WO2016118473A1 - Lens system for high quality visible image acquisition and infra-red iris image acquisition - Google Patents

Lens system for high quality visible image acquisition and infra-red iris image acquisition Download PDF

Info

Publication number
WO2016118473A1
WO2016118473A1 PCT/US2016/013840 US2016013840W WO2016118473A1 WO 2016118473 A1 WO2016118473 A1 WO 2016118473A1 US 2016013840 W US2016013840 W US 2016013840W WO 2016118473 A1 WO2016118473 A1 WO 2016118473A1
Authority
WO
WIPO (PCT)
Prior art keywords
filter
lens
sensor
configuration
pass
Prior art date
Application number
PCT/US2016/013840
Other languages
French (fr)
Inventor
Keith J. Hanna
Original Assignee
Eyelock Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Eyelock Llc filed Critical Eyelock Llc
Priority to BR112017015375A priority Critical patent/BR112017015375A2/en
Priority to EP16740566.1A priority patent/EP3248370A4/en
Priority to CN201680017096.XA priority patent/CN107438779B/en
Publication of WO2016118473A1 publication Critical patent/WO2016118473A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/14Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation
    • G02B13/146Optical objectives specially designed for the purposes specified below for use with infrared or ultraviolet radiation with corrections for use in multiple wavelength bands, such as infrared and visible light, e.g. FLIR systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/10Bifocal lenses; Multifocal lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V40/00Recognition of biometric, human-related or animal-related patterns in image or video data
    • G06V40/10Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
    • G06V40/18Eye characteristics, e.g. of the iris
    • G06V40/19Sensors therefor
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/10Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
    • H04N23/11Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths for generating image signals from visible and infrared light wavelengths

