WO2016119393A1 - 用于商用制冷压缩机电机的无功耗起动器 - Google Patents

用于商用制冷压缩机电机的无功耗起动器 Download PDF

Info

Publication number
WO2016119393A1
WO2016119393A1 PCT/CN2015/082599 CN2015082599W WO2016119393A1 WO 2016119393 A1 WO2016119393 A1 WO 2016119393A1 CN 2015082599 W CN2015082599 W CN 2015082599W WO 2016119393 A1 WO2016119393 A1 WO 2016119393A1
Authority
WO
WIPO (PCT)
Prior art keywords
motor
starter
power
resistor
refrigeration compressor
Prior art date
Application number
PCT/CN2015/082599
Other languages
English (en)
French (fr)
Inventor
赵云文
Original Assignee
常熟市天银机电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常熟市天银机电股份有限公司 filed Critical 常熟市天银机电股份有限公司
Publication of WO2016119393A1 publication Critical patent/WO2016119393A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/42Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor
    • H02P1/44Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor by phase-splitting with a capacitor
    • H02P1/445Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor by phase-splitting with a capacitor by using additional capacitors switched at start up
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/42Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual single-phase induction motor
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P1/00Arrangements for starting electric motors or dynamo-electric converters
    • H02P1/16Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters
    • H02P1/46Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor
    • H02P1/465Arrangements for starting electric motors or dynamo-electric converters for starting dynamo-electric motors or dynamo-electric converters for starting an individual synchronous motor for starting an individual single-phase synchronous motor

