WO2016125250A1 - Medical electrostimulation electrode - Google Patents

Medical electrostimulation electrode Download PDF

Info

Publication number
WO2016125250A1
WO2016125250A1 PCT/JP2015/052955 JP2015052955W WO2016125250A1 WO 2016125250 A1 WO2016125250 A1 WO 2016125250A1 JP 2015052955 W JP2015052955 W JP 2015052955W WO 2016125250 A1 WO2016125250 A1 WO 2016125250A1
Authority
WO
WIPO (PCT)
Prior art keywords
elastic
linear
stimulation electrode
electrical stimulation
elastic member
Prior art date
Application number
PCT/JP2015/052955
Other languages
French (fr)
Japanese (ja)
Inventor
直輝 大高
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to JP2016572976A priority Critical patent/JP6438497B2/en
Priority to PCT/JP2015/052955 priority patent/WO2016125250A1/en
Publication of WO2016125250A1 publication Critical patent/WO2016125250A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode

Definitions

  • the present invention relates to a medical electrical stimulation electrode.
  • the medical electrical stimulation electrode includes a stimulation electrode part and an elastic member that presses the stimulation electrode part against the inner wall of the blood vessel.
  • the elastic member is folded when an external force is applied, and is inserted into the blood vessel together with the stimulation electrode portion in the folded state.
  • the elastic member expands.
  • the stimulation electrode portion is pressed against the inner wall of the blood vessel.
  • the elastic member is locked to the blood vessel.
  • 6,057,836 discloses a conductive lead body having a proximal end configured to connect to a pulse generator and at least one electrode configured to deliver an electrical pulse across a vessel wall (stimulation electrode).
  • a nerve stimulation lead including a distal end portion including a portion and a lead anchor (elastic member).
  • the lead anchor in the nerve stimulation lead is configured to expand from a folded shape to an expanded shape formed in advance.
  • the distal end portion of the nerve stimulation lead is coupled to the outside of the lead anchor.
  • the lead anchor presses the tip of the nerve stimulation lead against the blood vessel wall. As a result, the position of the tip of the nerve stimulation lead in the blood vessel is fixed.
  • the stimulation electrode unit In order to appropriately perform electrical stimulation, the stimulation electrode unit needs to be accurately positioned at a stimulation site that appropriately stimulates a stimulation target such as a nerve.
  • a stimulation target such as a nerve.
  • the nerve stimulation lead described in Patent Document 1 is disposed on the inner wall of a blood vessel, it can be disposed at the stimulation site by rotating within the blood vessel.
  • Patent Document 1 describes that the distal end portion of the nerve stimulation lead is rearranged by reintroducing a guide member such as a guide catheter or a guide wire into the blood vessel and folding the lead anchor. .
  • the radial pressing force acting on the inner wall of the blood vessel from the distal end portion and the lead anchor of the nerve stimulation lead becomes uneven in the circumferential direction of the inner wall of the blood vessel.
  • the reaction force acting on each part of the lead anchor from the inner wall of the blood vessel also varies. Accordingly, there is a concern that the portion of the lead anchor that receives an excessive reaction force changes with time during the indwelling period, and the pressing force on the blood vessel wall further decreases.
  • the present invention has been made in view of the above problems, and an object thereof is to provide a medical electrical stimulation electrode that can be stably placed in a blood vessel even when folding is repeated.
  • the electrical stimulation electrode for medical use is formed in a closed loop by bending a linear elastic body, and a connection end where both ends of the linear elastic body are connected, and the connection end And a pair of first linear parts extending from the linearly spaced apart elastic body, and ends of the pair of first linear parts extending in the extending direction.
  • An elastic support having a plurality of elastic members each formed with a second linear portion including at least one bent portion in the middle, and at least one of the plurality of elastic members for applying electrical stimulation through the inner wall of the blood vessel.
  • a stimulating electrode portion arranged in one piece, a wiring electrically connected to the stimulating electrode portion, a linear extension, and the connecting end portions of the plurality of elastic members are connected to a tip member, respectively, And a lead portion through which the wiring is inserted.
  • the elastic support member is engaged with the plurality of elastic members at the first linear portion. Accordingly, an opening surrounding the central axis is formed by the linear elastic body including the second linear part, which is formed in a bowl shape centering on the central axis of the tip member of the lead part. Also good.
  • the elastic support may be formed in a rotationally symmetric shape with the central axis as the axis of symmetry.
  • the bent portion is a V-shaped first convex in a direction away from the connecting end portion. You may provide a bending part.
  • the bent portion is a V-shaped second convex in a direction approaching the connecting end portion. You may provide a bending part.
  • each of the plurality of elastic members covers a linear core material and the core material. And a covering member to be provided.
  • the core material may be a super elastic wire.
  • the plurality of elastic members are arranged such that the stimulation electrode portion is disposed and the wiring is incorporated. 1 and a second elastic member that does not have the stimulation electrode portion and the wiring, and the bending rigidity of the core material in the first elastic member is determined by the core in the second elastic member. By making it lower than the bending rigidity of the material, the elastic restoring force generated in the radial direction when the elastic support is reduced by a certain amount may be equalized.
  • the plurality of core members provided in the plurality of elastic members have two or more types having different bending rigidity.
  • the elastic restoring force generated in the radial direction may vary depending on the position in the circumferential direction.
  • the medical electrical stimulation electrode of the present invention has an effect that it can be stably placed in a blood vessel even if folding is repeated.
  • FIG. 6 is a F view in FIG. 5. It is a D view in FIG. 4B. It is the E view in FIG. 4B.
  • FIG. 11A It is a typical top view which shows the structure of the stimulation electrode part of the medical electrical stimulation electrode of embodiment of this invention. It is HH sectional drawing in FIG. 9A. It is JJ sectional drawing in FIG. 9A. It is KK sectional drawing in FIG. It is a G view in FIG. FIG. 11B is an LL sectional view in FIG. 11A. It is a schematic diagram which shows the external appearance of a patient when the medical electrical stimulation electrode of embodiment of this invention is detained in the patient's body. It is a schematic diagram which shows the state which indwelled the medical electrical stimulation electrode of embodiment of this invention in the superior vena cava.
  • FIG. 14A It is a schematic diagram which shows the state of the deformation
  • FIG. 1 is a schematic configuration diagram showing a configuration of a medical electrical stimulation electrode according to an embodiment of the present invention.
  • FIG. 2A is a schematic front view showing the configuration of the elastic support of the medical electrical stimulation electrode according to the embodiment of the present invention.
  • FIG. 2B is a side view as viewed in A in FIG. 2A.
  • FIG. 3 is a schematic perspective view showing the configuration of the elastic member of the medical electrical stimulation electrode according to the embodiment of the present invention.
  • 4A is a plan view as viewed from B in FIG. 4B is a side view as seen from C in FIG. 4A.
  • FIG. 1 is a schematic configuration diagram showing a configuration of a medical electrical stimulation electrode according to an embodiment of the present invention.
  • FIG. 2A is a schematic front view showing the configuration of the elastic support of the medical electrical stimulation electrode according to the embodiment of the present invention.
  • FIG. 2B is a side view as viewed in A in FIG. 2A.
  • FIG. 3 is a schematic perspective view showing the configuration of
  • FIG. 5 is a schematic front view showing the configuration of an example of the elastic member of the medical electrical stimulation electrode according to the embodiment of the present invention.
  • FIG. 6 is an F view in FIG.
  • FIG. 7 is a view as viewed from D in FIG. 4B.
  • FIG. 8 is an E view in FIG. 4B.
  • FIG. 9A is a schematic plan view showing the configuration of the stimulation electrode portion of the medical electrical stimulation electrode according to the embodiment of the present invention.
  • FIG. 9B is a cross-sectional view taken along line HH in FIG. 9A.
  • 10A is a cross-sectional view taken along line JJ in FIG. 9A.
  • 10B is a cross-sectional view taken along the line KK in FIG.
  • FIG. 11A is a G view in FIG.
  • FIG. 11B is a cross-sectional view taken along line LL in FIG. 11A.
  • An electrical stimulation system 100 shown in FIG. 1 is a system that applies electrical stimulation to surrounding nerve tissue through the inner wall of a blood vessel.
  • the electrical stimulation system 100 is inserted into a patient's blood vessel and left in place for a certain period.
  • the electrical stimulation system 100 is different from a system that performs nerve stimulation over a long period of time by implanting the entire system in the body.
  • the electrical stimulation system 100 is suitable for performing nerve stimulation for a short period of time.
  • the electrical stimulation system 100 includes the medical electrical stimulation electrode 1 of the present embodiment and the electrical stimulation device 8.
  • the medical electrical stimulation electrode 1 stimulates a nerve from within a blood vessel.
  • the electrical stimulation device 8 applies a stimulation pulse to the medical electrical stimulation electrode 1.
  • the medical electrical stimulation electrode 1 includes stimulation electrodes 21 and 22 (stimulation electrode portion), a lead portion 3, and an elastic support body 2.
  • the stimulation electrodes 21 and 22 apply electrical stimulation through the inner wall of the blood vessel.
  • the lead portion 3 is formed in a linear shape and passes through a wiring (not shown) electrically connected to the stimulation electrodes 21 and 22.
  • the elastic support 2 is connected to the tip member 3 b of the lead portion 3.
  • the medical electrical stimulation electrode 1 is introduced into a patient's blood vessel with the lead portion 3 inserted through a tubular guide sheath 7.
  • the distal end (front end portion) and the rear end (rear end portion) in the insertion direction with respect to the blood vessel of the patient are simply referred to as “front end”. (Front end) "and" rear end (rear end) ".
  • the elastic support body 2 When the elastic support body 2 reaches the indwelling position, the elastic support body 2 is pushed into the blood vessel from the distal end of the guide sheath 7. The elastic support 2 expands when pushed out, as will be described later. Thereby, the elastic support body 2 contacts the inner wall of the patient's blood vessel. The elastic support 2 is placed in the patient's blood vessel.
  • an antithrombotic coating is applied to a surface that comes into contact with blood on a member or a part inserted into a blood vessel of a patient in order to suppress thrombus generation.
  • a tube made of polyurethane or polyamide can be used as the guide sheath 7.
  • the dimensions of the tubular portion of the guide sheath 7 in the present embodiment are an outer diameter of 2.8 mm, an inner diameter of 2 mm, and a length of 300 mm.
  • a branch portion 7 b is provided at the rear end portion of the guide sheath 7.
  • a liquid feeding pipe 6 is connected to the side of the branch part 7b.
  • the liquid feeding tube 6 communicates with a conduit formed inside the guide sheath 7.
  • the liquid feeding tube 6 can continuously administer a drug solution such as heparin, which is an antithrombotic agent, into the guide sheath 7.
  • a seal part 7a made of an O-ring or the like is provided inside the branch part 7b.
  • the lead portion 3 is inserted through the seal portion 7a.
  • the seal portion 7 a maintains water tightness between the pipe line in the guide sheath 7 and the lead portion 3.
  • a connector 6a is provided at the end of the liquid feeding pipe 6 opposite to the branching portion 7b.
  • a liquid feeding means (not shown), for example, a luer lock connector for connecting a syringe piston pump or the like can be adopted.
  • the lead portion 3 includes a lead tube 3a that is a flexible tubular member. At both ends of the lead tube 3a, a hard tip member 3b and a hard branch part 3c to which the liquid feeding pipe 5 is connected are provided. The tip member 3 b is disposed at the first end that is the tip of the lead portion 3.
  • a wiring portion 3d is inserted into the lead tube 3a. The wiring part 3d is electrically connected to the stimulation electrodes 21 and 22. The wiring part 3d extends to the outside from the opening of the branch part 3c.
  • a connector 3e that is electrically connected to the electrical stimulation device 8 is coupled to the end of the wiring portion 3d in the extending direction. As the connector 3e, for example, a known IS1 type connector can be employed.
  • the lead tube 3a for example, a resin tube having an outer diameter of 1 mm to 3 mm and a total length of about 500 mm can be employed.
  • the resin used for the lead tube 3a is not particularly limited.
  • a polyurethane tube having excellent biocompatibility can be adopted as the lead tube 3a.
  • the outer diameter of the lead tube 3a is smaller than the inner diameter of the guide sheath 7 so that a gap is formed between the inner diameter of the guide sheath 7 and the guide sheath 7 can be fitted to the seal portion 7a of the guide sheath 7 so as to be able to advance and retract.
  • the outer diameter of the lead tube 3a is preferably about 2.5 mm.
  • the tip member 3 b is a tubular part that connects the elastic support 2.
  • the tip member 3b is connected to the tip of the lead tube 3a.
  • An engagement hole 3f extending toward the rear end is formed at the center of the front end of the front end member 3b.
  • the engagement hole 3f engages a converging portion 27 described later of the elastic support 2.
  • As the hole shape of the engagement hole 3f an appropriate shape capable of engaging the converging portion 27 around the central axis O can be adopted.
  • the engagement hole 3f is a hexagonal hole.
  • the hole center of the engagement hole 3f is coaxial with the central axis O.
  • the outer diameter of the tip member 3b is substantially the same (including the same case) as the outer diameter of the lead tube 3a.
  • the step on the outer peripheral surface of the tip member 3b is not less than 0 mm and not more than 0.2 mm. For this reason, the distal end member 3b can be inserted into the guide sheath 7 at the distal end portion of the guide sheath 7 so as to be able to advance and retract.
  • the tip member 3b is made of a titanium alloy.
  • As the hole shape of the engagement hole 3f a hexagonal hole is adopted corresponding to the outer shape of the converging portion 27 described later.
  • the lead portion 3 is inserted through the seal portion 7a at the rear end portion of the guide sheath 7 so as to be able to advance and retreat.
  • the rear end portion of the lead portion 3 is exposed to the outside of the guide sheath 7 through the seal portion 7a.
  • the branch portion 3 c is provided at the rear end portion of the lead portion 3 exposed to the outside of the guide sheath 7.
  • the liquid feeding pipe 5 communicates with a pipe line (not shown) in the lead portion 3.
  • the liquid feeding tube 5 can supply, for example, a chemical solution such as heparin, which is an antithrombotic agent, into the lead portion 3.
  • a discharge port (not shown) is formed at the tip of the lead part 3.
  • the drug solution supplied into the lead portion 3 through the liquid feeding tube 5 can be continuously administered into the blood vessel through emitted light (not shown).
  • a connector 5 a is provided at the end of the liquid feeding pipe 5 opposite to the lead portion 3.
  • a liquid feeding means for example, a luer lock connector for connecting a syringe piston pump or the like can be adopted.
  • the elastic support 2 includes elastic members 20A, 20B, and 20C that are formed in a closed loop by bending a linear elastic body.
  • the elastic members 20A, 20B, and 20C are formed in a bowl shape centered on a central axis O that is obtained by extending the central axis of the tip member 3b to the tip side.
  • the elastic members 20A, 20B, and 20C are combined while being shifted in the circumferential direction, and are formed in a bowl shape having rotational symmetry about the central axis O.
  • the circumferential direction is a direction around the central axis O.
  • the end (end portion) of the elastic support 2 connected to the lead portion 3 is referred to as a base end (base end portion) of the elastic support 2.
  • the end (end) opposite to the base end (base end) of the elastic support 2 is referred to as the tip (tip) of the elastic support 2.
  • an end (end part) close to the tip of the elastic support 2 is a tip (tip part) of each part, and an end (end part) close to the base end of the elastic support 2 is a base of each part. It is called the end (base end).
  • the elastic members 20 ⁇ / b> A, 20 ⁇ / b> B, and 20 ⁇ / b> C that are adjacent to each other in the circumferential direction are fixed by an elastic member fixing portion 34 (a knot portion) at an intermediate portion near the tip.
  • the base end portions of the elastic members 20A, 20B, and 20C are all bundled and fixed to form a converging portion 27 (nodule portion).
  • the outer shape of the elastic support 2 proceeds from the tip member 3b of the lead portion 3 toward the tip of the elastic support 2 along the central axis O (the left side in FIG. 2A). As the diameter gradually increases, the diameter becomes substantially constant, and further toward the tip, the diameter decreases.
  • the maximum outer diameter of the elastic support 2 is larger than the inner diameter of the blood vessel so that the inner wall of the blood vessel can be pressed in the blood vessel in which the elastic support 2 is placed.
  • the elastic support 2 is elastically deformable, but will be described below in a natural state unless otherwise specified.
  • the natural state of the elastic support 2 is an assembled state in which deformation is negligible even if an external force does not act or acts. Since the elastic support 2 is lightweight, deformation due to its own weight can be ignored within the scope of the following description.
  • the direction along the central axis O is the axial direction
  • the direction around the central axis O is the circumferential direction
  • the central axis O intersects the central axis O in a plane orthogonal to the central axis O.
  • the direction along the line is referred to as the radial direction.
  • the side closer to the distal end member 3b may be referred to as the proximal end side
  • the side farther from the distal end member 3b may be referred to as the distal end side.
  • a direction away from the central axis O may be referred to as a radial outer side (outer side), and a direction approaching the central axis O may be referred to as a radial inner side (inner side).
  • the elastic members 20A, 20B, and 20C have the same shape except that the stimulation electrodes 21 and 22 are disposed only on the elastic member 20A.
  • the shape of the elastic member 20A will be described, and the description of the elastic members 20B and 20C will be omitted by attaching a common reference numeral consisting of “numerals + lowercase letters” to the same shape portion. .
  • the subscripts A, B, and C are added after the lowercase letter of this symbol.
  • the connecting end 20aB (20aC) in the elastic member 20B (20C) refers to a portion having the same shape as the connecting end 20aA in the elastic member 20A.
  • the elastic member 20A is formed in a closed loop shape by bending a single linear elastic body.
  • the closed loop shape of the elastic member 20A is three-dimensional.
  • unit is demonstrated.
  • the natural state of the elastic member 20A alone is a state in which deformation is negligible even if an external force does not act or acts. As shown in FIG.
  • the elastic member 20 ⁇ / b> A includes a connecting end portion 20 a ⁇ / i> A, a base end side linear portion 20 b ⁇ / i> A (first linear portion) from the first end portion E ⁇ b> 1 of the linear elastic body toward the second end portion E ⁇ b> 2.
  • the bent portion 33fA first linear portion
  • the second linear portion 20cA the bent portion 33hA (first linear portion)
  • the proximal end linear portion 20dA first linear portion
  • connecting end portion 20eA are provided in this order.
  • the connecting end portions 20aA and 20eA are portions for fixing the elastic member 20A to the converging portion 27 described later and engaging the tip member 3b via the converging portion 27.
  • the connecting end portions 20aA and 20eA are each linearly extended along the first axis O1.
  • the connecting end portions 20aA and 20eA are arranged in parallel and close to each other across the first axis O1.
  • the coupling end portions 20aA and 20eA are engaged with the tip member 3b via the converging portion 27 so that the central axis O and the first axis O1 are coaxial.
  • the method for fixing the connecting end portions 20aA and 20eA and the converging portion 27 is not particularly limited.
  • the fixing method of the connecting end portions 20aA and 20eA and the converging portion 27 can be appropriately selected according to the material of the converging portion 27.
  • adhesion, welding, caulking, or the like can be adopted as a method for fixing the connecting end portions 20aA, 20eA and the converging portion 27.
  • the proximal end side linear portions 20bA and 20dA are U-shaped portions extending as a whole from the distal ends of the connecting end portions 20aA and 20eA.
  • the proximal end side linear portions 20bA and 20dA are disposed on a plane S2 including the first axis O1 and passing through the central axes of the coupling end portions 20aA and 20eA.
  • the proximal side linear portions 20bA and 20dA are symmetrical with respect to the first axis O1 in the plane S2. That is, as shown in FIG. 4A, the base-side linear portions 20bA and 20dA are inclined toward the distal end side (the left side in the drawing in FIG.
  • the proximal end side linear portions 20bA and 20dA are gradually separated from the first axis O1 toward the distal end side.
  • the proximal end side linear portions 20bA and 20dA are substantially parallel to the first axis O1 (including the parallel case) at the respective distal end portions.
  • the proximal-side linear portion 20bA (20dA) can be configured by a curved portion, a broken line portion, or a combination of the curved portion and the broken line portion that protrudes in a direction away from the first axis O1.
  • the shape of the proximal-side linear portion 20bA (20dA) adopts a curved shape in which the average change rate of the inclination with respect to the first axis O1 varies between the proximal end portion and the distal end portion.
  • the average change rate of the inclination with respect to the first axis O1 is larger in the proximal side region b1 (d1) of the proximal side linear portion 20bA (20dA) than in the distal side region b2 (d2). .
  • the change in curvature in the path from the base end region b1 (d1) to the second linear portion 20cA may be continuous or discontinuous.
  • the curvature at the boundary between the first linear portion 20cA and the second linear portion 20cA may be continuous or discontinuous.
  • the curvature and direction at the distal end portions of the proximal end linear portions 20bA and 20dA can be appropriately set in consideration of the deformation state in the blood vessel at the indwelling position and the pressing force against the inner wall of the blood vessel.
  • the base end side linear portions 20bA and 20dA adopt a shape that is inclined so as to be separated from each other toward the tip. For this reason, the distal ends of the base end side linear portions 20bA and 20dA are most separated in the direction perpendicular to the first axis O1 in the natural state.
  • the bent portion 33hA is formed in a U-shape between the distal end of the proximal end side linear portion 20dA and the proximal end of a second linear portion 20cA described later.
  • the bent portion 33hA protrudes on the opposite side to the second linear portion 20cA with respect to the plane S2.
  • the “U-shape” is not limited to a shape in which two parallel straight portions are connected by an arcuate curved portion.
  • the two straight portions may be parallel to each other non-parallel.
  • the bending portion may be curved with a curve other than the arc.
  • the bending portion may be constituted by a broken line made of a straight line or a curved line.
  • the curved portion may be replaced with a straight portion.
  • the shape composed of one straight line portion bent at the ends of two straight line portions is also “U-shaped”.
  • the bent portion 33hA of the present embodiment includes a first portion h1, a second portion h2, and a third portion h3.
  • the first portion h1 is a linear portion that is bent at the tip of the proximal end linear portion 20dA.
  • the first portion h1 may be linear or curved.
  • the first portion h1 is linear as an example.
  • An example of the bending angle ⁇ 1 of the first portion h1 can be in the range of 90 ° ⁇ 30 °.
  • the length of the first portion h ⁇ b> 1 is longer than the longitudinal direction of the stimulation electrode 22. Examples of the length of the first portion h1 include 4.5 mm or more and 7.0 mm or less.
  • the bending angle ⁇ 1 is a smaller angle (an angle measured in the bending) among the angles formed by the first portion h1 and the distal end portion of the proximal end linear portion 20dA.
  • the second portion h2 is a linear portion that is bent at the tip in the protruding direction of the first portion h1.
  • the second portion h2 extends in parallel to the plane S2 at a position (see FIG. 4A) that is on the extension line of the proximal end side linear portion 20dA when viewed from the normal direction of the plane S2.
  • the second portion h2 may be linear or curved.
  • the second portion h2 is linear as an example. Examples of the length of the second portion h2 include 3.0 mm or more and 7.0 mm or less.
  • the third portion h3 is a linear portion that is bent at the distal end in the extending direction of the second portion h2 and connected to the base end of the second linear portion 20cA described later.
  • the third portion h3 may be linear or curved.
  • the third portion h3 is linear as an example.
  • Examples of the bending angle ⁇ 2 of the third portion h3 include a range of 90 ° ⁇ 30 ° (range of 60 ° or more and 120 ° or less).
  • the bending angle ⁇ 2 is a smaller angle (an angle measured in the bending) among the angles formed by the third portion h3 and the second portion h2.
  • the tip of the third portion h3 is located on the plane S2 in the present embodiment.
  • the connecting portion between the third portion h3 and the second linear portion 20cA is drawn to be bent.
  • whether or not the connection portion is bent as shown in the drawing is determined by the bending angle ⁇ 2 and the angle ⁇ with respect to the plane S2 of the second linear portion 20cA described later. It is not essential that the connecting portion bends.
  • the base end portion of the second linear portion 20cA described later is seen from the direction along the first axis O1 (see FIG.
  • the plane S1 is a plane that includes the first axis O1 and is orthogonal to the plane S2.
  • the base end portion of the second linear portion 20cA is inclined inward (near the center in FIG. 4B) by an angle ⁇ with respect to the normal line of the plane S2. Further, when viewed from the direction along the normal line of the plane S2 (see FIG. 4A), the base end portion of the second linear portion 20cA is bent in the direction toward the plane S1 toward the distal end side.
  • the distal end portion of the third portion h3 and the proximal end portion of the second linear portion 20cA are bent in a V shape when viewed as a three-dimensional shape. ing. Further, the distal end portion of the third portion h3 and the proximal end portion of the second linear portion 20cA are bent even when viewed along the normal line of the plane S2.
  • a bent portion formed by the distal end portion of the third portion h3 and the proximal end portion of the second linear portion 20cA is hereinafter referred to as a bent portion 20hA.
  • the stimulation electrode 22 is disposed on the first portion h1.
  • a stimulation electrode 21 is disposed on the third portion h3.
  • the stimulation electrode 22 is disposed at an intermediate portion of the first portion h1 so that the longitudinal direction thereof is along the central axis direction of the first portion h1.
  • a part of the stimulation electrode 22 is exposed on the surface that is radially outward with respect to the first axis O1.
  • the stimulation electrode 21 is disposed at an intermediate portion of the third portion h3 so that the longitudinal direction thereof is along the central axis direction of the third portion h3.
  • a part of the stimulation electrode 21 is exposed on the surface that is radially outward with respect to the first axis O1.
  • the position of the stimulation electrode 22 (21) in the central axis direction in the first portion h1 (third portion h3) is not particularly limited as long as electrical stimulation can be applied to the nerve tissue to be stimulated.
  • a stimulation electrode may be installed in the second portion h2 in FIG. 5, and another stimulation electrode may be installed in the second portion h2 of the bent portion 33fA described later.
  • the stimulation electrode when each stimulation electrode is inserted into the blood vessel, the stimulation electrode can be arranged in parallel with the running of the vagus nerve P6. Moreover, it can arrange
  • the detailed configuration of the stimulation electrodes 21 and 22 will be described after the elastic member 20A is further described.
  • bent portion 33hA has been described above.
  • the bent portion 33hB (33hC) of the elastic member 20B (20C) is configured in the same manner as the bent portion 33hA, except that the stimulation electrodes 21 and 22 are omitted.
  • the bent portion 33fA of the elastic member 20A will be described. As shown in FIG. 8, the bent portion 33fA is formed in a U-shape between the distal end of the proximal end side linear portion 20bA and the proximal end of a second linear portion 20cA described later. Similar to the bent portion 33hA, the bent portion 33fA protrudes on the opposite side to the second linear portion 20cA with respect to the plane S2.
  • the bent portion 33fA of the present embodiment includes a first portion f1, a second portion f2, and a third portion f3.
  • the outer shape of the bent portion 33fA may be different from the bent portion 33hA provided at a position facing the plane S1 (see FIG. 3).
  • the outer shape of the bent portion 33fA is plane-symmetric with the bent portion 33hA with respect to the plane S1. That is, the first part f1, the second part f2, and the third part f3 have the same outer shape as the first part h1, the second part h2, and the third part h3 in the bent part 33hA, respectively.
  • a bent portion 20fA similar to the bent portion 20hA is formed by the tip portion of the third portion h3 and the second linear portion 20cA.
  • the stimulation electrodes 21 and 22 are not arranged in the bent portion 33fA.
  • the tip of the third portion h3 of the bent portion 33hA and the tip of the third portion f3 of the bent portion 33fA are located on the third axis O3 orthogonal to the first axis O1 on the plane S2.
  • bent portion 33fA has been described above. As shown in FIG. 8, the bent portion 33fB (33fC) of the elastic member 20B (20C) is configured similarly to the bent portion 33fA.
  • the base end side linear portion 20d and the bent portion 33h, and the base end side linear portion 20b and the bent portion 33f described above are a pair in which linear elastic bodies are extended away from the connecting end portions 20a and 20e, respectively. 1st linear part is comprised.
  • the second linear portion 20cA is a portion that is connected at both ends to the ends of the extending direction of the pair of first linear portions and includes at least one bent portion in the middle between both ends. As shown in FIGS. 5 and 8, in the present embodiment, the second linear portion 20cA gradually moves away from the plane S2 from the tip of the third portions f3 and h3 in the bent portions 33fA and 33hA toward the tip side. It is extended in an oblique direction. As shown in FIG. 4A, the second linear portion 20cA is curved in a convex shape projecting toward the tip as a whole.
  • the second linear portion 20cA can be configured by a curved portion, a broken line portion, or a combination of the curved portion and the broken line portion that protrudes in a direction away from the third axis O3.
  • the shape of the second linear portion 20cA is formed in a C shape or a mountain shape that is plane-symmetric with respect to the plane S1.
  • the second linear portion 20cA is inclined toward the plane S1 from the tip of the third portion f3 (h3) of the bent portion 33fA (33hA) in the proximal region c1 (c3) close to the bent portion 33fA (33hA). It is extended in the shape of a curve or a straight line.
  • a bent portion 20kA in which the linear linear portion is bent at the top portion 20gA is formed at the center of the distal end side region c2 between the proximal end side regions c1 and c3. .
  • the top portion 20gA is located on the plane S1.
  • the bent portion 20kA constitutes a V-shaped first bent portion that is convex in a direction away from the connecting end portions 20aA and 20eA.
  • the bending angle of the bent portion 20kA is ⁇ 3.
  • the bending angle ⁇ 3 may be an obtuse angle or an acute angle. Examples of the bending angle ⁇ 3 include a range of 5 ° to 120 °. Within the bend of the bent portion 20 kA, there may be a curvature with a radius of curvature of 5 mm or less formed for processing convenience.
  • the shape of the distal end side region c2 excluding the bent portion 20kA may be a curved shape or a linear shape.
  • the shape of the distal end side region c2 excluding the bent portion 20kA is, for example, a curved shape protruding outward in the radial direction with respect to the first axis O1.
  • the plane S3 is a virtual plane that includes the third axis O3 and intersects the plane S2 at an angle ⁇ .
  • the angle ⁇ may be, for example, 5 ° or more and 90 ° or less.
  • the bent portion 20kA is inclined by an angle ⁇ 2 closer to the plane S2 than the plane S3.
  • the angle ⁇ 2 may be an angle at which each apex 20gA contacts the inner wall of the blood vessel in a deformed state in which the elastic support 2 is inserted into the blood vessel.
  • the angle ⁇ 2 may be an angle at which each apex 20gA does not contact the inner wall of the blood vessel.
  • the magnitude of the angle ⁇ 2 can be, for example, 5 ° or more and 90 ° or less.
  • bent portions 20jA are formed at the connection portions between the base end portion of the bent portion 20kA and the second linear portion 20cA excluding the bent portion 20kA.
  • the angle ⁇ 2 may be 0 ° or an angle inclined to the opposite side with respect to the plane S3.
  • the top portion 20gA is strongly pressed against the inner wall of the blood vessel.
  • the entire outer shape of the elastic member 20A is symmetrical with respect to the plane S1.
  • the elastic member 20A As shown in FIGS. 9A and 9B, in the elastic member 20A, the outer peripheral surface of the wire 23X (core material), which is a linear elastic body, is covered with an outer covering 26 (covering member).
  • the wire 23X an appropriate metal wire that hardly causes plastic deformation can be adopted.
  • the metal wire suitable as the wire 23X include a shape memory alloy and a superelastic wire.
  • the cross-sectional shape in a direction orthogonal to the longitudinal direction of the wire 23X (hereinafter simply referred to as a cross-sectional shape) is not particularly limited.
  • a rectangular cross section or a circular cross section can be employed.
  • the cross-sectional shape of the wire 23X include, for example, a square cross section or a rectangular cross section with a side length of 0.1 mm to 0.3 mm, and a circular cross section with a diameter of 0.1 mm to 0.3 mm. be able to.
  • the cross-sectional shape of the wire 23X is a square.
  • the wire 23X employs a superelastic wire of 0.27 mm ⁇ 0.27 mm as an example.
  • the outer covering 26 is a covering member that forms the outermost peripheral surface of the elastic member 20 ⁇ / b> A except for the exposed portions of the stimulation electrodes 21 and 22. Therefore, when the outer covering 26 is introduced into the blood vessel, the outer peripheral surface comes into contact with blood, a living tissue such as the inner wall of the blood vessel. For this reason, the outer covering 26 is formed of an insulating material that can be deformed together with the wire 23X and is excellent in biocompatibility. The surface of the outer coating 26 is formed smoothly so as not to cause thrombus. Examples of a material suitable for the outer coating 26 include a polyurethane resin and a polyimide resin. The outer covering 26 is melt-bonded so as not to include an air layer with the wire 23X by heat fusion.
  • the stimulation electrodes 21 and 22 differ only in the arrangement position in the elastic member 20A, and both have the same configuration.
  • the stimulation electrode 21 (22) is formed of a metal tube having biocompatibility such as a platinum iridium alloy, for example.
  • a part of the stimulation electrode 21 (22) is exposed to the outer periphery of the elastic member 20A through the opening 26a of the outer covering 26.
  • the exposed portion has a cylindrical surface shape having a curvature along the outer peripheral surface of the outer coating 26.
  • the shape of the exposed portion viewed from the direction along the third axis O3 is substantially rectangular (including a rectangular shape).
  • a cylindrical tube member having a diameter of 0.8 mm and a length of 4 mm is employed as the stimulation electrode 21 (22).
  • the shape of the exposed portion of the stimulation electrode 21 (22) is 0.5 mm wide and 3.8 mm long.
  • the longitudinal direction of the exposed portion coincides with the extending direction of the outer coating 26.
  • the exposed shape of the stimulation electrode 21 (22) is not limited to this.
  • the exposed shape of the stimulation electrode 21 (22) may be an oval shape or an oval shape that is long in the axial direction of the wire 23X.
  • a tubular insulating member 24 for preventing a short circuit with the wire 23X is inserted into the stimulation electrode 21 (22).
  • a wire 23 ⁇ / b> X is inserted into the insulating member 24.
  • a wiring 25 is electrically connected to the inner peripheral surface of the stimulation electrode 21 (22) buried in the outer covering 26.
  • the wiring 25 constitutes a wiring part 3d (see FIG. 1).
  • As the wiring 25, for example, a stranded wire made of a nickel cobalt alloy (35NLT25% Ag material) having bending resistance is covered with an electrical insulating material (for example, ETFE (polytetrafluoroethylene) having a thickness of 20 ⁇ m).
  • ETFE polytetrafluoroethylene
  • the internal structure of the elastic members 20B and 20C includes a wire 23Y (core material) instead of the wire 23X of the elastic member 20A, and includes stimulation electrodes 21 and 22, an insulating member 24, and wiring 25. It is a deleted configuration.
  • the wire 23Y is made of the same material as the wire 23X. However, the wire 23Y may be different from the cross-sectional shape of the wire 23X.
  • Examples of the cross-sectional shape of the wire 23Y include, for example, a square cross section or a rectangular cross section with a side length of 0.2 mm to 0.5 mm, and a circular cross section with a diameter of 0.2 mm to 0.5 mm. be able to.
  • the cross-sectional shape of the wire 23Y is a square.
  • the wire 23Y employs a super-elastic wire of 0.27 mm ⁇ 0.27 mm, similar to the wire 23X.
  • the elastic member 20B (20C) does not have the wiring 25. Therefore, the elastic member 20B (20C) does not contribute to the bending rigidity due to the wiring 25. For this reason, if the cross-sectional shape orthogonal to the longitudinal direction of the wire 23Y (hereinafter simply referred to as the cross-sectional shape) is the same cross-sectional shape as the wire 23X, the bending rigidity of the elastic member 20B (20C) is greater than the bending rigidity of the elastic member 20A. descend. If the cross-sectional shape of the wire 23Y is changed so that the cross-sectional secondary moment related to bending is greater than that of the wire 23X, the bending rigidity of the elastic members 20A, 20B, and 20C can be made substantially the same.
  • the cross-sectional shape orthogonal to the longitudinal direction of the wire 23Y hereinafter simply referred to as the cross-sectional shape
  • the bending rigidity of the elastic member 20B (20C) is greater than the bending rigidity of the elastic member 20A. descend.
  • the bending rigidity of the elastic members 20A, 20B, and 20C becomes approximately the same without changing the bending rigidity of the wires 23X and 23Y.
  • the cross-sectional secondary moments of the wires 23X and 23Y are the same, but the bending rigidity of the elastic members 20A, 20B, and 20C is approximately the same.
  • the bending stiffnesses of the elastic members 20A, 20B, and 20C do not need to be strictly matched.
  • the flexural rigidity of each of the elastic members 20A, 20B, and 20C is such that the elastic restoring force generated in the radial direction when the elastic support 2 is reduced by a certain amount after being assembled as the elastic support 2 can be equalized.
  • “can be equalized” means that the variation in elastic restoring force is within 10%.
  • the elastic members 20A, 20B, and 20C are arranged rotationally symmetrical. For this reason, if the variation of each bending rigidity of elastic member 20A, 20B, 20C is kept to 10% or less, the elastic restoring force in the elastic support body 2 can be equalized.
  • the elastic restoring force at the time of diameter reduction can be equalized.
  • a certain amount when measuring the elastic restoring force can be appropriately set to a value. For example, a value close to the amount of diameter reduction when placed in the blood vessel may be used. In this case, the measured elastic restoring force is substantially equal to the pressing force acting on the blood vessel.
  • the elastic member 20 ⁇ / b> A constitutes a first elastic member in which a stimulation electrode portion is disposed and a wiring is incorporated.
  • the elastic members 20B and 20C constitute a second elastic member having no stimulation electrode portion and wiring.
  • Such elastic members 20A, 20B, and 20C are assembled as the elastic support 2.
  • the arrangement of the elastic members 20A, 20B, and 20C in the natural state of the assembled elastic support 2 will be described.
  • the elastic members 20A, 20B, and 20C have the first axis O1 aligned with the center axis O.
  • the top portions 20gA, 20gB, and 20gC are spaced apart at equal intervals in the circumferential direction with respect to the central axis O.
  • the projecting direction of the second linear portion 20 c is directed radially outward with respect to the central axis O.
  • the arrangement order of the elastic members 20 is the order of the elastic members 20A, 20B, and 20C in the counterclockwise direction in the drawing.
  • the base end side linear portions 20bA and 20dB, the base end side linear portions 20bB and 20dC, and the base end side linear portions 20bC and 20dA are respectively located on the base end side by the elastic member fixing portion 64. It is fixed.
  • the position and length of the elastic member fixing portion 64 can be appropriately set in consideration of the balance of the pressing force during deformation.
  • the base end side linear portions 20bA and 20dB, the base end side linear portions 20bB and 20dC, and the base end side linear portions 20bC and 20dA are not limited to the base end side, but the entire longitudinal direction is caused by the elastic member fixing portion 64. It may be fixed.
  • each base end side linear part 20b, 20d may be fixed by the elastic member fixing part 64.
  • the range from the distal end member 3b side to 2/3 is fixed in each of the proximal end side linear portions 20b and 20d.
  • Each elastic member fixing portion 64 can be formed by fusing and welding the outer coverings 26 of each elastic member 20 or bonding them with an adhesive or the like.
  • the length and forming method of the elastic member fixing portion 64 are not limited to the above.
  • fixed part 64 may be provided in the some dot form spaced apart in the longitudinal direction of each base end side linear part 20b, 20d.
  • the bent portions 33fA and 33hB, the bent portions 33fB and 33hC, and the bent portions 33fC and 33hA have U-shaped openings facing each other.
  • Adjacent second linear portions 20c intersect each other.
  • Adjacent second linear portions 20c are fixed by elastic member fixing portions 34 (nodal portions) at positions where they intersect each other.
  • the proximal end side linear portions 20b and 20d of the adjacent elastic members are fixed to each other by the elastic member fixing portion 64, the proximal end side linear portions 20b, Even if 20d is deformed, the shape of the pressing portion 35 is less likely to change when viewed from the outside in the radial direction. For this reason, the press range by the press part 35 can be stabilized.
