WO2016117115A1 - 交流回転機の制御装置 - Google Patents

交流回転機の制御装置 Download PDF

Info

Publication number
WO2016117115A1
WO2016117115A1 PCT/JP2015/051841 JP2015051841W WO2016117115A1 WO 2016117115 A1 WO2016117115 A1 WO 2016117115A1 JP 2015051841 W JP2015051841 W JP 2015051841W WO 2016117115 A1 WO2016117115 A1 WO 2016117115A1
Authority
WO
WIPO (PCT)
Prior art keywords
angle
signal
correction
phase
rotating machine
Prior art date
Application number
PCT/JP2015/051841
Other languages
English (en)
French (fr)
Inventor
古川 晃
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to EP15878807.5A priority Critical patent/EP3249800B1/en
Priority to PCT/JP2015/051841 priority patent/WO2016117115A1/ja
Priority to US15/541,601 priority patent/US10608568B2/en
Priority to JP2016570450A priority patent/JP6238264B2/ja
Priority to CN201580072959.9A priority patent/CN107251404B/zh
Publication of WO2016117115A1 publication Critical patent/WO2016117115A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/244Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing characteristics of pulses or pulse trains; generating pulses or pulse trains
    • G01D5/24471Error correction
    • G01D5/24476Signal processing
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/046Controlling the motor
    • B62D5/0463Controlling the motor calculating assisting torque from the motor based on driver input
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors
    • H02P25/03Synchronous motors with brushless excitation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • H02P27/08Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters with pulse width modulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P6/00Arrangements for controlling synchronous motors or other dynamo-electric motors using electronic commutation dependent on the rotor position; Electronic commutators therefor
    • H02P6/14Electronic commutators
    • H02P6/16Circuit arrangements for detecting position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/021Determination of steering angle
    • B62D15/0235Determination of steering angle by measuring or deriving directly at the electric power steering motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D5/00Power-assisted or power-driven steering
    • B62D5/04Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear
    • B62D5/0457Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such
    • B62D5/0481Power-assisted or power-driven steering electrical, e.g. using an electric servo-motor connected to, or forming part of, the steering gear characterised by control features of the drive means as such monitoring the steering system, e.g. failures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/145Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the relative movement between the Hall device and magnetic fields

Definitions

  • This invention relates to a control device for an AC rotating machine equipped with a magnetic sensor for detecting the angular position of a rotor.
  • a lid is disposed between the armature of the motor and the magnetic sensor to suppress the influence of the magnetic field generated by the armature on the sensor.
  • Patent Document 1 there is one that improves the accuracy of detecting the angular position.
  • the magnetic sensor can accurately detect the magnetic field of the sensor magnet by providing the magnetic induction portion in contact with the holder that holds the sensor magnet (for example, Patent Document 2).
  • the velocity signal is analyzed with reference to the angle signal detected by the resolver to calculate a detection error for each frequency component, and an estimated angle error signal obtained by synthesizing the detection error is used.
  • an estimated angle error signal obtained by synthesizing the detection error.
  • Patent Document 1 the effect of the magnetic field generated by the armature is not exerted on the sensor by providing the lid, but the increase in cost, the deterioration of productivity, and the overall product caused by adding the lid are included. There is concern about an increase in mass.
  • Patent Document 2 the influence of a magnetic field other than the magnetic field desired to be detected is suppressed by providing a magnetic induction part. Similarly, the increase in cost, the deterioration of productivity, and the product caused by adding the magnetic induction part There is concern about an increase in the overall mass.
  • Patent Document 3 it is possible to reduce the angle error of each frequency component by obtaining the estimated angle error signal using the detection error for each frequency component, but the order component error whose factor is known is also a factor. Since the unknown order component error is corrected without being distinguished, there is a concern that it is overcorrected or undercorrected.
  • the Fourier transform is used to frequency-analyze the angle signal detected by the resolver, and data for a plurality of past cycles is required. Therefore, the processing load increases compared to simple correction, and the RAM is If an error occurs in the stored data, there is a possibility of erroneous learning.
  • the present invention has been made to solve the above-described problems, and an object of the present invention is to obtain a simple and low-cost control device for an AC rotating machine that can detect the angular position of the rotor with high accuracy.
  • An AC rotating machine control apparatus is an AC rotating machine control apparatus that controls an AC rotating machine in which a rotor rotates by a rotating magnetic field formed by a multiphase AC current flowing in an armature winding of a stator.
  • the rotation angle of the AC rotating machine by rotating in synchronism with the inverter that applies voltage to the armature winding of the AC rotating machine, the inverter connecting part that connects the armature winding and the inverter, and A magnetic field generator for generating an angle detection magnetic field for detecting the angle, an angle detector for detecting two orthogonal components of the angle detection magnetic field generated by the magnetic field generator as a sine signal and a cosine signal, and AC rotation
  • a control calculation unit that controls a voltage applied to the inverter based on the current command of the machine and the angle information obtained from the sine signal and the cosine signal, and the control calculation unit flows to the inverter connection unit Error in angle information due to noise magnetic field generated by phase AC current, phase correction constant determined by current vector of multi
  • the detection error of the angle detector due to the noise magnetic field generated by the polyphase alternating current flowing in the inverter connection portion is expressed by the relative positional relationship between the inverter connection portion and the angle detector, and the current vector of the multiphase alternating current. Is corrected using a correction signal whose phase and amplitude are determined by the above. As a result, a simple and low-cost control device for an AC rotating machine that can detect the angular position of the rotor with high accuracy can be obtained.
  • FIG. FIG. 1 is a schematic diagram showing the configuration of the control device for an AC rotating machine according to Embodiment 1 of the present invention, together with the AC rotating machine.
  • the control device for an AC rotating machine shown in FIG. 1 controls the AC rotating machine 1 and includes an inverter 2, a magnetic field generator 3, an angle detector 4, an inverter connection unit 5, and a control calculation unit 7. Composed.
  • the AC rotating machine 1 includes a rotor and a stator, and the rotor is rotated by a rotating magnetic field formed by a three-phase AC current flowing in the armature winding of the stator.
  • the AC rotating machine 1 of the first embodiment is not limited to such a form.
  • the AC rotating machine 1 may be a field winding type synchronous rotating machine.
  • the electrical angle ⁇ e that is the phase in the electrical cycle of the AC rotating machine 1 and the mechanical angle ⁇ m that is the phase in the mechanical cycle of the AC rotating machine 1.
  • the rate is different.
  • the electrical angle ⁇ e changes at twice the speed of the mechanical angle ⁇ m.
  • the electrical angle ⁇ e is expressed by the following formula (1) using the number P of pole pairs and the mechanical angle ⁇ m.
  • the inverter 2 converts the DC voltage supplied from the DC power supply by controlling the semiconductor switch according to the switching signal output from the control calculation unit 7.
  • the power-converted voltage is applied to the armature winding of the AC rotating machine 1 through the inverter connection unit 5.
  • the inverter 2 generates a torque of the AC rotating machine 1 by appropriately applying a voltage to the armature winding of the AC rotating machine 1 according to the electrical angle ⁇ e to flow a three-phase AC current.
  • the inverter connection unit 5 connects the armature winding of the AC rotating machine 1 and the inverter 2. As shown in FIG. 1, the inverter connection portion 5 of the first embodiment is composed of three connection lines that respectively flow U-phase, V-phase, and W-phase of a three-phase alternating current.
  • the magnetic field generator 3 generates an angle detection magnetic field for detecting the mechanical angle of the AC rotating machine of the AC rotating machine 1 by rotating in synchronization with the rotor.
  • a permanent magnet provided at one end of the rotating shaft of the rotor can be used.
  • the rotation angle ⁇ sm of the magnetic field generator 3 is equal to the mechanical angle ⁇ m of the AC rotating machine 1, and the following equation (2) is established.
  • the following equation (2) is an equation in the case where the initial phases of the rotation angle ⁇ sm and the mechanical angle ⁇ m coincide with each other. However, when the initial phases are different, the initial phase difference may be offset.
  • the angle detector 4 detects two orthogonal components of the angle detection magnetic field generated by the magnetic field generator 3 as a sine signal Vsin and a cosine signal Vcos.
  • a magnetic sensor provided at a position facing the magnetic field generator 3 on the extension of the rotation axis of the rotor can be used.
  • the shaft angle multiplier Psns of the angle detector 4 itself is not 1, it changes between the detection angle ⁇ sns of the angle detector 4 and the rotation angle ⁇ sm of the magnetic field generator 3 as in the case of the electrical angle ⁇ e. The rate will be different.
  • the detection angle ⁇ sns is expressed by the following expression (3) using the shaft angle multiplier Psns of the angle detector 4 and the rotation angle ⁇ sm of the magnetic field generator 3.
  • the maximum amplitudes of the sine signal Vsin and cosine signal Vcos detected by the angle detector 4 are equal and the phase difference is ⁇ / 2, that is, the offset between the sine signal Vsin and cosine signal Vcos.
  • the equation is shown when both errors are zero.
  • the above equation (3) can be corrected by offsetting the offset errors esin_ofs and ecos_ofs of the sine signal Vsin and the cosine signal Vcos as shown in the following equation (4). it can.
  • the electrical angle ⁇ e of the AC rotating machine 1 uses the pole pair number P of the AC rotating machine 1, the shaft angle multiplier Psns of the angle detector 4, and the detection angle ⁇ sns. Is represented by the following formula (5). That is, the electrical angle ⁇ e of the AC rotating machine 1 is expressed as the detection angle ⁇ sns multiplied by Kp, which is the ratio of the pole pair number of the AC rotating machine 1 and the angle multiplier of the angle detector 4.
  • the control calculation unit 7 uses, for example, the electrical angle ⁇ e of the AC rotating machine 1 obtained from the sine signal and the cosine signal detected by the angle detector 4 to coordinate-transform a three-phase AC current flowing through the inverter connection unit 5. Feedback control is performed so that the deviation from the current command is zero. It goes without saying that the same effect can be obtained by other methods as long as a desired current can be obtained, such as feedforward control using the specifications of the AC rotating machine 1 and the inverter 2 and the electrical angle ⁇ e.
  • the control calculation unit 7 is constituted by, for example, a microprocessor having a CPU (Central Processing Unit) and a storage unit storing a program.
  • CPU Central Processing Unit
  • FIG. 2 is a cross-sectional view and a side view showing a relative positional relationship between the angle detector 4 and the inverter connection portion 5 in the control device for an AC rotary machine according to Embodiment 1 of the present invention.
  • FIG. 2A shows two detection axes of the angle detector 4, the x axis and the y axis.
  • FIG. 2B shows the z-axis along the rotation axis of the rotor.
  • the x axis, the y axis, and the z axis are orthogonal to each other.
  • FIG. 2 shows a relative distance r and a relative angle ⁇ between the angle detector 4 and the inverter connection portion 5.
  • the subscripts of the relative distance r and the relative angle ⁇ represent each phase.
  • the relative distance r is expressed by the following equation (6) using the y-axis component ly1 and the relative angle ⁇ .
  • FIG. 2 shows an example in which the inverter connection portion 5 is arranged on the positive side (right side) of the y-axis with respect to the angle detector 4, and is represented by the following formula (7).
  • the inverter connection unit 5 may be arranged on the negative direction side (left side) of the y-axis with respect to the angle detector 4.
  • the three phases of the inverter connection portion 5 may be arranged in a distributed manner on the right and left sides of the y-axis. In that case, the right side of the relational expression of the phase arranged on the left side may be multiplied by -1.
  • the length of the inverter connecting portion 5 on the positive side of the z-axis is lz1 and the negative side of the z-axis is based on the position of the angle detector 4 Is 1z2.
  • the relative angle formed between the end of the inverter connecting portion 5 on the positive side of the z axis and the angle detector 4 is ⁇ 1
  • the end of the inverter connecting portion 5 on the negative side of the z axis and the angle detector 4 are The relative angle formed is ⁇ 2.
  • the noise magnetic field Bi generated at the position of the angle detector 4 by the three-phase alternating currents iu1, iv1, and iw1 flowing through the inverter connection portion 5 is expressed by the following equation (8).
  • ⁇ 0 represents the magnetic permeability of vacuum.
  • FIG. 3 is an explanatory diagram showing current vectors in the rotating coordinate system.
  • the absolute value of the current vector is I and the phase angle with respect to the q-axis is ⁇
  • the d-axis component id and the q-axis component iq of the current vector are expressed by the following equation (9).
  • the electrical angle ⁇ e of the AC rotating machine 1 is obtained from the sine signal Vsin and the cosine signal Vcos detected by the angle detector 4 by the above equations (3) and (5), the three-phase AC current flowing through the inverter connecting portion 5 is obtained.
  • Is represented by the following formula (10).
  • ⁇ 2 ⁇ Irms is the amplitude of the three-phase alternating current.
  • the noise magnetic field Bi generated at the position of the angle detector 4 by the three-phase alternating current flowing through the inverter connecting portion 5 is represented by the following formula (11).
  • the angle detection magnetic field Bbase generated by the magnetic field generator 3 at the position of the angle detector 4 is given by the following expression (12).
  • the angle detector 4 is actually represented by the following equation (13) in which the noise magnetic field Bi represented by the above equation (11) and the angle detection magnetic field Bbase represented by the above equation (12) are superimposed.
  • the synthesized magnetic field Ball is detected.
  • the detection value of the angle detector 4 has an error of about 1%. Are superimposed.
  • FIG. 4 is a circuit diagram showing the control device for an AC rotating machine according to Embodiment 1 of the present invention, together with the AC rotating machine.
  • the control device for the AC rotating machine shown in FIG. 4 controls the AC rotating machine 1, and includes an inverter 2, a magnetic field generator 3, an angle detector 4, an inverter connection unit 5, a current detector 6, and a control calculation.
  • the unit 7 is provided.
  • DC power supply 8 supplies DC voltage Vdc to inverter 2.
  • the DC power supply 8 for example, a device that outputs a DC voltage, such as a battery, a DC-DC converter, a diode rectifier, or a PWM rectifier, can be used.