Definitions

  • the invention belongs to the technical field of motor starting devices, in particular to a power-less starter for a commercial refrigeration compressor motor, which is mainly used for starting a commercial refrigeration compressor motor, and can also be used for ordinary single-phase AC induction or single phase.
  • Starting of an AC permanent magnet motor hereinafter collectively referred to as a single phase AC motor.
  • the single-phase AC motors are usually composed of a rotor and a stator.
  • the stator has two main and two windings.
  • the main winding is also called a working winding and is used to realize the motor.
  • Start-up and steady-state operation; the secondary winding, also called the start winding works only during the start-up phase and is used to assist the starting of the motor.
  • the starting mode of the single-phase AC motor is resistance starting and capacitor starting.
  • the starting torque of the resistance starting motor is slightly larger than the rated torque, but it is still small, thus limiting its range of use; the starting torque of the capacitor starting motor Large, up to 2.5 to 3 times the rated torque, can drive the machine with full load start, the current refrigeration compressor mainly uses capacitor starter motor. Since the compressor motor does not need to participate in the work after the start of the start, and the power generated by the current in the secondary winding after the start is completed, most of the power consumption is invalid power consumption. Therefore, the ideal state is that the secondary winding circuit is started after the compressor motor is started.
  • a common solution in the industry is to connect the motor starters in series with the starting circuit of the compressor.
  • the motor starter is usually realized by a positive temperature coefficient thermistor (hereinafter referred to as a PTC thermistor).
  • PTC thermistor When the motor starts, the resistance of the PTC thermistor is its normal temperature resistance value.
  • the secondary winding circuit is connected to the power supply to participate in the work, a large secondary winding starting current is generated in the circuit. Under the action of this current, the PTC thermistor rapidly heats up and heats up, and its resistance value increases rapidly, eventually causing the secondary winding loop to be substantially disconnected.
  • the hammer starter has high reliability and is not easy to be broken, and can be restarted in a short time (the hot machine is preferably separated by 20 seconds) after the failure of the start, there is a high cost, a limited contact life, and a spark is likely to occur during suction and discharge. Defects such as electromagnetic interference.
  • voltage starters are also commonly used for the starting of high-power compressors. However, due to the use of relays with contacts, voltage-type starters also have limited electric shock life, and are prone to sparks or electromagnetic interference during suction and discharge. .
  • the current signal in the motor circuit is sampled by the current transformer, and the start is used at the beginning of the motor start.
  • the loop current is much larger than the normal working current.
  • the bidirectional thyristor is triggered to complete the start of the motor.
  • the operating current is greatly reduced to a state close to the normal working state, so that the triac cannot be triggered. This completes the complete disconnection of the secondary winding circuit.
  • the starter is mainly used for starting the motor of a commercial refrigeration compressor, and can also be used for starting a common single-phase AC motor. It has a wide range of applications, but it is still found to be defective in practical applications: the secondary winding coil cannot withstand large resistance. The current, which affects the electrical performance stability of the starter.
  • a power-less starter for a commercial refrigeration compressor motor comprising: a current transformer L1, an inductor L2, a two-way thyristor T, a PTC element and a starting capacitor C1, one end of the primary coil of the current transformer L1, one end of the secondary coil, and one end of the inductor L2 are connected to one end of the alternating current power source, and the other end of the primary coil of the current transformer L1 is connected to the main winding of the motor.
  • Terminal M the other end of the secondary coil of the current transformer L1 is connected to the G pole of the triac T, the other end of the inductor L2 is connected to the T1 pole of the triac T, and the T2 pole of the triac T is connected
  • One end of the PTC element the other end of the PTC element is connected to one end of the starting capacitor C1, and the other end of the starting capacitor C1 is connected to the motor secondary winding terminal S, and the main and auxiliary windings of the motor are connected to the other end of the AC power source.
  • the motor starter further includes a first resistor R1, the One end of a resistor R1 is connected to the other end of the secondary coil of the current transformer L1, and the other end of the first resistor R1 is connected to the G pole of the triac T.
  • the motor starter further includes a second resistor R2, and the second resistor R2 is connected in parallel across the starting capacitor C1.
  • the motor starter further includes a second resistor R2, and the second resistor R2 is connected in parallel across the starting capacitor C1.
  • the PTC element is constructed of a PTC thermistor.
  • the PTC element is comprised of two PTC thermistors connected in parallel.
  • the PTC element is formed by a PTC thermistor in parallel with a discharge resistor.
  • the PTC element is constructed by connecting two PTC thermistors in parallel with one discharge resistor.
  • the invention samples the current signal in the motor circuit through the current transformer L1, and realizes the turning on or off of the secondary winding circuit of the motor by using the triac S according to the change of the current during the starting to normal operation of the motor, and the secondary winding circuit is broken.
  • the current after the opening is zero, which solves the problem that the secondary winding coil and the PTC thermistor maintain the power consumption due to the small current flowing after the normal starting of the motor in the prior art, can effectively reduce the consumption of the reactive power, and meet the energy saving and Environmental protection requirements;
