditions, thickness, etc. for the semiconductor layers described below correspond to an example, and the present invention is not limited as described below. For example, in the case of AlGaN, the composition ratio of Al and Ga may be variously applied according to the needs of those skilled in the art. In addition, the semiconductor layers described below can be grown using a variety of methods generally known to those skilled in the art (hereinafter referred to as "normal technician"), for example, MOCVD (Metal Organic Chemical) It may be grown using techniques such as Vapor Deposition, Molecular Beam Epitaxy (MBE), or Hydride Vapor Phase Epitaxy (HVPE). During the growth of the semiconductor layers, sources introduced into the chamber may use a source known to a person skilled in the art. For example, when growing a nitride semiconductor layer using MOCVD, TMGa, TEGa, etc. may be used as a Ga source. and, as an Al source, and you can take advantage of a TMA, TEA, etc., as the In source may be used, and TMI, TEI, NH 3 may be used as the N source. However, the present invention is not limited thereto.
도 1은 본 발명의 일 실시예에 따른 발광 다이오드의 구조를 설명하기 위한 단면도이고, 도 2는 본 발명의 일 실시예들에 따른 활성층(400)의 구조를 설명하기 위한 확대 단면도이다.1 is a cross-sectional view illustrating a structure of a light emitting diode according to an embodiment of the present invention, and FIG. 2 is an enlarged cross-sectional view illustrating a structure of an active layer 400 according to an embodiment of the present invention.
도 1 및 도 2를 참조하면, 자외선 발광 다이오드는 제1 도전형 반도체층(300), 활성층(400) 및 제2 도전형 반도체층(500)을 포함한다. 나아가, 상기 발광 다이오드는 기판(100) 및 버퍼층(200)을 더 포함할 수 있다.1 and 2, the ultraviolet light emitting diode includes a first conductive semiconductor layer 300, an active layer 400, and a second conductive semiconductor layer 500. In addition, the light emitting diode may further include a substrate 100 and a buffer layer 200.
기판(100)은 질화물 반도체층을 성장시키기 위한 기판이면 한정되지 않으며, 예를 들어, 사파이어 기판, 실리콘 카바이드 기판, 스피넬 기판, 또는 GaN 기판이나 AlN 기판과 같은 질화물 기판 등일 수 있다.The substrate 100 is not limited as long as it is a substrate for growing a nitride semiconductor layer, and may be, for example, a sapphire substrate, a silicon carbide substrate, a spinel substrate, or a nitride substrate such as a GaN substrate or an AlN substrate.
기판(100)은 필요에 따라 생략될 수 있다. 예를 들어, 수직형 발광 다이오드 또는 플립칩형 발광 다이오드 등에서 기판(100)은 반도체층들로부터 분리 및 제거될 수 있다. 예를 들어, 기판(100)은 레이저 리프트 오프, 스트레스 리프트 오프, 화학적 리프트 오프, 또는 래핑이나 폴리싱 등을 통한 물리 화학적 방법을 통해 제거될 수 있다. The substrate 100 may be omitted as necessary. For example, in a vertical light emitting diode or a flip chip light emitting diode, the substrate 100 may be separated and removed from the semiconductor layers. For example, the substrate 100 may be removed through laser lift off, stress lift off, chemical lift off, or physicochemical methods through lapping or polishing.
버퍼층(200)은 기판(100) 상에 위치한다. 버퍼층(200)은 기판(100) 상에 성장되는 다른 반도체층들이 단결정으로 성장될 수 있도록 돕는 핵층을 포함할 수 있고, 상기 핵층 상에 위치하는 3차원 성장층 및 리커버리층을 포함할 수 있다. 버퍼층(200)은, 또한, 기판(100)과 버퍼층(200) 상에 성장되는 다른 반도체층들 간의 격자상수의 차이에 의한 스트레스를 완화시키는 역할을 할 수 있다. 버퍼층(200)은 (Al, Ga, In)N과 같은 질화물 반도체를 포함할 수 있고, 예를 들어, GaN, AlGaN 및 AlN 중 적어도 하나를 포함할 수 있다. 본 실시예에 있어서, 버퍼층(200)은 AlN를 포함할 수 있다.The buffer layer 200 is located on the substrate 100. The buffer layer 200 may include a nuclear layer that helps other semiconductor layers grown on the substrate 100 to grow into a single crystal, and may include a three-dimensional growth layer and a recovery layer positioned on the nuclear layer. The buffer layer 200 may also serve to alleviate stress caused by a difference in lattice constant between the substrate 100 and other semiconductor layers grown on the buffer layer 200. The buffer layer 200 may include a nitride semiconductor such as (Al, Ga, In) N, and may include, for example, at least one of GaN, AlGaN, and AlN. In the present embodiment, the buffer layer 200 may include AlN.
한편, 버퍼층(200)은 생략될 수도 있다. 예컨대, 기판(100)과 제1 도전형 반도체층(300)이 동종 물질인 경우, 제1 도전형 반도체층(300)은 버퍼층(200)을 추가로 형성하지 않고도, 기판(100) 상에 성장될 수 있다. 또한, 기판(100)이 분리 및 제거되는 경우, 기판(100) 분리 과정에서 버퍼층(200)도 아울러 제거될 수 있다.Meanwhile, the buffer layer 200 may be omitted. For example, when the substrate 100 and the first conductive semiconductor layer 300 are the same material, the first conductive semiconductor layer 300 is grown on the substrate 100 without additionally forming the buffer layer 200. Can be. In addition, when the substrate 100 is separated and removed, the buffer layer 200 may also be removed in the process of separating the substrate 100.