  • LP is formed (see FIG. 2B).
  • the circular path LP is a path that passes through the elastic member fixing portion 34 that is separated from the central axis O once and closes around the central axis O.
  • a linear portion constituting a part of the circulation path LP is hereinafter referred to as a circumferential line portion CL.
  • the circumferential line-shaped portion CL includes bent portions 20 kA, 20 kB, and 20 kC.
  • the circuit path LP forms an opening surrounding the central axis O in the elastic support 2 by a linear elastic body including the second linear portion.
  • each elastic member fixing portion 34 may be formed by fusing and welding the outer coverings 26 of each elastic member 20.
  • Each elastic member fixing portion 34 may be formed by bonding the outer coverings 26 of the respective elastic members 20 using an adhesive.
  • the circulation path LP is formed in a shape that does not protrude from the cylindrical surface C0 in the natural state of the elastic support body 2.
  • the cylindrical surface C0 is a virtual cylindrical surface that extends along the central axis O through the elastic member fixing portion 34.
  • each bending part 33h and 33f are located in the radial direction outer side of the cylindrical surface C0.
  • the bent portions 33 h and 33 f constitute the outermost peripheral portion of the elastic support 2.
  • the diameter of the circumscribed cylindrical surface C1 of each of the bent portions 33h and 33f is larger than the inner diameter of the blood vessel into which the elastic support body 2 is inserted.
  • each of the bent portions 33h and 33f is a portion that presses the inner wall of the blood vessel outward in the radial direction according to the deformation amount when the elastic support 2 is deformed in the blood vessel.
  • each pressing portion 35 the bent portions 33 h and 33 f that are fixed by the elastic member fixing portion 34 and make a pair are referred to as a pressing portion 35.
  • the first portions h 1, f 1 and the third portions h 3, f 3 are extended substantially along the circumferential direction of the elastic support 2.
  • the second portions h ⁇ b> 2 and f ⁇ b> 2 are separated from each other in the circumferential direction and extend substantially parallel to the axial direction.
  • the base end of each pressing portion 35 is connected to the base end side linear portions 20d and 20b that curve inward in the radial direction toward the base end of the elastic support body 2, respectively.
  • the connecting end portions 20aA, 20eA, 20aB, 20eB, 20aC, and 20eC connected to the base ends of the base end side linear portions 20bA, 20dA, 20bB, 20dB, 20bC, and 20dC are integrated by the converging portion 27. It is bundled and fixed.
  • the converging part 27 is formed by inserting each connecting end part 20a and each connecting end part 20e into a tubular member made of a titanium alloy, followed by caulking.
  • the outer shape of the converging portion 27 is a hexagonal column shape that can be fitted into the engagement hole 3f.
  • the converging part 27 is inserted into a hexagonal engagement hole 3f formed coaxially with the central axis O in the tip member 3b and engaged in the circumferential direction.
  • the focusing portion 27 is fixed to the tip member 3b by, for example, adhesion.
  • the converging portion 27 and the tip member 3b are in a relationship between the shaft portion and the hole portion having hexagonal cross sections that are fitted to each other.
  • the converging part 27 and the tip member 3b are engaged around the central axis O so as not to rotate. For this reason, when the lead part 3 is rotated around the central axis O, the elastic support 2 also rotates around the central axis O according to the rotation angle of the lead part 3.
  • the wiring 25 extending from the connecting end portions 20aA and 20eA passes through the interior of the distal end member 3b and extends into the lead tube 3a.
  • the wiring 25 is grouped as a wiring part 3d inside the lead tube 3a.
  • the position of the wiring portion 3d is fixed by a fixing portion 3g in the lead tube 3a and extends to the rear end portion of the lead tube 3a.
  • the wiring part 3d extends to the outside from the branch part 3c (see FIG. 1).
  • each base end side linear portion 20b and each base end side linear portion 20d can be formed by rotating a U-shape around the central axis O. They are arranged along a semi-spindle shape.
  • Each pressing portion 35 constitutes the outermost peripheral portion in the intermediate portion in the axial direction.
  • Each second linear portion 20c on the distal end side of each elastic member fixing portion 34 is disposed along a shape that decreases in diameter toward the central axis O toward the distal end side.
  • each elastic member 20 In the natural state of the assembled state of the elastic support 2 described above, no external force other than gravity acts on the elastic support 2. Since each elastic member 20 is lightweight, deformation of the elastic support 2 due to gravity can be ignored. However, the elastic members 20A, 20B, and 20C intersect each other, and are fixed to each other by the elastic member fixing portion 34 at the intersecting positions. By being restrained in this way, the elastic member 20 receives an external force from the other elastic members 20. Therefore, in the natural state of the assembled state of the elastic support body 2, each elastic member 20 is deformed into a shape different from the shape of the single natural state.
  • the electrical stimulation device 8 is a device portion that generates electrical stimulation between the pair of stimulation electrodes 21 and 22 based on the operation of the operator when the medical electrical stimulation electrode 1 is placed in a blood vessel.
  • the power supply and the control part are provided at least.
  • the power supply outputs a pulsed signal waveform.
  • a control part produces
  • the electrical stimulation device 8 is electrically connected to the wiring portion 3 d in the lead portion 3 via a connector 3 e.
  • the signal waveform output from the electrical stimulation device 8 is generated with a constant current system or a constant voltage system biphasic waveform group with a predetermined interval.
  • the condition of the signal waveform can be appropriately set as necessary for electrical stimulation. Specifically, for example, it is possible to output a signal waveform such as generating a biphasic waveform with a frequency of 20 Hz and a pulse width of 50 ⁇ sec to 400 ⁇ sec from 3 to 20 seconds per minute. is there.
  • a signal waveform such as generating a biphasic waveform with a frequency of 20 Hz and a pulse width of 50 ⁇ sec to 400 ⁇ sec from 3 to 20 seconds per minute. is there.
  • one of the stimulation electrodes 21 and 22 acts as a plus side electrode, and the other acts as a minus side electrode.
  • FIG. 12 is a schematic view showing a state outside the patient's body when the medical electrical stimulation electrode according to the embodiment of the present invention is placed in the patient's body.
  • FIG. 13 is a schematic view showing a state in which the medical electrical stimulation electrode according to the embodiment of the present invention is placed in the superior vena cava.
  • FIG. 14A is a schematic diagram showing a state of deformation in the blood vessel of the elastic support of the medical electrical stimulation electrode according to the embodiment of the present invention.
  • 14B is a side view of the M view in FIG. 14A.
  • FIG. 15A is a side view showing the shape of the elastic support of the medical electrical stimulation electrode according to the embodiment of the present invention in a reduced diameter state.
  • FIG. 15B is a side view showing the natural shape of the elastic support of the medical electrical stimulation electrode according to the embodiment of the present invention.
  • the surgeon cuts the vicinity of the neck of the patient P to form an opening P1.
  • a known introducer or dilator (not shown) is attached to the opening P 1, and the medical electrical stimulation electrode 1 accommodated in the guide sheath 7 is introduced together with the guide sheath 7.
  • the medical electrical stimulation electrode 1 is introduced while confirming the positions of the wires 23X and 23Y, the wiring 25, the elastic support 2 (all not shown in FIG. 12) and the like under the X-ray.
  • the distal end of the guide sheath 7 reaches the vicinity of the indwelling position in the superior vena cava P3 (blood vessel) through the right external jugular vein P2 (blood vessel), the elastic support 2 is pushed out of the guide sheath 7.
  • the elastic support body 2 pushed into the superior vena cava P3 expands in the superior vena cava P3 in order to return to the natural state by the elastic restoring force. Since the outer diameter of the elastic support 2 in the natural state is smaller than the inner diameter of the superior vena cava P3, the elastic support 2 is pressed against the inner wall V1 of the superior vena cava P3. Thereby, the elastic support body 2 is elastically deformed by the reaction from the inner wall V1. The elastic support body 2 is reduced in diameter to be smaller than the natural state.
  • the inner wall V ⁇ b> 1 is in close contact with the outer peripheral portion of the elastic support 2 while being deformed by receiving a pressing force from the elastic support 2. For this reason, the elastic support body 2 is locked to the inner wall V1 of the superior vena cava P3 in contact with the frictional force.
  • an electrical stimulation is applied to the stimulation electrodes 21 and 22, and for example, an appropriate indwelling position is searched while monitoring the heart rate of the patient P. Perform a search action.
  • the surgeon corrects the indwelling position of the elastic support 2 as necessary. If the lead portion 3 is rotated, the elastic support 2 is rotated together with the lead portion 3. For this reason, the surgeon can adjust the positions of the stimulation electrodes 21 and 22 in the circumferential direction in the superior vena cava P3.
  • the guide sheath 7 is pulled out to the proximal end side, and only the medical electrical stimulation electrode 1 is left in the blood vessel as shown in FIG. In this way, the placement of the elastic support 2 is completed.
  • the electrical stimulation apparatus 8 will apply electrical stimulation at an appropriate timing. Thereby, the electrical stimulation required for the vagus nerve P6 of the patient P can be applied via the inner wall V1.
  • the medical electrical stimulation electrode 1 is pulled out in the direction opposite to the inserted path.
  • the medical electrical stimulation electrode 1 is extracted out of the body of the patient P.
  • the elastic support body 2 has a shape along the semi-spindle shape whose outer peripheral portion is reduced in diameter toward the tip member 3b, it can be pulled out smoothly.
  • FIGS. 14A and 14B An example of the deformation state of the elastic support 2 is shown in FIGS. 14A and 14B.
  • the elastic support body 2 comes into contact with the inner wall V1 from a portion that is the outermost peripheral portion in the radial direction, and receives a reaction radially inward from these contact portions.
  • the elastic members 20A, 20B, and 20C are deformed. That is, first, each pressing portion 35 comes into contact with the inner wall V1 and is pressed radially inward. Thereby, each circumferential line-shaped portion CL is compressed radially inward via each elastic member fixing portion 34.
  • FIG. 14B it is schematically drawn in order to avoid the overlap of the lines and make the illustration easy to see.
  • FIG. 15A and 15B which represented more precisely the diameter-reduced state which inserted the elastic support body 2 in M view of FIG. 14A, and the natural state seen from the same direction.
  • the diameter of the elastic support 2 is reduced according to the inner wall V1 of the superior vena cava P3 until the outermost peripheral portion is inscribed in a virtual cylindrical surface C4 coaxial with the central axis O.
  • each pressing portion 35 is inscribed in the cylindrical surface C4.
  • the base end portion of the second linear portion 20c of each pressing portion 35 is connected to each bending portion 33h (33f) via the bending portion 20h (20f) and extends toward the radially inner side. Yes.
  • intersect is located on the virtual cylindrical surface C3 smaller in diameter than the cylindrical surface C4.
  • each pressing portion 35 is inscribed in the circumscribed cylindrical surface C1, and each elastic member fixing portion 34 is a virtual cylindrical surface C0 having a smaller diameter than the circumscribed cylindrical surface C1. Corresponds to being located above.
  • each pressing portion 35 is pressed radially inward from the natural state to reduce the diameter, the distance between the bent portions 20h and 20f that are both ends of each second linear portion 20c is reduced (see the arrow in FIG. 15B).
  • the second linear portion 20c is bent around the top portion 20g by an external force acting on both ends of the second linear portion 20c.
  • the top portion 20g of the second linear portion 20c moves radially outward (see the white arrow in FIG. 15B).
  • the bending angles of the bent portions 20 h and 20 f tend to be slightly larger than the natural state of the elastic support 2.
  • the state where the bent portions 20h and 20f are bent is maintained.
  • the positional relationship in which each elastic member fixing portion 34 is located radially inward from the cylindrical surface where the bent portions 20h and 20f are located is maintained. Therefore, the diameter of the cylindrical surface C3 in the reduced diameter state is smaller than the diameter of the cylindrical surface C4.
  • the diameter difference between the cylindrical surfaces C4 and C3 is smaller than the diameter difference between the circumscribed cylindrical surface C1 and the cylindrical surface C0.
  • each apex 20g moves radially outward along with the diameter reduction of the elastic support 2, and therefore protrudes radially outward from the cylindrical surface C3 depending on the position of the elastic member fixing portion 34.
  • each top 20g may move radially outward from the cylindrical surface C4.
  • the top 20g contacts the inner wall V1.
  • the top portion 20g moves outward in the radial direction, it is elastically deformed, and the portion where the tip end portion of the second linear portion 20c closely adheres along the inner wall V1 increases.
  • each top 20g moves in the reduced diameter state of the elastic support 2 depends on the shape of each elastic member 20, the position of the elastic member fixing portion 34, and the outer diameter at the time of diameter reduction. In general, the closer the distance between the bent portions 20h, 20f and the elastic member fixing portion 34, the easier the top portions 20g move outward in the radial direction. Accordingly, if the outer diameter of the elastic support 2, the shape of each elastic member 20, and the position of the elastic member fixing portion 34 are appropriately set according to the inner diameter of the indwelling blood vessel, 20g can be in contact with the inner wall of the blood vessel or not.
  • each apex 20g can be brought into contact with or not in contact with the inner wall of the blood vessel by changing the angle ⁇ 2 of the bent portion 20k with respect to the plane S3.
  • the description will be made on the assumption that the top portion 20g is positioned radially inward from the cylindrical surface C3 in the reduced diameter state.
  • each pressing portion 35 moves in the radial direction until it is positioned on the cylindrical surface C3.
  • each pressing portion 35 is in contact with the inner wall V1 of the superior vena cava P3 and forms the inner wall V1 in the radial direction at a position of 120 ° in the circumferential direction. Press outward.
  • each circumferential line-shaped portion CL is located inside the cylindrical surface C3 where the elastic member fixing portion 34 is located, and is not in contact with the inner wall V1 of the superior vena cava P3.
  • the circumferential line portion CL is a closed loop shape having a constant line length by being fixed by the elastic member fixing portion 34, and is a ring-shaped spring member that can expand and contract in the radial direction. For this reason, as shown in FIGS. 14A and 14B, the elastic restoring force of each circumferential line-shaped portion CL due to the deformation is applied to the elastic member fixing portion 34 even when the top portions 20g are not in contact with the inner wall V1. For this reason, each circumferential line-shaped part CL urges the pressing part 35 radially outward. With such a configuration, each pressing portion 35 is elastically supported by each circumferential line portion CL on the distal end side of the elastic support 2.
  • each pressing portion 35 is elastically supported by the respective proximal end side linear portions 20b and 20d which are elastic members supported by the converging portion 27 on the proximal end side of the elastic support body 2.
  • the elastic support body 2 in a reduced diameter state presses the inner wall V ⁇ b> 1 equally in three directions by the respective pressing portions 35.
  • the press part 35 is gathered in three places of the circumferential direction.
  • the inner wall of the blood vessel can be pressed more firmly.
  • the stimulation electrodes 21 and 22 can be more reliably and stably pressed against the inner wall V1.
  • each pressing part 35 is equally pressed radially outward by the elastic restoring force of the circumferential line-shaped part CL, the indwelling position can be stabilized even with a small contact area.
  • the elastic support 2 of the present embodiment has an outer shape that conforms to a semi-spindle shape that swells toward the converging portion 27 as a whole, although the tip is reduced in diameter. For this reason, compared with the shape which contact
  • Each elastic member 20 forms a bowl-like structure fixed by the elastic member fixing portion 34.
  • the elastic support body 2 can urge the inner wall V1 more stably as compared with a case where, for example, arc-shaped elastic members are spaced apart in the circumferential direction.
  • the elastic support 2 may move in the axial direction of the blood vessel in the process of determining the indwelling position. For this reason, the elastic support 2 may be repeatedly housed in the guide sheath 7 and pushed out from the guide sheath 7.
  • the elastic support body 2 When the elastic support body 2 is accommodated in the guide sheath 7, the elastic support body 2 is drawn into the guide sheath 7 having a smaller diameter than the blood vessel from the expanded diameter state in the blood vessel. Thereby, in the elastic support body 2, each elastic member 20 is crushed in the radial direction toward the central axis O.
  • each proximal end side linear part 20b, 20d has a shape that narrows toward the proximal end side, when accommodated in the guide sheath 7, it is accommodated smoothly, and the partial load is small.
  • the elastic support body 2 has a larger diameter toward the tip, and each circumferential line-shaped portion CL resists deformation at the tip as a spring member.
  • a particularly large load is applied to the distal end side of each elastic member 20 of the elastic support body 2.
  • FIG. 16 is a schematic diagram for explaining the operation of the elastic member of the medical electrical stimulation electrode according to the embodiment of the present invention.
  • FIG. 17 is a schematic diagram for explaining the operation of the elastic member of the comparative example.
  • FIG. 18 is a schematic enlarged view showing a deformed state of the top of the elastic member of the medical electrical stimulation electrode according to the embodiment of the present invention and the top of the elastic member of the comparative example.
  • FIG. 16A schematically shows the shape of the elastic member 20 ⁇ / b> A in the natural state of the elastic support 2.
  • the elastic support 2 constitutes a closed loop, and the bending angle ⁇ 3 ′ of the bent portion 20kA is slightly smaller than each of the bendings ⁇ 3 in the natural state of the elastic member 20A.
  • the reason why the bending angle is ⁇ 3 ′ is that, in the assembled state of the elastic support 2, the elastic member 20A is fixed to the elastic members 20B and 20C and elastically deformed.
  • FIG. 16B when the elastic support 2 is accommodated in the guide sheath 7, the elastic support 2 is reduced in diameter.
  • the widest bent portions 20hA and 20fA in the elastic support 2 move toward the central axis O and come into contact with the inner wall of the guide sheath 7.
  • An external force acts on the second linear portion 20cA toward the central axis O at both ends connected to the bent portions 20hA and 20fA.
  • This external force acts as a bending moment on the center in the longitudinal direction of the second linear portion 20cA.
  • the bent portion 20kA the vicinity of the top portion 20gA is bent in advance. That is, a crease is attached in the vicinity of the top portion 20gA.
  • the bent portion 20kA is bent by the elastic member 20A, the bending angle is easily reduced.
  • the second linear portion 20cA is smoothly folded around the top portion 20gA.
  • the bending angle ⁇ 3 ′ of the bent portion 20kA gradually decreases to ⁇ 4 close to 0 °.
  • transformation at the time of diameter reduction of the elastic support body 2 was demonstrated in the example of the elastic member 20A, the deformation
  • the elastic support 2 when the diameter of the elastic support 2 is reduced, plastic deformation of the elastic support 2 is suppressed. Therefore, when the elastic support 2 is pushed out from the guide sheath 7 and expanded in diameter, as shown in FIG. 16C, the elastic support 2 returns to the natural state when no external force is applied. For example, the bending angle of the bent portion 20 kA returns from ⁇ 4 to ⁇ 3 ′. In this way, the elastic support 2 only repeats elastic deformation even if it is repeatedly housed in the guide sheath 7 and pushed out from the guide sheath 7, so that the pressing force that presses the inner wall of the blood vessel decreases. There is nothing to do. Since the medical electrical stimulation electrode 1 includes such an elastic support 2, the medical electrical stimulation electrode 1 can be stably placed in the blood vessel even if the folding is repeated.
  • the elastic support 2 will be further described in comparison with a comparative example.
  • the elastic support of the comparative example includes elastic members 50 shown in FIG. 17A in place of the elastic members 20A, 20B, and 20C.
  • the elastic member 50 includes a second linear portion 50c instead of the second linear portion 20cA of the elastic member 20A.
  • the second linear portion 50c is a linear portion made of an arc.
  • the second linear portion 50c is inclined by an angle ⁇ with respect to the plane S2 in the natural state, like the second linear portion 20cA excluding the bent portion 20kA. Both ends of the second linear portion 50c are connected to the bent portions 20hA and 20fA in the same manner as the second linear portion 20cA.
  • the diameter of the second linear portion 50c in the natural state of the elastic member 50 is larger than the outer diameter of the elastic support in the natural state.
  • the 2nd linear part 50c is provided with the top part 50g which is a part of circular arc in the position used as the front-end
  • FIG. 17A schematically shows one elastic member 50 in the natural state of the elastic support of the comparative example. Since the elastic member 50 is slightly elastically deformed in the natural state of the elastic support, the second linear portion 50c is slightly different from the natural arcuate shape of the elastic member 50. However, since the amount of deformation is small, the vicinity of the top portion 50g of the second linear portion 50c is substantially arc-shaped. As shown in FIG. 17B, when the elastic support body of the comparative example is accommodated in the guide sheath 7, the elastic member 50 also moves toward the central axis O and abuts against the inner wall of the guide sheath 7.
  • the same external force as the second linear portion 20cA acts on the second linear portion 50c. Since the second linear portion 50c is the same as the substantially arc-shaped beam, the external force acting on the second linear portion 50c deforms each position acting in the longitudinal direction of the second linear portion 50c substantially evenly. . For this reason, the 2nd linear part 50c resists the 2nd linear part 50c whole with respect to external force. That is, the curvature of the second linear portion 50c gradually increases, and the curved shape gradually changes.
  • the portion where the load increases is concentrated in the intermediate portion of the second linear portion 50c including the top portion 50g.
  • the inner diameter of the guide sheath 7 is much smaller than the outer diameter of the elastic support, the distal end of the second linear portion 50c must be bent below the inner diameter of the guide sheath 7.
  • the vicinity of the top portion 50g in the natural state is an arc having a small curvature, it is substantially the same as the bent portion opened at about 180 °.
  • the amount of deformation in the vicinity of the top 50g when the diameter is reduced is larger than that of the second linear portion 20cA that is deformed from the bending angle ⁇ 3 ′ smaller than 180 °.
  • a large stress is concentrated on the distal end portion of the second linear portion 50c as compared with the second linear portion 20cA, and plastic deformation occurs.
  • the second linear portion 20cA is formed with a bent portion 20kA, and the top portion 20gA is composed of a plastically processed corner 20 portion G.
  • the linear elastic body extending from the corner portion 20G is deformed as a beam having the corner portion 20G as a support end.
  • the bending angle changes greatly because the beam bends.
  • looking at the shape after deformation indicated by the two-dot chain line in FIG. 18A the outside of the corner portion 20G does not extend so much and the inside of the bending is not compressed so much. I understand that. Therefore, plastic deformation does not occur in the corner portion 20G, and the bending angle can return to the natural state.
  • the second linear portion 50c of the comparative example has an arc shape with a small curvature in the natural state indicated by the solid line. It can be seen that in order for the second linear portion 50c to be in a reduced diameter state indicated by a two-dot chain line, extremely large bending deformation needs to occur locally in the vicinity of the top portion 50g.
  • the second linear portion 50c is accommodated in the guide sheath 7 in a state of being bent at an angle ⁇ 5, for example, in the vicinity of the top portion 50g.
  • the angle ⁇ 5 is approximately the same as the bending angle ⁇ 4 when the elastic support 2 is accommodated. Since the top portion 50g is plastically deformed, as shown in FIG. 17C, even if the elastic member 50 is taken out from the guide sheath 7, an angle ⁇ 6 (however, ⁇ 6> ⁇ 5) is present in the vicinity of the top portion 50g. An open bend is formed. The vicinity of the top 50g does not return to the original arc.
  • the elastic support body of the comparative example when the housing in the guide sheath 7 and the extrusion from the guide sheath 7 are repeated, the outer diameter of the elastic support body 2 gradually decreases. Thereby, the pressing force to the blood vessel is reduced, and there is a possibility that it cannot be stably placed on the inner wall of the blood vessel.
  • FIG. 19 is a schematic diagram illustrating a configuration of a main part of an elastic member used for the medical electrical stimulation electrode according to the first modification of the embodiment of the present invention.
  • the medical electrostimulation electrode of this modification includes an elastic member 60 whose main part is shown in FIG. 19 in place of the elastic members 20A, 20B, and 20C in the medical electrostimulation electrode 1 of the above embodiment.
  • an elastic member 60 whose main part is shown in FIG. 19 in place of the elastic members 20A, 20B, and 20C in the medical electrostimulation electrode 1 of the above embodiment.
  • each elastic member 60 of the present modification includes a bent portion 60 k instead of the bent portion 20 k of the elastic member 20.
  • One of the elastic members 60 includes the stimulation electrodes 21, 22 and the like, similarly to the elastic member 20A.
  • the bending portion 60k is the same as the bending portion 20k except that a bending portion having a radius of curvature R (where R> 0) is formed in the bending when bending is performed.
  • the radius of curvature R in the bending of the bent portion 60k is not particularly limited as long as it is equal to or less than the bending radius R determined from the maximum arc that can be inserted into the guide sheath 7.
  • the maximum arc that can be inserted into the guide sheath 7 is an arc having a radius of curvature that is 1 ⁇ 2 of the inner diameter of the guide sheath 7.
  • the maximum value of the radius of curvature R in bending may be obtained by subtracting the thickness of the elastic member 60 from the radius of curvature of such an arc.
  • the radius of curvature R is preferably as small as possible.
  • the elastic member 60 of the present modification by setting the radius of curvature R in the bending of the bent portion 60k within an appropriate range, the elastic deformation of the elastic support of the present modification when the diameter is reduced can be prevented. Can be prevented. For this reason, according to the medical electrical stimulation electrode of this modification using the elastic member 60, even if folding is repeated, it can be stably placed in the blood vessel.
  • the bending portion of the apex portion 20g of the bent portion 60k of the elastic member 60 is a curved portion having a radius of curvature R. For this reason, when forming the bending part 60k, the bending process of the vicinity of the top part 20g becomes easy.
  • the linear elastic body used for the elastic member 60 it is possible to employ a material that is difficult to be plastically deformed.
  • FIG. 20 is a schematic plan view showing a configuration of an elastic member used for the medical electrical stimulation electrode of the second modified example of the embodiment of the present invention.
  • the medical electrostimulation electrode of this modification includes the elastic member 70 shown in FIG. 20 in place of the elastic members 20A, 20B, and 20C in the medical electrostimulation electrode 1 of the above embodiment.
  • the elastic member 70 shown in FIG. 20 in place of the elastic members 20A, 20B, and 20C in the medical electrostimulation electrode 1 of the above embodiment.
  • each elastic member 70 of the present modification includes a bent portion 70 k instead of the bent portion 20 k of the elastic member 20.
  • One of the elastic members 70 includes stimulation electrodes 21 and 22 and the like, similarly to the elastic member 20A.
  • the bent portion 70k is a bent portion that opens in a V shape from the top portion 20g toward the proximal end side of the elastic member 70.
  • the bent portion 70k constitutes a V-shaped first bent portion that is convex in a direction away from the connecting end portions 20a and 20e.
  • the bending angle ⁇ 7 of the bent portion 70k is smaller than the bent angle ⁇ 3 of the bent portion 20k of the above embodiment.
  • the shape of the 2nd linear part 20c except the bending part 70k is the same as that of the said embodiment.
  • the bent part 70k is formed with a bent part 70j at the connection part with the second linear part 20c.
  • the bent portion 20j in the above embodiment is formed by inclining the bent portion 20k by an angle ⁇ 2 with respect to the plane S3.
  • the bent part 20j is a linear part smoothly connected when viewed from the direction along the normal line of the plane S3 by rotating the bent part 20k so that the angle ⁇ 2 becomes 0 °.
  • the bent portion 70j is bent in a V shape when viewed from the direction along the normal line of the plane S3 by rotating the bent portion 70k so that the angle ⁇ 2 becomes 0 °. That is, the bending angle ⁇ 8 at the bending portion 70j is smaller than the bending angle at the bending portion 20j.
  • the bending portion 70j has an opening angle between the bent portion 70k and the second linear portion 20c as viewed from the direction along the normal line of the plane S3. It is smaller than the opening angle with the part 20c. Therefore, as shown in FIG. 20, the opening angle between the bent portion 70k and the second linear portion 20c viewed from the direction along the normal line of the plane S2 (the vertical direction in the drawing) is also the bent portion of the above embodiment. The opening angle between 20k and the second linear portion 20c is small.
  • the bending angle ⁇ 7 of the bent portion 70k is smaller than that in the above embodiment, when the diameter of the elastic support of this modification is reduced, the load on the top 20g is further reduced. For this reason, even if the diameter reduction and the diameter expansion are repeated, the plastic deformation in the top portion 20g is further less likely to occur. According to the medical electrical stimulation electrode of this modification using the elastic member 70, even if folding is repeated, it can be stably placed in the blood vessel.
  • the bent portion 70j is formed in the vicinity of the bent portion 70k of the elastic member 70.
  • the bent portion 70j is further bent than the bent portion 20j of the above-described embodiment when viewed from the direction along the normal line of the plane S2. For this reason, when the diameter of the elastic support of the present modification is reduced, the bending angle of the bent portion 70j is expanded, so that the deformation stress at the time of diameter reduction is dispersed. Also in this respect, since the load on the top portion 20g is relieved, plastic deformation in the top portion 20g is further difficult to occur.
  • FIG. 21 is a schematic plan view showing a configuration of an elastic member used for the medical electrical stimulation electrode of the third modified example of the embodiment of the present invention.
  • FIG. 22 is a schematic front view showing a configuration of an elastic member used for the medical electrical stimulation electrode of the third modified example of the embodiment of the present invention.
  • the medical electrostimulation electrode of this modification includes the elastic member 80 shown in FIG. 21 instead of the elastic members 20A, 20B, and 20C in the medical electrostimulation electrode 1 of the above embodiment.
  • the elastic member 80 shown in FIG. 21 instead of the elastic members 20A, 20B, and 20C in the medical electrostimulation electrode 1 of the above embodiment.
  • each elastic member 80 of the present modification includes bent portions 80k and 80n instead of the bent portion 20k of the elastic member 20.
  • One of the elastic members 80 includes stimulation electrodes 21, 22 and the like, like the elastic member 20A.
  • the bent portion 80k is a bent portion that opens in a V shape from the top portion 20g toward the proximal end side of the elastic member 80.
  • the bent portion 80k constitutes a V-shaped first bent portion that is convex in a direction away from the connecting end portions 20a and 20e.
  • the bent portion 80n is a V-shaped bent portion in which a linear elastic body extending from the bent portion 80k is bent at the bent portion 80m.
  • the bent portion 80n is connected to the second linear portion 20c at the bent portion 80p.
  • the bent portions 80n are respectively formed on the sides of the bent portion 80k.
  • Each of the bent portions 80n constitutes a V-shaped second bent portion that is convex in a direction approaching the connecting end portions 20a and 20e.
  • the bending angles of the bent portions 80k and 80n are not particularly limited. Further, the bending angles of the bent portions 80k and 80n may be the same or different from each other. Each bending angle can be made smaller than the bending angle ⁇ 3 of the above embodiment. As shown in FIG. 22A, the bent portions 80k and 80n are inclined by an angle ⁇ 2 with respect to the plane S3, as in the above embodiment. That is, the bent portions 80k and 80n are located on the same plane.
  • the elastic support in the medical electrical stimulation electrode according to this modification includes an elastic member 80 having bent portions 80k and 80n. For this reason, when the diameter of the elastic support is reduced, both of the bent portions 80k and 80n are elastically deformed so that the bending angle is reduced. For this reason, when the load similar to the said embodiment acts at the time of diameter reduction, a load is disperse
  • the bent portion 80n is disposed closer to the proximal end side of the elastic member 20 than the bent portion 80k. For this reason, it is possible to provide a plurality of bent portions having a shallow bending angle without increasing the axial length of the elastic support. As a result, it is possible to reduce the size of the elastic support for the medical electrical stimulation electrode.
  • This modification is an example in which the bent part 80n does not have to have the top part (bent part 80m) on the plane S1 which is the symmetry plane of the elastic member.
  • FIG. 23 is a schematic front view showing a configuration of an elastic member used for the medical electrical stimulation electrode of the fourth modified example of the embodiment of the present invention.
  • the medical electrostimulation electrode of this modification includes an elastic member 81 shown in FIGS. 21 and 22 instead of the elastic members 20A, 20B, and 20C in the medical electrostimulation electrode 1 of the above embodiment.
  • an elastic member 81 shown in FIGS. 21 and 22 instead of the elastic members 20A, 20B, and 20C in the medical electrostimulation electrode 1 of the above embodiment.
  • each elastic member 81 of the present modification includes bent portions 80k and 80n in the same manner as in the third modified example, instead of the bent portion 20k of the elastic member 20.
  • One of the elastic members 80 includes stimulation electrodes 21, 22 and the like, like the elastic member 20A.
  • the bent portion 80n is located on the plane S3. Therefore, a bent portion 80j is formed between the top portion 20g and the bent portion 80m.
  • This modification is the same as the third modification except that the bent portions 80k and 80n are not located on the same plane. For this reason, according to the medical electrical stimulation electrode of this modification using the elastic member 81, even if folding is repeated, it can be stably placed in the blood vessel.
  • FIG. 24 is a schematic plan view showing a configuration of an elastic member used for the medical electrical stimulation electrode of the fifth modified example of the embodiment of the present invention.
  • FIG. 25 is a schematic front view showing a configuration of an elastic member used for the medical electrical stimulation electrode of the fifth modified example of the embodiment of the present invention.
  • the medical electrostimulation electrode of this modification includes the elastic member 90 shown in FIG. 24 instead of the elastic members 20A, 20B, and 20C in the medical electrostimulation electrode 1 of the above embodiment.
  • the elastic member 90 shown in FIG. 24 instead of the elastic members 20A, 20B, and 20C in the medical electrostimulation electrode 1 of the above embodiment.
  • each elastic member 90 of this modification includes a bent portion 90k instead of the bent portion 20k of the elastic member 20.
  • One of the elastic members 90 includes stimulation electrodes 21 and 22 and the like, like the elastic member 20A.
  • the bent portion 90k is formed in a V shape having a top portion 90g on the base end side.
  • the top 90g is located on the plane S1.
  • the end of the bent portion 90k opposite to the top 90g is connected to the second linear portion 20c via the bent portion 90m.
  • the bending angle at the top 90g of the bent portion 90k is ⁇ 9.
  • the bending angle ⁇ 9 can be the same angle as ⁇ 3 in the above embodiment.
  • Within the bend of the bent portion 90k there may be a curvature with a radius of curvature of 5 mm or less formed for processing convenience.
  • the bent portion 90k is inclined by an angle ⁇ 2 with respect to the plane S3, like the bent portion 20k of the above embodiment.
  • the bent portion 90k constitutes a V-shaped second bent portion that is convex in a direction approaching the connecting end portions 20aA and 20eA.
  • This modification is an example in which the second linear portion 20c has only the second bent portion.
  • the elastic support in the medical electrical stimulation electrode according to this modification includes an elastic member 90 having a bent portion 90k.
  • the bent portion 90k differs from the bent portion 20k of the above-described embodiment mainly in the convex direction. For this reason, the load at the time of diameter reduction is disperse
  • the example in which the stimulation electrode unit is arranged in the superior vena cava to stimulate the vagus nerve is described as an example.
  • the stimulation electrode unit may stimulate nerves other than the vagus nerve.
  • the stimulation electrode unit can be disposed in an appropriate blood vessel that can transmit the stimulation to the nerve that performs the stimulation.
  • the elastic support has a shape that is three-fold rotationally symmetric about the central axis.
  • the elastic support can also have a rotationally symmetric shape of three or more times.
  • strict rotational symmetry is not required as long as the elastic support can apply a substantially equal pressing force to the inner wall of the blood vessel when the diameter of the elastic support is reduced.
  • a substantially rotationally symmetric shape in which the shape of each elastic member is not symmetrical due to variations due to manufacturing errors or distortion due to assembly errors is also possible.
  • the overall shape is close to rotational symmetry, a substantially rotationally symmetric shape having a shape portion that does not have rotational symmetry in part is also possible.
  • the formation position of the pressing part is formed at a position that divides the circumferential direction into three equal parts, but the shape of the pressing part is different, or the pressing part is slightly different from the position that divides the circumferential direction into three equal parts Etc. are acceptable.
  • the base end side linear portions 20b and 20d of the adjacent elastic members are described as an example in which the elastic member fixing portions 64 are fixed to each other.
  • the elastic member fixing portion 64 may be deleted, and the proximal side linear portions 20b and 20d may be separated from each other in the circumferential direction.
  • the wires 23X and 23Y are coated with the outer coating 26 .
  • a linear body in which a metal wire is coated with a resin can be employed. Since the resin coating in this case is further covered with the outer coating 26, it does not come into direct contact with the living body, and therefore an appropriate resin material can be employed.
  • the bending rigidity of the wire 23X which is the core material in the first elastic member
  • the bending rigidity of the wire 23Y which is the core material in the second elastic member.
  • the bending rigidity of each of the elastic members 20A, 20B, and 20C can be easily made equal.
  • the cross-sectional shape of the wire 23Y is changed so that the cross-sectional secondary moment related to bending is larger than that of the wire 23X.
  • the bending rigidity of the elastic members 20A, 20B, and 20C can be made substantially the same. Furthermore, it is also possible to make each bending rigidity of elastic member 20A, 20B, 20C correspond.
  • the method of changing the cross-sectional shapes of the wires 23X and 23Y may be changed to be similar to each other or may be changed by using different shapes. In the case of a non-similar shape, for example, the long side and the short side may be arbitrarily changed in a rectangular cross section. Furthermore, when making it a non-similar shape, you may change the kind of cross-sectional shape.
  • the method of changing the bending rigidity of the wires 23X and 23Y is not limited to changing the second moment of section.
  • the bending rigidity of each other may be changed by manufacturing the wires 23X and 23Y using materials having different longitudinal elastic modulus.
  • the elastic members 20A, 20B, and 20C have the same bending rigidity, the elastic restoring force when the elastic support 2 is reduced by a certain amount will be described as an example. did.
  • the elastic restoring force when the diameter of the elastic support 2 is reduced by a certain amount may be made uneven in the circumferential direction.
  • the bending rigidity of the elastic members 20A, 20B, and 20C may be two types. Further, all of the bending rigidity of the elastic members 20A, 20B, and 20C may be different.
  • the elastic restoring force when the cross-sectional shape of the blood vessel is deviated from a perfect circle, if the elastic restoring force is equalized when the diameter is reduced to match the perfect circular cross-section, an uneven pressing force acts on the inner wall of the blood vessel. .
  • the position of the elastic support 2 may become unstable when the patient moves.
  • the elastic restoring force when the diameter is reduced in accordance with the circular cross-section in advance is appropriately non-uniform, when the elastic support 2 is deformed to match the cross-sectional shape of the blood vessel, It is possible to equalize the pressing force acting on the inner wall in the circumferential direction. In this case, even when the cross-sectional shape of the blood vessel is deviated from a perfect circle, the position of the elastic support 2 can be stabilized.
  • the entire second linear portion 20c can be configured only by a bent portion formed in a V shape having a top at the tip.
  • the top of the bent portion is formed of a bent portion.
  • the inner diameter of the guide sheath 7 is used. Compared to the above, a curved portion having a smaller radius of curvature can be formed in the bend.

