WO2016125780A1 - Magnetic measuring device, magnetic measuring unit, magnetic measuring system, and magnetic measurement method - Google Patents

Magnetic measuring device, magnetic measuring unit, magnetic measuring system, and magnetic measurement method Download PDF

Info

Publication number
WO2016125780A1
WO2016125780A1 PCT/JP2016/053033 JP2016053033W WO2016125780A1 WO 2016125780 A1 WO2016125780 A1 WO 2016125780A1 JP 2016053033 W JP2016053033 W JP 2016053033W WO 2016125780 A1 WO2016125780 A1 WO 2016125780A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
layer
sense current
wiring
magnetization free
Prior art date
Application number
PCT/JP2016/053033
Other languages
French (fr)
Japanese (ja)
Inventor
昌弘 塩田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to JP2016573371A priority Critical patent/JPWO2016125780A1/en
Publication of WO2016125780A1 publication Critical patent/WO2016125780A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/025Compensating stray fields
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R33/00Arrangements or instruments for measuring magnetic variables
    • G01R33/02Measuring direction or magnitude of magnetic fields or magnetic flux
    • G01R33/06Measuring direction or magnitude of magnetic fields or magnetic flux using galvano-magnetic devices
    • G01R33/09Magnetoresistive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3205Deposition of non-insulating-, e.g. conductive- or resistive-, layers on insulating layers; After-treatment of these layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices

