WO2016119096A1 - 一种无铅焊接材料及其助焊剂的制备方法 - Google Patents

一种无铅焊接材料及其助焊剂的制备方法 Download PDF

Info

Publication number
WO2016119096A1
WO2016119096A1 PCT/CN2015/000867 CN2015000867W WO2016119096A1 WO 2016119096 A1 WO2016119096 A1 WO 2016119096A1 CN 2015000867 W CN2015000867 W CN 2015000867W WO 2016119096 A1 WO2016119096 A1 WO 2016119096A1
Authority
WO
WIPO (PCT)
Prior art keywords
flux
lead
mass percentage
host material
zinc
Prior art date
Application number
PCT/CN2015/000867
Other languages
English (en)
French (fr)
Inventor
陆海荣
孙飞
赵勇
Original Assignee
苏州天兼新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州天兼新材料科技有限公司 filed Critical 苏州天兼新材料科技有限公司
Publication of WO2016119096A1 publication Critical patent/WO2016119096A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3612Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with organic compounds as principal constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/362Selection of compositions of fluxes

Definitions

  • the invention belongs to the technical field of non-ferrous metal processing, and in particular relates to a tin-based alloy lead-free soldering material containing tin and zinc and a preparation method thereof.
  • the main lead-free material that can replace lead alloy materials is tin-silver-copper alloy.
  • the application of tin-silver-copper alloy materials is more difficult than not requiring the reflow oven to be 25°C higher than the original lead alloy, and its cost is 20% higher than that of tin-lead alloy. More importantly, this temperature increase will greatly reduce exposure.
  • the stability of the components The melting point of the tin-zinc alloy eutectic alloy is the closest to the melting point of the SnPb eutectic (183), and can be brazed without changing the existing welding equipment and processes, so the Sn-Zn lead-free solder is affected. People value it.
  • the Israeli lead-free soldering material research and development company has innovated the application of microalloying technology to achieve the goal by adding a third element of manganese.
  • the addition of manganese can increase the antioxidant capacity of zinc, but the addition of manganese must seek a new chemical aid to ensure its good performance.
  • the object of the present invention is to provide a novel lead-free solder material which is effective in suppressing oxidation of zinc while maintaining its eutectic temperature in view of the above-mentioned deficiencies of the prior art.
  • a new type of lead-free solder material including host materials and fluxes, of which:
  • the mass percentage composition of the host material is 8-12% zinc, 0.5-2% manganese, and the balance tin;
  • Flux includes organic components and powdered host materials treated by gas atomization techniques, The mass percentage composition is 2% organic component and 98% metal powder.
  • the body portion further includes bismuth in an amount of 0.05 to 0.8% by mass and copper in an amount of 0.05 to 0.5% by mass.
  • the mass percentage composition of the host material is 10% zinc, 1.5% manganese, 0.4% bismuth, 0.25% copper, and the balance tin; the mass percentage composition of the flux is 2% organic component and 98%
  • the bulk material of the powdered material, the mass ratio of the host material and the flux is 80%: 20%.
  • the organic component is rosin.
  • the gas atomization technique employs an inert gas having a gas pressure of 1.9 to 2.2 MPa and a gas injection angle of 40 to 45 degrees.
  • the powdered material has a particle size of 100 ⁇ m or less.
  • the invention further provides a method for preparing the above flux, comprising the following steps:
  • the metal powder and the organic component are uniformly mixed in a ratio to obtain a flux.
  • the mixing in the step 1) and the step 4) is carried out at normal temperature.
  • the invention has the beneficial effects that the raw material used in the invention has low cost, low equipment requirement and low production cost, and the lead-free soldering material produced by the solution of the invention solves the production process of the tin-zinc-manganese lead-free alloy material.
  • the lead-free soldering material produced by the solution of the invention solves the production process of the tin-zinc-manganese lead-free alloy material.
  • There are technical bottlenecks such as grain size, segment size, shape, oxidation level and uniformity, thus solving the performance index problems of electronic industry products.
  • a novel lead-free solder material comprising a host material and a flux, wherein: the mass percentage of the host material is 8% zinc, 0.5% manganese, and 91.5% tin; the flux includes organic components and gas atomization technology
  • the treated powdered host material has a mass percentage of 2% organic component and 98% metal powder; the mass percentage of the host material and the flux is 80%: 20%.
  • the method for preparing the flux of Embodiment 1 includes the following steps:
  • the above metal alloy is placed in a gas atomizing device for atomization, and the metal is powdered, wherein the gas pressure is 1.9 MPa and the angle is 40 degrees;
  • a novel lead-free solder material comprising a host material and a flux, wherein: the mass percentage of the host material is 10% zinc, 1.5% manganese, 0.4% germanium, 0.25% copper, and 87.85% tin;
  • the flux includes an organic component and a powdered host material treated by a gas atomization technique, and the mass percentage thereof constitutes 2% of an organic component and 98% of a metal powder, and the organic component is an ethanol solution containing a rosin having a mass fraction of 30%, and Ethylenediamine with a mass fraction of 5% was added; the mass percentage of the host material and the flux was 80%: 20%.
  • the method for preparing the flux of Embodiment 2 includes the following steps:
  • the above metal alloy is placed in a gas atomizing device for atomization, and the metal is powdered, wherein the gas pressure is 2.1 MPa and the angle is 42 degrees;
  • Copper can form Cu-Zn compound with free zinc atoms in the zinc-rich phase of the brazing filler metal.
  • Cu-Zn compound When melting, due to the lower melting temperature, a large amount of Cu-Zn compound exists in the alloy, which reduces the oxidation of zinc atoms on the surface of the welding material.
  • Rosin flux has obvious corrosiveness to tin-zinc alloy, and the addition of ethylenediamine can significantly reduce the corrosion rate of the alloy.
  • helps the brazing alloy to spread on the masterbatch, increasing the melting range of the alloy, and at the same time helping to form a dense oxide film on the surface of the brazing alloy to block the secondary oxidation and burning of the brazing filler metal.
  • a novel lead-free solder material comprising a host material and a flux, wherein: the mass percentage of the host material is 12% zinc, 2% manganese, 0.8% germanium, 0.5% copper, and 84.7% tin;
  • the flux includes an organic component and a powdered host material treated by a gas atomization technique, the mass percentage of which constitutes 2% of the organic component and 98% of the metal powder; the mass percentage of the host material and the flux is 80%: 20%.
  • the method for preparing the flux of Embodiment 3 includes the following steps:
  • the above metal alloy is placed in a gas atomizing device for atomization, and the metal is powdered, wherein the gas pressure is 2.2 MPa and the angle is 45 degrees;