Definitions

  • This disclosure relates generally to systems and methods for image acquisition.
  • this disclosure relates to systems and methods of using filters to acquire visible light and infra-red (IR) light images.
  • IR infra-red
  • the diversity and number of computing devices have increased significantly in recent times. For example, there are portable devices such as laptops and tablets, and traditional desk-bound computing platforms. Some of these devices may include embedded cameras, but these cameras are typically configured in a manner unsuitable for acquiring iris biometric data for authentication purposes.
  • the disclosure is directed at methods and systems of using a sensor to acquire biometric and non-biometric images using a combination of filters over a lens. Pairs of the filters can combine over different portions of the lens to pass infra-red or visible light. Therefore, the filters can selectively pass infra-red light through the lens for acquisition of biometric images, and can selectively pass visible light through the lens for acquisition of non-biometric images. Portions of the lens may be configured to support a first depth of field for objects being imaged using IR light, and to support a second depth of field for objects being imaged using visible light.
  • the sensor may acquire an image of an iris based on a first imaging configuration. The iris may be located within a predetermined distance relative to the sensor.
  • the first imaging configuration may include a first filter over a first portion of a lens coupled to the sensor, and a second filter over at least the first portion that combine with the first filter to allow infra-red light from the iris to pass to the sensor.
  • the sensor may acquire an image of an object based on a second imaging configuration.
  • the obj ect may be located beyond the predetermined distance.
  • the second imaging configuration may include a third filter over a second portion of the lens, and a fourth filter replaces the second filter to combine with the third filter to allow visible light from the object to pass to the sensor.
  • this disclosure describes a system for acquiring IR light and visible light images.
  • the system may include a sensor and a lens.
  • the lens may be configured to operate in at least a first configuration and a second configuration.
  • the lens may have a first filter over a first portion of the lens and a second filter over a second portion of the lens.
  • a third filter may operate with the lens and the second filter to allow visible light from a first object located beyond a predetermined distance from the lens to pass and be focused on the sensor for image acquisition.
  • a fourth filter may operate with the lens and the first filter to allow IR light from a second object located within the predetermined distance to pass and be focused on the sensor for image acquisition.
  • the second object located within the predetermined distance comprises an iris for biometric acquisition.
  • At least one of the second filter or the third filter may include a band-pass filter configured to allow light of wavelength from 400 nm to 700 nm to pass.
  • At least one of the first filter or the fourth filter may include a band-pass filter configured to allow light of wavelength from 750 nm to 860 nm to pass.
  • the lens may be disposed at a fixed distance from the sensor in the first configuration and the second configuration.
  • the second region of the lens comprises a central disk portion of the lens facing the sensor, and the first region of the lens comprises an annulus portion around the central disk portion. Only one of the third filter or the fourth filter may be operative over the lens at a given time.
  • the system may further comprise an IR light source, the IR light source configured to illuminate the second object for image acquisition in the second configuration.
  • the system may further comprise a second lens coupled to the third filter or the fourth filter.
  • the second lens may be configured to assist the lens in focusing the visible light onto the sensor if coupled to the third filter, or focusing the IR light onto the sensor if coupled to the fourth filter.
  • at least one of the first filter or the second filter is deposited on the lens.
  • this disclosure describes a method for acquiring IR light and visible light images.
  • the method may include operating a lens in a first configuration, the lens having a first filter over a first portion of the lens and a second filter over a second portion of the lens.
  • Operating in the first configuration may include operating the lens with a third filter and the second filter to allow visible light from a first obj ect located beyond a predetermined distance from the lens to pass and be focused on a sensor for image acquisition.
  • the method may include operating the lens in a second configuration. Operating in the second configuration may comprise operating the lens with a fourth filter and the first filter to allow IR light from a second object located within the predetermined distance to pass and be focused on the sensor for image acquisition.
  • the senor acquires, in the second configuration, an image of the second object located within the predetermined distance, the second object comprising an iris for biometric acquisition.
  • At least one of the second filter or the third filter may allow light of wavelength from 400 nm to 700 nm to pass.
  • the at least one of the second filter or the third filter may comprise a band-pass filter.
  • At least one of the first filter or the fourth filter may allow light of wavelength from 750 nm to 860 nm to pass.
  • the at least one of the first filter or the fourth filter may comprise a band-pass filter.
  • the lens may be maintained at a fixed distance from the sensor in the first configuration and the second configuration.
  • the second region of the lens comprises a central disk portion of the lens facing the sensor.
  • the first region of the lens may comprise an annulus portion around the central disk portion.
  • One of the third filter or the fourth filter may be operatively positioned or otherwise activated over the lens at a given time.
  • An IR light source may illuminate the second object for image acquisition in the second configuration.
  • the method may include operating a second lens coupled to the third filter or the fourth filter, to assist the lens in focusing the visible light onto the sensor if coupled to the third filter, or in focusing the IR light onto the sensor if coupled to the fourth filter.
  • at least one of the first filter or the second filter is deposited on the lens.
  • FIG. 1 A is a block diagram illustrative of an embodiment of a networked environment with a client machine that communicates with a server;
  • FIG. IB and 1C are block diagrams illustrative of embodiments of computing machines for practicing the methods and systems described herein;
  • FIG. 2A is a schematic drawing illustrative of a configuration of one embodiment of a system for acquiring biometric and/or non-biometric images
  • FIG. 2B is a schematic drawing illustrative of a configuration of one embodiment of a system for acquiring biometric and/or non-biometric images
  • FIG. 2C is a schematic drawing illustrative another configuration of one embodiment of a system for acquiring biometric and/or non-biometric images
  • FIG. 2D is a schematic drawing illustrative of another configuration of one embodiment of a system for acquiring biometric and/or non-biometric images.
  • FIG. 2E is a flow diagram illustrative of one embodiment of a method for acquiring biometric and/or non-biometric images.
  • Section A describes a network environment and computing environment which may be useful for practicing embodiments described herein;
  • Section B describes embodiments of systems and methods for acquiring visible light and IR light images.
  • FIG. 1A illustrates one embodiment of a computing environment 101 that includes one or more client machines 102A-102N (generally referred to herein as “client machine(s) 102") in communication with one or more servers 106A-106N (generally referred to herein as “server(s) 106"). Installed in between the client machine(s) 102 and server(s) 106 is a network.
  • the computing environment 101 can include an appliance installed between the server(s) 106 and client machine(s) 102.
  • This appliance can manage client/server connections, and in some cases can load balance client connections amongst a plurality of backend servers.
  • the client machine(s) 102 can in some embodiment be referred to as a single client machine 102 or a single group of client machines 102, while server(s) 106 may be referred to as a single server 106 or a single group of servers 106.
  • server(s) 106 may be referred to as a single server 106 or a single group of servers 106.
  • a single client machine 102 communicates with more than one server 106, while in another embodiment a single server 106 communicates with more than one client machine 102. In yet another embodiment, a single client machine 102 communicates with a single server 106.
  • a client machine 102 can, in some embodiments, be referenced by any one of the following terms: client machine(s) 102; client(s); client computer(s); client device(s); client computing device(s); local machine; remote machine; client node(s); endpoint(s); endpoint node(s); or a second machine.
  • the server 106 in some embodiments, may be referenced by any one of the following terms: server(s), local machine; remote machine; server farm(s), host computing device(s), or a first machine(s).
  • the client machine 102 can in some embodiments execute, operate or otherwise provide an application that can be any one of the following: software; a program; executable instructions; a virtual machine; a hypervisor; a web browser; a web-based client; a client- server application; a thin-client computing client; an ActiveX control; a Java applet; software related to voice over internet protocol (VoIP) communications like a soft IP telephone; an application for streaming video and/or audio; an application for facilitating real-time-data communications; a HTTP client; a FTP client; an Oscar client; a Telnet client; or any other set of executable instructions.
  • Still other embodiments include a client device 102 that displays application output generated by an application remotely executing on a server 106 or other remotely located machine. In these embodiments, the client device 102 can display the application output in an application window, a browser, or other output window.
  • the application is a desktop, while in other embodiments the application is an application that generates a desktop.
  • the computing environment 101 can include more than one server 106A-106N such that the servers 106A-106N are logically grouped together into a server farm 106.
  • the server farm 106 can include servers 106 that are geographically dispersed and logically grouped together in a server farm 106, or servers 106 that are located proximate to each other and logically grouped together in a server farm 106.
  • Geographically dispersed servers 106A- 106N within a server farm 106 can, in some embodiments, communicate using a WAN, MAN, or LAN, where different geographic regions can be characterized as: different continents; different regions of a continent; different countries; different states; different cities; different campuses; different rooms; or any combination of the preceding geographical locations.
  • the server farm 106 may be administered as a single entity, while in other embodiments the server farm 106 can include multiple server farms 106.
  • a server farm 106 can include servers 106 that execute a substantially similar type of operating system platform (e.g., WINDOWS NT, manufactured by Microsoft Corp. of Redmond, Washington, UNIX, LINUX, or SNOW LEOPARD.)
  • the server farm 106 can include a first group of servers 106 that execute a first type of operating system platform, and a second group of servers 106 that execute a second type of operating system platform.
  • the server farm 106 in other embodiments, can include servers 106 that execute different types of operating system platforms.
  • the server 106 can be any server type.
  • the server 106 can be any of the following server types: a file server; an application server; a web server; a proxy server; an appliance; a network appliance; a gateway; an application gateway; a gateway server; a virtualization server; a deployment server; a SSL VPN server; a firewall; a web server; an application server or as a master application server; a server 106 executing an active directory; or a server 106 executing an application acceleration program that provides firewall functionality, application functionality, or load balancing functionality.
  • a server 106 may be a RADIUS server that includes a remote authentication dial -in user service.
  • Some embodiments include a first server 106A that receives requests from a client machine 102, forwards the request to a second server 106B, and responds to the request generated by the client machine 102 with a response from the second server 106B.
  • the first server 106A can acquire an enumeration of applications available to the client machine 102 and well as address information associated with an application server 106 hosting an application identified within the enumeration of applications.
  • the first server 106A can then present a response to the client's request using a web interface, and communicate directly with the client 102 to provide the client 102 with access to an identified application.
  • Client machines 102 can, in some embodiments, be a client node that seeks access to resources provided by a server 106.
  • the server 106 may provide clients 102 or client nodes with access to hosted resources.
  • the server 106 functions as a master node such that it communicates with one or more clients 102 or servers 106.
  • the master node can identify and provide address information associated with a server 106 hosting a requested application, to one or more clients 102 or servers 106.
  • the master node can be a server farm 106, a client 102, a cluster of client nodes 102, or an appliance.
  • One or more clients 102 and/or one or more servers 106 can transmit data over a network 104 installed between machines and appliances within the computing environment 101.
  • the network 104 can comprise one or more sub-networks, and can be installed between any combination of the clients 102, servers 106, computing machines and appliances included within the computing environment 101.
  • the network 104 can be: a local-area network (LAN); a metropolitan area network (MAN); a wide area network (WAN); a primary network 104 comprised of multiple sub-networks 104 located between the client machines 102 and the servers 106; a primary public network 104 with a private subnetwork 104; a primary private network 104 with a public sub-network 104; or a primary private network 104 with a private sub-network 104.
  • Still further embodiments include a network 104 that can be any of the following network types: a point to point network; a broadcast network; a telecommunications network; a data communication network; a computer network; an ATM (Asynchronous Transfer Mode) network; a SONET
  • the network topology of the network 104 can differ within different embodiments, possible network topologies include: a bus network topology; a star network topology; a ring network topology; a repeater-based network topology; or a tiered-star network topology.
  • Additional embodiments may include a network 104 of mobile telephone networks that use a protocol to communicate among mobile devices, where the protocol can be any one of the following: AMPS; TDMA; CDMA; GSM; GPRS UMTS; 3G; 4G; or any other protocol able to transmit data among mobile devices.
  • AMPS AMPS
  • TDMA Time Division Multiple Access
  • CDMA Code Division Multiple Access
  • GSM Global System for Mobile communications
  • GPRS UMTS 3G
  • 4G 4G
  • FIG. IB Illustrated in Figure IB is an embodiment of a computing device 100, where the client machine 102 and server 106 illustrated in Figure 1A can be deployed as and/or executed on any embodiment of the computing device 100 illustrated and described herein.
  • a system bus 150 that communicates with the following components: a central processing unit 121; a main memory 122; storage memory 128; an input/output (I/O) controller 123; display devices 124A-124N; an installation device 116; and a network interface 118.
  • the storage memory 128 includes: an operating system, software routines, and a client agent 120.
  • the I/O controller 123 in some embodiments, is further connected to a key board 126, and a pointing device 127. Other embodiments may include an I/O controller 123 connected to more than one input/output device 130A-130N.
  • Figure 1C illustrates one embodiment of a computing device 100, where the client machine 102 and server 106 illustrated in Figure 1A can be deployed as and/or executed on any embodiment of the computing device 100 illustrated and described herein.
  • a system bus 150 that communicates with the following components: a bridge 170, and a first I/O device 13 OA.
  • the bridge 170 is in further communication with the main central processing unit 121, where the central processing unit 121 can further communicate with a second I/O device 130B, a main memory 122, and a cache memory 140.
  • I/O ports I/O ports, a memory port 103, and a main processor.
  • Embodiments of the computing machine 100 can include a central processing unit 121 characterized by any one of the following component configurations: logic circuits that respond to and process instructions fetched from the main memory unit 122; a
  • the central processing unit 122 may include any combination of the following: a microprocessor, a microcontroller, a central processing unit with a single processing core, a central processing unit with two processing cores, or a central processing unit with more than one processing core.
  • Figure 1C illustrates a computing device 100 that includes a single central processing unit 121
  • the computing device 100 can include one or more processing units 121.
  • the computing device 100 may store and execute firmware or other executable instructions that, when executed, direct the one or more processing units 121 to simultaneously execute instructions or to simultaneously execute instructions on a single piece of data.
  • the computing device 100 may store and execute firmware or other executable instructions that, when executed, direct the one or more processing units to each execute a section of a group of instructions. For example, each processing unit 121 may be instructed to execute a portion of a program or a particular module within a program.
  • the processing unit 121 can include one or more processing cores.
  • the processing unit 121 may have two cores, four cores, eight cores, etc.
  • the processing unit 121 may comprise one or more parallel processing cores.
  • the processing cores of the processing unit 121 may in some embodiments access available memory as a global address space, or in other embodiments, memory within the computing device 100 can be segmented and assigned to a particular core within the processing unit 121.
  • the one or more processing cores or processors in the computing device 100 can each access local memory.
  • memory within the computing device 100 can be shared amongst one or more processors or processing cores, while other memory can be accessed by particular processors or subsets of processors.
  • the multiple processing units can be included in a single integrated circuit (IC).
  • IC integrated circuit
  • the processors can execute a single instruction simultaneously on multiple pieces of data (SIMD), or in other embodiments can execute multiple instructions simultaneously on multiple pieces of data (MIMD).
  • SIMD single instruction simultaneously on multiple pieces of data
  • MIMD multiple instructions simultaneously on multiple pieces of data
  • the computing device 100 can include any number of SIMD and MIMD processors.
  • the computing device 100 can include an image processor, a graphics processor or a graphics processing unit.
  • the graphics processing unit can include any combination of software and hardware, and can further input graphics data and graphics instructions, render a graphic from the inputted data and instructions, and output the rendered graphic.
  • the graphics processing unit can be included within the processing unit 121.
  • the computing device 100 can include one or more processing units 121, where at least one processing unit 121 is dedicated to processing and rendering graphics.
  • One embodiment of the computing machine 100 includes a central processing unit 121 that communicates with cache memory 140 via a secondary bus also known as a backside bus, while another embodiment of the computing machine 100 includes a central processing unit 121 that communicates with cache memory via the system bus 150.
  • the local system bus 150 can, in some embodiments, also be used by the central processing unit to communicate with more than one type of I/O device 130A-130N.
  • the local system bus 150 can be any one of the following types of buses: a VESA VL bus; an ISA bus; an EISA bus; a MicroChannel Architecture (MCA) bus; a PCI bus; a PCI-X bus; a PCI- Express bus; or a NuBus.
  • computing machine 100 includes an I/O device 130A-130N that is a video display 124 that communicates with the central processing unit 121. Still other versions of the computing machine 100 include a processor 121 connected to an I/O device 13 OA- 13 ON via any one of the following connections:
  • the computing device 100 includes a main memory unit 122 and cache memory 140.
  • the cache memory 140 can be any memory type, and in some embodiments can be any one of the following types of memory: SRAM; BSRAM; or EDRAM.
  • Other embodiments include cache memory 140 and a main memory unit 122 that can be any one of the following types of memory: Static random access memory (SRAM), Burst SRAM or SynchBurst SRAM (BSRAM); Dynamic random access memory (DRAM); Fast Page Mode DRAM (FPM DRAM); Enhanced DRAM (EDRAM), Extended Data Output RAM (EDO RAM); Extended Data Output DRAM (EDO DRAM); Burst Extended Data Output DRAM (BEDO DRAM); Enhanced DRAM (EDRAM); synchronous DRAM
  • SDRAM Secure Digital RAM
  • JEDEC SRAM PC 100 SDRAM; Double Data Rate SDRAM (DDR SDRAM); Enhanced SDRAM (ESDRAM); SyncLink DRAM (SLDRAM); Direct Rambus DRAM (DRDRAM); Ferroelectric RAM (FRAM); or any other type of memory.
  • Further embodiments include a central processing unit 121 that can access the main memory 122 via: a system bus 150; a memory port 103; or any other connection, bus or port that allows the processor 121 to access memory 122.
  • One embodiment of the computing device 100 provides support for any one of the following installation devices 116: a CD-ROM drive, a CD-R/RW drive, a DVD-ROM drive, tape drives of various formats, USB device, a bootable medium, a bootable CD, a bootable CD for GNU/Linux distribution such as K OPPIX®, a hard-drive or any other device suitable for installing applications or software.
  • Applications can in some embodiments include a client agent 120, or any portion of a client agent 120.
  • the computing device 100 may further include a storage device 128 that can be either one or more hard disk drives, or one or more redundant arrays of independent disks; where the storage device is configured to store an operating system, software, programs applications, or at least a portion of the client agent 120.
  • a further embodiment of the computing device 100 includes an installation device 116 that is used as the storage device 128.
  • the computing device 100 may further include a network interface 118 to interface to a Local Area Network (LAN), Wide Area Network (WAN) or the Internet through a variety of connections including, but not limited to, standard telephone lines, LAN or WAN links (e.g., 802.11, Tl, T3, 56kb, X.25, SNA, DECNET), broadband connections (e.g., ISDN, Frame Relay, ATM, Gigabit Ethernet, Ethernet-over-SONET), wireless connections, or some combination of any or all of the above.
  • LAN Local Area Network
  • WAN Wide Area Network
  • the Internet may further include a network interface 118 to interface to a Local Area Network (LAN), Wide Area Network (WAN) or the Internet through a variety of connections including, but not limited to, standard telephone lines, LAN or WAN links (e.g., 802.11, Tl, T3, 56kb, X.25, SNA, DECNET), broadband connections (e.g., ISDN, Frame Relay, ATM, Gigabit Ethernet, Ethernet
  • Connections can also be established using a variety of communication protocols (e.g., TCP/IP, IPX, SPX, NetBIOS, Ethernet, ARCNET, SONET, SDH, Fiber Distributed Data Interface (FDDI), RS232, RS485, IEEE 802.11, IEEE 802.11a, IEEE 802.11b, IEEE 802. l lg, CDMA, GSM, WiMax and direct asynchronous connections).
  • One version of the computing device 100 includes a network interface 118 able to communicate with additional computing devices 100' via any type and/or form of gateway or tunneling protocol such as Secure Socket Layer (SSL) or Transport Layer Security (TLS), or the Citrix Gateway Protocol manufactured by Citrix Systems, Inc.
  • SSL Secure Socket Layer
  • TLS Transport Layer Security
  • Versions of the network interface 118 can comprise any one of: a built-in network adapter; a network interface card; a PCMCIA network card; a card bus network adapter; a wireless network adapter; a USB network adapter; a modem; or any other device suitable for interfacing the computing device 100 to a network capable of communicating and performing the methods and systems described herein.