  • the PTC element is used for current limiting and impact resistance, so that the secondary winding coil can withstand large current withstand, thereby improving the electrical stability of the starter.
  • the PTC component retains the original PTC thermal
  • Figure 1 is an electrical schematic diagram of a first embodiment of the present invention.
  • Figure 2 is an electrical schematic diagram of a second embodiment of the present invention.
  • Figure 3 is an electrical schematic diagram of a third embodiment of the present invention.
  • Figure 4 is an electrical schematic diagram of a fourth embodiment of the present invention.
  • a powerless starter for a commercial refrigeration compressor motor the compressor motor having a stator composed of at least one main winding and one secondary winding, the main winding end of the motor being set to M,
  • the motor secondary winding lead terminal is set to S, the motor main and auxiliary winding combined lead terminals are set to L; the external connecting ends of the external AC power supply AC corresponding to the compressor motor are respectively set to the A end and the B end, and the A end and the B end can be respectively exchange.
  • the motor starter comprises a current transformer L1, an inductor L2, a triac T, a PTC component and a starting capacitor C1, wherein the current transformer L1, the triac T, the inductor L2 and the starting capacitor C1 are both Conventional components.
  • the PTC component is a PTC thermistor, and may be composed of a PTC thermistor or two PTC thermistors connected in parallel; or a PTC thermistor connected in parallel with a discharge resistor or by two PTC thermistors
  • the varistor is formed in parallel with one of the discharge resistors.
  • the 1, 2, 3, and 4 ends of the current transformer L1 correspond to one end of the primary coil, the other end of the primary coil, one end of the secondary coil, and the other end of the secondary coil; T1, T2 of the triac T Extremely two main electrodes, G is extremely controllable.
  • the first end and the third end of the current transformer L1 and one end of the inductor L2 are commonly connected to the A end of the AC power source, and the second end of the current transformer L1 is connected to the main winding terminal M of the motor, and the four ends of the current transformer L1 are connected in both directions.
  • the G pole of the thyristor T, the other end of the inductor L2 is connected to the T1 pole of the triac T, the T2 pole of the triac T is connected to one end of the PTC element, and the other end of the PTC element is connected to the starting capacitor C1 At one end, the other end of the starting capacitor C1 is connected to the motor secondary winding terminal S, and the motor main and auxiliary windings are combined with the terminal L to be connected to the B terminal of the AC power source.
  • the motor is connected with a permanent running capacitor C2 between the main winding terminal M and the secondary winding terminal S.
  • the resistance of the PTC thermistor in the PTC component is its normal temperature resistance. Since the rotor of the motor has not been rotated at a high speed, a large starting current will be generated in the main winding circuit of the motor. Since the current transformer L1 is connected in series with the main winding circuit of the motor, a large secondary induced current corresponding to the starting current of the motor in the primary coil is generated in the secondary coil by selecting an appropriate current transformer. The parameter of L1 can cause the induced current to trigger the triac T to conduct the motor secondary winding loop.
  • the starting capacitor C1 and the inductor L2 By selecting the appropriate parameters of the starting capacitor C1 and the inductor L2, there is a certain phase difference between the current of the motor secondary winding loop and the main winding loop, and the motor forms a rotating magnetic field inside to start, and the rotor speed increases rapidly.
  • the operating current of the motor circuit drops to a value close to the normal working state, and finally the triac T is not triggered, so that the motor starter is completely disconnected. Since the motor is in normal operation at this time, the triac T can no longer be induced by the secondary coil of the current transformer L1.
  • the motor starter When the flow is triggered, the motor starter will remain in the off state until the motor stops rotating.
  • the motor starter only participates when the motor starts, and turns off after the motor enters the normal working state to turn off its function.
  • the current becomes zero, thereby eliminating the problem that the secondary winding coil and the PTC thermistor maintain the power consumption due to the small current flowing after the normal starting of the motor in the prior art, thereby effectively reducing the problem.
  • the consumption of useless power has been verified to be as low as milliwatts, which is what is known as a "zero-power" motor starter, which greatly improves energy efficiency.
  • the function of the PTC element is current limiting and impact resistance, so that the secondary winding coil can withstand large current resistance and stable electrical performance; here, the PTC component also retains the advantages of reliable starting and easy matching of the original PTC thermistor. This expands the versatility of the starter and increases the safety of the start of the motor.
  • a first resistor R1 is added to the motor starter described in Embodiment 1.
  • One end of the first resistor R1 is connected to the four ends of the current transformer L1, and the other end of the first resistor R1 is connected to the G pole of the triac T.
  • the first resistor R1 is a current limiting resistor.
  • a second resistor R2 is added to the motor starter of the second embodiment, and the second resistor R2 is connected in parallel across the starting capacitor C1.
  • the second resistor R2 is a discharge resistor for shunting the current flowing through the starting capacitor C1 and simultaneously acts as an anti-interference.
  • a second resistor R2 is added to the motor starter of the first embodiment, and the second resistor R2 is connected in parallel across the starting capacitor C1.
  • the second resistor R2 is a discharge resistor for shunting the current flowing through the starting capacitor C1 and simultaneously acts as an anti-interference.