Abstract

This medical electrostimulation electrode comprises: an elastic support which includes a plurality of elastic members formed by bending linear elastic bodies into closed loops, each elastic member having a connection end at which both ends of the respective linear elastic body are connected, a pair of first linear portions which comprise portions of the linear elastic body extending from the connection end and away from each other, and a second linear portion which has two ends which are connected to the distal ends of the pair of first linear portions in the extending direction and which has at least one bending part between the two ends; a stimulation electrode part disposed on at least one of the plurality of elastic members in order to provide an electric stimulus through an interior wall of a blood vessel; wiring electrically connected to the stimulation electrode part; and a lead part which extends linearly and has a distal end member to which the connection end of each of the plurality of elastic members is connected, wherein the wiring is inserted through the lead part.

Description

医療用電気刺激電極Medical stimulation electrode
 本発明は、医療用電気刺激電極に関する。 The present invention relates to a medical electrical stimulation electrode.
 従来、神経組織や筋肉等の生体組織に電気的刺激を与える医療用電気刺激電極が知られている。医療用電気刺激電極は、刺激電極部と、刺激電極部を血管の内壁に押しつける弾性部材とを備える。弾性部材は、外力が加えられることで折りたたまれ、折りたたまれた状態で刺激電極部とともに血管内に挿入される。血管内で弾性部材を折りたたむ外力が解除されると弾性部材が拡がる。この結果、刺激電極部が血管の内壁に押しつけられる。また、弾性部材が血管に係止される。
 例えば、特許文献1には、パルス発生器に接続するように構成された基端を有する導電性リード本体と、血管壁を越えて電気パルスを送るように構成された少なくとも1つの電極(刺激電極部)を具備する先端部と、リードアンカー(弾性部材)とを具備する神経刺激用リードが記載されている。
 この神経刺激用リードにおけるリードアンカーは、折りたたまれた形状から予め形成された拡張形状へと拡がるように構成されている。神経刺激用リードの先端部はリードアンカーの外側に結合されている。リードアンカーが血管内で拡張形状とされたとき、リードアンカーは、血管壁に神経刺激用リードの先端部を押しつける。この結果、血管内における神経刺激用リードの先端部の位置が固定される。
2. Description of the Related Art Conventionally, medical electrical stimulation electrodes that give electrical stimulation to biological tissues such as nerve tissue and muscle are known. The medical electrical stimulation electrode includes a stimulation electrode part and an elastic member that presses the stimulation electrode part against the inner wall of the blood vessel. The elastic member is folded when an external force is applied, and is inserted into the blood vessel together with the stimulation electrode portion in the folded state. When the external force for folding the elastic member in the blood vessel is released, the elastic member expands. As a result, the stimulation electrode portion is pressed against the inner wall of the blood vessel. The elastic member is locked to the blood vessel.
For example, U.S. Patent No. 6,057,836 discloses a conductive lead body having a proximal end configured to connect to a pulse generator and at least one electrode configured to deliver an electrical pulse across a vessel wall (stimulation electrode). A nerve stimulation lead including a distal end portion including a portion and a lead anchor (elastic member).
The lead anchor in the nerve stimulation lead is configured to expand from a folded shape to an expanded shape formed in advance. The distal end portion of the nerve stimulation lead is coupled to the outside of the lead anchor. When the lead anchor is expanded in the blood vessel, the lead anchor presses the tip of the nerve stimulation lead against the blood vessel wall. As a result, the position of the tip of the nerve stimulation lead in the blood vessel is fixed.
日本国特表2010-516405号公報Japanese National Table 2010-516405
 電気刺激を適切に行うためには、刺激電極部は、神経等の刺激対象を適切に刺激する刺激部位に正確に位置決めされる必要がある。
 特許文献1に記載の神経刺激用リードは、血管の内壁に配置されると、血管内で回転することにより、刺激部位に配置することができる。しかし、神経刺激用リードの先端部の位置が、刺激部位に対して血管の軸方向にずれている場合には、先端部を血管の軸方向にも移動する必要がある。
 この場合、特許文献1には、ガイドカテーテルもしくはガイドワイヤなどのガイド部材を血管内に再導入してリードアンカーを折りたたむことにより、神経刺激用リードの先端部を再配置することが記載されている。
In order to appropriately perform electrical stimulation, the stimulation electrode unit needs to be accurately positioned at a stimulation site that appropriately stimulates a stimulation target such as a nerve.
When the nerve stimulation lead described in Patent Document 1 is disposed on the inner wall of a blood vessel, it can be disposed at the stimulation site by rotating within the blood vessel. However, when the position of the distal end portion of the nerve stimulation lead is shifted in the axial direction of the blood vessel with respect to the stimulation site, it is necessary to move the distal end portion also in the axial direction of the blood vessel.
In this case, Patent Document 1 describes that the distal end portion of the nerve stimulation lead is rearranged by reintroducing a guide member such as a guide catheter or a guide wire into the blood vessel and folding the lead anchor. .
 しかし、リードアンカーを再度折りたたむと、リードアンカーに大きな力がかかるため、リードアンカーが塑性変形する可能性がある。塑性変形したリードアンカーは、再度拡げた場合に、折りたたむ前の拡張形状に戻らない。このため、リードアンカーから血管に作用する押圧力が低下するおそれがある。押圧力が低下すると、リードアンカーの血管内における位置が安定しなくなるおそれがある。
 さらに、特許文献1の図3等を参照すると、特許文献1におけるリードアンカーの線径は、神経刺激用リードの先端部の線径よりも明らかに小さい。このため、神経刺激用リードの先端部およびリードアンカーから、血管の内壁に作用する径方向の押圧力が、血管内壁の周方向において不均等になる。この結果、血管の内壁からリードアンカーの各部に作用する反力もばらつく。したがって、特に過大な反力を受けるリードアンカーの部分が留置期間中に経時変化し、血管壁への押圧力がさらに低減することも懸念される。
However, when the lead anchor is folded again, a large force is applied to the lead anchor, which may cause plastic deformation of the lead anchor. When the lead anchor deformed plastically is expanded again, it does not return to the expanded shape before folding. For this reason, there exists a possibility that the pressing force which acts on a blood vessel from a lead anchor may fall. When the pressing force decreases, the position of the lead anchor in the blood vessel may not be stable.
Further, referring to FIG. 3 of Patent Document 1, the wire diameter of the lead anchor in Patent Document 1 is clearly smaller than the wire diameter of the distal end portion of the nerve stimulation lead. For this reason, the radial pressing force acting on the inner wall of the blood vessel from the distal end portion and the lead anchor of the nerve stimulation lead becomes uneven in the circumferential direction of the inner wall of the blood vessel. As a result, the reaction force acting on each part of the lead anchor from the inner wall of the blood vessel also varies. Accordingly, there is a concern that the portion of the lead anchor that receives an excessive reaction force changes with time during the indwelling period, and the pressing force on the blood vessel wall further decreases.
 本発明は、上記の課題に鑑みてなされたものであり、折りたたみを繰り返しても、安定して血管内に留置することができる医療用電気刺激電極を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide a medical electrical stimulation electrode that can be stably placed in a blood vessel even when folding is repeated.
 本発明の第1の態様の医療用電気刺激電極は、線状の弾性体を曲げて閉ループ状に形成され、前記線状の弾性体の両端部が連結された連結端部と、前記連結端部から前記線状の弾性体が互いに離間して延ばされた一対の第1線状部と、前記一対の第1線状部の延在方向の先端にそれぞれ両端が接続され、前記両端の中間に少なくとも一つの折り曲げ部を含む第2線状部と、がそれぞれ形成された複数の弾性部材を有する弾性支持体と、血管の内壁を通して電気刺激を与えるため、前記複数の弾性部材の少なくとも一つに配置された刺激電極部と、前記刺激電極部に電気的に接続された配線と、線状に延ばされ、先端部材に前記複数の弾性部材の前記連結端部がそれぞれ接続され、内部に前記配線が挿通されたリード部と、を備える。 The electrical stimulation electrode for medical use according to the first aspect of the present invention is formed in a closed loop by bending a linear elastic body, and a connection end where both ends of the linear elastic body are connected, and the connection end And a pair of first linear parts extending from the linearly spaced apart elastic body, and ends of the pair of first linear parts extending in the extending direction. An elastic support having a plurality of elastic members each formed with a second linear portion including at least one bent portion in the middle, and at least one of the plurality of elastic members for applying electrical stimulation through the inner wall of the blood vessel. A stimulating electrode portion arranged in one piece, a wiring electrically connected to the stimulating electrode portion, a linear extension, and the connecting end portions of the plurality of elastic members are connected to a tip member, respectively, And a lead portion through which the wiring is inserted.
 本発明の第2の態様によれば、上記第1の態様の医療用電気刺激電極において、前記弾性支持体は、前記複数の弾性部材が、前記第1線状部において、互いに係合されることにより、前記リード部の前記先端部材における中心軸線を中心とする籠状に形成され、前記第2線状部を含む前記線状の弾性体によって、前記中心軸線を囲む開口部が形成されてもよい。 According to a second aspect of the present invention, in the medical electrostimulation electrode according to the first aspect, the elastic support member is engaged with the plurality of elastic members at the first linear portion. Accordingly, an opening surrounding the central axis is formed by the linear elastic body including the second linear part, which is formed in a bowl shape centering on the central axis of the tip member of the lead part. Also good.
 本発明の第3の態様によれば、上記第2の態様の医療用電気刺激電極において、前記弾性支持体は、前記中心軸線を対称軸として回転対称な形状に形成されてもよい。 According to the third aspect of the present invention, in the medical electrical stimulation electrode according to the second aspect, the elastic support may be formed in a rotationally symmetric shape with the central axis as the axis of symmetry.
 本発明の第4の態様によれば、上記第1の態様から第3の態様の医療用電気刺激電極において、前記折り曲げ部は、前記連結端部から遠ざかる方向に凸のV字状の第1折り曲げ部を備えてもよい。 According to a fourth aspect of the present invention, in the medical electrical stimulation electrode according to the first to third aspects, the bent portion is a V-shaped first convex in a direction away from the connecting end portion. You may provide a bending part.
 本発明の第5の態様によれば、上記第1の態様から第4の態様の医療用電気刺激電極において、前記折り曲げ部は、前記連結端部に近づく方向に凸のV字状の第2折り曲げ部を備えてもよい。 According to a fifth aspect of the present invention, in the medical electrical stimulation electrode according to the first to fourth aspects, the bent portion is a V-shaped second convex in a direction approaching the connecting end portion. You may provide a bending part.
 本発明の第6の態様によれば、上記第1の態様から第5の態様の医療用電気刺激電極において、前記複数の弾性部材のそれぞれは、線状の芯材と、前記芯材を被覆する被覆部材と、を備えてもよい。 According to a sixth aspect of the present invention, in the medical electrical stimulation electrode according to the first to fifth aspects, each of the plurality of elastic members covers a linear core material and the core material. And a covering member to be provided.
 本発明の第7の態様によれば、上記第6の態様の医療用電気刺激電極において、前記芯材は、超弾性ワイヤであってもよい。 According to the seventh aspect of the present invention, in the medical electrical stimulation electrode according to the sixth aspect, the core material may be a super elastic wire.
 本発明の第8の態様によれば、上記第6の態様または第7の態様の医療用電気刺激電極において、前記複数の弾性部材は、前記刺激電極部が配置され、前記配線を内蔵する第1の弾性部材と、前記刺激電極部および前記配線を有しない第2の弾性部材と、からなり、前記第1の弾性部材における前記芯材の曲げ剛性を、前記第2の弾性部材における前記芯材の曲げ剛性よりも低くすることにより、前記弾性支持体を一定量縮径した際に,径方向に発生する弾性復元力を均等化してもよい。 According to an eighth aspect of the present invention, in the medical electrical stimulation electrode according to the sixth aspect or the seventh aspect, the plurality of elastic members are arranged such that the stimulation electrode portion is disposed and the wiring is incorporated. 1 and a second elastic member that does not have the stimulation electrode portion and the wiring, and the bending rigidity of the core material in the first elastic member is determined by the core in the second elastic member. By making it lower than the bending rigidity of the material, the elastic restoring force generated in the radial direction when the elastic support is reduced by a certain amount may be equalized.
 本発明の第9の態様によれば、上記第6の態様または第7の態様の医療用電気刺激電極において、前記複数の弾性部材が備える複数の前記芯材は、曲げ剛性が異なる2種以上の芯材からなり、前記弾性支持体は、一定量縮径した際に,径方向に発生する弾性復元力が、周方向の位置によって異なっていてもよい。 According to a ninth aspect of the present invention, in the medical electrical stimulation electrode according to the sixth aspect or the seventh aspect, the plurality of core members provided in the plurality of elastic members have two or more types having different bending rigidity. When the elastic support is reduced in diameter by a certain amount, the elastic restoring force generated in the radial direction may vary depending on the position in the circumferential direction.
 本発明の医療用電気刺激電極によれば、折りたたみを繰り返しても、安定して血管内に留置することができるという効果を奏する。 The medical electrical stimulation electrode of the present invention has an effect that it can be stably placed in a blood vessel even if folding is repeated.
本発明の実施形態の医療用電気刺激電極の構成を示す模式的な構成図である。It is a typical block diagram which shows the structure of the medical electrical stimulation electrode of embodiment of this invention. 本発明の実施形態の医療用電気刺激電極の弾性支持体の構成を示す模式的な正面図である。It is a typical front view which shows the structure of the elastic support body of the medical electrical stimulation electrode of embodiment of this invention. 図2AにおけるA視の側面図である。It is a side view of A view in FIG. 2A. 本発明の実施形態の医療用電気刺激電極の弾性部材の構成を示す模式的な斜視図である。It is a typical perspective view which shows the structure of the elastic member of the medical electrical stimulation electrode of embodiment of this invention. 図3におけるB視の平面図である。It is a top view of the B view in FIG. 図4AにおけるC視の側面図である。It is a side view of C view in Drawing 4A. 本発明の実施形態の医療用電気刺激電極の弾性部材の一例の構成を示す模式的な正面図である。It is a typical front view which shows the structure of an example of the elastic member of the medical electrical stimulation electrode of embodiment of this invention. 図5におけるF視図である。FIG. 6 is a F view in FIG. 5. 図4BにおけるD視図である。It is a D view in FIG. 4B. 図4BにおけるE視図である。It is the E view in FIG. 4B. 本発明の実施形態の医療用電気刺激電極の刺激電極部の構成を示す模式的な平面図である。It is a typical top view which shows the structure of the stimulation electrode part of the medical electrical stimulation electrode of embodiment of this invention. 図9AにおけるH-H断面図である。It is HH sectional drawing in FIG. 9A. 図9AにおけるJ-J断面図である。It is JJ sectional drawing in FIG. 9A. 図7におけるK-K断面図である。It is KK sectional drawing in FIG. 図1におけるG視図である。It is a G view in FIG. 図11AにおけるL-L断面図である。FIG. 11B is an LL sectional view in FIG. 11A. 本発明の実施形態の医療用電気刺激電極を患者の体内に留置した際の患者の体外の様子を示す模式図である。It is a schematic diagram which shows the external appearance of a patient when the medical electrical stimulation electrode of embodiment of this invention is detained in the patient's body. 本発明の実施形態の医療用電気刺激電極を上大静脈に留置した状態を示す模式図である。It is a schematic diagram which shows the state which indwelled the medical electrical stimulation electrode of embodiment of this invention in the superior vena cava. 本発明の実施形態の医療用電気刺激電極の弾性支持体の血管内の変形の状態を示す模式図である。It is a schematic diagram which shows the state of the deformation | transformation in the blood vessel of the elastic support body of the medical electrical stimulation electrode of embodiment of this invention. 図14AにおけるM視の側面図である。It is a side view of the M view in FIG. 14A. 本発明の実施形態の医療用電気刺激電極の弾性支持体の縮径状態の形状を示す側面図である。It is a side view which shows the shape of the diameter-reduced state of the elastic support body of the medical electrical stimulation electrode of embodiment of this invention. 本発明の実施形態の医療用電気刺激電極の弾性支持体の自然状態の形状を示す側面図である。It is a side view which shows the shape of the natural state of the elastic support body of the medical electrical stimulation electrode of embodiment of this invention. 本発明の実施形態の医療用電気刺激電極の弾性部材の作用を説明する模式図である。It is a schematic diagram explaining the effect | action of the elastic member of the medical electrical stimulation electrode of embodiment of this invention. 比較例の弾性部材の作用を説明する模式図である。It is a schematic diagram explaining the effect | action of the elastic member of a comparative example. 本発明の実施形態の医療用電気刺激電極の弾性部材の頂部および比較例の弾性部材の頂部の変形状態を示す模式的な拡大図である。It is a typical enlarged view which shows the deformation | transformation state of the top part of the elastic member of the medical electrical stimulation electrode of embodiment of this invention, and the top part of the elastic member of a comparative example. 本発明の実施形態の第1変形例の医療用電気刺激電極に用いる弾性部材の主要部の構成を示す模式図である。It is a schematic diagram which shows the structure of the principal part of the elastic member used for the medical electrical stimulation electrode of the 1st modification of embodiment of this invention. 本発明の実施形態の第2変形例の医療用電気刺激電極に用いる弾性部材の構成を示す模式的な平面図である。It is a typical top view which shows the structure of the elastic member used for the medical electrical stimulation electrode of the 2nd modification of embodiment of this invention. 本発明の実施形態の第3変形例の医療用電気刺激電極に用いる弾性部材の構成を示す模式的な平面図である。It is a typical top view which shows the structure of the elastic member used for the medical electrical stimulation electrode of the 3rd modification of embodiment of this invention. 本発明の実施形態の第3変形例の医療用電気刺激電極に用いる弾性部材の構成を示す模式的な正面図である。It is a typical front view which shows the structure of the elastic member used for the medical electrical stimulation electrode of the 3rd modification of embodiment of this invention. 本発明の実施形態の第4変形例の医療用電気刺激電極に用いる弾性部材の構成を示す模式的な正面図である。It is a typical front view which shows the structure of the elastic member used for the medical electrical stimulation electrode of the 4th modification of embodiment of this invention. 本発明の実施形態の第5変形例の医療用電気刺激電極に用いる弾性部材の構成を示す模式的な平面図である。It is a typical top view which shows the structure of the elastic member used for the medical electrical stimulation electrode of the 5th modification of embodiment of this invention. 本発明の実施形態の第5変形例の医療用電気刺激電極に用いる弾性部材の構成を示す模式的な正面図である。It is a typical front view which shows the structure of the elastic member used for the medical electrical stimulation electrode of the 5th modification of embodiment of this invention.
 本発明の実施形態の医療用電気刺激電極について説明する。
 図1は、本発明の実施形態の医療用電気刺激電極の構成を示す模式的な構成図である。図2Aは、本発明の実施形態の医療用電気刺激電極の弾性支持体の構成を示す模式的な正面図である。図2Bは、図2AにおけるA視の側面図である。図3は、本発明の実施形態の医療用電気刺激電極の弾性部材の構成を示す模式的な斜視図である。図4Aは、図3におけるB視の平面図である。図4Bは、図4AにおけるC視の側面図である。図5は、本発明の実施形態の医療用電気刺激電極の弾性部材の一例の構成を示す模式的な正面図である。図6は、図5におけるF視図である。図7は、図4BにおけるD視図である。図8は、図4BにおけるE視図である。図9Aは、本発明の実施形態の医療用電気刺激電極の刺激電極部の構成を示す模式的な平面図である。図9Bは、図9AにおけるH-H断面図である。図10Aは、図9AにおけるJ-J断面図である。図10Bは、図7におけるK-K断面図である。図11Aは、図1におけるG視図である。図11Bは、図11AにおけるL-L断面図である。
A medical electrical stimulation electrode according to an embodiment of the present invention will be described.
FIG. 1 is a schematic configuration diagram showing a configuration of a medical electrical stimulation electrode according to an embodiment of the present invention. FIG. 2A is a schematic front view showing the configuration of the elastic support of the medical electrical stimulation electrode according to the embodiment of the present invention. FIG. 2B is a side view as viewed in A in FIG. 2A. FIG. 3 is a schematic perspective view showing the configuration of the elastic member of the medical electrical stimulation electrode according to the embodiment of the present invention. 4A is a plan view as viewed from B in FIG. 4B is a side view as seen from C in FIG. 4A. FIG. 5 is a schematic front view showing the configuration of an example of the elastic member of the medical electrical stimulation electrode according to the embodiment of the present invention. FIG. 6 is an F view in FIG. FIG. 7 is a view as viewed from D in FIG. 4B. FIG. 8 is an E view in FIG. 4B. FIG. 9A is a schematic plan view showing the configuration of the stimulation electrode portion of the medical electrical stimulation electrode according to the embodiment of the present invention. FIG. 9B is a cross-sectional view taken along line HH in FIG. 9A. 10A is a cross-sectional view taken along line JJ in FIG. 9A. 10B is a cross-sectional view taken along the line KK in FIG. FIG. 11A is a G view in FIG. FIG. 11B is a cross-sectional view taken along line LL in FIG. 11A.
 図1に示す電気刺激システム100は、血管の内壁を通して周囲の神経組織に電気的刺激を印加するシステムである。電気刺激システム100は、患者の血管内に挿入して一定期間留置して用いる。
 なお、電気刺激システム100は、体内にシステム全体を植え込んで長期間にわたって神経刺激を行うシステムとは異なる。電気刺激システム100は、短期間、神経刺激を行うことに適している。
 電気刺激システム100は、本実施形態の医療用電気刺激電極1と、電気刺激装置8とを備える。
 医療用電気刺激電極1は、血管内から神経を刺激する。電気刺激装置8は、医療用電気刺激電極1に刺激パルスを印加する。
An electrical stimulation system 100 shown in FIG. 1 is a system that applies electrical stimulation to surrounding nerve tissue through the inner wall of a blood vessel. The electrical stimulation system 100 is inserted into a patient's blood vessel and left in place for a certain period.
The electrical stimulation system 100 is different from a system that performs nerve stimulation over a long period of time by implanting the entire system in the body. The electrical stimulation system 100 is suitable for performing nerve stimulation for a short period of time.
The electrical stimulation system 100 includes the medical electrical stimulation electrode 1 of the present embodiment and the electrical stimulation device 8.
The medical electrical stimulation electrode 1 stimulates a nerve from within a blood vessel. The electrical stimulation device 8 applies a stimulation pulse to the medical electrical stimulation electrode 1.
 医療用電気刺激電極1は、刺激電極21、22(刺激電極部)と、リード部3と、弾性支持体2と、を備える。
 刺激電極21、22は、血管の内壁を通して電気刺激を与える。リード部3は、線状に形成され、刺激電極21、22に電気的に接続された図示略の配線を挿通する。弾性支持体2は、リード部3の先端部材3bに接続される。
The medical electrical stimulation electrode 1 includes stimulation electrodes 21 and 22 (stimulation electrode portion), a lead portion 3, and an elastic support body 2.
The stimulation electrodes 21 and 22 apply electrical stimulation through the inner wall of the blood vessel. The lead portion 3 is formed in a linear shape and passes through a wiring (not shown) electrically connected to the stimulation electrodes 21 and 22. The elastic support 2 is connected to the tip member 3 b of the lead portion 3.
 医療用電気刺激電極1は、リード部3が管状のガイドシース7に挿通されて、患者の血管内に導入される。以下では、リード部3およびガイドシース7の相対位置を説明する場合、特に断らない限り、患者の血管に対する挿入方向における先端(先端部)および後端(後端部)を、それぞれ単に、「先端(先端部)」、「後端(後端部)」と称する。
 医療用電気刺激電極1の弾性支持体2が患者の血管内の留置位置に導入される際、弾性支持体2は、ガイドシース7の先端部に折りたたんで収容された状態で導入される。弾性支持体2は、留置位置に達するとガイドシース7の先端から血管内に押し出される。弾性支持体2は、後述するように、押し出されると拡張する。これにより、弾性支持体2は患者の血管の内壁に当接する。弾性支持体2は、患者の血管内に留置される。
 なお、電気刺激システム100において、患者の血管内に挿入される部材や部位には、血栓の発生を抑制するため、血液と接触する表面に、抗血栓コーティングを施しておくことが好ましい。
The medical electrical stimulation electrode 1 is introduced into a patient's blood vessel with the lead portion 3 inserted through a tubular guide sheath 7. In the following, when the relative positions of the lead portion 3 and the guide sheath 7 are described, unless otherwise specified, the distal end (front end portion) and the rear end (rear end portion) in the insertion direction with respect to the blood vessel of the patient are simply referred to as “front end”. (Front end) "and" rear end (rear end) ".
When the elastic support 2 of the medical electrical stimulation electrode 1 is introduced into the indwelling position in the blood vessel of the patient, the elastic support 2 is introduced in a state of being folded and accommodated at the distal end portion of the guide sheath 7. When the elastic support body 2 reaches the indwelling position, the elastic support body 2 is pushed into the blood vessel from the distal end of the guide sheath 7. The elastic support 2 expands when pushed out, as will be described later. Thereby, the elastic support body 2 contacts the inner wall of the patient's blood vessel. The elastic support 2 is placed in the patient's blood vessel.
In addition, in the electrical stimulation system 100, it is preferable that an antithrombotic coating is applied to a surface that comes into contact with blood on a member or a part inserted into a blood vessel of a patient in order to suppress thrombus generation.
 ガイドシース7は、例えば、ポリウレタン製又はポリアミド製のチューブを採用することができる。
 本実施形態におけるガイドシース7の管状部の寸法は、一例として、外径2.8mm、内径2mm、長さ300mmである。
 ガイドシース7の後端部には、分岐部7bが設けられている。分岐部7bの側部には、送液管6が接続されている。送液管6は、ガイドシース7の内部に形成された管路と連通している。送液管6は、例えば、抗血栓剤であるヘパリンなどの薬液をガイドシース7の内部に持続投与することができる。
 分岐部7bの内部には、例えば、Oリングなどからなるシール部7aが設けられている。シール部7aには、リード部3が挿通される。シール部7aは、ガイドシース7内の管路とリード部3との間の水密を保つ。
 送液管6における分岐部7bと反対側の端部には、コネクタ6aが設けられている。コネクタ6aは、図示略の送液手段、例えば、シリンジピストンポンプなどを接続するルーアロックコネクタなどを採用することができる。
For example, a tube made of polyurethane or polyamide can be used as the guide sheath 7.
As an example, the dimensions of the tubular portion of the guide sheath 7 in the present embodiment are an outer diameter of 2.8 mm, an inner diameter of 2 mm, and a length of 300 mm.
A branch portion 7 b is provided at the rear end portion of the guide sheath 7. A liquid feeding pipe 6 is connected to the side of the branch part 7b. The liquid feeding tube 6 communicates with a conduit formed inside the guide sheath 7. The liquid feeding tube 6 can continuously administer a drug solution such as heparin, which is an antithrombotic agent, into the guide sheath 7.
Inside the branch part 7b, for example, a seal part 7a made of an O-ring or the like is provided. The lead portion 3 is inserted through the seal portion 7a. The seal portion 7 a maintains water tightness between the pipe line in the guide sheath 7 and the lead portion 3.
A connector 6a is provided at the end of the liquid feeding pipe 6 opposite to the branching portion 7b. As the connector 6a, a liquid feeding means (not shown), for example, a luer lock connector for connecting a syringe piston pump or the like can be adopted.
 リード部3は、軟性の管状部材であるリードチューブ3aを備える。リードチューブ3aの両端部には、硬質の先端部材3bと、送液管5が接続された硬質の分岐部3cとが設けられている。
 先端部材3bは、リード部3の先端部である第1端部に配置されている。
 リードチューブ3aの内部には、配線部3dが挿通されている。配線部3dは、刺激電極21、22と電気的に接続されている。
 配線部3dは、分岐部3cの開口から外部に延出されている。配線部3dの延出方向の端部には、電気刺激装置8と電気的に接続するコネクタ3eが連結されている。コネクタ3eとしては、例えば、公知のIS1型などのコネクタを採用することができる。
The lead portion 3 includes a lead tube 3a that is a flexible tubular member. At both ends of the lead tube 3a, a hard tip member 3b and a hard branch part 3c to which the liquid feeding pipe 5 is connected are provided.
The tip member 3 b is disposed at the first end that is the tip of the lead portion 3.
A wiring portion 3d is inserted into the lead tube 3a. The wiring part 3d is electrically connected to the stimulation electrodes 21 and 22.
The wiring part 3d extends to the outside from the opening of the branch part 3c. A connector 3e that is electrically connected to the electrical stimulation device 8 is coupled to the end of the wiring portion 3d in the extending direction. As the connector 3e, for example, a known IS1 type connector can be employed.
 リードチューブ3aは、例えば、外径1mm以上3mm以下、全長500mm程度の樹脂製チューブを採用することができる。リードチューブ3aに用いる樹脂は特に限定されない。リードチューブ3aは、例えば、生体適合性に優れるポリウレタンチューブなどを採用することができる。
 リードチューブ3aの外径は、ガイドシース7の内径よりも小径でガイドシース7の内周面との間に隙間ができ、かつガイドシース7のシール部7aに進退可能に嵌合できる寸法とする。例えば、ガイドシース7の内径が2.8mmの場合、リードチューブ3aの外径は、2.5mm程度が好適である。
As the lead tube 3a, for example, a resin tube having an outer diameter of 1 mm to 3 mm and a total length of about 500 mm can be employed. The resin used for the lead tube 3a is not particularly limited. For example, a polyurethane tube having excellent biocompatibility can be adopted as the lead tube 3a.
The outer diameter of the lead tube 3a is smaller than the inner diameter of the guide sheath 7 so that a gap is formed between the inner diameter of the guide sheath 7 and the guide sheath 7 can be fitted to the seal portion 7a of the guide sheath 7 so as to be able to advance and retract. . For example, when the inner diameter of the guide sheath 7 is 2.8 mm, the outer diameter of the lead tube 3a is preferably about 2.5 mm.
 先端部材3bは、弾性支持体2を接続する管状の部位である。先端部材3bは、リードチューブ3aの先端に接続されている。先端部材3bの先端の中心部には、後端の方に向かって延びる係合穴3fが形成されている。係合穴3fは、弾性支持体2の後述する集束部27を係合する。
 係合穴3fの穴形状は、集束部27を中心軸線O回りに回り止めして係合できる適宜の形状を採用することができる。本実施形態では、係合穴3fは、六角穴である。係合穴3fの穴中心は、中心軸線Oと同軸である。
 先端部材3bの外径は、リードチューブ3aの外径と略同一(同一の場合を含む)である。先端部材3bの外周面における段差は0mm以上0.2mm以下である。
 このため、先端部材3bは、ガイドシース7の先端部において、ガイドシース7に進退可能に挿通することができる。
 本実施形態では、先端部材3bの材質は、チタン合金を採用している。係合穴3fの穴形状として、後述する集束部27の外形に対応して六角穴を採用している。
The tip member 3 b is a tubular part that connects the elastic support 2. The tip member 3b is connected to the tip of the lead tube 3a. An engagement hole 3f extending toward the rear end is formed at the center of the front end of the front end member 3b. The engagement hole 3f engages a converging portion 27 described later of the elastic support 2.
As the hole shape of the engagement hole 3f, an appropriate shape capable of engaging the converging portion 27 around the central axis O can be adopted. In the present embodiment, the engagement hole 3f is a hexagonal hole. The hole center of the engagement hole 3f is coaxial with the central axis O.
The outer diameter of the tip member 3b is substantially the same (including the same case) as the outer diameter of the lead tube 3a. The step on the outer peripheral surface of the tip member 3b is not less than 0 mm and not more than 0.2 mm.
For this reason, the distal end member 3b can be inserted into the guide sheath 7 at the distal end portion of the guide sheath 7 so as to be able to advance and retract.
In the present embodiment, the tip member 3b is made of a titanium alloy. As the hole shape of the engagement hole 3f, a hexagonal hole is adopted corresponding to the outer shape of the converging portion 27 described later.
 リード部3は、ガイドシース7の後端部のシール部7aに進退可能に挿通されている。リード部3の後端部は、シール部7aを通して、ガイドシース7の外部に露出されている。
 分岐部3cは、ガイドシース7の外部に露出されたリード部3の後端部に設けられている。
 送液管5は、リード部3内の図示略の管路と連通している。送液管5は、例えば、抗血栓剤であるヘパリンなどの薬液をリード部3の内部に供給することができる。リード部3の先端部には、図示略の放出口が形成されている。送液管5を通して、リード部3内に供給された薬液は、図示略の放出光を通して、血管内に持続投与することができる。
 送液管5におけるリード部3と反対側の端部には、コネクタ5aが設けられている。コネクタ5aは、図示略の送液手段、例えば、シリンジピストンポンプなどを接続するルーアロックコネクタなどを採用することができる。
The lead portion 3 is inserted through the seal portion 7a at the rear end portion of the guide sheath 7 so as to be able to advance and retreat. The rear end portion of the lead portion 3 is exposed to the outside of the guide sheath 7 through the seal portion 7a.
The branch portion 3 c is provided at the rear end portion of the lead portion 3 exposed to the outside of the guide sheath 7.
The liquid feeding pipe 5 communicates with a pipe line (not shown) in the lead portion 3. The liquid feeding tube 5 can supply, for example, a chemical solution such as heparin, which is an antithrombotic agent, into the lead portion 3. A discharge port (not shown) is formed at the tip of the lead part 3. The drug solution supplied into the lead portion 3 through the liquid feeding tube 5 can be continuously administered into the blood vessel through emitted light (not shown).
A connector 5 a is provided at the end of the liquid feeding pipe 5 opposite to the lead portion 3. As the connector 5a, a liquid feeding means (not shown), for example, a luer lock connector for connecting a syringe piston pump or the like can be adopted.
 弾性支持体2は、線状の弾性体を曲げて閉ループ状に形成された、弾性部材20A、20B、20Cを備える。本実施形態では、弾性部材20A、20B、20Cは、先端部材3bの中心軸線をより先端側に延長した中心軸線Oを中心とする籠状に形成されている。さらに、弾性部材20A、20B、20Cを周方向にずらして組み合わされ、中心軸線O回りに回転対称性を有する籠状に形成されている。
 ここで、周方向とは、中心軸線Oを周回する方向である。
 以下では、リード部3に接続された弾性支持体2の端(端部)を、弾性支持体2の基端(基端部)という。弾性支持体2において、弾性支持体2の基端(基端部)と反対側の端(端部)を、弾性支持体2の先端(先端部)と称する。
 また、弾性支持体2の各部において、弾性支持体2の先端に近い端(端部)を各部の先端(先端部)、弾性支持体2の基端に近い端(端部)を各部の基端(基端部)と称する。
The elastic support 2 includes elastic members 20A, 20B, and 20C that are formed in a closed loop by bending a linear elastic body. In the present embodiment, the elastic members 20A, 20B, and 20C are formed in a bowl shape centered on a central axis O that is obtained by extending the central axis of the tip member 3b to the tip side. Further, the elastic members 20A, 20B, and 20C are combined while being shifted in the circumferential direction, and are formed in a bowl shape having rotational symmetry about the central axis O.
Here, the circumferential direction is a direction around the central axis O.