  • Embodiments of the computing device 100 include any one of the following I/O devices 130A-130N: a keyboard 126; a pointing device 127; mice; trackpads; an optical pen; trackballs; microphones; drawing tablets; video displays; speakers; inkjet printers; laser printers; and dye-sublimation printers; or any other input/output device able to perform the methods and systems described herein.
  • An I/O controller 123 may in some embodiments connect to multiple I/O devices 103A-130N to control the one or more I/O devices.
  • I/O devices 130A-130N may be configured to provide storage or an installation medium 116, while others may provide a universal serial bus (USB) interface for receiving USB storage devices such as the USB Flash Drive line of devices manufactured by Twintech Industry, Inc.
  • USB universal serial bus
  • Still other embodiments include an I/O device 130 that may be a bridge between the system bus 150 and an external communication bus, such as: a USB bus; an Apple Desktop Bus; an RS-232 serial connection; a SCSI bus; a FireWire bus; a FireWire 800 bus; an Ethernet bus; an AppleTalk bus; a Gigabit Ethernet bus; an Asynchronous Transfer Mode bus; a HIPPI bus; a Super HIPPI bus; a SerialPlus bus; a SCI/LAMP bus; a FibreChannel bus; or a Serial Attached small computer system interface bus.
  • the computing machine 100 can execute any operating system, while in other embodiments the computing machine 100 can execute any of the following operating systems: versions of the MICROSOFT WINDOWS operating systems; the different releases of the Unix and Linux operating systems; any version of the MAC OS manufactured by Apple Computer; OS/2, manufactured by International Business Machines; Android by Google; any embedded operating system; any real-time operating system; any open source operating system; any proprietary operating system; any operating systems for mobile computing devices; or any other operating system.
  • the computing machine 100 can execute multiple operating systems.
  • the computing machine 100 can execute PARALLELS or another virtualization platform that can execute or manage a virtual machine executing a first operating system, while the computing machine 100 executes a second operating system different from the first operating system.
  • the computing machine 100 can be embodied in any one of the following computing devices: a computing workstation; a desktop computer; a laptop or notebook computer; a server; a handheld computer; a mobile telephone; a portable telecommunication device; a media playing device; a gaming system; a mobile computing device; a netbook, a tablet; a device of the IPOD or IP AD family of devices manufactured by Apple Computer; any one of the PLAYSTATION family of devices manufactured by the Sony Corporation; any one of the Nintendo family of devices manufactured by Nintendo Co; any one of the XBOX family of devices manufactured by the Microsoft Corporation; or any other type and/or form of computing, telecommunications or media device that is capable of communication and that has sufficient processor power and memory capacity to perform the methods and systems described herein.
  • the computing machine 100 can be a mobile device such as any one of the following mobile devices: a JAVA-enabled cellular telephone or personal digital assistant (PDA); any computing device that has different processors, operating systems, and input devices consistent with the device; or any other mobile computing device capable of performing the methods and systems described herein.
  • the computing device 100 can be any one of the following mobile computing devices: any one series of Blackberry, or other handheld device manufactured by Research In Motion Limited; the iPhone manufactured by Apple Computer; Palm Pre; a Pocket PC; a Pocket PC Phone; an Android phone; or any other handheld mobile device. Having described certain system components and features that may be suitable for use in the present systems and methods, further aspects are addressed below.
  • the disclosure is directed at methods and systems of using a sensor to acquire biometric and non-biometric images using a combination of filters over a lens. Pairs of the filters can combine over different portions of the lens to pass infra-red or visible light. Therefore, the filters can selectively pass infra-red light through the lens for acquisition of biometric images, and can selectively pass visible light through the lens for acquisition of non-biometric images. Portions of the lens may be configured to support a first depth of field for objects being imaged using IR light, and to support a second depth of field for objects being imaged using visible light.
  • the sensor may acquire an image of an iris based on a first imaging configuration. The iris may be located within a predetermined distance relative to the sensor.
  • the first imaging configuration may include a first filter over a first portion of a lens coupled to the sensor, and a second filter over at least the first portion that combine with the first filter to allow infra-red light from the iris to pass to the sensor.
  • the sensor may acquire an image of an object based on a second imaging configuration. The object may be located beyond the predetermined distance.
  • the second imaging configuration may include a third filter over a second portion of the lens, and a fourth filter replaces the second filter to combine with the third filter to allow visible light from the object to pass to the sensor.
  • Embodiments of the present methods and systems may allow a single sensor or camera, and/or a single lens, to acquire biometrics (e.g., iris information) and images of other obj ects.
  • the sensor may be coupled to a lens to acquire biometric and non-biometric images using a combination of filters. Pairs of the filters may combine over different portions of a lens to pass infra-red or visible light. Particular pairs of the filters may combine under a first imaging configuration for acquiring biometric (e.g., IR) images. Other pairs of the filters may combine under a second imaging configuration for acquiring non-biometric (e.g., visible light) images.
  • biometrics e.g., iris information
  • the sensor may be coupled to a lens to acquire biometric and non-biometric images using a combination of filters. Pairs of the filters may combine over different portions of a lens to pass infra-red or visible light. Particular pairs of the filters may combine under a first imaging configuration for acquiring
  • a system may comprise a lens that is capable of focusing within a mid to far range (e.g., depth of field of 20" to infinity) in the visible wavelength of light and also capable of focusing at a near range (e.g., a depth of field of 10", 1 ", 3", 5", 8", 12", 15", 18", etc.) in the infra-red (IR) wavelength of light.
  • the system may include a sensor for image acquisition.
  • the system may include a filter layer on a subset (e.g., a first portion) of the lens and a filter layer external to the lens such that the combination of the two filters are configured to be IR-cut or visible-pass, or allows only visible illumination to pass through to the sensor.
  • the system may include a filter layer on another portion of the lens, and another filter layer external to the lens such that the combination of the two latter filters are configured to be IR-pass or visible-cut, or allows only infrared illumination to pass through to the sensor.
  • the mid to far range may include a depth of field of for example, 10", 12", 15", 18", 20", 25", 30", 35", 40” or otherwise, to 50", 100", 150", 200", 300", 500", infinity or otherwise.
  • the mid to far range does not overlap with the near range.
  • the mid range (of the mid to far range) abuts or overlaps with the near range.
  • One or both of the external filter layers may be movable or removable relative to the lens. For instance, the external filter layer on the first portion of the lens may slide over, or be moved relative to any portion of the lens or the whole lens.
  • the system may be coupled to or incorporated into a computing device, such as any embodiment of the computing device 100, 102, 103 described above in connection with Figure 1A-1 C.
  • a main processor or CPU 121 may operate the sensor and/or external filter layers, and may generate and/or process an image acquired via the sensor.
  • the main processor or CPU 121 may control illumination (IR and/or visible) for image acquisition.
  • iris recognition uses imagery of the iris that is at least 100 pixels in diameter and uses IR illumination, according to some ISO specifications for the iris.
  • the field of view of a sensor e.g., for a typical visible spectrum webcam
  • the visible spectrum webcam may be configured to have focal lengths that provide a depth of field that is approximately 20" to infinity, to acquire images of objects.
  • the lens system comprises at least two portions or settings. These portions or settings may sometimes be referred as imaging configurations or imaging modes.
  • the first portion or setting may include or correspond to a lens portion (e.g., first lens portion) that has a focal length that allows a sharp image of an iris in infra-red light to be focused on a sensor when the iris is located at a near distance (e.g., 10", 1 ", 3", 5", 8", 12", 15", 18", etc., from the lens) from the lens, sensor or system.
  • the first portion/setting may include a filter layer (e.g., filter 1) located over a same lens portion as a filter layer extemal (e.g., filter 4) to the lens.
  • the combination of the two filter layers may be such that visible illumination is attenuated, and/or such that infra-red illumination suitable for iris recognition is allowed to pass through this lens portion.
  • the infra-red illumination band that is allowed to pass may be 750-860nm for example.
  • one or both of the aforementioned filter layers under the first setting may be a band-pass filter for light of any wavelength within 750-860nm, for example.
  • the IR-pass band may be between 680nm, 700nm, 720 nm, 725nm, 750nm, 770nm or otherwise, to 800nm, 820nm, 840nm, 860nm, 880nm, 900nm or otherwise, for example.
  • the second portion or setting may include or correspond to a second or different lens portion to the aforementioned first portion, that has a focal length that allows a sharp image of obj ect(s) in visible light to be focused on a sensor when objects are at a mid to far distance from the lens, sensor or system.
  • the second lens portion may be non-overlapping with the first lens portion, and may abut at least a portion of the first lens portion.
  • the second portion of the lens may be coupled to a filter layer (e.g., filter 2), and a filter layer external (e.g., filter 3) to the lens such that the combination of the latter two filter layers is such that infra-red illumination is attenuated and/or such that visible illumination suitable for viewing objects by humans is allowed to pass through or within the second portion of the lens.
  • the visible illumination band that is allowed to pass may be 400- 700nm, for example.
  • one or both filter layers under the second setting may be a band-pass filter of light of any wavelength from 400-700nm, for example.
  • the IR-pass band may be between 250nm, 300nm, 350nm, 400nm, 450nm, 500nm, 550nm, 600nm or otherwise, to 600nm, 650nm, 700nm, 850nm, 900nm, 950nm, lOOOnm, 1200nm or otherwise, for example.
  • Figure 2A shows one embodiment of the system.
  • the lens may correspond to the large circular shape, and one lens portion may comprise an outer annulus covered by filter 1. Another lens portion may comprise a central disk covered by filter 2.
  • a moveable or removable external filter 3 may be on top of (or in front of, relative to the transmission direction of illumination propagating towards) the lens.
  • Figure 2B shows focusing and/or acquisition of imagery under the
  • Figure 2C shows the system configured such that the external filter material now corresponds to filter 4 (e.g., filter 4 may be
  • Figure 2D shows focusing and/or acquisition of imagery under the configuration of Figure 2C.
  • the combination of filter 1 and filter 4 may allow infra-red light (corresponding to biometric information for example) to pass through the circular annulus portion of the lens and focus onto the sensor. Visible illumination however may be blocked (e.g., over the central portion of the lens covered by filter 2, and over the annulus portion) by the filter 4 and/or 1.
  • a switch between filter 3 and filter 4 over some portion of the lens may be performed by sliding (e.g., manually) one or more filter structures over the lens or relative to the lens.
  • filter 3 and filter 4 may remain in place relative to the lens, and each may be selectively activated (electrically and/or mechanically) to pass/transmit or attenuate/block certain wavelengths of light.
  • One or more of the filters described herein may each be referred as an optical filter.
  • One or more of the filters described herein may each comprise an interference, dichroic, absorptive, Lyot, or metal mesh filter.
  • Each of the filters may be of any shape and size, e.g., relative to the lens, which itself may be of any shape and size.
  • a filter and/or the lens may have rectangular, square, circular and/or curved features.
  • the shape and/or size of a filter may be configured relative to the lens, or a portion of the lens with which the filter couples (e.g., optically couples).
  • a lens may have a circular or rectangular profile, and may comprise portions configured for different depth of fields.
  • the lens may be machined or produced to support the multiple (e.g., dual) imaging configurations described herein.
  • the size and/or shape of a first filter may be configured to correspond/conform to or cover a first portion of the lens configured for a first imaging configuration, for example.
  • Another filter e.g., the filter 3 and/or filter 4) may be configured to cover, completely or substantially (e.g., 80, 85, 90, 95 or 99 percent of) all of one side of the lens (e.g., where light is incident on, or emerges from).
  • the size, shape and/or diameter(s) of the central portion/disk and/or circular annulus may be determined based on the lens' expected or configured range of focal lengths in the visible wavelength of light and/or in the IR wavelength of light.
  • the lens' expected or configured range of focal lengths in the IR and/or visible wavelength of light may correspond to an expected or configured range of the distance of an iris, eye or subject from the system (e.g., lens) for image capture.
  • the lens' expected or configured range of focus in the visible wavelength of light may correspond to an expected or configured range of the distance of objects (e.g., non-iris objects) from the system (e.g., lens) for image capture.
  • one portion of the lens is configured to support a first range of focal lengths (or a first depth of field) and another portion of the lens is configured to support a second range of focal lengths (or a second depth of field). In certain embodiments, one portion of the lens is configured to support a first depth of field for image acquisition using IR light and another portion of the lens is configured to support a second depth of field for image acquisition using visible light.
  • a sensor acquires an image of an iris based on a first imaging configuration.
  • the iris may be located within a predetermined distance relative to the sensor.
  • the first imaging configuration may include a first filter over a first portion of a lens coupled to the sensor, and a second filter over at least the first portion that combine with the first filter to allow infra-red light from the iris to pass to the sensor.
  • the first and/or the second filters may be located on the same side (where light in incident on, or emerges from the lens) or different sides of the lens.
  • One or both filters may couple directly (e.g., be deposited) onto the lens.
  • One or both filters may be disposed some distance(s) from the lens, e.g., mounted on a slider, frame or panel.
  • the sensor may acquire an image of an object based on a second imaging
  • the object may be located beyond the predetermined distance.
  • the second imaging configuration may include a third filter over a second portion of the lens, and a fourth filter replaces the second filter to combine with the third filter to allow visible light from the object to pass to the sensor.
  • the third and/or the fourth filters may be located on the same side or different sides of the lens.
  • One or both filters may couple directly (e.g., be deposited) onto the lens.
  • One or both filters may be disposed some distance(s) from the lens, e.g., mounted on a slider, frame or panel.
  • the system may include an additional lens (e.g., a thin lens) coupled on one or both of filters 3 and 4 of Figure 2D for instance, in order to perform at least some of the re-focus of the lens between visible and infra-red.
  • a second lens may be coupled on filter 3, and a third lens may be coupled on filter 4.
  • the second lens and the third lens may be configured to have the same or different focusing characteristic(s). For instance, different focusing characteristics may be configured corresponding to the different depths of field and/or wavelengths (e.g., IR vs visible light).
  • filter 3 may be deposited on (or coupled to) a slider.
  • Filter 4 may be deposited on another slider, or on another portion of the same slider.
  • a slider can move an associated filter over the lens, or away from the lens.
  • the slider can be used to switch between filters 3 and 4, in positioning one of these filters over the lens.
  • the slider e.g., filter 3 and/or filter 4
  • the slider may not be present. This may allow contamination of visible illumination/light and infra-red illumination/light. Due to the different focus point of each of the infra-red and visible elements, the
  • contamination can be acceptable (e.g. of an acceptable level) in some circumstances.
  • an imaging system includes a lens, and the lens may have a first filter over a first portion of the lens, and may have a second filter over a second portion of the lens.
  • the method includes operating the lens in a first configuration, comprising operating the lens with a third filter and the second filter to allow visible light from a first object located beyond a predetermined distance from the lens to pass and be focused on a sensor for image acquisition (201).
  • the sensor may acquire, in the first configuration, an image of the first object located beyond the predetermined distance (203).
  • the lens may be operated in a second configuration, comprising operating the lens with a fourth filter and the first filter to allow IR light from a second object located within the predetermined distance to pass and be focused on the sensor for image acquisition (205).
  • the sensor may acquire, in the second configuration, an image of the second object located within the predetermined distance (207).
  • the second object may comprise an iris for biometric acquisition.
  • the lens may have a first filter over a first portion of the lens, and may have a second filter over a second portion of the lens. At least one of the first filter or the second filter may be deposited on, or coupled to the lens. For example, one or both of the filters may be fused or applied onto different parts of the surface of the lens. In some embodiments, one or both of the filters are placed or secured over different parts of the outer surface of one side of the lens.
  • the second region of the lens comprises a central disk portion of the lens facing the sensor, and the first region of the lens comprises an annulus portion around the central disk portion.
  • the imaging system may operate the lens in several configurations, including at least a first configuration and a second configuration.
  • the imaging system operates the lens in a first configuration.
  • the system may operate the lens with a third filter and the second filter to allow visible light from a first object located beyond a predetermined distance from the lens to pass and be focused on a sensor for image acquisition.
  • the system may allow the visible light to pass through the third filter, the lens and the second filter (via the second portion), to reach the sensor.
  • At least one of the second filter or the third filter may allow light of wavelength from 400 nm to 700 nm to pass.
  • the at least one of the second filter or the third filter may comprise a band-pass filter.
  • the first filter may block some or all of the visible light from passing through or leaving the first portion of the lens.
  • the lens corresponding to the second portion, may focus the visible light onto the sensor (or onto visible light sensitive or visible light specific portions of the sensor).
  • the system operates a second lens coupled to the third filter, to assist the lens in focusing the visible light onto the sensor.
  • the sensor may acquire, in the first configuration, an image of the first object located beyond the predetermined distance.
  • the sensor may acquire an image of the first object using visible light when the third filter is activated or covering the lens.
  • a processor of the system may, for example, coordinate the image acquisition with the activation or use of the third filter in relation to the lens.
  • the system may illuminate the object using a visible light source, for acquisition of an image of the first object.
  • a processor of the system may, for example, coordinate the image acquisition with the illumination from the visible light source.
  • the imaging system operates the lens in a second configuration.
  • the system may operate the lens with a fourth filter and the first filter to allow IR light from another object located within the predetermined distance to pass and be focused on the sensor for image acquisition.
  • the system may allow the IR light to pass through the fourth filter, the lens and the first filter (via the first portion), to reach the sensor.
  • At least one of the first filter or the fourth filter may allow light of wavelength from 750 nm to 860 nm to pass.
  • the at least one of the first filter or the fourth filter may comprise a band-pass filter.
  • the second filter may block some or all of the IR light from passing through or leaving the second portion of the lens.
  • the lens may focus the IR light onto the sensor (or onto IR light sensitive or IR specific portions of the sensor).
  • the system operates another lens coupled to the fourth filter, to assist the lens in focusing the IR light onto the sensor.
  • the system operates only one of the third filter or the fourth filter over the lens at a given time. The lens may be maintained at a fixed distance from the sensor in the first configuration and the second configuration
  • the sensor may acquire, in the second configuration, an image of the second object located within the predetermined distance.
  • the second object may comprise an iris for biometric acquisition.
  • the sensor may acquire, in the second configuration, an image of the second object located within the predetermined distance.
  • the sensor may acquire an image of the second object using IR light when the fourth filter is activated or covering the lens.
  • a processor of the system may, for example, coordinate the image acquisition with the activation or use of the fourth filter in relation to the lens.
  • the system may illuminate the object using an IR light source, for acquisition of an image of the second object.
  • a processor of the system may, for example, coordinate the image acquisition with the illumination from the IR light source.
  • systems described above may provide multiple ones of any or each of those components and these components may be provided on either a standalone machine or, in some embodiments, on multiple machines in a distributed system.
  • the systems and methods described above may be implemented as a method, apparatus or article of manufacture using programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof.
  • the systems and methods described above may be provided as one or more computer-readable programs embodied on or in one or more articles of manufacture.
  • article of manufacture as used herein is intended to encompass code or logic accessible from and embedded in one or more computer-readable devices, firmware, programmable logic, memory devices (e.g., EEPROMs, ROMs, PROMs, RAMs, SRAMs, etc.), hardware (e.g., integrated circuit chip, Field Programmable Gate Array (FPGA), Application Specific Integrated Circuit (ASIC), etc.), electronic devices, a computer readable non-volatile storage unit (e.g., CD-ROM, floppy disk, hard disk drive, etc.).
  • the article of manufacture may be accessible from a file server providing access to the computer-readable programs via a network transmission line, wireless transmission media, signals propagating through space, radio waves, infrared signals, etc.
  • the article of manufacture may be a flash memory card or a magnetic tape.
  • the article of manufacture includes hardware logic as well as software or programmable code embedded in a computer readable medium that is executed by a processor.
  • the computer-readable programs may be implemented in any programming language, such as LISP, PERL, C, C++, C#, PROLOG, or in any byte code language such as JAVA.
  • the software programs may be stored on or in one or more articles of manufacture as object code.