Definitions

  • the present invention relates to a magnetic measurement device, a magnetic measurement unit, a magnetic measurement system, and a magnetic measurement method for measuring a magnetic field to be measured using a magnetoresistive effect.
  • Hall elements that apply the Hall effect of semiconductors
  • magnetoresistive elements that apply the magnetoresistive effect of semiconductors and magnetic materials
  • fluxgate magnetometers with a conductive wire wound around a magnetic material, etc.
  • SQUID Superducting Quantum Interference Device
  • the magnetic field detection sensitivity of a general semiconductor Hall element or magnetoresistive element is about 1 ⁇ 10 ⁇ 7 to 1 ⁇ 10 ⁇ 8 T (Tesla). Therefore, higher magnetic field detection sensitivity is required to measure the minute magnetic field associated with the life activity current of the human body, which has been attracting attention in recent years, and the residual magnetic force of electronic devices. Further, even in a fluxgate magnetometer with high magnetic field detection sensitivity, the magnetic field detection sensitivity is about 1 ⁇ 10 ⁇ 10 T, and further improvement in sensitivity is required. In addition, in the medical field, it is important to measure the spatial distribution of the strength of the magnetic field. To that end, it is necessary to arrange the elements for detecting the magnetic field in a grid pattern. However, since the fluxgate magnetometer measures a magnetic field using a coil, it is difficult to arrange elements for detecting the magnetic field in a lattice shape.
  • SQUID for measuring a magnetic field using the quantum interference effect of a superconductor exhibits a very high magnetic field detection sensitivity of about 1 ⁇ 10 ⁇ 14 T, but has a strict element structure and a FLL (Flux Locked Loop) circuit. And a complicated and large-scale drive circuit is required, and the apparatus must be cooled to a low temperature with liquid helium or the like. For this reason, the apparatus itself becomes a large-scale device and is generally difficult to use.
  • FLL Flulux Locked Loop
  • Patent Document 1 discloses a biomagnetic measurement apparatus that can measure biomagnetism with high accuracy using a magnetic sensor that can be used at room temperature.
  • the biomagnetic measurement device described in Patent Document 1 includes a magnetization fixed layer in which the magnetization direction is fixed, a magnetization free layer whose magnetization direction changes under the influence of an external magnetic field, a magnetization free layer, and a magnetization fixed layer.
  • the magnetic sensor of the living body is measured by disposing a magnetic sensor including a magnetoresistive element having an insulating layer disposed between them so as to face the living body.
  • the electric resistance value of the insulating layer changes due to the tunnel effect according to the angle difference between the magnetization direction of the magnetization fixed layer and the magnetization direction of the magnetization free layer. Therefore, biomagnetism can be measured by measuring the change in the electric resistance value.
  • the biomagnetism measuring device described in Patent Document 1 measures magnetism by changing the electrical resistance of the insulating layer, it is necessary to pass a current for measuring the electrical resistance (this current is referred to as a sense current). Call). Therefore, the inventors of the present application have found that the magnetic field generated by the sense current becomes noise with respect to the magnetic field to be measured. In particular, when measuring a weak magnetic field such as biomagnetism, the influence of noise of the magnetic field generated by the sense current is increased. However, in the biomagnetic measurement apparatus described in Patent Document 1, the magnetic field generated by the sense current is increased. Is not considered, and no measures are taken.
  • the present invention has been made in view of the above problems, and its object is to accurately reduce a weak magnetic field by reducing the influence of a magnetic field generated by a sense current in a magnetic measurement device using a magnetoresistive element.
  • An object of the present invention is to provide a magnetic measuring device capable of measuring.
  • a magnetic measurement device includes a magnetization free layer whose magnetization direction changes due to an external magnetic field, a magnetization fixed layer whose magnetization direction is fixed, and the magnetization free layer. And a magnetoresistive element in which an insulating layer disposed between the pinned layer and the magnetization fixed layer is stacked, a first wiring layer facing the magnetization free layer on the side opposite to the insulating layer side, and the pinned magnetization And a second wiring layer opposite to the insulating layer side with respect to the layer, and a magnetic current is caused by flowing a sense current from the first wiring layer or the second wiring layer to the magnetoresistive element.
  • a first interlayer wiring is vertically provided between the first wiring layer and the magnetization free layer, and a first interlayer wiring is provided between the second wiring layer and the magnetization fixed layer.
  • a two-layer wiring is provided vertically.
  • the first interlayer wiring is provided between the first wiring layer and the magnetization free layer
  • the second interlayer wiring is also provided between the second wiring layer and the magnetization fixed layer.
  • (A) is a schematic diagram which shows the magnetic measuring device which concerns on Embodiment 1 of this invention
  • (b) is a figure which shows the flow path of the sense electric current in (a), and the magnetic field which generate
  • (A) And (b) is a schematic diagram which respectively shows the magnetic field which generate
  • (A) is a figure which shows distribution of the magnetic field in (a) of FIG. 3
  • (b) is a figure which shows distribution of the magnetic field in (b) of FIG. It is a schematic diagram which shows the magnetic measuring device which concerns on Embodiment 3 of this invention.
  • (A) is a schematic diagram which shows the magnetic measurement unit which concerns on Embodiment 6 of this invention
  • (b) is the elements on larger scale of the cell with which a magnetic measurement unit is provided. It is a block diagram which shows the component of the magnetic measurement system which concerns on Embodiment 6 of this invention. It is a flowchart which shows the flow of the magnetic measurement method using the magnetic measurement system which concerns on Embodiment 6 of this invention.
  • (A) is a schematic diagram which shows the magnetic measuring apparatus used conventionally
  • (b) is a figure which shows the magnetic field which generate
  • FIG. 1A is a schematic diagram showing the magnetic measurement device 10 according to the present embodiment
  • FIG. 1B is a diagram of the sense current I flowing through the magnetic measurement device 10 shown in FIG. The magnetic field B generated by the path and the sense current is shown.
  • the magnetic measuring device 10 includes a magnetoresistive element 1, an upper wiring layer (first wiring layer) 2, a lower wiring layer (second wiring layer) 3, and an upper part.
  • An interlayer wiring (first interlayer wiring) 4 and a lower interlayer wiring (second interlayer wiring) 5 are provided.
  • 1A shows an example in which three magnetoresistive elements 1 are connected in series, the number of magnetoresistive elements 1 provided in the magnetic measuring device 10 is limited to this. Not.
  • the magnetoresistive element 1 includes a magnetization fixed layer 6 whose magnetization direction is fixed, a magnetization free layer 7 whose magnetization direction is changed by an external magnetic field, and an insulation disposed between the magnetization free layer 7 and the magnetization fixed layer 6. This is an element in which the layer 8 is laminated.
  • the magnetoresistive element 1 has a rectangular cross section in a direction orthogonal to the stacking direction.
  • the upper wiring layer 2 is formed in a plane perpendicular to the laminating direction of the magnetoresistive element 1 and is opposed to the magnetization free layer 7 of the magnetoresistive element 1 on the side opposite to the insulating layer 8 side.
  • the lower wiring layer 3 is formed in a plane perpendicular to the laminating direction of the magnetoresistive element 1, and faces the magnetoresistive element 1 on the opposite side to the insulating layer 8 side with respect to the magnetization fixed layer 6. As shown in FIG. 1A, the upper wiring layer 2 and the lower wiring layer 3 are formed so as to alternate between the adjacent magnetoresistive elements 1.
  • the upper interlayer wiring 4 is suspended between the upper wiring layer 2 and the magnetization free layer 7. Further, the lower interlayer wiring 5 is provided between the lower wiring layer 3 and the magnetization fixed layer 6.
  • the magnetization direction of the magnetization free layer 7 is changed by the external magnetization, and the angle between the magnetization direction of the magnetization fixed layer 6 and the magnetization direction of the magnetization free layer 7. According to the difference, the electric resistance value of the insulating layer 8 changes due to the tunnel effect. For this reason, a sense current I that is a current for measuring the electrical resistance is passed through the magnetoresistive element 1 and the electrical resistance value of the magnetoresistive element 1 is measured to act on the magnetization free layer 7 of the magnetoresistive element 1. The magnetic field can be measured.
  • FIG. 1B shows a path of the sense current I flowing through the magnetic measuring device 10 shown in FIG. 1A and a magnetic field B generated by the sense current I.
  • FIG. 1A and 1B the sense current I flowing from the lower wiring layer 3 flows to the magnetoresistive element 1 through the lower interlayer wiring 5. Then, the current flows through the upper interlayer wiring 4, the upper wiring layer 2, and the upper interlayer wiring 4 to the next magnetoresistive element 1. Thereafter, the sense current I flows through the lower interlayer wiring 5 and the lower wiring layer 3. Thereafter, the sense current I flows to the next magnetoresistive element 1 in the same manner.
  • the magnetic measuring device 10 When the sense current I flows, a magnetic field B is generated.
  • the magnetic field B generated by the sense current I becomes noise relative to the magnetism to be measured.
  • the magnetic measuring device 10 according to the present embodiment, the upper interlayer wiring 4 is provided between the upper wiring layer 2 and the magnetization free layer 7, and the lower interlayer is provided between the lower wiring layer 3 and the magnetization fixed layer 6. Wiring 5 is provided. Therefore, there is a certain distance between the upper wiring layer 2 and the lower wiring layer 3 and the magnetization free layer 7, and the influence of the magnetic field B generated by the sense current I can be reduced.
  • FIG. 16A is a schematic diagram of a magnetic measuring device 200 having a magnetoresistive element 201 that is conventionally used
  • FIG. 16B is a magnetic measuring device shown in FIG. 2 is a diagram showing a sense current I flowing through 200 and a magnetic field B generated by the sense current I.
  • FIG. 16A is a schematic diagram of a magnetic measuring device 200 having a magnetoresistive element 201 that is conventionally used
  • FIG. 16B is a magnetic measuring device shown in FIG. 2 is a diagram showing a sense current I flowing through 200 and a magnetic field B generated by the sense current I.
  • the magnetic measuring device 200 includes a magnetoresistive element 201, an upper wiring layer 202, and a lower wiring layer 203. That is, the configuration is the same as that of the magnetic measuring device 10 except that the upper interlayer wiring 4 and the lower interlayer wiring 5 are not provided.
  • the magnetoresistive element 201 is an element in which a magnetization fixed layer 206, a magnetization free layer 207, and an insulating layer 208 are stacked.
  • the magnetization free layer 207 has a structure that is easily affected by the magnetic field B generated by the sense current I that flows immediately above and immediately below the magnetization free layer 207.
  • the thickness of the upper wiring layer 202 is 5 nm
  • the thickness of the magnetization free layer 207 is 3 nm
  • the sense current I is 1 ⁇ 10 ⁇ 11 A
  • the sense current I is the top surface of the upper wiring layer 202 (one from the magnetization free layer 207).
  • magnetism with a magnetic flux density of 3 ⁇ 10 ⁇ 10 T acts on the center of the magnetization free layer 207.
  • the magnetoencephalogram is about 1 ⁇ 10 ⁇ 15 to 1 ⁇ 10 ⁇ 12 T
  • the magnetocardiogram is 1 ⁇ 10 ⁇ 14 to 1 ⁇ . It is about 10 ⁇ 10 T. Therefore, it is difficult to accurately measure biomagnetism unless the influence of the magnetic field B generated by the sense current I is reduced.
  • the magnetic measurement apparatus 10 has a certain distance between the upper wiring layer 2 and the lower wiring layer 3 and the magnetization free layer 7. Therefore, for example, if the distance between the magnetization free layer 7 and the upper wiring layer 2 is 3 ⁇ m and the sense current I is 1 ⁇ 10 ⁇ 11 A, the magnetization free layer 7 has a magnetism with a magnetic flux density of 7 ⁇ 10 ⁇ 13 T. Works. In this way, the influence of the magnetic field B generated by the sense current I can be reduced, and even weak magnetism such as biomagnetism can be accurately measured.
  • FIG. 2 is a schematic diagram showing the magnetic measuring device 20 according to the present embodiment.
  • the magnetic measuring device 20 according to this embodiment includes a magnetoresistive element 1, an upper wiring layer 2, a lower wiring layer 3, an upper interlayer wiring (first interlayer wiring) 24, and a lower interlayer wiring (first interlayer wiring). 2 interlayer wiring) 25. That is, the magnetic measurement apparatus 20 according to the present embodiment is the same as that of the first embodiment except that the upper interlayer wiring 24 is provided instead of the upper interlayer wiring 4 and the lower interlayer wiring 25 is provided instead of the lower interlayer wiring 5. It is the structure similar to the magnetic measuring device 10 concerning.
  • the upper interlayer wiring 24 is suspended between the upper wiring layer 2 and the magnetization free layer 7 of the magnetoresistive element 1.
  • the upper interlayer wiring 24 is formed such that a straight line L passing through the center of gravity in a plane perpendicular to the direction of the sense current I flowing through the upper interlayer wiring 24 passes through the center of gravity in a plane perpendicular to the thickness direction of the magnetization free layer 7.
  • the lower interlayer wiring 25 is provided between the lower wiring layer 3 and the magnetization fixed layer 6 of the magnetoresistive element 1.
  • the lower interlayer wiring 25 is formed such that a straight line L passing through the center of gravity in a plane perpendicular to the direction of the sense current I flowing through the lower interlayer wiring 25 passes through the center of gravity in a plane perpendicular to the thickness direction of the magnetization free layer 7. Has been.
  • the centers of gravity of the upper interlayer wiring 24, the magnetization free layer 7, and the lower interlayer wiring 25 are all on the same straight line (straight line L). Therefore, the sense current I flows vertically through the center of gravity in the plane perpendicular to the thickness direction of the magnetization free layer 7.
  • FIG. 3 is a schematic diagram showing the magnetic field B generated by the sense current I.
  • FIG. 3A shows the sense current I flowing vertically through the center of gravity in a plane perpendicular to the thickness direction of the magnetization free layer 7.
  • FIG. 3B shows a case where the sense current I flows vertically through a position deviating from the center of gravity in a plane perpendicular to the thickness direction of the magnetization free layer 7.
  • the sense current I flows from the front side of the paper toward the back of the paper.
  • the magnetic field B generated by the sense current I is formed in a plane perpendicular to the sense current I, that is, in a plane parallel to the magnetization free layer 7.
  • the magnetic field B is formed clockwise on a concentric circle with the sense current I as the center.
  • FIG. 4 is a diagram showing the distribution of the magnetic field B generated by the sense current I.
  • FIG. 4A shows the distribution of the magnetic field B along the ⁇ - ⁇ line in FIG.
  • FIG. 3B shows the distribution of the magnetic field B along the ⁇ - ⁇ line in FIG. 4 (a) and 4 (b) show the magnetic flux density when the sense current I is 1.0 ⁇ 10 ⁇ 11 A, and the place where the sense current I flows is set to the 0 position.
  • FIGS. 4A and 4B show a magnetic flux density of 5.0 ⁇ 10 ⁇ 13 T, which is a magnetic flux density at the brain magnetic level, with white arrows.
  • the magnetic field B generated by the sense current I is determined by the magnitude of the sense current I and the distance from the position where the sense current I flows, there are cases where there is a magnetic field to be measured and cases where there is no magnetic field to be measured. In both cases, it is possible to reduce the influence of the magnetic field B generated by the sense current I by passing the sense current I and measuring the electrical resistance value and taking the difference.
  • the sense current I may fluctuate due to noise components (for example, Johnson noise or shot noise).
  • the magnetic field generated by the noise component includes the above-described measured magnetic field when the magnetic field is biased at the left and right of the position where the sense current I flows, and the measured magnetic field. Even if the difference from the case where there is no magnetic field is taken, the influence cannot be subtracted.
  • the sense current I flows through the center of gravity of the magnetization free layer 7. For this reason, as shown in FIG. 4A, the magnetic flux density is distributed in the center of the position (position 0) where the sense current I flows so as to cancel each other symmetrically in the magnetization free layer 7. In the free layer 7, there is no bias in the distribution of magnetic flux density. As a result, even if the sense current I fluctuates due to the noise component described above, it is generated by the sense current I including the noise component by taking the difference between when the measured magnetic field is present and when there is no measured magnetic field. The effect of the magnetic field B to be reduced can be reduced.
  • the center of gravity of the upper interlayer wiring 24, the magnetization free layer 7, and the lower interlayer wiring 25 is shown as being all on the same straight line.
  • the center of gravity and the straight line L are not necessarily the same. If the respective centers of gravity are formed on substantially the same straight line, the same effect as that of the magnetic measurement device 20 according to the present embodiment can be obtained.
  • the center of gravity of the upper interlayer wiring 24, the magnetization free layer 7 and the lower interlayer wiring 25 is shown as being all on the same straight line, but the present invention is not limited to this. That is, the upper interlayer wiring 24 (first interlayer wiring) is a second predetermined region in which a straight line (first straight line) passing through the first predetermined region including the center of gravity of the upper interlayer wiring 24 includes the center of gravity of the magnetization free layer 7.
  • the lower interlayer wiring 25 (second interlayer wiring) is arranged such that a straight line (second straight line) passing through a third predetermined region including the center of gravity of the lower interlayer wiring 25 is the center of gravity of the magnetization free layer 7.
  • the first predetermined region to the third predetermined region including the center of gravity are set in a range in which the magnetic flux density distribution is not biased in the magnetization free layer 7. Just do it.
  • a straight line passing through the center of gravity of the upper interlayer wiring 24 (first straight line) is arranged so as to pass near the center of gravity of the magnetization free layer 7 and a straight line passing through the center of gravity of the lower interlayer wiring 25 (second straight line) It may be configured to pass through the vicinity of the center of gravity of the magnetization free layer 7. Even in such a configuration, the magnetic field B generated by the sense current I flowing in the upper interlayer wiring 24 and the lower interlayer wiring 25 is symmetrically distributed in the magnetization free layer 7, so that the magnetic field B generated by the sense current I is Can be reduced.
  • a second line (first line) in which at least the upper interlayer wiring 24 (first interlayer wiring) passes through the first predetermined region including the center of gravity of the upper interlayer wiring 24 includes the center of gravity of the magnetization free layer 7. What is necessary is just to arrange
  • the influence of the magnetic field B generated by the sense current I flowing through the lower interlayer wiring 25 on the magnetization free layer 7 is slight, and at least the upper interlayer wiring 24 (first interlayer wiring) has a center of gravity of the upper interlayer wiring 24. If the straight line passing through the first predetermined area including the first predetermined line passes through the second predetermined area including the center of gravity of the magnetization free layer 7, the influence of the magnetic field B generated by the sense current I can be sufficiently reduced. it can.
  • FIG. 5 is a schematic diagram showing the magnetic measurement device 30 according to the present embodiment.
  • the magnetic measuring device 30 according to the present embodiment includes a magnetoresistive element 31, an upper wiring layer 2, a lower wiring layer 3, an upper interlayer wiring 24, and a lower interlayer wiring 25. That is, the magnetic measurement device 30 according to the present embodiment has the same configuration as the magnetic measurement device 20 according to the second embodiment, except that the magnetic resistance device 31 is provided instead of the magnetoresistive device 1.
  • the magnetoresistive element 31 includes a magnetization fixed layer 36 whose magnetization direction is fixed, a magnetization free layer 37 whose magnetization direction is changed by an external magnetic field, and a magnetization free layer 37 and a magnetization fixed layer 36. Is an element in which an insulating layer 38 disposed between and is laminated.
  • the magnetoresistive element 31 has a circular cross section (hereinafter simply referred to as a cross section) in a direction orthogonal to the direction in which the sense current I flows.
  • FIG. 6 is a diagram showing a distribution in the magnetization free layer 37 of the magnetic field B generated by the sense current I.
  • FIG. 6 is a cross-sectional view of the magnetization free layer 37 in a direction orthogonal to the direction in which the sense current I flows, and the sense current I flows from the front of the paper to the back.
  • the cross section of the magnetoresistive element 31 is circular, the distribution of the magnetic field B generated by the sense current I is symmetric within the magnetization free layer 37. It will be continuous. Therefore, even if the sense current I fluctuates due to the above-described noise component, the influence of the magnetic field B generated by the sense current I including the noise component can be mitigated.
  • the case where all the cross sections of the magnetization fixed layer 36, the magnetization free layer 37, and the insulating layer 38 of the magnetoresistive element 31 are circular is shown, but the present invention is not limited to this.
  • the cross section of the magnetization free layer 37 is circular.
  • the cross section of the magnetization free layer 37 is not limited to a circle, but may be an ellipse.
  • FIG. 7 is a schematic diagram showing the magnetic measurement device 40 according to the present embodiment.
  • the magnetic measurement device 40 according to the present embodiment is similar to the magnetic measurement device 10 according to the first embodiment, in that the magnetoresistive element 1, the upper wiring layer 2, the lower wiring layer 3, and the upper interlayer wiring 4. , And a lower interlayer wiring 5.
  • the magnetoresistive element 1 includes a magnetization fixed layer 6, a magnetization free layer 7, and an insulating layer 8.
  • the members other than the magnetoresistive element 1 are shown by the flow path of the sense current I, and the same applies to FIGS. 8 to 11 described later.
  • the upper wiring layer 2 and the lower wiring layer 3 are formed in parallel to the cross section of the magnetization free layer 7, and the sense current I flowing through the upper wiring layer 2 and the lower wiring layer 3. Are the same and parallel. Therefore, as shown in FIG. 7, the magnetic fields B generated by the sense currents I flowing in the upper wiring layer 2 and the lower wiring layer 3 immediately above and immediately below the respective magnetization free layers 7 are opposite to each other in the magnetization free layer 7. And weaken the magnetic field. As a result, the influence of the magnetic field B generated by the sense current I on the magnetic field of the measurement target can be reduced.
  • FIG. 8 is a schematic diagram showing a magnetic measurement device 50 according to a modification of the present embodiment.
  • the magnetic measurement device 50 includes an upper wiring layer 52 and a lower wiring layer 53 that are different from the magnetic measurement device 40.
  • the upper wiring layer 52 and the lower wiring layer 53 of the magnetic measuring device 50 are formed in a plane parallel to the cross section of the magnetization free layer 7 and have a substantially U shape.
  • the upper wiring layer 52 and the lower wiring layer 53 are arranged alternately with respect to the adjacent magnetoresistive elements 1.
  • the upper wiring layer 52 and the lower wiring layer 53 are arranged so that the sense currents I flowing through the upper wiring layer 52 and the lower wiring layer 53 are in the same direction and parallel immediately above and immediately below the respective magnetization free layers 7.
  • the sense current I flowing from the upper interlayer wiring 4 or the lower interlayer wiring 5 to the upper wiring layer 52 or the lower wiring layer 53 passes through the upper wiring layer 52 or the lower wiring layer 53 formed in a substantially U shape.
  • the flow direction is changed by 180 degrees, and the flow flows to the next upper wiring layer 52 or lower wiring layer 53.
  • the shape of the upper wiring layer 52 or the lower wiring layer 53 is such that the sense currents I flowing through the upper wiring layer 52 and the lower wiring layer 53 immediately above and immediately below the respective magnetization free layers 7 have the same direction and are parallel. There is no particular limitation.
  • FIG. 9 is a schematic diagram showing a magnetic measuring device 60 according to a comparative example of the present embodiment. Similar to the magnetic measurement device 50, the magnetic measurement device 60 includes an upper wiring layer 62 and a lower wiring layer 63 that are formed in a substantially U-shape. In the magnetic measurement device 60, the parallel arrangement of the magnetoresistive elements 1 is performed so that the sense currents I flowing through the upper wiring layer 62 and the lower wiring layer 63 are parallel and opposite to each other directly above and directly below the respective magnetization free layers 7. It is arranged on the same side with respect to the installation direction.
  • the magnetic fields B generated by the sense current I flowing through the upper wiring layer 62 and the lower wiring layer 63 immediately above and below the magnetization free layer 7 are in the same direction in each magnetization free layer 7. For this reason, in the magnetization free layer 7, the magnetic fields B strengthen each other and affect the magnetic field to be measured. In particular, when measuring a weak magnetic field such as biomagnetism, the influence of the magnetic field B generated by the sense current I is large.
  • FIG. 10 is a schematic diagram showing a magnetic measuring device 70 according to the present embodiment.
  • the magnetic measurement device 70 according to the present embodiment is similar to the magnetic measurement device 40 according to the fourth embodiment, in which the magnetoresistive element 1, the upper wiring layer 2, the lower wiring layer 3, and the upper interlayer wiring are used. 4 and a lower interlayer wiring 5 are provided.
  • the magnetization free layer 7 the center of the direction in which the sense current I flows (the stacking direction of the magnetoresistive element 1) flows as the center point O.
  • the distance r from the center point O to the flow path of the sense current I in the upper wiring layer 2 and the lower wiring layer 3 is mutually equal. It is formed to be equal.
  • the sense current I flows in the same direction and in parallel immediately above and immediately below the magnetization free layer 7, and from the center of the magnetization free layer 7,
  • the distance r to the flow path of the sense current I of the upper wiring layer 2 and the lower wiring layer 3 is equal to each other.
  • the magnetic field B generated by the sense current I is opposite in the center of the magnetization free layer 7 and has the same intensity, and weakens each other.
  • the sense current I flows in the same direction and in parallel immediately above and directly below the magnetization free layer 7, the distance from the center of the magnetization free layer 7 to the upper wiring layer is shown. 2 and the lower wiring layer 3 may be formed so that the distance to the flow path of the sense current I is substantially equal.
  • the distance from the center of the magnetization free layer 7 to the flow path of the sense current I of the upper wiring layer 2 and the distance from the center of the magnetization free layer 7 to the flow path of the sense current I of the lower wiring layer 3 are: It is only necessary that the magnetic field B generated by the sense current I is set at such a distance that it is in the opposite direction at the center of the magnetization free layer 7 and has the same strength and weakens each other.
  • the thickness of the upper wiring layer 202 and the lower wiring layer 203 is 5 nm
  • the thickness of the magnetization free layer 207 is 3 nm
  • the thickness of the insulating layer 208 is 2 nm
  • the thickness of the magnetization fixed layer 206 is 26 nm
  • the sense current I is 1 ⁇ 10. It is assumed that ⁇ 11 A, and the sense current I flows through the uppermost surface of the upper wiring layer 202 and the lowermost surface of the lower wiring layer (the surface farthest from the magnetization free layer 207).
  • magnetism with a magnetic flux density of 3 ⁇ 10 ⁇ 10 T acts by the sense current I flowing through the upper wiring layer 202, and 0.6 by the sense current I flowing through the lower wiring layer 203. Magnetism with a magnetic flux density of ⁇ 10 ⁇ 10 T acts.
  • the magnetic measuring device 70 not only makes the direction in which the sense current I flows parallel and the same direction, but also sense currents in the upper wiring layer 2 and the lower wiring layer 3 from the center of the magnetization free layer 7. By making the distances r to I equal to each other, the magnetic field B generated by the sense current I flowing through the upper wiring layer 2 and the magnetic field B generated by the sense current I flowing through the lower wiring layer 3 are within the magnetization free layer 7.
  • the magnetic fields B generated by the sense current I can be weakened in the magnetization free layer 7 because they are distributed in opposite directions and with the same intensity. Therefore, even when biomagnetism such as brain magnetism or magnetocardiogram is used as the magnetic field to be measured, the influence of the magnetic field B generated by the sense current I flowing through the upper wiring layer 2 and the lower wiring layer 3 Thus, even if the magnetic field is weak, such as biomagnetism, the measurement can be performed accurately.
  • FIG. 11 is a schematic diagram showing a magnetic measurement device 80 according to the first modification of the present embodiment.
  • the magnetic measuring device 80 includes a magnetoresistive element 1, an upper wiring layer 82, a lower wiring layer 83, an upper interlayer wiring 84, and a lower interlayer wiring 85.
  • the upper wiring layer 82 and the lower wiring layer 83 of the magnetic measuring device 80 have substantially the same shape as the upper wiring layer 52 and the lower wiring layer 53 of the magnetic measuring device 50 shown in FIG. .
  • the upper interlayer wiring 84 and the lower interlayer wiring 85 are the same as the upper interlayer wiring 74 and the lower interlayer wiring 75 of the magnetic measuring device 70 shown in FIG.
  • the distance r from the point O to the flow path of the sense current I in the upper wiring layer 82 and the lower wiring layer 83 is formed to be equal to each other.
  • the magnetic measuring device 80 has such a configuration, the same effect as the magnetic measuring device 70 according to the fifth embodiment can be obtained.
  • FIG. 12 is a schematic diagram showing a modification of the magnetic measurement device 70 according to the present embodiment.
  • FIG. 12A shows the magnetic measurement device 90 according to the modification 2, and FIG. The magnetic measuring device 100 which concerns on the modification 3 is shown.
  • the magnetic measurement device 90 according to Modification 2 has substantially the same configuration as the magnetic measurement device 20 shown in FIG. That is, the magnetic measurement device 90 is similar to the magnetic measurement device 20 except that the magnetic measurement device 20 includes an upper interlayer wire 94 instead of the upper interlayer wire 24 and a lower interlayer wire 95 instead of the lower interlayer wire 25. Are the same.
  • the upper interlayer wiring 94 and the lower interlayer wiring 95 are connected to the upper wiring layer 22 and the lower wiring from the center point O of the magnetization free layer 7 of the magnetoresistive element 1.
  • the distance r to the flow path of the sense current I in the layer 23 is formed to be equal to each other.
  • the magnetic measuring device 90 has such a configuration, the same effect as the magnetic measuring device 70 according to the fifth embodiment can be obtained.
  • the magnetic measurement device 100 according to Modification 3 has substantially the same configuration as the magnetic measurement device 30 shown in FIG. That is, the magnetic measuring device 100 is similar to the magnetic measuring device 30 except that the upper interlayer wiring 104 is provided instead of the upper interlayer wiring 34 of the magnetic measuring device 30 and the lower interlayer wiring 105 is provided instead of the lower interlayer wiring 35. Are the same.
  • the upper interlayer wiring 104 and the lower interlayer wiring 105 are located above the center point O of the magnetization free layer 7 of the magnetoresistive element 1.
  • the distance r to the flow path of the sense current I in the wiring layer 32 and the lower wiring layer 33 is formed to be equal to each other.
  • the distance from the center of the magnetization free layer 7 to the flow path of the sense current I of the upper wiring layer 2 and the center of the magnetization free layer 7 to the lower part The distance to the flow path of the sense current I of the wiring layer 3 is not necessarily equal, and the magnetic field B generated by the sense current I is in the opposite direction at the center of the magnetization free layer 7 and has the same strength. It is sufficient that the distance is set so as to weaken each other.
  • FIG. 13A is a schematic view showing the magnetic measurement unit 110 according to the present embodiment
  • FIG. 13B is a partially enlarged view of the cell 113 provided in the magnetic measurement unit 110.
  • the magnetic measurement unit 110 is arranged so that a plurality of signal lines 111 extending in the row direction and a plurality of scanning lines 112 extending in the column direction intersect with each other.
  • a plurality of cells 113 are arranged in an array shape (lattice shape) in each of the enclosed regions, and are configured by a substantially square active matrix substrate.
  • Each of the plurality of cells 113 includes a magnetic measuring device 114 in which a plurality of magnetoresistive elements 1 are connected in series, and a switching element 115 made of an oxide semiconductor formed on an insulating surface of the substrate. .
  • the magnetic measurement device 114 is connected to the scanning line 112 via the switching element 115, and the other end is connected to the signal line 111.
  • the magnetic measurement device 114 is any one of the above-described magnetic measurement devices 10, 20, 30, 40, 50, 70, 80, 90, and 100.
  • an input signal from a certain scanning line 112 is in a live line state, and a sense current I is supplied to a certain signal line 111, so that one cell 113 is selected. Can be measured.
  • the magnetic resistance in each cell 113 can be measured by sequentially switching the scanning line 112 to be in a live line state and the signal line 111 to which the sense current I is input.
  • the cells 113 are arranged in a lattice shape, the value of the magnetoresistance can be obtained two-dimensionally, thereby obtaining a two-dimensional distribution of the magnetic field to be measured. .
  • the switching element 115 by using an oxide semiconductor with excellent off-leakage characteristics as the switching element 115, the influence of leakage current from other cells 113 in the array can be reduced. Therefore, for example, even when the sense current I is set to a low current of 1 ⁇ 10 ⁇ 12 A or less, the magnetic resistance of each cell 113 can be measured.
  • an oxide semiconductor element having excellent off-leakage characteristics is used as the switching element 115. However, if it can be applied in consideration of the influence of the sense current I on the magnetic field to be measured. Other semiconductor elements may be used as the switching element 115.
  • Magnetic measurement system and magnetic measurement method Next, a magnetic measurement system 120 including the magnetic measurement unit 110 and a magnetic measurement method using the magnetic measurement system 120 will be described with reference to FIGS. 14 and 15.
  • FIG. 14 is a block diagram showing components of the magnetic measurement system 120 according to the present embodiment.
  • the magnetic measurement system 120 includes a magnetic measurement unit 110, a power source 121, a difference detection device 122, and a magnetic calculation device 123.
  • the power supply 121 is connected to the magnetic measurement unit 110 and applies a sense current I having a predetermined magnitude to the cell 113 of the magnetic measurement unit 110.
  • the difference detection device 122 is connected to the magnetic measurement unit 110.
  • the difference detection device 122 performs magnetic measurement in the presence of the first output voltage, which is the output voltage when the sense current I is applied to the magnetic measurement unit 110 in the absence of the magnetic field to be measured, and the magnetic field to be measured.
  • a second output voltage that is an output voltage when the sense current I is applied to the unit 110 is measured, and a difference between the first output voltage and the second output voltage is detected.
  • the magnetism calculation device 123 is connected to the difference detection device 122, and calculates the magnetic field of the measurement target using the difference between the first output voltage and the second output voltage detected by the difference detection device 122.
  • FIG. 15 is a flowchart showing a flow of a magnetic measurement method using the magnetic measurement system 120.
  • a predetermined sense current I is applied to the magnetic measurement unit 110 by the power supply 121 in a state where there is no magnetic field to be measured (S1).
  • the difference detection device 122 measures the output voltage of the magnetic measurement unit 110 (S2) and records it as the first output voltage (S3) (first step).
  • a predetermined sense current I is applied to the magnetic measurement unit 110 by the power source 121 in the state where the magnetic field to be measured is present (S4), and the difference detection device 122 measures the output voltage of the magnetic measurement unit 110. (S5) and recorded as the second output voltage (S6) (second step).
  • the difference detection device 122 detects the difference between the first output voltage and the second output voltage, and the magnetic calculation device 123 calculates the magnetic field to be measured using the difference (S7) (third step) ).
  • the magnetic measurement system 120 and the magnetic measurement method using the magnetic measurement system 120 set the sense current I to a predetermined value so that the magnetic field B generated by the sense current I is a constant value. It can be.
  • the output voltage is measured when there is no magnetic field to be measured and there is a magnetic field B generated by the sense current I, and then there is a magnetic field to be measured and there is also a magnetic field B generated by the sense current. Measure the output voltage. Therefore, the influence of the magnetic field B can be taken into account by the sense current I, and the magnetic field to be measured can be accurately measured.
  • the magnetization free layer is disposed above the magnetization fixed layer.
  • the magnetization free layer may be disposed below the magnetization fixed layer.
  • the magnetic field to be measured is not limited to biomagnetism, and the above-described magnetic measurement device, magnetic measurement unit, magnetic measurement system, and magnetic measurement method can be widely used for magnetic measurement.
  • the magnetic measurement apparatus 10 includes a magnetization free layer 7 whose magnetization direction is changed by an external magnetic field, a magnetization fixed layer 6 whose magnetization direction is fixed, and the magnetization free layer 7 and the magnetization fixed layer. 6 and a magnetoresistive element 1 in which an insulating layer 8 disposed between the magnetoresistive element 1 and the magnetization free layer 7 is opposed to the insulating layer 8 side opposite to the first wiring layer (upper wiring layer 2).
  • Second layer interconnects (lower interlayer wiring 5) is vertically between the second wiring layer (lower wiring layer 3) and the fixed magnetization layer 6.
  • the first interlayer wiring (upper interlayer wiring 4) is interposed between the first wiring layer (upper wiring layer 2) and the magnetization free layer 7, and the second wiring layer (lower wiring layer 3) is magnetized.
  • the second interlayer wiring (lower interlayer wiring 5) between the fixed layer 6 and the first free wiring layer (upper wiring layer 2) and the second wiring layer (lower wiring layer 3) to the magnetization free layer 7. The distance can be increased. Thereby, the influence of the magnetic field B generated by the sense current I is reduced, and even a weak magnetic field can be measured accurately.
  • the magnetic measurement apparatus 20 according to Aspect 2 of the present invention is the magnetic measurement apparatus 20 according to Aspect 1, wherein the first interlayer wiring (upper interlayer wiring 24) includes a center of gravity of the first interlayer wiring (upper interlayer wiring 24). Is arranged so as to pass through a second predetermined region including the center of gravity of the magnetization free layer 7, and the first predetermined region and the second predetermined region including the center of gravity are respectively in the magnetization free layer 7.
  • the magnetic flux density distribution may be set in a range where no deviation occurs.
  • the magnetic field B generated by the sense current I flowing through the first interlayer wiring (upper interlayer wiring 24) close to the magnetization free layer 7 is distributed symmetrically in the magnetization free layer 7. Therefore, the influence of the magnetic field B generated by the sense current I flowing through the first interlayer wiring (upper interlayer wiring 24) can be reduced.
  • the second interlayer wiring (lower interlayer wiring 25) is a third predetermined region including the center of gravity of the second interlayer wiring (lower interlayer wiring 25). Is arranged so that it passes through a second predetermined region including the center of gravity of the magnetization free layer 7, and the third predetermined region including the center of gravity is biased in the distribution of magnetic flux density in the magnetization free layer 7. It may be set in a range that does not occur.
  • the magnetic field B generated by the sense current I flowing through the second interlayer wiring (lower interlayer wiring 25) is distributed symmetrically in the magnetization free layer 7. Therefore, the influence of the magnetic field B generated by the sense current I flowing through the second interlayer wiring (lower interlayer wiring 25) can be reduced.
  • the magnetic measurement apparatus 20 according to Aspect 4 of the present invention is the magnetic measurement apparatus 20 according to Aspect 3, wherein the first interlayer wiring (upper interlayer wiring 24) and the second interlayer wiring (lower interlayer wiring 25) are the first straight line and the first interlayer wiring. Two straight lines may be arranged so as to pass on the same straight line (straight line L).
  • the centroids of the first interlayer wiring (upper interlayer wiring 24), the magnetization free layer 7, the second interlayer wiring (lower interlayer wiring 25), and the magnetization fixed layer 6 are on the same straight line (straight line L).
  • the magnetic field B generated by the sense current I is distributed so as to cancel each other out in the magnetization free layer 7, so that the influence of the magnetic field B generated by the sense current I can be reduced.
  • the magnetic measurement device 30 according to aspect 5 of the present invention is the magnetic measurement apparatus 30 according to any one of the aspects 2 to 4, wherein at least the magnetization free layer 37 has a circular or elliptical cross section in a direction orthogonal to the direction in which the sense current I flows. There may be.
  • the magnetic field B generated by the sense current I is symmetrical and continuous in the magnetization free layer 37. Therefore, even if the sense current I fluctuates due to the noise component, the influence of the magnetic field B generated by the sense current I including the noise component can be reduced.
  • the magnetic measurement device 40 according to Aspect 6 of the present invention is the magnetic measurement apparatus 40 according to any one of the Aspects 1 to 5, wherein the sense current I that flows in the first wiring layer (upper wiring layer 2) and the second wiring layer (lower wiring).
  • the sense current I flowing in the layer 3) may be in the same direction and parallel.
  • the magnetic field B generated by the sense current I flowing in the first wiring layer (upper wiring layer 2) and the magnetic field B generated by the sense current I flowing in the second wiring layer (lower wiring layer 3) are
  • the magnetic free layers 7 are distributed so as to cancel each other. Thereby, the influence of the magnetic field B generated by the sense current I can be reduced.
  • the sense current I in the first wiring layer (upper wiring layer 2) from the center (center point O) in the stacking direction of the magnetization free layer 7 in the sixth aspect is substantially equal to the distance r from the center (center point O) in the stacking direction of the magnetization free layer 7 to the flow path of the sense current I in the second wiring layer (lower wiring layer 3). Also good.
  • the distances from the first wiring layer (upper wiring layer 2) and the second wiring layer (lower wiring layer 3) to the magnetization free layer 7 are made substantially equal to each other in the magnetization free layer 7.
  • the magnetic fields B generated by the current I can be distributed so as to cancel each other.
  • a magnetic measurement unit 110 according to Aspect 8 of the present invention includes a plurality of cells 113 to which the magnetic measurement device 114 according to any one of Aspects 1 to 7 and a switching element 115 are connected, and the cells 113 are arranged in an array. Has been placed.
  • the magnetic field distribution can be measured two-dimensionally by arranging the cells 113 including the magnetic measurement device 114 in an array.
  • the switching element 115 may be an oxide semiconductor element.
  • the sense current I can be reduced and generated by the sense current I.
  • the influence of the magnetic field can be reduced.
  • the magnetic measurement system 120 includes the magnetic measurement unit 110 according to the eighth or ninth aspect, a power supply 121 that applies a sense current I to each of the plurality of cells 113 in the magnetic measurement unit 110, When there is no magnetic field to be measured, when the power supply 121 applies a sense current I to each of the cells 113, the first output voltage measured from each cell 113 and the magnetic field to be measured are present.
  • a difference detection device 122 that detects a difference from a second output voltage measured from each cell 113 by applying a sense current I to each of the cells 113 by the power supply 121 and detected by the difference detection device 122.
  • a magnetism calculation device 123 that calculates the magnetism of the measurement target.
  • the difference detection device 122 measures the output voltage by flowing the sense current I in the absence of the magnetic field to be measured. Therefore, it is possible to perform measurement taking into account the influence of the magnetic field B generated by the sense current I, and to accurately measure the magnetic field to be measured.
  • the magnetic measurement method according to the eleventh aspect of the present invention is a magnetic measurement method for measuring the magnetism of a target to be measured by passing a sense current I through the magnetic measurement unit 110 according to the eighth or ninth aspect.
  • a first step of measuring the first output voltage by passing the sense current I when there is no magnetism to be measured, and a second output by passing the sense current I when the magnetism to be measured is present.
  • the present invention can be used in a magnetic measuring device for measuring magnetism.