Hereinafter, the end (end portion) of the elastic support 2 connected to the lead portion 3 is referred to as a base end (base end portion) of the elastic support 2. In the elastic support 2, the end (end) opposite to the base end (base end) of the elastic support 2 is referred to as the tip (tip) of the elastic support 2.
Further, in each part of the elastic support 2, an end (end part) close to the tip of the elastic support 2 is a tip (tip part) of each part, and an end (end part) close to the base end of the elastic support 2 is a base of each part. It is called the end (base end).
 弾性部材20A、20B、20Cは、周方向に隣り合うもの同士が先端寄りの中間部で弾性部材固定部34(結節部)によって固定されている。弾性部材20A、20B、20Cの基端部は、すべて束ねられて固定され、集束部27(結節部)が形成されている。
 図2A、2Bに示すように、弾性支持体2の外形状は、リード部3の先端部材3bから中心軸線Oに沿って弾性支持体2の先端の方(図2Aの図示左方)に進むにつれて漸次拡径してから略一定の外径となり、さらに先端に向かうと縮径する。
 弾性支持体2の最大外径は、弾性支持体2を留置する血管内で、血管の内壁を押圧できるように、血管の内径よりも大径とされている。
The elastic members 20 </ b> A, 20 </ b> B, and 20 </ b> C that are adjacent to each other in the circumferential direction are fixed by an elastic member fixing portion 34 (a knot portion) at an intermediate portion near the tip. The base end portions of the elastic members 20A, 20B, and 20C are all bundled and fixed to form a converging portion 27 (nodule portion).
As shown in FIGS. 2A and 2B, the outer shape of the elastic support 2 proceeds from the tip member 3b of the lead portion 3 toward the tip of the elastic support 2 along the central axis O (the left side in FIG. 2A). As the diameter gradually increases, the diameter becomes substantially constant, and further toward the tip, the diameter decreases.
The maximum outer diameter of the elastic support 2 is larger than the inner diameter of the blood vessel so that the inner wall of the blood vessel can be pressed in the blood vessel in which the elastic support 2 is placed.
 弾性支持体2は弾性変形可能であるが、以下では、特に断らない限り、自然状態の形状で説明する。
 ここで、弾性支持体2の自然状態とは、組み立てられた状態であって、外力が作用しないか作用しても変形が無視できる状態である。弾性支持体2は軽量であるため、自重による変形は以下の説明の範囲では無視することができる。
The elastic support 2 is elastically deformable, but will be described below in a natural state unless otherwise specified.
Here, the natural state of the elastic support 2 is an assembled state in which deformation is negligible even if an external force does not act or acts. Since the elastic support 2 is lightweight, deformation due to its own weight can be ignored within the scope of the following description.
 以下では、弾性支持体2に関する相対位置を説明する場合、中心軸線Oに沿う方向を軸方向、中心軸線O回りに周回する方向を周方向、中心軸線Oに直交する平面において中心軸線Oに交差する線に沿う方向を径方向と称する。
 軸方向においては、先端部材3bに近い方を基端側、先端部材3bから遠い方を先端側と称する場合がある。
 径方向においては、中心軸線Oから離れる方を径方向外方(外側)、中心軸線Oに近づく方を径方向内方(内側)と称する場合がある。
In the following, when the relative position with respect to the elastic support 2 is described, the direction along the central axis O is the axial direction, the direction around the central axis O is the circumferential direction, and the central axis O intersects the central axis O in a plane orthogonal to the central axis O. The direction along the line is referred to as the radial direction.
In the axial direction, the side closer to the distal end member 3b may be referred to as the proximal end side, and the side farther from the distal end member 3b may be referred to as the distal end side.
In the radial direction, a direction away from the central axis O may be referred to as a radial outer side (outer side), and a direction approaching the central axis O may be referred to as a radial inner side (inner side).
 弾性部材20A、20B、20Cは、弾性部材20Aのみに刺激電極21、22が配置されている点を除けば、いずれも同様の形状を有する。 The elastic members 20A, 20B, and 20C have the same shape except that the stimulation electrodes 21 and 22 are disposed only on the elastic member 20A.
 以下では、特に断らない限り、弾性部材20Aの形状について説明し、弾性部材20B、20Cの説明は、同形状の部位に「数字+英小文字」からなる共通の符号を付して説明を省略する。また、各部位が、弾性部材20A、20B、20Cのいずれの部位を指すか区別する場合には、この符号の英小文字に続けて、添字A、B、Cを付す。
 例えば、弾性部材20B(20C)における連結端部20aB(20aC)は、弾性部材20Aにおける連結端部20aAと対応する同一形状の部位を指す。
 また、添字A、B、Cによって区別している部材、部位を特に区別する必要がなくどれにも当てはまる場合には、明細書および図面の記載の簡素化のために添字A、B、Cを省略する場合がある。ただし、図面では符号が増えすぎて見にくくなるため、添字A、B、Cを付した符号のみを記載する場合がある。
 例えば、「弾性部材20」、「連結端部20a」は、それぞれ、弾性部材20A、20B、20Cのいずれか、連結端部20aA、20aB、20aCのいずれかを表す。また、「各弾性部材20」、「各連結端部20a」は、それぞれ、弾性部材20A、20B、20Cのすべて、連結端部20aA、20aB、20aCのすべてを表す。
In the following, unless otherwise specified, the shape of the elastic member 20A will be described, and the description of the elastic members 20B and 20C will be omitted by attaching a common reference numeral consisting of “numerals + lowercase letters” to the same shape portion. . Further, in order to distinguish which part of each of the elastic members 20A, 20B, and 20C indicates each part, the subscripts A, B, and C are added after the lowercase letter of this symbol.
For example, the connecting end 20aB (20aC) in the elastic member 20B (20C) refers to a portion having the same shape as the connecting end 20aA in the elastic member 20A.
In addition, when it is applicable to any member and part that are distinguished by the subscripts A, B, and C, the subscripts A, B, and C are omitted for simplification of the description and drawings. There is a case. However, in the drawing, since the number of symbols increases so that it is difficult to see, only the symbols with the suffixes A, B, and C may be described.
For example, “elastic member 20” and “connecting end portion 20a” respectively represent any one of elastic members 20A, 20B, and 20C, or connecting end portions 20aA, 20aB, and 20aC. “Each elastic member 20” and “each connecting end 20a” represent all of the elastic members 20A, 20B, and 20C and all of the connecting ends 20aA, 20aB, and 20aC, respectively.
 弾性部材20Aは、1本の線状の弾性体を折り曲げることにより、閉ループ状に形成されている。本実施形態では、弾性部材20Aの閉ループ形状は、立体的である。以下では、図3、4A、4B、5、6、7、8を参照して、弾性部材20A単体の自然状態の形状について説明する。ここで、弾性部材20A単体の自然状態とは、外力が作用しないか作用しても変形が無視できる状態である。
 弾性部材20Aは、図3に示すように、線状の弾性体の第1端部E1から第2端部E2に向かって、連結端部20aA、基端側線状部20bA(第1線状部)、屈曲部33fA(第1線状部)、第2線状部20cA、屈曲部33hA(第1線状部)、基端側線状部20dA(第1線状部)、および連結端部20eAを、この順に備える。
The elastic member 20A is formed in a closed loop shape by bending a single linear elastic body. In the present embodiment, the closed loop shape of the elastic member 20A is three-dimensional. Below, with reference to FIG. 3, 4A, 4B, 5, 6, 7, 8, the shape of the natural state of elastic member 20A single-piece | unit is demonstrated. Here, the natural state of the elastic member 20A alone is a state in which deformation is negligible even if an external force does not act or acts.
As shown in FIG. 3, the elastic member 20 </ b> A includes a connecting end portion 20 a </ i> A, a base end side linear portion 20 b </ i> A (first linear portion) from the first end portion E <b> 1 of the linear elastic body toward the second end portion E <b> 2. ), The bent portion 33fA (first linear portion), the second linear portion 20cA, the bent portion 33hA (first linear portion), the proximal end linear portion 20dA (first linear portion), and the connecting end portion 20eA. Are provided in this order.
 連結端部20aA、20eAは、弾性部材20Aを後述する集束部27に固定し、集束部27を介して先端部材3bと係合するための部位である。本実施形態では、連結端部20aA、20eAは、それぞれ第1軸線O1に沿って直線状に延ばされている。連結端部20aA、20eAは、第1軸線O1を挟んで平行かつ互いに近接して配置されている。
 連結端部20aA、20eAは、中心軸線Oと、第1軸線O1とが同軸となるように、集束部27を介して先端部材3bと係合される。
 連結端部20aA、20eAと集束部27との固定方法は特に限定されない。連結端部20aA、20eAと集束部27との固定方法は、集束部27の材質に応じて、適宜選択することができる。例えば、連結端部20aA、20eAと集束部27との固定方法は、接着、溶接、カシメなどを採用することができる。
The connecting end portions 20aA and 20eA are portions for fixing the elastic member 20A to the converging portion 27 described later and engaging the tip member 3b via the converging portion 27. In the present embodiment, the connecting end portions 20aA and 20eA are each linearly extended along the first axis O1. The connecting end portions 20aA and 20eA are arranged in parallel and close to each other across the first axis O1.
The coupling end portions 20aA and 20eA are engaged with the tip member 3b via the converging portion 27 so that the central axis O and the first axis O1 are coaxial.
The method for fixing the connecting end portions 20aA and 20eA and the converging portion 27 is not particularly limited. The fixing method of the connecting end portions 20aA and 20eA and the converging portion 27 can be appropriately selected according to the material of the converging portion 27. For example, adhesion, welding, caulking, or the like can be adopted as a method for fixing the connecting end portions 20aA, 20eA and the converging portion 27.
 基端側線状部20bA、20dAは、連結端部20aA、20eAの先端から互いに離間して延ばされた、全体としてU字状の部位である。基端側線状部20bA、20dAは、第1軸線O1を含み、連結端部20aA、20eAの中心軸線を通る平面S2上に配置されている。基端側線状部20bA、20dAは、平面S2において、第1軸線O1に関して互いに線対称である。
 すなわち、図4Aに示すように、基端側線状部20bA、20dAは、それぞれ、連結端部20aA、20eAの先端から、互いに離間するように、先端側(図4Aにおける図示左側)に向かって斜め方向に延ばされている。基端側線状部20bA、20dAは、先端側に向かうにつれてそれぞれ第1軸線O1から漸次離間している。基端側線状部20bA、20dAは、それぞれの先端部では、第1軸線O1と略平行(平行の場合を含む)になっている。
The proximal end side linear portions 20bA and 20dA are U-shaped portions extending as a whole from the distal ends of the connecting end portions 20aA and 20eA. The proximal end side linear portions 20bA and 20dA are disposed on a plane S2 including the first axis O1 and passing through the central axes of the coupling end portions 20aA and 20eA. The proximal side linear portions 20bA and 20dA are symmetrical with respect to the first axis O1 in the plane S2.
That is, as shown in FIG. 4A, the base-side linear portions 20bA and 20dA are inclined toward the distal end side (the left side in the drawing in FIG. 4A) so as to be separated from the distal ends of the coupling end portions 20aA and 20eA, respectively. It is extended in the direction. The proximal end side linear portions 20bA and 20dA are gradually separated from the first axis O1 toward the distal end side. The proximal end side linear portions 20bA and 20dA are substantially parallel to the first axis O1 (including the parallel case) at the respective distal end portions.
 基端側線状部20bA(20dA)は、第1軸線O1から離間する方向に凸となる曲線部、折れ線部、またはこれら曲線部と折れ線部との組み合わせによって構成することができる。
 本実施形態では、基端側線状部20bA(20dA)の形状は、一例として、第1軸線O1に対する傾斜の平均変化率が基端部と先端部とで変化する曲線形状を採用している。本実施形態では、第1軸線O1に対する傾斜の平均変化率は、基端側線状部20bA(20dA)の基端側領域b1(d1)の方が先端側領域b2(d2)に比べて、大きい。
 基端側領域b1(d1)から第2線状部20cAに至る経路における曲率の変化は、連続的でもよいし、不連続でもよい。例えば、基端側領域b1(d1)と先端側領域b2(d2)との境界、先端側領域b2(d2)と第2線状部20cAとの境界、及び基端側線状部20bA(20dA)と第2線状部20cAとの境界における曲率の変化も、連続的でもよいし、不連続でもよい。
The proximal-side linear portion 20bA (20dA) can be configured by a curved portion, a broken line portion, or a combination of the curved portion and the broken line portion that protrudes in a direction away from the first axis O1.
In the present embodiment, as an example, the shape of the proximal-side linear portion 20bA (20dA) adopts a curved shape in which the average change rate of the inclination with respect to the first axis O1 varies between the proximal end portion and the distal end portion. In the present embodiment, the average change rate of the inclination with respect to the first axis O1 is larger in the proximal side region b1 (d1) of the proximal side linear portion 20bA (20dA) than in the distal side region b2 (d2). .
The change in curvature in the path from the base end region b1 (d1) to the second linear portion 20cA may be continuous or discontinuous. For example, the boundary between the proximal end side region b1 (d1) and the distal end side region b2 (d2), the boundary between the distal end side region b2 (d2) and the second linear portion 20cA, and the proximal end side linear portion 20bA (20dA) The curvature at the boundary between the first linear portion 20cA and the second linear portion 20cA may be continuous or discontinuous.
 基端側線状部20bA、20dAの先端部における曲率や向きは、留置位置における血管内での変形状態や血管の内壁に対する押圧力を考慮して、適宜設定することができる。
 本実施形態では、基端側線状部20bA、20dAは、それぞれの基端から先端に向かうにつれて互いに離間するように傾斜する形状を採用している。このため、基端側線状部20bA、20dAの各先端は、自然状態では、第1軸線O1と直交する方向において最も離間している。
The curvature and direction at the distal end portions of the proximal end linear portions 20bA and 20dA can be appropriately set in consideration of the deformation state in the blood vessel at the indwelling position and the pressing force against the inner wall of the blood vessel.
In the present embodiment, the base end side linear portions 20bA and 20dA adopt a shape that is inclined so as to be separated from each other toward the tip. For this reason, the distal ends of the base end side linear portions 20bA and 20dA are most separated in the direction perpendicular to the first axis O1 in the natural state.
 屈曲部33hAは、図3に示すように、基端側線状部20dAの先端と、後述する第2線状部20cAの基端との間にU字状に形成されている。屈曲部33hAは、平面S2に関して第2線状部20cAと反対側に突出している。
 本明細書では、「U字状」は、平行な2つの直線部が円弧状の湾曲部で接続された形状には限定されない。例えば、2つの直線部は非平行に並行していてもよい。湾曲部は円弧以外の曲線で湾曲していてもよい。湾曲部は、直線または曲線からなる折れ線で構成されていてもよい。さらに、湾曲部は、直線部で置き換えられてもよい。例えば、図5に示す本実施形態のように、2つの直線部の端部で屈曲された1つの直線部からなる形状も「U字状」である。
 本実施形態の屈曲部33hAは、第1部分h1、第2部分h2、およびの第3部分h3を備える。
As shown in FIG. 3, the bent portion 33hA is formed in a U-shape between the distal end of the proximal end side linear portion 20dA and the proximal end of a second linear portion 20cA described later. The bent portion 33hA protrudes on the opposite side to the second linear portion 20cA with respect to the plane S2.
In the present specification, the “U-shape” is not limited to a shape in which two parallel straight portions are connected by an arcuate curved portion. For example, the two straight portions may be parallel to each other non-parallel. The bending portion may be curved with a curve other than the arc. The bending portion may be constituted by a broken line made of a straight line or a curved line. Further, the curved portion may be replaced with a straight portion. For example, as in the present embodiment shown in FIG. 5, the shape composed of one straight line portion bent at the ends of two straight line portions is also “U-shaped”.
The bent portion 33hA of the present embodiment includes a first portion h1, a second portion h2, and a third portion h3.
 第1部分h1は、基端側線状部20dAの先端にて屈曲された線状部である。第1部分h1は直線状であってもよいし、曲線状であってもよい。本実施形態では、第1部分h1は、一例として、直線状である。
 第1部分h1の屈曲角度φ1の例としては、90°±30°の範囲内を挙げることができる。第1部分h1の長さは、刺激電極22の長手方向よりも長い。第1部分h1の長さの例としては、4.5mm以上7.0mm以下を挙げることができる。
 ここで、屈曲角度φ1は、第1部分h1と基端側線状部20dAの先端部とのなす角のうち、小さい方の角度(曲げ内で測った角度)である。
The first portion h1 is a linear portion that is bent at the tip of the proximal end linear portion 20dA. The first portion h1 may be linear or curved. In the present embodiment, the first portion h1 is linear as an example.
An example of the bending angle φ1 of the first portion h1 can be in the range of 90 ° ± 30 °. The length of the first portion h <b> 1 is longer than the longitudinal direction of the stimulation electrode 22. Examples of the length of the first portion h1 include 4.5 mm or more and 7.0 mm or less.
Here, the bending angle φ1 is a smaller angle (an angle measured in the bending) among the angles formed by the first portion h1 and the distal end portion of the proximal end linear portion 20dA.
 図5に示すように、第2部分h2は、第1部分h1の突出方向における先端において、屈曲された線状部である。第2部分h2は、平面S2の法線方向から見て基端側線状部20dAの延長線上となる位置(図4A参照)で、平面S2に平行に延ばされている。第2部分h2は直線状であってもよいし、曲線状であってもよい。本実施形態では、第2部分h2は、一例として、直線状である。
 第2部分h2の長さの例としては、3.0mm以上7.0mm以下を挙げることができる。
As shown in FIG. 5, the second portion h2 is a linear portion that is bent at the tip in the protruding direction of the first portion h1. The second portion h2 extends in parallel to the plane S2 at a position (see FIG. 4A) that is on the extension line of the proximal end side linear portion 20dA when viewed from the normal direction of the plane S2. The second portion h2 may be linear or curved. In the present embodiment, the second portion h2 is linear as an example.
Examples of the length of the second portion h2 include 3.0 mm or more and 7.0 mm or less.
 第3部分h3は、第2部分h2の延出方向における先端において、屈曲されて、後述する第2線状部20cAの基端に接続された線状部である。第3部分h3は、直線状であってもよいし、曲線状であってもよい。本実施形態では、第3部分h3は、一例として、直線状である。
 第3部分h3の屈曲角度φ2の例としては、90°±30°の範囲(60°以上120°以下の範囲)を挙げることができる。
 ここで、屈曲角度φ2は、第3部分h3と第2部分h2とのなす角のうち、小さい方の角度(曲げ内で測った角度)である。
The third portion h3 is a linear portion that is bent at the distal end in the extending direction of the second portion h2 and connected to the base end of the second linear portion 20cA described later. The third portion h3 may be linear or curved. In the present embodiment, the third portion h3 is linear as an example.
Examples of the bending angle φ2 of the third portion h3 include a range of 90 ° ± 30 ° (range of 60 ° or more and 120 ° or less).
Here, the bending angle φ2 is a smaller angle (an angle measured in the bending) among the angles formed by the third portion h3 and the second portion h2.
 第3部分h3において、第2部分h2と反対側の端(以下、第3部分h3の先端という)は、本実施形態では、平面S2上に位置している。
 図5の図示では、第3部分h3と第2線状部20cAとの接続部は、屈曲しているように描かれている。しかし、接続部で図示のように屈曲するかどうかは屈曲角度φ2と後述する第2線状部20cAの平面S2に対する角度θで決まる。接続部が屈曲することは必須ではない。
 ただし、図4A、4Bに示すように、後述する第2線状部20cAの基端部は、第1軸線O1に沿う方向から見ると(図4B参照)と、先端側に向かうにつれて平面S1に向かう方向に屈曲している。ここで、平面S1は、第1軸線O1を含み平面S2と直交する平面である。
 本実施形態では、第2線状部20cAの基端部は、平面S2の法線に対して、角度ψだけ内側(図4Bの中央寄り)に傾斜している。
 また、第2線状部20cAの基端部は、平面S2の法線に沿う方向から見ると(図4A参照)、先端側に向かうにつれて平面S1に向かう方向に屈曲している。
 このため、第3部分h3の先端部と第2線状部20cAの基端部とは、θとφ2の和が180°の場合でも、立体形状として見れば、V字状をなして屈曲している。また、第3部分h3の先端部と第2線状部20cAの基端部とは、平面S2の法線に沿って見ても屈曲している。
 第3部分h3の先端部と第2線状部20cAの基端部とのなす屈曲部を、以下では、屈曲部20hAと称する。
In the third portion h3, the end opposite to the second portion h2 (hereinafter referred to as the tip of the third portion h3) is located on the plane S2 in the present embodiment.
In the illustration of FIG. 5, the connecting portion between the third portion h3 and the second linear portion 20cA is drawn to be bent. However, whether or not the connection portion is bent as shown in the drawing is determined by the bending angle φ2 and the angle θ with respect to the plane S2 of the second linear portion 20cA described later. It is not essential that the connecting portion bends.
However, as shown in FIGS. 4A and 4B, the base end portion of the second linear portion 20cA described later is seen from the direction along the first axis O1 (see FIG. 4B), and becomes a plane S1 toward the distal end side. Bent in the direction you head. Here, the plane S1 is a plane that includes the first axis O1 and is orthogonal to the plane S2.
In the present embodiment, the base end portion of the second linear portion 20cA is inclined inward (near the center in FIG. 4B) by an angle ψ with respect to the normal line of the plane S2.
Further, when viewed from the direction along the normal line of the plane S2 (see FIG. 4A), the base end portion of the second linear portion 20cA is bent in the direction toward the plane S1 toward the distal end side.
For this reason, even if the sum of θ and φ2 is 180 °, the distal end portion of the third portion h3 and the proximal end portion of the second linear portion 20cA are bent in a V shape when viewed as a three-dimensional shape. ing. Further, the distal end portion of the third portion h3 and the proximal end portion of the second linear portion 20cA are bent even when viewed along the normal line of the plane S2.
A bent portion formed by the distal end portion of the third portion h3 and the proximal end portion of the second linear portion 20cA is hereinafter referred to as a bent portion 20hA.
 このような構成の屈曲部20hAにおいて、第1部分h1上には刺激電極22が配置されている。第3部分h3上には刺激電極21が配置されている。
 刺激電極22は、その長手方向が、第1部分h1の中心軸線方向に沿うように、第1部分h1の中間部に配置される。刺激電極22は、第1軸線O1に関して径方向外側となる表面に一部が露出している。
 刺激電極21は、その長手方向が、第3部分h3の中心軸線方向に沿うように、第3部分h3の中間部に配置される。刺激電極21は、第1軸線O1に関して径方向外側となる表面に一部が露出している。
In the bent portion 20hA having such a configuration, the stimulation electrode 22 is disposed on the first portion h1. A stimulation electrode 21 is disposed on the third portion h3.
The stimulation electrode 22 is disposed at an intermediate portion of the first portion h1 so that the longitudinal direction thereof is along the central axis direction of the first portion h1. A part of the stimulation electrode 22 is exposed on the surface that is radially outward with respect to the first axis O1.
The stimulation electrode 21 is disposed at an intermediate portion of the third portion h3 so that the longitudinal direction thereof is along the central axis direction of the third portion h3. A part of the stimulation electrode 21 is exposed on the surface that is radially outward with respect to the first axis O1.
 刺激電極22(21)の第1部分h1(第3部分h3)における中心軸線方向の位置は、刺激対象の神経組織に電気刺激を与えることができれば、特に限定されない。ただし、迷走神経P6のように、血管に併走している場合には、弾性支持体2の軸方向において対向するように配置することが好ましい。なお、図示しないが、図5における第2部分h2に刺激電極を設置し、後述する屈曲部33fAの第2部分h2にもう一つの刺激電極を設置してもよい。この場合、それぞれの刺激電極を血管内に挿入した際に、刺激電極を迷走神経P6の走行に平行に配置することができる。また、刺激電極によって迷走神経P6を挟み込むように配置することができる。
 刺激電極21、22の詳細構成については、さらに弾性部材20Aの説明をした後に説明する。
The position of the stimulation electrode 22 (21) in the central axis direction in the first portion h1 (third portion h3) is not particularly limited as long as electrical stimulation can be applied to the nerve tissue to be stimulated. However, when it is parallel to a blood vessel like the vagus nerve P6, it is preferable to arrange so that it may oppose in the axial direction of the elastic support body 2. FIG. Although not shown, a stimulation electrode may be installed in the second portion h2 in FIG. 5, and another stimulation electrode may be installed in the second portion h2 of the bent portion 33fA described later. In this case, when each stimulation electrode is inserted into the blood vessel, the stimulation electrode can be arranged in parallel with the running of the vagus nerve P6. Moreover, it can arrange | position so that the vagus nerve P6 may be inserted | pinched with a stimulation electrode.
The detailed configuration of the stimulation electrodes 21 and 22 will be described after the elastic member 20A is further described.
 以上、屈曲部33hAの構成について説明した。図7に示すように、弾性部材20B(20C)の屈曲部33hB(33hC)は、刺激電極21、22を削除した点を除いて、屈曲部33hAと同様に構成される。 The configuration of the bent portion 33hA has been described above. As shown in FIG. 7, the bent portion 33hB (33hC) of the elastic member 20B (20C) is configured in the same manner as the bent portion 33hA, except that the stimulation electrodes 21 and 22 are omitted.
 次に、弾性部材20Aの屈曲部33fAについて説明する。
 図8に示すように、屈曲部33fAは、基端側線状部20bAの先端と、後述する第2線状部20cAの基端との間にU字状に形成されている。屈曲部33fAは、屈曲部33hAと同様に、平面S2に関して第2線状部20cAと反対側に突出している。
 本実施形態の屈曲部33fAは、第1部分f1、第2部分f2、および第3部分f3を備える。
 屈曲部33fAの外形は、平面S1(図3参照)を挟んで対向する位置に設けられた屈曲部33hAと異なっていてもよい。しかし、本実施形態では、屈曲部33fAの外形は、平面S1に関して、屈曲部33hAと面対称である。
 すなわち、第1部分f1、第2部分f2、および第3部分f3は、それぞれ屈曲部33hAにおける第1部分h1、第2部分h2、および第3部分h3と同じ外形状を有する。
 また、第3部分h3の先端部と第2線状部20cAとにより、屈曲部20hAと同様の屈曲部20fAが形成されている。
 ただし、屈曲部33fAには、屈曲部33hAとは異なり、刺激電極21、22は配置されていない。
 屈曲部33hAの第3部分h3の先端と、屈曲部33fAの第3部分f3の先端とは、平面S2上において、第1軸線O1と直交する第3軸線O3上に位置する。
Next, the bent portion 33fA of the elastic member 20A will be described.
As shown in FIG. 8, the bent portion 33fA is formed in a U-shape between the distal end of the proximal end side linear portion 20bA and the proximal end of a second linear portion 20cA described later. Similar to the bent portion 33hA, the bent portion 33fA protrudes on the opposite side to the second linear portion 20cA with respect to the plane S2.
The bent portion 33fA of the present embodiment includes a first portion f1, a second portion f2, and a third portion f3.
The outer shape of the bent portion 33fA may be different from the bent portion 33hA provided at a position facing the plane S1 (see FIG. 3). However, in the present embodiment, the outer shape of the bent portion 33fA is plane-symmetric with the bent portion 33hA with respect to the plane S1.
That is, the first part f1, the second part f2, and the third part f3 have the same outer shape as the first part h1, the second part h2, and the third part h3 in the bent part 33hA, respectively.
Further, a bent portion 20fA similar to the bent portion 20hA is formed by the tip portion of the third portion h3 and the second linear portion 20cA.
However, unlike the bent portion 33hA, the stimulation electrodes 21 and 22 are not arranged in the bent portion 33fA.
The tip of the third portion h3 of the bent portion 33hA and the tip of the third portion f3 of the bent portion 33fA are located on the third axis O3 orthogonal to the first axis O1 on the plane S2.
 以上、屈曲部33fAの構成について説明した。図8に示すように、弾性部材20B(20C)の屈曲部33fB(33fC)は、屈曲部33fAと同様に構成される。 The configuration of the bent portion 33fA has been described above. As shown in FIG. 8, the bent portion 33fB (33fC) of the elastic member 20B (20C) is configured similarly to the bent portion 33fA.
 以上説明した基端側線状部20dと屈曲部33h、および基端側線状部20bと屈曲部33fは、それぞれ連結端部20a、20eから線状の弾性体が互いに離間して延ばされた一対の第1線状部を構成している。 The base end side linear portion 20d and the bent portion 33h, and the base end side linear portion 20b and the bent portion 33f described above are a pair in which linear elastic bodies are extended away from the connecting end portions 20a and 20e, respectively. 1st linear part is comprised.
 第2線状部20cAは、一対の第1線状部の延在方向制の先端にそれぞれ両端が接続され、両端の中間に少なくとも一つの折り曲げ部を含む部位である。
 図5、8に示すように、本実施形態では、第2線状部20cAは、屈曲部33fA、33hAにおける第3部分f3、h3の先端から、さらに先端側に向かうにつれて、平面S2から漸次離れる斜め方向に延ばされている。図4Aに示すように、第2線状部20cAは、全体として、先端の方に張り出す凸状に湾曲している。
The second linear portion 20cA is a portion that is connected at both ends to the ends of the extending direction of the pair of first linear portions and includes at least one bent portion in the middle between both ends.
As shown in FIGS. 5 and 8, in the present embodiment, the second linear portion 20cA gradually moves away from the plane S2 from the tip of the third portions f3 and h3 in the bent portions 33fA and 33hA toward the tip side. It is extended in an oblique direction. As shown in FIG. 4A, the second linear portion 20cA is curved in a convex shape projecting toward the tip as a whole.
 第2線状部20cAは、第3軸線O3から離間する方向に凸となる曲線部、折れ線部、またはこれら曲線部と折れ線部との組み合わせによって構成することができる。
 図4Aに示すように、本実施形態では、第2線状部20cAの形状は、平面S1に関して面対称なC字状、あるいは山形に形成されている。
 第2線状部20cAは、屈曲部33fA(33hA)に近い基端側領域c1(c3)では、屈曲部33fA(33hA)の第3部分f3(h3)の先端から平面S1に向かって傾斜する曲線状または直線状に延ばされている。
 また、第2線状部20cAにおいて、基端側領域c1、c3の間の先端側領域c2の中心には、直線状の線状部が頂部20gAで屈曲された折り曲げ部20kAが形成されている。頂部20gAは、平面S1上に位置している。
 折り曲げ部20kAは、連結端部20aA、20eAから遠ざかる方向に凸のV字状の第1折り曲げ部を構成している。
The second linear portion 20cA can be configured by a curved portion, a broken line portion, or a combination of the curved portion and the broken line portion that protrudes in a direction away from the third axis O3.
As shown in FIG. 4A, in the present embodiment, the shape of the second linear portion 20cA is formed in a C shape or a mountain shape that is plane-symmetric with respect to the plane S1.
The second linear portion 20cA is inclined toward the plane S1 from the tip of the third portion f3 (h3) of the bent portion 33fA (33hA) in the proximal region c1 (c3) close to the bent portion 33fA (33hA). It is extended in the shape of a curve or a straight line.
Further, in the second linear portion 20cA, a bent portion 20kA in which the linear linear portion is bent at the top portion 20gA is formed at the center of the distal end side region c2 between the proximal end side regions c1 and c3. . The top portion 20gA is located on the plane S1.
The bent portion 20kA constitutes a V-shaped first bent portion that is convex in a direction away from the connecting end portions 20aA and 20eA.
 図6に示すように、折り曲げ部20kAの屈曲角は、θ3である。屈曲角θ3は、鈍角でも鋭角でもよい。
 屈曲角θ3の例としては、例えば、5°以上120°以下の範囲を挙げることができる。
 折り曲げ部20kAの曲げ内には、加工都合で形成される曲率半径5mm以下の湾曲があってもよい。
As shown in FIG. 6, the bending angle of the bent portion 20kA is θ3. The bending angle θ3 may be an obtuse angle or an acute angle.
Examples of the bending angle θ3 include a range of 5 ° to 120 °.
Within the bend of the bent portion 20 kA, there may be a curvature with a radius of curvature of 5 mm or less formed for processing convenience.
 折り曲げ部20kAを除く先端側領域c2の形状は、曲線状でもよく、直線状でもよい。本実施形態では、折り曲げ部20kAを除く先端側領域c2の形状は、一例として、第1軸線O1に関して径方向の外方に向かって凸の曲線状である。 The shape of the distal end side region c2 excluding the bent portion 20kA may be a curved shape or a linear shape. In the present embodiment, the shape of the distal end side region c2 excluding the bent portion 20kA is, for example, a curved shape protruding outward in the radial direction with respect to the first axis O1.
 図5に示すように、第2線状部20cAを第3軸線O3に沿う方向から見ると、第2線状部20cAにおいて折り曲げ部20kAよりも基端側の部分が平面S3上に位置している。ここで、平面S3は、第3軸線O3を含み平面S2に対して角度θをなして交差する仮想的な平面である。
 角度θは、例えば、5°以上90°以下でもよい。
As shown in FIG. 5, when the second linear portion 20cA is viewed from the direction along the third axis O3, the proximal end portion of the second linear portion 20cA relative to the bent portion 20kA is located on the plane S3. Yes. Here, the plane S3 is a virtual plane that includes the third axis O3 and intersects the plane S2 at an angle θ.
The angle θ may be, for example, 5 ° or more and 90 ° or less.
 折り曲げ部20kAは、平面S3に対して平面S2寄りに、角度θ2だけ傾斜している。角度θ2は、弾性支持体2を血管に挿入した変形状態において、各頂部20gAが、血管の内壁に接触する角度であってもよい。ただし、角度θ2は、各頂部20gAが、血管の内壁に接触しない角度としてもよい。
 角度θ2の大きさは、例えば、5°以上90°以下とすることができる。
 本実施形態では、折り曲げ部20kAの基端部と、折り曲げ部20kAを除く第2線状部20cAとの接続部には、それぞれ屈曲部20jAが形成されている。
 ただし、弾性支持体2をより強固に血管内に係止するために、角度θ2は、0°あるいは平面S3に対して反対側に傾斜する角度であってもよい。この場合、頂部20gAが血管の内壁により強く押しつけられる。
The bent portion 20kA is inclined by an angle θ2 closer to the plane S2 than the plane S3. The angle θ2 may be an angle at which each apex 20gA contacts the inner wall of the blood vessel in a deformed state in which the elastic support 2 is inserted into the blood vessel. However, the angle θ2 may be an angle at which each apex 20gA does not contact the inner wall of the blood vessel.
The magnitude of the angle θ2 can be, for example, 5 ° or more and 90 ° or less.
In the present embodiment, bent portions 20jA are formed at the connection portions between the base end portion of the bent portion 20kA and the second linear portion 20cA excluding the bent portion 20kA.
However, in order to more firmly lock the elastic support 2 in the blood vessel, the angle θ2 may be 0 ° or an angle inclined to the opposite side with respect to the plane S3. In this case, the top portion 20gA is strongly pressed against the inner wall of the blood vessel.
 このような構成により、本実施形態では、弾性部材20A全体の外形は、平面S1に関して面対称な形状になっている。 With such a configuration, in the present embodiment, the entire outer shape of the elastic member 20A is symmetrical with respect to the plane S1.
 ここで、弾性部材20Aの内部構造と、刺激電極21、22の構成とについて説明する。
 図9A、9Bに示すように、弾性部材20Aは、線状の弾性体であるワイヤ23X(芯材)の外周面が外部被覆26(被覆部材)で覆われている。
Here, the internal structure of the elastic member 20A and the configuration of the stimulation electrodes 21 and 22 will be described.
As shown in FIGS. 9A and 9B, in the elastic member 20A, the outer peripheral surface of the wire 23X (core material), which is a linear elastic body, is covered with an outer covering 26 (covering member).
 ワイヤ23Xは、塑性変形を起こしにくい適宜の金属ワイヤを採用することができる。
 ワイヤ23Xとして好適な金属ワイヤとしては、例えば、形状記憶合金や超弾性ワイヤなどを挙げることができる。ワイヤ23Xの長手方向に直交する方向の断面形状(以下、単に断面形状)は、特に限定されない。例えば、矩形断面、円断面などを採用することができる。
 ワイヤ23Xの断面形状の例としては、例えば、1辺の長さが0.1mm以上0.3mm以下の正方形断面または長方形断面と、直径が0.1mm以上0.3mm以下の円断面とを挙げることができる。図10Aに示すように、本実施形態では、ワイヤ23Xの断面形状は、正方形である。
 本実施形態では、ワイヤ23Xは、一例として、0.27mm×0.27mmの超弾性ワイヤを採用している。
As the wire 23X, an appropriate metal wire that hardly causes plastic deformation can be adopted.
Examples of the metal wire suitable as the wire 23X include a shape memory alloy and a superelastic wire. The cross-sectional shape in a direction orthogonal to the longitudinal direction of the wire 23X (hereinafter simply referred to as a cross-sectional shape) is not particularly limited. For example, a rectangular cross section or a circular cross section can be employed.