Abstract

一种商用制冷压缩机电机用的无功耗起动器,包括电流互感器(L1)、双向可控硅(T)、电感(L2)、PTC元件以及起动电容(C1),电流互感器(L1)初级线圈的一端(1)、次级线圈的一端(3)以及电感(L2)共同连接交流电源的一端,电流互感器(L1)初级线圈的另一端(2)连接电机主绕组引出端(M),次级线圈的另一端(4)连接双向可控硅(T)的G极,电感(L2)的另一端连接双向可控硅(T)的T1极、双向可控硅(T)的T2极连接PTC元件的一端,PTC元件的另一端连接起动电容(C1)的一端,起动电容(C1)的另一端与副绕组引出端(S)连接。该起动器能提高电机运行效率。

Description

用于商用制冷压缩机电机的无功耗起动器 技术领域
本发明属于电机起动装置技术领域,具体涉及一种用于商用制冷压缩机电机的无功耗起动器,主要用于商用制冷压缩机电机的起动,亦可用于普通单相交流感应式或单相交流永磁式电机(以下,统称为单相交流电机)的起动。
背景技术
目前的制冷压缩机电机多数采用单相交流电机,单相交流电机通常由转子和定子构成,所述的定子具有主、副两组绕组,所述的主绕组又叫工作绕组,用于实现电机的起动和稳态运行;所述的副绕组又叫起动绕组,仅在起动阶段工作,用于辅助电机的起动。单相交流电机的起动方式有电阻起动和电容起动,电阻起动式电机的起动转矩虽略大于额定转矩,但仍然较小,因此也限制了其使用范围;电容起动式电机的起动转矩大,可达额定转矩的2.5~3倍,能带动满载起动的机械,目前的制冷压缩机主要采用电容起动式电机。由于压缩机电机在起动完成后不需要副绕组参与工作,并且起动完成后副绕组中的电流产生的功耗大部分为无效功耗,因此,理想状态是使副绕组回路在压缩机电机起动后断开,并使流经副绕组的电流尽可能地减小,以降低功率损耗,实现“零功耗”。对此,业内常用的解决方法是在压缩机的起动电路中串接电机起动器。电机起动器通常由正温度系数热敏电阻(以下简称为PTC热敏电阻)来实现。当电机起动时,PTC热敏电阻的阻值为其常温阻值,当副绕组回路接通电源参与工作时,电路中会产生较大的副绕组起动电流。在该电流的作用下,PTC热敏电阻迅速发热升温,其阻值迅速增大,最终使副绕组回路基本断开。在电机正常运行时,PTC热敏电阻中仍然需要一能维持其发热的较小电流,用于保持副绕组回路的断开状态。由该电流在PTC热敏电阻上产生的功耗约为3瓦,长此累积,该发热功耗会导致电能的大量浪费。对于如商用压缩机等较大功率压缩机(功率范围:50~400W)的起动,则主要依赖重锤式起动器,重锤式起动器是电流型器件,其吸合线圈与压缩机主绕组串联,因此需要与压缩机作严格的匹配。虽然重锤式起动器可靠性高,不易坏,且起动失败之后可在短时间(热机最好间隔20秒)内再次起动,但存在成本高、触点寿命有限、吸放时容易产生火花或电磁干扰等缺陷。另外,电压式起动器也常用于大功率压缩机的起动,然而同样的,电压式起动器由于采用了有触点的继电器,也存在触电寿命有限、吸放时容易产生火花或电磁干扰等缺陷。
在已公开的中国专利文献中不乏关于电机起动器的技术信息,中国发明专利申请公布号CN101814874A介绍了“一种互感式无触点起动器”,其通过电流互感器采样电机回路中的电流信号,结合双向可控硅和PTC热敏电阻,使电机起动电路仅在电机起动时参与工作,而在电机进入正常工作状态后断开以关闭其功能,实现所谓的“零功耗”。但该起动器只能适用于一般小型家用制冷压缩机,而无法应用于商用大功率制冷压缩机,因此通用性较差。又如中国发明专利申请公布号CN104104278A提及的“商用制冷压缩机电机用的互感式无触点电流起动器”,先通过电流互感器采样电机回路中的电流信号,在电机起动之初利用起动回路电流远远大于正常工作电流的特点触发双向可控硅,完成电机的起动,而在电机进入运行状态后利用工作电流大幅下降到接近正常工作状态电流的特点使双向可控硅无法被触发,以此实现副绕组回路的完全断开。该起动器主要用于商用制冷压缩机电机的起动,亦可用于普通单相交流电机的起动,适用范围广,但它在实际应用中仍被发现有缺陷:副绕组线圈无法承受较大的耐电流,从而影响了起动器的电性能稳定性。