제1 도전형 반도체층(300)은 (Al, Ga, In)N과 같은 질화물 반도체를 포함할 수 있다. 본 실시예에 따른 자외선 발광 다이오드는 자외선 대역의 광을 방출하므로, 제1 도전형 반도체층(300)은 상기 자외선 대역의 광을 흡수하지 않는 질화물 반도체를 포함할 수 있다. 구체적으로, 제1 도전형 반도체층(300)을 형성하는 질화물 반도체의 밴드갭 에너지가 상기 자외선 대역의 광의 파장에 대응하는 에너지보다 작은 경우, 상기 자외선 대역의 광은 질화물 반도체에 흡수될 수 있다. 상기 광이 질화물 반도체에 흡수되면, 자외선 발광 다이오드의 발광 효율이 매우 저하될 수 있다.The first conductivity type semiconductor layer 300 may include a nitride semiconductor such as (Al, Ga, In) N. Since the ultraviolet light emitting diode according to the present embodiment emits light in the ultraviolet band, the first conductivity type semiconductor layer 300 may include a nitride semiconductor that does not absorb light in the ultraviolet band. Specifically, when the bandgap energy of the nitride semiconductor forming the first conductivity type semiconductor layer 300 is smaller than the energy corresponding to the wavelength of the light of the ultraviolet band, the light of the ultraviolet band may be absorbed by the nitride semiconductor. When the light is absorbed by the nitride semiconductor, the luminous efficiency of the ultraviolet light emitting diode may be very low.
따라서, 제1 도전형 반도체층(300)은 Al을 포함할 수 있고, 특히, AlGaN을 포함할 수 있다. 이때, 활성층(400)에서 방출되는 광의 파장에 따라 상기 AlGaN의 Al 조성비를 조절할 수 있다. 예를 들어, 활성층(400)에서 방출되는 광의 피크 파장이 400nm 이하인 경우 상기 AlGaN은 약 0.2 이상의 Al 조성비를 가질 수 있고, 활성층(400)에서 방출되는 광의 피크 파장이 300nm 이하인 경우 상기 AlGaN은 약 0.4 이상의 Al 조성비를 가질 수 있다. 다만, 본 발명이 이에 한정되는 것은 아니다.Therefore, the first conductivity type semiconductor layer 300 may include Al, and in particular, may include AlGaN. In this case, the Al composition ratio of the AlGaN may be adjusted according to the wavelength of light emitted from the active layer 400. For example, when the peak wavelength of the light emitted from the active layer 400 is 400 nm or less, the AlGaN may have an Al composition ratio of about 0.2 or more. When the peak wavelength of the light emitted from the active layer 400 is 300 nm or less, the AlGaN is about 0.4. It may have an Al composition ratio of more than. However, the present invention is not limited thereto.
제1 도전형 반도체층(300)은 n형 또는 p형 도펀트를 포함하여 n형 또는 p형의 도전형을 가질 수 있다. 예를 들어, 제1 도전형 반도체층(300) Si, Ge 등과 같은 불순물을 도펀트로서 포함하여 n형으로 도핑될 수 있다. 제1 도전형 반도체층(300)은 단일층일 수 있고, 또는 복수의 층을 포함하는 다중층으로 형성될 수도 있다. 제1 도전형 반도체층(300)이 복수의 층을 포함하는 경우, 클래드층, 컨택층, 또는 초격자층 등을 포함할 수 있다. 나아가, 제1 도전형 반도체층(300)은 연속적으로 조성비가 변화하는 그레디언트층을 포함할 수도 있다.The first conductive semiconductor layer 300 may have an n-type or p-type conductive type, including an n-type or p-type dopant. For example, the first conductivity type semiconductor layer 300 may be doped to n-type by including impurities such as Si, Ge, and the like as a dopant. The first conductivity type semiconductor layer 300 may be a single layer or may be formed of multiple layers including a plurality of layers. When the first conductivity type semiconductor layer 300 includes a plurality of layers, the first conductive semiconductor layer 300 may include a clad layer, a contact layer, a superlattice layer, or the like. In addition, the first conductivity type semiconductor layer 300 may include a gradient layer in which the composition ratio continuously changes.
활성층(400)은 (Al, Ga, In)N과 같은 질화물 반도체를 포함할 수 있고, 상기 질화물 반도체의 조성비를 조절하여 원하는 자외선 영역의 피크 파장을 갖는 광을 방출할 수 있다. 또한, 활성층(400)은 도 2에 도시된 바와 같이, 우물층(410)과 장벽층(420)이 교대로 적층된 다중양자우물구조(MQW)를 포함할 수 있다.The active layer 400 may include a nitride semiconductor such as (Al, Ga, In) N, and may control the composition ratio of the nitride semiconductor to emit light having a peak wavelength in a desired ultraviolet region. In addition, as shown in FIG. 2, the active layer 400 may include a multi-quantum well structure (MQW) in which the well layer 410 and the barrier layer 420 are alternately stacked.