  • the inverter 2 converts the DC voltage Vdc supplied from the DC power supply 8 into a three-phase AC by controlling the semiconductor switches Sup to Swn according to the switching signals Qup to Qwn output from the control calculation unit 7.
  • the three-phase alternating current is supplied to the armature winding of the AC rotating machine 1 through the inverter connection portion 5.
  • the switching signals Qup, Qun, Qvp, Qvn, Qwp, and Qwn are control signals for turning on and off the semiconductor switches Sup, Sun, Svp, Svn, Swp, and Swn of the inverter 2, respectively.
  • semiconductor switches Sup to Swn for example, semiconductor switches such as IGBTs, bipolar transistors, and MOS power transistors, or diodes connected in antiparallel can be used.
  • the current detector 6 is provided between the lower arm of each phase of the inverter 2 and the ground of the DC power supply 8 and detects the three-phase AC currents iu1, iv1, and iw1 flowing in the respective phases of the inverter connection unit 5. Instead of detecting all three phases of the three-phase AC current, only two phases are detected using the fact that the vector sum of the three-phase AC current is 0, and the remaining one phase is obtained by calculation. Is also possible. Further, the current detector 6 may be provided between the upper arm of each phase of the inverter 2 and the positive electrode side of the DC power supply 8. Furthermore, the current detector 6 can also calculate a three-phase alternating current as a method of detecting the bus current value by shifting the switching timing of the inverter 2 in order to ensure the current detection time.
  • the control calculation unit 7 includes an angle correction calculation unit 20 and a current control unit 21.
  • the angle correction calculation unit 20 corrects an error of the sine signal Vsin and the cosine signal Vcos due to a noise magnetic field generated by the three-phase alternating current flowing through the inverter connection unit 5 and outputs the corrected electric angle ⁇ e_hosei.
  • the angle correction calculation unit 20 calculates a noise magnetic field based on the current vector obtained from the current commands id * and iq *.
  • the current vector can also be obtained from the three-phase alternating currents iu1, iv1, and iw1 detected by the current detector 6. Needless to say, a current vector may be obtained using a value after passing through a low-pass filter or the like for noise removal.
  • a case where the current vector is obtained from the current commands id * and iq * will be described.
  • the current control unit 21 converts the three-phase alternating currents iu1, iv1, and iw1 flowing through the inverter connection unit 5 into detected currents id1 and iq1 in the rotating coordinate system using the corrected electrical angle ⁇ e_hosei and is input from the outside.
  • the voltage commands Vu, Vv, Vw are calculated by feedback control so that the current commands id *, iq * and the detected currents id1, iq1 are equal, and pulse width modulation (corresponding to the voltage commands Vu, Vv, Vw) ( Switching signals Qup to Qwn are output to the inverter 2 by PWM modulation.
  • the feedback control of the three-phase alternating currents iu1, iv1, and iw1 may be performed by feedforward control according to the AC rotating machine 1 instead.
  • the current detector 6 and the current detector 6 detect 3
  • the values of the phase alternating currents iu1, iv1, and iw1 are not essential.
  • FIG. 5A is a block diagram of angle correction calculation unit 20 in the control device for an AC rotating machine according to Embodiment 1 of the present invention.
  • the angle correction calculation unit 20 according to the first embodiment includes a first angle conversion unit 30, a correction signal calculation unit 31, and a second angle conversion unit 32.
  • the first angle converter 30 calculates the detected angle ⁇ sns from the sine signal Vsin and cosine signal Vcos detected by the angle detector 4 according to the above equation (3), and further calculates the electrical angle ⁇ e according to the above equation (5). And output as angle information.
  • the correction signal calculation unit 31 obtains the phase angle ⁇ from the current commands id * and iq * input from the outside according to the above equation (9), and supplies the current vector and the phase angle ⁇ to the first angle conversion unit 30.
  • the sine signal correction signal hsin and the cosine signal correction signal hcos are calculated from the electrical angle ⁇ e that is the angle information obtained in accordance with the following equation (14).
  • the current commands id * and iq * may be used as described above, or the current detector 6 detects the current vector.
  • Three-phase alternating currents iu1, iv1, and iw1 may be used.
  • phase correction constants ⁇ x and ⁇ y are constants determined by the relative positional relationship between the inverter connection unit 5 and the angle detector 4 and are given by the above equation (11).
  • amplitude correction constants Ksin and Kcos are also constants determined by the relative positional relationship between the inverter connection unit 5 and the angle detector 4 and are given by the following equation (15).
  • the amplitude correction constants Ksin and Kcos are proportional to the fundamental wave amplitudes Asin and Acos of the sine signal Vsin and the cosine signal Vcos output from the angle detector 4, but the fundamental wave amplitudes Asin and Acos change with environmental temperature and secular change. If it does not change depending on, it may be a constant. On the other hand, when changing due to environmental temperature change or secular change, the fundamental wave amplitudes Asin and Acos may be used as temperature or time variables. When the fluctuation of the fundamental wave amplitude is large, the amplitude correction constant may be obtained by multiplying a part other than the fundamental wave amplitude using the actual fundamental wave amplitude.
  • the sine signal correction signal hsin and the cosine signal correction signal hcos are converted into the three-phase alternating currents iu1, iv1, and iw1 flowing through the inverter connecting portion 5.
  • the phase and amplitude are adjusted.
  • the above equation (14) is obtained by adding the phase by the phase correction constant ⁇ x or ⁇ y and multiplying the amplitude by the amplitude correction constant Ksin or Kcos to the basic alternating current hbase shown in the following equation (16). It has become a thing.
  • the sine signal correction signal hsin and the cosine signal correction signal hcos are obtained by multiplying the absolute value of the current vector determined by the current commands id * and iq * or the detection currents id1 and iq1 by the amplitude correction constant.
  • a sine wave having a phase value obtained by adding an electrical angle ⁇ e and a phase correction constant to the phase angle ⁇ with respect to the q axis of the current vector determined by the current commands id *, iq * or the detected currents id1, iq1. .
  • the phase correction constant and the amplitude correction constant determined by the relative positional relationship between the inverter connection unit 5 and the angle detector 4 are calculated in advance and stored, for example, in a storage unit (not shown) of the control calculation unit 7. It is possible to keep it. If the fluctuation of the fundamental wave amplitude is large, the amplitude correction constant may be stored in a portion other than the fundamental wave amplitude and multiplied by the fundamental wave amplitude during use. Therefore, by using the above equation (14), the sine signal correction signal hsin and the cosine signal correction signal hcos can be calculated by simple calculation only by adjusting the phase and amplitude with respect to the basic alternating current hbase. it can.
  • the second angle converter 32 corrects the difference signal between the sine signal Vsin and cosine signal Vcos and the sine signal correction signal hsin and cosine signal correction signal hcos according to the above equations (3) and (5).
  • the electrical angle ⁇ e_hosei is calculated.
  • the angle information used to calculate the sine signal correction signal hsin and the cosine signal correction signal hcos is the electrical angle ⁇ e, but the angle correction calculation unit 20a as shown in FIG. 5B using the detection angle ⁇ sns is used. It is good.
  • the angle correction calculation unit 20a illustrated in FIG. 5B is different from the angle correction calculation unit 20 illustrated in FIG. 5A in a first angle conversion unit 30a and a correction signal calculation unit 31a.
  • the first angle conversion unit 30a calculates the detected angle ⁇ sns as angle information from the sine signal Vsin and the cosine signal Vcos detected by the angle detector 4 according to the above equation (3).
  • the correction signal calculation unit 31a obtains the phase angle ⁇ from the current commands id * and iq * input from the outside according to the above equation (9), and supplies the current vector, the phase angle ⁇ , and the first angle conversion unit 30a.
  • the sine signal correction signal hsin and the cosine signal correction signal hcos are calculated from the detected angle ⁇ sns, which is angle information obtained in this manner, according to the following equation (17).
  • an angle correction calculation unit 20b as shown in FIG. 5C may be used.
  • the angle correction calculation unit 20b illustrated in FIG. 5C is different from the angle correction calculation unit 20a illustrated in FIG. 5B in the second angle conversion unit 32a and the third angle conversion unit 35.
  • the second angle converter 32a corrects the difference signal between the sine signal Vsin and the cosine signal Vcos and the sine signal correction signal hsin and the cosine signal correction signal hcos according to the above equation (3).
  • the detection angle ⁇ sns_hosei is calculated.
  • the third angle conversion unit 35 calculates the corrected electrical angle ⁇ e_hosei from the corrected detection angle ⁇ sns_hosei according to the above equation (5).
  • 5A, 5B, and 5C are examples of the configuration of the angle correction calculation unit, and the angle information that is input to the correction signal calculation unit is the constant obtained by using the angle obtained from the sine signal Vsin and the cosine signal Vcos. Any signal obtained by doubling can be used as a correction signal in the correction signal calculation unit. Needless to say, when the initial phases of the detection angle ⁇ sns and the electrical angle ⁇ e are deviated, it is not simply multiplied by a constant and the offset must be adjusted.
  • the electrical angle ⁇ e can be detected with high accuracy by using the corrected electrical angle ⁇ e_hosei in which the influence of the noise magnetic field Bi is reduced instead of the electrical angle ⁇ e including the influence of the noise magnetic field Bi.
  • the calculation of the current control unit 21 can be performed using this corrected electrical angle ⁇ e_hosei, so that the current commands id * and iq * can be changed during the coordinate conversion from the three-phase alternating currents iu1, iv1, and iw1 to the detected currents id1 and iq1.
  • the error component superimposed at the time of coordinate conversion when obtaining the switching signals Qup to Qwn from the voltage command obtained by using a method such as feedforward control or feedback control can be reduced or eliminated, and the current ripple can be reduced. It is possible to obtain an unprecedented effect that it can be suppressed.
  • control device for an AC rotating machine according to the first embodiment when used to assist the steering torque of the electric power steering, torque ripple included in the output torque of the AC rotating machine 1 is suppressed, so that comfort is achieved. A steering feeling can be obtained.
  • the three-phase alternating current can be expressed only by the primary (fundamental period) component of the electrical angle ⁇ e.
  • the n-order component of the electrical angle ⁇ e (n is 2 or more).
  • an equation corresponding to the above equation (14) can be obtained from the superposition property of electromagnetic fields by the same procedure.
  • the current command id *, iq * or the detected current id1, iq1 is included in the sine signal correction signal hsin and the cosine signal correction signal hcos.
  • the amplitude value obtained by multiplying the absolute value of the current vector by the amplitude correction constant, and the phase angle ⁇ with respect to the q-axis of the current vector of the current command id *, iq * or the detected current id1, iq1, and the nth order of the electrical angle ⁇ e.
  • An n-th order sine wave term having a component (n is a natural number of 2 or more) and a phase value added with a phase correction constant is further included.
  • both the sine signal correction signal hsin and the cosine signal correction signal hcos are corrected.
  • the same effect can be obtained by correcting only one of them. Can be obtained.
  • correcting either one of the sine signal correction signal hsin or the cosine signal correction signal hcos due to the processing load or the like has a small effect, but the effect of angle correction.
  • the detection error of the angle detector due to the noise magnetic field generated by the polyphase alternating current flowing in the inverter connection portion is determined based on the relative positional relationship between the inverter connection portion and the angle detector and the multiple. Correction is performed using a correction signal whose phase and amplitude are determined by the value of the phase alternating current.
  • FIG. FIG. 6A is a block diagram of an angle correction calculation unit 20c in the control device for an AC rotary machine according to Embodiment 2 of the present invention.
  • the correction signal calculation unit 31 uses the corrected electric angle ⁇ e_hosei instead of the electric angle ⁇ e. Is different in that the previous value ⁇ e_hosei_old is input.
  • the correction signal calculation unit 31 obtains the phase angle ⁇ from the current commands id * and iq * input from the outside according to the above equation (9), and the current vector, the phase angle ⁇ , and the previous value ⁇ e_hosei_old of the corrected electrical angle. Then, the sine signal correction signal hsin and the cosine signal correction signal hcos are calculated according to the following equation (18).
  • the previous value acquisition unit 33 is a block that acquires the previous value.
  • the corrected electrical angle ⁇ e_hosei obtained at the previous calculation is acquired as the previous value ⁇ e_hosei_old.
  • the previous value ⁇ e_hosei_old of the corrected electrical angle is used when calculating the correction signal hsin for the sine signal and the correction signal hcos for the cosine signal, but the previous value ⁇ sns_hosei_old of the detected angle after correction is used.
  • An angle correction calculation unit 20d as shown in FIG. 6B may be used.
  • the angle correction calculation unit 20d shown in FIG. 6B is different from the angle correction calculation unit 20c in FIG. 6A in a correction signal calculation unit 31a, a second angle conversion unit 32a, and a third angle conversion unit 35.
  • the correction signal calculation unit 31a obtains the phase angle ⁇ from the current commands id * and iq * input from the outside according to the above equation (9), and the current vector, the phase angle ⁇ , and the previous value acquisition unit.
  • the sine signal correction signal hsin and the cosine signal correction signal hcos are calculated from the previous value ⁇ sns_hosei_old of the post-correction detected angle, which is the angle information obtained at 33, according to the following equation (19).
  • the second angle conversion unit 32a calculates the corrected detection angle ⁇ sns_hosei from the difference signal between the sine signal Vsin and cosine signal Vcos and the sine signal correction signal hsin and cosine signal correction signal hcos according to the above equation (3). calculate.
  • the third angle conversion unit 35 calculates the corrected electrical angle ⁇ e_hosei from the corrected detection angle ⁇ sns_hosei according to the above equation (5).
  • 6A and 6B are examples of the configuration of the angle correction calculation unit, and the angle information that is input to the correction signal calculation unit includes the sine signal Vsin and the cosine signal Vcos, and the sine signal correction signal hsin and the cosine signal.
  • Any correction signal can be used as a correction signal by the correction signal calculation unit as long as it is obtained by multiplying the detection angle ⁇ sns obtained from the difference signal with the correction signal hcos. Needless to say, when the initial phases of the detection angle ⁇ sns and the electrical angle ⁇ e are deviated, it is not simply multiplied by a constant and the offset must be adjusted.