Abstract

This disclosure is directed to systems and methods for acquiring IR light and visible light images. A lens may be configured to operate in at least a first configuration and a second configuration. The lens may have a first filter over a first portion of the lens and a second filter over a second portion of the lens. In the first configuration, a third filter may operate with the lens and the second filter to allow visible light from a first object located beyond a predetermined distance from the lens to pass and be focused on a sensor for image acquisition. In the second configuration, a fourth filter may operate with the lens and the first filter to allow IR light from a second object located within the predetermined distance to pass and be focused on the sensor for image acquisition.

Description

LENS SYSTEM FOR HIGH QUALITY VISIBLE IMAGE ACQUISITION
AND INFRA-RED IRIS IMAGE ACQUISITION
RELATED APPLICATIONS
This application claims priority to and the benefit of U.S. Provisional Application Number 62/105,691, filed January 20, 2015, entitled "LENS SYSTEM FOR HIGH
QUALITY VISIBLE IMAGE ACQUISITION AND INFRA-RED IRIS IMAGE
ACQUISITION", which is incorporated herein by reference in its entirety for all purposes.
FIELD OF THE DISCLOSURE
This disclosure relates generally to systems and methods for image acquisition. In particular, this disclosure relates to systems and methods of using filters to acquire visible light and infra-red (IR) light images.
BACKGROUND
The diversity and number of computing devices have increased significantly in recent times. For example, there are portable devices such as laptops and tablets, and traditional desk-bound computing platforms. Some of these devices may include embedded cameras, but these cameras are typically configured in a manner unsuitable for acquiring iris biometric data for authentication purposes.
SUMMARY
In some aspects, the disclosure is directed at methods and systems of using a sensor to acquire biometric and non-biometric images using a combination of filters over a lens. Pairs of the filters can combine over different portions of the lens to pass infra-red or visible light. Therefore, the filters can selectively pass infra-red light through the lens for acquisition of biometric images, and can selectively pass visible light through the lens for acquisition of non-biometric images. Portions of the lens may be configured to support a first depth of field for objects being imaged using IR light, and to support a second depth of field for objects being imaged using visible light. For instance, the sensor may acquire an image of an iris based on a first imaging configuration. The iris may be located within a predetermined distance relative to the sensor. The first imaging configuration may include a first filter over a first portion of a lens coupled to the sensor, and a second filter over at least the first portion that combine with the first filter to allow infra-red light from the iris to pass to the sensor. The sensor may acquire an image of an object based on a second imaging configuration. The obj ect may be located beyond the predetermined distance. The second imaging configuration may include a third filter over a second portion of the lens, and a fourth filter replaces the second filter to combine with the third filter to allow visible light from the object to pass to the sensor.
In one aspect, this disclosure describes a system for acquiring IR light and visible light images. The system may include a sensor and a lens. The lens may be configured to operate in at least a first configuration and a second configuration. The lens may have a first filter over a first portion of the lens and a second filter over a second portion of the lens. In the first configuration, a third filter may operate with the lens and the second filter to allow visible light from a first object located beyond a predetermined distance from the lens to pass and be focused on the sensor for image acquisition. In the second configuration, a fourth filter may operate with the lens and the first filter to allow IR light from a second object located within the predetermined distance to pass and be focused on the sensor for image acquisition.
In some embodiments, the second object located within the predetermined distance comprises an iris for biometric acquisition. At least one of the second filter or the third filter may include a band-pass filter configured to allow light of wavelength from 400 nm to 700 nm to pass. At least one of the first filter or the fourth filter may include a band-pass filter configured to allow light of wavelength from 750 nm to 860 nm to pass. The lens may be disposed at a fixed distance from the sensor in the first configuration and the second configuration.
In certain embodiments, the second region of the lens comprises a central disk portion of the lens facing the sensor, and the first region of the lens comprises an annulus portion around the central disk portion. Only one of the third filter or the fourth filter may be operative over the lens at a given time. The system may further comprise an IR light source, the IR light source configured to illuminate the second object for image acquisition in the second configuration. The system may further comprise a second lens coupled to the third filter or the fourth filter. The second lens may be configured to assist the lens in focusing the visible light onto the sensor if coupled to the third filter, or focusing the IR light onto the sensor if coupled to the fourth filter. In some embodiments, at least one of the first filter or the second filter is deposited on the lens.
In another aspect, this disclosure describes a method for acquiring IR light and visible light images. The method may include operating a lens in a first configuration, the lens having a first filter over a first portion of the lens and a second filter over a second portion of the lens. Operating in the first configuration may include operating the lens with a third filter and the second filter to allow visible light from a first obj ect located beyond a predetermined distance from the lens to pass and be focused on a sensor for image acquisition. The method may include operating the lens in a second configuration. Operating in the second configuration may comprise operating the lens with a fourth filter and the first filter to allow IR light from a second object located within the predetermined distance to pass and be focused on the sensor for image acquisition. In some embodiments, the sensor acquires, in the second configuration, an image of the second object located within the predetermined distance, the second object comprising an iris for biometric acquisition. At least one of the second filter or the third filter may allow light of wavelength from 400 nm to 700 nm to pass. The at least one of the second filter or the third filter may comprise a band-pass filter. At least one of the first filter or the fourth filter may allow light of wavelength from 750 nm to 860 nm to pass. The at least one of the first filter or the fourth filter may comprise a band-pass filter. The lens may be maintained at a fixed distance from the sensor in the first configuration and the second configuration.
In certain embodiments, the second region of the lens comprises a central disk portion of the lens facing the sensor. The first region of the lens may comprise an annulus portion around the central disk portion. One of the third filter or the fourth filter may be operatively positioned or otherwise activated over the lens at a given time. An IR light source may illuminate the second object for image acquisition in the second configuration. The method may include operating a second lens coupled to the third filter or the fourth filter, to assist the lens in focusing the visible light onto the sensor if coupled to the third filter, or in focusing the IR light onto the sensor if coupled to the fourth filter. In some embodiments, at least one of the first filter or the second filter is deposited on the lens.
BRIEF DESCRIPTION OF THE DRAWINGS
The following figures depict certain illustrative embodiments of the methods and systems described herein, where like reference numerals refer to like elements. Each depicted embodiment is illustrative of these methods and systems and not limiting.
FIG. 1 A is a block diagram illustrative of an embodiment of a networked environment with a client machine that communicates with a server;
FIG. IB and 1C are block diagrams illustrative of embodiments of computing machines for practicing the methods and systems described herein;
FIG. 2A is a schematic drawing illustrative of a configuration of one embodiment of a system for acquiring biometric and/or non-biometric images;
FIG. 2B is a schematic drawing illustrative of a configuration of one embodiment of a system for acquiring biometric and/or non-biometric images;
FIG. 2C is a schematic drawing illustrative another configuration of one embodiment of a system for acquiring biometric and/or non-biometric images;
FIG. 2D is a schematic drawing illustrative of another configuration of one embodiment of a system for acquiring biometric and/or non-biometric images; and
FIG. 2E is a flow diagram illustrative of one embodiment of a method for acquiring biometric and/or non-biometric images.
The details of various embodiments of the methods and systems are set forth in the accompanying drawings and the description below. DETAILED DESCRIPTION
For purposes of reading the description of the various embodiments below, the following descriptions of the sections of the specification and their respective contents may be helpful:
Section A describes a network environment and computing environment which may be useful for practicing embodiments described herein; and
Section B describes embodiments of systems and methods for acquiring visible light and IR light images.
A. NETWORK AND COMPUTING ENVIRONMENT
Before addressing specific embodiments of the present solution, a description of system components and features suitable for use in the present systems and methods may be helpful. Figure 1A illustrates one embodiment of a computing environment 101 that includes one or more client machines 102A-102N (generally referred to herein as "client machine(s) 102") in communication with one or more servers 106A-106N (generally referred to herein as "server(s) 106"). Installed in between the client machine(s) 102 and server(s) 106 is a network.
In one embodiment, the computing environment 101 can include an appliance installed between the server(s) 106 and client machine(s) 102. This appliance can manage client/server connections, and in some cases can load balance client connections amongst a plurality of backend servers. The client machine(s) 102 can in some embodiment be referred to as a single client machine 102 or a single group of client machines 102, while server(s) 106 may be referred to as a single server 106 or a single group of servers 106. In one
embodiment a single client machine 102 communicates with more than one server 106, while in another embodiment a single server 106 communicates with more than one client machine 102. In yet another embodiment, a single client machine 102 communicates with a single server 106.
A client machine 102 can, in some embodiments, be referenced by any one of the following terms: client machine(s) 102; client(s); client computer(s); client device(s); client computing device(s); local machine; remote machine; client node(s); endpoint(s); endpoint node(s); or a second machine. The server 106, in some embodiments, may be referenced by any one of the following terms: server(s), local machine; remote machine; server farm(s), host computing device(s), or a first machine(s).
The client machine 102 can in some embodiments execute, operate or otherwise provide an application that can be any one of the following: software; a program; executable instructions; a virtual machine; a hypervisor; a web browser; a web-based client; a client- server application; a thin-client computing client; an ActiveX control; a Java applet; software related to voice over internet protocol (VoIP) communications like a soft IP telephone; an application for streaming video and/or audio; an application for facilitating real-time-data communications; a HTTP client; a FTP client; an Oscar client; a Telnet client; or any other set of executable instructions. Still other embodiments include a client device 102 that displays application output generated by an application remotely executing on a server 106 or other remotely located machine. In these embodiments, the client device 102 can display the application output in an application window, a browser, or other output window. In one embodiment, the application is a desktop, while in other embodiments the application is an application that generates a desktop.
The computing environment 101 can include more than one server 106A-106N such that the servers 106A-106N are logically grouped together into a server farm 106. The server farm 106 can include servers 106 that are geographically dispersed and logically grouped together in a server farm 106, or servers 106 that are located proximate to each other and logically grouped together in a server farm 106. Geographically dispersed servers 106A- 106N within a server farm 106 can, in some embodiments, communicate using a WAN, MAN, or LAN, where different geographic regions can be characterized as: different continents; different regions of a continent; different countries; different states; different cities; different campuses; different rooms; or any combination of the preceding geographical locations. In some embodiments the server farm 106 may be administered as a single entity, while in other embodiments the server farm 106 can include multiple server farms 106.
In some embodiments, a server farm 106 can include servers 106 that execute a substantially similar type of operating system platform (e.g., WINDOWS NT, manufactured by Microsoft Corp. of Redmond, Washington, UNIX, LINUX, or SNOW LEOPARD.) In other embodiments, the server farm 106 can include a first group of servers 106 that execute a first type of operating system platform, and a second group of servers 106 that execute a second type of operating system platform. The server farm 106, in other embodiments, can include servers 106 that execute different types of operating system platforms.
The server 106, in some embodiments, can be any server type. In other embodiments, the server 106 can be any of the following server types: a file server; an application server; a web server; a proxy server; an appliance; a network appliance; a gateway; an application gateway; a gateway server; a virtualization server; a deployment server; a SSL VPN server; a firewall; a web server; an application server or as a master application server; a server 106 executing an active directory; or a server 106 executing an application acceleration program that provides firewall functionality, application functionality, or load balancing functionality. In some embodiments, a server 106 may be a RADIUS server that includes a remote authentication dial -in user service. Some embodiments include a first server 106A that receives requests from a client machine 102, forwards the request to a second server 106B, and responds to the request generated by the client machine 102 with a response from the second server 106B. The first server 106A can acquire an enumeration of applications available to the client machine 102 and well as address information associated with an application server 106 hosting an application identified within the enumeration of applications. The first server 106A can then present a response to the client's request using a web interface, and communicate directly with the client 102 to provide the client 102 with access to an identified application.
Client machines 102 can, in some embodiments, be a client node that seeks access to resources provided by a server 106. In other embodiments, the server 106 may provide clients 102 or client nodes with access to hosted resources. The server 106, in some embodiments, functions as a master node such that it communicates with one or more clients 102 or servers 106. In some embodiments, the master node can identify and provide address information associated with a server 106 hosting a requested application, to one or more clients 102 or servers 106. In still other embodiments, the master node can be a server farm 106, a client 102, a cluster of client nodes 102, or an appliance.
One or more clients 102 and/or one or more servers 106 can transmit data over a network 104 installed between machines and appliances within the computing environment 101. The network 104 can comprise one or more sub-networks, and can be installed between any combination of the clients 102, servers 106, computing machines and appliances included within the computing environment 101. In some embodiments, the network 104 can be: a local-area network (LAN); a metropolitan area network (MAN); a wide area network (WAN); a primary network 104 comprised of multiple sub-networks 104 located between the client machines 102 and the servers 106; a primary public network 104 with a private subnetwork 104; a primary private network 104 with a public sub-network 104; or a primary private network 104 with a private sub-network 104. Still further embodiments include a network 104 that can be any of the following network types: a point to point network; a broadcast network; a telecommunications network; a data communication network; a computer network; an ATM (Asynchronous Transfer Mode) network; a SONET
(Synchronous Optical Network) network; a SDH (Synchronous Digital Hierarchy) network; a wireless network; a wireline network; or a network 104 that includes a wireless link where the wireless link can be an infrared channel or satellite band. The network topology of the network 104 can differ within different embodiments, possible network topologies include: a bus network topology; a star network topology; a ring network topology; a repeater-based network topology; or a tiered-star network topology. Additional embodiments may include a network 104 of mobile telephone networks that use a protocol to communicate among mobile devices, where the protocol can be any one of the following: AMPS; TDMA; CDMA; GSM; GPRS UMTS; 3G; 4G; or any other protocol able to transmit data among mobile devices.
Illustrated in Figure IB is an embodiment of a computing device 100, where the client machine 102 and server 106 illustrated in Figure 1A can be deployed as and/or executed on any embodiment of the computing device 100 illustrated and described herein. Included within the computing device 100 is a system bus 150 that communicates with the following components: a central processing unit 121; a main memory 122; storage memory 128; an input/output (I/O) controller 123; display devices 124A-124N; an installation device 116; and a network interface 118. In one embodiment, the storage memory 128 includes: an operating system, software routines, and a client agent 120. The I/O controller 123, in some embodiments, is further connected to a key board 126, and a pointing device 127. Other embodiments may include an I/O controller 123 connected to more than one input/output device 130A-130N.