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种无铅焊接材料及其助焊剂的制备方法,该无铅焊接材料包括主体材料和助焊剂,主体材料的质量百分比组成为8-12%的锌、0.5-2%的锰以及余量的锡;助焊剂包括有机成分和经气体雾化技术处理的粉末化的主体材料,其质量百分比组成为2%的有机成分和98%的金属粉末;主体材料和助焊剂的质量百分比为80%:20%。该无铅焊接材料所采用的原材料成本低廉,对设备要求低,能够降低生产成本,利用该无铅焊接材料解决了锡锌锰无铅合金材料生产过程中存在的晶粒度大小、分部大小、形状、氧化水平及均匀性等技术瓶颈,从而解决电子工业类产品的性能指标问题。

Description

一种新型无铅焊接材料及其助焊剂的制备方法 技术领域
本发明属于有色金属加工技术领域,具体涉及一种含锡和锌的锡基合金无铅焊接材料及其助焊剂的制备方法。
背景技术
随着ROHS在电子工业中的禁铅指令的正式实施,能替代铅合金材料的主要无铅材料就是锡银铜合金。但是,锡银铜合金材料的应用难点不仅仅是要求回焊炉温度比原来铅合金高25℃,而且其成本也比锡铅合金高20%,更重要的是这个温度的提高会大大降低暴露元器件的稳定性。锡锌合金共晶合金的熔点与SnPb共晶的熔点(183)最为接近,并可以在基本不改变现有的焊接设备和工艺的情况下进行钎焊,所以Sn-Zn系无铅焊料受到了人们重视。然而由于锌的活泼性大,易发生氧化,因此锌的氧化阻碍了这种合金的应用,以色列无铅焊接材料研发公司创新应用了微合金化技术,通过添加第三种元素锰来达到目的,通过加入锰能够提高锌的抗氧化能力,但锰的加入必须要寻求一种全新的化学辅助来保证其良好性能。
发明内容
本发明的目的是针对上述现有技术的不足,提供新型无铅焊接材料,该焊接材料在保持其共晶温度的前提下可以有效抑制锌的氧化。
为实现上述目的,本发明所采取的技术方案如下:
一种新型无铅焊接材料,包括主体材料和助焊剂,其中:
主体材料的质量百分比组成为8-12%的锌、0.5-2%的锰以及余量的锡;
助焊剂包括有机成分和经气体雾化技术处理的粉末化的主体材料,其 质量百分比组成为2%的有机成分和98%的金属粉末。
进一步地,主体部分还包括质量百分比为0.05-0.8%的锑以及质量百分比为0.05-0.5%的铜。
进一步地,主体材料的质量百分比组成为10%的锌、1.5%的锰、0.4%的锑、0.25%的铜以及余量的锡;助焊剂的质量百分比组成为2%的有机成分和98%的粉末化处理的主体材料,主体材料和助焊剂质量比为80%:20%。
进一步地,所述有机成分为松香。
进一步地,所述气体雾化技术采用惰性气体,所述气体压力为1.9-2.2MPa,气体喷射角度为40-45度。
进一步地,所述粉末化材料的粒度为100μm以下。
本发明进一步提供了一种上述助焊剂的制备方法,包括以下步骤:
1)按照配比配制与主体材料成分及配比相同的金属材料混合物;
2)将金属合金置于气体雾化设备中采用气体压力为1.9-2.2MPa,角度为40-45度的条件下进行雾化;
3)将粉末化的金属材料在50-70℃的情况下通过超声分散,以制得金属粉末;
4)将金属粉末与有机成分按配比混合均匀,制得助焊剂。
进一步地,步骤1)和步骤4)中的混合均在常温下进行。
本发明的有益效果是:本发明所采用的原材料成本低廉,对设备要求低,能够降低生产成本,利用本发明的方案所生产的无铅焊接材料解决了锡锌锰无铅合金材料生产过程中存在的晶粒度大小、分部大小、形状、氧化水平及均匀性等技术瓶颈,从而解决电子工业类产品的性能指标问题。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,下面结合实施例对本发明作进一步详细说明。应当理解,此处所描述的具体实施例仅用 以解释本发明,并不用于限定本发明。