  • current commands id * and iq * may be used as shown in FIG. 6A, or the current detector 6 detects them.
  • the values of the three-phase alternating currents iu1, iv1, and iw1 may be used.
  • both the sine signal correction signal hsin and the cosine signal correction signal hcos are corrected.
  • the same effect can be obtained by correcting only one of them. Can be obtained.
  • correcting either one of the sine signal correction signal hsin or the cosine signal correction signal hcos due to the processing load or the like has a small effect, but the effect of angle correction.
  • the angle correction calculation unit uses the previous value of the corrected detection angle ⁇ sns_hosei or the corrected electric angle ⁇ e_hosei in the correction signal calculation unit instead of the detection angle ⁇ sns or the electrical angle ⁇ e.
  • the angle information it is possible to generate a correction signal based on a signal with a small angle error, so that it is possible to obtain an unprecedented effect that a highly accurate correction signal can be generated.
  • FIG. 7A is a block diagram of angle correction calculation unit 20e in the control device for an AC rotating machine according to Embodiment 3 of the present invention.
  • the angle correction calculation unit 20e of the third embodiment shown in FIG. 7A is corrected based on the time change rate ⁇ e of the electrical angle ⁇ e of the AC rotating machine 1 as compared with FIG. 6A of the second embodiment.
  • the difference is that a rotation change correction unit 34 that corrects the previous calculation value of the electrical angle ⁇ e_hosei is provided.
  • the rotation change correction unit 34 obtains an angle change obtained by multiplying the time ⁇ t from the previous calculation of the corrected electrical angle ⁇ e_hosei to the current calculation by the time change rate ⁇ e of the electrical angle ⁇ e of the AC rotating machine 1.
  • the second corrected electric angle is corrected after correcting the previous value ⁇ e_hosei_old of the corrected electric angle, which is the angle information obtained by the previous value acquisition unit 33, as in the following equation (20). It outputs as angle (theta) e_hosei2.
  • the amount of change in angle is obtained by the product of the time ⁇ t from the time of calculation of the previous value to the time of the current calculation and the time change rate ⁇ e of the electrical angle ⁇ e of the AC rotating machine 1.
  • Other methods may be used as long as the amount of change in angle during the current calculation can be obtained.
  • the correction signal calculation unit 31 obtains the phase angle ⁇ from the current commands id * and iq * input from the outside according to the above equation (9), and the current vector, the phase angle ⁇ , and the second corrected electrical angle ⁇ e_hosei2 Then, the sine signal correction signal hsin and the cosine signal correction signal hcos are calculated according to the following equation (21).
  • the second corrected electrical angle ⁇ e_hosei2 is used when calculating the sine signal correction signal hsin and the cosine signal correction signal hcos, but FIG. 7B uses the second corrected detection angle ⁇ sns_hosei2. It is good also as the angle correction calculating part 20f like.
  • the rotation change correction unit 34a adds the product of the time ⁇ t from the previous calculation of the corrected detection angle ⁇ sns_hosei to the current calculation and the time change rate ⁇ s of the detection angle ⁇ sns of the AC rotating machine 1. Then, after correcting the previous value ⁇ sns_hosei_old of the corrected detection angle, which is the angle information obtained by the previous value acquisition unit 33, as the following equation (22), it is output as the second corrected detection angle ⁇ sns_hosei2.
  • the amount of change in angle is obtained by the product of the time ⁇ t from the time of calculating the previous value to the time of the current time and the time change rate ⁇ s of the detected angle ⁇ sns of the AC rotating machine 1.
  • Other methods may be used as long as the amount of change in angle during the current calculation can be obtained.
  • the correction signal calculation unit 31 obtains the phase angle ⁇ from the current commands id * and iq * input from the outside according to the above equation (9), and the current vector, the phase angle ⁇ , and the second corrected detection angle ⁇ sns_hosei2 Then, the sine signal correction signal hsin and the cosine signal correction signal hcos are calculated according to the following equation (23).
  • current commands id * and iq * may be used as shown in FIG. 7A or detected by the current detector 6.
  • the values of the three-phase alternating currents iu1, iv1, and iw1 may be used.
  • both the sine signal correction signal hsin and the cosine signal correction signal hcos are corrected.
  • the same effect can be obtained by correcting only one of them. Can be obtained.
  • correcting either one of the sine signal correction signal hsin or the cosine signal correction signal hcos due to the processing load or the like has a small effect, but the effect of angle correction.
  • the angle change amount changed from the previous calculation to the current calculation is added to the previous value of the corrected detection angle ⁇ sns_hosei or the previous value of the corrected electrical angle ⁇ e_hosei.
  • FIG. 8A is a block diagram of an angle correction calculation unit 20g in the control device for an AC rotary machine according to Embodiment 4 of the present invention.
  • the correction signal calculation unit 31b outputs h ⁇ e as a correction signal, and the electrical angle ⁇ e is set to h ⁇ e.
  • the points to be corrected differ depending on.
  • the correction signal calculation unit 31b obtains the phase angle ⁇ from the current commands id * and iq * input from the outside according to the above equation (9), and from the current vector, the phase angle ⁇ , and the electrical angle ⁇ e,
  • the electrical angle correction signal h ⁇ e is calculated according to (24).
  • the corrected electrical angle ⁇ e_hosei is calculated by subtracting the electrical angle correction signal h ⁇ e from the electrical angle ⁇ e.
  • the three-phase alternating current can be expressed only by the primary (basic period) component of the electrical angle ⁇ e, but the above equation (10) includes the n-order component (n is a natural number of 2 or more) of the electrical angle ⁇ e. Even when a term is included (for example, expressed by a Fourier series), an equation corresponding to the above equation (24) can be obtained by the same procedure from the property of superposition of electromagnetic fields.
  • the electrical angle correction signal h ⁇ e has the current command id *, iq * or the absolute value of the current vector of the detected currents id1, iq1.
  • the electrical angle ⁇ e is used when calculating the electrical angle correction signal h ⁇ e.
  • the angle correction calculation unit 20h as shown in FIG. 8B is different from the angle correction calculation unit 20g in FIG. 8A in the first angle conversion unit 30a, the correction signal calculation unit 31c, and the third angle conversion unit 35.
  • the correction signal calculation unit 31c obtains the phase angle ⁇ from the current commands id * and iq * input from the outside according to the above equation (9), and the current vector, the phase angle ⁇ , and the first angle A detection angle correction signal h ⁇ sns is calculated from the detection angle ⁇ sns, which is angle information obtained by the conversion unit 30a, according to the following equation (25).
  • the corrected detection angle ⁇ sns_hosei is calculated by subtracting the detection angle correction signal h ⁇ sns from the detection angle ⁇ sns.
  • the third angle conversion unit 35 calculates the corrected electrical angle ⁇ e_hosei according to the above equation (5) from the corrected detection angle ⁇ sns_hosei.
  • an angle correction calculation unit 20i as shown in FIG. 8C may be used.
  • the angle correction calculation unit 20i shown in FIG. 8C is different from the angle correction calculation unit 20g in FIG. 8A in the first angle conversion unit 30a, the correction signal calculation unit 31d, and the third angle conversion unit 35.
  • the correction signal calculation unit 31d obtains the phase angle ⁇ from the current commands id * and iq * input from the outside according to the above equation (9), and the current vector, the phase angle ⁇ , and the first angle
  • the electrical angle correction signal h ⁇ e is calculated from the detected angle ⁇ sns, which is angle information obtained by the conversion unit 30a, according to the following equation (26).
  • the third angle conversion unit 35 calculates the electrical angle ⁇ e from the detection angle ⁇ sns according to the above equation (5).
  • the corrected electrical angle ⁇ e_hosei is calculated by subtracting the electrical angle correction signal h ⁇ e from the electrical angle ⁇ e.
  • the angle information that is input to the correction signal calculation unit is a constant obtained from the angle obtained from the sine signal Vsin and the cosine signal Vcos. Any signal obtained by doubling can be used as a correction signal in the correction signal calculation unit. Needless to say, when the initial phases of the detection angle ⁇ sns and the electrical angle ⁇ e are deviated, it is not simply multiplied by a constant and the offset must be adjusted.
  • current commands id * and iq * may be used as shown in FIG. 8A, or 3 detected by the current detector 6.
  • the values of the phase alternating currents iu1, iv1, and iw1 may be used.
  • the correction signal calculation unit calculates the detection angle correction signal h ⁇ sns or the electrical angle correction signal h ⁇ e without using the fundamental wave amplitudes of the sine signal Vsin and the cosine signal Vcos.
  • an unprecedented effect that the angle error can be corrected with a small correction signal can be obtained.
  • FIG. 9A is a block diagram of angle correction calculation unit 20j in the control device for an AC rotary machine according to Embodiment 5 of the present invention.
  • the correction signal calculation unit 31b has a corrected electric angle ⁇ e_hoseii instead of the electric angle ⁇ e. Is different in that the previous value ⁇ e_hosei_old is input.
  • the correction signal calculation unit 31b obtains the phase angle ⁇ from the current commands id * and iq * input from the outside according to the above formula (9), and the current vector, the phase angle ⁇ , and the previous value ⁇ e_hosei_old of the corrected electrical angle. Then, the electrical angle correction signal h ⁇ e is calculated according to the above equation (24).
  • the electrical angle ⁇ e is used when calculating the electrical angle correction signal h ⁇ e.
  • the angle correction calculation unit 20k illustrated in FIG. 9B is different from the angle correction calculation unit 20j illustrated in FIG. 9A in a correction signal calculation unit 31c, a first angle conversion unit 30a, and a third angle conversion unit 35.
  • the correction signal calculation unit 31c obtains the phase angle ⁇ from the current commands id * and iq * input from the outside according to the above equation (9), and the current vector, the phase angle ⁇ , and the previous value acquisition unit.
  • the detection angle correction signal h ⁇ sns is calculated from the previous value ⁇ sns_hosei_old of the corrected detection angle, which is the angle information obtained in 33, according to the above equation (25).
  • the third angle conversion unit 35 calculates the corrected electrical angle ⁇ e_hosei according to the above equation (26) from the corrected detection angle ⁇ sns_hosei.
  • 9A and 9B are examples of the configuration of the angle correction calculation unit, and the angle information that is input to the correction signal calculation unit is obtained by multiplying the angle obtained from the sine signal Vsin and the cosine signal Vcos by a constant. Can be used as a correction signal in the correction signal calculation unit. Needless to say, when the initial phases of the detection angle ⁇ sns and the electrical angle ⁇ e are deviated, it is not simply multiplied by a constant and the offset must be adjusted.
  • current commands id * and iq * may be used as shown in FIG. 9A or detected by the current detector 6.
  • the values of the three-phase alternating currents iu1, iv1, and iw1 may be used. Since other configurations and operations are the same as those of the first embodiment, description thereof will be omitted.
  • the angle correction calculation unit uses the previous value of the corrected detection angle ⁇ sns_hosei or the corrected electric angle ⁇ e_hosei in the correction signal calculation unit instead of the detection angle ⁇ sns or the electrical angle ⁇ e.
  • the angle information it is possible to generate a correction signal based on a signal with a small angle error, so that it is possible to obtain an unprecedented effect that a highly accurate correction signal can be generated.
  • the angular error can be corrected with a small correction signal without using the fundamental wave amplitudes of the sine signal Vsin and the cosine signal Vcos. Unprecedented effects can be obtained.
  • FIG. 10A is a block diagram of angle correction calculation section 20l in the control device for an AC rotary machine according to Embodiment 6 of the present invention.
  • the angle correction calculation unit 20l of the sixth embodiment shown in FIG. 10A is corrected based on the time change rate ⁇ e of the electrical angle ⁇ e of the AC rotating machine 1.
  • the difference is that a rotation change correction unit 34 that corrects the previous calculation value of the electrical angle ⁇ e_hosei is provided.
  • the correction signal calculation unit 31b obtains the phase angle ⁇ from the current commands id * and iq * input from the outside according to the above equation (9), and the current vector, the phase angle ⁇ , and the second corrected electrical angle ⁇ e_hosei2 Then, the electrical angle correction signal h ⁇ e is calculated according to the above equation (24).
  • the corrected electrical angle ⁇ e_hosei is calculated by subtracting the electrical angle correction signal h ⁇ e from the electrical angle ⁇ e.
  • the second corrected electrical angle ⁇ e_hosei2 is used when calculating the electrical angle correction signal h ⁇ e.
  • the angle correction calculation unit 20m as shown in FIG. 10B using the second corrected detection angle ⁇ sns_hosei2 is used. It is good.
  • the correction signal calculation unit 31c obtains the phase angle ⁇ from the current commands id * and iq * input from the outside according to the above equation (9), and also calculates the current vector, the phase angle ⁇ , and the second corrected detection angle ⁇ sns_hosei2 Then, the detection angle correction signal h ⁇ sns is calculated according to the above equation (25).
  • the third angle conversion unit 35 calculates the corrected electrical angle ⁇ e_hosei according to the above equation (26) from the corrected detection angle ⁇ sns_hosei.
  • 10A and 10B are examples of the configuration of the angle correction calculation unit, and the angle information input to the correction signal calculation unit is obtained by multiplying the angle obtained from the sine signal Vsin and the cosine signal Vcos by a constant. Can be used as a correction signal in the correction signal calculation unit. Needless to say, when the initial phases of the detection angle ⁇ sns and the electrical angle ⁇ e are deviated, it is not simply multiplied by a constant and the offset must be adjusted.
  • current commands id * and iq * may be used as shown in FIG. 10A, or 3 detected by the current detector 6.
  • the values of the phase alternating currents iu1, iv1, and iw1 may be used. Since other configurations and operations are the same as those of the first embodiment, description thereof will be omitted.
  • the angle change amount changed from the previous calculation to the current calculation is added to the previous value of the corrected detection angle ⁇ sns_hosei or the previous value of the corrected electrical angle ⁇ e_hosei.