Figure 1C illustrates one embodiment of a computing device 100, where the client machine 102 and server 106 illustrated in Figure 1A can be deployed as and/or executed on any embodiment of the computing device 100 illustrated and described herein. Included within the computing device 100 is a system bus 150 that communicates with the following components: a bridge 170, and a first I/O device 13 OA. In another embodiment, the bridge 170 is in further communication with the main central processing unit 121, where the central processing unit 121 can further communicate with a second I/O device 130B, a main memory 122, and a cache memory 140. Included within the central processing unit 121, are I/O ports, a memory port 103, and a main processor.
Embodiments of the computing machine 100 can include a central processing unit 121 characterized by any one of the following component configurations: logic circuits that respond to and process instructions fetched from the main memory unit 122; a
microprocessor unit, such as: those manufactured by Intel Corporation; those manufactured by Motorola Corporation; those manufactured by Transmeta Corporation of Santa Clara, California; the RS/6000 processor such as those manufactured by International Business Machines; a processor such as those manufactured by Advanced Micro Devices; or any other combination of logic circuits. Still other embodiments of the central processing unit 122 may include any combination of the following: a microprocessor, a microcontroller, a central processing unit with a single processing core, a central processing unit with two processing cores, or a central processing unit with more than one processing core.
While Figure 1C illustrates a computing device 100 that includes a single central processing unit 121, in some embodiments the computing device 100 can include one or more processing units 121. In these embodiments, the computing device 100 may store and execute firmware or other executable instructions that, when executed, direct the one or more processing units 121 to simultaneously execute instructions or to simultaneously execute instructions on a single piece of data. In other embodiments, the computing device 100 may store and execute firmware or other executable instructions that, when executed, direct the one or more processing units to each execute a section of a group of instructions. For example, each processing unit 121 may be instructed to execute a portion of a program or a particular module within a program.
In some embodiments, the processing unit 121 can include one or more processing cores. For example, the processing unit 121 may have two cores, four cores, eight cores, etc. In one embodiment, the processing unit 121 may comprise one or more parallel processing cores. The processing cores of the processing unit 121 may in some embodiments access available memory as a global address space, or in other embodiments, memory within the computing device 100 can be segmented and assigned to a particular core within the processing unit 121. In one embodiment, the one or more processing cores or processors in the computing device 100 can each access local memory. In still another embodiment, memory within the computing device 100 can be shared amongst one or more processors or processing cores, while other memory can be accessed by particular processors or subsets of processors. In embodiments where the computing device 100 includes more than one processing unit, the multiple processing units can be included in a single integrated circuit (IC). These multiple processors, in some embodiments, can be linked together by an internal high speed bus, which may be referred to as an element interconnect bus.
In embodiments where the computing device 100 includes one or more processing units 121, or a processing unit 121 including one or more processing cores, the processors can execute a single instruction simultaneously on multiple pieces of data (SIMD), or in other embodiments can execute multiple instructions simultaneously on multiple pieces of data (MIMD). In some embodiments, the computing device 100 can include any number of SIMD and MIMD processors.
The computing device 100, in some embodiments, can include an image processor, a graphics processor or a graphics processing unit. The graphics processing unit can include any combination of software and hardware, and can further input graphics data and graphics instructions, render a graphic from the inputted data and instructions, and output the rendered graphic. In some embodiments, the graphics processing unit can be included within the processing unit 121. In other embodiments, the computing device 100 can include one or more processing units 121, where at least one processing unit 121 is dedicated to processing and rendering graphics.
One embodiment of the computing machine 100 includes a central processing unit 121 that communicates with cache memory 140 via a secondary bus also known as a backside bus, while another embodiment of the computing machine 100 includes a central processing unit 121 that communicates with cache memory via the system bus 150. The local system bus 150 can, in some embodiments, also be used by the central processing unit to communicate with more than one type of I/O device 130A-130N. In some embodiments, the local system bus 150 can be any one of the following types of buses: a VESA VL bus; an ISA bus; an EISA bus; a MicroChannel Architecture (MCA) bus; a PCI bus; a PCI-X bus; a PCI- Express bus; or a NuBus. Other embodiments of the computing machine 100 include an I/O device 130A-130N that is a video display 124 that communicates with the central processing unit 121. Still other versions of the computing machine 100 include a processor 121 connected to an I/O device 13 OA- 13 ON via any one of the following connections:
HyperTransport, Rapid I/O, or InfiniBand. Further embodiments of the computing machine 100 include a processor 121 that communicates with one I/O device 130A using a local interconnect bus and a second I/O device 130B using a direct connection.
The computing device 100, in some embodiments, includes a main memory unit 122 and cache memory 140. The cache memory 140 can be any memory type, and in some embodiments can be any one of the following types of memory: SRAM; BSRAM; or EDRAM. Other embodiments include cache memory 140 and a main memory unit 122 that can be any one of the following types of memory: Static random access memory (SRAM), Burst SRAM or SynchBurst SRAM (BSRAM); Dynamic random access memory (DRAM); Fast Page Mode DRAM (FPM DRAM); Enhanced DRAM (EDRAM), Extended Data Output RAM (EDO RAM); Extended Data Output DRAM (EDO DRAM); Burst Extended Data Output DRAM (BEDO DRAM); Enhanced DRAM (EDRAM); synchronous DRAM
(SDRAM); JEDEC SRAM; PC 100 SDRAM; Double Data Rate SDRAM (DDR SDRAM); Enhanced SDRAM (ESDRAM); SyncLink DRAM (SLDRAM); Direct Rambus DRAM (DRDRAM); Ferroelectric RAM (FRAM); or any other type of memory. Further embodiments include a central processing unit 121 that can access the main memory 122 via: a system bus 150; a memory port 103; or any other connection, bus or port that allows the processor 121 to access memory 122.
One embodiment of the computing device 100 provides support for any one of the following installation devices 116: a CD-ROM drive, a CD-R/RW drive, a DVD-ROM drive, tape drives of various formats, USB device, a bootable medium, a bootable CD, a bootable CD for GNU/Linux distribution such as K OPPIX®, a hard-drive or any other device suitable for installing applications or software. Applications can in some embodiments include a client agent 120, or any portion of a client agent 120. The computing device 100 may further include a storage device 128 that can be either one or more hard disk drives, or one or more redundant arrays of independent disks; where the storage device is configured to store an operating system, software, programs applications, or at least a portion of the client agent 120. A further embodiment of the computing device 100 includes an installation device 116 that is used as the storage device 128.
The computing device 100 may further include a network interface 118 to interface to a Local Area Network (LAN), Wide Area Network (WAN) or the Internet through a variety of connections including, but not limited to, standard telephone lines, LAN or WAN links (e.g., 802.11, Tl, T3, 56kb, X.25, SNA, DECNET), broadband connections (e.g., ISDN, Frame Relay, ATM, Gigabit Ethernet, Ethernet-over-SONET), wireless connections, or some combination of any or all of the above. Connections can also be established using a variety of communication protocols (e.g., TCP/IP, IPX, SPX, NetBIOS, Ethernet, ARCNET, SONET, SDH, Fiber Distributed Data Interface (FDDI), RS232, RS485, IEEE 802.11, IEEE 802.11a, IEEE 802.11b, IEEE 802. l lg, CDMA, GSM, WiMax and direct asynchronous connections). One version of the computing device 100 includes a network interface 118 able to communicate with additional computing devices 100' via any type and/or form of gateway or tunneling protocol such as Secure Socket Layer (SSL) or Transport Layer Security (TLS), or the Citrix Gateway Protocol manufactured by Citrix Systems, Inc.
Versions of the network interface 118 can comprise any one of: a built-in network adapter; a network interface card; a PCMCIA network card; a card bus network adapter; a wireless network adapter; a USB network adapter; a modem; or any other device suitable for interfacing the computing device 100 to a network capable of communicating and performing the methods and systems described herein.
Embodiments of the computing device 100 include any one of the following I/O devices 130A-130N: a keyboard 126; a pointing device 127; mice; trackpads; an optical pen; trackballs; microphones; drawing tablets; video displays; speakers; inkjet printers; laser printers; and dye-sublimation printers; or any other input/output device able to perform the methods and systems described herein. An I/O controller 123 may in some embodiments connect to multiple I/O devices 103A-130N to control the one or more I/O devices. Some embodiments of the I/O devices 130A-130N may be configured to provide storage or an installation medium 116, while others may provide a universal serial bus (USB) interface for receiving USB storage devices such as the USB Flash Drive line of devices manufactured by Twintech Industry, Inc. Still other embodiments include an I/O device 130 that may be a bridge between the system bus 150 and an external communication bus, such as: a USB bus; an Apple Desktop Bus; an RS-232 serial connection; a SCSI bus; a FireWire bus; a FireWire 800 bus; an Ethernet bus; an AppleTalk bus; a Gigabit Ethernet bus; an Asynchronous Transfer Mode bus; a HIPPI bus; a Super HIPPI bus; a SerialPlus bus; a SCI/LAMP bus; a FibreChannel bus; or a Serial Attached small computer system interface bus.
In some embodiments, the computing machine 100 can execute any operating system, while in other embodiments the computing machine 100 can execute any of the following operating systems: versions of the MICROSOFT WINDOWS operating systems; the different releases of the Unix and Linux operating systems; any version of the MAC OS manufactured by Apple Computer; OS/2, manufactured by International Business Machines; Android by Google; any embedded operating system; any real-time operating system; any open source operating system; any proprietary operating system; any operating systems for mobile computing devices; or any other operating system. In still another embodiment, the computing machine 100 can execute multiple operating systems. For example, the computing machine 100 can execute PARALLELS or another virtualization platform that can execute or manage a virtual machine executing a first operating system, while the computing machine 100 executes a second operating system different from the first operating system.
The computing machine 100 can be embodied in any one of the following computing devices: a computing workstation; a desktop computer; a laptop or notebook computer; a server; a handheld computer; a mobile telephone; a portable telecommunication device; a media playing device; a gaming system; a mobile computing device; a netbook, a tablet; a device of the IPOD or IP AD family of devices manufactured by Apple Computer; any one of the PLAYSTATION family of devices manufactured by the Sony Corporation; any one of the Nintendo family of devices manufactured by Nintendo Co; any one of the XBOX family of devices manufactured by the Microsoft Corporation; or any other type and/or form of computing, telecommunications or media device that is capable of communication and that has sufficient processor power and memory capacity to perform the methods and systems described herein. In other embodiments the computing machine 100 can be a mobile device such as any one of the following mobile devices: a JAVA-enabled cellular telephone or personal digital assistant (PDA); any computing device that has different processors, operating systems, and input devices consistent with the device; or any other mobile computing device capable of performing the methods and systems described herein. In still other embodiments, the computing device 100 can be any one of the following mobile computing devices: any one series of Blackberry, or other handheld device manufactured by Research In Motion Limited; the iPhone manufactured by Apple Computer; Palm Pre; a Pocket PC; a Pocket PC Phone; an Android phone; or any other handheld mobile device. Having described certain system components and features that may be suitable for use in the present systems and methods, further aspects are addressed below.
B. ACQUIRING VISIBLE LIGHT AND IR LIGHT IMAGES
In some aspects, the disclosure is directed at methods and systems of using a sensor to acquire biometric and non-biometric images using a combination of filters over a lens. Pairs of the filters can combine over different portions of the lens to pass infra-red or visible light. Therefore, the filters can selectively pass infra-red light through the lens for acquisition of biometric images, and can selectively pass visible light through the lens for acquisition of non-biometric images. Portions of the lens may be configured to support a first depth of field for objects being imaged using IR light, and to support a second depth of field for objects being imaged using visible light. For instance, the sensor may acquire an image of an iris based on a first imaging configuration. The iris may be located within a predetermined distance relative to the sensor. The first imaging configuration may include a first filter over a first portion of a lens coupled to the sensor, and a second filter over at least the first portion that combine with the first filter to allow infra-red light from the iris to pass to the sensor. The sensor may acquire an image of an object based on a second imaging configuration. The object may be located beyond the predetermined distance. The second imaging configuration may include a third filter over a second portion of the lens, and a fourth filter replaces the second filter to combine with the third filter to allow visible light from the object to pass to the sensor.
Embodiments of the present methods and systems may allow a single sensor or camera, and/or a single lens, to acquire biometrics (e.g., iris information) and images of other obj ects. The sensor may be coupled to a lens to acquire biometric and non-biometric images using a combination of filters. Pairs of the filters may combine over different portions of a lens to pass infra-red or visible light. Particular pairs of the filters may combine under a first imaging configuration for acquiring biometric (e.g., IR) images. Other pairs of the filters may combine under a second imaging configuration for acquiring non-biometric (e.g., visible light) images.
In some embodiments, a system may comprise a lens that is capable of focusing within a mid to far range (e.g., depth of field of 20" to infinity) in the visible wavelength of light and also capable of focusing at a near range (e.g., a depth of field of 10", 1 ", 3", 5", 8", 12", 15", 18", etc.) in the infra-red (IR) wavelength of light. The system may include a sensor for image acquisition. The system may include a filter layer on a subset (e.g., a first portion) of the lens and a filter layer external to the lens such that the combination of the two filters are configured to be IR-cut or visible-pass, or allows only visible illumination to pass through to the sensor. The system may include a filter layer on another portion of the lens, and another filter layer external to the lens such that the combination of the two latter filters are configured to be IR-pass or visible-cut, or allows only infrared illumination to pass through to the sensor. In some embodiments, the mid to far range may include a depth of field of for example, 10", 12", 15", 18", 20", 25", 30", 35", 40" or otherwise, to 50", 100", 150", 200", 300", 500", infinity or otherwise. In some embodiments, the mid to far range does not overlap with the near range. In certain embodiments, the mid range (of the mid to far range) abuts or overlaps with the near range. One or both of the external filter layers may be movable or removable relative to the lens. For instance, the external filter layer on the first portion of the lens may slide over, or be moved relative to any portion of the lens or the whole lens.
In some embodiments, the system may be coupled to or incorporated into a computing device, such as any embodiment of the computing device 100, 102, 103 described above in connection with Figure 1A-1 C. For example, a main processor or CPU 121 may operate the sensor and/or external filter layers, and may generate and/or process an image acquired via the sensor. The main processor or CPU 121 may control illumination (IR and/or visible) for image acquisition.
In some implementations, iris recognition uses imagery of the iris that is at least 100 pixels in diameter and uses IR illumination, according to some ISO specifications for the iris. In some embodiments, however, the field of view of a sensor (e.g., for a typical visible spectrum webcam) is such that a target subject or a user has to be approximately 10" from the sensor in order to achieve 100 pixels across the subject's iris. The visible spectrum webcam, however, may be configured to have focal lengths that provide a depth of field that is approximately 20" to infinity, to acquire images of objects. In some embodiments, the lens system comprises at least two portions or settings. These portions or settings may sometimes be referred as imaging configurations or imaging modes.