(1)实施例1
一种新型无铅焊接材料,包括主体材料和助焊剂,其中:主体材料的质量百分比组成为8%的锌、0.5%的锰以及91.5%的锡;助焊剂包括有机成分和经气体雾化技术处理的粉末化的主体材料,其质量百分比组成2%的有机成分和98%的金属粉末;主体材料和助焊剂的质量百分比为80%:20%。
实施例1的助焊剂的制备方法,包括如下步骤:
1)将质量百分比组成为8%的锌、0.5%的锰以及91.5%的锡制成合金;
2)将上述金属合金置于气体雾化设备中进行雾化,将金属粉末化,其中气体压力为1.9MPa,角度为40度;
3)将粉末化的金属在50℃超声分散,制得金属粉末;
4)将金属粉末与松香按质量比为2%:98%的比例混合,制得本发明的助焊剂。
(2)实施例2
一种新型无铅焊接材料,包括主体材料和助焊剂,其中:主体材料的质量百分比组成为10%的锌、1.5%的锰、0.4%的锑、0.25%的铜以及87.85%的锡;助焊剂包括有机成分和经气体雾化技术处理的粉末化的主体材料,其质量百分比组成2%的有机成分和98%的金属粉末,有机成分为含有质量分数为30%的松香的乙醇溶液,并加入质量分数为5%的乙二胺;主体材料和助焊剂的质量百分比为80%:20%。
实施例2的助焊剂的制备方法,包括如下步骤:
1)将质量百分比组成为10%的锌、1.5%的锰、0.4%的锑、0.25%的铜以及87.85%的锡制成合金;
2)将上述金属合金置于气体雾化设备中进行雾化,将金属粉末化,其中气体压力为2.1MPa,角度为42度;
3)将粉末化的金属在60℃超声分散,制得金属粉末;
4)将金属粉末与松香按质量比为2%:98%的比例混合,制得本发明的助焊剂。
铜可以与钎料中富锌相中游离态的锌原子生成Cu-Zn化合物,在熔化时,由于熔化温度较低,合金中大量存在Cu-Zn化合物,减少了锌原子在焊接材料表面的氧化。
松香助焊剂对锡锌合金具有明显的腐蚀性,添加乙二胺可以显著降低合金的腐蚀速率。
锑有助于钎料合金在母料上铺展,增加了合金的熔程,同时锑还有助于在钎料合金表面形成致密的氧化膜阻挡钎料的二次氧化及烧损。
(3)实施例3
一种新型无铅焊接材料,包括主体材料和助焊剂,其中:主体材料的质量百分比组成为12%的锌、2%的锰、0.8%的锑、0.5%的铜以及84.7%的锡;助焊剂包括有机成分和经气体雾化技术处理的粉末化的主体材料,其质量百分比组成2%的有机成分和98%的金属粉末;主体材料和助焊剂的质量百分比为80%:20%。
实施例3的助焊剂的制备方法,包括如下步骤:
1)将质量百分比组成为12%的锌、2%的锰、0.8%的锑、0.5%的铜以及84.7%的锡制成合金;
2)将上述金属合金置于气体雾化设备中进行雾化,将金属粉末化,其中气体压力为2.2MPa,角度为45度;
3)将粉末化的金属在70℃超声分散,制得金属粉末;
4)将金属粉末与松香按质量比为2%:98%的比例混合,制得本发明的助焊剂。
本发明提供的新型无铅焊接材料以及传统焊接材料的性能如表1所示。
表1新型无铅焊接材料与传统焊接材料的性能对比
Figure PCTCN2015000867-appb-000001
以上所述仅为本发明的较佳实施例,并非用来限定本发明的实施范围;如果不脱离本发明的精神和范围,对本发明进行修改或者等同替换,均应涵盖在本发明权利要求的保护范围当中。