  • the angular error can be corrected with a small correction signal without using the fundamental wave amplitudes of the sine signal Vsin and the cosine signal Vcos. Unprecedented effects can be obtained.
  • Embodiment 7 FIG. In the first to sixth embodiments, the case where one armature winding is provided has been described. In the eighth embodiment, a case where a plurality of armature windings are provided will be described. Further, a case where the angle detection magnetic field generated by the magnetic field generator 3 is strong and the angle detector 4 is used in the saturation sensitivity region will be described.
  • FIG. 11 is a schematic diagram showing the arrangement of the seventh embodiment.
  • the AC rotating machine 1a is a permanent magnet type synchronous rotating machine having first armature windings U1, V1, W1 and second armature windings U2, V2, W2.
  • the AC rotating machine 1a includes a rotor and a stator, and the rotor is rotated by a rotating magnetic field formed by a three-phase AC current flowing in the armature winding of the stator.
  • a permanent magnet type synchronous rotating machine will be described, a field winding type synchronous rotating machine may be used.
  • the three-phase winding will be described here, an AC rotating machine having three or more phases of windings may be used.
  • the description will be made with two winding sets here, an AC rotating machine having three or more winding sets may be used.
  • the current flowing through the first armature winding and the second armature winding has a phase difference of 30 deg.
  • phase difference of 30 deg there is an effect of canceling out the current ripple of the sixth electrical angle when there are two sets of armature windings.
  • the inverter 2a includes a first inverter 2a1 that supplies power to the first armature winding and a second inverter 2a2 that supplies power to the second armature winding. Based on the switching signal, the semiconductor switch is turned on / off to convert the DC voltage input from the DC power source and apply the voltage to the armature winding of the AC rotating machine 1a via the inverter connection 5a.
  • the AC rotating machine 1a and the inverter 2a are connected by an inverter connecting portion 5a.
  • the inverter connection portion 5a includes a first inverter connection portion 5a1 and a second inverter connection portion 5a2.
  • the first inverter connection portion 5a1 includes an inverter connection portion 5u1 that supplies a U-phase current to the first armature winding, an inverter connection portion 5v1 that supplies a V-phase current, and an inverter connection portion 5w1 that supplies a W-phase current.
  • the inverter connection portion 5a2 includes an inverter connection portion 5u2 for supplying a U-phase current to the second armature winding, an inverter connection portion 5v2 for supplying a V-phase current, and an inverter connection portion 5w2 for supplying a W-phase current.
  • the inverter connecting portions 5u2, 5v2, and 5w2 are omitted in order to prevent the figure from being obscured.
  • the voltage applied by the first inverter 2a1 is applied to the first armature winding of the AC rotating machine 1a via the first inverter connection portion 5a1, and the voltage applied by the second inverter 2a2 is Then, it is applied to the second armature winding of the AC rotating machine 1a via the second inverter connection part 5a2, and a desired current is passed through the AC rotating machine 1a to generate torque.
  • the first current detector 6a1 is provided between the lower arm of each phase of the first inverter 2a1 and the ground of the DC power supply 8, and the three-phase AC current iu1 that flows in each phase of the first inverter connection 5a1. , Iv1, and iw1 are detected. Instead of detecting all three phases of the three-phase AC current, only two phases are detected using the fact that the vector sum of the three-phase AC current is 0, and the remaining one phase is obtained by calculation. Is also possible.
  • the first current detector 6a1 may be provided between the upper arm of each phase of the first inverter 2a1 and the positive electrode side of the DC power supply 8. Further, the first current detector 6a1 can also calculate a three-phase alternating current as a method of detecting the bus current value by shifting the switching timing of the first inverter 2a1 in order to secure the current detection time. Is possible.
  • the second current detector 6a2 is provided between the lower arm of each phase of the second inverter 2a2 and the ground of the DC power supply 8, and the three-phase AC current iu2 that flows in each phase of the second inverter connection 5a2. , Iv2, and iw2 are detected. Instead of detecting all three phases of the three-phase AC current, only two phases are detected using the fact that the vector sum of the three-phase AC current is 0, and the remaining one phase is obtained by calculation. Is also possible.
  • the second current detector 6 a 2 may be provided between the upper arm of each phase of the second inverter 2 a 2 and the positive electrode side of the DC power supply 8. Furthermore, the second current detector 6a2 can also calculate a three-phase alternating current as a method of detecting the bus current value by shifting the switching timing of the second inverter 2a2 in order to secure the current detection time. Is possible.
  • the control calculation unit 7a includes an angle correction calculation unit 20 and a current control unit 21a.
  • the angle correction calculation unit 20 corrects an error of the sine signal Vsin and the cosine signal Vcos due to a noise magnetic field generated by the three-phase alternating current flowing through the inverter connection unit 5 and outputs the corrected electric angle ⁇ e_hosei.
  • the current vector used for the calculation of the noise magnetic field may be obtained from the current commands id * and iq *, or may be obtained from the three-phase alternating currents iu1, iv1, and iw1 detected by the first current detector 6a1. However, it may be obtained from the three-phase alternating currents iu2, iv2, and iw2 detected by the second current detector 6a2. Needless to say, a current vector may be obtained using a value after passing through a low-pass filter or the like for noise removal.
  • the current control unit 21a uses the corrected electrical angle ⁇ e_hosei to convert the three-phase alternating currents iu1, iv1, and iw1 flowing through the first inverter connection unit 5a1 to the first detection currents id1 and iq1 in the rotating coordinate system. Convert. Then, the first voltage commands Vu1, Vv1, and Vw1 are calculated by feedback control so that the current commands id * and iq * input from the outside are equal to the first detection currents id1 and iq1.
  • the current control unit 21a outputs the switching signals Qup1 to Qwn1 to the first inverter 2a1 by pulse width modulation (PWM modulation) according to the first voltage commands Vu1, Vv1, and Vw1.
  • PWM modulation pulse width modulation
  • the three-phase alternating currents iu2, iv2, and iw2 flowing through the inverter connection portion 5a2 are converted into second detection currents id2 and iq2 in the rotating coordinate system.
  • the second voltage commands Vu2, Vv2, and Vw2 are calculated by feedback control so that the current commands id * and iq * are equal to the second detection currents id2 and iq2.
  • the current control unit 21a outputs the switching signals Qup2 to Qwn2 to the second inverter 2a2 by pulse width modulation (PWM modulation) according to the second voltage commands Vu2, Vv2, and Vw2.
  • PWM modulation pulse width modulation
  • the feedback control of the three-phase alternating currents iu1, iv1, iw1 and the three-phase alternating currents iu2, iv2, and iw2 may instead be feedforward controlled in accordance with the AC rotating machine 1a.
  • the values of the three-phase alternating currents iu1, iv1, and iw1 detected by the current detector 6a1 and the first current detector 6a1, the three-phase alternating current iu2 detected by the second current detector 6a2 and the second current detector 6a2. , Iv2, and iw2 are no longer essential.
  • FIG. 12 is a cross-sectional view showing the positional relationship between the angle detector 4 and the inverter connecting portion 5a.
  • corresponding phases with respect to the angle detector 4 are arranged point-symmetrically.
  • the inverter connection portion 5a of the seventh embodiment shown in FIG. 12 is arranged in the positive direction side (right side) of the y-axis compared to the inverter connection portion 5 of the first embodiment shown in FIG. 1 is mainly different from the first inverter connection portion 5a1 and the second inverter connection portion 5a2 disposed on the negative direction side (left side) of the y-axis.
  • the three-phase alternating current flowing through the inverter connection 5a is expressed by the following equation (27).
  • ⁇ 2 ⁇ Irms is the amplitude of the three-phase alternating current.
  • the relationship between the detection angle ⁇ sns and the electrical angle ⁇ e is defined by the above equation (5).
  • the detection angle ⁇ sns and the electrical angle ⁇ e are The relationship is expressed by the following formula (29).
  • the initial phases of the detection angle ⁇ sns and the electrical angle ⁇ e are different, they are offset by the initial phase difference ⁇ ofs.
  • the angle detection magnetic field generated by the magnetic field generator 3 is strong and the angle detector 4 is used in the saturation sensitivity region will be described.
  • the magnetic field generated by the magnetic field generator 3 at the position of the angle detector 4 has an intensity that falls within the saturation sensitivity region of the angle detector 4, Not all the noise magnetic fields Bi of the above equation (30) are detected as angles, and components in the same direction as the principal component vector of the magnetic field generated by the magnetic field generator 3 are not detected because they are saturated. . That is, it is considered that the vector in the normal direction is a component that causes an angle error with respect to the principal component vector of the magnetic field generated by the magnetic field generator 3.
  • the principal component vector B of the magnetic field generated by the magnetic field generator 3 is expressed by the following equation (31) by converting the above equation (12) into a vector notation.
  • the unit vector t in the normal direction of the principal component vector B is expressed by the following equation (32).
  • the noise magnetic field vector Bsns detected as the angle error is obtained by projecting the noise magnetic field vector Bi onto the normal vector t. expressed.
  • the angle detection magnetic field generated by the magnetic field generator 3 is strong and the angle detector 4 is used in the saturation sensitivity region, it is superimposed on the noise component esin and the cosine signal superimposed on the sine signal by the noise magnetic field.
  • the noise component ecos is expressed by the following equation (35). In other words, the sine wave of the (1 ⁇ 2 Psns / P) order component of the electrical angle is further superimposed on the case of the first embodiment represented by the sine wave of the primary component of the electrical angle. Yes.
  • the angle correction calculation unit 20 is configured in the same manner as in the first to third embodiments by using the sine signal correction signal hsin as esin and the cosine signal correction signal hcos as ecos, so that a large number of currents flowing through the inverter connection unit are obtained.
  • the detection error of the angle detector due to the noisy magnetic field generated by the phase alternating current is a correction signal whose phase and amplitude are determined by the relative positional relationship between the inverter connection part and the angle detector and the value of the multiphase alternating current. Can be used to correct.
  • a simple and low-cost control device for an AC rotating machine that can detect the angular position of the rotor with high accuracy can be obtained.
  • the three-phase alternating current can be expressed only by the primary (basic period) component of the electrical angle ⁇ e, but the above equation (27) includes the n-order component (n is a natural number of 2 or more) of the electrical angle ⁇ e.
  • n is a natural number of 2 or more
  • an equation corresponding to the above equation (35) can be obtained by a similar procedure from the property of superposition of electromagnetic fields.
  • the sine signal correction signal hsin and the cosine signal correction signal hcos include the current command id *, iq * or the detected current id1.
  • the absolute value of the current vector of iq1 is multiplied by an amplitude correction constant, and the phase angle ⁇ with respect to the q-axis of the current vector of the current command id *, iq * or the detected current id1, iq1 is set to ( (n ⁇ 2Psns / P)
  • the term of the (n ⁇ 2Psns / P) order sine wave having the order component (n is a natural number of 2 or more) and the phase value added with the phase correction constant Will be further included.
  • the current commands id * and iq * may be used as the current vectors used for the calculation of the sine signal correction signal hsin and the cosine signal correction signal hcos, or the three phases detected by the first current detector 6a1.
  • the values of the alternating currents iu1, iv1, and iw1 may be used, and the values of the three-phase alternating currents iu2, iv2, and iw2 detected by the second current detector 6a2 may be used.
  • the angle error esns that occurs in the detection angle ⁇ sns is expressed by the following equation (36). That is, it is the same as in the case of the first embodiment represented by a sine wave of the (1 ⁇ 2 Psns / P) order component of the electrical angle.
  • the angle detection by the noise magnetic field generated by the polyphase alternating current flowing in the inverter connecting portion is configured by using the detection angle correction signal h ⁇ sns as esns and configuring the angle correction calculation unit 20 in the same manner as in the fourth to sixth embodiments.
  • the detection error of the detector can be corrected using a correction signal whose phase and amplitude are determined by the relative positional relationship between the inverter connection portion and the angle detector and the value of the polyphase alternating current.
  • a correction signal whose phase and amplitude are determined by the relative positional relationship between the inverter connection portion and the angle detector and the value of the polyphase alternating current.
  • the three-phase alternating current can be expressed only by the primary (basic period) component of the electrical angle ⁇ e, but the above equation (27) includes the n-order component (n is a natural number of 2 or more) of the electrical angle ⁇ e.
  • n is a natural number of 2 or more
  • an equation corresponding to the above equation (36) can be obtained by a similar procedure from the property of superposition of electromagnetic fields.
  • the electrical angle correction signal h ⁇ e has the current command id *, iq * or the absolute value of the current vector of the detected currents id1, iq1.
  • the (n ⁇ 2Psns / P) order component of the electrical angle ⁇ e is added to the phase angle ⁇ with respect to the q axis of the current value of the current command id *, iq * or the current vector of the detected current id1, iq1
  • Embodiment 8 FIG.
  • a phase difference of 30 deg is provided by the current flowing through the first armature winding and the second armature winding, but in the eighth embodiment, the first armature winding and The current flowing in the second armature winding is different from that of the previous embodiment 7 in that it has the same phase. Since other configurations are the same as those of the seventh embodiment, description thereof is omitted.
  • FIG. 12 is a cross-sectional view and a side view showing a relative positional relationship between the angle detector and the inverter connection portion in the control device for an AC rotating machine according to the eighth embodiment of the present invention.
  • the first inverter connection portion 5 a 1 and the second inverter connection portion 5 a 2 are arranged so that corresponding phases with respect to the angle detector 4 are point-symmetrically arranged.
  • the noise magnetic field generated at the position of the angle detector 4 is 0 as a component generated by the current flowing through the second inverter connection portion 5a2. Yes, only the component generated by the current flowing through the first inverter connection portion 5a1 remains.
  • the magnetic field in the angle detector 4 generated by the current flowing in the second inverter connection 5a2 is the current in the inverter connection 5a2.
  • the magnetic field is generated by the two-phase connection line that has not failed.
  • the magnetic field in the angle detector 4 generated by the current flowing through the first inverter connection 5a1 is a magnetic field generated by the three-phase connection line of the inverter connection 5a1.
  • the correction signal is corrected as in the first to seventh embodiments. By doing so, the same effect can be obtained.