Examples of the cross-sectional shape of the wire 23X include, for example, a square cross section or a rectangular cross section with a side length of 0.1 mm to 0.3 mm, and a circular cross section with a diameter of 0.1 mm to 0.3 mm. be able to. As shown to FIG. 10A, in this embodiment, the cross-sectional shape of the wire 23X is a square.
In this embodiment, the wire 23X employs a superelastic wire of 0.27 mm × 0.27 mm as an example.
 図9A、9Bに示すように、外部被覆26は、刺激電極21、22の露出部位を除いては、弾性部材20Aの最外周面を形成する被覆部材である。したがって、外部被覆26は、血管内に導入されると、外周面が血液、血管の内壁等の生体組織と接触する。
 このため、外部被覆26は、ワイヤ23Xとともに変形可能な絶縁性材料であって、かつ生体適合性に優れる材料で形成される。また、外部被覆26の表面は、血栓を生じさせないように滑らかに形成される。
 外部被覆26に好適な材料の例としては、例えば、ポリウレタン樹脂、ポリイミド樹脂などを挙げることができる。
 外部被覆26は、熱融着により、ワイヤ23Xとの間に空気層を含まないように溶融結合されている。
As shown in FIGS. 9A and 9B, the outer covering 26 is a covering member that forms the outermost peripheral surface of the elastic member 20 </ b> A except for the exposed portions of the stimulation electrodes 21 and 22. Therefore, when the outer covering 26 is introduced into the blood vessel, the outer peripheral surface comes into contact with blood, a living tissue such as the inner wall of the blood vessel.
For this reason, the outer covering 26 is formed of an insulating material that can be deformed together with the wire 23X and is excellent in biocompatibility. The surface of the outer coating 26 is formed smoothly so as not to cause thrombus.
Examples of a material suitable for the outer coating 26 include a polyurethane resin and a polyimide resin.
The outer covering 26 is melt-bonded so as not to include an air layer with the wire 23X by heat fusion.
 刺激電極21、22は、弾性部材20Aにおける配置位置が異なるのみで、いずれも同様の構成を有する。
 刺激電極21(22)は、例えば、白金イリジウム合金などの生体適合性を有する金属管で形成される。刺激電極21(22)の一部は、外部被覆26の開口26aを通して、弾性部材20Aの外周に露出されている。この露出部分は、外部被覆26の外周面に沿う曲率を有する円筒面状である。この露出部分の第3軸線O3に沿う方向から見た(図9Aの紙面垂直方向から見た)形状は、略矩形状(矩形状も含む)である。
 本実施形態では、一例として、刺激電極21(22)として、直径0.8mm、長さ4mmの円筒状の管部材を採用している。刺激電極21(22)の露出部分の形状は、幅0.5mm、長さ3.8mmとしている。ここで、露出部分の長手方向は、外部被覆26の延在方向に一致されている。
 ただし、刺激電極21(22)の露出形状はこれには限定されない。例えば、刺激電極21(22)の露出形状は、ワイヤ23Xの軸線方向に長い長円形状や楕円形状などであってもよい。
The stimulation electrodes 21 and 22 differ only in the arrangement position in the elastic member 20A, and both have the same configuration.
The stimulation electrode 21 (22) is formed of a metal tube having biocompatibility such as a platinum iridium alloy, for example. A part of the stimulation electrode 21 (22) is exposed to the outer periphery of the elastic member 20A through the opening 26a of the outer covering 26. The exposed portion has a cylindrical surface shape having a curvature along the outer peripheral surface of the outer coating 26. The shape of the exposed portion viewed from the direction along the third axis O3 (viewed from the direction perpendicular to the plane of FIG. 9A) is substantially rectangular (including a rectangular shape).
In the present embodiment, as an example, a cylindrical tube member having a diameter of 0.8 mm and a length of 4 mm is employed as the stimulation electrode 21 (22). The shape of the exposed portion of the stimulation electrode 21 (22) is 0.5 mm wide and 3.8 mm long. Here, the longitudinal direction of the exposed portion coincides with the extending direction of the outer coating 26.
However, the exposed shape of the stimulation electrode 21 (22) is not limited to this. For example, the exposed shape of the stimulation electrode 21 (22) may be an oval shape or an oval shape that is long in the axial direction of the wire 23X.
 刺激電極21(22)の内部には、ワイヤ23Xとの短絡を防止するための管状の絶縁部材24が挿通されている。絶縁部材24の内部には、ワイヤ23Xが挿通されている。
 また、外部被覆26に埋没された刺激電極21(22)の内周面には、配線25が電気的に接続されている。配線25は、配線部3d(図1参照)を構成する。
 配線25としては、例えば、耐屈曲性を有するニッケルコバルト合金(35NLT25%Ag材)からなる撚り線を、電気的絶縁材(例えば、厚さ20μmのETFE(ポリテトラフルオロエチレン)等)で被覆したものを好適に用いることができる。
 配線25は、外部被覆26内に配置されてワイヤ23Xに沿って延び、それぞれ、連結端部20aA、20eAの基端部から、リード部3の後端側に延出されている(図11B参照)。
A tubular insulating member 24 for preventing a short circuit with the wire 23X is inserted into the stimulation electrode 21 (22). A wire 23 </ b> X is inserted into the insulating member 24.
A wiring 25 is electrically connected to the inner peripheral surface of the stimulation electrode 21 (22) buried in the outer covering 26. The wiring 25 constitutes a wiring part 3d (see FIG. 1).
As the wiring 25, for example, a stranded wire made of a nickel cobalt alloy (35NLT25% Ag material) having bending resistance is covered with an electrical insulating material (for example, ETFE (polytetrafluoroethylene) having a thickness of 20 μm). A thing can be used suitably.
The wiring 25 is disposed in the outer covering 26 and extends along the wire 23X, and extends from the base end portion of the coupling end portions 20aA and 20eA to the rear end side of the lead portion 3 (see FIG. 11B). ).
 弾性部材20B、20Cの内部構造は、図10Bに示すように、弾性部材20Aのワイヤ23Xに代えて、ワイヤ23Y(芯材)を備え、刺激電極21、22、絶縁部材24、および配線25を削除した構成である。
 ワイヤ23Yは、ワイヤ23Xと共通の材質からなる。ただし、ワイヤ23Yは、ワイヤ23Xと断面形状と異なってもよい。
As shown in FIG. 10B, the internal structure of the elastic members 20B and 20C includes a wire 23Y (core material) instead of the wire 23X of the elastic member 20A, and includes stimulation electrodes 21 and 22, an insulating member 24, and wiring 25. It is a deleted configuration.
The wire 23Y is made of the same material as the wire 23X. However, the wire 23Y may be different from the cross-sectional shape of the wire 23X.
 ワイヤ23Yの断面形状の例としては、例えば、1辺の長さが0.2mm以上0.5mm以下の正方形断面または長方形断面と、直径が0.2mm以上0.5mm以下の円断面とを挙げることができる。図10Bに示すように、本実施形態では、ワイヤ23Yの断面形状は、正方形である。
 本実施形態では、ワイヤ23Yは、一例として、ワイヤ23Xと同様、0.27mm×0.27mmの超弾性ワイヤを採用している。
Examples of the cross-sectional shape of the wire 23Y include, for example, a square cross section or a rectangular cross section with a side length of 0.2 mm to 0.5 mm, and a circular cross section with a diameter of 0.2 mm to 0.5 mm. be able to. As shown in FIG. 10B, in this embodiment, the cross-sectional shape of the wire 23Y is a square.
In the present embodiment, as an example, the wire 23Y employs a super-elastic wire of 0.27 mm × 0.27 mm, similar to the wire 23X.
 弾性部材20B(20C)は、配線25を有しない。よって、弾性部材20B(20C)では、配線25による曲げ剛性の寄与がなくなる。このため、ワイヤ23Yの長手方向に直交する断面形状(以下、単に断面形状)をワイヤ23Xと同一の断面形状にすると、弾性部材20B(20C)の曲げ剛性が、弾性部材20Aの曲げ剛性よりも低下する。
 ワイヤ23Yの断面形状を変えて、曲げに関する断面2次モーメントがワイヤ23Xよりも大きくなるようにすれば、弾性部材20A、20B、20Cの各曲げ剛性を同程度にすることができる。
 しかし、配線25および外部被覆26による曲げ剛性の差異が小さい場合には、ワイヤ23X、23Yの曲げ剛性を変えなくても、弾性部材20A、20B、20Cの各曲げ剛性が同程度になる。
 本実施形態では、ワイヤ23X、23Yの断面2次モーメントは同じだが、弾性部材20A、20B、20Cの各曲げ剛性は同程度である。
The elastic member 20B (20C) does not have the wiring 25. Therefore, the elastic member 20B (20C) does not contribute to the bending rigidity due to the wiring 25. For this reason, if the cross-sectional shape orthogonal to the longitudinal direction of the wire 23Y (hereinafter simply referred to as the cross-sectional shape) is the same cross-sectional shape as the wire 23X, the bending rigidity of the elastic member 20B (20C) is greater than the bending rigidity of the elastic member 20A. descend.
If the cross-sectional shape of the wire 23Y is changed so that the cross-sectional secondary moment related to bending is greater than that of the wire 23X, the bending rigidity of the elastic members 20A, 20B, and 20C can be made substantially the same.
However, when the difference in bending rigidity between the wiring 25 and the outer coating 26 is small, the bending rigidity of the elastic members 20A, 20B, and 20C becomes approximately the same without changing the bending rigidity of the wires 23X and 23Y.
In the present embodiment, the cross-sectional secondary moments of the wires 23X and 23Y are the same, but the bending rigidity of the elastic members 20A, 20B, and 20C is approximately the same.
 弾性部材20A、20B、20Cの各曲げ剛性は、厳密に一致させる必要はない。弾性部材20A、20B、20Cの各曲げ剛性は、弾性支持体2として組み立てられた後、弾性支持体2を一定量縮径した際に径方向に発生する弾性復元力を均等化できる大きさにする。
 ここで、「均等化できる」とは、弾性復元力のバラツキが10%以下に収まることを意味する。
 本実施形態では、弾性部材20A、20B、20Cは、回転対称に配置される。このため、弾性部材20A、20B、20Cの各曲げ剛性のバラツキを10%以下に収めれば、弾性支持体2における弾性復元力を均等化することが可能である。
 また、一定量縮径する場合、弾性支持体2の最外周部が円筒面に接する状態で等方的に縮径させる。したがって、本実施形態では、弾性支持体2を配置する血管が円筒状である場合に、縮径時の弾性復元力を均等化することができる。
 なお、弾性復元力を測る場合の一定量は、適宜値に設定することができる。例えば、血管内に配置されたときの縮径量に近い値とすればよい。この場合、測定された弾性復元力は、血管に作用する押圧力と略等しくなる。
The bending stiffnesses of the elastic members 20A, 20B, and 20C do not need to be strictly matched. The flexural rigidity of each of the elastic members 20A, 20B, and 20C is such that the elastic restoring force generated in the radial direction when the elastic support 2 is reduced by a certain amount after being assembled as the elastic support 2 can be equalized. To do.
Here, “can be equalized” means that the variation in elastic restoring force is within 10%.
In the present embodiment, the elastic members 20A, 20B, and 20C are arranged rotationally symmetrical. For this reason, if the variation of each bending rigidity of elastic member 20A, 20B, 20C is kept to 10% or less, the elastic restoring force in the elastic support body 2 can be equalized.
When the diameter is reduced by a certain amount, the diameter isotropically reduced in a state where the outermost peripheral portion of the elastic support 2 is in contact with the cylindrical surface. Therefore, in this embodiment, when the blood vessel in which the elastic support 2 is disposed is cylindrical, the elastic restoring force at the time of diameter reduction can be equalized.
A certain amount when measuring the elastic restoring force can be appropriately set to a value. For example, a value close to the amount of diameter reduction when placed in the blood vessel may be used. In this case, the measured elastic restoring force is substantially equal to the pressing force acting on the blood vessel.
 弾性部材20Aは、刺激電極部が配置され、配線を内蔵する第1の弾性部材を構成している。
 弾性部材20B、20Cは、刺激電極部および配線を有しない第2の弾性部材を構成している。
The elastic member 20 </ b> A constitutes a first elastic member in which a stimulation electrode portion is disposed and a wiring is incorporated.
The elastic members 20B and 20C constitute a second elastic member having no stimulation electrode portion and wiring.
 このような弾性部材20A、20B、20Cは、弾性支持体2として組み立てられる。
 次に、組み立てられた弾性支持体2の自然状態における弾性部材20A、20B、20Cの配置について説明する。
 図2Bに示すように、組立状態において、弾性部材20A、20B、20Cは、各第1軸線O1が中心軸線Oと整列している。頂部20gA、20gB、20gCは、中心軸線Oに関する周方向において、等間隔に離間している。
 各弾性部材20は、それぞれの第2線状部20cの張り出し方向が中心軸線Oに関して径方向外側に向いている。各弾性部材20の配置順は、図示反時計回りに弾性部材20A、20B、20Cの順である。
Such elastic members 20A, 20B, and 20C are assembled as the elastic support 2.
Next, the arrangement of the elastic members 20A, 20B, and 20C in the natural state of the assembled elastic support 2 will be described.
As shown in FIG. 2B, in the assembled state, the elastic members 20A, 20B, and 20C have the first axis O1 aligned with the center axis O. The top portions 20gA, 20gB, and 20gC are spaced apart at equal intervals in the circumferential direction with respect to the central axis O.
In each elastic member 20, the projecting direction of the second linear portion 20 c is directed radially outward with respect to the central axis O. The arrangement order of the elastic members 20 is the order of the elastic members 20A, 20B, and 20C in the counterclockwise direction in the drawing.
 本実施形態では、基端側線状部20bA、20dBと、基端側線状部20bB、20dCと、基端側線状部20bC、20dAとは、それぞれ基端側の部位が、弾性部材固定部64によって固定されている。
 弾性部材固定部64の位置、長さは、変形時の押圧力のバランスを考慮して適宜設定することができる。基端側線状部20bA、20dBと、基端側線状部20bB、20dCと、基端側線状部20bC、20dAとは、それぞれ基端側のみならず長手方向の全体が、弾性部材固定部64によって固定されてもよい。また、弾性部材固定部64によって、各基端側線状部20b、20dの先端側のみが固定されていてもよい。
 本実施形態では、一例として、各基端側線状部20b、20dにおいて、先端部材3b側から2/3までの範囲を固定している。
 各弾性部材固定部64は、各弾性部材20の外部被覆26同士を融着、溶着したり、接着剤などによって接着したりすることで形成することができる。
In the present embodiment, the base end side linear portions 20bA and 20dB, the base end side linear portions 20bB and 20dC, and the base end side linear portions 20bC and 20dA are respectively located on the base end side by the elastic member fixing portion 64. It is fixed.
The position and length of the elastic member fixing portion 64 can be appropriately set in consideration of the balance of the pressing force during deformation. The base end side linear portions 20bA and 20dB, the base end side linear portions 20bB and 20dC, and the base end side linear portions 20bC and 20dA are not limited to the base end side, but the entire longitudinal direction is caused by the elastic member fixing portion 64. It may be fixed. Moreover, only the front end side of each base end side linear part 20b, 20d may be fixed by the elastic member fixing part 64.
In the present embodiment, as an example, the range from the distal end member 3b side to 2/3 is fixed in each of the proximal end side linear portions 20b and 20d.
Each elastic member fixing portion 64 can be formed by fusing and welding the outer coverings 26 of each elastic member 20 or bonding them with an adhesive or the like.
 ただし、弾性部材固定部64の長さ、形成方法は、上記には限定されない。
 例えば、弾性部材固定部64は、各基端側線状部20b、20dの長手方向に離間した複数の点状に設けられてもよい。
However, the length and forming method of the elastic member fixing portion 64 are not limited to the above.
For example, the elastic member fixing | fixed part 64 may be provided in the some dot form spaced apart in the longitudinal direction of each base end side linear part 20b, 20d.
 図2A、2Bに示すように、屈曲部33fA、33hBと、屈曲部33fB、33hCと、屈曲部33fC、33hAとは、それぞれU字状の開口が対向している。隣り合う第2線状部20c同士は、互いに交差している。隣り合う第2線状部20cは、互いに交差する位置で、弾性部材固定部34(結節部)によって固定されている。 2A and 2B, the bent portions 33fA and 33hB, the bent portions 33fB and 33hC, and the bent portions 33fC and 33hA have U-shaped openings facing each other. Adjacent second linear portions 20c intersect each other. Adjacent second linear portions 20c are fixed by elastic member fixing portions 34 (nodal portions) at positions where they intersect each other.
 このように、隣り合う弾性部材の基端側線状部20b、20d同士が、弾性部材固定部64によって固定されることにより、血管に挿入する際に、基端側の基端側線状部20b、20dが変形しても、押圧部35の形状が径方向外側から見た形状が変化しにくくなる。このため、押圧部35による押圧範囲を安定させることができる。 Thus, when the proximal end side linear portions 20b and 20d of the adjacent elastic members are fixed to each other by the elastic member fixing portion 64, the proximal end side linear portions 20b, Even if 20d is deformed, the shape of the pressing portion 35 is less likely to change when viewed from the outside in the radial direction. For this reason, the press range by the press part 35 can be stabilized.
 各弾性部材固定部34よりも先端側には、第2線状部20cA、20cB、20cCの先端側の線状部によって、中心軸線Oに沿う方向から見て略六角形状の閉ループをなす周回経路LPが形成されている(図2B参照)。周回経路LPは、中心軸線Oから離れた弾性部材固定部34を一度ずつ通って中心軸線O回りに一周して閉じる経路になっている。
 各第2線状部20cにおいて、周回経路LPの一部を構成する線状部を、以下では周回線状部CLと称する。周回線状部CLには、折り曲げ部20kA、20kB、20kCが含まれる。
 周回経路LPは、弾性支持体2において、第2線状部を含む線状の弾性体によって、中心軸線Oを囲む開口部を構成している。
A circular path that forms a substantially hexagonal closed loop when viewed from the direction along the central axis O by the linear portions on the distal end side of the second linear portions 20cA, 20cB, and 20cC on the distal end side of each elastic member fixing portion 34. LP is formed (see FIG. 2B). The circular path LP is a path that passes through the elastic member fixing portion 34 that is separated from the central axis O once and closes around the central axis O.
In each second linear portion 20c, a linear portion constituting a part of the circulation path LP is hereinafter referred to as a circumferential line portion CL. The circumferential line-shaped portion CL includes bent portions 20 kA, 20 kB, and 20 kC.
The circuit path LP forms an opening surrounding the central axis O in the elastic support 2 by a linear elastic body including the second linear portion.
 各弾性部材固定部34の形成方法は特に限定されない。
 例えば、各弾性部材固定部34は、各弾性部材20の外部被覆26同士を融着、溶着して形成してもよい。各弾性部材固定部34は、各弾性部材20の外部被覆26同士を、接着剤を用いて接着して形成してもよい。
The formation method of each elastic member fixing | fixed part 34 is not specifically limited.
For example, each elastic member fixing portion 34 may be formed by fusing and welding the outer coverings 26 of each elastic member 20. Each elastic member fixing portion 34 may be formed by bonding the outer coverings 26 of the respective elastic members 20 using an adhesive.
 図2Bに示すように、本実施形態では、周回経路LPは、弾性支持体2の自然状態において、円筒面C0から飛び出ない形状に形成されている。
 円筒面C0は、弾性部材固定部34を通り中心軸線Oに沿って延びる仮想的な円筒面である。
 これにより、各屈曲部33h、33fは、円筒面C0の径方向外側に位置する。各屈曲部33h、33fは、弾性支持体2の最外周部を構成している。
 各屈曲部33h、33fの外接円筒面C1の径は、弾性支持体2を挿入する血管の内径よりも大径とされる。
As shown in FIG. 2B, in this embodiment, the circulation path LP is formed in a shape that does not protrude from the cylindrical surface C0 in the natural state of the elastic support body 2.
The cylindrical surface C0 is a virtual cylindrical surface that extends along the central axis O through the elastic member fixing portion 34.
Thereby, each bending part 33h and 33f are located in the radial direction outer side of the cylindrical surface C0. The bent portions 33 h and 33 f constitute the outermost peripheral portion of the elastic support 2.
The diameter of the circumscribed cylindrical surface C1 of each of the bent portions 33h and 33f is larger than the inner diameter of the blood vessel into which the elastic support body 2 is inserted.
 図2Aに示すように、互いに対向する屈曲部33h、33fの組を、径方向外側から径方向に見ると、略六角形状に広がっている。
 各屈曲部33h、33fは、弾性支持体2の最外周に位置する。このため、弾性支持体2を血管内に挿入したときに、各屈曲部33h、33fは、血管の内壁に確実に当接する。また、各屈曲部33h、33fは、血管内で弾性支持体2が変形した際の変形量に応じて、血管の内壁を径方向外側に向けて押圧する部位になっている。
 以下では、弾性部材固定部34によって固定されて対をなす屈曲部33h、33fを押圧部35と称する。
 各押圧部35において、第1部分h1、f1、第3部分h3、f3は、弾性支持体2の周方向に略沿って延ばされている。各押圧部35において、第2部分h2、f2が、周方向に離間するとともに、軸方向に略平行に延ばされている。
 各押圧部35の基端は、弾性支持体2の基端に向かうにつれて径方向内側に向かって湾曲する基端側線状部20d、20bとそれぞれ連結されている。
As shown in FIG. 2A, when a pair of bent portions 33h and 33f facing each other is viewed from the radially outer side in the radial direction, the pair spreads in a substantially hexagonal shape.
The bent portions 33 h and 33 f are located on the outermost periphery of the elastic support 2. For this reason, when the elastic support body 2 is inserted into the blood vessel, the bent portions 33h and 33f are surely brought into contact with the inner wall of the blood vessel. Each of the bent portions 33h and 33f is a portion that presses the inner wall of the blood vessel outward in the radial direction according to the deformation amount when the elastic support 2 is deformed in the blood vessel.
Hereinafter, the bent portions 33 h and 33 f that are fixed by the elastic member fixing portion 34 and make a pair are referred to as a pressing portion 35.
In each pressing portion 35, the first portions h 1, f 1 and the third portions h 3, f 3 are extended substantially along the circumferential direction of the elastic support 2. In each pressing portion 35, the second portions h <b> 2 and f <b> 2 are separated from each other in the circumferential direction and extend substantially parallel to the axial direction.
The base end of each pressing portion 35 is connected to the base end side linear portions 20d and 20b that curve inward in the radial direction toward the base end of the elastic support body 2, respectively.
 図11Aに示すように、基端側線状部20bA、20dA、20bB、20dB、20bC、20dCの基端に接続する連結端部20aA、20eA、20aB、20eB、20aC、20eCは、集束部27によって一体に束ねられて固定されている。 As shown in FIG. 11A, the connecting end portions 20aA, 20eA, 20aB, 20eB, 20aC, and 20eC connected to the base ends of the base end side linear portions 20bA, 20dA, 20bB, 20dB, 20bC, and 20dC are integrated by the converging portion 27. It is bundled and fixed.
 集束部27は、例えば、チタン合金からなる管状部材の内部に、各連結端部20a、各連結端部20eを挿入した後、カシメ加工を行うことにより形成される。集束部27の外形は、係合穴3fと嵌合可能な六角柱状である。
 集束部27は、図11Bに示すように、先端部材3bにおいて中心軸線Oと同軸に形成された六角形形状の係合穴3fに挿入されて周方向に係合される。集束部27は、例えば、接着などによって先端部材3bと固定される。
 このように、集束部27と先端部材3bとは、互いに嵌合する六角形断面を有する軸部と穴部との関係にある。集束部27と先端部材3bとは、中心軸線O回りに回転不能に係合されている。このため、リード部3を中心軸線O回りに回転させると、リード部3の回転角度に応じて、弾性支持体2も中心軸線O回りに回転する。
For example, the converging part 27 is formed by inserting each connecting end part 20a and each connecting end part 20e into a tubular member made of a titanium alloy, followed by caulking. The outer shape of the converging portion 27 is a hexagonal column shape that can be fitted into the engagement hole 3f.
As shown in FIG. 11B, the converging part 27 is inserted into a hexagonal engagement hole 3f formed coaxially with the central axis O in the tip member 3b and engaged in the circumferential direction. The focusing portion 27 is fixed to the tip member 3b by, for example, adhesion.
As described above, the converging portion 27 and the tip member 3b are in a relationship between the shaft portion and the hole portion having hexagonal cross sections that are fitted to each other. The converging part 27 and the tip member 3b are engaged around the central axis O so as not to rotate. For this reason, when the lead part 3 is rotated around the central axis O, the elastic support 2 also rotates around the central axis O according to the rotation angle of the lead part 3.
 先端部材3bの内部において、連結端部20aA、20eA(図11Bでは不図示)から延出された配線25は、先端部材3bの内部を通って、リードチューブ3aの内部に延出される。配線25は、リードチューブ3aの内部では、配線部3dとしてまとめられている。
 配線部3dは、リードチューブ3a内の固定部3gで位置が固定され、リードチューブ3aの後端部まで延ばされている。配線部3dは、分岐部3cから外部に延出されている(図1参照)。
Inside the distal end member 3b, the wiring 25 extending from the connecting end portions 20aA and 20eA (not shown in FIG. 11B) passes through the interior of the distal end member 3b and extends into the lead tube 3a. The wiring 25 is grouped as a wiring part 3d inside the lead tube 3a.
The position of the wiring portion 3d is fixed by a fixing portion 3g in the lead tube 3a and extends to the rear end portion of the lead tube 3a. The wiring part 3d extends to the outside from the branch part 3c (see FIG. 1).
 このようにして組み立てられた弾性支持体2の外形は、図2Bに示すように、中心軸線Oを回転対称軸として、3回回転対称となる籠状の形状である。
 また、図2Aに示すように、中心軸線Oに交差する方向から見ると、各基端側線状部20b、各基端側線状部20dは、中心軸線Oを中心としてU字形を回転してできる半紡錘形の立体形状に沿って配置されている。
 各押圧部35は、軸方向の中間部において最外周部を構成している。
 各弾性部材固定部34よりも先端側の各第2線状部20cは、先端側に向かうにつれて中心軸線Oに向かって縮径する形状に沿って配置されている。
As shown in FIG. 2B, the outer shape of the elastic support body 2 assembled in this way is a bowl-like shape having a three-fold rotational symmetry with the central axis O as the rotational symmetry axis.
Further, as shown in FIG. 2A, when viewed from the direction intersecting the central axis O, each base end side linear portion 20b and each base end side linear portion 20d can be formed by rotating a U-shape around the central axis O. They are arranged along a semi-spindle shape.
Each pressing portion 35 constitutes the outermost peripheral portion in the intermediate portion in the axial direction.
Each second linear portion 20c on the distal end side of each elastic member fixing portion 34 is disposed along a shape that decreases in diameter toward the central axis O toward the distal end side.
 以上に説明した弾性支持体2の組立状態の自然状態では、弾性支持体2としては、重力以外の外力は作用していない。各弾性部材20は軽量のため、弾性支持体2の重力による変形は無視できる。
 しかし、弾性部材20A、20B、20Cは互いに交差し、交差した位置において弾性部材固定部34によって互いに固定されている。このように拘束されることで、弾性部材20は、その他の弾性部材20から外力を受けている。
 したがって、弾性支持体2の組立状態の自然状態では、各弾性部材20は、それぞれの単体の自然状態の形状とは異なる形状に変形している。
In the natural state of the assembled state of the elastic support 2 described above, no external force other than gravity acts on the elastic support 2. Since each elastic member 20 is lightweight, deformation of the elastic support 2 due to gravity can be ignored.
However, the elastic members 20A, 20B, and 20C intersect each other, and are fixed to each other by the elastic member fixing portion 34 at the intersecting positions. By being restrained in this way, the elastic member 20 receives an external force from the other elastic members 20.
Therefore, in the natural state of the assembled state of the elastic support body 2, each elastic member 20 is deformed into a shape different from the shape of the single natural state.
 電気刺激装置8は、医療用電気刺激電極1が血管内に留置された際に、術者の操作に基づいて、一対の刺激電極21、22間に電気刺激を発生する装置部分である。電気刺激装置8の詳細構成の図示は省略するが、少なくとも、電源と、制御部とを備えている。電源は、パルス状の信号波形を出力する。制御部は、電源が出力するための信号波形を生成し、信号波形の印加タイミングを制御する。
 電気刺激装置8は、図1に示すように、コネクタ3eを介して、リード部3内の配線部3dと電気的に接続されている。
 電気刺激装置8が出力する信号波形は、本実施形態では、定電流方式又は定電圧方式のバイフェージック波形群が、所定の間隔を有して発生される。信号波形の条件は、電気刺激に必要に応じて適宜設定することができる。具体的には、例えば、周波数20Hz、パルス幅50μsecから400μsecのプラス数ボルトからマイナス数ボルトのバイフェージック波形を1分間あたり3sec以上20sec以下の間、発生させる、といった信号波形の出力が可能である。
 このような信号波形の出力時に、刺激電極21、22は、一方がプラス側電極として作用し、他方がマイナス側電極として作用する。
The electrical stimulation device 8 is a device portion that generates electrical stimulation between the pair of stimulation electrodes 21 and 22 based on the operation of the operator when the medical electrical stimulation electrode 1 is placed in a blood vessel. Although illustration of the detailed structure of the electrical stimulation apparatus 8 is abbreviate | omitted, the power supply and the control part are provided at least. The power supply outputs a pulsed signal waveform. A control part produces | generates the signal waveform for a power supply to output, and controls the application timing of a signal waveform.
As shown in FIG. 1, the electrical stimulation device 8 is electrically connected to the wiring portion 3 d in the lead portion 3 via a connector 3 e.
In this embodiment, the signal waveform output from the electrical stimulation device 8 is generated with a constant current system or a constant voltage system biphasic waveform group with a predetermined interval. The condition of the signal waveform can be appropriately set as necessary for electrical stimulation. Specifically, for example, it is possible to output a signal waveform such as generating a biphasic waveform with a frequency of 20 Hz and a pulse width of 50 μsec to 400 μsec from 3 to 20 seconds per minute. is there.
At the time of outputting such a signal waveform, one of the stimulation electrodes 21 and 22 acts as a plus side electrode, and the other acts as a minus side electrode.
 このような電気刺激システム100を用いて、血管内から電気刺激を行うには、例えば、医療用電気刺激電極1の弾性支持体2を患者の上大静脈に導入し、留置位置を探索した後、上大静脈に留置する。
 また、必要な電気刺激が終了したら、弾性支持体2を患者の体外に抜去する。
 以下では、電気刺激システム100の作用について説明する。
 図12は、本発明の実施形態の医療用電気刺激電極を患者の体内に留置した際の患者の体外の様子を示す模式図である。図13は、本発明の実施形態の医療用電気刺激電極を上大静脈に留置した状態を示す模式図である。図14Aは、本発明の実施形態の医療用電気刺激電極の弾性支持体の血管内の変形の状態を示す模式図である。図14Bは、図14AにおけるM視の側面図である。図15Aは、本発明の実施形態の医療用電気刺激電極の弾性支持体の縮径状態の形状を示す側面図である。図15Bは、本発明の実施形態の医療用電気刺激電極の弾性支持体の自然状態の形状を示す側面図である。
In order to perform electrical stimulation from within a blood vessel using such an electrical stimulation system 100, for example, after the elastic support 2 of the medical electrical stimulation electrode 1 is introduced into the patient's superior vena cava and the indwelling position is searched for Indwell in the superior vena cava.
Further, when the necessary electrical stimulation is completed, the elastic support 2 is removed from the patient's body.
Below, the effect | action of the electrical stimulation system 100 is demonstrated.
FIG. 12 is a schematic view showing a state outside the patient's body when the medical electrical stimulation electrode according to the embodiment of the present invention is placed in the patient's body. FIG. 13 is a schematic view showing a state in which the medical electrical stimulation electrode according to the embodiment of the present invention is placed in the superior vena cava. FIG. 14A is a schematic diagram showing a state of deformation in the blood vessel of the elastic support of the medical electrical stimulation electrode according to the embodiment of the present invention. 14B is a side view of the M view in FIG. 14A. FIG. 15A is a side view showing the shape of the elastic support of the medical electrical stimulation electrode according to the embodiment of the present invention in a reduced diameter state. FIG. 15B is a side view showing the natural shape of the elastic support of the medical electrical stimulation electrode according to the embodiment of the present invention.
 まず、術者は、図12に示すように、患者Pの頸部近傍を切開して開口P1を形成する。この開口P1に、公知のイントロデューサーやダイレーター(図示略)を装着して、ガイドシース7に収容された医療用電気刺激電極1をガイドシース7とともに導入する。このとき、X線下でワイヤ23X、23Y、配線25、弾性支持体2(いずれも図12では図示略)などの位置を確認しながら、医療用電気刺激電極1を導入する。
 右外頚静脈P2(血管)を通って、ガイドシース7の先端が上大静脈P3(血管)における留置位置の近傍に到達したら、弾性支持体2をガイドシース7の外側に押し出す。
 上大静脈P3内に押し出された弾性支持体2は、弾性復元力により自然状態の形状に戻ろうとするため、上大静脈P3内で拡径する。
 弾性支持体2の自然状態の外径は、上大静脈P3の内径よりも小さいため、弾性支持体2は、上大静脈P3の内壁V1に押しつけられる。
 これにより、弾性支持体2は、内壁V1からの反作用によって弾性的に変形する。弾性支持体2は、縮径して、自然状態よりも小径になる。内壁V1は、弾性支持体2からの押圧力を受けて変形しつつ、弾性支持体2の外周部に密着している。
 このため、弾性支持体2は、摩擦力により、当接した上大静脈P3の内壁V1に係止される。
First, as shown in FIG. 12, the surgeon cuts the vicinity of the neck of the patient P to form an opening P1. A known introducer or dilator (not shown) is attached to the opening P 1, and the medical electrical stimulation electrode 1 accommodated in the guide sheath 7 is introduced together with the guide sheath 7. At this time, the medical electrical stimulation electrode 1 is introduced while confirming the positions of the wires 23X and 23Y, the wiring 25, the elastic support 2 (all not shown in FIG. 12) and the like under the X-ray.
When the distal end of the guide sheath 7 reaches the vicinity of the indwelling position in the superior vena cava P3 (blood vessel) through the right external jugular vein P2 (blood vessel), the elastic support 2 is pushed out of the guide sheath 7.
The elastic support body 2 pushed into the superior vena cava P3 expands in the superior vena cava P3 in order to return to the natural state by the elastic restoring force.
Since the outer diameter of the elastic support 2 in the natural state is smaller than the inner diameter of the superior vena cava P3, the elastic support 2 is pressed against the inner wall V1 of the superior vena cava P3.
Thereby, the elastic support body 2 is elastically deformed by the reaction from the inner wall V1. The elastic support body 2 is reduced in diameter to be smaller than the natural state. The inner wall V <b> 1 is in close contact with the outer peripheral portion of the elastic support 2 while being deformed by receiving a pressing force from the elastic support 2.
For this reason, the elastic support body 2 is locked to the inner wall V1 of the superior vena cava P3 in contact with the frictional force.
 このようにして、弾性支持体2が上大静脈P3に概略配置されたら、刺激電極21、22に電気刺激を印加して、例えば、患者Pの心拍数をモニタしながら適正な留置位置を探索する探索動作を行う。術者は、必要に応じて、弾性支持体2の留置位置を修正する。
 リード部3を回転すれば、リード部3とともに弾性支持体2が回転する。このため、術者は上大静脈P3内の周方向における刺激電極21、22の位置を調整することができる。
Thus, when the elastic support body 2 is roughly arranged in the superior vena cava P3, an electrical stimulation is applied to the stimulation electrodes 21 and 22, and for example, an appropriate indwelling position is searched while monitoring the heart rate of the patient P. Perform a search action. The surgeon corrects the indwelling position of the elastic support 2 as necessary.
If the lead portion 3 is rotated, the elastic support 2 is rotated together with the lead portion 3. For this reason, the surgeon can adjust the positions of the stimulation electrodes 21 and 22 in the circumferential direction in the superior vena cava P3.
 ただし、弾性支持体2の概略配置の位置が、上大静脈P3の軸方向に大きくずれていると、適正な留置位置が見つからない場合がある。この場合、術者は、弾性支持体2をガイドシース7の内部に収容し直して、ガイドシース7とともに、弾性支持体2を移動する。 However, if the position of the schematic arrangement of the elastic support 2 is greatly deviated in the axial direction of the superior vena cava P3, an appropriate indwelling position may not be found. In this case, the surgeon houses the elastic support 2 again in the guide sheath 7 and moves the elastic support 2 together with the guide sheath 7.
 弾性支持体2の位置合わせが終了し、留置位置が決定したら、ガイドシース7を近位端側に引き抜いて、図13に示すように、医療用電気刺激電極1のみを血管内に残す。このようにして、弾性支持体2の留置が終了する。
 弾性支持体2が適正な留置位置に配置されたら、電気刺激装置8は、適宜のタイミングで電気刺激を印加する。これにより、内壁V1を介して患者Pの迷走神経P6に必要な電気刺激を印加することができる。