The first portion or setting may include or correspond to a lens portion (e.g., first lens portion) that has a focal length that allows a sharp image of an iris in infra-red light to be focused on a sensor when the iris is located at a near distance (e.g., 10", 1 ", 3", 5", 8", 12", 15", 18", etc., from the lens) from the lens, sensor or system. In some embodiments, the first portion/setting may include a filter layer (e.g., filter 1) located over a same lens portion as a filter layer extemal (e.g., filter 4) to the lens. The combination of the two filter layers may be such that visible illumination is attenuated, and/or such that infra-red illumination suitable for iris recognition is allowed to pass through this lens portion. The infra-red illumination band that is allowed to pass may be 750-860nm for example. In some embodiments, one or both of the aforementioned filter layers under the first setting may be a band-pass filter for light of any wavelength within 750-860nm, for example. In other embodiments, the IR-pass band may be between 680nm, 700nm, 720 nm, 725nm, 750nm, 770nm or otherwise, to 800nm, 820nm, 840nm, 860nm, 880nm, 900nm or otherwise, for example.
The second portion or setting may include or correspond to a second or different lens portion to the aforementioned first portion, that has a focal length that allows a sharp image of obj ect(s) in visible light to be focused on a sensor when objects are at a mid to far distance from the lens, sensor or system. The second lens portion may be non-overlapping with the first lens portion, and may abut at least a portion of the first lens portion. In some embodiments, the second portion of the lens may be coupled to a filter layer (e.g., filter 2), and a filter layer external (e.g., filter 3) to the lens such that the combination of the latter two filter layers is such that infra-red illumination is attenuated and/or such that visible illumination suitable for viewing objects by humans is allowed to pass through or within the second portion of the lens. The visible illumination band that is allowed to pass may be 400- 700nm, for example. In some embodiments, one or both filter layers under the second setting may be a band-pass filter of light of any wavelength from 400-700nm, for example. In other embodiments, the IR-pass band may be between 250nm, 300nm, 350nm, 400nm, 450nm, 500nm, 550nm, 600nm or otherwise, to 600nm, 650nm, 700nm, 850nm, 900nm, 950nm, lOOOnm, 1200nm or otherwise, for example.
Figure 2A shows one embodiment of the system. The lens may correspond to the large circular shape, and one lens portion may comprise an outer annulus covered by filter 1. Another lens portion may comprise a central disk covered by filter 2. A moveable or removable external filter 3 may be on top of (or in front of, relative to the transmission direction of illumination propagating towards) the lens. Referring to one illustrative embodiment, Figure 2B shows focusing and/or acquisition of imagery under the
configuration of Figure 2A. The combination of filter 2 and filter 3 allows visible light to pass through the central portion of the lens and focus onto the sensor. Infra-red illumination however is blocked by filter 3 and/or filter 2.
Referring to an illustrative embodiment, Figure 2C shows the system configured such that the external filter material now corresponds to filter 4 (e.g., filter 4 may be
moved/introduced to cover a portion of the lens, and filter 3 may be removed or prevented from covering the lens). Referring to one illustrative embodiment, Figure 2D shows focusing and/or acquisition of imagery under the configuration of Figure 2C. The combination of filter 1 and filter 4 may allow infra-red light (corresponding to biometric information for example) to pass through the circular annulus portion of the lens and focus onto the sensor. Visible illumination however may be blocked (e.g., over the central portion of the lens covered by filter 2, and over the annulus portion) by the filter 4 and/or 1.
In some embodiments, a switch between filter 3 and filter 4 over some portion of the lens may be performed by sliding (e.g., manually) one or more filter structures over the lens or relative to the lens. In certain embodiments, filter 3 and filter 4 may remain in place relative to the lens, and each may be selectively activated (electrically and/or mechanically) to pass/transmit or attenuate/block certain wavelengths of light. One or more of the filters described herein may each be referred as an optical filter. One or more of the filters described herein may each comprise an interference, dichroic, absorptive, Lyot, or metal mesh filter.
Each of the filters may be of any shape and size, e.g., relative to the lens, which itself may be of any shape and size. For example, a filter and/or the lens may have rectangular, square, circular and/or curved features. The shape and/or size of a filter may be configured relative to the lens, or a portion of the lens with which the filter couples (e.g., optically couples). For instance, a lens may have a circular or rectangular profile, and may comprise portions configured for different depth of fields. The lens may be machined or produced to support the multiple (e.g., dual) imaging configurations described herein. The size and/or shape of a first filter (e.g., filter 1) may be configured to correspond/conform to or cover a first portion of the lens configured for a first imaging configuration, for example. Another filter (e.g., the filter 3 and/or filter 4) may be configured to cover, completely or substantially (e.g., 80, 85, 90, 95 or 99 percent of) all of one side of the lens (e.g., where light is incident on, or emerges from).
In some embodiments, the size, shape and/or diameter(s) of the central portion/disk and/or circular annulus (e.g., inner and/or outer diameters) may be determined based on the lens' expected or configured range of focal lengths in the visible wavelength of light and/or in the IR wavelength of light. The lens' expected or configured range of focal lengths in the IR and/or visible wavelength of light may correspond to an expected or configured range of the distance of an iris, eye or subject from the system (e.g., lens) for image capture. The lens' expected or configured range of focus in the visible wavelength of light may correspond to an expected or configured range of the distance of objects (e.g., non-iris objects) from the system (e.g., lens) for image capture. In some embodiments, one portion of the lens is configured to support a first range of focal lengths (or a first depth of field) and another portion of the lens is configured to support a second range of focal lengths (or a second depth of field). In certain embodiments, one portion of the lens is configured to support a first depth of field for image acquisition using IR light and another portion of the lens is configured to support a second depth of field for image acquisition using visible light.
In some embodiments, a sensor acquires an image of an iris based on a first imaging configuration. The iris may be located within a predetermined distance relative to the sensor. The first imaging configuration may include a first filter over a first portion of a lens coupled to the sensor, and a second filter over at least the first portion that combine with the first filter to allow infra-red light from the iris to pass to the sensor. The first and/or the second filters may be located on the same side (where light in incident on, or emerges from the lens) or different sides of the lens. One or both filters may couple directly (e.g., be deposited) onto the lens. One or both filters may be disposed some distance(s) from the lens, e.g., mounted on a slider, frame or panel.
The sensor may acquire an image of an object based on a second imaging
configuration. The object may be located beyond the predetermined distance. The second imaging configuration may include a third filter over a second portion of the lens, and a fourth filter replaces the second filter to combine with the third filter to allow visible light from the object to pass to the sensor. The third and/or the fourth filters may be located on the same side or different sides of the lens. One or both filters may couple directly (e.g., be deposited) onto the lens. One or both filters may be disposed some distance(s) from the lens, e.g., mounted on a slider, frame or panel.
In some embodiments, the system may include an additional lens (e.g., a thin lens) coupled on one or both of filters 3 and 4 of Figure 2D for instance, in order to perform at least some of the re-focus of the lens between visible and infra-red. For example, a second lens may be coupled on filter 3, and a third lens may be coupled on filter 4. The second lens and the third lens may be configured to have the same or different focusing characteristic(s). For instance, different focusing characteristics may be configured corresponding to the different depths of field and/or wavelengths (e.g., IR vs visible light).
In some embodiments, filter 3 may be deposited on (or coupled to) a slider. Filter 4 may be deposited on another slider, or on another portion of the same slider. In some embodiments, a slider can move an associated filter over the lens, or away from the lens. In certain embodiments, the slider can be used to switch between filters 3 and 4, in positioning one of these filters over the lens. In some embodiments, there may be no filters deposited on (or coupled to) the lens and all the filters are deposited on (or coupled to) the slider.
In certain embodiments, the slider (e.g., filter 3 and/or filter 4) may not be present. This may allow contamination of visible illumination/light and infra-red illumination/light. Due to the different focus point of each of the infra-red and visible elements, the
contamination can be acceptable (e.g. of an acceptable level) in some circumstances.
Referring now to Figure 2E, one embodiment of a method for acquiring IR light and visible light images is depicted. In one or more embodiments, an imaging system includes a lens, and the lens may have a first filter over a first portion of the lens, and may have a second filter over a second portion of the lens. The method includes operating the lens in a first configuration, comprising operating the lens with a third filter and the second filter to allow visible light from a first object located beyond a predetermined distance from the lens to pass and be focused on a sensor for image acquisition (201). The sensor may acquire, in the first configuration, an image of the first object located beyond the predetermined distance (203). The lens may be operated in a second configuration, comprising operating the lens with a fourth filter and the first filter to allow IR light from a second object located within the predetermined distance to pass and be focused on the sensor for image acquisition (205). The sensor may acquire, in the second configuration, an image of the second object located within the predetermined distance (207). The second object may comprise an iris for biometric acquisition.
In some embodiments, the lens may have a first filter over a first portion of the lens, and may have a second filter over a second portion of the lens. At least one of the first filter or the second filter may be deposited on, or coupled to the lens. For example, one or both of the filters may be fused or applied onto different parts of the surface of the lens. In some embodiments, one or both of the filters are placed or secured over different parts of the outer surface of one side of the lens. In certain embodiments, the second region of the lens comprises a central disk portion of the lens facing the sensor, and the first region of the lens comprises an annulus portion around the central disk portion. The imaging system may operate the lens in several configurations, including at least a first configuration and a second configuration.
Referring now to 201, and in one or more embodiments, the imaging system operates the lens in a first configuration. The system may operate the lens with a third filter and the second filter to allow visible light from a first object located beyond a predetermined distance from the lens to pass and be focused on a sensor for image acquisition. The system may allow the visible light to pass through the third filter, the lens and the second filter (via the second portion), to reach the sensor. At least one of the second filter or the third filter may allow light of wavelength from 400 nm to 700 nm to pass. The at least one of the second filter or the third filter may comprise a band-pass filter.
The first filter may block some or all of the visible light from passing through or leaving the first portion of the lens. The lens, corresponding to the second portion, may focus the visible light onto the sensor (or onto visible light sensitive or visible light specific portions of the sensor). In some embodiments, the system operates a second lens coupled to the third filter, to assist the lens in focusing the visible light onto the sensor.
Referring now to 203, and in one or more embodiments, the sensor may acquire, in the first configuration, an image of the first object located beyond the predetermined distance. The sensor may acquire an image of the first object using visible light when the third filter is activated or covering the lens. A processor of the system may, for example, coordinate the image acquisition with the activation or use of the third filter in relation to the lens. The system may illuminate the object using a visible light source, for acquisition of an image of the first object. A processor of the system may, for example, coordinate the image acquisition with the illumination from the visible light source.
Referring now to 205, and in one or more embodiments, the imaging system operates the lens in a second configuration. The system may operate the lens with a fourth filter and the first filter to allow IR light from another object located within the predetermined distance to pass and be focused on the sensor for image acquisition. The system may allow the IR light to pass through the fourth filter, the lens and the first filter (via the first portion), to reach the sensor. At least one of the first filter or the fourth filter may allow light of wavelength from 750 nm to 860 nm to pass. The at least one of the first filter or the fourth filter may comprise a band-pass filter. The second filter may block some or all of the IR light from passing through or leaving the second portion of the lens. The lens, corresponding to the first portion, may focus the IR light onto the sensor (or onto IR light sensitive or IR specific portions of the sensor). In some embodiments, the system operates another lens coupled to the fourth filter, to assist the lens in focusing the IR light onto the sensor. In some embodiments, the system operates only one of the third filter or the fourth filter over the lens at a given time. The lens may be maintained at a fixed distance from the sensor in the first configuration and the second configuration
Referring now to 207, and in one or more embodiments, the sensor may acquire, in the second configuration, an image of the second object located within the predetermined distance. The second object may comprise an iris for biometric acquisition. The sensor may acquire, in the second configuration, an image of the second object located within the predetermined distance. The sensor may acquire an image of the second object using IR light when the fourth filter is activated or covering the lens. A processor of the system may, for example, coordinate the image acquisition with the activation or use of the fourth filter in relation to the lens. The system may illuminate the object using an IR light source, for acquisition of an image of the second object. A processor of the system may, for example, coordinate the image acquisition with the illumination from the IR light source.
Having described certain embodiments of the methods and systems, it will now become apparent to one of skill in the art that other embodiments incorporating the concepts of the invention may be used. It should be understood that the systems described above may provide multiple ones of any or each of those components and these components may be provided on either a standalone machine or, in some embodiments, on multiple machines in a distributed system. The systems and methods described above may be implemented as a method, apparatus or article of manufacture using programming and/or engineering techniques to produce software, firmware, hardware, or any combination thereof. In addition, the systems and methods described above may be provided as one or more computer-readable programs embodied on or in one or more articles of manufacture. The term "article of manufacture" as used herein is intended to encompass code or logic accessible from and embedded in one or more computer-readable devices, firmware, programmable logic, memory devices (e.g., EEPROMs, ROMs, PROMs, RAMs, SRAMs, etc.), hardware (e.g., integrated circuit chip, Field Programmable Gate Array (FPGA), Application Specific Integrated Circuit (ASIC), etc.), electronic devices, a computer readable non-volatile storage unit (e.g., CD-ROM, floppy disk, hard disk drive, etc.). The article of manufacture may be accessible from a file server providing access to the computer-readable programs via a network transmission line, wireless transmission media, signals propagating through space, radio waves, infrared signals, etc. The article of manufacture may be a flash memory card or a magnetic tape. The article of manufacture includes hardware logic as well as software or programmable code embedded in a computer readable medium that is executed by a processor. In general, the computer-readable programs may be implemented in any programming language, such as LISP, PERL, C, C++, C#, PROLOG, or in any byte code language such as JAVA. The software programs may be stored on or in one or more articles of manufacture as object code.
It should be noted that certain passages of this disclosure can reference terms such as "first" and "second" in connection with filters, sensors, etc., for purposes of identifying or differentiating one from another or from others. These terms are not intended to merely relate entities (e.g., a first device and a second device) temporally or according to a sequence, although in some cases, these entities can include such a relationship. Nor do these terms limit the number of possible entities (e.g., devices) that can operate within a system or environment. It should be understood that the systems described above can provide multiple ones of any or each of those components and these components can be provided on either a standalone machine or, in some embodiments, on multiple machines in a distributed system.