鉴于上述已有技术,为了使电机起动器具有更高的电性能稳定性,本申请人对现有的商用压缩机电机起动器的结构作了有益的改进,下面将要介绍的技术方案便是在这种背景下产生的。
发明内容
本发明的任务在于提供一种起动可靠性高、电性能稳定、消耗功率少,且能承受大电流的用于商用制冷压缩机电机的无功耗起动器。
为了完成所述的任务,本发明提供的技术方案是:一种用于商用制冷压缩机电机的无功耗起动器,其特征在于:包括电流互感器L1、电感L2、双向可控硅T、PTC元件以及起动电容C1,所述的电流互感器L1初级线圈的一端、次级线圈的一端以及电感L2的一端共同连接交流电源的一端,电流互感器L1初级线圈的另一端连接电机主绕组引出端M,电流互感器L1次级线圈的另一端连接双向可控硅T的G极,电感L2的另一端连接双向可控硅T的T1极,双向可控硅T的T2极连接所述的PTC元件的一端,PTC元件的另一端连接起动电容C1的一端,起动电容C1的另一端与电机副绕组引出端S连接,电机主、副绕组合并引出端L连接交流电源的另一端。
在本发明的一个具体的实施例中,所述的电机起动器还包括第一电阻R1,所述的第 一电阻R1的一端与所述的电流互感器L1次级线圈的另一端连接,第一电阻R1的另一端连接所述的双向可控硅T的G极。
在本发明的另一个具体的实施例中,所述的电机起动器还包括第二电阻R2,所述的第二电阻R2并联在所述的起动电容C1的两端。
在本发明的又一个具体的实施例中,所述的电机起动器还包括第二电阻R2,所述的第二电阻R2并联在所述的起动电容C1的两端。
在本发明的再一个具体的实施例中,所述的PTC元件由一个PTC热敏电阻构成。
在本发明的还有一个具体的实施例中,所述的PTC元件由并联连接的两个PTC热敏电阻构成。
在本发明的更而一个具体的实施例中,所述的PTC元件由一个PTC热敏电阻与一个放电电阻并联构成。
在本发明的进而一个具体的实施例中,所述的PTC元件由两个PTC热敏电阻与一个放电电阻三者并联构成。
本发明通过电流互感器L1采样电机回路中的电流信号,根据电机从起动至正常运行过程中电流的变化,利用双向可控硅T实现电机副绕组回路的接通或断开,副绕组回路断开后的电流为零,解决了现有技术中电机正常起动后副绕组线圈和PTC热敏电阻因仍有小电流通行而产生维持功耗的问题,能有效减少无效功率的消耗,满足节能和环保要求;所述的PTC元件用于限流和抗冲击,使副绕组线圈能够承受较大的耐电流,从而提高了起动器的电性能稳定性,此外,PTC元件还保留有原PTC热敏电阻起动可靠、匹配容易的优点,扩大了电机起动器的通用性,提高了电机起动的安全性。
附图说明
图1为本发明的第一实施例的电原理图。
图2为本发明的第二实施例的电原理图。
图3为本发明的第三实施例的电原理图。
图4为本发明的第四实施例的电原理图。
具体实施方式
为了使公众能充分了解本发明的技术实质和有益效果,申请人将在下面结合附图对本发明的具体实施方式详细描述,但申请人对实施例的描述不是对技术方案的限制,任 何依据本发明构思作形式而非实质的变化都应当视为本发明的保护范围。
实施例1:
请参阅图1,一种用于商用制冷压缩机电机的无功耗起动器,所述的压缩机电机具有由至少一个主绕组和一个副绕组构成的定子,电机主绕组引出端设为M,电机副绕组引出端设为S,电机主、副绕组合并引出端设为L;压缩机电机对应的外部交流电源AC的两对外连接端分别设为A端和B端,A端和B端可以互换。所述的电机起动器包括电流互感器L1、电感L2、双向可控硅T、PTC元件以及起动电容C1,所述的电流互感器L1、双向可控硅T、电感L2以及起动电容C1均为常规元件。所述的PTC元件为PTC热敏电阻,具体可以由一个PTC热敏电阻或并联连接的两个PTC热敏电阻构成;也可以由一个PTC热敏电阻与一个放电电阻并联或由两个PTC热敏电阻与一个放电电阻三者并联构成。图中电流互感器L1的1、2、3、4端分别对应初级线圈的一端、初级线圈的另一端、次级线圈的一端以及次级线圈的另一端;双向可控硅T的T1、T2极为两主电极,G极为控制极。所述的电流互感器L1的1端、3端以及电感L2的一端共同连接交流电源的A端,电流互感器L1的2端连接电机主绕组引出端M,电流互感器L1的4端连接双向可控硅T的G极,电感L2的另一端连接双向可控硅T的T1极,双向可控硅T的T2极连接所述的PTC元件的一端,PTC元件的另一端连接起动电容C1的一端,起动电容C1的另一端与电机副绕组引出端S连接,电机主、副绕组合并引出端L连接交流电源的B端。电机在主绕组引出端M和副绕组引出端S之间连接有永久运行电容器C2。
请继续参阅图1,对本实施例的工作原理进行说明。在电机开始起动之初,PTC元件中PTC热敏电阻的阻值为其常温阻值,由于电机转子尚未高速转动,电机主绕组回路中会产生一较大的起动电流。电流互感器L1由于初级线圈串接在电机的主绕组回路中,因此会在次级线圈中产生一对应于初级线圈中电机起动电流的较大的次级感应电流,通过选择适当的电流互感器L1的参数,可以使该感应电流触发双向可控硅T导通以接通电机副绕组回路。通过选择适当的起动电容C1与电感L2的参数,可以使电机副绕组回路与主绕组回路的电流存在一定的相位差,电机在内部形成旋转磁场开始起动,转子转速随之迅速上升。在电机进入运行状态后,电机回路的工作电流大幅下降到接近正常工作状态电流,最终无法触发双向可控硅T导通,从而使电机起动器被完全断开。由于此时电机已处于正常运行状态,因此双向可控硅T已不能被电流互感器L1次级线圈中的感应电 流触发,电机起动器将一直保持截止状态,直至电机停止转动,这样就达到了电机起动器仅在电机起动时参与工作,而在电机进入正常工作状态后断开以关闭其功能的目的。电机副绕组回路在断开后电流变为零,由此能消除现有技术中电机正常起动后副绕组线圈和PTC热敏电阻因仍有小电流通行而产生维持功耗的问题,从而有效减少了无用功率的消耗,经验证,该功耗通常都能低达毫瓦级,即实现了通常所说的“零功耗”电机起动器,极大地提高了节能效率。所述的PTC元件的作用是限流和抗冲击,使副绕组线圈能承受较大的耐电流,电性能稳定;此处,PTC元件还保留了原PTC热敏电阻起动可靠、匹配容易的优点,从而扩大了起动器的通用性,提高了电机起动的安全性。
实施例2:
请参阅图2,在实施例1所述的电机起动器中增设一个第一电阻R1。所述的第一电阻R1的一端与所述的电流互感器L1的4端连接,第一电阻R1的另一端连接所述的双向可控硅T的G极。通过选择适当的电流互感器L1和第一电阻R1的参数,可以使电流互感器L1次级线圈中的感应电流足以触发双向可控硅T。所述的第一电阻R1为限流电阻。
实施例3:
请参阅图3,在实施例2所述的电机起动器中增设一个第二电阻R2,所述的第二电阻R2并联在所述的起动电容C1的两端。第二电阻R2为放电电阻,用于分流起动电容C1中流过的电流,同时起抗干扰的作用。
实施例4:
请参阅图4,在实施例1所述的电机起动器中增设一个第二电阻R2,所述的第二电阻R2并联在所述的起动电容C1的两端。第二电阻R2为放电电阻,用于分流起动电容C1中流过的电流,同时起抗干扰的作用。