장벽층(420)은 우물층(410)보다 큰 밴드갭 에너지를 갖는 질화물 반도체를 포함할 수 있고, AlzGa(1-z)N (0<z≤1)을 포함할 수 있다. 예를 들어, 장벽층(420)은 AlN로 형성될 수 있다. 장벽층(420)은 우물층(410)에 비해 상대적으로 높은 밴드갭 에너지를 갖는 질화물 반도체로 형성됨으로써, 다수의 캐리어(전자 및 정공)들이 우물층(410)에 집중되도록 한다. 이에 따라, 전자와 정공이 결합할 확률을 증가시킨다.The barrier layer 420 may include a nitride semiconductor having a greater bandgap energy than the well layer 410, and may include Al z Ga (1-z) N (0 < z ≦ 1). For example, the barrier layer 420 may be formed of AlN. The barrier layer 420 is formed of a nitride semiconductor having a relatively higher bandgap energy than the well layer 410, thereby allowing a plurality of carriers (electrons and holes) to concentrate on the well layer 410. This increases the probability that electrons and holes combine.
우물층(410)은 장벽층(420)보다 작은 밴드갭 에너지를 갖는 질화물 반도체를 포함할 수 있다. 특히, 우물층(410)은 B(붕소)를 포함하며, 예컨대, BxAlyGa(1-x-y)N (0<x<1, 0<y<1 및 x<y)을 포함할 수 있다. 우물층(410)이 AlGaN에 더하여 B를 더 포함함으로써, 우물층(410) 내부의 내부장(internal field)의 절댓값을 감소시킬 수 있다. 이는 우물층(410)이 B를 더 포함하여, 격자부정합의 정도가 감소됨으로써 얻어진다. 이에 따라, 활성층(400)에서의 전도대와 가전자대의 공간적 분리(spatial separation)가 감소되어, 전자와 정공의 재결합 효율이 향상될 수 있다. 또한, 전도대와 가전자대의 공간적 분리(spatial separation)가 감소됨에 따라, 발광 다이오드의 전이 파장(transition wavelength)이 증가하는 현상도 방지될 수 있다.The well layer 410 may include a nitride semiconductor having a bandgap energy smaller than the barrier layer 420. In particular, the well layer 410 includes B (boron), for example, B x Al y Ga (1-xy) N (0 <x <1, 0 <y <1 and x <y). have. Since the well layer 410 further includes B in addition to AlGaN, an absolute value of an internal field inside the well layer 410 may be reduced. This is achieved by the well layer 410 further comprising B, whereby the degree of lattice mismatch is reduced. Accordingly, spatial separation of the conduction and valence bands in the active layer 400 may be reduced, thereby improving recombination efficiency of electrons and holes. In addition, as the spatial separation of the conduction band and the valence band is reduced, the phenomenon of increasing the transition wavelength of the light emitting diode can be prevented.
또한, 우물층(410)의 BxAlyGa(1-x-y)N 에 있어서, Al의 조성비는 0 초과 0.5 미만일 수 있다. 이 경우, AlGaN에 B를 첨가하였을 때의 발광 효율 증가 효과를 더욱 향상시킬 수 있다. Al의 조성비가 0.5 이상인 경우, B의 첨가에 따라 원자가 밴드(valance band) 내의 최상부 서브 밴드가 헤비-홀 밴드에서 결정장 갈라짐 홀 밴드(crystal-field splittoff hole band)로 바뀌어, TE(transverse-electric)-편광된 광이 감소되고 TM(transverse-magnetic)-편광된 광이 증가한다. 즉, Al의 조성비가 0.5 이상인 경우, 발광 다이오드의 발광 효율이 감소된다. 그러므로, 본 실시예의 자외선 발광 다이오드 방출된 광에서, TE-편광된 광의 광량은 TM-편광된 광의 광량보다 크다.In addition, in B x Al y Ga (1-xy) N of the well layer 410, the composition ratio of Al may be greater than 0 and less than 0.5. In this case, the effect of increasing the luminous efficiency when B is added to AlGaN can be further improved. When the composition ratio of Al is 0.5 or more, the addition of B causes the uppermost subband in the valence band to change from a heavy-hole band to a crystal-field splittoff hole band, thus transverse-electric ) -Polarized light is reduced and transverse-magnetic (TM) -polarized light is increased. That is, when the composition ratio of Al is 0.5 or more, the luminous efficiency of the light emitting diode is reduced. Therefore, in the ultraviolet light emitting diode emitted light of this embodiment, the light amount of TE-polarized light is larger than the light amount of TM-polarized light.