Claims

CLAIMS We claim:
1. A system for acquiring infra-red (IR) light and visible light images, the system comprising:
a sensor; and
a lens configured to operate in at least a first configuration and a second
configuration, the lens having a first filter over a first portion of the lens and a second filter over a second portion of the lens, wherein:
in the first configuration, a third filter operates with the lens and the second filter to allow visible light from a first object located beyond a predetermined distance from the lens to pass and be focused on the sensor for image acquisition; and
in the second configuration, a fourth filter operates with the lens and the first filter to allow IR light from a second object located within the predetermined distance to pass and be focused on the sensor for image acquisition.
2. The system of claim 1, wherein the second object located within the predetermined distance comprises an iris for biometric acquisition.
3. The system of claim 1, wherein at least one of the second filter or the third filter comprises a band-pass filter configured to allow light of wavelength from 400 nm to 700 nm to pass.
4. The system of claim 1, wherein at least one of the first filter or the fourth filter comprises a band-pass filter configured to allow light of wavelength from 750 nm to 860 nm to pass.
5. The system of claim 1, wherein the lens is disposed at a fixed distance from the sensor in the first configuration and the second configuration.
6. The system of claim 1, wherein the second region of the lens comprises a central disk portion of the lens facing the sensor, and the first region of the lens comprises an annulus portion around the central disk portion.
7. The system of claim 1, wherein only one of the third filter or the fourth filter is operative over the lens at a given time.
8. The system of claim 1, further comprising an IR light source, the IR light source configured to illuminate the second object for image acquisition in the second configuration.
9. The system of claim 1, further comprising a second lens coupled to the third filter or the fourth filter, the second lens configured to assist the lens in focusing the visible light onto the sensor if coupled to the third filter, or focusing the IR light onto the sensor if coupled to the fourth filter.
10. The system of claim 1, wherein at least one of the first filter or the second filter is deposited on the lens.
11. A method for acquiring infra-red (IR) light and visible light images, the method comprising:
operating a lens in a first configuration, the lens having a first filter over a first portion of the lens and a second filter over a second portion of the lens, wherein operating in the first configuration comprises operating the lens with a third filter and the second filter to allow visible light from a first object located beyond a predetermined distance from the lens to pass and be focused on a sensor for image acquisition; and
operating the lens in a second configuration, wherein operating in the second configuration comprises operating the lens with a fourth filter and the first filter to allow IR light from a second object located within the predetermined distance to pass and be focused on the sensor for image acquisition.
12. The method of claim 11 , further comprising acquiring, by the sensor in the second configuration, an image of the second object located within the predetermined distance, the second object comprising an iris for biometric acquisition.
13. The method of claim 11 , comprising allowing, by at least one of the second filter or the third filter, light of wavelength from 400 nm to 700 nm to pass, the at least one of the second filter or the third filter comprising a band-pass filter.
14. The method of claim 11 , comprising allowing, by at least one of the first filter or the fourth filter, light of wavelength from 750 nm to 860 nm to pass, the at least one of the first filter or the fourth filter comprising a band-pass filter.
15. The method of claim 11 , further comprising maintaining the lens at a fixed distance from the sensor in the first configuration and the second configuration.
16. The method of claim 11 , wherein the second region of the lens comprises a central disk portion of the lens facing the sensor, and the first region of the lens comprises an annulus portion around the central disk portion.
17. The method of claim 1 1, comprising operating only one of the third filter or the fourth filter over the lens at a given time.
18. The method of claim 11 , further comprising illuminating, by an IR light source, the second object for image acquisition in the second configuration.
19. The method of claim 11 , further comprising operating a second lens coupled to the third filter or the fourth filter, to assist the lens in focusing the visible light onto the sensor if coupled to the third filter, or in focusing the IR light onto the sensor if coupled to the fourth filter.
20. The method of claim 11 , wherein at least one of the first filter or the second filter is deposited on the lens.
PCT/US2016/013840 2015-01-20 2016-01-19 Lens system for high quality visible image acquisition and infra-red iris image acquisition WO2016118473A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
BR112017015375A BR112017015375A2 (en) 2015-01-20 2016-01-19 high quality infrared iris image acquisition and visible lens acquisition system
EP16740566.1A EP3248370A4 (en) 2015-01-20 2016-01-19 Lens system for high quality visible image acquisition and infra-red iris image acquisition
CN201680017096.XA CN107438779B (en) 2015-01-20 2016-01-19 Lens system for high-quality visible light image acquisition and infrared IRIS image acquisition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562105691P 2015-01-20 2015-01-20
US62/105,691 2015-01-20

Publications (1)

Publication Number Publication Date
WO2016118473A1 true WO2016118473A1 (en) 2016-07-28

Family

ID=56408095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2016/013840 WO2016118473A1 (en) 2015-01-20 2016-01-19 Lens system for high quality visible image acquisition and infra-red iris image acquisition

Country Status (5)

Country Link
US (2) US10074011B2 (en)
EP (1) EP3248370A4 (en)
CN (1) CN107438779B (en)
BR (1) BR112017015375A2 (en)
WO (1) WO2016118473A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106796655A (en) * 2014-09-12 2017-05-31 眼锁有限责任公司 Method and apparatus for guiding sight line of the user in iris authentication system
BR112017015375A2 (en) * 2015-01-20 2018-01-16 Eyelock Llc high quality infrared iris image acquisition and visible lens acquisition system
CN114143435A (en) 2016-11-10 2022-03-04 奇跃公司 Method and system for multiple F-value shots
TWI617845B (en) * 2017-03-16 2018-03-11 財團法人工業技術研究院 Image sensing apparatus
US11080874B1 (en) * 2018-01-05 2021-08-03 Facebook Technologies, Llc Apparatuses, systems, and methods for high-sensitivity active illumination imaging
GB2607264A (en) * 2021-03-31 2022-12-07 Continental Automotive Gmbh An imaging device arranged in an instrument cluster of vehicle for monitoring driver

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080308712A1 (en) 2007-03-22 2008-12-18 Fujifilm Corporation Image capturing apparatus
US7621636B2 (en) * 2007-01-10 2009-11-24 Clarity Medical Systems, Inc. Working distance and alignment sensor for a fundus camera
US20100128937A1 (en) * 2008-11-24 2010-05-27 Electronics And Telecommunications Research Institute Multi-image acquisition apparatus
US20130063641A1 (en) * 2010-05-24 2013-03-14 Omnivision Technologies, Inc. Dual-sided image sensor
US20130188057A1 (en) * 2012-01-20 2013-07-25 Htc Corporation Image capturing device and method thereof
US20140132775A1 (en) * 2012-11-12 2014-05-15 Ronald Fischer Image capture using infrared and visible spectrum light