Abstract

Provided is a magnetic measuring device in which the influence of a magnetic field generated by a sense current is reduced. A magnetic measuring device (10) is provided with: magnetic resistance elements (1); upper wiring layers (2) that face magnetization free layers (7); and lower wiring layers (3) that face magnetization fixed layers (6), wherein upper inter-layer wires (4) are vertically provided between the upper wiring layers (2) and the magnetization free layers (7); and lower inter-layer wires (5) are vertically provided between the lower wiring layers (3) and the magnetization fixed layers (6).

Description

磁気計測装置、磁気計測ユニット、磁気計測システム、および磁気計測方法Magnetic measuring device, magnetic measuring unit, magnetic measuring system, and magnetic measuring method
 本発明は、磁気抵抗効果を利用して被測定対象の磁界を測定する、磁気計測装置、磁気計測ユニット、磁気計測システム、および磁気計測方法に関する。 The present invention relates to a magnetic measurement device, a magnetic measurement unit, a magnetic measurement system, and a magnetic measurement method for measuring a magnetic field to be measured using a magnetoresistive effect.
 現在、磁気を計測する素子として、半導体のホール効果を応用したホール素子、半導体や磁性体の磁気抵抗効果を応用した磁気抵抗素子、磁性体に導線をコイル状に巻きつけたフラックスゲート磁束計等が広く用いられている。また近年では、超伝導体の量子干渉効果を用いたSQUID(Superconducting Quantum Interference Device)が超高感度の磁束計として用いられている。 Currently, Hall elements that apply the Hall effect of semiconductors, magnetoresistive elements that apply the magnetoresistive effect of semiconductors and magnetic materials, fluxgate magnetometers with a conductive wire wound around a magnetic material, etc. Is widely used. In recent years, SQUID (Superducting Quantum Interference Device) using the quantum interference effect of a superconductor has been used as an ultrasensitive magnetometer.
 しかしながら、一般的な半導体ホール素子や磁気抵抗素子の磁界検出感度は、1×10-7~1×10-8T(テスラ)程度である。そのため、近年注目されている人体の生活活動電流に伴う微小な磁界や、電子機器の残留磁力を計測するためには、更に高い磁界検出感度が必要となる。また、磁界検出感度が高いとされるフラックスゲート磁束計においても、磁界検出感度は、1×10-10T程度であり、さらなる感度向上が求められている。加えて、医療分野においては、磁界の強度の空間的な分布を測定することが重要であり、そのためには、磁界を検出する素子を格子状に配置する必要がある。しかしながら、フラックスゲート磁束計は、コイルを用いて磁界を測定するため、磁界を検出する素子を格子状に配置することは困難である。 However, the magnetic field detection sensitivity of a general semiconductor Hall element or magnetoresistive element is about 1 × 10 −7 to 1 × 10 −8 T (Tesla). Therefore, higher magnetic field detection sensitivity is required to measure the minute magnetic field associated with the life activity current of the human body, which has been attracting attention in recent years, and the residual magnetic force of electronic devices. Further, even in a fluxgate magnetometer with high magnetic field detection sensitivity, the magnetic field detection sensitivity is about 1 × 10 −10 T, and further improvement in sensitivity is required. In addition, in the medical field, it is important to measure the spatial distribution of the strength of the magnetic field. To that end, it is necessary to arrange the elements for detecting the magnetic field in a grid pattern. However, since the fluxgate magnetometer measures a magnetic field using a coil, it is difficult to arrange elements for detecting the magnetic field in a lattice shape.
 また、超伝導体の量子干渉効果を用いて磁界を測定するSQUIDは、1×10-14T程度の非常に高い磁界検出感度を示すものの、厳密な素子構造と、FLL(Flux Locked Loop)回路とで構成される複雑で大規模な駆動回路が必要であり、また装置を液体ヘリウム等で低温に冷却する必要がある。そのため、装置そのものが大がかりなものとなり、一般的に使用することは困難である。 SQUID for measuring a magnetic field using the quantum interference effect of a superconductor exhibits a very high magnetic field detection sensitivity of about 1 × 10 −14 T, but has a strict element structure and a FLL (Flux Locked Loop) circuit. And a complicated and large-scale drive circuit is required, and the apparatus must be cooled to a low temperature with liquid helium or the like. For this reason, the apparatus itself becomes a large-scale device and is generally difficult to use.
 そのため、高い磁気検出感度を有し、小型で、簡便に測定を行うことができる磁気計測装置が求められている。 Therefore, there is a demand for a magnetic measuring device that has high magnetic detection sensitivity, is small, and can perform measurements easily.
 例えば特許文献1には、常温で使用可能な磁気センサを用いて、高精度に生体磁気を測定することができる生体磁気計測装置が開示されている。特許文献1に記載の生体磁気計測装置は、磁化の向きが固定された磁化固定層と、外部磁場の影響を受けて磁化の向きが変化する磁化自由層と、磁化自由層と磁化固定層との間に配置された絶縁層とを有する磁気抵抗素子を備える磁気センサを、生体に対して対向するように配置することで生体の磁気を測定している。当該磁気抵抗素子は、磁化固定層の磁化の向きと、磁化自由層の磁化の向きとの角度差に従って、トンネル効果により絶縁層の電気抵抗値が変化する。そのため、当該電気抵抗値の変化を測定することで、生体磁気の測定を行うことができる。 For example, Patent Document 1 discloses a biomagnetic measurement apparatus that can measure biomagnetism with high accuracy using a magnetic sensor that can be used at room temperature. The biomagnetic measurement device described in Patent Document 1 includes a magnetization fixed layer in which the magnetization direction is fixed, a magnetization free layer whose magnetization direction changes under the influence of an external magnetic field, a magnetization free layer, and a magnetization fixed layer. The magnetic sensor of the living body is measured by disposing a magnetic sensor including a magnetoresistive element having an insulating layer disposed between them so as to face the living body. In the magnetoresistive element, the electric resistance value of the insulating layer changes due to the tunnel effect according to the angle difference between the magnetization direction of the magnetization fixed layer and the magnetization direction of the magnetization free layer. Therefore, biomagnetism can be measured by measuring the change in the electric resistance value.
国際公開第2012/032962号International Publication No. 2012/032962
 しかしながら、特許文献1に記載の生体磁気計測装置は、絶縁層の電気抵抗の変化により磁気を測定しているため、電気抵抗を測定するための電流を流す必要がある(この電流をセンス電流と呼ぶ)。そこで、本願発明者らは、センス電流によって発生する磁界が、計測対象の磁界に対してノイズとなってしまうことを見出した。特に、生体磁気といった微弱な磁界の測定を行う際には、センス電流によって発生する磁界のノイズの影響は大きくなるが、特許文献1に記載の生体磁気計測装置においては、センス電流によって発生する磁界の影響は考慮されておらず、対策も行われていない。 However, since the biomagnetism measuring device described in Patent Document 1 measures magnetism by changing the electrical resistance of the insulating layer, it is necessary to pass a current for measuring the electrical resistance (this current is referred to as a sense current). Call). Therefore, the inventors of the present application have found that the magnetic field generated by the sense current becomes noise with respect to the magnetic field to be measured. In particular, when measuring a weak magnetic field such as biomagnetism, the influence of noise of the magnetic field generated by the sense current is increased. However, in the biomagnetic measurement apparatus described in Patent Document 1, the magnetic field generated by the sense current is increased. Is not considered, and no measures are taken.
 本発明は上記の問題に鑑みてなされたものであり、その目的は、磁気抵抗素子を用いた磁気計測装置において、センス電流によって発生する磁界の影響を低減することで、微弱な磁界を正確に測定することができる磁気計測装置を提供することにある。 The present invention has been made in view of the above problems, and its object is to accurately reduce a weak magnetic field by reducing the influence of a magnetic field generated by a sense current in a magnetic measurement device using a magnetoresistive element. An object of the present invention is to provide a magnetic measuring device capable of measuring.
 上記の課題を解決するために、本発明の一態様に係る磁気計測装置は、外部磁場により磁化の向きが変化する磁化自由層、磁化の向きが固定された磁化固定層、および前記磁化自由層と前記磁化固定層との間に配置された絶縁層が積層された磁気抵抗素子と、前記磁化自由層に対して前記絶縁層側とは反対側で対向する第1配線層と、前記磁化固定層に対して前記絶縁層側とは反対側で対向する第2配線層とを備え、前記磁気抵抗素子に対して、前記第1配線層または前記第2配線層からセンス電流を流すことで磁気を計測する磁気計測装置であって、前記第1配線層と前記磁化自由層との間に第1層間配線が垂設されると共に、前記第2配線層と前記磁化固定層との間に第2層間配線が垂設されていることを特徴とする。 In order to solve the above problems, a magnetic measurement device according to one aspect of the present invention includes a magnetization free layer whose magnetization direction changes due to an external magnetic field, a magnetization fixed layer whose magnetization direction is fixed, and the magnetization free layer. And a magnetoresistive element in which an insulating layer disposed between the pinned layer and the magnetization fixed layer is stacked, a first wiring layer facing the magnetization free layer on the side opposite to the insulating layer side, and the pinned magnetization And a second wiring layer opposite to the insulating layer side with respect to the layer, and a magnetic current is caused by flowing a sense current from the first wiring layer or the second wiring layer to the magnetoresistive element. A first interlayer wiring is vertically provided between the first wiring layer and the magnetization free layer, and a first interlayer wiring is provided between the second wiring layer and the magnetization fixed layer. A two-layer wiring is provided vertically.
 本発明の一態様によれば、第1配線層と磁化自由層との間に第1層間配線を、第2配線層と磁化固定層との間に第2層間配線をも設けることで、第1配線層および第2配線層から磁化自由層までの距離を遠くすることができる。これにより、センス電流により発生する磁界の影響を低減し、微弱な磁界であっても正確に測定することが可能となる。 According to one aspect of the present invention, the first interlayer wiring is provided between the first wiring layer and the magnetization free layer, and the second interlayer wiring is also provided between the second wiring layer and the magnetization fixed layer. The distance from the first wiring layer and the second wiring layer to the magnetization free layer can be increased. Thereby, the influence of the magnetic field generated by the sense current is reduced, and even a weak magnetic field can be measured accurately.
(a)は、本発明の実施形態1に係る磁気計測装置を示す模式図であり、(b)は、(a)におけるセンス電流の流路、およびセンス電流により発生する磁界を示す図である。(A) is a schematic diagram which shows the magnetic measuring device which concerns on Embodiment 1 of this invention, (b) is a figure which shows the flow path of the sense electric current in (a), and the magnetic field which generate | occur | produces with a sense electric current. . 本発明の実施形態2に係る磁気計測装置を示す模式図である。It is a schematic diagram which shows the magnetic measuring device which concerns on Embodiment 2 of this invention. (a)および(b)はそれぞれ、センス電流により発生する磁界を示す模式図である。(A) And (b) is a schematic diagram which respectively shows the magnetic field which generate | occur | produces with a sense electric current. (a)は図3の(a)における磁界の分布を示す図であり、(b)は、図3の(b)における磁界の分布を示す図である。(A) is a figure which shows distribution of the magnetic field in (a) of FIG. 3, (b) is a figure which shows distribution of the magnetic field in (b) of FIG. 本発明の実施形態3に係る磁気計測装置を示す模式図である。It is a schematic diagram which shows the magnetic measuring device which concerns on Embodiment 3 of this invention. センス電流により発生する磁界の分布を示す図である。It is a figure which shows distribution of the magnetic field generated by a sense current. 本発明の実施形態4に係る磁気計測装置を示す模式図である。It is a schematic diagram which shows the magnetic measuring device which concerns on Embodiment 4 of this invention. 本発明の実施形態4の変形例に係る磁気計測装置を示す模式図である。It is a schematic diagram which shows the magnetic measuring device which concerns on the modification of Embodiment 4 of this invention. 本発明の実施形態4の比較例に係る磁気計測装置を示す模式図である。It is a schematic diagram which shows the magnetic measuring device which concerns on the comparative example of Embodiment 4 of this invention. 本発明の実施形態5に係る磁気計測装置を示す模式図である。It is a schematic diagram which shows the magnetic measuring device which concerns on Embodiment 5 of this invention. 本発明の実施形態5の変形例に係る磁気計測装置を示す模式図である。It is a schematic diagram which shows the magnetic measuring device which concerns on the modification of Embodiment 5 of this invention. (a)および(b)はそれぞれ、本発明の実施形態5の変形例に係る磁気計測装置を示す模式図である。(A) And (b) is a schematic diagram which respectively shows the magnetic measuring device which concerns on the modification of Embodiment 5 of this invention. (a)は、本発明の実施形態6に係る磁気計測ユニットを示す模式図であり、(b)は、磁気計測ユニットが備えるセルの部分拡大図である。(A) is a schematic diagram which shows the magnetic measurement unit which concerns on Embodiment 6 of this invention, (b) is the elements on larger scale of the cell with which a magnetic measurement unit is provided. 本発明の実施形態6に係る磁気計測システムの構成要素を示すブロック図である。It is a block diagram which shows the component of the magnetic measurement system which concerns on Embodiment 6 of this invention. 本発明の実施形態6に係る磁気計測システムを用いた磁気計測方法の流れを示すフローチャートである。It is a flowchart which shows the flow of the magnetic measurement method using the magnetic measurement system which concerns on Embodiment 6 of this invention. (a)は、従来用いられている磁気計測装置を示す模式図であり、(b)は、(a)に示す磁気計測装置を流れるセンス電流、およびセンス電流によって発生する磁界を示す図である。(A) is a schematic diagram which shows the magnetic measuring apparatus used conventionally, (b) is a figure which shows the magnetic field which generate | occur | produces the sense current which flows through the magnetic measuring apparatus shown to (a), and a sense current. .
 以下、図面を参照し、本発明の実施の形態について詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 〔実施形態1〕
 図1の(a)は、本実施形態に係る磁気計測装置10を示す模式図であり、図1の(b)は、図1の(a)に示す磁気計測装置10に流れるセンス電流Iの経路およびセンス電流によって発生する磁界Bを示している。
[Embodiment 1]
1A is a schematic diagram showing the magnetic measurement device 10 according to the present embodiment, and FIG. 1B is a diagram of the sense current I flowing through the magnetic measurement device 10 shown in FIG. The magnetic field B generated by the path and the sense current is shown.
 図1の(a)に示すように、本実施形態に係る磁気計測装置10は、磁気抵抗素子1、上部配線層(第1配線層)2、下部配線層(第2配線層)3、上部層間配線(第1層間配線)4、および下部層間配線(第2層間配線)5を備えている。なお、図1の(a)においては、磁気抵抗素子1が3つ直列に接続している例を示したが、磁気計測装置10が備えている磁気抵抗素子1の数はこれに限られるものでは無い。 As shown in FIG. 1A, the magnetic measuring device 10 according to this embodiment includes a magnetoresistive element 1, an upper wiring layer (first wiring layer) 2, a lower wiring layer (second wiring layer) 3, and an upper part. An interlayer wiring (first interlayer wiring) 4 and a lower interlayer wiring (second interlayer wiring) 5 are provided. 1A shows an example in which three magnetoresistive elements 1 are connected in series, the number of magnetoresistive elements 1 provided in the magnetic measuring device 10 is limited to this. Not.
 磁気抵抗素子1は、磁化の向きが固定された磁化固定層6、外部磁場によって磁化の向きが変化する磁化自由層7、および磁化自由層7と磁化固定層6との間に配置された絶縁層8が積層された素子である。また、磁気抵抗素子1は、積層方向に直交する方向の断面が矩形である。 The magnetoresistive element 1 includes a magnetization fixed layer 6 whose magnetization direction is fixed, a magnetization free layer 7 whose magnetization direction is changed by an external magnetic field, and an insulation disposed between the magnetization free layer 7 and the magnetization fixed layer 6. This is an element in which the layer 8 is laminated. The magnetoresistive element 1 has a rectangular cross section in a direction orthogonal to the stacking direction.
 上部配線層2は、磁気抵抗素子1の積層方向に垂直な平面内に形成されており、磁気抵抗素子1の磁化自由層7に対して絶縁層8側とは反対側で対向している。下部配線層3は、磁気抵抗素子1の積層方向に垂直な平面内に形成されており、磁気抵抗素子1に磁化固定層6に対して絶縁層8側とは反対側で対向している。図1の(a)に示すように、上部配線層2および下部配線層3は、隣接する磁気抵抗素子1の間に互い違いとなるように形成されている。 The upper wiring layer 2 is formed in a plane perpendicular to the laminating direction of the magnetoresistive element 1 and is opposed to the magnetization free layer 7 of the magnetoresistive element 1 on the side opposite to the insulating layer 8 side. The lower wiring layer 3 is formed in a plane perpendicular to the laminating direction of the magnetoresistive element 1, and faces the magnetoresistive element 1 on the opposite side to the insulating layer 8 side with respect to the magnetization fixed layer 6. As shown in FIG. 1A, the upper wiring layer 2 and the lower wiring layer 3 are formed so as to alternate between the adjacent magnetoresistive elements 1.
 上部層間配線4は、上部配線層2と磁化自由層7との間に垂設される。また、下部層間配線5は、下部配線層3と磁化固定層6との間に垂設される。 The upper interlayer wiring 4 is suspended between the upper wiring layer 2 and the magnetization free layer 7. Further, the lower interlayer wiring 5 is provided between the lower wiring layer 3 and the magnetization fixed layer 6.
 ここで、磁気抵抗素子1は、上述したように、磁化自由層7の磁化の向きが外部磁化によって変化し、磁化固定層6の磁化の向きと、磁化自由層7の磁化の向きとの角度差に従って、トンネル効果により絶縁層8の電気抵抗値が変化する。そのため、磁気抵抗素子1に電気抵抗を測定するための電流であるセンス電流Iを流し、磁気抵抗素子1の電気抵抗値を測定することで、磁気抵抗素子1の磁化自由層7に作用している磁界を計測することができる。 Here, in the magnetoresistive element 1, as described above, the magnetization direction of the magnetization free layer 7 is changed by the external magnetization, and the angle between the magnetization direction of the magnetization fixed layer 6 and the magnetization direction of the magnetization free layer 7. According to the difference, the electric resistance value of the insulating layer 8 changes due to the tunnel effect. For this reason, a sense current I that is a current for measuring the electrical resistance is passed through the magnetoresistive element 1 and the electrical resistance value of the magnetoresistive element 1 is measured to act on the magnetization free layer 7 of the magnetoresistive element 1. The magnetic field can be measured.
 図1の(b)に、図1の(a)に示す磁気計測装置10に流れるセンス電流Iの経路およびセンス電流Iによって発生する磁界Bを示している。図1の(a)および(b)に示すように、下部配線層3から流れてきたセンス電流Iは、下部層間配線5を通り、磁気抵抗素子1へと流れる。そして、上部層間配線4、上部配線層2、上部層間配線4を通り次の磁気抵抗素子1へと流れる、その後、センス電流Iは、下部層間配線5、下部配線層3と流れる。以降同様にして、次の磁気抵抗素子1へとセンス電流Iが流れていく。 1B shows a path of the sense current I flowing through the magnetic measuring device 10 shown in FIG. 1A and a magnetic field B generated by the sense current I. FIG. As shown in FIGS. 1A and 1B, the sense current I flowing from the lower wiring layer 3 flows to the magnetoresistive element 1 through the lower interlayer wiring 5. Then, the current flows through the upper interlayer wiring 4, the upper wiring layer 2, and the upper interlayer wiring 4 to the next magnetoresistive element 1. Thereafter, the sense current I flows through the lower interlayer wiring 5 and the lower wiring layer 3. Thereafter, the sense current I flows to the next magnetoresistive element 1 in the same manner.
 センス電流Iが流れると、磁界Bが発生する。センス電流Iによって発生する磁界Bは、被磁気計測対象の磁気に対してノイズとなる。特に、磁化自由層7に対して平行に設けられた上部配線層2および下部配線層3を流れるセンス電流Iのうち、磁化自由層7の直上および直下を流れるセンス電流Iによって発生する磁界Bによる影響は大きい。しかしながら、本実施形態に係る磁気計測装置10においては、上部配線層2と磁化自由層7との間には上部層間配線4が、下部配線層3と磁化固定層6との間には下部層間配線5が設けられている。そのため、上部配線層2および下部配線層3と磁化自由層7との間に一定の距離を有することになり、センス電流Iによって発生する磁界Bの影響を低減することができる。 When the sense current I flows, a magnetic field B is generated. The magnetic field B generated by the sense current I becomes noise relative to the magnetism to be measured. In particular, among the sense currents I flowing through the upper wiring layer 2 and the lower wiring layer 3 provided in parallel to the magnetization free layer 7, the magnetic field B generated by the sense current I flowing immediately above and immediately below the magnetization free layer 7. The impact is great. However, in the magnetic measuring device 10 according to the present embodiment, the upper interlayer wiring 4 is provided between the upper wiring layer 2 and the magnetization free layer 7, and the lower interlayer is provided between the lower wiring layer 3 and the magnetization fixed layer 6. Wiring 5 is provided. Therefore, there is a certain distance between the upper wiring layer 2 and the lower wiring layer 3 and the magnetization free layer 7, and the influence of the magnetic field B generated by the sense current I can be reduced.
 (従来技術との対比)
 ここで、図16を用いて、本発明の効果について説明する。
(Contrast with conventional technology)
Here, the effect of the present invention will be described with reference to FIG.
 図16の(a)は、従来用いられている、磁気抵抗素子201を備えた磁気計測装置200の模式図であり、図16の(b)は、図16の(a)に示す磁気計測装置200を流れるセンス電流I、およびセンス電流Iによって発生する磁界Bを示す図である。 FIG. 16A is a schematic diagram of a magnetic measuring device 200 having a magnetoresistive element 201 that is conventionally used, and FIG. 16B is a magnetic measuring device shown in FIG. 2 is a diagram showing a sense current I flowing through 200 and a magnetic field B generated by the sense current I. FIG.
 図16の(a)に示すように、磁気計測装置200は、磁気抵抗素子201、上部配線層202、および下部配線層203を備える。すなわち、上部層間配線4および下部層間配線5を備えていない点以外は、磁気計測装置10と同様の構成である。また、磁気抵抗素子201は、磁気抵抗素子1と同様に、磁化固定層206、磁化自由層207、および絶縁層208が積層された素子である。 16A, the magnetic measuring device 200 includes a magnetoresistive element 201, an upper wiring layer 202, and a lower wiring layer 203. That is, the configuration is the same as that of the magnetic measuring device 10 except that the upper interlayer wiring 4 and the lower interlayer wiring 5 are not provided. Similarly to the magnetoresistive element 1, the magnetoresistive element 201 is an element in which a magnetization fixed layer 206, a magnetization free layer 207, and an insulating layer 208 are stacked.
 磁気計測装置200においては、上部配線層202が、磁化自由層207に直接接続しており、下部配線層203が、磁化固定層206に直接接続されている。そのため、磁化自由層207は、磁化自由層207の直上および直下を流れるセンス電流Iによって発生する磁界Bの影響を受けやすい構造である。 In the magnetic measuring device 200, the upper wiring layer 202 is directly connected to the magnetization free layer 207, and the lower wiring layer 203 is directly connected to the magnetization fixed layer 206. Therefore, the magnetization free layer 207 has a structure that is easily affected by the magnetic field B generated by the sense current I that flows immediately above and immediately below the magnetization free layer 207.
 例えば、上部配線層202の厚みを5nm、磁化自由層207の厚みを3nm、センス電流Iを1×10-11Aとし、センス電流Iが上部配線層202の最上面(磁化自由層207から一番遠い面)を流れると仮定しても、磁化自由層207の中心には、3×10-10Tの磁束密度の磁気が作用することとなる。ここで、生体磁気を測定対象とする磁気計測装置を考えた場合には、脳磁は1×10-15~1×10-12T程度であり、心磁は1×10-14~1×10-10T程度である。そのため、センス電流Iにより発生する磁界Bの影響を低減しなければ、生体磁気を正確に測定することは難しい。 For example, the thickness of the upper wiring layer 202 is 5 nm, the thickness of the magnetization free layer 207 is 3 nm, the sense current I is 1 × 10 −11 A, and the sense current I is the top surface of the upper wiring layer 202 (one from the magnetization free layer 207). Even if it is assumed that it flows through the farthest surface), magnetism with a magnetic flux density of 3 × 10 −10 T acts on the center of the magnetization free layer 207. Here, when considering a magnetic measuring device for measuring biomagnetism, the magnetoencephalogram is about 1 × 10 −15 to 1 × 10 −12 T, and the magnetocardiogram is 1 × 10 −14 to 1 ×. It is about 10 −10 T. Therefore, it is difficult to accurately measure biomagnetism unless the influence of the magnetic field B generated by the sense current I is reduced.