또한, 우물층(410)의 BxAlyGa(1-x-y)N에 있어서, B의 조성비는 Al의 조성비에 대해 일정한 의존성을 갖는다. 상술한 바와 같이, BxAlyGa(1-x-y)N에서 B의 조성비(x)는 Al의 조성비(y)보다 낮다. 예를 들어, Al의 조성비(y)가 0초과 0.2이하인 경우, B의 조성비(x)는 0 초과 0.12 이하일 수 있고, 나아가, B의 조성비(x)는 0.06 이상 0.10 이하일 수 있다. 또 다른 예로서, Al의 조성비(y)가 0.2이상 0.4이하인 경우, B의 조성비(x)는 0 초과 0.07 이하일 수 있고, 나아가, B의 조성비(x)는 0.02 이상 0.06 이하일 수 있다. 나아가, 우물층(410)의 BxAlyGa(1-x-y)N에 있어서, Al 조성비가 높을수록 B의 조성비 최적점이 하향하며 Al조성비와 B 조성비는 서로 선형 관계에 있을 수 있고, y = -5x + (0.5~0.7)의 관계식을 만족할 수 있다. 우물층(410)의 BxAlyGa(1-x-y)N에 있어서, B의 조성비(x) 및 Al의 조성비(y)를 상술한 범위로 결정함으로써, B을 포함하지 않는 AlGaN 우물층을 이용하는 경우에 비해 발광 효율을 향상시킬 수 있다.In addition, in B x Al y Ga (1-xy) N of the well layer 410, the composition ratio of B has a constant dependency on the composition ratio of Al. As described above, the composition ratio x of B in B x Al y Ga (1-xy) N is lower than the composition ratio y of Al. For example, when the composition ratio y of Al is greater than 0 and 0.2 or less, the composition ratio x of B may be greater than 0 and 0.12 or less, and further, the composition ratio x of B may be 0.06 or more and 0.10 or less. As another example, when the composition ratio (y) of Al is 0.2 or more and 0.4 or less, the composition ratio (x) of B may be more than 0 and 0.07 or less, and further, the composition ratio (x) of B may be 0.02 or more and 0.06 or less. Furthermore, in B x Al y Ga (1-xy) N of the well layer 410, the higher the Al composition ratio, the lower the optimum composition ratio of B, and the Al composition ratio and the B composition ratio may be in a linear relationship with each other. The relation of -5x + (0.5 ~ 0.7) can be satisfied. In B x Al y Ga (1-xy) N of the well layer 410, the AlGaN well layer containing no B is determined by determining the composition ratio x of B and the composition ratio y of Al in the above-mentioned ranges. Luminous efficiency can be improved compared with the case where it is used.
상술한 우물층(410)의 구성과 관련하여, 이하 도 3 내지 도 6을 참조하여 더욱 상세하게 설명한다. 도 3 내지 도 6은 본 발명의 실시예들과 비교예에 따른 발광 다이오드들의 특성을 설명하기 위한 그래프들이다. With regard to the configuration of the well layer 410 described above, it will be described in more detail with reference to FIGS. 3 to 6 are graphs for explaining characteristics of light emitting diodes according to exemplary embodiments of the present invention and a comparative example.
도 3 내지 도 6에서 설명되는 자외선 발광 다이오드 특성은, BxAl0 . 2Ga(0.8-x)N를 포함하는 2.5nm 두께의 우물층 및 AlN을 포함하는 장벽층을 갖는 자외선 발광 다이오드로부터 계산된 값이다. 구체적으로, 도 3은 B의 조성비(x)의 변화에 따른 원자가 밴드 구조(Valance band structure)를 도시하는 그래프들이다. 도 3의 (a) 내지 (c)는 각각 x가 0, 0.06 및 0.12인 경우의 각 서브 밴드의 에너지를 면상 웨이브 벡터(in-plane wave vector; k)의 함수로 나타낸 원자가 밴드 구조를 도시한다. 도 4의 (a)는 x가 0, 0.06 및 0.12인 경우의 광학 매트릭스 요소(optical matrix element) 값(│M│2)을 면상 웨이브 벡터(in-plane wave vector; k)의 함수로 나타내고, 도 4의 (b)는 B의 조성비에 따른 우물층의 스트레인(strain) 및 내부장(internal field)을 나타낸다. 도 5의 (a)는 x가 0, 0.02, 0.06, 0.10 및 0.12인 경우의 파장에 따른 자발 방출 계수(spontaneous emission coefficient)를 나타내고, 도 5의 (b)는 B의 조성비에 따른 자발 방출 계수(spontaneous emission coefficient)를 나타낸다. 도 6의 (a) 내지 (c)는 x가 0, 0.06 및 0.12인 경우의 포텐셜 프로파일과 파동 함수를 위치에 따라 나타내고, 도 6의 (d)는 B의 조성비에 따른 의사 페르미 준위(Quasi-Fermi level)의 분리를 나타내는 그래프이다.The ultraviolet light emitting diode characteristic illustrated in FIGS. 3 to 6 is B x Al 0 . Value calculated from an ultraviolet light emitting diode having a 2.5 nm thick well layer comprising 2 Ga (0.8-x) N and a barrier layer comprising AlN. Specifically, FIG. 3 is graphs illustrating a valence band structure according to a change in the composition ratio x of B. FIG. 3A to 3C show valence band structures in which the energy of each subband when x is 0, 0.06 and 0.12, respectively, as a function of an in-plane wave vector (k ) do. FIG. 4A shows an optical matrix element value (| M│ 2 ) when x is 0, 0.06 and 0.12 as a function of an in-plane wave vector (k ). 4B shows the strain and the internal field of the well layer according to the composition ratio of B. FIG. 5A shows a spontaneous emission coefficient according to the wavelength when x is 0, 0.02, 0.06, 0.10 and 0.12, and FIG. 5B shows the spontaneous emission coefficient according to the composition ratio of B. (spontaneous emission coefficient). 6 (a) to 6 (c) show potential profiles and wave functions when x is 0, 0.06, and 0.12 according to positions, and FIG. 6 (d) shows pseudo Fermi levels according to the composition ratio of B (Quasi−). A graph showing the separation of fermi level).
도 3의 그래프는 셀프 컨시스턴트 솔루션(self-consistent solution)에 따라 도출되었으며, 상기 솔루션은 캐리어 밀도(N2D)가 20×1012 cm-2인 경우를 가정하여 계산되었다. 도 3 및 도 6의 'HHn', 'LHn' 및 'CHn'은 각각 'n번째 헤비-홀 서브밴드', 'n번째 라이트-홀 서브밴드' 및 'n번째 결정장 갈라짐 홀 서브밴드(crystal-field splittoff hole subband)'를 나타낸다.The graph of FIG. 3 was derived according to a self-consistent solution, which was calculated assuming a carrier density (N 2D ) of 20 × 10 12 cm −2 . 'HHn', 'LHn' and 'CHn' in FIGS. 3 and 6 are 'n-th heavy-hole subband', 'n-th light-hole subband' and 'n-th crystal splitting hole subband (crystal), respectively. -field splittoff hole subband) '.