 電気刺激装置8により必要な期間、迷走神経P6に電気的な刺激を印加し続けたら、医療用電気刺激電極1を、挿入した経路と逆方向に引き抜く。これにより、医療用電気刺激電極1は、患者Pの体外に抜去される。このとき、弾性支持体2は、外周部が先端部材3bに向かって縮径する半紡錘形に沿う形状であるため、円滑に引き抜くことが可能である。
When the positioning of the elastic support 2 is completed and the indwelling position is determined, the guide sheath 7 is pulled out to the proximal end side, and only the medical electrical stimulation electrode 1 is left in the blood vessel as shown in FIG. In this way, the placement of the elastic support 2 is completed.
If the elastic support body 2 is arrange | positioned in an appropriate placement position, the electrical stimulation apparatus 8 will apply electrical stimulation at an appropriate timing. Thereby, the electrical stimulation required for the vagus nerve P6 of the patient P can be applied via the inner wall V1.
When electrical stimulation is continuously applied to the vagus nerve P6 for a necessary period by the electrical stimulation device 8, the medical electrical stimulation electrode 1 is pulled out in the direction opposite to the inserted path. Thereby, the medical electrical stimulation electrode 1 is extracted out of the body of the patient P. At this time, since the elastic support body 2 has a shape along the semi-spindle shape whose outer peripheral portion is reduced in diameter toward the tip member 3b, it can be pulled out smoothly.
 次に、弾性支持体2の作用について説明する。
 弾性支持体2の変形状態の一例を図14A、14Bに示す。
 弾性支持体2は、径方向の最外周部となる部分から、内壁V1に当接し、これらの当接部から径方向内側に反作用を受ける。この結果、弾性部材20A、20B、20Cが変形する。
 すなわち、最初に各押圧部35が内壁V1に当接して径方向内側に押圧される。これにより、各弾性部材固定部34を介して、各周回線状部CLが径方向内側に圧縮される。
 ただし、図14Bでは、線の重なりを避けて図示を見やすくするため、模式的に描いている。
 以下では、図14AのM視における弾性支持体2を上大静脈P3に挿入した縮径状態と、同じ方向から見た自然状態とをより正確に表した図15A、15Bに基づいて説明する。
Next, the operation of the elastic support 2 will be described.
An example of the deformation state of the elastic support 2 is shown in FIGS. 14A and 14B.
The elastic support body 2 comes into contact with the inner wall V1 from a portion that is the outermost peripheral portion in the radial direction, and receives a reaction radially inward from these contact portions. As a result, the elastic members 20A, 20B, and 20C are deformed.
That is, first, each pressing portion 35 comes into contact with the inner wall V1 and is pressed radially inward. Thereby, each circumferential line-shaped portion CL is compressed radially inward via each elastic member fixing portion 34.
However, in FIG. 14B, it is schematically drawn in order to avoid the overlap of the lines and make the illustration easy to see.
Below, it demonstrates based on FIG. 15A and 15B which represented more precisely the diameter-reduced state which inserted the elastic support body 2 in M view of FIG. 14A, and the natural state seen from the same direction.
 図15Aに示すように、弾性支持体2は、上大静脈P3の内壁V1に応じて、最外周部が中心軸線Oと同軸の仮想的な円筒面C4に内接するまで縮径される。このとき、各押圧部35は、円筒面C4に内接している。
 しかし、各押圧部35のうち第2線状部20cの基端部は、屈曲部20h(20f)を介して各屈曲部33h(33f)と接続されることで径方向内側に向いて延びている。このため、これらが交差する位置に形成された弾性部材固定部34は、円筒面C4よりも小径の仮想的な円筒面C3上に位置している。
As shown in FIG. 15A, the diameter of the elastic support 2 is reduced according to the inner wall V1 of the superior vena cava P3 until the outermost peripheral portion is inscribed in a virtual cylindrical surface C4 coaxial with the central axis O. At this time, each pressing portion 35 is inscribed in the cylindrical surface C4.
However, the base end portion of the second linear portion 20c of each pressing portion 35 is connected to each bending portion 33h (33f) via the bending portion 20h (20f) and extends toward the radially inner side. Yes. For this reason, the elastic member fixing | fixed part 34 formed in the position where these cross | intersect is located on the virtual cylindrical surface C3 smaller in diameter than the cylindrical surface C4.
 これは、図15Bに示す弾性支持体2の自然状態において、各押圧部35が外接円筒面C1に内接し、各弾性部材固定部34が外接円筒面C1よりも小径の仮想的な円筒面C0上に位置していることに対応している。
 自然状態から各押圧部35を径方向内側に押圧して縮径させると、各第2線状部20cの両端部である屈曲部20h、20fの距離が縮まる(図15Bの矢印参照)。このとき、第2線状部20cは、第2線状部20cの両端部に作用する外力によって頂部20gを中心として折り曲げられる。第2線状部20cの頂部20gは、径方向外方に移動する(図15Bの白抜き矢印参照)。
 このような変形では、各屈曲部20h、20fの屈曲角が弾性支持体2の自然状態よりも多少大きくなる傾向がある。しかし、各屈曲部20h、20fが屈曲している状態は保たれる。この結果、各弾性部材固定部34が、屈曲部20h、20fの位置する円筒面よりも径方向内側に位置する位置関係は維持される。
 したがって、縮径状態の円筒面C3の径は、円筒面C4の径よりも小径である。ただし、円筒面C4、C3の径差は、外接円筒面C1の径と円筒面C0の径差よりは小さくなる。
15B, in the natural state of the elastic support 2 shown in FIG. 15B, each pressing portion 35 is inscribed in the circumscribed cylindrical surface C1, and each elastic member fixing portion 34 is a virtual cylindrical surface C0 having a smaller diameter than the circumscribed cylindrical surface C1. Corresponds to being located above.
When each pressing portion 35 is pressed radially inward from the natural state to reduce the diameter, the distance between the bent portions 20h and 20f that are both ends of each second linear portion 20c is reduced (see the arrow in FIG. 15B). At this time, the second linear portion 20c is bent around the top portion 20g by an external force acting on both ends of the second linear portion 20c. The top portion 20g of the second linear portion 20c moves radially outward (see the white arrow in FIG. 15B).
In such a deformation, the bending angles of the bent portions 20 h and 20 f tend to be slightly larger than the natural state of the elastic support 2. However, the state where the bent portions 20h and 20f are bent is maintained. As a result, the positional relationship in which each elastic member fixing portion 34 is located radially inward from the cylindrical surface where the bent portions 20h and 20f are located is maintained.
Therefore, the diameter of the cylindrical surface C3 in the reduced diameter state is smaller than the diameter of the cylindrical surface C4. However, the diameter difference between the cylindrical surfaces C4 and C3 is smaller than the diameter difference between the circumscribed cylindrical surface C1 and the cylindrical surface C0.
 一方、各頂部20gは、弾性支持体2の縮径に伴って、径方向外方に移動するため、弾性部材固定部34の位置によっては、円筒面C3よりも径方向外側に突出する。場合によっては、各頂部20gは、円筒面C4よりも径方向外側に移動する可能性がある。
 円筒面C4よりも径方向外側に移動すると、頂部20gは内壁V1に当接する。頂部20gが径方向外側に移動しようとすると、弾性変形して、第2線状部20cの先端部が内壁V1に沿って密着する部位が増えていく。
 各頂部20gが、弾性支持体2の縮径状態において、どのような位置に移動するかは、各弾性部材20の形状、弾性部材固定部34の位置、および縮径時の外径による。一般には、屈曲部20h、20fと弾性部材固定部34との距離が近いほど、各頂部20gが径方向外側に移動しやすくなる。
 したがって、留置する血管の内径に応じて、弾性支持体2の外径、各弾性部材20の形状、および弾性部材固定部34の位置を適宜設定すれば、血管内に挿入した際に、各頂部20gが血管の内壁と接触するように、あるいは接触しないようにすることができる。
 また、本実施形態では、折り曲げ部20kの平面S3に対する角度θ2の大きさを変えることによっても、各頂部20gが血管の内壁と接触するように、あるいは接触しないようにすることができる。
 以下では、一例として、図15Aに示すように、縮径状態で、頂部20gが円筒面C3よりも径方向内側に位置するものとして説明する。
On the other hand, each apex 20g moves radially outward along with the diameter reduction of the elastic support 2, and therefore protrudes radially outward from the cylindrical surface C3 depending on the position of the elastic member fixing portion 34. In some cases, each top 20g may move radially outward from the cylindrical surface C4.
When moving radially outward from the cylindrical surface C4, the top 20g contacts the inner wall V1. When the top portion 20g moves outward in the radial direction, it is elastically deformed, and the portion where the tip end portion of the second linear portion 20c closely adheres along the inner wall V1 increases.
The position to which each top 20g moves in the reduced diameter state of the elastic support 2 depends on the shape of each elastic member 20, the position of the elastic member fixing portion 34, and the outer diameter at the time of diameter reduction. In general, the closer the distance between the bent portions 20h, 20f and the elastic member fixing portion 34, the easier the top portions 20g move outward in the radial direction.
Accordingly, if the outer diameter of the elastic support 2, the shape of each elastic member 20, and the position of the elastic member fixing portion 34 are appropriately set according to the inner diameter of the indwelling blood vessel, 20g can be in contact with the inner wall of the blood vessel or not.
In the present embodiment, each apex 20g can be brought into contact with or not in contact with the inner wall of the blood vessel by changing the angle θ2 of the bent portion 20k with respect to the plane S3.
Hereinafter, as an example, as illustrated in FIG. 15A, the description will be made on the assumption that the top portion 20g is positioned radially inward from the cylindrical surface C3 in the reduced diameter state.
 弾性支持体2は、上大静脈P3内で縮径しても、円形を保って縮径する場合には、変形後に中心軸線Oを回転対称軸とする3回回転対称の形状を保つ。
 図15Aに示すように、縮径が進むと、各押圧部35は、円筒面C3上に位置するまで径方向に移動する。図14Aに示すように、上大静脈P3の内部においては、各押圧部35は、上大静脈P3の内壁V1に当接して、周方向に120°をなす位置で、内壁V1をそれぞれ径方向外側に押圧する。
 一方、各周回線状部CLは、弾性部材固定部34が位置する円筒面C3の内側に位置しており、上大静脈P3の内壁V1には接触していない。
Even when the elastic support 2 is reduced in diameter in the superior vena cava P3, when the diameter is reduced while maintaining a circular shape, the elastic support 2 maintains a three-fold rotationally symmetric shape with the central axis O as a rotationally symmetric axis after deformation.
As shown in FIG. 15A, as the diameter decreases, each pressing portion 35 moves in the radial direction until it is positioned on the cylindrical surface C3. As shown in FIG. 14A, in the superior vena cava P3, each pressing portion 35 is in contact with the inner wall V1 of the superior vena cava P3 and forms the inner wall V1 in the radial direction at a position of 120 ° in the circumferential direction. Press outward.
On the other hand, each circumferential line-shaped portion CL is located inside the cylindrical surface C3 where the elastic member fixing portion 34 is located, and is not in contact with the inner wall V1 of the superior vena cava P3.
 また、周回線状部CLは、弾性部材固定部34によって固定されることにより線長が一定の閉ループ状になっており、径方向に伸縮可能なリング状のばね部材になっている。このため、図14A、14Bに示すように、各頂部20gが内壁V1に当接していない状態でも、変形による各周回線状部CLの弾性復元力が弾性部材固定部34に加わる。このため、各周回線状部CLは、押圧部35を径方向外側に付勢している。
 このような構成により、各押圧部35は、弾性支持体2における先端側では、各周回線状部CLによって弾性支持されている。また、各押圧部35は、弾性支持体2における基端側では、集束部27で支持された弾性部材である各基端側線状部20b、20dによって、弾性支持されている。
 このため、縮径状態の弾性支持体2は、各押圧部35によって、内壁V1を3方向に均等に押圧している。
 このように、弾性支持体2では、押圧部35が周方向の3箇所に集約されている。このため、各屈曲部33h、33fがそれぞれ周方向に分散されている場合に比べると、より強固に血管の内壁を押圧することができる。
 これにより、刺激電極21、22をより確実に安定して内壁V1に押圧することができる。
 また、各押圧部35は、周回線状部CLの弾性復元力によって、径方向外側に均等に押圧されるため、少ない接触面積でも、留置位置を安定させることができる。
Further, the circumferential line portion CL is a closed loop shape having a constant line length by being fixed by the elastic member fixing portion 34, and is a ring-shaped spring member that can expand and contract in the radial direction. For this reason, as shown in FIGS. 14A and 14B, the elastic restoring force of each circumferential line-shaped portion CL due to the deformation is applied to the elastic member fixing portion 34 even when the top portions 20g are not in contact with the inner wall V1. For this reason, each circumferential line-shaped part CL urges the pressing part 35 radially outward.
With such a configuration, each pressing portion 35 is elastically supported by each circumferential line portion CL on the distal end side of the elastic support 2. Further, each pressing portion 35 is elastically supported by the respective proximal end side linear portions 20b and 20d which are elastic members supported by the converging portion 27 on the proximal end side of the elastic support body 2.
For this reason, the elastic support body 2 in a reduced diameter state presses the inner wall V <b> 1 equally in three directions by the respective pressing portions 35.
Thus, in the elastic support body 2, the press part 35 is gathered in three places of the circumferential direction. For this reason, compared with the case where each bending part 33h and 33f are each disperse | distributed to the circumferential direction, the inner wall of the blood vessel can be pressed more firmly.
Thereby, the stimulation electrodes 21 and 22 can be more reliably and stably pressed against the inner wall V1.
Moreover, since each pressing part 35 is equally pressed radially outward by the elastic restoring force of the circumferential line-shaped part CL, the indwelling position can be stabilized even with a small contact area.
 また、本実施形態の弾性支持体2は、先端が縮径しているものの、全体として、集束部27に向かってすぼまる半紡錘形の形状に沿う外形を有する。
 このため、円形、紡錘形に沿う形状など長手方向の中間部のみで血管に当接する形状に比べて、弾性支持体2内で、内壁V1への押圧力が発生する部位が多くなる。このため、同じ押圧力で同じ押圧範囲を押圧する場合に、より小型化を図ることができる。
 また、各弾性部材20が、弾性部材固定部34によって固定された籠状構造を形成している。このため、1つの弾性部材20が受ける外力が弾性部材固定部34を通して、他の弾性部材20にも伝達される。この結果、各弾性部材20が連動して変形し、各弾性部材20の間に変形量が分散される。
 これにより、特定の弾性部材20が外力を受けた場合でも、半紡錘形の回転対称の形状が崩れにくくなる。このため、弾性支持体2は、例えば、円弧状の弾性部材が周方向に離間して配置された場合に比べると、より安定して内壁V1を付勢することができる。
Further, the elastic support 2 of the present embodiment has an outer shape that conforms to a semi-spindle shape that swells toward the converging portion 27 as a whole, although the tip is reduced in diameter.
For this reason, compared with the shape which contact | abuts a blood vessel only in the middle part of a longitudinal direction, such as a shape along circular shape and a spindle shape, the site | part which the pressing force to the inner wall V1 generate | occur | produces in the elastic support body 2 increases. For this reason, when pressing the same pressing range with the same pressing force, further downsizing can be achieved.
Each elastic member 20 forms a bowl-like structure fixed by the elastic member fixing portion 34. Therefore, an external force received by one elastic member 20 is transmitted to the other elastic members 20 through the elastic member fixing portion 34. As a result, the elastic members 20 are deformed in conjunction with each other, and the amount of deformation is dispersed between the elastic members 20.
Thereby, even when the specific elastic member 20 receives external force, the semi-spindle-shaped rotationally symmetric shape is not easily broken. For this reason, the elastic support body 2 can urge the inner wall V1 more stably as compared with a case where, for example, arc-shaped elastic members are spaced apart in the circumferential direction.
 ところで、上述したように、弾性支持体2は、留置位置が決定する過程で血管の軸方向に移動する場合がある。このため、弾性支持体2に対して、ガイドシース7への収容と、ガイドシース7からの押し出しとが繰り返されることがある。
 弾性支持体2がガイドシース7に収容される際には、弾性支持体2は、血管内の拡径状態から血管よりも小径のガイドシース7内に引き込まれる。これにより、弾性支持体2は、各弾性部材20が中心軸線Oに向かって径方向に押しつぶされる。
By the way, as described above, the elastic support 2 may move in the axial direction of the blood vessel in the process of determining the indwelling position. For this reason, the elastic support 2 may be repeatedly housed in the guide sheath 7 and pushed out from the guide sheath 7.
When the elastic support body 2 is accommodated in the guide sheath 7, the elastic support body 2 is drawn into the guide sheath 7 having a smaller diameter than the blood vessel from the expanded diameter state in the blood vessel. Thereby, in the elastic support body 2, each elastic member 20 is crushed in the radial direction toward the central axis O.
 各基端側線状部20b、20dは、基端側に向かってすぼまる形状を有するため、ガイドシース7に収容される際、滑らかに収容され、部分的な負荷は小さい。
 しかし、弾性支持体2は、先端に向かうほど大径であり、先端には、各周回線状部CLがばね部材として変形に抵抗する。
 このように弾性支持体2が拡径状態からガイドシース7に収容される場合には、弾性支持体2の各弾性部材20の先端側に特に大きな負荷がかかる。
Since each proximal end side linear part 20b, 20d has a shape that narrows toward the proximal end side, when accommodated in the guide sheath 7, it is accommodated smoothly, and the partial load is small.
However, the elastic support body 2 has a larger diameter toward the tip, and each circumferential line-shaped portion CL resists deformation at the tip as a spring member.
Thus, when the elastic support body 2 is accommodated in the guide sheath 7 from the expanded diameter state, a particularly large load is applied to the distal end side of each elastic member 20 of the elastic support body 2.
 縮径時の弾性支持体2の作用について、簡単のため、弾性部材20Aの例で説明する。
 図16は、本発明の実施形態の医療用電気刺激電極の弾性部材の作用を説明する模式図である。図17は、比較例の弾性部材の作用を説明する模式図である。図18は、本発明の実施形態の医療用電気刺激電極の弾性部材の頂部および比較例の弾性部材の頂部の変形状態を示す模式的な拡大図である。
For the sake of simplicity, the operation of the elastic support 2 at the time of the diameter reduction will be described with an example of the elastic member 20A.
FIG. 16 is a schematic diagram for explaining the operation of the elastic member of the medical electrical stimulation electrode according to the embodiment of the present invention. FIG. 17 is a schematic diagram for explaining the operation of the elastic member of the comparative example. FIG. 18 is a schematic enlarged view showing a deformed state of the top of the elastic member of the medical electrical stimulation electrode according to the embodiment of the present invention and the top of the elastic member of the comparative example.
 図16(a)には、弾性支持体2の自然状態における弾性部材20Aの形状が模式的に示されている。弾性支持体2は、閉ループを構成しており、折り曲げ部20kAの屈曲角θ3’は、弾性部材20Aの自然状態の屈曲各θ3よりもわずかに小さい。屈曲角がθ3’になるのは、弾性支持体2の組み立て状態では、弾性部材20Aが、弾性部材20B、20Cと固定されて弾性変形しているためである。
 図16(b)に示すように、弾性支持体2がガイドシース7に収容されると、弾性支持体2が縮径する。弾性支持体2において最も広幅の屈曲部20hA、20fAは、中心軸線Oに向かって移動して、ガイドシース7の内壁に当接する。
 第2線状部20cAには、屈曲部20hA、20fAに接続する両端部に中心軸線Oに向かって外力が作用する。この外力は、第2線状部20cAの長手方向の中心に曲げモーメントとして作用する。折り曲げ部20kAは、頂部20gAの近傍が予め屈曲されている。つまり、頂部20gAの近傍には折り癖が付けられている。
 このように、折り曲げ部20kAが弾性部材20Aで屈曲されているため、屈曲角が減少する変形が起こりやすくなっている。この結果、第2線状部20cAは、頂部20gAを中心として円滑に折りたたまれる。折り曲げ部20kAの屈曲角θ3’が、漸次、0°に近いθ4まで減少する。
FIG. 16A schematically shows the shape of the elastic member 20 </ b> A in the natural state of the elastic support 2. The elastic support 2 constitutes a closed loop, and the bending angle θ3 ′ of the bent portion 20kA is slightly smaller than each of the bendings θ3 in the natural state of the elastic member 20A. The reason why the bending angle is θ3 ′ is that, in the assembled state of the elastic support 2, the elastic member 20A is fixed to the elastic members 20B and 20C and elastically deformed.
As shown in FIG. 16B, when the elastic support 2 is accommodated in the guide sheath 7, the elastic support 2 is reduced in diameter. The widest bent portions 20hA and 20fA in the elastic support 2 move toward the central axis O and come into contact with the inner wall of the guide sheath 7.
An external force acts on the second linear portion 20cA toward the central axis O at both ends connected to the bent portions 20hA and 20fA. This external force acts as a bending moment on the center in the longitudinal direction of the second linear portion 20cA. In the bent portion 20kA, the vicinity of the top portion 20gA is bent in advance. That is, a crease is attached in the vicinity of the top portion 20gA.
As described above, since the bent portion 20kA is bent by the elastic member 20A, the bending angle is easily reduced. As a result, the second linear portion 20cA is smoothly folded around the top portion 20gA. The bending angle θ3 ′ of the bent portion 20kA gradually decreases to θ4 close to 0 °.
 以上、弾性支持体2の縮径時の変形について、弾性部材20Aの例で説明したが、弾性部材20B、20Cの変形も同様である。
 このため、弾性支持体2がガイドシース7に引き込まれる際に、ガイドシース7の開口等から部分的に過大な外力が作用しても、各第2線状部20cにおける変形の抵抗が折り曲げ部20kを有しない場合に比べて少なくなる。このため、各弾性部材20の応力および歪みが弾性支持体2の全体に分散しやすくなる。すなわち、弾性支持体2の一部に負荷が集中することなく、弾性支持体2全体として円滑に縮径することができる。
As mentioned above, although the deformation | transformation at the time of diameter reduction of the elastic support body 2 was demonstrated in the example of the elastic member 20A, the deformation | transformation of the elastic members 20B and 20C is also the same.
For this reason, even when an excessive external force is applied partially from the opening of the guide sheath 7 and the like when the elastic support body 2 is pulled into the guide sheath 7, the deformation resistance in each second linear portion 20 c is bent. Compared to the case without 20k. For this reason, the stress and strain of each elastic member 20 are easily dispersed throughout the elastic support 2. In other words, the diameter of the elastic support 2 can be reduced smoothly without the load being concentrated on a part of the elastic support 2.
 こうして、弾性支持体2を縮径する際に、弾性支持体2の塑性変形が抑制される。
 したがって、弾性支持体2がガイドシース7から押し出されて拡径すると、図16(c)に示すように、外力が作用しない場合には、弾性支持体2は、自然状態に復帰する。例えば、折り曲げ部20kAの屈曲角はθ4からθ3’に戻る。
 このようにして、弾性支持体2は、ガイドシース7への収容と、ガイドシース7からの押し出しが繰り返されても、弾性変形を繰り返すのみであるため、血管の内壁を押圧する押圧力が低下することがない。
 医療用電気刺激電極1は、このような弾性支持体2を備えるため、折りたたみを繰り返しても、安定して血管内に留置することができる。
Thus, when the diameter of the elastic support 2 is reduced, plastic deformation of the elastic support 2 is suppressed.
Therefore, when the elastic support 2 is pushed out from the guide sheath 7 and expanded in diameter, as shown in FIG. 16C, the elastic support 2 returns to the natural state when no external force is applied. For example, the bending angle of the bent portion 20 kA returns from θ4 to θ3 ′.
In this way, the elastic support 2 only repeats elastic deformation even if it is repeatedly housed in the guide sheath 7 and pushed out from the guide sheath 7, so that the pressing force that presses the inner wall of the blood vessel decreases. There is nothing to do.
Since the medical electrical stimulation electrode 1 includes such an elastic support 2, the medical electrical stimulation electrode 1 can be stably placed in the blood vessel even if the folding is repeated.
 弾性支持体2の作用について、さらに比較例と対比して説明する。
 比較例の弾性支持体は、弾性部材20A、20B、20Cに変えて、それぞれ図17(a)に示す弾性部材50を備える。
 弾性部材50は、弾性部材20Aの、第2線状部20cAに代えて、第2線状部50cを備える。第2線状部50cは、円弧からなる線状部である。第2線状部50cは、特に図示しないが、自然状態では、折り曲げ部20kAを除く第2線状部20cAと同様に、平面S2に対して、角度θだけ傾斜している。
 第2線状部50cの両端部は、第2線状部20cAと同様に屈曲部20hA、20fAと接続されている。
 弾性部材50の自然状態における第2線状部50cの円弧としての径は、自然状態の弾性支持体の外径よりも大きい。
 第2線状部50cは、弾性支持体の先端となる位置に、円弧の一部である頂部50gを備える。
The operation of the elastic support 2 will be further described in comparison with a comparative example.
The elastic support of the comparative example includes elastic members 50 shown in FIG. 17A in place of the elastic members 20A, 20B, and 20C.
The elastic member 50 includes a second linear portion 50c instead of the second linear portion 20cA of the elastic member 20A. The second linear portion 50c is a linear portion made of an arc. Although not particularly illustrated, the second linear portion 50c is inclined by an angle θ with respect to the plane S2 in the natural state, like the second linear portion 20cA excluding the bent portion 20kA.
Both ends of the second linear portion 50c are connected to the bent portions 20hA and 20fA in the same manner as the second linear portion 20cA.
The diameter of the second linear portion 50c in the natural state of the elastic member 50 is larger than the outer diameter of the elastic support in the natural state.
The 2nd linear part 50c is provided with the top part 50g which is a part of circular arc in the position used as the front-end | tip of an elastic support body.
 比較例の弾性支持体の縮径時の作用について説明する。図17(a)には、比較例の弾性支持体の自然状態における一つの弾性部材50が模式的に示されている。
 弾性部材50は、弾性支持体の自然状態では、わずかに弾性変形しているため、第2線状部50cは、弾性部材50の自然状態の円弧状とはわずかに異なる。しかし、変形量はわずかであるため、第2線状部50cの頂部50gの近傍は略円弧状である。
 図17(b)に示すように、比較例の弾性支持体がガイドシース7に収容されると、弾性部材50も、中心軸線Oに向かって移動して、ガイドシース7の内壁に当接する。
 このような縮径過程で、第2線状部50cには、第2線状部20cAと同様の外力が作用する。
 第2線状部50cは略円弧状の梁と同じであるため、第2線状部50cに作用する外力は、第2線状部50cの長手方向に作用する各位置を略均等に変形させる。
 このため、第2線状部50cは、外力に対して、第2線状部50c全体として抵抗する。すなわち、第2線状部50cは、徐々に湾曲の曲率が大きくなり、次第に湾曲形状が変化する。
The effect | action at the time of diameter reduction of the elastic support body of a comparative example is demonstrated. FIG. 17A schematically shows one elastic member 50 in the natural state of the elastic support of the comparative example.
Since the elastic member 50 is slightly elastically deformed in the natural state of the elastic support, the second linear portion 50c is slightly different from the natural arcuate shape of the elastic member 50. However, since the amount of deformation is small, the vicinity of the top portion 50g of the second linear portion 50c is substantially arc-shaped.
As shown in FIG. 17B, when the elastic support body of the comparative example is accommodated in the guide sheath 7, the elastic member 50 also moves toward the central axis O and abuts against the inner wall of the guide sheath 7.
In such a diameter reduction process, the same external force as the second linear portion 20cA acts on the second linear portion 50c.
Since the second linear portion 50c is the same as the substantially arc-shaped beam, the external force acting on the second linear portion 50c deforms each position acting in the longitudinal direction of the second linear portion 50c substantially evenly. .
For this reason, the 2nd linear part 50c resists the 2nd linear part 50c whole with respect to external force. That is, the curvature of the second linear portion 50c gradually increases, and the curved shape gradually changes.
 縮径が進み、第2線状部50cの変形量が大きくなると、負荷が大きくなる箇所は、頂部50gを含む第2線状部50cの中間部に集中する。ガイドシース7の内径は、弾性支持体の外径に比べて格段に小さいため、第2線状部50cの先端は、ガイドシース7の内径以下に湾曲しなければならない。
 自然状態における頂部50gの近傍は、曲率が小さい円弧であるため、実質的には、略180°に開いた屈曲部と同じである。このため、縮径時に頂部50gの近傍の変形量は、180°よりも小さい屈曲角θ3’から変形する第2線状部20cAに比べて大きくなる。
 このため、第2線状部50cの先端部に、第2線状部20cAに比べて大きな応力が集中して塑性変形する。
As the diameter decreases and the amount of deformation of the second linear portion 50c increases, the portion where the load increases is concentrated in the intermediate portion of the second linear portion 50c including the top portion 50g. Since the inner diameter of the guide sheath 7 is much smaller than the outer diameter of the elastic support, the distal end of the second linear portion 50c must be bent below the inner diameter of the guide sheath 7.
Since the vicinity of the top portion 50g in the natural state is an arc having a small curvature, it is substantially the same as the bent portion opened at about 180 °. For this reason, the amount of deformation in the vicinity of the top 50g when the diameter is reduced is larger than that of the second linear portion 20cA that is deformed from the bending angle θ3 ′ smaller than 180 °.
For this reason, a large stress is concentrated on the distal end portion of the second linear portion 50c as compared with the second linear portion 20cA, and plastic deformation occurs.
 図18(a)に示すように、第2線状部20cAは、折り曲げ部20kAが形成されており、頂部20gAは、塑性加工された角20部Gで構成される。
 折り曲げ部20kAの屈曲角が狭くなる変形が生じると、角部20Gから延出される線状の弾性体が、角部20Gを支持端とする梁として変形する。
 このため、角部20Gの弾性変形がごくわずかであっても、梁がたわむため屈曲角は大きく変化する。例えば、図18(a)に二点鎖線で示した変形後の形状を見れば、角部20Gの曲げ外があまり伸長せず、曲げ内もあまり圧縮されなくてもこのような変形状態になることが分かる。
 したがって、角部20Gには、塑性変形が起こらず、屈曲角が自然状態に戻ることができる。
As shown in FIG. 18 (a), the second linear portion 20cA is formed with a bent portion 20kA, and the top portion 20gA is composed of a plastically processed corner 20 portion G.
When a deformation that reduces the bending angle of the bent portion 20kA occurs, the linear elastic body extending from the corner portion 20G is deformed as a beam having the corner portion 20G as a support end.
For this reason, even if the elastic deformation of the corner portion 20G is very small, the bending angle changes greatly because the beam bends. For example, looking at the shape after deformation indicated by the two-dot chain line in FIG. 18A, the outside of the corner portion 20G does not extend so much and the inside of the bending is not compressed so much. I understand that.
Therefore, plastic deformation does not occur in the corner portion 20G, and the bending angle can return to the natural state.
 これに対して、図18(b)に示すように、比較例の第2線状部50cは、実線で示す自然状態では、曲率が小さい円弧状である。
 第2線状部50cが、二点鎖線で示す縮径状態になるには、頂部50gの近傍が、局所的にきわめて大きな曲げ変形が生じる必要があることが分かる。
On the other hand, as shown in FIG. 18B, the second linear portion 50c of the comparative example has an arc shape with a small curvature in the natural state indicated by the solid line.
It can be seen that in order for the second linear portion 50c to be in a reduced diameter state indicated by a two-dot chain line, extremely large bending deformation needs to occur locally in the vicinity of the top portion 50g.
 この結果、図17(b)に示すように、第2線状部50cは、頂部50gの近傍で、例えば、角度θ5をなして折れ曲がった状態で、ガイドシース7に収容される。
 角度θ5は、弾性支持体2の収容時の屈曲角θ4と同程度である。
 頂部50gは、塑性変形しているため、図17(c)に示すように、ガイドシース7から弾性部材50を取り出しても、頂部50gの近傍には、角度θ6(ただし、θ6>θ5)に開く屈曲部が形成される。頂部50gの近傍が元のような円弧に戻ることはない。
 このため、比較例の弾性支持体では、ガイドシース7への収容と、ガイドシース7からの押し出しを繰り返すと、弾性支持体2の外径が徐々に減少する。これにより、血管への押圧力が減少し、血管の内壁に安定して留置することができなくなるおそれがある。
As a result, as shown in FIG. 17B, the second linear portion 50c is accommodated in the guide sheath 7 in a state of being bent at an angle θ5, for example, in the vicinity of the top portion 50g.
The angle θ5 is approximately the same as the bending angle θ4 when the elastic support 2 is accommodated.
Since the top portion 50g is plastically deformed, as shown in FIG. 17C, even if the elastic member 50 is taken out from the guide sheath 7, an angle θ6 (however, θ6> θ5) is present in the vicinity of the top portion 50g. An open bend is formed. The vicinity of the top 50g does not return to the original arc.
For this reason, in the elastic support body of the comparative example, when the housing in the guide sheath 7 and the extrusion from the guide sheath 7 are repeated, the outer diameter of the elastic support body 2 gradually decreases. Thereby, the pressing force to the blood vessel is reduced, and there is a possibility that it cannot be stably placed on the inner wall of the blood vessel.
[第1変形例]
 次に、本実施形態の第1変形例について説明する。
 図19は、本発明の実施形態の第1変形例の医療用電気刺激電極に用いる弾性部材の主要部の構成を示す模式図である。
[First Modification]
Next, a first modification of the present embodiment will be described.
FIG. 19 is a schematic diagram illustrating a configuration of a main part of an elastic member used for the medical electrical stimulation electrode according to the first modification of the embodiment of the present invention.
 本変形例の医療用電気刺激電極は、上記実施形態の医療用電気刺激電極1において、弾性部材20A、20B、20Cにそれぞれ代えて、図19に主要部を示す弾性部材60を備える。以下、上記実施形態と異なる点を中心に説明する。 The medical electrostimulation electrode of this modification includes an elastic member 60 whose main part is shown in FIG. 19 in place of the elastic members 20A, 20B, and 20C in the medical electrostimulation electrode 1 of the above embodiment. Hereinafter, a description will be given focusing on differences from the above embodiment.
 図19に示すように、本変形例の各弾性部材60は、弾性部材20の折り曲げ部20kに代えて、折り曲げ部60kを備える。各弾性部材60のうち1つは、弾性部材20Aと同様に、刺激電極21、22等を備える。
 折り曲げ部60kは、折り曲げ加工する際に、曲げ内に曲率半径R(ただし、R>0)の湾曲部を形成した点を除いて、折り曲げ部20kと同様である。
 折り曲げ部60kの曲げ内の曲率半径Rは、ガイドシース7内に挿入しうる最大の円弧から決まる曲げ内R以下であれば、特に限定されない。ここで、ガイドシース7内に挿入しうる最大の円弧とは、ガイドシース7の内径の1/2の曲率半径を有する円弧である。曲げ内の曲率半径Rの最大値は、このような円弧の曲率半径から弾性部材60の厚さを引けばよい。
 ただし、曲率半径Rは、できるだけ小さいことが好ましい。上大静脈P3に挿入する場合、ガイドシース7の内径が3mm程度であることを考慮すると、例えば、0.5mm以上2mm以下とすることができる。
As shown in FIG. 19, each elastic member 60 of the present modification includes a bent portion 60 k instead of the bent portion 20 k of the elastic member 20. One of the elastic members 60 includes the stimulation electrodes 21, 22 and the like, similarly to the elastic member 20A.
The bending portion 60k is the same as the bending portion 20k except that a bending portion having a radius of curvature R (where R> 0) is formed in the bending when bending is performed.
The radius of curvature R in the bending of the bent portion 60k is not particularly limited as long as it is equal to or less than the bending radius R determined from the maximum arc that can be inserted into the guide sheath 7. Here, the maximum arc that can be inserted into the guide sheath 7 is an arc having a radius of curvature that is ½ of the inner diameter of the guide sheath 7. The maximum value of the radius of curvature R in bending may be obtained by subtracting the thickness of the elastic member 60 from the radius of curvature of such an arc.