 これに対し本実施形態に係る磁気計測装置10は、上部配線層2および下部配線層3と磁化自由層7との間に一定の距離を有する。そのため、例えば磁化自由層7と上部配線層2との距離を3μm、センス電流Iを1×10-11Aとすると、磁化自由層7には、7×10-13Tの磁束密度の磁気が作用する。このように、センス電流Iによって発生する磁界Bの影響を低減することができ、生体磁気といった微弱な磁気でも正確に測定することが可能となる。 On the other hand, the magnetic measurement apparatus 10 according to the present embodiment has a certain distance between the upper wiring layer 2 and the lower wiring layer 3 and the magnetization free layer 7. Therefore, for example, if the distance between the magnetization free layer 7 and the upper wiring layer 2 is 3 μm and the sense current I is 1 × 10 −11 A, the magnetization free layer 7 has a magnetism with a magnetic flux density of 7 × 10 −13 T. Works. In this way, the influence of the magnetic field B generated by the sense current I can be reduced, and even weak magnetism such as biomagnetism can be accurately measured.
 〔実施形態2〕
 本発明の他の実施形態について、図2~図4に基づいて説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 2]
Another embodiment of the present invention will be described with reference to FIGS. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 図2は、本実施形態に係る磁気計測装置20を示す模式図である。図2に示すように、本実施形態に係る磁気計測装置20は、磁気抵抗素子1、上部配線層2、下部配線層3、上部層間配線(第1層間配線)24、および下部層間配線(第2層間配線)25を備えている。すなわち、本実施形態に係る磁気計測装置20は、上部層間配線4の代わりに上部層間配線24を、下部層間配線5の代わりに下部層間配線25を備えていること以外は、第1の実施形態に係る磁気計測装置10と同様の構成である。 FIG. 2 is a schematic diagram showing the magnetic measuring device 20 according to the present embodiment. As shown in FIG. 2, the magnetic measuring device 20 according to this embodiment includes a magnetoresistive element 1, an upper wiring layer 2, a lower wiring layer 3, an upper interlayer wiring (first interlayer wiring) 24, and a lower interlayer wiring (first interlayer wiring). 2 interlayer wiring) 25. That is, the magnetic measurement apparatus 20 according to the present embodiment is the same as that of the first embodiment except that the upper interlayer wiring 24 is provided instead of the upper interlayer wiring 4 and the lower interlayer wiring 25 is provided instead of the lower interlayer wiring 5. It is the structure similar to the magnetic measuring device 10 concerning.
 上部層間配線24は、上部配線層2と磁気抵抗素子1の磁化自由層7との間に垂設される。また、上部層間配線24は、上部層間配線24を流れるセンス電流Iの方向に垂直な面における重心を通る直線Lが、磁化自由層7の厚さ方向に垂直な面における重心を通るように形成されている。下部層間配線25は、下部配線層3と磁気抵抗素子1の磁化固定層6との間に垂設される。また、下部層間配線25は、下部層間配線25を流れるセンス電流Iの方向に垂直な面における重心を通る直線Lが、磁化自由層7の厚さ方向に垂直な面における重心を通るように形成されている。 The upper interlayer wiring 24 is suspended between the upper wiring layer 2 and the magnetization free layer 7 of the magnetoresistive element 1. The upper interlayer wiring 24 is formed such that a straight line L passing through the center of gravity in a plane perpendicular to the direction of the sense current I flowing through the upper interlayer wiring 24 passes through the center of gravity in a plane perpendicular to the thickness direction of the magnetization free layer 7. Has been. The lower interlayer wiring 25 is provided between the lower wiring layer 3 and the magnetization fixed layer 6 of the magnetoresistive element 1. The lower interlayer wiring 25 is formed such that a straight line L passing through the center of gravity in a plane perpendicular to the direction of the sense current I flowing through the lower interlayer wiring 25 passes through the center of gravity in a plane perpendicular to the thickness direction of the magnetization free layer 7. Has been.
 すなわち、本実施形態に係る磁気計測装置20においては、上部層間配線24、磁化自由層7、および下部層間配線25の重心は、すべて同一直線(直線L)上にある。そのため、センス電流Iは、磁化自由層7の厚さ方向に垂直な面における重心を垂直に流れる。 That is, in the magnetic measurement apparatus 20 according to the present embodiment, the centers of gravity of the upper interlayer wiring 24, the magnetization free layer 7, and the lower interlayer wiring 25 are all on the same straight line (straight line L). Therefore, the sense current I flows vertically through the center of gravity in the plane perpendicular to the thickness direction of the magnetization free layer 7.
 図3は、センス電流Iによって発生する磁界Bを示す模式図であり、図3の(a)は、センス電流Iが、磁化自由層7の厚さ方向に垂直な面における重心を垂直に流れる場合を示しており、図3の(b)は、センス電流Iが、磁化自由層7の厚さ方向に垂直な面における重心から外れた位置を垂直に流れる場合を示している。なお、図3において、センス電流Iは、紙面手前から紙面奥に向かって流れている。 FIG. 3 is a schematic diagram showing the magnetic field B generated by the sense current I. FIG. 3A shows the sense current I flowing vertically through the center of gravity in a plane perpendicular to the thickness direction of the magnetization free layer 7. FIG. 3B shows a case where the sense current I flows vertically through a position deviating from the center of gravity in a plane perpendicular to the thickness direction of the magnetization free layer 7. In FIG. 3, the sense current I flows from the front side of the paper toward the back of the paper.
 図3からわかるように、センス電流Iによって発生する磁界Bは、センス電流Iに対して垂直な面内に、すなわち、磁化自由層7に平行な面内に形成される。また、磁界Bは、センス電流Iを中心として同心円上に右回りに形成される。 As can be seen from FIG. 3, the magnetic field B generated by the sense current I is formed in a plane perpendicular to the sense current I, that is, in a plane parallel to the magnetization free layer 7. The magnetic field B is formed clockwise on a concentric circle with the sense current I as the center.
 ここで、図3の(a)のように、センス電流Iが磁化自由層7の重心を垂直に流れる場合には、磁化自由層7における磁界Bは対称的に分布する。これに対し、図3の(b)に示すように、センス電流Iが磁化自由層7の重心から外れた位置を流れる場合には、磁化自由層7における磁界Bは、偏った分布を示す。 Here, as shown in FIG. 3A, when the sense current I flows perpendicularly through the center of gravity of the magnetization free layer 7, the magnetic field B in the magnetization free layer 7 is distributed symmetrically. On the other hand, as shown in FIG. 3B, when the sense current I flows at a position deviating from the center of gravity of the magnetization free layer 7, the magnetic field B in the magnetization free layer 7 shows a biased distribution.
 図4は、センス電流Iによって発生する磁界Bの分布を示す図であり、図4の(a)は、図3の(a)のα-α線における磁界Bの分布を、図4の(b)は、図3の(b)のβ-β線における磁界Bの分布をそれぞれ矢印で示している。図4の(a)および(b)においては、センス電流Iを1.0×10-11Aとした場合の磁束密度を示しており、また、センス電流Iが流れる場所を0の位置としている。参考のため、図4の(a)および(b)に脳磁レベルの磁束密度である、5.0×10-13Tの磁束密度を白抜きの矢印で示す。 FIG. 4 is a diagram showing the distribution of the magnetic field B generated by the sense current I. FIG. 4A shows the distribution of the magnetic field B along the α-α line in FIG. FIG. 3B shows the distribution of the magnetic field B along the β-β line in FIG. 4 (a) and 4 (b) show the magnetic flux density when the sense current I is 1.0 × 10 −11 A, and the place where the sense current I flows is set to the 0 position. . For reference, FIGS. 4A and 4B show a magnetic flux density of 5.0 × 10 −13 T, which is a magnetic flux density at the brain magnetic level, with white arrows.
 図4の(b)に示すように、センス電流Iが磁化自由層7の重心からはずれた位置を流れている場合には、センス電流Iが流れる場所の左右で磁界の方向は反転しているが、磁化自由層7における磁界の分布が左右で偏っていることがわかる。また、センス電流Iによって発生する磁界Bは、脳磁レベルの磁束密度よりも大きい磁束密度であることがわかる。 As shown in FIG. 4B, when the sense current I flows at a position deviated from the center of gravity of the magnetization free layer 7, the direction of the magnetic field is reversed on the left and right of the place where the sense current I flows. However, it can be seen that the distribution of the magnetic field in the magnetization free layer 7 is biased left and right. It can also be seen that the magnetic field B generated by the sense current I has a magnetic flux density that is greater than the magnetic flux density at the brain magnetic level.
 ここで、センス電流Iによって発生する磁界Bは、センス電流Iの大きさと、センス電流Iが流れている位置からの距離によって決まるため、被測定磁界が有る場合と、被測定磁界が無い場合との両方で、センス電流Iを流して電気抵抗値の測定を行い、その差分を取ることでセンス電流Iにより発生する磁界Bの影響を低減することができる。 Here, since the magnetic field B generated by the sense current I is determined by the magnitude of the sense current I and the distance from the position where the sense current I flows, there are cases where there is a magnetic field to be measured and cases where there is no magnetic field to be measured. In both cases, it is possible to reduce the influence of the magnetic field B generated by the sense current I by passing the sense current I and measuring the electrical resistance value and taking the difference.
 しかしながら、センス電流Iがノイズ成分(例えば、ジョンソンノイズ、ショットノイズ)によって揺らぐ場合がある。当該ノイズ成分によって発生する磁界は、図4の(b)に示すように、センス電流Iが流れる位置の左右で磁界が偏っている場合には、上述した被測定磁界が有る場合と、被測定磁界が無い場合との差分を取ったとしても、影響を差し引くことはできない。 However, the sense current I may fluctuate due to noise components (for example, Johnson noise or shot noise). As shown in FIG. 4B, the magnetic field generated by the noise component includes the above-described measured magnetic field when the magnetic field is biased at the left and right of the position where the sense current I flows, and the measured magnetic field. Even if the difference from the case where there is no magnetic field is taken, the influence cannot be subtracted.
 これに対して、本実施形態に係る磁気計測装置20は、センス電流Iが磁化自由層7の重心を流れている。そのため、図4の(a)に示すように、磁束密度が、センス電流Iが流れる場所(位置0)中心に、磁化自由層7内で左右に対称に打ち消し合うように分布しており、磁化自由層7内において、磁束密度の分布に偏りがない。これにより、センス電流Iが上述したノイズ成分によって揺らいだとしても、被測定磁界が有る場合と、被測定磁界が無い場合との差分を取ることで、ノイズ成分も含めて、センス電流Iによって発生する磁界Bの影響を低減することができる。 On the other hand, in the magnetic measuring device 20 according to the present embodiment, the sense current I flows through the center of gravity of the magnetization free layer 7. For this reason, as shown in FIG. 4A, the magnetic flux density is distributed in the center of the position (position 0) where the sense current I flows so as to cancel each other symmetrically in the magnetization free layer 7. In the free layer 7, there is no bias in the distribution of magnetic flux density. As a result, even if the sense current I fluctuates due to the noise component described above, it is generated by the sense current I including the noise component by taking the difference between when the measured magnetic field is present and when there is no measured magnetic field. The effect of the magnetic field B to be reduced can be reduced.
 なお、本実施形態においては、上部層間配線24、磁化自由層7、および下部層間配線25の重心が、すべて同一直線上にある例を示したが、それぞれの重心と直線Lとは必ずしも一致している必要は無く、それぞれの重心が略同一直線上に形成されていれば、本実施形態に係る磁気計測装置20と同様の効果を得ることができる。 In the present embodiment, the center of gravity of the upper interlayer wiring 24, the magnetization free layer 7, and the lower interlayer wiring 25 is shown as being all on the same straight line. However, the center of gravity and the straight line L are not necessarily the same. If the respective centers of gravity are formed on substantially the same straight line, the same effect as that of the magnetic measurement device 20 according to the present embodiment can be obtained.
 また、本実施形態においては、上部層間配線24、磁化自由層7、および下部層間配線25の重心が、すべて同一直線上にある例を示したが、これに限られるものでは無い。つまり、上記上部層間配線24(第1層間配線)は、当該上部層間配線24の重心を含む第1所定領域を通る直線(第1直線)が上記磁化自由層7の重心を含む第2所定領域を通るように配置され、上記下部層間配線25(第2層間配線)は、当該下部層間配線25の重心を含む第3所定領域を通る直線(第2直線)が上記磁化自由層7の重心を含む第2所定領域を通るように配置され、上記重心を含む第1所定領域~第3所定領域はそれぞれ、上記磁化自由層7内において、磁束密度の分布に偏りが生じない範囲に設定されていればよい。例えば、上部層間配線24の重心を通る直線(第1直線)が、磁化自由層7の重心近傍を通るように配置され、かつ、下部層間配線25の重心を通る直線(第2直線)が、磁化自由層7の重心近傍を通る構成であってもよい。このような構成であっても、上部層間配線24および下部層間配線25を流れるセンス電流Iによって発生する磁界Bが磁化自由層7内で対称的に分布するため、センス電流Iによって発生する磁界Bの影響を低減することができる。 Further, in the present embodiment, the center of gravity of the upper interlayer wiring 24, the magnetization free layer 7 and the lower interlayer wiring 25 is shown as being all on the same straight line, but the present invention is not limited to this. That is, the upper interlayer wiring 24 (first interlayer wiring) is a second predetermined region in which a straight line (first straight line) passing through the first predetermined region including the center of gravity of the upper interlayer wiring 24 includes the center of gravity of the magnetization free layer 7. The lower interlayer wiring 25 (second interlayer wiring) is arranged such that a straight line (second straight line) passing through a third predetermined region including the center of gravity of the lower interlayer wiring 25 is the center of gravity of the magnetization free layer 7. The first predetermined region to the third predetermined region including the center of gravity are set in a range in which the magnetic flux density distribution is not biased in the magnetization free layer 7. Just do it. For example, a straight line passing through the center of gravity of the upper interlayer wiring 24 (first straight line) is arranged so as to pass near the center of gravity of the magnetization free layer 7 and a straight line passing through the center of gravity of the lower interlayer wiring 25 (second straight line) It may be configured to pass through the vicinity of the center of gravity of the magnetization free layer 7. Even in such a configuration, the magnetic field B generated by the sense current I flowing in the upper interlayer wiring 24 and the lower interlayer wiring 25 is symmetrically distributed in the magnetization free layer 7, so that the magnetic field B generated by the sense current I is Can be reduced.
 また、少なくとも、上記上部層間配線24(第1層間配線)が、当該上部層間配線24の重心を含む第1所定領域を通る直線(第1直線)が上記磁化自由層7の重心を含む第2所定領域を通るように配置されていればよい。すなわち、少なくとも上部層間配線24の重心を通る直線(第1直線)が、磁化自由層7の重心近傍を通っていればよい。これは、下部層間配線25と磁化自由層7との間には、絶縁層8(図示せず)および磁化固定層6があるため、下部層間配線25と磁化自由層7との間には一定の距離が設けられているからである。そのため、下部層間配線25を流れるセンス電流Iによって発生する磁界Bが磁化自由層7に及ぼす影響は軽微であり、少なくとも、上部層間配線24(第1層間配線)が、当該上部層間配線24の重心を含む第1所定領域を通る直線(第1直線)が磁化自由層7の重心を含む第2所定領域を通っていれば、センス電流Iによって発生する磁界Bの影響を十分に低減することができる。 A second line (first line) in which at least the upper interlayer wiring 24 (first interlayer wiring) passes through the first predetermined region including the center of gravity of the upper interlayer wiring 24 includes the center of gravity of the magnetization free layer 7. What is necessary is just to arrange | position so that a predetermined area may be passed. That is, it is sufficient that at least a straight line (first straight line) passing through the center of gravity of the upper interlayer wiring 24 passes near the center of gravity of the magnetization free layer 7. This is because there is an insulating layer 8 (not shown) and a magnetization fixed layer 6 between the lower interlayer wiring 25 and the magnetization free layer 7, so that there is a constant between the lower interlayer wiring 25 and the magnetization free layer 7. This is because the distance is provided. Therefore, the influence of the magnetic field B generated by the sense current I flowing through the lower interlayer wiring 25 on the magnetization free layer 7 is slight, and at least the upper interlayer wiring 24 (first interlayer wiring) has a center of gravity of the upper interlayer wiring 24. If the straight line passing through the first predetermined area including the first predetermined line passes through the second predetermined area including the center of gravity of the magnetization free layer 7, the influence of the magnetic field B generated by the sense current I can be sufficiently reduced. it can.
 〔実施形態3〕
 本発明の他の実施形態について、図5~図6に基づいて説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 3]
Another embodiment of the present invention will be described with reference to FIGS. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 図5は、本実施形態に係る磁気計測装置30を示す模式図である。図5に示すように、本実施形態に係る磁気計測装置30は、磁気抵抗素子31、上部配線層2、下部配線層3、上部層間配線24、および下部層間配線25を備えている。すなわち、本実施形態に係る磁気計測装置30は、磁気抵抗素子1の代わりに磁気抵抗素子31を備えていること以外は、実施形態2に係る磁気計測装置20と同様の構成である。 FIG. 5 is a schematic diagram showing the magnetic measurement device 30 according to the present embodiment. As shown in FIG. 5, the magnetic measuring device 30 according to the present embodiment includes a magnetoresistive element 31, an upper wiring layer 2, a lower wiring layer 3, an upper interlayer wiring 24, and a lower interlayer wiring 25. That is, the magnetic measurement device 30 according to the present embodiment has the same configuration as the magnetic measurement device 20 according to the second embodiment, except that the magnetic resistance device 31 is provided instead of the magnetoresistive device 1.
 磁気抵抗素子31は、磁気抵抗素子1と同様に、磁化の向きが固定された磁化固定層36、外部磁場によって磁化の向きが変化する磁化自由層37、および磁化自由層37と磁化固定層36との間に配置された絶縁層38が積層された素子である。磁気抵抗素子31は、センス電流Iが流れる向きと直交する方向の断面(以下、単に断面と称する)が円形である。 As with the magnetoresistive element 1, the magnetoresistive element 31 includes a magnetization fixed layer 36 whose magnetization direction is fixed, a magnetization free layer 37 whose magnetization direction is changed by an external magnetic field, and a magnetization free layer 37 and a magnetization fixed layer 36. Is an element in which an insulating layer 38 disposed between and is laminated. The magnetoresistive element 31 has a circular cross section (hereinafter simply referred to as a cross section) in a direction orthogonal to the direction in which the sense current I flows.
 図6は、センス電流Iによって発生する磁界Bの磁化自由層37における分布を示す図である。図6は、センス電流Iが流れる向きと直交する方向における磁化自由層37の断面図であり、センス電流Iは、紙面の手前から奥に向かって流れている。 FIG. 6 is a diagram showing a distribution in the magnetization free layer 37 of the magnetic field B generated by the sense current I. FIG. 6 is a cross-sectional view of the magnetization free layer 37 in a direction orthogonal to the direction in which the sense current I flows, and the sense current I flows from the front of the paper to the back.
 図6に示すように、本実施形態に係る磁気計測装置30は、磁気抵抗素子31の断面が円形であるため、センス電流Iによって発生する磁界Bの分布が、磁化自由層37内で対称かつ連続となる。そのため、センス電流Iが上述したノイズ成分によって揺らいだとしても、ノイズ成分も含めて、センス電流Iによって発生する磁界Bの影響を緩和することができる。 As shown in FIG. 6, in the magnetic measurement device 30 according to the present embodiment, since the cross section of the magnetoresistive element 31 is circular, the distribution of the magnetic field B generated by the sense current I is symmetric within the magnetization free layer 37. It will be continuous. Therefore, even if the sense current I fluctuates due to the above-described noise component, the influence of the magnetic field B generated by the sense current I including the noise component can be mitigated.
 なお、本実施形態においては、磁気抵抗素子31の磁化固定層36、磁化自由層37、および絶縁層38の全ての断面が円形の場合を示したが、これに限られるものでは無い。センス電流Iによって発生する磁界Bが被測定対象の磁界に与える影響を緩和するためには、少なくとも磁化自由層37の断面が円形であればよい。また、磁化自由層37の断面は、円形に限られるものでは無く、楕円形であってもよい。 In the present embodiment, the case where all the cross sections of the magnetization fixed layer 36, the magnetization free layer 37, and the insulating layer 38 of the magnetoresistive element 31 are circular is shown, but the present invention is not limited to this. In order to mitigate the influence of the magnetic field B generated by the sense current I on the magnetic field to be measured, it is sufficient that at least the cross section of the magnetization free layer 37 is circular. Further, the cross section of the magnetization free layer 37 is not limited to a circle, but may be an ellipse.
 〔実施形態4〕
 本発明の他の実施形態について、図7~図9に基づいて説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 4]
Another embodiment of the present invention will be described with reference to FIGS. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 図7は、本実施形態に係る磁気計測装置40を示す模式図である。図7に示すように、本実施形態に係る磁気計測装置40は、実施形態1に係る磁気計測装置10と同様に、磁気抵抗素子1、上部配線層2、下部配線層3、上部層間配線4、および下部層間配線5を備えている。また、磁気抵抗素子1は、磁化固定層6、磁化自由層7、および絶縁層8を備えている。なお、図7においては、磁気抵抗素子1以外の部材についてはセンス電流Iの流路で当該部材を示しており、後述する図8~11についても同様である。 FIG. 7 is a schematic diagram showing the magnetic measurement device 40 according to the present embodiment. As shown in FIG. 7, the magnetic measurement device 40 according to the present embodiment is similar to the magnetic measurement device 10 according to the first embodiment, in that the magnetoresistive element 1, the upper wiring layer 2, the lower wiring layer 3, and the upper interlayer wiring 4. , And a lower interlayer wiring 5. In addition, the magnetoresistive element 1 includes a magnetization fixed layer 6, a magnetization free layer 7, and an insulating layer 8. In FIG. 7, the members other than the magnetoresistive element 1 are shown by the flow path of the sense current I, and the same applies to FIGS. 8 to 11 described later.
 本実施形態に係る磁気計測装置40は、上部配線層2および下部配線層3が、磁化自由層7の断面に平行に形成されており、上部配線層2および下部配線層3を流れるセンス電流Iは、向きが同じでかつ平行である。そのため、図7に示すように、それぞれの磁化自由層7の直上および直下の上部配線層2および下部配線層3を流れるセンス電流Iによって発生する磁界Bは、磁化自由層7において、互いに逆向きとなり、磁界を弱め合う。これにより、センス電流Iによって発生する磁界Bが、被測定対象の磁界に及ぼす影響を低減することができる。 In the magnetic measuring device 40 according to the present embodiment, the upper wiring layer 2 and the lower wiring layer 3 are formed in parallel to the cross section of the magnetization free layer 7, and the sense current I flowing through the upper wiring layer 2 and the lower wiring layer 3. Are the same and parallel. Therefore, as shown in FIG. 7, the magnetic fields B generated by the sense currents I flowing in the upper wiring layer 2 and the lower wiring layer 3 immediately above and immediately below the respective magnetization free layers 7 are opposite to each other in the magnetization free layer 7. And weaken the magnetic field. As a result, the influence of the magnetic field B generated by the sense current I on the magnetic field of the measurement target can be reduced.
 (変形例)
 次に、本実施形態に係る磁気計測装置40の変形例について説明する。上述したように、センス電流Iによって発生する磁界Bが磁気抵抗素子1の磁化自由層7で互いに弱め合うためには、それぞれの磁化自由層7の直上および直下の上部配線層2および下部配線層3を流れるセンス電流Iが、向きが同じでかつ平行であればよい。
(Modification)
Next, a modification of the magnetic measurement device 40 according to this embodiment will be described. As described above, in order for the magnetic field B generated by the sense current I to weaken each other in the magnetization free layer 7 of the magnetoresistive element 1, the upper wiring layer 2 and the lower wiring layer immediately above and immediately below each magnetization free layer 7. It is only necessary that the sense currents I flowing through 3 have the same direction and are parallel.