도 3을 참조하면, B의 조성비(x)에 따라, 각 서브 밴드의 에너지가 변화하는 것을 알 수 있다. 특히, B가 첨가되지 않은 경우((a)), 원자가 밴드의 최상부 서브 밴드는 HH1으로 나타난다. AlGaN에 B가 첨가되면((b), (c)), 결정장 갈라짐 홀 서브밴드(CH1)의 에너지가 증가하여 LH1와 HH2 사이에 위치한다. 한편, AlGaN에 B가 첨가됨에 따라 헤비-홀 유효 질량은 증가하게 되는데, 예를 들어, BAlGaN/AlN 양자우물구조에서 B의 조성비(x)가 0 및 0.12일 때, 헤비-홀 유효 질량은 각각 1.75m0 및 2.97m0로 나타난다.Referring to FIG. 3, it can be seen that the energy of each subband changes according to the composition ratio x of B. In particular, when B is not added ((a)), the uppermost subband of the valence band is represented by HH1. When B is added to AlGaN ((b), (c)), the energy of the crystal splitting hole subband CH1 increases and is located between LH1 and HH2. Meanwhile, the heavy-hole effective mass increases as B is added to AlGaN. For example, when the composition ratio (x) of B in the BAlGaN / AlN quantum well structure is 0 and 0.12, the heavy-hole effective mass is respectively. 1.75m 0 and 2.97m 0 .
도 4(a)를 참조하면, B의 조성비(x)가 증가함에 따라 TE-편광된 광의 광량이 증가하는 것을 알 수 있다. 다만, x값이 0.1이상인 경우, 면상 웨이브 벡터(k)가 일정 크기 이상으로 증가하면 TE-편광된 광의 광량이 급격히 감소한다. 이는 B의 첨가량이 소정 값 이상이 되는 경우, 원자가 밴드 내의 최상부 서브 밴드가 헤비-홀 밴드(HH)에서 결정장 갈라짐 홀 밴드(CH)로 바뀌기 때문으로 해석된다. Referring to FIG. 4 (a), it can be seen that the light amount of TE-polarized light increases as the composition ratio x of B increases. However, when the x value is 0.1 or more, the amount of light of the TE-polarized light is drastically reduced when the plane wave vector k increases above a certain size. This is interpreted as the uppermost subband in the valence band is changed from the heavy-hole band (HH) to the crystal splitting hole band (CH) when the amount of B added is more than a predetermined value.
또한, 우물층에 B를 첨가함에 따라, 격자부정합이 감소한다. 나아가, 도 4의 (b)에 도시된 바와 같이, B의 조성비(x)가 증가함에 따라 내부장 및 스트레인이 감소하여, 전자와 정공간의 공간적 분리 및 파동함수의 공간적 분리가 감소한다. 이는 곧 내부 양자 효율 증가시켜 자외선 발광 다이오드의 발광 효율을 증가시킬 수 있다. 따라서, 도 4(a)에 나타난 바와 같이, 밴드 엣지(k=0)에서의 광학 매트릭스 요 값(│M│2)은 B의 조성비(x)가 증가함에 따라 증가한다.Also, as B is added to the well layer, lattice mismatch is reduced. Furthermore, as shown in (b) of FIG. 4, as the composition ratio (x) of B increases, the internal field and strain decrease, thereby reducing the spatial separation of the electron and the space and the spatial separation of the wave function. This may increase the internal quantum efficiency, thereby increasing the luminous efficiency of the ultraviolet light emitting diode. Thus, increases as the Figure 4, as shown in (a), the band edges (k = 0) optical matrix required value (│M│ 2) increases the composition ratio (x) of B in.
다음, 도 5(a)를 참조하면, B의 조성비(x)가 0에서 0.12까지 증가함에 따라 발광 파장이 짧아지며, TE-편광된 광의 광량이 증가하는 것을 알 수 있다. 또한, 도 5(b)를 참조하면, Al의 조성비(y)가 0.5 미만일 때, B을 우물층에 첨가함으로써 TE-편광된 광의 광량이 증가하는 것을 알 수 있다. 즉, 도 3 및 도 4를 참조하여 설명한 바와 같이, 우물층에 B을 첨가함으로써, 자외선 발광 다이오드의 발광 효율을 향상시킨다.  Next, referring to FIG. 5 (a), it can be seen that the emission wavelength is shortened as the composition ratio x of B increases from 0 to 0.12, and the amount of light of TE-polarized light increases. In addition, referring to FIG. 5 (b), it can be seen that when the composition ratio y of Al is less than 0.5, the amount of light of TE-polarized light increases by adding B to the well layer. That is, as described with reference to FIGS. 3 and 4, by adding B to the well layer, the luminous efficiency of the ultraviolet light emitting diode is improved.