  • correction signal is represented by a formula as a simple sine wave here
  • a table corresponding to the electrical angle may be prepared and mounted in advance if the waveform is difficult to represent by the formula.
  • a plurality of inverter connections are arranged so that the noise magnetic field formed by the polyphase alternating current flowing through the inverter connections cancels out at the position of the angle detector.
  • the correction signal As in the first to seventh embodiments even at the normal time. There is no. In that case, since the noise magnetic field generated at the time of normality and failure is different, the correction formula may be changed.
  • control device for the AC rotating machine according to the present invention can be provided in the electric power steering so that the AC rotating machine 1a generates a torque that assists the steering torque of the steering system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Control Of Motors That Do Not Use Commutators (AREA)

Abstract

 交流回転機の電気角を検出するための角度検出器を備えた交流回転機の制御装置であって、インバータ接続部に流れる多相交流電流が発生するノイズ磁場による角度検出器の検出誤差を、インバータ接続部と角度検出器との相対的な位置関係と多相交流電流の電流ベクトルとによって位相および振幅が決定される補正信号を用いて補正し、補正後の電気角補正後電気角に基づいてインバータを制御することにより、回転子の角度位置を高精度に検出できる簡素で低コストな交流回転機の制御装置を得る。

Description

交流回転機の制御装置
 この発明は、回転子の角度位置を検出する磁気センサを備えた交流回転機の制御装置に関するものである。
 電動パワーステアリング装置等に用いられる交流回転機において、モータのトルクリップルを低減するためには、モータの回転子の角度位置を精度よく検出することが求められる。しかしながら、モータ自身が発生する磁場の影響によって、回転子の角度位置を検出する磁気センサの検出精度が低下してしまうという課題がある。
 このような課題を解決するための従来の交流回転機として、モータの電機子と磁気センサとの間に蓋部を配置して、電機子が発生する磁場の影響がセンサに及ばないよう抑制することで、角度位置を検出する精度を向上させたものがある(例えば、特許文献1参照)。
 また、別の交流回転機として、センサマグネットを保持するホルダに対して磁気誘導部を当接して設けることにより、磁気センサがセンサマグネットの磁場を精度よく検出できるようにしたものがある(例えば、特許文献2参照)。
 また、レゾルバ装置として、レゾルバによって検出された角度信号を参照して速度信号を周波数分析して周波数成分毎の検出誤差を算出するとともに、検出誤差を合成して得られる推定角度誤差信号を用いて角度信号を補正することで角度位置の検出精度を向上させたものがある(例えば、特許文献3参照)。
特開2008-219995号公報 特開2013-7731号公報 特開2009-156852号公報
 しかしながら、従来技術には、以下のような課題がある。
 特許文献1では、蓋部を設けることにより電機子が発生する磁場の影響がセンサに及ばないようにしているが、蓋部を追加することによって生じるコストの増加、生産性の悪化および製品全体の質量の増加が懸念される。
 特許文献2では、磁気誘導部を設けることによって検出したい磁場以外の磁場の影響を抑制しているが、やはり同様に、磁気誘導部を追加することによって生じるコストの増加、生産性の悪化および製品全体の質量の増加が懸念される。
 特許文献3では、周波数成分毎の検出誤差を用いて推定角度誤差信号を得ることにより、各周波数成分の角度誤差を低減することは可能であるが、要因が分かっている次数成分誤差も要因が分からない次数成分誤差も区別せずに合わせて補正しているため、補正過多あるいは補正不足となる懸念がある。また、レゾルバによって検出された角度信号を周波数分析するためにフーリエ変換を用いており、過去複数周期分のデータが必要となるため、単純な補正に比べると処理負荷が増大するうえに、RAMに記憶したデータに誤り等が生じた場合には誤学習となる可能性がある。
 本発明は、上記のような課題を解決するためになされたものであり、回転子の角度位置を高精度に検出できる簡素で低コストな交流回転機の制御装置を得ることを目的とする。
 本発明に係る交流回転機の制御装置は、固定子の電機子巻線に流れる多相交流電流が形成する回転磁場によって回転子が回転する交流回転機を制御する交流回転機の制御装置であって、交流回転機の電機子巻線に電圧を印加するインバータと、電機子巻線とインバータとを接続するインバータ接続部と、回転子と同期して回転することにより、交流回転機の回転角を検出するための角度検出用磁場を発生する磁場発生器と、磁場発生器が発生する角度検出用磁場の互いに直交する2つの成分を正弦信号および余弦信号として検出する角度検出器と、交流回転機の電流指令と、正弦信号および余弦信号から得られる角度情報とに基づいてインバータに印加する電圧を制御する制御演算部と、を備え、制御演算部は、インバータ接続部に流れる多相交流電流が発生するノイズ磁場による角度情報の誤差を、インバータ接続部に流れる多相交流電流の電流ベクトルと、インバータ接続部と角度検出器との相対的な位置関係により決定される位相補正定数および振幅補正定数と、によって位相および振幅が決定される補正信号を用いて補正し、補正後電気角として出力する角度補正演算部を有し、補正後電気角に基づいてインバータを制御するものである。
 本発明では、インバータ接続部に流れる多相交流電流が発生するノイズ磁場による角度検出器の検出誤差を、インバータ接続部と角度検出器との相対的な位置関係と多相交流電流の電流ベクトルとによって位相および振幅が決定される補正信号を用いて補正している。この結果、回転子の角度位置を高精度に検出できる簡素で低コストな交流回転機の制御装置を得ることができる。
本発明の実施の形態1に係る交流回転機の制御装置の構成を、交流回転機とともに示す概略図である。 本発明の実施の形態1に係る交流回転機の制御装置における角度検出器とインバータ接続部との相対的な位置関係を示す断面図および側面図である。 回転座標系における電流ベクトルを示す説明図である。 本発明の実施の形態1に係る交流回転機の制御装置を、交流回転機とともに示すブロック図である。 本発明の実施の形態1に係る交流回転機の制御装置における角度補正演算部の第1のブロック図である。 本発明の実施の形態1に係る交流回転機の制御装置における角度補正演算部の第2のブロック図である。 本発明の実施の形態1に係る交流回転機の制御装置における角度補正演算部の第3のブロック図である。 本発明の実施の形態2に係る交流回転機の制御装置における角度補正演算部の第1のブロック図である。 本発明の実施の形態2に係る交流回転機の制御装置における角度補正演算部の第2のブロック図である。 本発明の実施の形態3に係る交流回転機の制御装置における角度補正演算部の第1のブロック図である。 本発明の実施の形態3に係る交流回転機の制御装置における角度補正演算部の第2のブロック図である。 本発明の実施の形態4に係る交流回転機の制御装置における角度補正演算部の第1のブロック図である。 本発明の実施の形態4に係る交流回転機の制御装置における角度補正演算部の第2のブロック図である。 本発明の実施の形態4に係る交流回転機の制御装置における角度補正演算部の第3のブロック図である。 本発明の実施の形態5に係る交流回転機の制御装置における角度補正演算部の第1のブロック図である。 本発明の実施の形態5に係る交流回転機の制御装置における角度補正演算部の第2のブロック図である。 本発明の実施の形態6に係る交流回転機の制御装置における角度補正演算部の第1のブロック図である。 本発明の実施の形態6に係る交流回転機の制御装置における角度補正演算部の第2のブロック図である。 本発明の実施の形態7に係る交流回転機の制御装置の構成を、交流回転機とともに示す概略図である。 本発明の実施の形態8に係る交流回転機の制御装置における角度検出器とインバータ接続部との相対的な位置関係を示す断面図および側面図である。
 以下、本発明における交流回転機の制御装置の好適な実施の形態について図面を用いて説明する。なお、各図において同一、または相当する部分については、同一符号を付して説明する。
 実施の形態1.
 図1は、本発明の実施の形態1に係る交流回転機の制御装置の構成を、交流回転機とともに示す概略図である。図1に示す交流回転機の制御装置は、交流回転機1を制御するものであって、インバータ2、磁場発生器3、角度検出器4、インバータ接続部5、および制御演算部7を備えて構成される。
 交流回転機1は、回転子および固定子を備えており、固定子の電機子巻線に流れる3相交流電流が形成する回転磁場によって回転子が回転する。
 なお、以下の説明では、簡単のため、交流回転機1として、永久磁石型同期回転機を想定するが、本実施の形態1の交流回転機1はこのような形態に限定されるものではない。例えば、交流回転機1は界磁巻線型同期回転機であってもよい。
 交流回転機1の極対数Pが1でない場合には、交流回転機1の電気的周期における位相である電気角θeと、交流回転機1の機械的周期における位相である機械角θmとでは変化率が異なる。例えば、極対数が2の場合には、電気角θeは機械角θmの2倍の速さで変化する。電気角θeは、極対数Pおよび機械角θmを用いて、下式(1)で表される。
Figure JPOXMLDOC01-appb-M000001
 インバータ2は、制御演算部7が出力するスイッチング信号に従って半導体スイッチを制御することにより、直流電源から供給される直流電圧を電力変換する。電力変換された電圧は、インバータ接続部5を介して交流回転機1の電機子巻線に印加される。インバータ2は、電気角θeに応じて交流回転機1の電機子巻線に適切に電圧を印加して3相交流電流を流すことで、交流回転機1のトルクを発生させる。
 インバータ接続部5は、交流回転機1の電機子巻線とインバータ2とを接続する。本実施の形態1のインバータ接続部5は、図1に示すように、3相交流電流のU相、V相、W相をそれぞれ流す3本の接続線からなる。
 磁場発生器3は、回転子と同期して回転することにより、交流回転機1の交流回転機の機械角を検出するための角度検出用磁場を発生する。磁場発生器3としては、例えば、回転子の回転軸の一端に設けられた永久磁石を用いることができる。
 磁場発生器3は、回転子と同期して回転することから、磁場発生器3の回転角θsmは交流回転機1の機械角θmと等しく、下式(2)が成立する。なお、下式(2)は、回転角θsmおよび機械角θmの初期位相が一致している場合の式であるが、初期位相が異なる場合は、初期位相差分だけオフセットすればよい。
Figure JPOXMLDOC01-appb-M000002
 角度検出器4は、磁場発生器3が発生する角度検出用磁場の互いに直交する2つの成分を正弦信号Vsinおよび余弦信号Vcosとして検出する。角度検出器4としては、例えば、回転子の回転軸の延長上の磁場発生器3と相対する位置に設けられた磁気センサを用いることができる。
 ここで、角度検出器4自身の軸倍角Psnsが1でない場合には、先の電気角θeの場合と同様に、角度検出器4の検出角θsnsと磁場発生器3の回転角θsmとで変化率が異なってくる。検出角θsnsは、角度検出器4の軸倍角Psnsおよび磁場発生器3の回転角θsmを用いて、下式(3)で表される。
Figure JPOXMLDOC01-appb-M000003
 なお、上式(3)は、角度検出器4が検出した正弦信号Vsinおよび余弦信号Vcosの最大振幅が等しくて位相差がπ/2である場合、すなわち、正弦信号Vsinおよび余弦信号Vcosのオフセット誤差がともに0の場合の式を示している。オフセット誤差が存在する場合には、例えば、下式(4)のように、正弦信号Vsin、余弦信号Vcosのオフセット誤差esin_ofs、ecos_ofsをそれぞれオフセットすることで、上式(3)を補正することができる。
Figure JPOXMLDOC01-appb-M000004
 ここで、上述のように式(2)が成立するので、交流回転機1の電気角θeは、交流回転機1の極対数P、角度検出器4の軸倍角Psns、および検出角θsnsを用いて、下式(5)で表される。すなわち、交流回転機1の電気角θeは、検出角θsnsを、交流回転機1の極対数と角度検出器4の軸倍角の比であるKpで乗算したものとして表される。
Figure JPOXMLDOC01-appb-M000005
 制御演算部7は、角度検出器4が検知した正弦信号および余弦信号から得られる交流回転機1の電気角θeを用いて、例えば、インバータ接続部5を流れる3相交流電流を座標変換して電流指令との偏差を零とすべくフィードバック制御する。交流回転機1およびインバータ2の諸元や電気角θeを用いてフィードフォワード制御をするなど、所望の電流を得られれば他の方法でも同様の効果を得ることができることはいうまでも無い。制御演算部7は、例えば、CPU(Central Processing Unit)とプログラムを格納した記憶部とを有するマイクロプロセッサで構成されている。
 次に、インバータ接続部5に流れる3相交流電流が、角度検出器4の位置に発生するノイズ磁場について説明する。
 図2は、本発明の実施の形態1に係る交流回転機の制御装置における角度検出器4とインバータ接続部5との相対的な位置関係を示す断面図および側面図である。図2(a)には、角度検出器4の2つの検出軸であるx軸およびy軸を示している。また、図2(b)には、回転子の回転軸に沿ったz軸を示している。x軸、y軸、およびz軸は互いに直交している。
 また、図2には、角度検出器4とインバータ接続部5との相対距離rおよび相対角度θを示している。ここで、相対距離rおよび相対角度θの添え字は、各相を表している。相対距離rは、そのy軸成分ly1、および相対角度θを用いて、下式(6)のように表される。
Figure JPOXMLDOC01-appb-M000006
 図2には、インバータ接続部5が、角度検出器4よりもy軸の正方向側(右側)に配置された例を示しているため、下式(7)のように表される。なお、インバータ接続部5は、角度検出器4よりもy軸の負方向側(左側)に配置してもよい。また、インバータ接続部5の3相をy軸の右側、左側にばらけた形で配置してもよい。その場合には、左側に配置した相の関係式の右辺を-1倍すればよい。
Figure JPOXMLDOC01-appb-M000007