 図8は、本実施形態の変形例に係る磁気計測装置50を示す模式図である。磁気計測装置50は、磁気計測装置40とは異なった上部配線層52および下部配線層53を備える。図8に示すように、磁気計測装置50の上部配線層52および下部配線層53は、磁化自由層7の断面に平行な面内に形成されており、略コの字形である。上部配線層52および下部配線層53は、隣接する磁気抵抗素子1に対して互い違いとなるように配置されている。また、上部配線層52および下部配線層53を流れるセンス電流Iが、それぞれの磁化自由層7の直上および直下で、向きが同じでかつ平行となるように、上部配線層52および下部配線層53は、磁気抵抗素子1の並設方向に対してそれぞれ異なる側に配置されている。すなわち、上部層間配線4または下部層間配線5から上部配線層52または下部配線層53へと流れるセンス電流Iは、略コの字形に形成された上部配線層52または下部配線層53を通ることで、流れる方向を180度転換し、次の上部配線層52または下部配線層53へと流れる。 FIG. 8 is a schematic diagram showing a magnetic measurement device 50 according to a modification of the present embodiment. The magnetic measurement device 50 includes an upper wiring layer 52 and a lower wiring layer 53 that are different from the magnetic measurement device 40. As shown in FIG. 8, the upper wiring layer 52 and the lower wiring layer 53 of the magnetic measuring device 50 are formed in a plane parallel to the cross section of the magnetization free layer 7 and have a substantially U shape. The upper wiring layer 52 and the lower wiring layer 53 are arranged alternately with respect to the adjacent magnetoresistive elements 1. In addition, the upper wiring layer 52 and the lower wiring layer 53 are arranged so that the sense currents I flowing through the upper wiring layer 52 and the lower wiring layer 53 are in the same direction and parallel immediately above and immediately below the respective magnetization free layers 7. Are arranged on different sides with respect to the parallel arrangement direction of the magnetoresistive elements 1. That is, the sense current I flowing from the upper interlayer wiring 4 or the lower interlayer wiring 5 to the upper wiring layer 52 or the lower wiring layer 53 passes through the upper wiring layer 52 or the lower wiring layer 53 formed in a substantially U shape. The flow direction is changed by 180 degrees, and the flow flows to the next upper wiring layer 52 or lower wiring layer 53.
 このように、上部配線層52および下部配線層53を流れるセンス電流Iが、それぞれの磁気抵抗素子1の直上および直下で、向きが同じでかつ平行であれば、センス電流Iによって発生する磁界Bが磁化自由層7で打ち消し合う。そのため、上部配線層52または下部配線層53の形状は、それぞれの磁化自由層7の直上および直下の上部配線層52および下部配線層53を流れるセンス電流Iが、向きが同じでかつ平行であれば特に限定されるものでは無い。 As described above, if the sense currents I flowing through the upper wiring layer 52 and the lower wiring layer 53 are the same and parallel to each other immediately above and immediately below the respective magnetoresistive elements 1, the magnetic field B generated by the sense current I is used. Cancel each other out in the magnetization free layer 7. Therefore, the shape of the upper wiring layer 52 or the lower wiring layer 53 is such that the sense currents I flowing through the upper wiring layer 52 and the lower wiring layer 53 immediately above and immediately below the respective magnetization free layers 7 have the same direction and are parallel. There is no particular limitation.
 (比較例)
 これに対して、上部配線層および下部配線層を流れるセンス電流Iが、それぞれの磁化自由層7の直上および直下で、平行ではあるが、逆向きである場合について説明する。
(Comparative example)
On the other hand, a case will be described in which the sense currents I flowing through the upper wiring layer and the lower wiring layer are parallel but opposite to each other immediately above and directly below the respective magnetization free layers 7.
 図9は、本実施形態の比較例に係る磁気計測装置60を示す模式図である。磁気計測装置60は、磁気計測装置50と同様に、略コの字形に形成された、上部配線層62および下部配線層63を備える。磁気計測装置60においては、上部配線層62および下部配線層63を流れるセンス電流Iが、それぞれの磁化自由層7の直上および直下で、平行かつ逆向きとなるように、磁気抵抗素子1の並設方向に対して同じ側に配置されている。 FIG. 9 is a schematic diagram showing a magnetic measuring device 60 according to a comparative example of the present embodiment. Similar to the magnetic measurement device 50, the magnetic measurement device 60 includes an upper wiring layer 62 and a lower wiring layer 63 that are formed in a substantially U-shape. In the magnetic measurement device 60, the parallel arrangement of the magnetoresistive elements 1 is performed so that the sense currents I flowing through the upper wiring layer 62 and the lower wiring layer 63 are parallel and opposite to each other directly above and directly below the respective magnetization free layers 7. It is arranged on the same side with respect to the installation direction.
 図9に示すように、磁化自由層7の直上および直下の上部配線層62および下部配線層63を流れるセンス電流Iによって発生する磁界Bは、それぞれの磁化自由層7において互いに同じ向きとなる。そのため、磁化自由層7において、磁界Bは互いに強め合う事となり、被測定対象の磁界に対して影響を及ぼす。特に、生体磁気といった微弱な磁界を測定する場合には、センス電流Iによって発生する磁界Bの影響は大きい。 As shown in FIG. 9, the magnetic fields B generated by the sense current I flowing through the upper wiring layer 62 and the lower wiring layer 63 immediately above and below the magnetization free layer 7 are in the same direction in each magnetization free layer 7. For this reason, in the magnetization free layer 7, the magnetic fields B strengthen each other and affect the magnetic field to be measured. In particular, when measuring a weak magnetic field such as biomagnetism, the influence of the magnetic field B generated by the sense current I is large.
 〔実施形態5〕
 本発明の他の実施形態について、図10に基づいて説明すれる。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 5]
Another embodiment of the present invention will be described with reference to FIG. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 図10は、本実施形態に係る磁気計測装置70を示す模式図である。図10に示すように、本実施形態に係る磁気計測装置70は、前記実施形態4に係る磁気計測装置40と同様に、磁気抵抗素子1、上部配線層2、下部配線層3、上部層間配線4、および下部層間配線5を備えている。ここで、磁化自由層7において、センス電流Iが磁化自由層7流れる方向(磁気抵抗素子1の積層方向)の中心を中心点Oとする。 FIG. 10 is a schematic diagram showing a magnetic measuring device 70 according to the present embodiment. As shown in FIG. 10, the magnetic measurement device 70 according to the present embodiment is similar to the magnetic measurement device 40 according to the fourth embodiment, in which the magnetoresistive element 1, the upper wiring layer 2, the lower wiring layer 3, and the upper interlayer wiring are used. 4 and a lower interlayer wiring 5 are provided. Here, in the magnetization free layer 7, the center of the direction in which the sense current I flows (the stacking direction of the magnetoresistive element 1) flows as the center point O.
 図10に示すように、本実施形態に係る上部層間配線4および下部層間配線5は、中心点Oから、上部配線層2および下部配線層3におけるセンス電流Iの流路までの距離rが互いに等しくなるように形成されている。 As shown in FIG. 10, in the upper interlayer wiring 4 and the lower interlayer wiring 5 according to this embodiment, the distance r from the center point O to the flow path of the sense current I in the upper wiring layer 2 and the lower wiring layer 3 is mutually equal. It is formed to be equal.
 このように、本実施形態に係る磁気計測装置70においては、磁化自由層7の直上および直下で、センス電流Iが、向きが同じでかつ平行に流れ、さらに、磁化自由層7の中心から、上部配線層2および下部配線層3のセンス電流Iの流路までの距離rが互いに等しい。そのため、センス電流Iにより発生する磁界Bは、磁化自由層7の中心において逆向きかつ同じ強度となり、互いに弱め合う。 As described above, in the magnetic measurement device 70 according to the present embodiment, the sense current I flows in the same direction and in parallel immediately above and immediately below the magnetization free layer 7, and from the center of the magnetization free layer 7, The distance r to the flow path of the sense current I of the upper wiring layer 2 and the lower wiring layer 3 is equal to each other. For this reason, the magnetic field B generated by the sense current I is opposite in the center of the magnetization free layer 7 and has the same intensity, and weakens each other.
 なお、本実施形態においては、磁化自由層7の中心から、上部配線層2のセンス電流Iの流路までの距離と、磁化自由層7の中心から下部配線層3のセンス電流Iの流路までの距離とが等しい場合を示したが、磁化自由層7の直上および直下で、センス電流Iが、向きが同じでかつ平行に流れていれば、磁化自由層7の中心から、上部配線層2および下部配線層3のセンス電流Iの流路までの距離は略等しくなるように形成されていてもよい。つまり、磁化自由層7の中心から、上部配線層2のセンス電流Iの流路までの距離と、磁化自由層7の中心から下部配線層3のセンス電流Iの流路までの距離とは、センス電流Iにより発生する磁界Bが、磁化自由層7の中心において逆向きかつ同程度の強度となり、互いに弱め合うような距離に設定されていればよい。 In the present embodiment, the distance from the center of the magnetization free layer 7 to the flow path of the sense current I in the upper wiring layer 2 and the flow path of the sense current I in the lower wiring layer 3 from the center of the magnetization free layer 7. However, if the sense current I flows in the same direction and in parallel immediately above and directly below the magnetization free layer 7, the distance from the center of the magnetization free layer 7 to the upper wiring layer is shown. 2 and the lower wiring layer 3 may be formed so that the distance to the flow path of the sense current I is substantially equal. That is, the distance from the center of the magnetization free layer 7 to the flow path of the sense current I of the upper wiring layer 2 and the distance from the center of the magnetization free layer 7 to the flow path of the sense current I of the lower wiring layer 3 are: It is only necessary that the magnetic field B generated by the sense current I is set at such a distance that it is in the opposite direction at the center of the magnetization free layer 7 and has the same strength and weakens each other.
 (効果)
 次に、本実施形態に係る磁気計測装置70の効果について説明する。
(effect)
Next, effects of the magnetic measurement device 70 according to the present embodiment will be described.
 まず、図16を用いて、上部配線層202および下部配線層203を流れるセンス電流Iにより発生する磁界Bが磁化自由層207に及ぼす影響について説明する。 First, the influence of the magnetic field B generated by the sense current I flowing through the upper wiring layer 202 and the lower wiring layer 203 on the magnetization free layer 207 will be described with reference to FIG.
 ここで、上部配線層202および下部配線層203の厚みを5nm、磁化自由層207の厚みを3nm、絶縁層208の厚みを2nm、磁化固定層206の厚みを26nm、センス電流Iを1×10-11Aとし、センス電流Iが上部配線層202の最上面、および下部配線層の最下面(磁化自由層207から一番遠い面)を流れると仮定する。すると、磁化自由層207の中心には、上部配線層202を流れるセンス電流Iにより、3×10-10Tの磁束密度の磁気が作用し、下部配線層203を流れるセンス電流Iにより0.6×10-10Tの磁束密度の磁気が作用する。 Here, the thickness of the upper wiring layer 202 and the lower wiring layer 203 is 5 nm, the thickness of the magnetization free layer 207 is 3 nm, the thickness of the insulating layer 208 is 2 nm, the thickness of the magnetization fixed layer 206 is 26 nm, and the sense current I is 1 × 10. It is assumed that −11 A, and the sense current I flows through the uppermost surface of the upper wiring layer 202 and the lowermost surface of the lower wiring layer (the surface farthest from the magnetization free layer 207). Then, at the center of the magnetization free layer 207, magnetism with a magnetic flux density of 3 × 10 −10 T acts by the sense current I flowing through the upper wiring layer 202, and 0.6 by the sense current I flowing through the lower wiring layer 203. Magnetism with a magnetic flux density of × 10 −10 T acts.
 ここで、上部配線層202と下部配線層203を流れる電流は互いに平行であり、かつ同じ向きである。そのため、磁化自由層207の中心においてセンス電流Iにより発生する磁界Bは互いに打ち消し合い、2.4×10-10Tの磁界が残存することとなる。 Here, currents flowing through the upper wiring layer 202 and the lower wiring layer 203 are parallel to each other and in the same direction. Therefore, the magnetic fields B generated by the sense current I at the center of the magnetization free layer 207 cancel each other, and a 2.4 × 10 −10 T magnetic field remains.
 これは、脳磁(1×10-15~1×10-12T)や心磁(1×10-14~1×10-10T)と比較すると、大きな磁界であることがわかる。一方、本実施形態に係る磁気計測装置70は、センス電流Iが流れる方向を平行かつ同じ向きにするだけでは無く、磁化自由層7の中心から、上部配線層2および下部配線層3のセンス電流Iのまでの距離rを互いに等しくすることにより、上部配線層2を流れるセンス電流Iによって発生する磁界Bと、下部配線層3を流れるセンス電流Iによって発生する磁界Bとが磁化自由層7内で、逆向きの方向で、かつ、同じ強度で分布するため、センス電流Iにより発生する磁界Bを磁化自由層7内で弱め合わせることができる。そのため、脳磁や心磁といった生体磁気を計測対象の磁界とする場合であっても、上部配線層2および下部配線層3を流れるセンス電流Iによって発生する磁界Bの影響を磁化自由層7内でキャンセルすることができ、生体磁気といった微弱な磁気であったとしても正確に測定を行うことが可能となる。 It can be seen that this is a large magnetic field compared to the magnetoencephalogram (1 × 10 −15 to 1 × 10 −12 T) and the magnetocardiogram (1 × 10 −14 to 1 × 10 −10 T). On the other hand, the magnetic measuring device 70 according to the present embodiment not only makes the direction in which the sense current I flows parallel and the same direction, but also sense currents in the upper wiring layer 2 and the lower wiring layer 3 from the center of the magnetization free layer 7. By making the distances r to I equal to each other, the magnetic field B generated by the sense current I flowing through the upper wiring layer 2 and the magnetic field B generated by the sense current I flowing through the lower wiring layer 3 are within the magnetization free layer 7. Thus, the magnetic fields B generated by the sense current I can be weakened in the magnetization free layer 7 because they are distributed in opposite directions and with the same intensity. Therefore, even when biomagnetism such as brain magnetism or magnetocardiogram is used as the magnetic field to be measured, the influence of the magnetic field B generated by the sense current I flowing through the upper wiring layer 2 and the lower wiring layer 3 Thus, even if the magnetic field is weak, such as biomagnetism, the measurement can be performed accurately.
 (変形例1)
 次に、本実施形態に係る磁気計測装置70の変形例について説明する。図11は、本実施形態の変形例1に係る磁気計測装置80を示す模式図である。磁気計測装置80は、磁気抵抗素子1、上部配線層82、下部配線層83、上部層間配線84、および下部層間配線85を備えている。
(Modification 1)
Next, a modified example of the magnetic measurement device 70 according to the present embodiment will be described. FIG. 11 is a schematic diagram showing a magnetic measurement device 80 according to the first modification of the present embodiment. The magnetic measuring device 80 includes a magnetoresistive element 1, an upper wiring layer 82, a lower wiring layer 83, an upper interlayer wiring 84, and a lower interlayer wiring 85.
 磁気計測装置80の上部配線層82および下部配線層83は、前記実施形態4における図8に示した磁気計測装置50の上部配線層52および下部配線層53と略同一の形状を有している。上部層間配線84および下部層間配線85は、前記実施形態5における図10に示した磁気計測装置70の上部層間配線74および下部層間配線75と同様に、磁気抵抗素子1の磁化自由層7の中心点Oから上部配線層82および下部配線層83におけるセンス電流Iの流路までの距離rが互いに等しくなるように形成されている。 The upper wiring layer 82 and the lower wiring layer 83 of the magnetic measuring device 80 have substantially the same shape as the upper wiring layer 52 and the lower wiring layer 53 of the magnetic measuring device 50 shown in FIG. . The upper interlayer wiring 84 and the lower interlayer wiring 85 are the same as the upper interlayer wiring 74 and the lower interlayer wiring 75 of the magnetic measuring device 70 shown in FIG. The distance r from the point O to the flow path of the sense current I in the upper wiring layer 82 and the lower wiring layer 83 is formed to be equal to each other.
 磁気計測装置80をこのような構成としても、前記実施形態5に係る磁気計測装置70と同様の効果を得ることができる。 Even if the magnetic measuring device 80 has such a configuration, the same effect as the magnetic measuring device 70 according to the fifth embodiment can be obtained.
 (変形例2、3)
 図12は、本実施形態に係る磁気計測装置70の変形例を示す模式図であり、図12の(a)は、変形例2に係る磁気計測装置90を、図12の(b)は、変形例3に係る磁気計測装置100を示している。
(Modifications 2 and 3)
FIG. 12 is a schematic diagram showing a modification of the magnetic measurement device 70 according to the present embodiment. FIG. 12A shows the magnetic measurement device 90 according to the modification 2, and FIG. The magnetic measuring device 100 which concerns on the modification 3 is shown.
 変形例2に係る磁気計測装置90は、前記実施形態2における図2に示した磁気計測装置20と、略同一の構成を有している。つまり、磁気計測装置90は、磁気計測装置20の上部層間配線24の代わりに上部層間配線94を、下部層間配線25の代わりに下部層間配線95を備えている以外は、当該磁気計測装置20と同一である。 The magnetic measurement device 90 according to Modification 2 has substantially the same configuration as the magnetic measurement device 20 shown in FIG. That is, the magnetic measurement device 90 is similar to the magnetic measurement device 20 except that the magnetic measurement device 20 includes an upper interlayer wire 94 instead of the upper interlayer wire 24 and a lower interlayer wire 95 instead of the lower interlayer wire 25. Are the same.
 上部層間配線94および下部層間配線95は、磁気計測装置70の上部層間配線74および下部層間配線75と同様に、磁気抵抗素子1の磁化自由層7の中心点Oから上部配線層22および下部配線層23におけるセンス電流Iの流路までの距離rが互いに等しくなるように形成されている。 Similar to the upper interlayer wiring 74 and the lower interlayer wiring 75 of the magnetic measuring device 70, the upper interlayer wiring 94 and the lower interlayer wiring 95 are connected to the upper wiring layer 22 and the lower wiring from the center point O of the magnetization free layer 7 of the magnetoresistive element 1. The distance r to the flow path of the sense current I in the layer 23 is formed to be equal to each other.
 磁気計測装置90をこのような構成としても、前記実施形態5に係る磁気計測装置70と同様の効果を得ることができる。 Even if the magnetic measuring device 90 has such a configuration, the same effect as the magnetic measuring device 70 according to the fifth embodiment can be obtained.
 変形例3に係る磁気計測装置100は、前記実施形態3における図5に示した磁気計測装置30と、略同一の構成を有している。つまり、磁気計測装置100は、磁気計測装置30の上部層間配線34の代わりに上部層間配線104を、下部層間配線35の代わりに下部層間配線105を備えている以外は、当該磁気計測装置30と同一である。 The magnetic measurement device 100 according to Modification 3 has substantially the same configuration as the magnetic measurement device 30 shown in FIG. That is, the magnetic measuring device 100 is similar to the magnetic measuring device 30 except that the upper interlayer wiring 104 is provided instead of the upper interlayer wiring 34 of the magnetic measuring device 30 and the lower interlayer wiring 105 is provided instead of the lower interlayer wiring 35. Are the same.
 上部層間配線104および下部層間配線105は、前記実施形態5に係る磁気計測装置70の上部層間配線74および下部層間配線75と同様に、磁気抵抗素子1の磁化自由層7の中心点Oから上部配線層32および下部配線層33におけるセンス電流Iの流路までの距離rが互いに等しくなるように形成されている。 Similar to the upper interlayer wiring 74 and the lower interlayer wiring 75 of the magnetic measuring device 70 according to the fifth embodiment, the upper interlayer wiring 104 and the lower interlayer wiring 105 are located above the center point O of the magnetization free layer 7 of the magnetoresistive element 1. The distance r to the flow path of the sense current I in the wiring layer 32 and the lower wiring layer 33 is formed to be equal to each other.
 磁気計測装置100をこのような構成としても、前記実施形態5に係る磁気計測装置70と同様の効果を得ることができる。 Even if the magnetic measuring device 100 has such a configuration, the same effect as that of the magnetic measuring device 70 according to the fifth embodiment can be obtained.
 なお、前記変形例1~3の磁気計測装置80~100においても、磁化自由層7の中心から、上部配線層2のセンス電流Iの流路までの距離と、磁化自由層7の中心から下部配線層3のセンス電流Iの流路までの距離とは、必ずしも等しくなくてもよく、センス電流Iにより発生する磁界Bが、磁化自由層7の中心において逆向きかつ同程度の強度となり、互いに弱め合うような距離に設定されていればよい。 In the magnetic measuring devices 80 to 100 of the first to third modifications, the distance from the center of the magnetization free layer 7 to the flow path of the sense current I of the upper wiring layer 2 and the center of the magnetization free layer 7 to the lower part The distance to the flow path of the sense current I of the wiring layer 3 is not necessarily equal, and the magnetic field B generated by the sense current I is in the opposite direction at the center of the magnetization free layer 7 and has the same strength. It is sufficient that the distance is set so as to weaken each other.
 〔実施形態6〕
 本発明の他の実施形態について、図13~15に基づいて説明する。なお、説明の便宜上、前記実施形態にて説明した部材と同じ機能を有する部材については、同じ符号を付記し、その説明を省略する。
[Embodiment 6]
Another embodiment of the present invention will be described with reference to FIGS. For convenience of explanation, members having the same functions as those described in the embodiment are given the same reference numerals, and descriptions thereof are omitted.
 (磁気計測ユニット)
 図13の(a)は、本実施形態に係る磁気計測ユニット110を示す概略図であり、図13の(b)は、磁気計測ユニット110が備えるセル113の部分拡大図である。図13に示すように、磁気計測ユニット110は、行方向に伸びる複数の信号線111と列方向に伸びる複数の走査線112とが交差するように配置され、信号線111と走査線112とで囲まれる領域のそれぞれに複数個のセル113がアレイ状(格子状)に配置された略正方形のアクティブマトリクス基板で構成されている。
(Magnetic measurement unit)
FIG. 13A is a schematic view showing the magnetic measurement unit 110 according to the present embodiment, and FIG. 13B is a partially enlarged view of the cell 113 provided in the magnetic measurement unit 110. As shown in FIG. 13, the magnetic measurement unit 110 is arranged so that a plurality of signal lines 111 extending in the row direction and a plurality of scanning lines 112 extending in the column direction intersect with each other. A plurality of cells 113 are arranged in an array shape (lattice shape) in each of the enclosed regions, and are configured by a substantially square active matrix substrate.
 複数個のセル113のそれぞれは、複数個の磁気抵抗素子1が直列に接続された、磁気計測装置114と、基板の絶縁性表面上に形成された酸化物半導体からなるスイッチング素子115とを備える。 Each of the plurality of cells 113 includes a magnetic measuring device 114 in which a plurality of magnetoresistive elements 1 are connected in series, and a switching element 115 made of an oxide semiconductor formed on an insulating surface of the substrate. .
 磁気計測装置114の一端は、スイッチング素子115を介して走査線112に、他端は、信号線111に接続している。ここで、磁気計測装置114は、上述した磁気計測装置10、20、30、40、50、70、80、90、100のうちの何れかとする。 One end of the magnetic measurement device 114 is connected to the scanning line 112 via the switching element 115, and the other end is connected to the signal line 111. Here, the magnetic measurement device 114 is any one of the above-described magnetic measurement devices 10, 20, 30, 40, 50, 70, 80, 90, and 100.
 本実施形態に係る磁気計測ユニット110は、ある走査線112からの入力信号を活線状態とし、ある信号線111にセンス電流Iを供給することで、1つのセル113が選択され、当該セル113における磁気抵抗を測定することができる。このようにして、活線状態とする走査線112およびセンス電流Iを入力する信号線111を順次切り替えることで、それぞれのセル113における磁気抵抗を測定することができる。また、セル113は、格子状に配置されているため、磁気抵抗の値を2次元的に得ることができ、これにより、被測定対象の磁界の2次元的な分布を得ることが可能となる。 In the magnetic measurement unit 110 according to the present embodiment, an input signal from a certain scanning line 112 is in a live line state, and a sense current I is supplied to a certain signal line 111, so that one cell 113 is selected. Can be measured. In this manner, the magnetic resistance in each cell 113 can be measured by sequentially switching the scanning line 112 to be in a live line state and the signal line 111 to which the sense current I is input. In addition, since the cells 113 are arranged in a lattice shape, the value of the magnetoresistance can be obtained two-dimensionally, thereby obtaining a two-dimensional distribution of the magnetic field to be measured. .
 また、スイッチング素子115として、オフリーク特性に優れた酸化物半導体を用いることで、アレイ中の他のセル113からのリーク電流の影響を低減することができる。そのため、例えば、センス電流Iを1×10-12A以下の低電流にした場合でも、各セル113の磁気抵抗を計測することが可能となる。 In addition, by using an oxide semiconductor with excellent off-leakage characteristics as the switching element 115, the influence of leakage current from other cells 113 in the array can be reduced. Therefore, for example, even when the sense current I is set to a low current of 1 × 10 −12 A or less, the magnetic resistance of each cell 113 can be measured.