다만, B의 조성비(x)가 소정 비율의 임계값을 초과하는 경우, 발광 다이오드에서 방출되는 광량이 감소하는 것을 알 수 있다. 구체적으로, 도 5의 (a) 및 (b)에 도시된 바와 같이, 우물층(410)의 BxAlyGa(1-x-y)N에 있어서, Al의 조성비(y)가 0.2인 경우 B의 조성비(x)를 0 내지 0.08까지 증가시키면 광량이 증가하다가, B의 조성비(x)를 0.08 초과로 설정하는 경우 B 조성비의 증가에 따라 광량이 감소한다. 또한, 도 5(b)를 참조하면, Al의 조성비(y)가 0.4인 경우, B의 조성비(x)를 0 내지 0.04까지 증가시키면 광량이 증가하다가, B의 조성비(x)를 0.04 초과로 설정하는 경우 B 조성비의 증가에 따라 광량이 감소한다. 나아가, Al의 조성비(y)가 0.6인 경우, B를 첨가하더라도 광량은 오히려 감소한다.However, when the composition ratio x of B exceeds the threshold of the predetermined ratio, it can be seen that the amount of light emitted from the light emitting diode is reduced. Specifically, as shown in (a) and (b) of FIG. 5, in the B x Al y Ga (1-xy) N of the well layer 410, when the composition ratio y of Al is 0.2, B Increasing the composition ratio (x) from 0 to 0.08 increases the amount of light, and when setting the composition ratio (x) of B to more than 0.08, the amount of light decreases with the increase in the B composition ratio. In addition, referring to FIG. 5 (b), when the composition ratio y of Al is 0.4, when the composition ratio x of B is increased from 0 to 0.04, the amount of light increases, but the composition ratio x of B is greater than 0.04. When set, the amount of light decreases with the increase in the B composition ratio. Furthermore, when the composition ratio y of Al is 0.6, the amount of light decreases even if B is added.
우물층(410)의 BxAlyGa(1-x-y)N에 B를 소정 조성비 이상으로 첨가하였을 때 광량이 감소하는 것은, 상술한 바와 같이, 원자가 밴드 내의 최상부 서브 밴드가 헤비-홀 밴드(HH)에서 결정장 갈라짐 홀 밴드(CH)로 바뀌기 때문으로 해석된다. 또한, 이는 곧, TE-편광된 광의 광량 감소함과 동시에 TM-편광된 광의 광량이 증가하는 것으로 해석된다. When B is added to B x Al y Ga (1-xy) N of the well layer 410 at a predetermined composition ratio or more, the amount of light decreases. As described above, the uppermost subband in the valence band has a heavy-hole band ( It is interpreted as changing from HH) to crystal splitting hole band (CH). It is also interpreted that the light amount of the TM-polarized light increases simultaneously with the decrease in the light amount of the TE-polarized light.
이어서, 도 6의 (a) 내지 (c)를 참조하면, BxAl0 . 2Ga(0.8-x)N에서 B 조성비(x)를 0.12까지 증가시킴에 따라 에너지 밴드의 공간적 분리가 감소하며, 파동함수의 공간적 분리 역시 감소한다. 이는 상술한 바와 같이, 내부 장의 감소에 의한 효과이며, 이에 따라, B를 첨가함으로써 자외선 발광 다이오드의 내부 양자 효율을 증가시킬 수 있다. 또한, 도 6의 (d)를 참조하면, 의사 페르미 레벨 분리(ΔEfc + ΔE)가 B 조성비의 증가에 따라 감소하는 것을 알 수 있다. 이때, 의사 페르미 레벨 분리(ΔEfc + ΔE)는 의사 페르미 레벨의 에너지와 바닥 상태의 에너지의 차이로 정의된다. 이에 따라, B의 첨가에 따라 발광 효율이 향상되는 것을 알 수 있다. 다만, B의 조성비가 0.8을 초과하는 경우, ΔEfc + ΔE값이 ΔEfc보다 낮아지게 되어, 다시 B의 증가에 따라 TE-편광된 광의 광량이 감소하는 것으로 해석된다.Next, referring to FIGS. 6A to 6C, B x Al 0 . Increasing the B composition ratio (x) from 2 Ga (0.8-x) N to 0.12 reduces the spatial separation of the energy bands and the spatial separation of the wavefunction. As described above, this is an effect due to the reduction of the internal field, and thus, by adding B, the internal quantum efficiency of the ultraviolet light emitting diode can be increased. In addition, referring to FIG. 6D , it can be seen that the pseudo Fermi level separation (ΔE fc + ΔE ) decreases as the B composition ratio increases. At this time, the pseudo Fermi level separation (ΔE fc + ΔE ) is defined as the difference between the energy of the pseudo Fermi level and the energy of the ground state. Accordingly, it can be seen that the luminous efficiency improves with the addition of B. However, when the composition ratio of B exceeds 0.8, the value of ΔE fc + ΔE is lower than ΔE fc , and it is interpreted that the amount of light of TE-polarized light decreases with increasing B again.
즉, 매트릭스 요소는 전자와 정공의 천이확률과 관련이 있으며, TE 광학적 매트릭스 요소가 증가하면 발광 강도가 증가하지만, 의사 페르미 준위(Quasi Fermi level)의 분리 에너지가 점점 감소하기 때문에 최대값이 정해진다. 다만, Al 성분이 0.5를 초과하는 경우, 의사 페르미 준위의 분리 에너지에 관계없이 TE 광학적 매트릭스 요소가 갑자기 감소되므로 최적점이 소멸된다. 따라서 상기 관계식을 만족하면서, 0<y<0.5 및 0<x<y 를 만족하면 TE 광학 매트릭스 요소가 최대화 되어 보다 높은 발광 효율을 수득할 수 있다.That is, the matrix element is related to the transition probability of electrons and holes, and as the TE optical matrix element increases, the emission intensity increases, but the maximum value is determined because the separation energy of the quasi fermi level gradually decreases. . However, when the Al component exceeds 0.5, the optimum point disappears because the TE optical matrix element suddenly decreases regardless of the separation energy of the pseudo Fermi level. Therefore, while satisfying the above relation, satisfying 0 <y <0.5 and 0 <x <y, the TE optical matrix element can be maximized to obtain higher luminous efficiency.