 また、図2(b)に示すように、インバータ接続部5の長さのうち、角度検出器4の位置を基準にしてz軸の正方向側の長さをlz1、z軸の負方向側の長さをlz2とする。また、インバータ接続部5のz軸の正方向側の端部と角度検出器4とがなす相対角度をθ1、インバータ接続部5のz軸の負方向側の端部と角度検出器4とがなす相対角度をθ2とする。
 このとき、インバータ接続部5に流れる3相交流電流iu1、iv1、iw1が、角度検出器4の位置に発生するノイズ磁場Biは、下式(8)で表される。ここで、μ0は真空の透磁率を表す。
Figure JPOXMLDOC01-appb-M000008
 図3は、回転座標系における電流ベクトルを示す説明図である。電流ベクトルの絶対値をIとし、q軸に対する位相角をθβとすると、電流ベクトルのd軸成分idおよびq軸成分iqは下式(9)で表される。
Figure JPOXMLDOC01-appb-M000009
 上式(3)および(5)により、角度検出器4が検出した正弦信号Vsinおよび余弦信号Vcosから、交流回転機1の電気角θeが得られるので、インバータ接続部5を流れる3相交流電流は、下式(10)で表される。ここで、√2×Irmsは3相交流電流の振幅である。
Figure JPOXMLDOC01-appb-M000010
 なお、上式(10)では、簡単のため、3相交流電流は正弦波であるとして、電気角θeの1次(基本周期)成分のみを示したが、例えば台形波駆動の場合等のように、電気角θeの高次の成分が含まれる場合には、上式(10)に、電気角θeのn次成分(nは2以上の自然数)を含む項を追加すればよい(例えば、フーリエ級数とすればよい)。
 上式(7)、(8)および(10)より、インバータ接続部5を流れる3相交流電流が角度検出器4の位置に発生するノイズ磁場Biは、下式(11)で表される。
Figure JPOXMLDOC01-appb-M000011
 一方で、磁場発生器3が、角度検出器4の位置に発生する角度検出用磁場Bbaseは、下式(12)で与えられる。
Figure JPOXMLDOC01-appb-M000012
 従って、角度検出器4は、実際には、上式(11)に示すノイズ磁場Biと、上式(12)に示す角度検出用磁場Bbaseとが重ね合わされた、下式(13)で表される合成磁場Ballを検出することになる。
Figure JPOXMLDOC01-appb-M000013
 例えば、角度検出用磁場Bbaseの大きさが100(mT)程度で、ノイズ磁場Biの大きさが1(mT)程度の場合には、角度検出器4の検出値には、約1%の誤差が重畳される。
 次に、角度検出器4が実際に検出する上式(13)で表される合成磁場Ballに含まれる、上式(11)で表されるノイズ磁場Biによる影響を補正する方法について説明する。
 図4は、本発明の実施の形態1に係る交流回転機の制御装置を、交流回転機とともに示す回路図である。図4に示す交流回転機の制御装置は、交流回転機1を制御するものであって、インバータ2、磁場発生器3、角度検出器4、インバータ接続部5、電流検出器6、および制御演算部7を備えて構成される。
 直流電源8は、インバータ2に直流電圧Vdcを供給する。直流電源8としては、例えば、バッテリー、DC-DCコンバータ、ダイオード整流器、PWM整流器等の、直流電圧を出力する機器を用いることができる。
 インバータ2は、制御演算部7が出力するスイッチング信号Qup~Qwnに従って半導体スイッチSup~Swnを制御することにより、直流電源8から供給される直流電圧Vdcを3相交流に変換する。3相交流はインバータ接続部5を介して交流回転機1の電機子巻線に供給される。
 ここで、スイッチング信号Qup、Qun、Qvp、Qvn、Qwp、Qwnは、それぞれ、インバータ2の半導体スイッチSup、Sun、Svp、Svn、Swp、Swnをオンおよびオフするための制御信号である。
 半導体スイッチSup~Swnとしては、例えば、IGBT、バイポーラトランジスタ、MOSパワートランジスタ等の半導体スイッチや、ダイオードを逆並列に接続したものを用いることができる。
 電流検出器6は、インバータ2の各相の下アームと直流電源8のグランドとの間に設けられ、インバータ接続部5の各相に流れる3相交流電流iu1、iv1、iw1を検出する。なお、3相交流電流の3相全てを検出する代わりに、3相交流電流のベクトル和が0となることを利用して、2相のみを検出し、残り1相については計算により取得することも可能である。また、電流検出器6は、インバータ2の各相の上アームと直流電源8の正極側との間に設けてもよい。さらに、電流検出器6は、電流検出の時間を確保するためにインバータ2のスイッチングタイミングをずらして母線電流値を検出する方式としても、3相交流電流を算出することも可能である。
 制御演算部7は、角度補正演算部20および電流制御部21を備えて構成される。
 角度補正演算部20は、インバータ接続部5に流れる3相交流電流が発生するノイズ磁場による正弦信号Vsinおよび余弦信号Vcosの誤差を補正し、補正後電気角θe_hoseiとして出力する。
 ここで、角度補正演算部20は、図4に示すように、電流指令id*、iq*から得られる電流ベクトルに基づいてノイズ磁場を計算する。なお、電流ベクトルは、電流検出器6が検出する3相交流電流iu1、iv1、iw1から得ることもできる。また、ノイズ除去のためにローパスフィルタなどを通した後の値を用いて電流ベクトルを得てもよいことはいうまでも無い。以下では、電流ベクトルを、電流指令id*、iq*から得る場合について説明する。
 電流制御部21は、補正後電気角θe_hoseiを用いて、インバータ接続部5を流れる3相交流電流iu1、iv1、iw1を、回転座標系における検出電流id1、iq1に変換するとともに、外部から入力される電流指令id*、iq*と検出電流id1、iq1とが等しくなるように、フィードバック制御により電圧指令Vu、Vv、Vwを算出し、この電圧指令Vu、Vv、Vwに応じたパルス幅変調(PWM変調)によって、インバータ2にスイッチング信号Qup~Qwnを出力する。
 また、3相交流電流iu1、iv1、iw1のフィードバック制御は、代わりに交流回転機1に合わせたフィードフォワード制御してもよく、この場合は、電流検出器6および電流検出器6が検出する3相交流電流iu1、iv1、iw1の値は必須ではなくなる。
 図5Aは、本発明の実施の形態1に係る交流回転機の制御装置における角度補正演算部20のブロック図である。本実施の形態1の角度補正演算部20は、第1の角度変換部30、補正信号演算部31、および第2の角度変換部32を備えて構成される。
 第1の角度変換部30は、角度検出器4が検出した正弦信号Vsinおよび余弦信号Vcosから、上式(3)に従って検出角θsnsを算出し、更に上式(5)に従って電気角θeを算出して、角度情報として出力する。
 補正信号演算部31は、外部から入力される電流指令id*、iq*から、上式(9)に従って、位相角θβを求めるとともに、電流ベクトルと位相角θβと第1の角度変換部30にて得られた角度情報である電気角θeとから、下式(14)に従って、正弦信号用補正信号hsinおよび余弦信号用補正信号hcosを算出する。
Figure JPOXMLDOC01-appb-M000014
 なお、正弦信号用補正信号hsinおよび余弦信号用補正信号hcosの計算に用いる電流ベクトルとしては、前述のように、電流指令id*、iq*を用いてもよいし、電流検出器6が検出した3相交流電流iu1、iv1、iw1を用いてもよい。
 ここで、位相補正定数δx、δyはインバータ接続部5と角度検出器4との相対的な位置関係により決定される定数であり、上式(11)のように与えられる。また、振幅補正定数Ksin、Kcosもインバータ接続部5と角度検出器4との相対的な位置関係により決定される定数であり、下式(15)のように与えられる。
Figure JPOXMLDOC01-appb-M000015
 なお、振幅補正定数Ksin、Kcosは、角度検出器4が出力する正弦信号Vsinおよび余弦信号Vcosの基本波振幅Asin、Acosに比例するが、基本波振幅Asin、Acosが、環境温度変化や経年変化によって変化しないのであれば定数としてもよい。一方で、環境温度変化や経年変化によって変化する場合は、基本波振幅Asin、Acosを温度または時間の変数としてもよい。また、基本波振幅の変動が大きい場合には、振幅補正定数は、実際の基本波振幅を使用して、基本波振幅以外の部分を乗算して得てもよい。
 ここで、上式(10)と上式(14)とを比較すると、正弦信号用補正信号hsinおよび余弦信号用補正信号hcosは、インバータ接続部5を流れる3相交流電流iu1、iv1、iw1に対して、位相および振幅を調整したものとなっていることが分かる。具体的には、上式(14)は、下式(16)に示す基本交流電流hbaseに対して、位相を位相補正定数δxまたはδyだけ加算し、振幅を振幅補正定数KsinまたはKcosだけ乗算したものとなっている。
Figure JPOXMLDOC01-appb-M000016
 すなわち、正弦信号用補正信号hsinおよび余弦信号用補正信号hcosは、電流指令id*、iq*または検出電流id1、iq1で決定する電流ベクトルの絶対値に、振幅補正定数が乗算された振幅値と、電流指令id*、iq*または検出電流id1、iq1で決定する電流ベクトルのq軸に対する位相角θβに、電気角θeおよび位相補正定数が加算された位相値とを有する正弦波として表される。
 インバータ接続部5と角度検出器4との相対的な位置関係により決定される位相補正定数および振幅補正定数は、事前に計算しておいて、例えば、制御演算部7の図示しない記憶部に記憶しておくことが可能である。また、基本波振幅の変動が大きい場合には、振幅補正定数は基本波振幅以外の部分を記憶して、使用時に基本波振幅を掛けあわせてやればよい。従って、上式(14)を用いれば、基本交流電流hbaseに対して、位相および振幅を調整するだけで、簡単な計算により正弦信号用補正信号hsinおよび余弦信号用補正信号hcosを算出することができる。
 第2の角度変換部32は、正弦信号Vsinおよび余弦信号Vcosと、正弦信号用補正信号hsinおよび余弦信号用補正信号hcosとの差分信号から、上式(3)および(5)に従って、補正後電気角θe_hoseiを算出する。
 図5Aでは、正弦信号用補正信号hsinおよび余弦信号用補正信号hcosを算出するのに使用する角度情報を電気角θeとしたが、検出角θsnsを用いた図5Bのような角度補正演算部20aとしてもよい。図5Bに示す角度補正演算部20aは、図5Aの角度補正演算部20とは、第1の角度変換部30aおよび補正信号演算部31aが異なっている。
 図5Bでは、第1の角度変換部30aは、角度検出器4が検出した正弦信号Vsinおよび余弦信号Vcosから、角度情報として検出角θsnsを上式(3)に従って算出する。
 補正信号演算部31aは、外部から入力される電流指令id*、iq*から、上式(9)に従って、位相角θβを求めるとともに、電流ベクトルと位相角θβと第1の角度変換部30aにて得られた角度情報である検出角θsnsとから、下式(17)に従って、正弦信号用補正信号hsinおよび余弦信号用補正信号hcosを算出する。
Figure JPOXMLDOC01-appb-M000017
 また、図5Cのような角度補正演算部20bとしてもよい。図5Cに示す角度補正演算部20bは、図5Bの角度補正演算部20aとは、第2の角度変換部32aおよび第3の角度変換部35が異なっている。
 図5Cでは、第2の角度変換部32aは、正弦信号Vsinおよび余弦信号Vcosと、正弦信号用補正信号hsinおよび余弦信号用補正信号hcosとの差分信号から、上式(3)に従って、補正後検出角θsns_hoseiを算出する。
 第3の角度変換部35は、補正後検出角θsns_hoseiから上式(5)に従って、補正後電気角θe_hoseiを算出する。
 図5Bおよび図5Cのいずれの構成においても、図5Aの構成と同様の効果を得ることができる。なお、図5A、図5Bおよび図5Cは、角度補正演算部の構成の例であって、補正信号演算部の入力となる角度情報は、正弦信号Vsinおよび余弦信号Vcosにより得られた角度を定数倍して得られるものであれば、補正信号演算部で補正信号として使用できる。検出角θsnsと電気角θeの初期位相がずれている場合には、単純に定数倍するわけでは無くオフセット分を調整する必要があることはいうまでも無い。
 これにより、ノイズ磁場Biの影響を含む電気角θeの代わりに、ノイズ磁場Biの影響が低減された補正後電気角θe_hoseiを用いることで、電気角θeを高精度に検出することができる。
 この補正後電気角θe_hoseiを用いて電流制御部21の演算を実施できることで、3相交流電流iu1、iv1、iw1から検出電流id1、iq1への座標変換時、電流指令id*、iq*に対してフィードフォワード制御あるいはフィードバック制御などの手法を用いて得られる電圧指令からスイッチング信号Qup~Qwnを得る際の座標変換時などに重畳されていた誤差成分を低減または除去することができ、電流リプルを抑制することが可能となるという従来に無い効果を得ることができる。
 例えば、本実施の形態1の交流回転機の制御装置を、電動パワーステアリングの操舵トルクを補助するために用いる場合には、交流回転機1の出力トルクに含まれるトルクリプルが抑制されるので、快適な操舵フィーリングを得ることができる。
 なお、以上の説明では、インバータ接続部5には3相交流電流が流れるものとしたが、インバータ接続部5に3相以上の多相交流電流が流れるとしても、同様の効果を得ることができる。
 また、以上の説明では、3相交流電流が電気角θeの1次(基本周期)成分のみで表せるとしたが、上式(10)に、電気角θeのn次成分(nは2以上の自然数)を含む項が含まれる場合(例えば、フーリエ級数で表される場合)でも、電磁場の重ね合わせの性質から、同様の手順により、上式(14)に相当する式を得ることができる。
 すなわち、3相交流電流に電気角θeにより高次の成分が含まれる場合は、正弦信号用補正信号hsinおよび余弦信号用補正信号hcosには、電流指令id*、iq*または検出電流id1、iq1の電流ベクトルの絶対値に、振幅補正定数が乗算された振幅値と、電流指令id*、iq*または検出電流id1、iq1の電流ベクトルのq軸に対する位相角θβに、電気角θeのn次成分(nは2以上の自然数)および位相補正定数が加算された位相値とを有するn次正弦波の項が、更に含まれることになる。
 また、以上の説明では、インバータ接続部5の全ての接続線に3相交流電流が正常に流れる正常時の動作を想定したが、いくつかの接続線に3相交流電流が流れていない故障時でも、同様の手順により、上式(14)に相当する式を得ることができる。
 従って、インバータ接続部5に3相交流電流のいくつかの相が供給されていない故障時でも、上式(14)に相当する式に従って、電流が流れている接続線による正弦信号用補正信号hsinおよび余弦信号用補正信号hcosを算出することにより、ノイズ磁場による角度検出器4の誤差を補正することができる。なお、上式(14)に相当する式が、単純な式で表しにくい場合には、電気角に応じた波形値を予めテーブルとして準備してもよい。
 なお、本実施の形態1では、正弦信号用補正信号hsinおよび余弦信号用補正信号hcosの両方を補正したが、いずれか一方の誤差が小さい場合などには一方のみを補正することで同様の効果を得ることができる。また、両方の誤差が同じようにあっても、処理負荷の都合などで正弦信号用補正信号hsinまたは余弦信号用補正信号hcosのいずれか一方を補正することで、効果は小さいが角度補正の効果を得られることはいうまでも無い。
 以上のように、実施の形態1では、インバータ接続部に流れる多相交流電流が発生するノイズ磁場による角度検出器の検出誤差を、インバータ接続部と角度検出器との相対的な位置関係と多相交流電流の値とによって位相および振幅が決定される補正信号を用いて補正している。この結果、回転子の角度位置を高精度に検出できる簡素で低コストな交流回転機の制御装置を得ることができる。
 実施の形態2.