Claims (8)

  1. 一种新型无铅焊接材料,其特征在于,包括主体材料和助焊剂,其中:
    主体材料的质量百分比组成为8-12%的锌、0.5-2%的锰以及余量的锡;
    助焊剂包括有机成分和经气体雾化技术处理的粉末化的主体材料,其质量百分比组成为2%的有机成分和98%的金属粉末;
    主体材料和助焊剂的质量百分比为80%:20%。
  2. 根据权利要求1所述的新型无铅焊接材料,其特征在于,主体材料还包括质量百分比为0.05-0.8%的锑以及质量百分比为0.05-0.5%的铜。
  3. 根据权利要求1所述的新型无铅焊接材料,其特征在于,主体材料的质量百分比组成为10%的锌、1.5%的锰、0.4%的锑、0.25%的铜以及余量的锡;助焊剂的质量百分比组成为2%的有机成分和98%的粉末化处理的主体材料,主体材料和助焊剂质量比为80%:20%。
  4. 根据权利要求1所述的新型无铅焊接材料,其特征在于,所述有机成分为松香。
  5. 根据权利要求1所述的新型无铅焊接材料,其特征在于,所述气体雾化技术采用惰性气体,气体压力为1.9-2.2MPa,气体喷射角度为40-45度。
  6. 根据权利要求5所述的新型无铅焊接材料,其特征在于,所述粉末化材料的粒度为100μm以下。
  7. 一种权利要求1-6中任一项所述的助焊剂的制备方法,其特征在于,包括以下步骤:
    1)按照配比配制与主体材料成分及配比相同的金属合金;
    2)将金属合金置于气体雾化设备中采用气体压力为1.9-2.2MPa,角度为40-45度的条件下进行雾化;
    3)将粉末化的金属材料在50-70℃的情况下通过超声分散,以制得金属粉末;
    4)将金属粉末与有机成分按配比混合均匀,制得助焊剂。
  8. 根据权利要求7中所述的助焊剂的制备方法,其特征在于,步骤1)和步骤4)中的混合均在常温下进行。
PCT/CN2015/000867 2015-01-29 2015-12-04 一种无铅焊接材料及其助焊剂的制备方法 WO2016119096A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510046766.8 2015-01-29
CN201510046766.8A CN104668810B (zh) 2015-01-29 2015-01-29 一种新型无铅焊接材料及其助焊剂的制备方法

Publications (1)

Publication Number Publication Date
WO2016119096A1 true WO2016119096A1 (zh) 2016-08-04

Family

ID=53304674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/000867 WO2016119096A1 (zh) 2015-01-29 2015-12-04 一种无铅焊接材料及其助焊剂的制备方法

Country Status (2)