Family Cites Families (99)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4643524A (en) * 1983-02-14 1987-02-17 Kei Mori Method of using a condensing lens
US4641349A (en) 1985-02-20 1987-02-03 Leonard Flom Iris recognition system
US5291560A (en) 1991-07-15 1994-03-01 Iri Scan Incorporated Biometric personal identification system based on iris analysis
US5259040A (en) 1991-10-04 1993-11-02 David Sarnoff Research Center, Inc. Method for determining sensor motion and scene structure and image processing system therefor
US5488675A (en) 1994-03-31 1996-01-30 David Sarnoff Research Center, Inc. Stabilizing estimate of location of target region inferred from tracked multiple landmark regions of a video image
US5572596A (en) 1994-09-02 1996-11-05 David Sarnoff Research Center, Inc. Automated, non-invasive iris recognition system and method
US6714665B1 (en) 1994-09-02 2004-03-30 Sarnoff Corporation Fully automated iris recognition system utilizing wide and narrow fields of view
US7248719B2 (en) 1994-11-28 2007-07-24 Indivos Corporation Tokenless electronic transaction system
US5802199A (en) 1994-11-28 1998-09-01 Smarttouch, Llc Use sensitive identification system
US5764789A (en) 1994-11-28 1998-06-09 Smarttouch, Llc Tokenless biometric ATM access system
US7613659B1 (en) 1994-11-28 2009-11-03 Yt Acquisition Corporation System and method for processing tokenless biometric electronic transmissions using an electronic rule module clearinghouse
US5613012A (en) 1994-11-28 1997-03-18 Smarttouch, Llc. Tokenless identification system for authorization of electronic transactions and electronic transmissions
US5805719A (en) 1994-11-28 1998-09-08 Smarttouch Tokenless identification of individuals
US6366682B1 (en) 1994-11-28 2002-04-02 Indivos Corporation Tokenless electronic transaction system
US5615277A (en) 1994-11-28 1997-03-25 Hoffman; Ned Tokenless security system for authorizing access to a secured computer system
US6192142B1 (en) 1994-11-28 2001-02-20 Smarttouch, Inc. Tokenless biometric electronic stored value transactions
US5581629A (en) 1995-01-30 1996-12-03 David Sarnoff Research Center, Inc Method for estimating the location of an image target region from tracked multiple image landmark regions
JPH09212644A (en) 1996-02-07 1997-08-15 Oki Electric Ind Co Ltd Iris recognition device and iris recognition method
US5737439A (en) 1996-10-29 1998-04-07 Smarttouch, Llc. Anti-fraud biometric scanner that accurately detects blood flow
US6144754A (en) 1997-03-28 2000-11-07 Oki Electric Industry Co., Ltd. Method and apparatus for identifying individuals
US6373968B2 (en) 1997-06-06 2002-04-16 Oki Electric Industry Co., Ltd. System for identifying individuals
US6064752A (en) 1997-11-04 2000-05-16 Sensar, Inc. Method and apparatus for positioning subjects before a single camera
US6069967A (en) 1997-11-04 2000-05-30 Sensar, Inc. Method and apparatus for illuminating and imaging eyes through eyeglasses
US6055322A (en) 1997-12-01 2000-04-25 Sensor, Inc. Method and apparatus for illuminating and imaging eyes through eyeglasses using multiple sources of illumination
US6021210A (en) 1997-12-01 2000-02-01 Sensar, Inc. Image subtraction to remove ambient illumination
US5953440A (en) 1997-12-02 1999-09-14 Sensar, Inc. Method of measuring the focus of close-up images of eyes
US6028949A (en) 1997-12-02 2000-02-22 Mckendall; Raymond A. Method of verifying the presence of an eye in a close-up image
US6980670B1 (en) 1998-02-09 2005-12-27 Indivos Corporation Biometric tokenless electronic rewards system and method
US6850631B1 (en) 1998-02-20 2005-02-01 Oki Electric Industry Co., Ltd. Photographing device, iris input device and iris image input method
US5978494A (en) 1998-03-04 1999-11-02 Sensar, Inc. Method of selecting the best enroll image for personal identification
JP3271750B2 (en) 1998-03-05 2002-04-08 沖電気工業株式会社 Iris identification code extraction method and device, iris recognition method and device, data encryption device
JP3315648B2 (en) 1998-07-17 2002-08-19 沖電気工業株式会社 Iris code generation device and iris recognition system
US6381347B1 (en) 1998-11-12 2002-04-30 Secugen High contrast, low distortion optical acquistion system for image capturing
US6377699B1 (en) 1998-11-25 2002-04-23 Iridian Technologies, Inc. Iris imaging telephone security module and method
US6289113B1 (en) 1998-11-25 2001-09-11 Iridian Technologies, Inc. Handheld iris imaging apparatus and method
US6532298B1 (en) 1998-11-25 2003-03-11 Iridian Technologies, Inc. Portable authentication device and method using iris patterns
US6424727B1 (en) 1998-11-25 2002-07-23 Iridian Technologies, Inc. System and method of animal identification and animal transaction authorization using iris patterns
KR100320465B1 (en) 1999-01-11 2002-01-16 구자홍 Iris recognition system
KR100320188B1 (en) 1999-03-23 2002-01-10 구자홍 Forgery judgment method for iris recognition system
US6247813B1 (en) 1999-04-09 2001-06-19 Iritech, Inc. Iris identification system and method of identifying a person through iris recognition
US6700998B1 (en) 1999-04-23 2004-03-02 Oki Electric Industry Co, Ltd. Iris registration unit
KR100649303B1 (en) 2000-11-16 2006-11-24 엘지전자 주식회사 Apparatus of taking pictures in iris recognition system based on both of eyes's images
FR2819327B1 (en) 2001-01-10 2003-04-18 Sagem OPTICAL IDENTIFICATION DEVICE
US7095901B2 (en) 2001-03-15 2006-08-22 Lg Electronics, Inc. Apparatus and method for adjusting focus position in iris recognition system
US8284025B2 (en) 2001-07-10 2012-10-09 Xatra Fund Mx, Llc Method and system for auditory recognition biometrics on a FOB
KR100854890B1 (en) 2001-12-28 2008-08-28 엘지전자 주식회사 Iris recording and recognition method using of several led for iris recognition system
US7715595B2 (en) 2002-01-16 2010-05-11 Iritech, Inc. System and method for iris identification using stereoscopic face recognition
WO2003060814A1 (en) 2002-01-16 2003-07-24 Iritech, Inc. System and method for iris identification using stereoscopic face recognition
JP4062031B2 (en) 2002-09-25 2008-03-19 セイコーエプソン株式会社 Gamma correction method, gamma correction apparatus and image reading system
US7385626B2 (en) 2002-10-21 2008-06-10 Sarnoff Corporation Method and system for performing surveillance
FR2851673B1 (en) 2003-02-20 2005-10-14 Sagem METHOD FOR IDENTIFYING PEOPLE AND SYSTEM FOR IMPLEMENTING THE METHOD
FR2860629B1 (en) 2003-10-01 2005-12-02 Sagem DEVICE FOR POSITIONING A USER BY REPERAGE ON BOTH EYES
FR2864290B1 (en) 2003-12-18 2006-05-26 Sagem METHOD AND DEVICE FOR RECOGNIZING IRIS
US7542590B1 (en) 2004-05-07 2009-06-02 Yt Acquisition Corporation System and method for upgrading biometric data
FR2870948B1 (en) 2004-05-25 2006-09-01 Sagem DEVICE FOR POSITIONING A USER BY DISPLAYING ITS MIRROR IMAGE, IMAGE CAPTURE DEVICE AND CORRESPONDING POSITIONING METHOD
FR2871910B1 (en) 2004-06-22 2006-09-22 Sagem BIOMETRIC DATA ENCODING METHOD, IDENTITY CONTROL METHOD, AND DEVICES FOR IMPLEMENTING METHODS
US7639840B2 (en) 2004-07-28 2009-12-29 Sarnoff Corporation Method and apparatus for improved video surveillance through classification of detected objects
US7558406B1 (en) 2004-08-03 2009-07-07 Yt Acquisition Corporation System and method for employing user information
US8190907B2 (en) 2004-08-11 2012-05-29 Sony Computer Entertainment Inc. Process and apparatus for automatically identifying user of consumer electronics
WO2006039003A2 (en) 2004-08-20 2006-04-13 Viisage Technology, Inc. Method and system to authenticate an object
US7616788B2 (en) 2004-11-12 2009-11-10 Cogent Systems, Inc. System and method for fast biometric pattern matching
KR100629550B1 (en) 2004-11-22 2006-09-27 아이리텍 잉크 Multiscale Variable Domain Decomposition Method and System for Iris Identification
EP1820142A4 (en) 2004-12-07 2010-03-10 Aoptix Technologies Iris imaging using reflection from the eye
US7869627B2 (en) 2004-12-07 2011-01-11 Aoptix Technologies, Inc. Post processing of iris images to increase image quality
US7418115B2 (en) 2004-12-07 2008-08-26 Aoptix Technologies, Inc. Iris imaging using reflection from the eye
US7697786B2 (en) 2005-03-14 2010-04-13 Sarnoff Corporation Method and apparatus for detecting edges of an object
FR2884947B1 (en) 2005-04-25 2007-10-12 Sagem METHOD FOR ACQUIRING THE SHAPE OF THE IRIS OF AN EYE
FR2896604B1 (en) 2006-01-23 2008-12-26 Sagem Defense Securite METHODS FOR DETERMINING AN IDENTIFIER AND BIOMETRIC VERIFICATION AND ASSOCIATED SYSTEMS
US20070211922A1 (en) 2006-03-10 2007-09-13 Crowley Christopher W Integrated verification and screening system
FR2899357B1 (en) 2006-03-29 2008-06-20 Sagem Defense Securite PROCESSING BIOMETRIC DATA IN A MULTI DIMENSIONAL REFERENTIAL.
FR2900482B1 (en) 2006-04-28 2008-06-20 Sagem Defense Securite METHOD FOR IDENTIFYING A PERSON BY ANALYZING THE CTERISTIC CARA OF ITS CILES
FR2901898B1 (en) 2006-06-06 2008-10-17 Sagem Defense Securite IDENTIFICATION METHOD AND ACQUIRING DEVICE FOR CARRYING OUT SAID METHOD
FR2903513B1 (en) 2006-07-10 2008-12-05 Sagem Defense Securite METHOD FOR IDENTIFYING AN INDIVIDUAL USING A TRANSFORMATION FUNCTION AND ASSOCIATED IDENTIFICATION DEVICE
US7574021B2 (en) 2006-09-18 2009-08-11 Sarnoff Corporation Iris recognition for a secure facility
JP4650386B2 (en) 2006-09-29 2011-03-16 沖電気工業株式会社 Personal authentication system and personal authentication method
US8092021B1 (en) 2007-01-26 2012-01-10 Aoptix Technologies, Inc. On-axis illumination for iris imaging
US8025399B2 (en) 2007-01-26 2011-09-27 Aoptix Technologies, Inc. Combined iris imager and wavefront sensor
FR2912532B1 (en) 2007-02-14 2009-04-03 Sagem Defense Securite SECURED BIOMETRIC CAPTURE DEVICE
US20090074256A1 (en) 2007-03-05 2009-03-19 Solidus Networks, Inc. Apparatus and methods for testing biometric equipment
FR2924247B1 (en) 2007-11-22 2009-11-13 Sagem Securite METHOD OF IDENTIFYING A PERSON BY ITS IRIS
FR2925732B1 (en) 2007-12-21 2010-02-12 Sagem Securite GENERATION AND USE OF A BIOMETRIC KEY
US8243133B1 (en) 2008-06-28 2012-08-14 Aoptix Technologies, Inc. Scale-invariant, resolution-invariant iris imaging using reflection from the eye
US8132912B1 (en) 2008-06-29 2012-03-13 Aoptix Technologies, Inc. Iris imaging system using circular deformable mirror mounted by its circumference
FR2935508B1 (en) 2008-09-01 2010-09-17 Sagem Securite METHOD FOR DETERMINING A PSEUDO-IDENTITY FROM MINUTE CHARACTERISTICS AND ASSOCIATED DEVICE
KR101030613B1 (en) 2008-10-08 2011-04-20 아이리텍 잉크 The Region of Interest and Cognitive Information Acquisition Method at the Eye Image
US20100278394A1 (en) 2008-10-29 2010-11-04 Raguin Daniel H Apparatus for Iris Capture
US8317325B2 (en) 2008-10-31 2012-11-27 Cross Match Technologies, Inc. Apparatus and method for two eye imaging for iris identification
KR101502372B1 (en) * 2008-11-26 2015-03-16 삼성전자주식회사 Apparatus and method for obtaining an image
JP4702441B2 (en) * 2008-12-05 2011-06-15 ソニー株式会社 Imaging apparatus and imaging method
ES2822293T3 (en) 2009-01-07 2021-04-30 Magnetic Autocontrol Gmbh Device to control the passage of people
WO2011093538A1 (en) 2010-01-27 2011-08-04 Iris Id Iris scanning apparatus employing wide-angle camera, for identifying subject, and method thereof
US8824749B2 (en) 2011-04-05 2014-09-02 Microsoft Corporation Biometric recognition
JP2014078052A (en) * 2012-10-09 2014-05-01 Sony Corp Authentication apparatus, authentication method, and program
KR102070778B1 (en) * 2012-11-23 2020-03-02 엘지전자 주식회사 Rgb-ir sensor with pixels array and apparatus and method for obtaining 3d image using the same
US9091775B1 (en) * 2013-02-04 2015-07-28 Sierra Innotek, Inc. Method and apparatus for detecting and locating camera illuminators
WO2014205021A1 (en) * 2013-06-18 2014-12-24 Delta ID Inc. Multiple mode image acquisition for iris imaging
US10152631B2 (en) * 2014-08-08 2018-12-11 Fotonation Limited Optical system for an image acquisition device
BR112017015375A2 (en) * 2015-01-20 2018-01-16 Eyelock Llc high quality infrared iris image acquisition and visible lens acquisition system
US20170140221A1 (en) * 2015-11-13 2017-05-18 Intel Corporation Dual function camera for infrared and visible light with electrically-controlled filters

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7621636B2 (en) * 2007-01-10 2009-11-24 Clarity Medical Systems, Inc. Working distance and alignment sensor for a fundus camera
US20080308712A1 (en) 2007-03-22 2008-12-18 Fujifilm Corporation Image capturing apparatus
US20100128937A1 (en) * 2008-11-24 2010-05-27 Electronics And Telecommunications Research Institute Multi-image acquisition apparatus
US20130063641A1 (en) * 2010-05-24 2013-03-14 Omnivision Technologies, Inc. Dual-sided image sensor
US20130188057A1 (en) * 2012-01-20 2013-07-25 Htc Corporation Image capturing device and method thereof
US20140132775A1 (en) * 2012-11-12 2014-05-15 Ronald Fischer Image capture using infrared and visible spectrum light

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3248370A4

Also Published As

Publication number Publication date
US10997411B2 (en) 2021-05-04
US10074011B2 (en) 2018-09-11
US20200026918A1 (en) 2020-01-23
US20160210509A1 (en) 2016-07-21
BR112017015375A2 (en) 2018-01-16
EP3248370A1 (en) 2017-11-29
CN107438779B (en) 2019-12-13
CN107438779A (en) 2017-12-05
EP3248370A4 (en) 2018-09-12

Similar Documents

Publication Publication Date Title
US10997411B2 (en) Lens system for high quality visible image acquisition and infra-red iris image acquisition
KR102024954B1 (en) Systems and methods for capturing artifact free images
KR102332320B1 (en) Multi-band biometric camera system having iris color recognition
KR102392800B1 (en) Agile biometric camera with bandpass filter and variable light source
US20170085790A1 (en) High-resolution imaging of regions of interest
Wang et al. Bio-inspired adaptive hyperspectral imaging for real-time target tracking
Vedaldi et al. Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part II
US10943335B2 (en) Hybrid tone mapping for consistent tone reproduction of scenes in camera systems
CN113647094A (en) Electronic device, method, and computer-readable medium for providing out-of-focus imaging effects in video
US10534969B2 (en) Systems and methods for providing illumination for iris biometric acquisition
US20180032814A1 (en) Methods and apparatus for directing the gaze of a user in an iris recognition system
CA3032005A1 (en) Systems and methods of illumination control for biometric capture and liveness detection
US9239636B1 (en) System and method for adjusting a field of view in a camera of an electronic device
US20190222752A1 (en) Sensors arragement and shifting for multisensory super-resolution cameras in imaging environments
US10491836B2 (en) Electronic device and control method in which the resolution of a combined output image can be increased without deterioration
EP3451042B1 (en) Systems and methods of biometric acquisition using positive optical distortion
CA2954908C (en) Device for detecting movement
KR20210059612A (en) Asymmetric normalized correlation layer for deep neural network feature matching
WO2022067836A1 (en) Simultaneous localization and mapping using cameras capturing multiple spectra of light
WO2023167789A1 (en) Wide angle eye tracking
CN117940956A (en) Keypoint detection and feature descriptor computation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16740566

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2016740566

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017015375

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017015375

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170718