 図6Aは、本発明の実施の形態2に係る交流回転機の制御装置における角度補正演算部20cのブロック図である。図6Aに示す本実施の形態2の角度補正演算部20cは、先の実施の形態1の図5Aと比較して、補正信号演算部31が、電気角θeの代わりに、補正後電気角θe_hoseiの前回値θe_hosei_oldを入力する点が異なっている。
 補正信号演算部31は、外部から入力される電流指令id*、iq*から、上式(9)に従って、位相角θβを求めるとともに、電流ベクトルと位相角θβと補正後電気角の前回値θe_hosei_oldとから、下式(18)に従って、正弦信号用補正信号hsinおよび余弦信号用補正信号hcosを算出する。
Figure JPOXMLDOC01-appb-M000018
 前回値取得部33は、前回値を取得するブロックであり、ここでは前回演算時に得た補正後電気角θe_hoseiを前回値θe_hosei_oldとして取得する。
 なお、図6Aでは、正弦信号用補正信号hsinおよび余弦信号用補正信号hcosを算出する際に補正後電気角の前回値θe_hosei_oldを用いる構成としたが、補正後検出角の前回値θsns_hosei_oldを用いた図6Bのような角度補正演算部20dとしてもよい。図6Bに示す角度補正演算部20dは、図6Aの角度補正演算部20cとは、補正信号演算部31a、第2の角度変換部32aおよび第3の角度変換部35が異なっている。
 図6Bでは、補正信号演算部31aは、外部から入力される電流指令id*、iq*から、上式(9)に従って、位相角θβを求めるとともに、電流ベクトルと位相角θβと前回値取得部33にて得られた角度情報である補正後検出角の前回値θsns_hosei_oldとから、下式(19)に従って、正弦信号用補正信号hsinおよび余弦信号用補正信号hcosを算出する。
Figure JPOXMLDOC01-appb-M000019
 第2の角度変換部32aは、正弦信号Vsinおよび余弦信号Vcosと、正弦信号用補正信号hsinおよび余弦信号用補正信号hcosとの差分信号から、上式(3)に従って、補正後検出角θsns_hoseiを算出する。
 第3の角度変換部35は、補正後検出角θsns_hoseiから上式(5)に従って、補正後電気角θe_hoseiを算出する。
 図6Bの構成においても、図6Aの構成と同様の効果を得ることができる。なお、図6Aおよび図6Bは、角度補正演算部の構成の例であって、補正信号演算部の入力となる角度情報は正弦信号Vsinおよび余弦信号Vcosと、正弦信号用補正信号hsinおよび余弦信号用補正信号hcosとの差分信号から得られた検出角θsnsを定数倍して得られるものであれば、補正信号演算部で補正信号として使用できる。検出角θsnsと電気角θeの初期位相がずれている場合には、単純に定数倍するわけでは無くオフセット分を調整する必要があることはいうまでも無い。
 なお、正弦信号用補正信号hsinおよび余弦信号用補正信号hcosの計算に用いる電流ベクトルとしては、図6Aに示すように電流指令id*、iq*を用いてもよいし、電流検出器6が検出した3相交流電流iu1、iv1、iw1の値を用いてもよい。
 また、本実施の形態2では、正弦信号用補正信号hsinおよび余弦信号用補正信号hcosの両方を補正したが、いずれか一方の誤差が小さい場合などには一方のみを補正することで同様の効果を得ることができる。また、両方の誤差が同じようにあっても、処理負荷の都合などで正弦信号用補正信号hsinまたは余弦信号用補正信号hcosのいずれか一方を補正することで、効果は小さいが角度補正の効果を得られることはいうまでも無い。
 その他の構成および動作については先の実施の形態1と同様であるので説明は省略する。
 以上のように、実施の形態2では、角度補正演算部は、検出角θsnsまたは電気角θeの代わりに、補正後検出角θsns_hoseiまたは補正後電気角θe_hoseiの前回値を補正信号演算部で使用する角度情報とすることで、角度誤差の小さい信号を元に補正信号を生成できるため、精度のよい補正信号を生成することができるという従来に無い効果を得ることができる。
 実施の形態3.
 図7Aは、本発明の実施の形態3に係る交流回転機の制御装置における角度補正演算部20eのブロック図である。図7Aに示す本実施の形態3の角度補正演算部20eは、先の実施の形態2の図6Aと比較して、交流回転機1の電気角θeの時間変化率ωeに基づいて、補正後電気角θe_hoseiの前回の演算値を補正する回転変化補正部34を備えている点が異なっている。
 回転変化補正部34は、補正後電気角θe_hoseiの前回値の演算時から今回の演算時までの時間Δtと、交流回転機1の電気角θeの時間変化率ωeとの積で得られる角度変化量を加算することにより、下式(20)のように、前回値取得部33にて得られた角度情報である補正後電気角の前回値θe_hosei_oldを補正したうえで、第2の補正後電気角θe_hosei2として出力する。ここでは、前回値の演算時から今回の演算時までの時間Δtと、交流回転機1の電気角θeの時間変化率ωeとの積により角度変化量を得たが、前回値の演算時と今回の演算時の間の角度変化量を得られれば他の方法でもよい。
Figure JPOXMLDOC01-appb-M000020
 補正信号演算部31は、外部から入力される電流指令id*、iq*から、上式(9)に従って、位相角θβを求めるとともに、電流ベクトルと位相角θβと第2の補正後電気角θe_hosei2とから、下式(21)に従って、正弦信号用補正信号hsinおよび余弦信号用補正信号hcosを算出する。
Figure JPOXMLDOC01-appb-M000021
 図7Aでは、正弦信号用補正信号hsinおよび余弦信号用補正信号hcosを算出する際に第2の補正後電気角θe_hosei2を用いる構成としたが、第2の補正後検出角θsns_hosei2を用いた図7Bのような角度補正演算部20fとしてもよい。
 回転変化補正部34aは、補正後検出角θsns_hoseiの前回値の演算時から今回の演算時までの時間Δtと、交流回転機1の検出角θsnsの時間変化率ωsとの積を加算することにより、下式(22)のように、前回値取得部33にて得られた角度情報である補正後検出角の前回値θsns_hosei_oldを補正したうえで、第2の補正後検出角θsns_hosei2として出力する。ここでは、前回値の演算時から今回の演算時までの時間Δtと、交流回転機1の検出角θsnsの時間変化率ωsとの積により角度変化量を得たが、前回値の演算時と今回の演算時の間の角度変化量を得られれば他の方法でもよい。
Figure JPOXMLDOC01-appb-M000022
 補正信号演算部31は、外部から入力される電流指令id*、iq*から、上式(9)に従って、位相角θβを求めるとともに、電流ベクトルと位相角θβと第2の補正後検出角θsns_hosei2とから、下式(23)に従って、正弦信号用補正信号hsinおよび余弦信号用補正信号hcosを算出する。
Figure JPOXMLDOC01-appb-M000023
 なお、正弦信号用補正信号hsinおよび余弦信号用補正信号hcosの計算に用いる電流ベクトルとしては、図7Aに示すように電流指令id*、iq*を用いてもよいし、電流検出器6が検出した3相交流電流iu1、iv1、iw1の値を用いてもよい。
 また、本実施の形態3では、正弦信号用補正信号hsinおよび余弦信号用補正信号hcosの両方を補正したが、いずれか一方の誤差が小さい場合などには一方のみを補正することで同様の効果を得ることができる。また、両方の誤差が同じようにあっても、処理負荷の都合などで正弦信号用補正信号hsinまたは余弦信号用補正信号hcosのいずれか一方を補正することで、効果は小さいが角度補正の効果を得られることはいうまでも無い。
 その他の構成および動作については先の実施の形態1と同様であるので説明は省略する。
 以上のように、実施の形態3では、補正後検出角θsns_hoseiの前回値または補正後電気角θe_hoseiの前回値に対して、前回の演算時から今回演算時までに変化した角度変化量を加算して得た角度推定値を補正信号演算部で使用する角度情報とすることで、高回転時においても回転子の角度位置をより高精度に検出することができるという従来に無い効果を得ることができる。
 実施の形態4.
 図8Aは、本発明の実施の形態4に係る交流回転機の制御装置における角度補正演算部20gのブロック図である。図8Aに示す本実施の形態4の角度補正演算部20gは、先の実施の形態1の図5Aと比較して、補正信号演算部31bが補正信号としてhθeを出力し、電気角θeをhθeにより補正する点が異なっている。
 補正信号演算部31bは、外部から入力される電流指令id*、iq*から、上式(9)に従って、位相角θβを求めるとともに、電流ベクトルと位相角θβと電気角θeとから、下式(24)に従って、電気角補正信号hθeを算出する。
Figure JPOXMLDOC01-appb-M000024
 補正後電気角θe_hoseiは、電気角θeから電気角補正信号hθeを減算することで算出する。
 ここでは、3相交流電流が電気角θeの1次(基本周期)成分のみで表せるとしたが、上式(10)に、電気角θeのn次成分(nは2以上の自然数)を含む項が含まれる場合(例えば、フーリエ級数で表される場合)でも、電磁場の重ね合わせの性質から、同様の手順により、上式(24)に相当する式を得ることができる。
 すなわち、3相交流電流に電気角θeに高次の成分が含まれる場合には、電気角補正信号hθeには、電流指令id*、iq*または検出電流id1、iq1の電流ベクトルの絶対値に、振幅補正定数が乗算された振幅値と、電流指令id*、iq*または検出電流id1、iq1の電流ベクトルのq軸に対する位相角θβに、電気角θeの(n±Psns/P)次成分(nは2以上の自然数)および位相補正定数が加算された位相値とを有する(n±Psns/P)次正弦波の項が更に含まれることになる。
 図8Aでは、電気角補正信号hθeを算出する際に電気角θeを用いる構成としたが、補正信号演算部で使用する角度情報を検出角θsnsにした図8Bのような角度補正演算部20hとしてもよい。図8Bのような角度補正演算部20hは、図8Aの角度補正演算部20gとは、第1の角度変換部30a、補正信号演算部31cおよび第3の角度変換部35が異なっている。
 図8Bでは、補正信号演算部31cは、外部から入力される電流指令id*、iq*から、上式(9)に従って、位相角θβを求めるとともに、電流ベクトルと位相角θβと第1の角度変換部30aにて得られた角度情報である検出角θsnsとから、下式(25)に従って、検出角補正信号hθsnsを算出する。
Figure JPOXMLDOC01-appb-M000025
 補正後検出角θsns_hoseiは、検出角θsnsから検出角補正信号hθsnsを減算することで算出する。第3の角度変換部35は、補正後検出角θsns_hoseiから上式(5)に従って、補正後電気角θe_hoseiを算出する。
 また、図8Cのような角度補正演算部20iとしてもよい。図8Cに示す角度補正演算部20iは、図8Aの角度補正演算部20gとは、第1の角度変換部30a、補正信号演算部31dおよび第3の角度変換部35が異なっている。
 図8Aでは、補正信号演算部31dは、外部から入力される電流指令id*、iq*から、上式(9)に従って、位相角θβを求めるとともに、電流ベクトルと位相角θβと第1の角度変換部30aにて得られた角度情報である検出角θsnsとから、下式(26)に従って、電気角補正信号hθeを算出する。
Figure JPOXMLDOC01-appb-M000026
 第3の角度変換部35は、検出角θsnsから上式(5)に従って、電気角θeを算出する。補正後電気角θe_hoseiは、電気角θeから電気角補正信号hθeを減算することで算出する。
 なお、図8A、図8Bおよび図8Cは、角度補正演算部の構成の例であって、補正信号演算部の入力となる角度情報は、正弦信号Vsinおよび余弦信号Vcosにより得られた角度を定数倍して得られるものであれば、補正信号演算部で補正信号として使用できる。検出角θsnsと電気角θeの初期位相がずれている場合には、単純に定数倍するわけでは無くオフセット分を調整する必要があることはいうまでも無い。
 なお、検出角補正信号hθsnsまたは電気角補正信号hθeの計算に用いる電流ベクトルとしては、図8Aに示すように電流指令id*、iq*を用いてもよいし、電流検出器6が検出した3相交流電流iu1、iv1、iw1の値を用いてもよい。
 その他の構成および動作については先の実施の形態1と同様であるので説明は省略する。
 以上のように、実施の形態4では、補正信号演算部で、検出角補正信号hθsnsまたは電気角補正信号hθeを算出することにより、正弦信号Vsinおよび余弦信号Vcosの基本波振幅を使用せずに、かつ少ない補正信号で角度誤差を補正することができるという従来に無い効果を得ることができる。
 実施の形態5.