However, the radius of curvature R is preferably as small as possible. When inserted into the superior vena cava P3, considering that the inner diameter of the guide sheath 7 is about 3 mm, for example, it can be set to 0.5 mm or more and 2 mm or less.
 このように、本変形例の弾性部材60によれば、折り曲げ部60kの曲げ内の曲率半径Rを適切な範囲に設定することにより、本変形例の弾性支持体の縮径時の塑性変形を防止することができる。このため、弾性部材60を用いた本変形例の医療用電気刺激電極によれば、折りたたみを繰り返しても、安定して血管内に留置することができる。 As described above, according to the elastic member 60 of the present modification, by setting the radius of curvature R in the bending of the bent portion 60k within an appropriate range, the elastic deformation of the elastic support of the present modification when the diameter is reduced can be prevented. Can be prevented. For this reason, according to the medical electrical stimulation electrode of this modification using the elastic member 60, even if folding is repeated, it can be stably placed in the blood vessel.
 また、本変形例によれば、弾性部材60の折り曲げ部60kの頂部20gの曲げ内が曲率半径Rの湾曲部になっている。このため、折り曲げ部60kを形成する際に、頂部20gの近傍の曲げ加工が容易になる。また、弾性部材60に用いる線状の弾性体として、塑性変形しにくい材料を採用することが可能になる。 Further, according to this modification, the bending portion of the apex portion 20g of the bent portion 60k of the elastic member 60 is a curved portion having a radius of curvature R. For this reason, when forming the bending part 60k, the bending process of the vicinity of the top part 20g becomes easy. In addition, as the linear elastic body used for the elastic member 60, it is possible to employ a material that is difficult to be plastically deformed.
[第2変形例]
 次に、本実施形態の第2変形例について説明する。
 図20は、本発明の実施形態の第2変形例の医療用電気刺激電極に用いる弾性部材の構成を示す模式的な平面図である。
[Second Modification]
Next, a second modification of the present embodiment will be described.
FIG. 20 is a schematic plan view showing a configuration of an elastic member used for the medical electrical stimulation electrode of the second modified example of the embodiment of the present invention.
 本変形例の医療用電気刺激電極は、上記実施形態の医療用電気刺激電極1において、弾性部材20A、20B、20Cにそれぞれ代えて、図20に示す弾性部材70を備える。以下、上記実施形態と異なる点を中心に説明する。 The medical electrostimulation electrode of this modification includes the elastic member 70 shown in FIG. 20 in place of the elastic members 20A, 20B, and 20C in the medical electrostimulation electrode 1 of the above embodiment. Hereinafter, a description will be given focusing on differences from the above embodiment.
 図20に示すように、本変形例の各弾性部材70は、弾性部材20の折り曲げ部20kに代えて、折り曲げ部70kを備える。各弾性部材70のうち1つは、弾性部材20Aと同様に、刺激電極21、22等を備える。
 折り曲げ部70kは、頂部20gから弾性部材70の基端側に向かってV字状に開いた折り曲げ部である。折り曲げ部70kは、連結端部20a、20eから遠ざかる方向に凸のV字状の第1折り曲げ部を構成している。
 折り曲げ部70kの屈曲角θ7は、上記実施形態の折り曲げ部20kにおける屈曲角θ3よりも小さい。一方、折り曲げ部70kを除く第2線状部20cの形状は、上記実施形態と同様である。このため、折り曲げ部70kは、第2線状部20cとの接続部に、屈曲部70jが形成されている。
 上記実施形態における屈曲部20jは、折り曲げ部20kが、平面S3に対して角度θ2だけ傾斜することにより形成されている。このため、屈曲部20jは、角度θ2が0°となるように折り曲げ部20kを回転して平面S3の法線に沿う方向から見ると滑らかにつながった線状部になっている。
 しかし、屈曲部70jは、角度θ2が0°となるように折り曲げ部70kを回転して平面S3の法線に沿う方向から見てもV字状に屈曲している。すなわち、屈曲部70jにおける屈曲角θ8は、屈曲部20jにおける屈曲角よりも小さい。
 このように、屈曲部70jは、平面S3の法線に沿う方向から見た折り曲げ部70kと第2線状部20cとの間の開き角度が、上記実施形態の折り曲げ部20kと第2線状部20cとの間の開き角度に比べて小さい。したがって、図20に示すように、平面S2の法線に沿う方向(図示紙面垂直方向)から見た折り曲げ部70kと第2線状部20cとの間の開き角度も、上記実施形態の折り曲げ部20kと第2線状部20cとの間の開き角度に比べて小さい。
As shown in FIG. 20, each elastic member 70 of the present modification includes a bent portion 70 k instead of the bent portion 20 k of the elastic member 20. One of the elastic members 70 includes stimulation electrodes 21 and 22 and the like, similarly to the elastic member 20A.
The bent portion 70k is a bent portion that opens in a V shape from the top portion 20g toward the proximal end side of the elastic member 70. The bent portion 70k constitutes a V-shaped first bent portion that is convex in a direction away from the connecting end portions 20a and 20e.
The bending angle θ7 of the bent portion 70k is smaller than the bent angle θ3 of the bent portion 20k of the above embodiment. On the other hand, the shape of the 2nd linear part 20c except the bending part 70k is the same as that of the said embodiment. For this reason, the bent part 70k is formed with a bent part 70j at the connection part with the second linear part 20c.
The bent portion 20j in the above embodiment is formed by inclining the bent portion 20k by an angle θ2 with respect to the plane S3. For this reason, the bent part 20j is a linear part smoothly connected when viewed from the direction along the normal line of the plane S3 by rotating the bent part 20k so that the angle θ2 becomes 0 °.
However, the bent portion 70j is bent in a V shape when viewed from the direction along the normal line of the plane S3 by rotating the bent portion 70k so that the angle θ2 becomes 0 °. That is, the bending angle θ8 at the bending portion 70j is smaller than the bending angle at the bending portion 20j.
In this way, the bending portion 70j has an opening angle between the bent portion 70k and the second linear portion 20c as viewed from the direction along the normal line of the plane S3. It is smaller than the opening angle with the part 20c. Therefore, as shown in FIG. 20, the opening angle between the bent portion 70k and the second linear portion 20c viewed from the direction along the normal line of the plane S2 (the vertical direction in the drawing) is also the bent portion of the above embodiment. The opening angle between 20k and the second linear portion 20c is small.
 本変形例によれば、折り曲げ部70kの屈曲角θ7が、上記実施形態よりも小さいため、本変形例の弾性支持体を縮径する場合に、頂部20gにおける負荷がさらに小さくなる。このため、縮径と拡径とを繰り返しても、頂部20gにおける塑性変形がさらに発生しにくくなる。
 弾性部材70を用いた本変形例の医療用電気刺激電極によれば、折りたたみを繰り返しても、安定して血管内に留置することができる。
According to this modification, since the bending angle θ7 of the bent portion 70k is smaller than that in the above embodiment, when the diameter of the elastic support of this modification is reduced, the load on the top 20g is further reduced. For this reason, even if the diameter reduction and the diameter expansion are repeated, the plastic deformation in the top portion 20g is further less likely to occur.
According to the medical electrical stimulation electrode of this modification using the elastic member 70, even if folding is repeated, it can be stably placed in the blood vessel.
 また、本変形例によれば、弾性部材70の折り曲げ部70kの近傍に、屈曲部70jが形成されている。屈曲部70jは、平面S2の法線に沿う方向から見て、上記実施形態の屈曲部20jよりもさらに屈曲している。このため、本変形例の弾性支持体が縮径する際、屈曲部70jの屈曲角が拡がることによって、縮径時の変形の応力が分散される。この点でも、頂部20gへの負荷が緩和されるため、さらに頂部20gにおける塑性変形が起こりにくくなっている。 Further, according to the present modification, the bent portion 70j is formed in the vicinity of the bent portion 70k of the elastic member 70. The bent portion 70j is further bent than the bent portion 20j of the above-described embodiment when viewed from the direction along the normal line of the plane S2. For this reason, when the diameter of the elastic support of the present modification is reduced, the bending angle of the bent portion 70j is expanded, so that the deformation stress at the time of diameter reduction is dispersed. Also in this respect, since the load on the top portion 20g is relieved, plastic deformation in the top portion 20g is further difficult to occur.
[第3変形例]
 次に、本実施形態の第3変形例について説明する。
 図21は、本発明の実施形態の第3変形例の医療用電気刺激電極に用いる弾性部材の構成を示す模式的な平面図である。図22は、本発明の実施形態の第3変形例の医療用電気刺激電極に用いる弾性部材の構成を示す模式的な正面図である。
[Third Modification]
Next, a third modification of the present embodiment will be described.
FIG. 21 is a schematic plan view showing a configuration of an elastic member used for the medical electrical stimulation electrode of the third modified example of the embodiment of the present invention. FIG. 22 is a schematic front view showing a configuration of an elastic member used for the medical electrical stimulation electrode of the third modified example of the embodiment of the present invention.
 本変形例の医療用電気刺激電極は、上記実施形態の医療用電気刺激電極1において、弾性部材20A、20B、20Cにそれぞれ代えて、図21に示す弾性部材80を備える。以下、上記実施形態と異なる点を中心に説明する。 The medical electrostimulation electrode of this modification includes the elastic member 80 shown in FIG. 21 instead of the elastic members 20A, 20B, and 20C in the medical electrostimulation electrode 1 of the above embodiment. Hereinafter, a description will be given focusing on differences from the above embodiment.
 図21に示すように、本変形例の各弾性部材80は、弾性部材20の折り曲げ部20kに代えて、折り曲げ部80k、80nを備える。各弾性部材80のうち1つは、弾性部材20Aと同様に、刺激電極21、22等を備える。
 折り曲げ部80kは、頂部20gから弾性部材80の基端側に向かってV字状に開いた折り曲げ部である。折り曲げ部80kは、連結端部20a、20eから遠ざかる方向に凸のV字状の第1折り曲げ部を構成している。
 折り曲げ部80nは、折り曲げ部80kから延在された線状の弾性体が屈曲部80mにおいて屈曲されたV字状の折り曲げ部である。折り曲げ部80nは、屈曲部80pにおいて、第2線状部20cと接続している。
 折り曲げ部80nは、折り曲げ部80kの側方にそれぞれ形成されている。
 各折り曲げ部80nは、連結端部20a、20eに近づく方向に凸のV字状の第2折り曲げ部を構成している。
As shown in FIG. 21, each elastic member 80 of the present modification includes bent portions 80k and 80n instead of the bent portion 20k of the elastic member 20. One of the elastic members 80 includes stimulation electrodes 21, 22 and the like, like the elastic member 20A.
The bent portion 80k is a bent portion that opens in a V shape from the top portion 20g toward the proximal end side of the elastic member 80. The bent portion 80k constitutes a V-shaped first bent portion that is convex in a direction away from the connecting end portions 20a and 20e.
The bent portion 80n is a V-shaped bent portion in which a linear elastic body extending from the bent portion 80k is bent at the bent portion 80m. The bent portion 80n is connected to the second linear portion 20c at the bent portion 80p.
The bent portions 80n are respectively formed on the sides of the bent portion 80k.
Each of the bent portions 80n constitutes a V-shaped second bent portion that is convex in a direction approaching the connecting end portions 20a and 20e.
 折り曲げ部80k、80nの屈曲角は特に限定されない。また、折り曲げ部80k、80nの屈曲角は、互いに同一でもよいし、異なっていてもよい。各屈曲角は、いずれも上記実施形態の屈曲角θ3よりも小さくすることができる。
 図22Aに示すように、折り曲げ部80k、80nは、上記実施形態と同様に平面S3に対して、角度θ2だけ傾斜している。すなわち、折り曲げ部80k、80nは、同一平面上に位置する。
The bending angles of the bent portions 80k and 80n are not particularly limited. Further, the bending angles of the bent portions 80k and 80n may be the same or different from each other. Each bending angle can be made smaller than the bending angle θ3 of the above embodiment.
As shown in FIG. 22A, the bent portions 80k and 80n are inclined by an angle θ2 with respect to the plane S3, as in the above embodiment. That is, the bent portions 80k and 80n are located on the same plane.
 本変形例の医療用電気刺激電極における弾性支持体は、折り曲げ部80k、80nを有する弾性部材80を備える。このため、弾性支持体を縮径する場合に、折り曲げ部80k、80nのいずれも屈曲角が減少するように弾性変形する。このため、縮径時に上記実施形態と同様の負荷が作用する場合、負荷が、頂部20g、屈曲部80m、80pに分散する。このため、縮径と拡径とを繰り返しても、頂部20gにおける塑性変形がさらに発生しにくくなる。
 このため、弾性部材80を用いた本変形例の医療用電気刺激電極によれば、折りたたみを繰り返しても、安定して血管内に留置することができる。
The elastic support in the medical electrical stimulation electrode according to this modification includes an elastic member 80 having bent portions 80k and 80n. For this reason, when the diameter of the elastic support is reduced, both of the bent portions 80k and 80n are elastically deformed so that the bending angle is reduced. For this reason, when the load similar to the said embodiment acts at the time of diameter reduction, a load is disperse | distributed to the top part 20g and the bending parts 80m and 80p. For this reason, even if the diameter reduction and the diameter expansion are repeated, the plastic deformation in the top portion 20g is further less likely to occur.
For this reason, according to the medical electrical stimulation electrode of this modification using the elastic member 80, even if folding is repeated, it can be stably placed in the blood vessel.
 また、本変形例によれば、折り曲げ部80nが、折り曲げ部80kよりも、弾性部材20の基端側に配置されている。このため、弾性支持体の軸方向の長さを増大させることなく、屈曲角が浅い折り曲げ部を複数設けることができる。この結果、医療用電気刺激電極の弾性支持体を小型化することが可能である。 Further, according to this modification, the bent portion 80n is disposed closer to the proximal end side of the elastic member 20 than the bent portion 80k. For this reason, it is possible to provide a plurality of bent portions having a shallow bending angle without increasing the axial length of the elastic support. As a result, it is possible to reduce the size of the elastic support for the medical electrical stimulation electrode.
 本変形例は、折り曲げ部80nは、その頂部(屈曲部80m)が弾性部材の対称面である平面S1上になくてもよい場合の例になっている。 This modification is an example in which the bent part 80n does not have to have the top part (bent part 80m) on the plane S1 which is the symmetry plane of the elastic member.
[第4変形例]
 次に、本実施形態の第4変形例について説明する。
 図23は、本発明の実施形態の第4変形例の医療用電気刺激電極に用いる弾性部材の構成を示す模式的な正面図である。
[Fourth Modification]
Next, a fourth modification of the present embodiment will be described.
FIG. 23 is a schematic front view showing a configuration of an elastic member used for the medical electrical stimulation electrode of the fourth modified example of the embodiment of the present invention.
 本変形例の医療用電気刺激電極は、上記実施形態の医療用電気刺激電極1において、弾性部材20A、20B、20Cにそれぞれ代えて、図21、22に示す弾性部材81を備える。以下、上記実施形態および上記第3変形例と異なる点を中心に説明する。 The medical electrostimulation electrode of this modification includes an elastic member 81 shown in FIGS. 21 and 22 instead of the elastic members 20A, 20B, and 20C in the medical electrostimulation electrode 1 of the above embodiment. Hereinafter, the points different from the above embodiment and the third modification will be mainly described.
 図21に示すように、本変形例の各弾性部材81は、弾性部材20の折り曲げ部20kに代えて、上記第3変形例と同様に、折り曲げ部80k、80nを備える。各弾性部材80のうち1つは、弾性部材20Aと同様に、刺激電極21、22等を備える。
 ただし、本変形例では、図23に示すように、折り曲げ部80nは、平面S3上に位置する。このため、頂部20gと屈曲部80mとの間には、屈曲部80jが形成されている。
As shown in FIG. 21, each elastic member 81 of the present modification includes bent portions 80k and 80n in the same manner as in the third modified example, instead of the bent portion 20k of the elastic member 20. One of the elastic members 80 includes stimulation electrodes 21, 22 and the like, like the elastic member 20A.
However, in this modification, as shown in FIG. 23, the bent portion 80n is located on the plane S3. Therefore, a bent portion 80j is formed between the top portion 20g and the bent portion 80m.
 本変形例は、折り曲げ部80k、80nが、同一平面上に位置しない以外は、上記第3変形例と同様である。このため、弾性部材81を用いた本変形例の医療用電気刺激電極によれば、折りたたみを繰り返しても、安定して血管内に留置することができる。 This modification is the same as the third modification except that the bent portions 80k and 80n are not located on the same plane. For this reason, according to the medical electrical stimulation electrode of this modification using the elastic member 81, even if folding is repeated, it can be stably placed in the blood vessel.
[第5変形例]
 次に、本実施形態の第5変形例について説明する。
 図24は、本発明の実施形態の第5変形例の医療用電気刺激電極に用いる弾性部材の構成を示す模式的な平面図である。図25は、本発明の実施形態の第5変形例の医療用電気刺激電極に用いる弾性部材の構成を示す模式的な正面図である。
[Fifth Modification]
Next, a fifth modification of the present embodiment will be described.
FIG. 24 is a schematic plan view showing a configuration of an elastic member used for the medical electrical stimulation electrode of the fifth modified example of the embodiment of the present invention. FIG. 25 is a schematic front view showing a configuration of an elastic member used for the medical electrical stimulation electrode of the fifth modified example of the embodiment of the present invention.
 本変形例の医療用電気刺激電極は、上記実施形態の医療用電気刺激電極1において、弾性部材20A、20B、20Cにそれぞれ代えて、図24に示す弾性部材90を備える。以下、上記実施形態と異なる点を中心に説明する。 The medical electrostimulation electrode of this modification includes the elastic member 90 shown in FIG. 24 instead of the elastic members 20A, 20B, and 20C in the medical electrostimulation electrode 1 of the above embodiment. Hereinafter, a description will be given focusing on differences from the above embodiment.
 図24に示すように、本変形例の各弾性部材90は、弾性部材20の折り曲げ部20kに代えて、折り曲げ部90kを備える。各弾性部材90のうち1つは、弾性部材20Aと同様に、刺激電極21、22等を備える。
 折り曲げ部90kは、頂部90gを基端側に有するV字状に形成される。頂部90gは、平面S1上に位置する。
 折り曲げ部90kの頂部90gと反対側の端部は、それぞれ第2線状部20cに屈曲部90mを介して接続されている。折り曲げ部90kにおける頂部90gにおける屈曲角はθ9である。屈曲角θ9は、上記実施形態のθ3と同様の角度とすることができる。
 折り曲げ部90kの曲げ内には、加工都合で形成される曲率半径5mm以下の湾曲があってもよい。
As shown in FIG. 24, each elastic member 90 of this modification includes a bent portion 90k instead of the bent portion 20k of the elastic member 20. One of the elastic members 90 includes stimulation electrodes 21 and 22 and the like, like the elastic member 20A.
The bent portion 90k is formed in a V shape having a top portion 90g on the base end side. The top 90g is located on the plane S1.
The end of the bent portion 90k opposite to the top 90g is connected to the second linear portion 20c via the bent portion 90m. The bending angle at the top 90g of the bent portion 90k is θ9. The bending angle θ9 can be the same angle as θ3 in the above embodiment.
Within the bend of the bent portion 90k, there may be a curvature with a radius of curvature of 5 mm or less formed for processing convenience.
 図25に示すように、折り曲げ部90kは、上記実施形態の折り曲げ部20kと同様に、平面S3に対して角度θ2だけ傾斜している。
 折り曲げ部90kは、連結端部20aA、20eAに近づく方向に凸のV字状の第2折り曲げ部を構成している。本変形例は、第2線状部20cが、第2折り曲げ部のみを有する場合の例になっている。
As shown in FIG. 25, the bent portion 90k is inclined by an angle θ2 with respect to the plane S3, like the bent portion 20k of the above embodiment.
The bent portion 90k constitutes a V-shaped second bent portion that is convex in a direction approaching the connecting end portions 20aA and 20eA. This modification is an example in which the second linear portion 20c has only the second bent portion.
 本変形例の医療用電気刺激電極における弾性支持体は、折り曲げ部90kを有する弾性部材90を備える。このため、弾性支持体を縮径する場合に、折り曲げ部90kの屈曲角が減少するように弾性変形する。折り曲げ部90kが、上記実施形態の折り曲げ部20kと異なるのは、主として、凸となる向きのみである。このため、上記実施形態と同様にして、縮径時の負荷が折り曲げ部90kの弾性変形によって分散され、頂部90gの塑性変形が抑制される。
 このため、弾性部材90を用いた本変形例の医療用電気刺激電極によれば、折りたたみを繰り返しても、安定して血管内に留置することができる。
The elastic support in the medical electrical stimulation electrode according to this modification includes an elastic member 90 having a bent portion 90k. For this reason, when the diameter of the elastic support is reduced, it is elastically deformed so that the bending angle of the bent portion 90k is reduced. The bent portion 90k differs from the bent portion 20k of the above-described embodiment mainly in the convex direction. For this reason, the load at the time of diameter reduction is disperse | distributed by the elastic deformation of the bending part 90k similarly to the said embodiment, and the plastic deformation of the top part 90g is suppressed.
For this reason, according to the medical electrical stimulation electrode of this modification using the elastic member 90, even if folding is repeated, it can be stably placed in the blood vessel.
 以上、本発明の実施形態(変形例を含む)を説明したが、本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において構成要素の組み合わせを変えたり、各構成要素に種々の変更を加えたり、削除したりすることが可能である。 As mentioned above, although embodiment (including a modification) of this invention was described, the technical scope of this invention is not limited to the said embodiment, The combination of a component is changed in the range which does not deviate from the meaning of this invention. It is possible to make various changes to each component or delete them.
 例えば、上記実施形態の説明では、刺激電極部が、上大静脈に配置されて迷走神経を刺激する場合の例で説明したが、これは一例である。刺激電極部は迷走神経以外の神経を刺激するものであってもよい。また、この場合、刺激電極部は、刺激を行う神経に刺激を伝達できる適宜の血管内に配置することが可能である。 For example, in the description of the above embodiment, the example in which the stimulation electrode unit is arranged in the superior vena cava to stimulate the vagus nerve is described as an example. The stimulation electrode unit may stimulate nerves other than the vagus nerve. In this case, the stimulation electrode unit can be disposed in an appropriate blood vessel that can transmit the stimulation to the nerve that performs the stimulation.
 上記実施形態の説明では、弾性支持体が、中心軸線を対称軸として3回回転対称となる形状を有する場合の例で説明した。しかし弾性支持体は、3回以上の回転対称な形状を有することも可能である。
 ただし、弾性支持体は縮径した際に、血管の内壁に対して、略均等な押圧力を作用することができれば、厳密な回転対称性は必要とされない。
 例えば、各弾性部材の単体の形状が、製作誤差でばらついたり、組立誤差によって歪んだりすることにより対称性がくずれた様な略回転対称な形状も可能である。
 また、全体的な形状は回転対称に近いが、一部に回転対称性を有しない形状部分を有する略回転対称な形状も可能である。例えば、押圧部の形成位置が周方向を3等分する位置に形成されているが、押圧部の形状が異なる場合や、押圧部が周方向を3等分する位置とは多少ずれている場合なども許容できる。
In the description of the above embodiment, the example has been described in which the elastic support has a shape that is three-fold rotationally symmetric about the central axis. However, the elastic support can also have a rotationally symmetric shape of three or more times.
However, strict rotational symmetry is not required as long as the elastic support can apply a substantially equal pressing force to the inner wall of the blood vessel when the diameter of the elastic support is reduced.
For example, a substantially rotationally symmetric shape in which the shape of each elastic member is not symmetrical due to variations due to manufacturing errors or distortion due to assembly errors is also possible.
Further, although the overall shape is close to rotational symmetry, a substantially rotationally symmetric shape having a shape portion that does not have rotational symmetry in part is also possible. For example, the formation position of the pressing part is formed at a position that divides the circumferential direction into three equal parts, but the shape of the pressing part is different, or the pressing part is slightly different from the position that divides the circumferential direction into three equal parts Etc. are acceptable.
 上記実施形態の説明では、隣り合う弾性部材の基端側線状部20b、20d同士が、弾性部材固定部64によって固定される場合の例で説明した。しかし、弾性部材固定部64を削除し、基端側線状部20b、20d同士が周方向に離間した構成としてもよい。
 このような構成にすると、各基端側線状部20b、20dの変形による弾性復元力が、血管の内壁の周方向に分散するため、血管の内壁に対する負荷をより低減することが可能である。
In the description of the above embodiment, the base end side linear portions 20b and 20d of the adjacent elastic members are described as an example in which the elastic member fixing portions 64 are fixed to each other. However, the elastic member fixing portion 64 may be deleted, and the proximal side linear portions 20b and 20d may be separated from each other in the circumferential direction.
With such a configuration, since the elastic restoring force due to the deformation of the proximal end side linear portions 20b and 20d is distributed in the circumferential direction of the inner wall of the blood vessel, the load on the inner wall of the blood vessel can be further reduced.
 上記実施形態の説明では、ワイヤ23X、23Yが外部被覆26で被覆される場合の例で説明したが、ワイヤ23X、23Yとして、金属ワイヤに樹脂被覆された線状体を採用することもできる。この場合の樹脂被覆は、さらに外部被覆26で覆われるため、生体と直接的に接触することはないため、適宜の樹脂材料を採用することができる。 In the description of the above embodiment, an example in which the wires 23X and 23Y are coated with the outer coating 26 has been described. However, as the wires 23X and 23Y, a linear body in which a metal wire is coated with a resin can be employed. Since the resin coating in this case is further covered with the outer coating 26, it does not come into direct contact with the living body, and therefore an appropriate resin material can be employed.
 上記実施形態の説明では、第1の弾性部材における芯材であるワイヤ23Xの曲げ剛性と、第2の弾性部材における芯材であるワイヤ23Yの曲げ剛性が同じ場合の例で説明した。
 しかし、上述したように、ワイヤ23X、23Yの曲げ剛性を変えれば、弾性部材20A、20B、20Cの各曲げ剛性を同程度にしやすくなる。例えば、ワイヤ23Yの断面形状を変えて、曲げに関する断面2次モーメントがワイヤ23Xよりも大きくなるようにする。この場合、配線25の曲げ剛性への寄与が大きい場合にも、弾性部材20A、20B、20Cの各曲げ剛性を同程度にできる。さらには、弾性部材20A、20B、20Cの各曲げ剛性を一致させることも可能である。
 ワイヤ23X、23Yの断面形状の変え方は、互いに相似形状として変えてもよいし、異なる形状とすることによって変えてもよい。非相似形状とする場合、例えば、矩形断面において互いの長辺および短辺を任意に変えてもよい。さらに、非相似形状とする場合、断面形状の種類を変えてもよい。例えば、一方を矩形断面、他方を円断面とする、一方を円断面、他方を楕円断面とする、等の適宜の組み合わせが可能である。また、断面形状の種類も、矩形、円、楕円には限定されず、他の断面形状が可能である。
 しかし、ワイヤ23X、23Yの曲げ剛性の変え方は、断面2次モーメントを変えることには限定されない。例えば、ワイヤ23X、23Yを、互いに異なる縦弾性係数を有する材料によって製作することにより、互いの曲げ剛性を変えてもよい。さらに、ワイヤ23X、23Yの断面2次モーメントと縦弾性係数の両方を変えてもよい。
 さらに、外部被覆26の材質や外形を変えることにより、第1の弾性部材および第2の弾性部材の曲げ剛性を変えてもよい。
In the description of the above embodiment, an example has been described in which the bending rigidity of the wire 23X, which is the core material in the first elastic member, is the same as the bending rigidity of the wire 23Y, which is the core material in the second elastic member.
However, as described above, if the bending rigidity of the wires 23X and 23Y is changed, the bending rigidity of each of the elastic members 20A, 20B, and 20C can be easily made equal. For example, the cross-sectional shape of the wire 23Y is changed so that the cross-sectional secondary moment related to bending is larger than that of the wire 23X. In this case, even when the contribution to the bending rigidity of the wiring 25 is large, the bending rigidity of the elastic members 20A, 20B, and 20C can be made substantially the same. Furthermore, it is also possible to make each bending rigidity of elastic member 20A, 20B, 20C correspond.
The method of changing the cross-sectional shapes of the wires 23X and 23Y may be changed to be similar to each other or may be changed by using different shapes. In the case of a non-similar shape, for example, the long side and the short side may be arbitrarily changed in a rectangular cross section. Furthermore, when making it a non-similar shape, you may change the kind of cross-sectional shape. For example, appropriate combinations such as one having a rectangular cross section, the other having a circular cross section, one having a circular cross section, and the other having an elliptic cross section are possible. The types of cross-sectional shapes are not limited to rectangles, circles, and ellipses, and other cross-sectional shapes are possible.
However, the method of changing the bending rigidity of the wires 23X and 23Y is not limited to changing the second moment of section. For example, the bending rigidity of each other may be changed by manufacturing the wires 23X and 23Y using materials having different longitudinal elastic modulus. Furthermore, you may change both the cross-sectional secondary moment and longitudinal elastic modulus of the wires 23X and 23Y.
Furthermore, you may change the bending rigidity of a 1st elastic member and a 2nd elastic member by changing the material and external shape of the outer coating | cover 26. FIG.
 上記実施形態の説明では、弾性部材20A、20B、20Cの曲げ剛性が同程度であるため、弾性支持体2を一定量縮径したときの弾性復元力が均等化されている場合の例で説明した。
 しかし、弾性部材20A、20B、20Cの曲げ剛性を不均等にすることによって、弾性支持体2を一定量縮径したときの弾性復元力を周方向にわたって不均等にしてもよい。この場合、弾性部材20A、20B、20Cの曲げ剛性は2種であってもよい。また、弾性部材20A、20B、20Cの曲げ剛性はすべてが異なっていてもよい。
 例えば、血管の断面形状が真円からずれている場合、真円断面に合わせて縮径したときに弾性復元力が均等化されていると、血管の内壁には不均等な押圧力が作用する。このように血管の内壁に作用する押圧力が周方向に不均等であると、患者が動いたりする場合に、弾性支持体2の位置が安定しなくなるおそれもある。
 しかし、予め円断面に合わせて縮径したときの弾性復元力を適宜不均等化しておくと、弾性支持体2が血管の断面形状に合った変形をしたときに、弾性支持体2から血管の内壁に作用する押圧力を周方向にわたって均等化することが可能である。この場合、血管の断面形状が真円からずれている場合にも、弾性支持体2の位置を安定させることができる。
In the description of the above embodiment, since the elastic members 20A, 20B, and 20C have the same bending rigidity, the elastic restoring force when the elastic support 2 is reduced by a certain amount will be described as an example. did.
However, by making the bending rigidity of the elastic members 20A, 20B, and 20C uneven, the elastic restoring force when the diameter of the elastic support 2 is reduced by a certain amount may be made uneven in the circumferential direction. In this case, the bending rigidity of the elastic members 20A, 20B, and 20C may be two types. Further, all of the bending rigidity of the elastic members 20A, 20B, and 20C may be different.
For example, when the cross-sectional shape of the blood vessel is deviated from a perfect circle, if the elastic restoring force is equalized when the diameter is reduced to match the perfect circular cross-section, an uneven pressing force acts on the inner wall of the blood vessel. . Thus, if the pressing force acting on the inner wall of the blood vessel is uneven in the circumferential direction, the position of the elastic support 2 may become unstable when the patient moves.
However, if the elastic restoring force when the diameter is reduced in accordance with the circular cross-section in advance is appropriately non-uniform, when the elastic support 2 is deformed to match the cross-sectional shape of the blood vessel, It is possible to equalize the pressing force acting on the inner wall in the circumferential direction. In this case, even when the cross-sectional shape of the blood vessel is deviated from a perfect circle, the position of the elastic support 2 can be stabilized.
 上記実施形態の説明では、第2線状部20cの一部に、折り曲げ部が形成されている場合の例で説明した。しかし、例えば、第2線状部20c全体を、先端に頂部を有するV字状に形成した折り曲げ部のみで構成することも可能である。 In the description of the above embodiment, an example in which a bent portion is formed on a part of the second linear portion 20c has been described. However, for example, the entire second linear portion 20c can be configured only by a bent portion formed in a V shape having a top at the tip.
 上記実施形態および上記第2変形例~第5変形例は、折り曲げ部の頂部が屈曲部からなる場合の例で説明したが、いずれも、上記第1変形例のように、ガイドシース7の内径に比べて小さい曲率半径の湾曲部を曲げ内に形成した構成とすることができる。 The above embodiment and the second to fifth modifications have been described with reference to the case where the top of the bent portion is formed of a bent portion. However, as in the first modified example, the inner diameter of the guide sheath 7 is used. Compared to the above, a curved portion having a smaller radius of curvature can be formed in the bend.
 以上、本発明の好ましい実施形態を、種々の変形例とともに説明したが、本発明は前述した説明に限定されることはなく、添付のクレームの範囲によってのみ限定される。 As mentioned above, although preferred embodiment of this invention was described with various modifications, this invention is not limited to the description mentioned above, and is limited only by the range of the attached claim.
 上記実施形態(変形例を含む)によれば、血管内に挿入して、安定して留置することができる医療用電気刺激電極を提供できる。 According to the above-described embodiment (including modifications), it is possible to provide a medical electrical stimulation electrode that can be inserted into a blood vessel and stably placed.
 1 医療用電気刺激電極
 2 弾性支持体
 3 リード部
 3b 先端部材(リード部の端部)
 8 電気刺激装置
 20、20A、20B、20C、50、60、70、80、81、90 弾性部材
 20a、20aA、20aB、20aC、20e、20eA、20eB、20eC 連結端部
 20b、20bA、20bB、20bC、20d、20dA、20dB、20dC 基端側線状部(第1線状部)
 20c、20cA、20cB、20cC、50c 第2線状部
 20f、20fA、20fB、20fC、20h、20hA、20hB、20hC、20j、20jA、20jB、20jC、33f、33fA、33fB、33fC、33h、33hA、33hB、33hC、70j、80j、80m、80p、90m 屈曲部
 20g、20gA、20gB、20gC、50g、90g 頂部
 20G 角部
 20k、20kA、20kB、20kC、60k、70k、80k 折り曲げ部(第1の折り曲げ部)
 80n、90k 折り曲げ部(第2の折り曲げ部)
 21、22 刺激電極(刺激電極部)
 23、23X、23Y ワイヤ(芯材)
 25 配線
 26 外部被覆(被覆部材)
 27 集束部(結節部)
 34 弾性部材固定部(結節部)
 35 押圧部
 64 弾性部材固定部
 100 電気刺激システム
 CL 周回線状部
 LP 周回経路(開口部)
 O 中心軸線
 O1 第1軸線
 O2 第2軸線
 O3 第3軸線
 P 患者
 P3 上大静脈(血管)
 P6 迷走神経(神経)
 V1 内壁
DESCRIPTION OF SYMBOLS 1 Medical electrical stimulation electrode 2 Elastic support body 3 Lead part 3b Tip member (end part of lead part)
8 Electrical stimulator 20, 20A, 20B, 20C, 50, 60, 70, 80, 81, 90 Elastic member 20a, 20aA, 20aB, 20aC, 20e, 20eA, 20eB, 20eC Connecting end 20b, 20bA, 20bB, 20bC 20d, 20dA, 20dB, 20dC Base end side linear portion (first linear portion)
20c, 20cA, 20cB, 20cC, 50c Second linear portion 20f, 20fA, 20fB, 20fC, 20h, 20hA, 20hB, 20hC, 20j, 20jA, 20jB, 20jC, 33f, 33fA, 33fB, 33fC, 33h, 33hA, 33hB, 33hC, 70j, 80j, 80m, 80p, 90m Bending part 20g, 20gA, 20gB, 20gC, 50g, 90g Top part 20G Corner part 20k, 20kA, 20kB, 20kC, 60k, 70k, 80k Bending part (first bending part) Part)
80n, 90k bent part (second bent part)
21, 22 Stimulation electrode (stimulation electrode part)
23, 23X, 23Y Wire (core material)
25 Wiring 26 Outer coating (coating material)
27 Focusing part (nodule part)
34 Elastic member fixing part (knot part)
35 Pressing portion 64 Elastic member fixing portion 100 Electrical stimulation system CL Circumferential line portion LP Circulating route (opening portion)
O central axis O1 first axis O2 second axis O3 third axis P patient P3 superior vena cava (blood vessel)
P6 Vagus nerve (nerve)
V1 inner wall