Country Link
CN (1) CN104668810B (zh)
WO (1) WO2016119096A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113199170A (zh) * 2021-04-25 2021-08-03 江苏海宝电池科技有限公司 一种凝胶型蓄电池助焊剂及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104668810B (zh) * 2015-01-29 2016-09-07 苏州天兼新材料科技有限公司 一种新型无铅焊接材料及其助焊剂的制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1400081A (zh) * 2001-06-28 2003-03-05 千住金属工业株式会社 无铅焊料合金
US20040208779A1 (en) * 2001-07-05 2004-10-21 Ika Consulting Ltd. Lead-free alloy
JP2011156558A (ja) * 2010-01-30 2011-08-18 Nihon Superior Co Ltd 鉛フリーはんだ合金
CN102787256A (zh) * 2012-08-28 2012-11-21 苏州金仓合金新材料有限公司 一种用于焊接的环保锡锌锰合金棒及其制备方法
CN102892549A (zh) * 2010-05-03 2013-01-23 铟泰公司 混合合金焊料膏
WO2014142153A1 (ja) * 2013-03-13 2014-09-18 株式会社日本スペリア社 はんだ接合物及びはんだ接合方法
CN104668810A (zh) * 2015-01-29 2015-06-03 苏州天兼新材料科技有限公司 一种新型无铅焊接材料及其助焊剂的制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0855242B1 (en) * 1995-09-29 2004-07-07 Matsushita Electric Industrial Co., Ltd. Lead-free solder
CN1161205C (zh) * 2001-09-05 2004-08-11 北京工业大学 含稀土抗腐蚀的锡锌无铅钎料及其制备方法
CN100491053C (zh) * 2003-04-01 2009-05-27 千住金属工业株式会社 焊膏以及印刷电路板
CN1651180A (zh) * 2005-02-03 2005-08-10 复旦大学 含微量掺杂金属的Sn-Zn或Sn-Ag-Bi系列无铅焊料及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1400081A (zh) * 2001-06-28 2003-03-05 千住金属工业株式会社 无铅焊料合金
US20040208779A1 (en) * 2001-07-05 2004-10-21 Ika Consulting Ltd. Lead-free alloy
JP2011156558A (ja) * 2010-01-30 2011-08-18 Nihon Superior Co Ltd 鉛フリーはんだ合金
CN102892549A (zh) * 2010-05-03 2013-01-23 铟泰公司 混合合金焊料膏
CN102787256A (zh) * 2012-08-28 2012-11-21 苏州金仓合金新材料有限公司 一种用于焊接的环保锡锌锰合金棒及其制备方法
WO2014142153A1 (ja) * 2013-03-13 2014-09-18 株式会社日本スペリア社 はんだ接合物及びはんだ接合方法
CN104668810A (zh) * 2015-01-29 2015-06-03 苏州天兼新材料科技有限公司 一种新型无铅焊接材料及其助焊剂的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113199170A (zh) * 2021-04-25 2021-08-03 江苏海宝电池科技有限公司 一种凝胶型蓄电池助焊剂及其制备方法

Also Published As

Publication number Publication date
CN104668810B (zh) 2016-09-07
CN104668810A (zh) 2015-06-03

Similar Documents

Publication Publication Date Title
JP7183313B2 (ja) 半田合金及び半田粉
TWI655989B (zh) Solder alloy, solder paste and electronic circuit substrate
JP5238088B1 (ja) はんだ合金、ソルダペーストおよび電子回路基板
TWI558491B (zh) Solder alloy, solder paste and electronic circuit substrate
JP5324007B1 (ja) はんだ合金、ソルダペーストおよび電子回路基板
JP5962938B2 (ja) ソルダペースト
TW201711785A (zh) 焊錫合金、焊料糊及電子電路基板
JP6828880B2 (ja) はんだペースト、はんだ合金粉
JPWO2018025903A1 (ja) はんだペースト用フラックス、及び、はんだペースト
CN101927410B (zh) Sn-Ag-Zn-Bi-Cr无铅焊料
WO2016119096A1 (zh) 一种无铅焊接材料及其助焊剂的制备方法
CN102642097A (zh) 一种低银无铅钎料合金
CN104439754A (zh) 环保无污染铝材钎焊丝及其制备工艺
CN103433647A (zh) 一种水溶性助焊剂及其制备方法
JP5654716B1 (ja) はんだ合金、ソルダペーストおよび電子回路基板
JP5966449B2 (ja) バンプ用はんだ合金粉末、バンプ用はんだペースト及びはんだバンプ
CN101920406B (zh) Sn-Ag-Zn-Cr共晶无铅焊料
CN104827198A (zh) 一种焊锡膏
CN104384746A (zh) 一种低熔点无铅焊锡颗粒及其制备方法
JP2007181851A (ja) クリームはんだ、及びそれを使用したはんだ付け方法
CN102825396B (zh) 含Pr、Ga、Te的Sn-Zn无铅钎料
WO2020241316A1 (ja) はんだ合金、はんだ粉末、ソルダペースト、はんだボール、およびソルダプリフォーム
JP2016087606A (ja) Au−Sn合金はんだペースト、Au−Sn合金はんだペーストの製造方法、Au−Sn合金はんだ層の製造方法、及びAu−Sn合金はんだ層
JP2013248664A (ja) 鉛フリーはんだ合金およびはんだペースト
JP2017209734A (ja) はんだ用フラックス及びはんだ組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15879308

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15879308

Country of ref document: EP

Kind code of ref document: A1