다시 도 1을 참조하면, 제2 도전형 반도체층(500)은 활성층(400) 상에 위치한다. Referring back to FIG. 1, the second conductivity type semiconductor layer 500 is located on the active layer 400.
제2 도전형 반도체층(500)은 (Al, Ga, In)N과 같은 질화물 반도체를 포함할 수 있고, 예를 들어, AlGaN 또는 GaN을 포함할 수 있다. 제2 도전형 반도체층(500)은 제1 도전형 반도체층(300)과 반대의 도전형으로 도핑될 수 있고, 예를 들어, Mg 도펀트를 포함하여 p형의 도전형을 가질 수 있다. The second conductivity-type semiconductor layer 500 may include a nitride semiconductor such as (Al, Ga, In) N, and may include, for example, AlGaN or GaN. The second conductivity-type semiconductor layer 500 may be doped with a conductivity type opposite to that of the first conductivity-type semiconductor layer 300, and may have, for example, a p-type conductivity type including an Mg dopant.
나아가, 제2 도전형 반도체층(500)은 오믹 컨택 저항을 낮추기 위한 델타 도핑층(미도시)을 더 포함할 수 있고, 전자차단층(미도시)을 더 포함할 수도 있다.In addition, the second conductivity-type semiconductor layer 500 may further include a delta doping layer (not shown) for lowering ohmic contact resistance, and may further include an electron blocking layer (not shown).
상술한 실시예들에 따르면, 내부 양자 효율이 향상되며, TE 편광된 광이 증가되고, 광 추출 효율이 향상되고, 발광 강도가 증가된 자외선 발광 다이오드가 제공될 수 있다. 또한, 상기 자외선 발광 다이오드는 다양한 파장대의 자외선 광을 구현할 수 있으며, 특히, 심자외선(UVC 대역의 광 포함) 광을 방출하는 자외선 발광 다이오드가 제공될 수 있다.According to the embodiments described above, an ultraviolet light emitting diode having improved internal quantum efficiency, increased TE polarized light, improved light extraction efficiency, and increased emission intensity can be provided. In addition, the ultraviolet light emitting diode may implement ultraviolet light of various wavelengths, and in particular, an ultraviolet light emitting diode that emits deep ultraviolet light (including light in the UVC band) may be provided.
도 1의 자외선 발광 다이오드의 구조는 다양한 형태로 변형될 수 있다. 예컨대, 도 1의 자외선 발광 다이오드 구조에 추가적인 공정을 더 수행함으로써, 수평형, 수직형 또는 플립칩형 등 공지된 다양한 구조의 발광 다이오드가 구현될 수 있다.The structure of the ultraviolet light emitting diode of FIG. 1 may be modified in various forms. For example, by performing an additional process to the ultraviolet light emitting diode structure of FIG. 1, light emitting diodes having various known structures, such as a horizontal type, a vertical type, or a flip chip type, may be implemented.
이상에서, 본 발명의 다양한 실시예들에 대하여 설명하였지만, 상술한 다양한 실시예들 및 특징들에 본 발명이 한정되는 것은 아니고, 본 발명의 특허청구범위에 의한 기술적 사상을 벗어나지 않는 범위 내에서 다양한 변형과 변경이 가능하다. In the above, various embodiments of the present invention have been described, but the present invention is not limited to the various embodiments and features described above, and various modifications may be made without departing from the technical spirit of the claims of the present invention. Modifications and variations are possible.

Claims (7)

  1. 제1 도전형 반도체층;A first conductivity type semiconductor layer;
    상기 제1 도전형 반도체층 상에 위치하며, 장벽층 및 BxAlyGa(1-x-y)N을 포함하는 우물층을 포함하는 활성층; 및An active layer on the first conductivity type semiconductor layer, the active layer including a barrier layer and a well layer including B x Al y Ga (1-xy) N; And
    상기 활성층 상에 위치하는 제2 도전형 반도체층을 포함하고,A second conductivity type semiconductor layer on the active layer,
    0<y<0.5 및 0<x<y이며, y = -5x + (0.5~0.7)의 관계식을 만족하는 자외선 발광 다이오드.An ultraviolet light emitting diode in which 0 <y <0.5 and 0 <x <y, and satisfying a relational expression of y = -5x + (0.5 to 0.7).
  2. 청구항 1에 있어서,The method according to claim 1,
    상기 장벽층은 AlzGa(1-z)N (0<z≤1)을 포함하고, 상기 장벽층은 상기 우물층보다 큰 밴드갭 에너지를 갖는 자외선 발광 다이오드.The barrier layer includes Al z Ga (1-z) N (0 < z ≦ 1), and the barrier layer has a greater bandgap energy than the well layer.
  3. 청구항 1에 있어서,The method according to claim 1,
    상기 y는 0초과 0.2이하이고, 0<x≤0.12인 자외선 발광 다이오드.Y is greater than 0 and less than or equal to 0.2, and wherein 0 <x≤0.12.