 なお、上述の実施形態では、スイッチング素子115として、オフリーク特性に優れた酸化物半導体素子を用いたが、センス電流Iが被測定対象の磁界に及ぼす影響を考慮した上で適用可能であるならば、他の半導体素子をスイッチング素子115として用いてもよい。 In the above-described embodiment, an oxide semiconductor element having excellent off-leakage characteristics is used as the switching element 115. However, if it can be applied in consideration of the influence of the sense current I on the magnetic field to be measured. Other semiconductor elements may be used as the switching element 115.
 (磁気計測システム、および磁気計測方法)
 次に、図14および図15に基づいて前記磁気計測ユニット110を備える磁気計測システム120、および磁気計測システム120を用いた磁気計測方法について説明する。
(Magnetic measurement system and magnetic measurement method)
Next, a magnetic measurement system 120 including the magnetic measurement unit 110 and a magnetic measurement method using the magnetic measurement system 120 will be described with reference to FIGS. 14 and 15.
 図14は、本実施形態に係る磁気計測システム120の構成要素を示すブロック図である。図14に示すように、磁気計測システム120は、磁気計測ユニット110と、電源121と、差分検出装置122と、磁気算出装置123とを備える。 FIG. 14 is a block diagram showing components of the magnetic measurement system 120 according to the present embodiment. As shown in FIG. 14, the magnetic measurement system 120 includes a magnetic measurement unit 110, a power source 121, a difference detection device 122, and a magnetic calculation device 123.
 電源121は、磁気計測ユニット110に接続され、磁気計測ユニット110のセル113に所定の大きさのセンス電流Iを印加する。 The power supply 121 is connected to the magnetic measurement unit 110 and applies a sense current I having a predetermined magnitude to the cell 113 of the magnetic measurement unit 110.
 差分検出装置122は、磁気計測ユニット110に接続されている。差分検出装置122は、被測定対象の磁界がない状態で磁気計測ユニット110にセンス電流Iが印加された場合の出力電圧である第1出力電圧と、被測定対象の磁界がある状態で磁気計測ユニット110にセンス電流Iが印加された場合の出力電圧である第2出力電圧とを計測し、第1出力電圧と、第2出力電圧との差分を検出する。 The difference detection device 122 is connected to the magnetic measurement unit 110. The difference detection device 122 performs magnetic measurement in the presence of the first output voltage, which is the output voltage when the sense current I is applied to the magnetic measurement unit 110 in the absence of the magnetic field to be measured, and the magnetic field to be measured. A second output voltage that is an output voltage when the sense current I is applied to the unit 110 is measured, and a difference between the first output voltage and the second output voltage is detected.
 磁気算出装置123は、差分検出装置122に接続され、差分検出装置122が検出した、第1出力電圧と第2出力電圧との差分を用いて被測定対象の磁界を算出する。 The magnetism calculation device 123 is connected to the difference detection device 122, and calculates the magnetic field of the measurement target using the difference between the first output voltage and the second output voltage detected by the difference detection device 122.
 図15は、磁気計測システム120を用いた磁気計測方法の流れを示すフローチャートである。まず、被測定対処の磁界が無い状態で、電源121によって、磁気計測ユニット110へ所定のセンス電流Iが印加される(S1)。差分検出装置122は、磁気計測ユニット110の出力電圧を測定し(S2)、第1出力電圧として記録する(S3)(第1ステップ)。次に、被測定対象の磁界が有る状態で、電源121によって、磁気計測ユニット110へ所定のセンス電流Iが印加され、(S4)、差分検出装置122は、磁気計測ユニット110の出力電圧を測定し(S5)、第2出力電圧として記録する(S6)(第2ステップ)。最後に、差分検出装置122が、第1出力電圧と第2出力電圧との差分を検出し、磁気算出装置123が当該差分を用いて被測定対象の磁界を算出する(S7)(第3ステップ)。 FIG. 15 is a flowchart showing a flow of a magnetic measurement method using the magnetic measurement system 120. First, a predetermined sense current I is applied to the magnetic measurement unit 110 by the power supply 121 in a state where there is no magnetic field to be measured (S1). The difference detection device 122 measures the output voltage of the magnetic measurement unit 110 (S2) and records it as the first output voltage (S3) (first step). Next, a predetermined sense current I is applied to the magnetic measurement unit 110 by the power source 121 in the state where the magnetic field to be measured is present (S4), and the difference detection device 122 measures the output voltage of the magnetic measurement unit 110. (S5) and recorded as the second output voltage (S6) (second step). Finally, the difference detection device 122 detects the difference between the first output voltage and the second output voltage, and the magnetic calculation device 123 calculates the magnetic field to be measured using the difference (S7) (third step) ).
 このように、本実施形態に係る磁気計測システム120、および磁気計測システム120を用いた磁気計測方法は、センス電流Iを所定値とすることで、センス電流Iによって発生する磁界Bを一定の値とすることができる。加えて、被測定対象の磁界が無く、センス電流Iにより発生する磁界Bが存在する場合の出力電圧を測定し、その後、被測定対象の磁界が有り、センス電流により発生する磁界Bも存在する場合の出力電圧を測定する。そのため、センス電流Iにより磁界Bの影響を加味することができ、被測定対象の磁界を正確に計測することが可能となる。 As described above, the magnetic measurement system 120 and the magnetic measurement method using the magnetic measurement system 120 according to the present embodiment set the sense current I to a predetermined value so that the magnetic field B generated by the sense current I is a constant value. It can be. In addition, the output voltage is measured when there is no magnetic field to be measured and there is a magnetic field B generated by the sense current I, and then there is a magnetic field to be measured and there is also a magnetic field B generated by the sense current. Measure the output voltage. Therefore, the influence of the magnetic field B can be taken into account by the sense current I, and the magnetic field to be measured can be accurately measured.
 なお、上述したすべての実施形態において、磁化自由層が磁化固定層の上方に配置されている例を示したが、磁気抵抗素子において、磁化自由層は磁化固定層の下方に配置されていてもよい。さらに、被測定対象の磁界は、生体磁気に限られるものでは無く、上述した磁気計測装置、磁気計測ユニット、磁気計測システム、および磁気計測方法は、磁気計測に幅広く用いる事が可能である。 In all the above-described embodiments, the example in which the magnetization free layer is disposed above the magnetization fixed layer has been described. However, in the magnetoresistive element, the magnetization free layer may be disposed below the magnetization fixed layer. Good. Furthermore, the magnetic field to be measured is not limited to biomagnetism, and the above-described magnetic measurement device, magnetic measurement unit, magnetic measurement system, and magnetic measurement method can be widely used for magnetic measurement.
 〔まとめ〕
 本発明の態様1に係る磁気計測装置10は、外部磁場により磁化の向きが変化する磁化自由層7、磁化の向きが固定された磁化固定層6、および前記磁化自由層7と前記磁化固定層6との間に配置された絶縁層8が積層された磁気抵抗素子1と、前記磁化自由層7に対して前記絶縁層8側とは反対側で対向する第1配線層(上部配線層2)と、前記磁化固定層6に対して前記絶縁層8側とは反対側で対向する第2配線層(下部配線層3)とを備え、前記磁気抵抗素子1に対して、前記第1配線層(上部配線層2)または前記第2配線層(下部配線層3)からセンス電流Iを流すことで磁気を計測する磁気計測装置10であって、前記第1配線層(上部配線層2)と前記磁化自由層7との間に第1層間配線(上部層間配線4)が垂設されると共に、前記第2配線層(下部配線層3)と前記磁化固定層6との間に第2層間配線(下部層間配線5)が垂設されている。
[Summary]
The magnetic measurement apparatus 10 according to the first aspect of the present invention includes a magnetization free layer 7 whose magnetization direction is changed by an external magnetic field, a magnetization fixed layer 6 whose magnetization direction is fixed, and the magnetization free layer 7 and the magnetization fixed layer. 6 and a magnetoresistive element 1 in which an insulating layer 8 disposed between the magnetoresistive element 1 and the magnetization free layer 7 is opposed to the insulating layer 8 side opposite to the first wiring layer (upper wiring layer 2). ) And a second wiring layer (lower wiring layer 3) facing the magnetization fixed layer 6 on the side opposite to the insulating layer 8 side, and the first wiring with respect to the magnetoresistive element 1 A magnetic measuring device 10 for measuring magnetism by flowing a sense current I from a layer (upper wiring layer 2) or the second wiring layer (lower wiring layer 3), the first wiring layer (upper wiring layer 2) When the first interlayer wiring (upper interlayer wiring 4) is provided between the magnetic free layer 7 and the magnetization free layer 7, , Second layer interconnects (lower interlayer wiring 5) is vertically between the second wiring layer (lower wiring layer 3) and the fixed magnetization layer 6.
 上記の構成によれば、第1配線層(上部配線層2)と磁化自由層7との間に第1層間配線(上部層間配線4)を、第2配線層(下部配線層3)と磁化固定層6との間に第2層間配線(下部層間配線5)を設けることで、第1配線層(上部配線層2)および第2配線層(下部配線層3)から磁化自由層7までの距離を遠くすることができる。これにより、センス電流Iにより発生する磁界Bの影響を低減し、微弱な磁界であっても正確に測定することが可能となる。 According to the above configuration, the first interlayer wiring (upper interlayer wiring 4) is interposed between the first wiring layer (upper wiring layer 2) and the magnetization free layer 7, and the second wiring layer (lower wiring layer 3) is magnetized. By providing the second interlayer wiring (lower interlayer wiring 5) between the fixed layer 6 and the first free wiring layer (upper wiring layer 2) and the second wiring layer (lower wiring layer 3) to the magnetization free layer 7. The distance can be increased. Thereby, the influence of the magnetic field B generated by the sense current I is reduced, and even a weak magnetic field can be measured accurately.
 本発明の態様2に係る磁気計測装置20は、上記態様1において、前記第1層間配線(上部層間配線24)が、当該第1層間配線(上部層間配線24)の重心を含む第1所定領域を通る第1直線が前記磁化自由層7の重心を含む第2所定領域を通るように配置され、前記重心を含む第1所定領域および第2所定領域はそれぞれ、前記磁化自由層7内において、磁束密度の分布に偏りが生じない範囲に設定されていてもよい。 The magnetic measurement apparatus 20 according to Aspect 2 of the present invention is the magnetic measurement apparatus 20 according to Aspect 1, wherein the first interlayer wiring (upper interlayer wiring 24) includes a center of gravity of the first interlayer wiring (upper interlayer wiring 24). Is arranged so as to pass through a second predetermined region including the center of gravity of the magnetization free layer 7, and the first predetermined region and the second predetermined region including the center of gravity are respectively in the magnetization free layer 7. The magnetic flux density distribution may be set in a range where no deviation occurs.
 上記の構成によれば、磁化自由層7に近い第1層間配線(上部層間配線24)を流れるセンス電流Iにより発生する磁界Bが、磁化自由層7内で対称的に分布する。そのため、第1層間配線(上部層間配線24)を流れるセンス電流Iにより発生する磁界Bの影響を低減することができる。 According to the above configuration, the magnetic field B generated by the sense current I flowing through the first interlayer wiring (upper interlayer wiring 24) close to the magnetization free layer 7 is distributed symmetrically in the magnetization free layer 7. Therefore, the influence of the magnetic field B generated by the sense current I flowing through the first interlayer wiring (upper interlayer wiring 24) can be reduced.
 本発明の態様3に係る磁気計測装置20は、上記態様2において、前記第2層間配線(下部層間配線25)は、当該第2層間配線(下部層間配線25)の重心を含む第3所定領域を通る第2直線が前記磁化自由層7の重心を含む第2所定領域を通るように配置され、前記重心を含む第3所定領域は、前記磁化自由層7内において磁束密度の分布に偏りが生じない範囲に設定されていてもよい。 In the magnetic measurement apparatus 20 according to Aspect 3 of the present invention, in the Aspect 2, the second interlayer wiring (lower interlayer wiring 25) is a third predetermined region including the center of gravity of the second interlayer wiring (lower interlayer wiring 25). Is arranged so that it passes through a second predetermined region including the center of gravity of the magnetization free layer 7, and the third predetermined region including the center of gravity is biased in the distribution of magnetic flux density in the magnetization free layer 7. It may be set in a range that does not occur.
 上記の構成によれば、第2層間配線(下部層間配線25)を流れるセンス電流Iにより発生する磁界Bが、磁化自由層7内で対称的に分布する。そのため、第2層間配線(下部層間配線25)を流れるセンス電流Iにより発生する磁界Bの影響を低減することができる。 According to the above configuration, the magnetic field B generated by the sense current I flowing through the second interlayer wiring (lower interlayer wiring 25) is distributed symmetrically in the magnetization free layer 7. Therefore, the influence of the magnetic field B generated by the sense current I flowing through the second interlayer wiring (lower interlayer wiring 25) can be reduced.
 本発明の態様4に係る磁気計測装置20は、上記態様3において、前記第1層間配線(上部層間配線24)および前記第2層間配線(下部層間配線25)は、前記第1直線と前記第2直線とが同一直線(直線L)上を通るように配置されていてもよい。 The magnetic measurement apparatus 20 according to Aspect 4 of the present invention is the magnetic measurement apparatus 20 according to Aspect 3, wherein the first interlayer wiring (upper interlayer wiring 24) and the second interlayer wiring (lower interlayer wiring 25) are the first straight line and the first interlayer wiring. Two straight lines may be arranged so as to pass on the same straight line (straight line L).
 上記の構成によれば、第1層間配線(上部層間配線24)、磁化自由層7、第2層間配線(下部層間配線25)、および磁化固定層6の重心を同一直線(直線L)上に配置することで、センス電流Iによって発生する磁界Bが磁化自由層7内で打ち消し合うように分布するため、センス電流Iによって発生する磁界Bの影響を低減することができる。 According to the above configuration, the centroids of the first interlayer wiring (upper interlayer wiring 24), the magnetization free layer 7, the second interlayer wiring (lower interlayer wiring 25), and the magnetization fixed layer 6 are on the same straight line (straight line L). By disposing, the magnetic field B generated by the sense current I is distributed so as to cancel each other out in the magnetization free layer 7, so that the influence of the magnetic field B generated by the sense current I can be reduced.
 本発明の態様5に係る磁気計測装置30は、上記態様2から4の何れかにおいて、少なくとも前記磁化自由層37が、前記センス電流Iが流れる向きと直交する方向の断面が円形または楕円形であってもよい。 The magnetic measurement device 30 according to aspect 5 of the present invention is the magnetic measurement apparatus 30 according to any one of the aspects 2 to 4, wherein at least the magnetization free layer 37 has a circular or elliptical cross section in a direction orthogonal to the direction in which the sense current I flows. There may be.
 上記の構成によれば、センス電流Iにより発生する磁界Bが、磁化自由層37内で対称かつ連続となる。そのため、センス電流Iがノイズ成分によって揺らいだとしても、ノイズ成分も含めて、センス電流Iによって発生する磁界Bの影響を緩和することができる。 According to the above configuration, the magnetic field B generated by the sense current I is symmetrical and continuous in the magnetization free layer 37. Therefore, even if the sense current I fluctuates due to the noise component, the influence of the magnetic field B generated by the sense current I including the noise component can be reduced.
 本発明の態様6に係る磁気計測装置40は、上記態様1から5の何れかにおいて、前記第1配線層(上部配線層2)に流れる前記センス電流Iと、前記第2配線層(下部配線層3)に流れる前記センス電流Iとが、向きが同じでかつ平行であってもよい。 The magnetic measurement device 40 according to Aspect 6 of the present invention is the magnetic measurement apparatus 40 according to any one of the Aspects 1 to 5, wherein the sense current I that flows in the first wiring layer (upper wiring layer 2) and the second wiring layer (lower wiring). The sense current I flowing in the layer 3) may be in the same direction and parallel.
 上記の構成によれば、第1配線層(上部配線層2)に流れるセンス電流Iにより発生する磁界Bと、第2配線層(下部配線層3)に流れるセンス電流Iにより発生する磁界Bが、磁化自由層7で打ち消し合うように分布する。これにより、センス電流Iにより発生する磁界Bの影響を低減することができる。 According to the above configuration, the magnetic field B generated by the sense current I flowing in the first wiring layer (upper wiring layer 2) and the magnetic field B generated by the sense current I flowing in the second wiring layer (lower wiring layer 3) are The magnetic free layers 7 are distributed so as to cancel each other. Thereby, the influence of the magnetic field B generated by the sense current I can be reduced.
 本発明の態様7に係る磁気計測装置70は、上記態様6において、前記磁化自由層7の積層方向の中心(中心点O)から前記第1配線層(上部配線層2)におけるセンス電流Iの流路までの距離rが、前記磁化自由層7の積層方向の中心(中心点O)から前記第2配線層(下部配線層3)におけるセンス電流Iの流路までの距離rに略等しくてもよい。 In the magnetic measurement apparatus 70 according to the seventh aspect of the present invention, the sense current I in the first wiring layer (upper wiring layer 2) from the center (center point O) in the stacking direction of the magnetization free layer 7 in the sixth aspect. The distance r to the flow path is substantially equal to the distance r from the center (center point O) in the stacking direction of the magnetization free layer 7 to the flow path of the sense current I in the second wiring layer (lower wiring layer 3). Also good.
 上記の構成によれば、第1配線層(上部配線層2)および第2配線層(下部配線層3)から磁化自由層7までの距離を略等しくすることで、磁化自由層7において、センス電流Iにより発生する磁界Bを互いに打ち消し合うように分布させることができる。 According to the above configuration, the distances from the first wiring layer (upper wiring layer 2) and the second wiring layer (lower wiring layer 3) to the magnetization free layer 7 are made substantially equal to each other in the magnetization free layer 7. The magnetic fields B generated by the current I can be distributed so as to cancel each other.
 本発明の態様8に係る磁気計測ユニット110は、上記態様1から7の何れかの磁気計測装置114と、スイッチング素子115とが接続されたセル113を複数個備え、前記セル113がアレイ状に配置されている。 A magnetic measurement unit 110 according to Aspect 8 of the present invention includes a plurality of cells 113 to which the magnetic measurement device 114 according to any one of Aspects 1 to 7 and a switching element 115 are connected, and the cells 113 are arranged in an array. Has been placed.
 上記の構成によれば、磁気計測装置114を備えるセル113をアレイ状に配置することで、磁界の分布を2次元的に測定することができる。 According to the above configuration, the magnetic field distribution can be measured two-dimensionally by arranging the cells 113 including the magnetic measurement device 114 in an array.
 本発明の態様9に係る磁気計測ユニットは、上記態様8において、前記スイッチング素子115が酸化物半導体素子であってもよい。 In the magnetic measurement unit according to aspect 9 of the present invention, in the aspect 8, the switching element 115 may be an oxide semiconductor element.
 上記の構成によれば、スイッチング素子115として、オフリーク特性に優れた酸化物半導体からなる酸化物半導体素子を用いることで、センス電流Iを低電流とすることが可能となり、センス電流Iにより発生する磁界の影響を低減することができる。 According to the above configuration, by using an oxide semiconductor element made of an oxide semiconductor having excellent off-leakage characteristics as the switching element 115, the sense current I can be reduced and generated by the sense current I. The influence of the magnetic field can be reduced.
 本発明の態様10に係る磁気計測システム120は、上記態様8または9の磁気計測ユニット110と、前記磁気計測ユニット110内の複数のセル113それぞれにセンス電流Iを印加する電源121と、被磁気計測対象の磁界が無いときに、前記電源121により前記セル113それぞれにセンス電流Iを印加することで、各セル113から計測される第1出力電圧と、前記被磁気計測対象の磁界が有るときに、前記電源121により前記セル113それぞれにセンス電流Iを印加することで、各セル113から計測される第2出力電圧との差分を検出する差分検出装置122と、前記差分検出装置122によって検出された差分を用いて、前記被磁気計測対象の磁気を算出する磁気算出装置123とを備える。 The magnetic measurement system 120 according to the tenth aspect of the present invention includes the magnetic measurement unit 110 according to the eighth or ninth aspect, a power supply 121 that applies a sense current I to each of the plurality of cells 113 in the magnetic measurement unit 110, When there is no magnetic field to be measured, when the power supply 121 applies a sense current I to each of the cells 113, the first output voltage measured from each cell 113 and the magnetic field to be measured are present. In addition, a difference detection device 122 that detects a difference from a second output voltage measured from each cell 113 by applying a sense current I to each of the cells 113 by the power supply 121 and detected by the difference detection device 122. And a magnetism calculation device 123 that calculates the magnetism of the measurement target.
 上記の構成によれば、差分検出装置122が、被測定対象の磁界が無い状態で、センス電流Iを流して出力電圧の測定を行う。そのため、センス電流I発生する磁界Bの影響を加味した測定を行うことができ、被測定対象の磁界を正確に計測することが可能となる。 According to the above configuration, the difference detection device 122 measures the output voltage by flowing the sense current I in the absence of the magnetic field to be measured. Therefore, it is possible to perform measurement taking into account the influence of the magnetic field B generated by the sense current I, and to accurately measure the magnetic field to be measured.
 本発明の態様11に係る磁気計測方法は、上記態様8または9に係る磁気計測ユニット110にセンス電流Iを流すことで被磁気計測対象の磁気を計測する磁気計測方法であって、前記被磁気計測対象の磁気が無いときに前記センス電流Iを流すことで第1出力電圧を計測する第1ステップと、前記被磁気計測対象の磁気が有るときに前記センス電流Iを流すことで第2出力電圧を計測する第2ステップと、前記被磁気計測対象の磁気を、前記第1ステップにおいて計測した第1出力電圧と前記第2ステップにおいて計測した第2出力電圧との差分を用いて算出する第3ステップとを含む。 The magnetic measurement method according to the eleventh aspect of the present invention is a magnetic measurement method for measuring the magnetism of a target to be measured by passing a sense current I through the magnetic measurement unit 110 according to the eighth or ninth aspect. A first step of measuring the first output voltage by passing the sense current I when there is no magnetism to be measured, and a second output by passing the sense current I when the magnetism to be measured is present. A second step of measuring a voltage; and a magnetism to be measured by using a difference between the first output voltage measured in the first step and the second output voltage measured in the second step. 3 steps.
 上記の方法によれば、上記磁気計測ユニット110と同様の効果を奏し、センス電流I発生する磁界Bの影響を加味した測定を行うことができ、被測定対象の磁界を正確に計測することが可能となる。 According to said method, there exists an effect similar to the said magnetic measurement unit 110, the measurement which considered the influence of the magnetic field B which the sense electric current I generate | occur | produces can be performed, and the magnetic field of to-be-measured object can be measured correctly. It becomes possible.
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。 The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope shown in the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments. Is also included in the technical scope of the present invention. Furthermore, a new technical feature can be formed by combining the technical means disclosed in each embodiment.
 本発明は、磁気を測定するための磁気計測装置に用いる事ができる。 The present invention can be used in a magnetic measuring device for measuring magnetism.
 1 磁気抵抗素子
 2 上部配線層(第1配線層)
 3 下部配線層(第2配線層)
 4、24 上部層間配線(第1層間配線)
 5、25 下部層間配線(第2層間配線)
 6 磁化固定層
 7、37 磁化自由層
 8 絶縁層
 10、20、30、40、70、114 磁気計測装置
 110 磁気計測ユニット
 113 セル
 115 スイッチング素子
 120 磁気計測システム
 121 電源
 122 差分検出装置
 123 磁気算出装置
 I センス電流
 B 磁界
 L 直線
 r 距離
 O 中心点
1 magnetoresistive element 2 upper wiring layer (first wiring layer)
3 Lower wiring layer (second wiring layer)
4, 24 Upper interlayer wiring (first interlayer wiring)
5, 25 Lower interlayer wiring (second interlayer wiring)
6 Magnetization fixed layer 7, 37 Magnetization free layer 8 Insulation layer 10, 20, 30, 40, 70, 114 Magnetic measurement device 110 Magnetic measurement unit 113 Cell 115 Switching element 120 Magnetic measurement system 121 Power supply 122 Difference detection device 123 Magnetic calculation device I sense current B magnetic field L straight line r distance O center point