Claims (8)

  1. 一种用于商用制冷压缩机电机的无功耗起动器,其特征在于:包括电流互感器L1、电感L2、双向可控硅T、PTC元件以及起动电容C1,所述的电流互感器L1初级线圈的一端、次级线圈的一端以及电感L2的一端共同连接交流电源的一端,电流互感器L1初级线圈的另一端连接电机主绕组引出端M,电流互感器L1次级线圈的另一端连接双向可控硅T的G极,电感L2的另一端连接双向可控硅T的T1极,双向可控硅T的T2极连接所述的PTC元件的一端,PTC元件的另一端连接起动电容C1的一端,起动电容C1的另一端与电机副绕组引出端S连接,电机主、副绕组合并引出端L连接交流电源的另一端。
  2. 根据权利要求1所述的用于商用制冷压缩机电机的无功耗起动器,其特征在于所述的电机起动器还包括第一电阻R1,所述的第一电阻R1的一端与所述的电流互感器L1次级线圈的另一端连接,第一电阻R1的另一端连接所述的双向可控硅T的G极。
  3. 根据权利要求2所述的用于商用制冷压缩机电机的无功耗起动器,其特征在于所述的电机起动器还包括第二电阻R2,所述的第二电阻R2并联在所述的起动电容C1的两端。
  4. 根据权利要求1所述的用于商用制冷压缩机电机的无功耗起动器,其特征在于所述的电机起动器还包括第二电阻R2,所述的第二电阻R2并联在所述的起动电容C1的两端。
  5. 根据权利要求1~4中任一项所述的用于商用制冷压缩机电机的无功耗起动器,其特征在于所述的PTC元件由一PTC热敏电阻构成。
  6. 根据权利要求1~4中任一项所述的用于商用制冷压缩机电机的无功耗起动器,其特征在于所述的PTC元件由并联连接的两个PTC热敏电阻构成。
  7. 根据权利要求1~4中任一项所述的用于商用制冷压缩机电机的无功耗起动器,其特征在于所述的PTC元件由一个PTC热敏电阻与一个放电电阻并联构成。
  8. 根据权利要求1~4中任一项所述的用于商用制冷压缩机电机的无功耗起动器,其特征在于所述的PTC元件由两个PTC热敏电阻与一个放电电阻三者并联构成。
PCT/CN2015/082599 2015-01-27 2015-06-29 用于商用制冷压缩机电机的无功耗起动器 WO2016119393A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510038999.3A CN104638986A (zh) 2015-01-27 2015-01-27 用于商用制冷压缩机电机的无功耗起动器
CN201510038999.3 2015-01-27

Publications (1)

Publication Number Publication Date
WO2016119393A1 true WO2016119393A1 (zh) 2016-08-04

Family

ID=53217391

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/082599 WO2016119393A1 (zh) 2015-01-27 2015-06-29 用于商用制冷压缩机电机的无功耗起动器

Country Status (2)

Country Link
CN (1) CN104638986A (zh)
WO (1) WO2016119393A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104638986A (zh) * 2015-01-27 2015-05-20 常熟市天银机电股份有限公司 用于商用制冷压缩机电机的无功耗起动器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201563089U (zh) * 2009-11-19 2010-08-25 杭州泛博电器有限公司 小型全封闭制冷压缩机用无功耗起动器
CN101847958A (zh) * 2010-04-23 2010-09-29 常熟市天银机电有限公司 一种用于单相交流电机的互感式无触点起动器
CN104113235A (zh) * 2014-07-11 2014-10-22 常熟市天银机电股份有限公司 商用制冷压缩机电机互感式无触点电流起动器
CN204349842U (zh) * 2015-01-27 2015-05-20 常熟市天银机电股份有限公司 用于商用制冷压缩机电机的无功耗起动器
CN104638986A (zh) * 2015-01-27 2015-05-20 常熟市天银机电股份有限公司 用于商用制冷压缩机电机的无功耗起动器