  4. 청구항 3에 있어서,The method according to claim 3,
    0.06≤x≤0.10인 자외선 발광 다이오드.An ultraviolet light emitting diode wherein 0.06 ≦ x ≦ 0.10.
  5. 청구항 1에 있어서,The method according to claim 1,
    상기 y는 0.2이상 0.4이하이고, 0<x≤0.07인 자외선 발광 다이오드.Y is 0.2 or more and 0.4 or less and 0 <x≤0.07.
  6. 청구항 5에 있어서,The method according to claim 5,
    0.02≤x≤0.06인 자외선 발광 다이오드.An ultraviolet light emitting diode wherein 0.02 ≦ x ≦ 0.06.
  7. 청구항 1에 있어서,The method according to claim 1,
    상기 활성층에서 방출되는 광에서, TE-편광된 광의 광량은 TM-편광된 광의 광량보다 큰 자외선 발광 다이오드.In the light emitted from the active layer, the amount of light of TE-polarized light is greater than the amount of TM-polarized light.
PCT/KR2015/011997 2015-02-06 2015-11-09 Ultraviolet light emitting diode WO2016125993A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2015-0018375 2015-02-06
KR20150018375 2015-02-06
KR10-2015-0031807 2015-03-06
KR1020150031807A KR20160097098A (en) 2015-02-06 2015-03-06 Uv light emitting diode

Publications (1)

Publication Number Publication Date
WO2016125993A1 true WO2016125993A1 (en) 2016-08-11

Family

ID=56564296

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2015/011997 WO2016125993A1 (en) 2015-02-06 2015-11-09 Ultraviolet light emitting diode

Country Status (1)

Country Link
WO (1) WO2016125993A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109888068A (en) * 2019-01-23 2019-06-14 华灿光电(浙江)有限公司 Near ultraviolet LED epitaxial slice and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3796065B2 (en) * 1999-05-24 2006-07-12 三洋電機株式会社 Light emitting device and manufacturing method thereof
JP2007294877A (en) * 2006-03-31 2007-11-08 Fujifilm Corp Semiconductor device, its film forming method, and semiconductor light emitting element
JP2009049422A (en) * 1999-11-16 2009-03-05 Panasonic Corp Semiconductor structure employing group iii nitride material system with inhibited phase separation, and photodetector
US20130026482A1 (en) * 2011-07-29 2013-01-31 Bridgelux, Inc. Boron-Containing Buffer Layer for Growing Gallium Nitride on Silicon
US20130270519A1 (en) * 2012-04-16 2013-10-17 Sensor Electronic Technology, Inc. Non-Uniform Multiple Quantum Well Structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3796065B2 (en) * 1999-05-24 2006-07-12 三洋電機株式会社 Light emitting device and manufacturing method thereof
JP2009049422A (en) * 1999-11-16 2009-03-05 Panasonic Corp Semiconductor structure employing group iii nitride material system with inhibited phase separation, and photodetector
JP2007294877A (en) * 2006-03-31 2007-11-08 Fujifilm Corp Semiconductor device, its film forming method, and semiconductor light emitting element
US20130026482A1 (en) * 2011-07-29 2013-01-31 Bridgelux, Inc. Boron-Containing Buffer Layer for Growing Gallium Nitride on Silicon
US20130270519A1 (en) * 2012-04-16 2013-10-17 Sensor Electronic Technology, Inc. Non-Uniform Multiple Quantum Well Structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109888068A (en) * 2019-01-23 2019-06-14 华灿光电(浙江)有限公司 Near ultraviolet LED epitaxial slice and preparation method thereof
CN109888068B (en) * 2019-01-23 2020-04-14 华灿光电(浙江)有限公司 Near ultraviolet light emitting diode epitaxial wafer and preparation method thereof

Similar Documents

Publication Publication Date Title
KR102618238B1 (en) Nitride semiconductor light emitting device
US9911898B2 (en) Ultraviolet light-emitting device
KR102246648B1 (en) Ultra violet light emitting diode
US7462876B2 (en) Nitride semiconductor light emitting device
KR100631980B1 (en) Nitride semiconductor device
CN108231960B (en) AlGaN-based semiconductor ultraviolet device capable of improving light efficiency and preparation method thereof
KR101964890B1 (en) Nano-structured light emitting device
US10177273B2 (en) UV light emitting device
JP6587673B2 (en) Light emitting element
US10199539B2 (en) Vertical ultraviolet light emitting device
US20150372189A1 (en) Iii nitride semiconductor light emitting device
KR20160062659A (en) Uv light emitting diode
US20130256630A1 (en) Near uv light emitting device
WO2013191406A1 (en) Light emitting device having electron blocking layer
JP2007088481A (en) Nitride semiconductor device
US9312447B2 (en) Near UV light emitting device
US20160225950A1 (en) Near uv light emitting device
WO2014003402A1 (en) Near uv light emitting device
JP4642801B2 (en) Nitride semiconductor light emitting device
CN113013303B (en) Ultraviolet light-emitting diode and preparation method and application thereof
WO2016125993A1 (en) Ultraviolet light emitting diode
KR20100066807A (en) Nitride semiconductor light emitting device
KR20160097098A (en) Uv light emitting diode
Das et al. Effects of Spontaneous Polarization on Luminous Power of GaN/AlGaN Multiple Quantum Well UV-LEDs for Light Technology
KR101784109B1 (en) Quantum well structure and blue light emitting diode including the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881311

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15881311

Country of ref document: EP

Kind code of ref document: A1