Claims (11)

  1.  外部磁場により磁化の向きが変化する磁化自由層、磁化の向きが固定された磁化固定層、および前記磁化自由層と前記磁化固定層との間に配置された絶縁層が積層された磁気抵抗素子と、
     前記磁化自由層に対して前記絶縁層側とは反対側で対向する第1配線層と、
     前記磁化固定層に対して前記絶縁層側とは反対側で対向する第2配線層とを備え、
     前記磁気抵抗素子に対して、前記第1配線層または前記第2配線層からセンス電流を流すことで磁気を計測する磁気計測装置であって、
     前記第1配線層と前記磁化自由層との間に第1層間配線が垂設されると共に、前記第2配線層と前記磁化固定層との間に第2層間配線が垂設されていることを特徴とする磁気計測装置。
    Magnetoresistive element in which a magnetization free layer whose magnetization direction is changed by an external magnetic field, a magnetization fixed layer whose magnetization direction is fixed, and an insulating layer disposed between the magnetization free layer and the magnetization fixed layer are stacked When,
    A first wiring layer facing the magnetization free layer on the side opposite to the insulating layer;
    A second wiring layer facing the magnetization pinned layer on the side opposite to the insulating layer side,
    A magnetic measuring device that measures magnetism by flowing a sense current from the first wiring layer or the second wiring layer to the magnetoresistive element,
    A first interlayer wiring is suspended between the first wiring layer and the magnetization free layer, and a second interlayer wiring is suspended between the second wiring layer and the magnetization fixed layer. Magnetic measuring device characterized by.
  2.  前記第1層間配線は、当該第1層間配線の重心を含む第1所定領域を通る第1直線が前記磁化自由層の重心を含む第2所定領域を通るように配置され、
     前記重心を含む第1所定領域および第2所定領域はそれぞれ、
     前記磁化自由層内において、磁束密度の分布に偏りが生じない範囲に設定されていることを特徴とする請求項1に記載の磁気計測装置。
    The first interlayer wiring is arranged such that a first straight line passing through a first predetermined region including the center of gravity of the first interlayer wiring passes through a second predetermined region including the center of gravity of the magnetization free layer,
    Each of the first predetermined area and the second predetermined area including the center of gravity is
    The magnetic measurement apparatus according to claim 1, wherein the magnetic free density layer is set in a range in which the magnetic flux density distribution is not biased.
  3.  前記第2層間配線は、当該第2層間配線の重心を含む第3所定領域を通る第2直線が前記磁化自由層の重心を含む第2所定領域を通るように配置され、
     前記重心を含む第3所定領域は、前記磁化自由層内において磁束密度の分布に偏りが生じない範囲に設定されていることを特徴とする請求項2に記載の磁気計測装置。
    The second interlayer wiring is arranged such that a second straight line passing through a third predetermined region including the center of gravity of the second interlayer wiring passes through a second predetermined region including the center of gravity of the magnetization free layer,
    3. The magnetic measurement apparatus according to claim 2, wherein the third predetermined region including the center of gravity is set in a range in which the distribution of magnetic flux density is not biased in the magnetization free layer.
  4.  前記第1層間配線および前記第2層間配線は、前記第1直線と前記第2直線とが同一直線上を通るように配置されていることを特徴とする請求項3に記載の磁気計測装置。 4. The magnetic measuring apparatus according to claim 3, wherein the first interlayer wiring and the second interlayer wiring are arranged so that the first straight line and the second straight line pass on the same straight line.
  5.  少なくとも前記磁化自由層は、前記センス電流が流れる向きと直交する方向の断面が円形または楕円形であることを特徴とする請求項2から4の何れか1項に記載の磁気計測装置。 5. The magnetic measuring device according to claim 2, wherein at least the magnetization free layer has a circular or elliptical cross section in a direction orthogonal to a direction in which the sense current flows.
  6.  前記第1配線層に流れる前記センス電流と、前記第2配線層に流れる前記センス電流とは、向きが同じでかつ平行であることを特徴とする請求項1から5の何れか1項に記載の磁気計測装置。 6. The sense current flowing in the first wiring layer and the sense current flowing in the second wiring layer have the same direction and are parallel to each other. Magnetic measuring device.
  7.  前記磁化自由層の積層方向の中心から前記第1配線層におけるセンス電流の流路までの距離は、前記磁化自由層の積層方向の中心から前記第2配線層におけるセンス電流の流路までの距離に略等しいことを特徴とする請求項6に記載の磁気計測装置。 The distance from the center in the stacking direction of the magnetization free layer to the sense current flow path in the first wiring layer is the distance from the center in the stacking direction of the magnetization free layer to the sense current flow path in the second wiring layer. The magnetic measurement apparatus according to claim 6, wherein the magnetic measurement apparatus is substantially equal to
  8.  請求項1から7の何れか1項に記載の磁気計測装置と、スイッチング素子とが接続されたセルを複数個備え、
     前記セルがアレイ状に配置されていることを特徴とする磁気計測ユニット。
    A plurality of cells to which the magnetic measuring device according to any one of claims 1 to 7 and a switching element are connected,
    A magnetic measurement unit, wherein the cells are arranged in an array.
  9.  前記スイッチング素子は、酸化物半導体素子であることを特徴とする請求項8に記載の磁気計測ユニット。 The magnetic measurement unit according to claim 8, wherein the switching element is an oxide semiconductor element.
  10.  請求項8または9に記載の磁気計測ユニットと、
     前記磁気計測ユニット内の複数のセルそれぞれにセンス電流を印加する電源と、
     被磁気計測対象の磁界が無いときに、前記電源により前記セルそれぞれにセンス電流を印加することで、各セルから計測される第1出力電圧と、前記被磁気計測対象の磁界が有るときに、前記電源により前記セルそれぞれにセンス電流を印加することで、各セルから計測される第2出力電圧との差分を検出する差分検出装置と、
     前記差分検出装置によって検出された差分を用いて、前記被磁気計測対象の磁気を算出する磁気算出装置と、
    を備えたことを特徴とする磁気計測システム。
    A magnetic measurement unit according to claim 8 or 9,
    A power supply for applying a sense current to each of the plurality of cells in the magnetic measurement unit;
    When there is no magnetic field to be measured, when a sense current is applied to each of the cells by the power source, when there is a first output voltage measured from each cell and the magnetic field to be measured. A difference detection device that detects a difference from a second output voltage measured from each cell by applying a sense current to each of the cells by the power source;
    A magnetic calculation device that calculates the magnetism of the measurement target using the difference detected by the difference detection device;
    A magnetic measurement system comprising:
  11.  請求項8または9に記載の磁気計測ユニットにセンス電流を流すことで被磁気計測対象の磁気を計測する磁気計測方法であって、
     前記被磁気計測対象の磁気が無いときに前記センス電流を流すことで第1出力電圧を計測する第1ステップと、
     前記被磁気計測対象の磁気が有るときに前記センス電流を流すことで第2出力電圧を計測する第2ステップと、
     前記被磁気計測対象の磁気を、前記第1ステップにおいて計測した第1出力電圧と前記第2ステップにおいて計測した第2出力電圧との差分を用いて算出する第3ステップとを含むことを特徴とする磁気計測方法。
    A magnetic measurement method for measuring magnetism of a measurement target by passing a sense current through the magnetic measurement unit according to claim 8 or 9,
    A first step of measuring a first output voltage by passing the sense current when there is no magnetism to be measured;
    A second step of measuring a second output voltage by flowing the sense current when there is magnetism to be measured;
    And a third step of calculating the magnetism to be measured by using a difference between the first output voltage measured in the first step and the second output voltage measured in the second step. Magnetic measurement method.
PCT/JP2016/053033 2015-02-06 2016-02-02 Magnetic measuring device, magnetic measuring unit, magnetic measuring system, and magnetic measurement method WO2016125780A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016573371A JPWO2016125780A1 (en) 2015-02-06 2016-02-02 Magnetic measuring device, magnetic measuring unit, magnetic measuring system, and magnetic measuring method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015022569 2015-02-06
JP2015-022569 2015-02-06