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201541222U (zh) * 2009-08-11 2010-08-04 贵州凯里经济开发区中昊电子有限公司 节能型电机启动器
CN201656866U (zh) * 2010-04-23 2010-11-24 常熟市天银机电有限公司 互感式无触点起动器
CN202150820U (zh) * 2011-05-23 2012-02-22 刘惠玲 节能ptc起动器
CN203984280U (zh) * 2014-07-11 2014-12-03 常熟市天银机电股份有限公司 商用制冷压缩机电机用互感式无触点电流起动器

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201563089U (zh) * 2009-11-19 2010-08-25 杭州泛博电器有限公司 小型全封闭制冷压缩机用无功耗起动器
CN101847958A (zh) * 2010-04-23 2010-09-29 常熟市天银机电有限公司 一种用于单相交流电机的互感式无触点起动器
CN104113235A (zh) * 2014-07-11 2014-10-22 常熟市天银机电股份有限公司 商用制冷压缩机电机互感式无触点电流起动器
CN204349842U (zh) * 2015-01-27 2015-05-20 常熟市天银机电股份有限公司 用于商用制冷压缩机电机的无功耗起动器
CN104638986A (zh) * 2015-01-27 2015-05-20 常熟市天银机电股份有限公司 用于商用制冷压缩机电机的无功耗起动器

Also Published As

Publication number Publication date
CN104638986A (zh) 2015-05-20

Similar Documents

Publication Publication Date Title
WO2016119390A1 (zh) 无功耗商用制冷压缩机电机起动器
JP4612056B2 (ja) 相互誘導性非接触スタータ
JP4757877B2 (ja) 相互誘導性非接触スタータ
US8598820B2 (en) Surge current protection circuit and motor using the same
CN100490298C (zh) 无触点节能起动器
WO2012113048A2 (pt) Winding switching circuit and thermal protection for dual voltage hermetic induction motor of hermetic cooling comprsesor
KR101605563B1 (ko) 저 전력 전기 모터 스타터
WO2016004784A1 (zh) 商用制冷压缩机电机用的互感式无触点电流起动器
WO2016004782A1 (zh) 商用制冷压缩机电机互感式无触点电流起动器
WO2016119393A1 (zh) 用于商用制冷压缩机电机的无功耗起动器
WO2016119391A1 (zh) 商用制冷压缩机电机无功耗起动器
WO2016119392A1 (zh) 商用制冷压缩机电机用的无功耗起动器
CN202524344U (zh) 冰箱压缩机用无功耗起动器
CN204349841U (zh) 商用制冷压缩机电机无功耗起动器
WO2016004783A1 (zh) 商用制冷压缩机电机用互感式无触点电流起动器
CN204349844U (zh) 无功耗商用制冷压缩机电机起动器
CN204349843U (zh) 商用制冷压缩机电机用的无功耗起动器
CN204349842U (zh) 用于商用制冷压缩机电机的无功耗起动器
WO2016004785A1 (zh) 商用制冷压缩机电机用新型互感式无触点电流起动器
WO2016004788A1 (zh) 一种商用制冷压缩机电机用的互感式无触点电流起动器
WO2016004787A1 (zh) 一种商用制冷压缩机电机用互感式无触点电流起动器
WO2016004786A1 (zh) 一种商用制冷压缩机电机互感式无触点电流起动器
WO2016004789A1 (zh) 一种商用制冷压缩机电机用新型互感式无触点电流起动器
CN105337533A (zh) 一种无功耗起动冰箱压缩机的方法
CN215956295U (zh) 适用于具有较大工作电流的制冷压缩机的无触点起动器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879596

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15879596

Country of ref document: EP

Kind code of ref document: A1