Claims (9)

  1.  線状の弾性体を曲げて閉ループ状に形成され、前記線状の弾性体の両端部が連結された連結端部と、前記連結端部から前記線状の弾性体が互いに離間して延ばされた一対の第1線状部と、前記一対の第1線状部の延在方向の先端にそれぞれ両端が接続され、前記両端の中間に少なくとも一つの折り曲げ部を含む第2線状部と、がそれぞれ形成された複数の弾性部材を有する弾性支持体と、
     血管の内壁を通して電気刺激を与えるため、前記複数の弾性部材の少なくとも一つに配置された刺激電極部と、
     前記刺激電極部に電気的に接続された配線と、
     線状に延ばされ、先端部材に前記複数の弾性部材の前記連結端部がそれぞれ接続され、内部に前記配線が挿通されたリード部と、
    を備える、医療用電気刺激電極。
    A linear elastic body is bent to form a closed loop, and a connection end where both ends of the linear elastic body are connected, and the linear elastic body extends away from the connection end. A pair of first linear parts, and a second linear part having both ends connected to the extending ends of the pair of first linear parts and including at least one bent part in the middle of the both ends; , And an elastic support having a plurality of elastic members formed respectively,
    A stimulation electrode portion disposed on at least one of the plurality of elastic members for applying electrical stimulation through the inner wall of the blood vessel;
    Wiring electrically connected to the stimulation electrode portion;
    A lead portion that extends in a linear shape, is connected to each of the connecting end portions of the plurality of elastic members at a tip member, and has the wiring inserted therein;
    A medical electrical stimulation electrode comprising:
  2.  前記弾性支持体は、
     前記複数の弾性部材が、前記第1線状部において、互いに係合されることにより、前記リード部の前記先端部材における中心軸線を中心とする籠状に形成され、
     前記第2線状部を含む前記線状の弾性体によって、前記中心軸線を囲む開口部が形成される、請求項1に記載の医療用電気刺激電極。
    The elastic support is
    The plurality of elastic members are formed in a hook shape centered on a central axis of the tip member of the lead portion by being engaged with each other in the first linear portion,
    The medical electrical stimulation electrode according to claim 1, wherein an opening surrounding the central axis is formed by the linear elastic body including the second linear portion.
  3.  前記弾性支持体は、
     前記中心軸線を対称軸として回転対称な形状に形成される、請求項2に記載の医療用電気刺激電極。
    The elastic support is
    The medical electrical stimulation electrode according to claim 2, wherein the medical electrical stimulation electrode is formed in a rotationally symmetric shape with the central axis as a symmetry axis.
  4.  前記折り曲げ部は、
     前記連結端部から遠ざかる方向に凸のV字状の第1折り曲げ部を備える、請求項1から3のいずれか1項に記載の医療用電気刺激電極。
    The bent portion is
    The medical electrical stimulation electrode according to any one of claims 1 to 3, further comprising a V-shaped first bent portion that protrudes in a direction away from the connection end.
  5.  前記折り曲げ部は、
     前記連結端部に近づく方向に凸のV字状の第2折り曲げ部を備える、請求項1から4のいずれか1項に記載の医療用電気刺激電極。
    The bent portion is
    The medical electrical stimulation electrode according to any one of claims 1 to 4, further comprising a V-shaped second bent portion that is convex in a direction approaching the connecting end portion.
  6.  前記複数の弾性部材のそれぞれは、
     線状の芯材と、
     前記芯材を被覆する被覆部材と、
    を備える、請求項1から5のいずれか1項に記載の医療用電気刺激電極。
    Each of the plurality of elastic members is
    A linear core,
    A covering member for covering the core material;
    The medical electrical stimulation electrode of any one of Claim 1 to 5 provided with these.
  7.  前記芯材は、
     超弾性ワイヤである、請求項6に記載の医療用電気刺激電極。
    The core material is
    The medical electrical stimulation electrode according to claim 6 which is a super elastic wire.
  8.  前記複数の弾性部材は、
     前記刺激電極部が配置され、前記配線を内蔵する第1の弾性部材と、
     前記刺激電極部および前記配線を有しない第2の弾性部材と、
    からなり、
     前記第1の弾性部材における前記芯材の曲げ剛性を、前記第2の弾性部材における前記芯材の曲げ剛性よりも低くすることにより、前記弾性支持体を一定量縮径した際に,径方向に発生する弾性復元力を均等化した、
    請求項6または7に記載の医療用電気刺激電極。
    The plurality of elastic members are:
    A first elastic member in which the stimulation electrode portion is disposed and the wiring is embedded;
    A second elastic member not having the stimulation electrode portion and the wiring;
    Consists of
    When the bending strength of the core material in the first elastic member is made lower than the bending rigidity of the core material in the second elastic member, the elastic support body is reduced in diameter by a certain amount, and the radial direction The elastic restoring force generated in the
    The medical electrical stimulation electrode according to claim 6 or 7.
  9.  前記複数の弾性部材が備える複数の前記芯材は、
     曲げ剛性が異なる2種以上の芯材からなり、
     前記弾性支持体は、
     一定量縮径した際に,径方向に発生する弾性復元力が、周方向の位置によって異なる
    請求項6または7に記載の医療用電気刺激電極。
    The plurality of core members provided in the plurality of elastic members are:
    It consists of two or more core materials with different bending rigidity,
    The elastic support is
    The medical electrical stimulation electrode according to claim 6 or 7, wherein the elastic restoring force generated in the radial direction when the diameter is reduced by a certain amount varies depending on the position in the circumferential direction.
PCT/JP2015/052955 2015-02-03 2015-02-03 Medical electrostimulation electrode WO2016125250A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016572976A JP6438497B2 (en) 2015-02-03 2015-02-03 Medical stimulation electrode
PCT/JP2015/052955 WO2016125250A1 (en) 2015-02-03 2015-02-03 Medical electrostimulation electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/052955 WO2016125250A1 (en) 2015-02-03 2015-02-03 Medical electrostimulation electrode

Publications (1)

Publication Number Publication Date
WO2016125250A1 true WO2016125250A1 (en) 2016-08-11

Family

ID=56563615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/052955 WO2016125250A1 (en) 2015-02-03 2015-02-03 Medical electrostimulation electrode

Country Status (2)

Country Link
JP (1) JP6438497B2 (en)
WO (1) WO2016125250A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021067498A1 (en) * 2019-10-01 2021-04-08 Epineuron Technologies Inc. Systems and methods for delivering neuroregenerative therapy and reducing post-operative and chronic pain
US11247044B2 (en) 2017-10-25 2022-02-15 Epineuron Technologies Inc. Devices for delivering neuroregenerative therapy
US11247043B2 (en) 2019-10-01 2022-02-15 Epineuron Technologies Inc. Electrode interface devices for delivery of neuroregenerative therapy
US11247045B2 (en) 2017-10-25 2022-02-15 Epineuron Technologies Inc. Systems and methods for delivering neuroregenerative therapy

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993004734A1 (en) * 1990-03-06 1993-03-18 Daniel Galley Epidural electrode system intended to be introduced in the epidural space
JP2010516405A (en) * 2007-01-30 2010-05-20 カーディアック ペースメイカーズ, インコーポレイテッド Neuronal cell stimulation lead with stent-like anchor
JP2010516384A (en) * 2007-01-30 2010-05-20 カーディアック ペースメイカーズ, インコーポレイテッド Double helix lead configuration
JP2013236662A (en) * 2012-05-11 2013-11-28 Olympus Corp Neurostimulation electrode and neurostimulation system

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008070189A2 (en) * 2006-12-06 2008-06-12 The Cleveland Clinic Foundation Method and system for treating acute heart failure by neuromodulation

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1993004734A1 (en) * 1990-03-06 1993-03-18 Daniel Galley Epidural electrode system intended to be introduced in the epidural space
JP2010516405A (en) * 2007-01-30 2010-05-20 カーディアック ペースメイカーズ, インコーポレイテッド Neuronal cell stimulation lead with stent-like anchor
JP2010516384A (en) * 2007-01-30 2010-05-20 カーディアック ペースメイカーズ, インコーポレイテッド Double helix lead configuration
JP2013236662A (en) * 2012-05-11 2013-11-28 Olympus Corp Neurostimulation electrode and neurostimulation system

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11247044B2 (en) 2017-10-25 2022-02-15 Epineuron Technologies Inc. Devices for delivering neuroregenerative therapy
US11247045B2 (en) 2017-10-25 2022-02-15 Epineuron Technologies Inc. Systems and methods for delivering neuroregenerative therapy
WO2021067498A1 (en) * 2019-10-01 2021-04-08 Epineuron Technologies Inc. Systems and methods for delivering neuroregenerative therapy and reducing post-operative and chronic pain
US11247043B2 (en) 2019-10-01 2022-02-15 Epineuron Technologies Inc. Electrode interface devices for delivery of neuroregenerative therapy
US11364381B2 (en) 2019-10-01 2022-06-21 Epineuron Technologies Inc. Methods for delivering neuroregenerative therapy and reducing post-operative and chronic pain

Also Published As

Publication number Publication date
JPWO2016125250A1 (en) 2017-11-16
JP6438497B2 (en) 2018-12-12

Similar Documents

Publication Publication Date Title
US11478636B2 (en) Tube-cut helical fixation anchor for electrotherapy device
US8386055B2 (en) Implantable lead with isolated contact coupling
US7856707B2 (en) Method for performing a coplanar connection between a conductor and a contact on an implantable lead
AU2008210862B2 (en) Neurostimulating lead having a stent-like anchor
JP2838500B2 (en) Human implantable medical electrical lead
US7930038B2 (en) Tubular lead electrodes and methods
JP5525624B2 (en) Medical lead wire with coil conductor having two or more areas and method for constructing the coil conductor
JP4500314B2 (en) Fixing medical leads
JP6438497B2 (en) Medical stimulation electrode
CA2298667A1 (en) Small cable endocardial lead with exposed guide tube
US20030199949A1 (en) Stylet for an implantable lead
JP6335025B2 (en) Medical stimulation electrode
JP6400676B2 (en) Medical electrical stimulation electrode and medical electrical stimulation device
JP6557507B2 (en) Medical stimulation electrode
JP6654915B2 (en) Medical electrical stimulation electrode and medical electrical stimulation device
JP6626381B2 (en) Neurostimulation electrode and electrode catheter system
JP6454113B2 (en) Medical stimulation electrode
JP2013034535A (en) Electrical stimulation electrode assembly
JP2016007437A (en) Medical electrostimulation electrode
JP2017164045A (en) Nerve stimulation electrode
JP2017086541A (en) Nerve stimulation electrodes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15881067

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016572976

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15881067

Country of ref document: EP

Kind code of ref document: A1