Publications (1)

Publication Number Publication Date
WO2016125780A1 true WO2016125780A1 (en) 2016-08-11

Family

ID=56564121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053033 WO2016125780A1 (en) 2015-02-06 2016-02-02 Magnetic measuring device, magnetic measuring unit, magnetic measuring system, and magnetic measurement method

Country Status (2)

Country Link
JP (1) JPWO2016125780A1 (en)
WO (1) WO2016125780A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002109708A (en) * 2000-09-29 2002-04-12 Toshiba Corp Magneto resistive effect element, magnetic head and magnetic reproduction apparatus
JP2002270920A (en) * 2001-03-07 2002-09-20 Fujitsu Ltd Magnetic sensor, magnetic head, and magnetic recorder
JP2002314168A (en) * 2001-04-18 2002-10-25 Fujitsu Ltd Cpp structure electromagnetic transducer and its manufacturing method
JP2003004828A (en) * 2001-06-20 2003-01-08 Toyota Central Res & Dev Lab Inc Magnetic field distribution sensor
WO2006109382A1 (en) * 2005-03-14 2006-10-19 National University Corporation Okayama University Magnetic impedance measuring device
JP2015014520A (en) * 2013-07-05 2015-01-22 Tdk株式会社 Rotating magnetic field sensor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5688564B2 (en) * 2011-06-20 2015-03-25 パナソニックIpマネジメント株式会社 Electronic component mounting apparatus and work execution method for electronic component mounting

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002109708A (en) * 2000-09-29 2002-04-12 Toshiba Corp Magneto resistive effect element, magnetic head and magnetic reproduction apparatus
JP2002270920A (en) * 2001-03-07 2002-09-20 Fujitsu Ltd Magnetic sensor, magnetic head, and magnetic recorder
JP2002314168A (en) * 2001-04-18 2002-10-25 Fujitsu Ltd Cpp structure electromagnetic transducer and its manufacturing method
JP2003004828A (en) * 2001-06-20 2003-01-08 Toyota Central Res & Dev Lab Inc Magnetic field distribution sensor
WO2006109382A1 (en) * 2005-03-14 2006-10-19 National University Corporation Okayama University Magnetic impedance measuring device
JP2015014520A (en) * 2013-07-05 2015-01-22 Tdk株式会社 Rotating magnetic field sensor

Also Published As

Publication number Publication date
JPWO2016125780A1 (en) 2017-08-31

Similar Documents

Publication Publication Date Title
US11914008B2 (en) Magnetic sensor
US10734443B2 (en) Dual manetoresistance element with two directions of response to external magnetic fields
US9116198B2 (en) Planar three-axis magnetometer
US9176203B2 (en) Apparatus and method for in situ current measurement in a conductor
JP6965161B2 (en) Single-chip high-field X-axis linear reluctance sensor with calibration and initialization coils
JP6984792B2 (en) Magnetic sensor, magnetic sensor array, magnetic field distribution measuring device, and positioning device
JP2019120687A (en) Offset current sensor structure
JP6233722B2 (en) Magnetic field generator, magnetic sensor system, and magnetic sensor
KR100438059B1 (en) Plane magnetic sensor and plane magnetic sensor for multidimensional magnetic field analysis
JP2015135267A (en) current sensor
JP2017103378A (en) Magnetoresistance effect element, magnetic sensor, manufacturing method of magnetoresistance effect element, and manufacturing method of magnetic sensor
CN210665858U (en) Large-dynamic-range magnetic sensor assembly
US20200057121A1 (en) Magnetic field sensing device
WO2016125780A1 (en) Magnetic measuring device, magnetic measuring unit, magnetic measuring system, and magnetic measurement method
JP2012063232A (en) Method for manufacturing magnetic field detection apparatus, and magnetic field detection apparatus
US20220187247A1 (en) Magnetic sensor and inspection device
JP2019086290A (en) Magnetic sensor
US20110221435A1 (en) Magnetic sensor and magnetic balance type current sensor including the same
JP6423749B2 (en) Magnetic field detector
JP2018096895A (en) Magnetic field detection device
JP5432082B2 (en) Semiconductor device with current detector
JP6350841B2 (en) Magnetic field generator and magnetic sensor
JP6040523B2 (en) Power detection sensor
JP2012159309A (en) Magnetic sensor and magnetic sensor apparatus
JP5849654B2 (en) Current sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16746611

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016573371

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16746611

Country of ref document: EP

Kind code of ref document: A1