 図9Aは、本発明の実施の形態5に係る交流回転機の制御装置における角度補正演算部20jのブロック図である。図9Aに示す本実施の形態5の角度補正演算部20jは、先の実施の形態4の図8Aと比較して、補正信号演算部31bが、電気角θeの代わりに、補正後電気角θe_hoseiの前回値θe_hosei_oldを入力する点が異なっている。
 補正信号演算部31bは、外部から入力される電流指令id*、iq*から、上式(9)に従って、位相角θβを求めるとともに、電流ベクトルと位相角θβと補正後電気角の前回値θe_hosei_oldとから、上式(24)に従って、電気角補正信号hθeを算出する。
 図9Aでは、電気角補正信号hθeを算出する際に電気角θeを用いる構成としたが、補正信号演算部で使用する角度情報を検出角θsnsにした図9Bのような角度補正演算部20kとしてもよい。図9Bに示す角度補正演算部20kは、図9Aの角度補正演算部20jとは、補正信号演算部31c、第1の角度変換部30aおよび第3の角度変換部35が異なっている。
 図9Bでは、補正信号演算部31cは、外部から入力される電流指令id*、iq*から、上式(9)に従って、位相角θβを求めるとともに、電流ベクトルと位相角θβと前回値取得部33にて得られた角度情報である補正後検出角の前回値θsns_hosei_oldとから、上式(25)に従って、検出角補正信号hθsnsを算出する。
 第3の角度変換部35は、補正後検出角θsns_hoseiから上式(26)に従って、補正後電気角θe_hoseiを算出する。
 図9Bの構成においても、図9Aの構成と同様の効果を得ることができる。なお、図9Aおよび図9Bは、角度補正演算部の構成の例であって、補正信号演算部の入力となる角度情報は正弦信号Vsinおよび余弦信号Vcosにより得られた角度を定数倍して得られるものであれば、補正信号演算部で補正信号として使用できる。検出角θsnsと電気角θeの初期位相がずれている場合には、単純に定数倍するわけでは無くオフセット分を調整する必要があることはいうまでも無い。
 なお、正弦信号用補正信号hsinおよび余弦信号用補正信号hcosの計算に用いる電流ベクトルとしては、図9Aに示すように電流指令id*、iq*を用いてもよいし、電流検出器6が検出した3相交流電流iu1、iv1、iw1の値を用いてもよい。
 その他の構成および動作については先の実施の形態1と同様であるので説明は省略する。
 以上のように、実施の形態5では、角度補正演算部は、検出角θsnsまたは電気角θeの代わりに、補正後検出角θsns_hoseiまたは補正後電気角θe_hoseiの前回値を補正信号演算部で使用する角度情報とすることで、角度誤差の小さい信号を元に補正信号を生成できるため、精度のよい補正信号を生成することができるという従来に無い効果を得ることができる。
 また、検出角補正信号hθsnsまたは電気角補正信号hθeを算出することにより、正弦信号Vsinおよび余弦信号Vcosの基本波振幅を使用せずに、かつ少ない補正信号で角度誤差を補正することができるという従来に無い効果を得ることができる。
 実施の形態6.
 図10Aは、本発明の実施の形態6に係る交流回転機の制御装置における角度補正演算部20lのブロック図である。図10Aに示す本実施の形態6の角度補正演算部20lは、先の実施の形態5の図9Aと比較して、交流回転機1の電気角θeの時間変化率ωeに基づいて、補正後電気角θe_hoseiの前回の演算値を補正する回転変化補正部34を備えている点が異なっている。
 回転変化補正部34により第2の補正後電気角θe_hosei2を算出する方法については先の実施の形態3にて述べているため、ここでは説明を省略する。
 補正信号演算部31bは、外部から入力される電流指令id*、iq*から、上式(9)に従って、位相角θβを求めるとともに、電流ベクトルと位相角θβと第2の補正後電気角θe_hosei2とから、上式(24)に従って、電気角補正信号hθeを算出する。
 補正後電気角θe_hoseiは、電気角θeから電気角補正信号hθeを減算することで算出する。
 図10Aでは、電気角補正信号hθeを算出する際に第2の補正後電気角θe_hosei2を用いる構成としたが、第2の補正後検出角θsns_hosei2を用いた図10Bのような角度補正演算部20mとしてもよい。
 補正信号演算部31cは、外部から入力される電流指令id*、iq*から、上式(9)に従って、位相角θβを求めるとともに、電流ベクトルと位相角θβと第2の補正後検出角θsns_hosei2とから、上式(25)に従って、検出角補正信号hθsnsを算出する。
 第3の角度変換部35は、補正後検出角θsns_hoseiから上式(26)に従って、補正後電気角θe_hoseiを算出する。
 図10Bの構成においても、図10Aの構成と同様の効果を得ることができる。なお、図10Aおよび図10Bは、角度補正演算部の構成の例であって、補正信号演算部の入力となる角度情報は正弦信号Vsinおよび余弦信号Vcosにより得られた角度を定数倍して得られるものであれば、補正信号演算部で補正信号として使用できる。検出角θsnsと電気角θeの初期位相がずれている場合には、単純に定数倍するわけでは無くオフセット分を調整する必要があることはいうまでも無い。
 なお、検出角補正信号hθsnsまたは電気角補正信号hθeの計算に用いる電流ベクトルとしては、図10Aに示すように電流指令id*、iq*を用いてもよいし、電流検出器6が検出した3相交流電流iu1、iv1、iw1の値を用いてもよい。
 その他の構成および動作については先の実施の形態1と同様であるので説明は省略する。
 以上のように、実施の形態6では、補正後検出角θsns_hoseiの前回値または補正後電気角θe_hoseiの前回値に対して、前回の演算時から今回演算時までに変化した角度変化量を加算して得た角度推定値を補正信号演算部で使用する角度情報とすることで、高回転時においても回転子の角度位置をより高精度に検出することができる。
 また、検出角補正信号hθsnsまたは電気角補正信号hθeを算出することにより、正弦信号Vsinおよび余弦信号Vcosの基本波振幅を使用せずに、かつ少ない補正信号で角度誤差を補正することができるという従来に無い効果を得ることができる。
 実施の形態7.
 先の実施の形態1~6では、電機子巻線が1組の場合について説明したが、本実施の形態8では、複数組の電機子巻線を持つ場合について説明する。また、磁場発生器3が生成する角度検出用磁場が強く、角度検出器4が飽和感度領域において使用される場合についても説明する。
 図11は、本実施の形態7の配置を示した模式図である。交流回転機1aは、第1の電機子巻線U1、V1、W1と第2の電機子巻線U2、V2、W2を有する永久磁石型同期回転機である。交流回転機1aは、回転子と固定子を含む構成となっており、固定子の電機子巻線に流れる3相交流電流が形成する回転磁場によって回転子が回転する。
 ここでは、永久磁石型同期回転機について説明するが、界磁巻線型同期回転機であってもよい。ここでは3相巻線について説明するが、3相以上の巻線を有する交流回転機であってもよい。また、ここでは2組の巻線組のもので説明するが、3つ以上の巻線組を有する交流回転機でもよい。
 第1の電機子巻線と第2の電機子巻線に流れる電流は30degの位相差がある。位相差30degを設けることにより、電機子巻線が2組の場合に電気角6次の電流リプルを相殺する効果がある。
 インバータ2aは、第1の電機子巻線に電力を供給する第1のインバータ2a1と第2の電機子巻線に電力を供給する第2のインバータ2a2から成る。スイッチング信号に基づき、半導体スイッチをオンオフすることによって、直流電源から入力した直流電圧を電力変換してインバータ接続部5aを介して交流回転機1aの電機子巻線に電圧を印加する。
 交流回転機1aとインバータ2aは、インバータ接続部5aで接続されている。インバータ接続部5aは、第1のインバータ接続部5a1と第2のインバータ接続部5a2からなる。
 第1のインバータ接続部5a1は第1の電機子巻線にU相電流を流すインバータ接続部5u1、V相電流を流すインバータ接続部5v1、W相電流を流すインバータ接続部5w1から成り、第2のインバータ接続部5a2は第2の電機子巻線にU相電流を流すインバータ接続部5u2、V相電流を流すインバータ接続部5v2、W相電流を流すインバータ接続部5w2から成る。なお、図11では図がわかりにくくなるのを防止するため、インバータ接続部5u2、5v2、5w2を省略している。
 第1のインバータ2a1で印加された電圧は、第1のインバータ接続部5a1を経由して交流回転機1aの第1の電機子巻線に印加され、第2のインバータ2a2で印加された電圧は、第2のインバータ接続部5a2を経由して交流回転機1aの第2の電機子巻線に印加され、交流回転機1aに所望の電流を流してトルクを発生させる。
 第1の電流検出器6a1は、第1のインバータ2a1の各相の下アームと直流電源8のグランドとの間に設けられ、第1のインバータ接続部5a1の各相に流れる3相交流電流iu1、iv1、iw1を検出する。なお、3相交流電流の3相全てを検出する代わりに、3相交流電流のベクトル和が0となることを利用して、2相のみを検出し、残り1相については計算により取得することも可能である。
 また、第1の電流検出器6a1は、第1のインバータ2a1の各相の上アームと直流電源8の正極側との間に設けてもよい。さらに、第1の電流検出器6a1は、電流検出の時間を確保するために第1のインバータ2a1のスイッチングタイミングをずらして母線電流値を検出する方式としても、3相交流電流を算出することが可能である。
 第2の電流検出器6a2は、第2のインバータ2a2の各相の下アームと直流電源8のグランドとの間に設けられ、第2のインバータ接続部5a2の各相に流れる3相交流電流iu2、iv2、iw2を検出する。なお、3相交流電流の3相全てを検出する代わりに、3相交流電流のベクトル和が0となることを利用して、2相のみを検出し、残り1相については計算により取得することも可能である。
 また、第2の電流検出器6a2は、第2のインバータ2a2の各相の上アームと直流電源8の正極側との間に設けてもよい。さらに、第2の電流検出器6a2は、電流検出の時間を確保するために第2のインバータ2a2のスイッチングタイミングをずらして母線電流値を検出する方式としても、3相交流電流を算出することが可能である。
 制御演算部7aは、角度補正演算部20および電流制御部21aを備えて構成される。
 角度補正演算部20は、インバータ接続部5に流れる3相交流電流が発生するノイズ磁場による正弦信号Vsinおよび余弦信号Vcosの誤差を補正し、補正後電気角θe_hoseiとして出力する。
 なお、ノイズ磁場の計算に用いる電流ベクトルは、電流指令id*、iq*から得てもよいし、第1の電流検出器6a1が検出した3相交流電流iu1、iv1、iw1から得てもよいし、第2の電流検出器6a2が検出した3相交流電流iu2、iv2、iw2から得てもよい。また、ノイズ除去のためにローパスフィルタなどを通した後の値を用いて電流ベクトルを得てもよいことはいうまでも無い。
 電流制御部21aは、まず、補正後電気角θe_hoseiを用いて、第1のインバータ接続部5a1を流れる3相交流電流iu1、iv1、iw1を、回転座標系における第1の検出電流id1、iq1に変換する。そして、外部から入力される電流指令id*、iq*と第1の検出電流id1、iq1とが等しくなるように、フィードバック制御により、第1の電圧指令Vu1、Vv1、Vw1を算出する。
 次に、電流制御部21aは、この第1の電圧指令Vu1、Vv1、Vw1に応じたパルス幅変調(PWM変調)によって、第1のインバータ2a1にスイッチング信号Qup1~Qwn1を出力し、第2のインバータ接続部5a2を流れる3相交流電流iu2、iv2、iw2を、回転座標系における第2の検出電流id2、iq2に変換する。そして、電流指令id*、iq*と第2の検出電流id2、iq2とが等しくなるように、フィードバック制御により、第2の電圧指令Vu2、Vv2、Vw2を算出する。
 最後に、電流制御部21aは、この第2の電圧指令Vu2、Vv2、Vw2に応じたパルス幅変調(PWM変調)によって、第2のインバータ2a2にスイッチング信号Qup2~Qwn2を出力する。
 なお、3相交流電流iu1、iv1、iw1および3相交流電流iu2、iv2、iw2のフィードバック制御は、代わりに交流回転機1aに合わせたフィードフォワード制御してもよく、この場合は、第1の電流検出器6a1および第1の電流検出器6a1が検出する3相交流電流iu1、iv1、iw1の値、第2の電流検出器6a2および第2の電流検出器6a2が検出する3相交流電流iu2、iv2、iw2の値は必須ではなくなる。
 磁場発生器3、角度検出器4については、先の実施の形態1と同じであるので説明は省略する。
 図12は、角度検出器4とインバータ接続部5aの位置関係を示した断面図である。第1のインバータ接続部5a1と第2のインバータ接続部5a2は、角度検出器4に関して対応する各相を点対称に配置している。
 図12に示す本実施の形態7のインバータ接続部5aは、図2に示す先の実施の形態1のインバータ接続部5と比較して、y軸の正方向側(右側)に配置された第1のインバータ接続部5a1と、y軸の負方向側(左側)に配置された第2のインバータ接続部5a2とからなる点が主に異なっている。
 インバータ接続部5aを流れる3相交流電流は、下式(27)で表される。ここで、√2×Irmsは3相交流電流の振幅である。
Figure JPOXMLDOC01-appb-M000027
 なお、上式(27)では、簡単のため、3相交流電流は正弦波であるとして、電気角θeの1次(基本周期)成分のみを示したが、例えば台形波駆動の場合等のように、電気角θeの高次の成分が含まれる場合には、上式(27)に、電気角θeのn次成分(nは2以上の自然数)を含む項を追加すればよい(例えば、フーリエ級数とすればよい)。
 このとき、インバータ接続部5aを流れる2組の3相交流電流が角度検出器4の位置に発生するノイズ磁場Biは、下式(28)で表される。
Figure JPOXMLDOC01-appb-M000028
 先の実施の形態1では検出角θsnsと電気角θeの関係を上式(5)で定義したが、検出角と電気角の増加方向が反対の場合には、検出角θsnsと電気角θeの関係は下式(29)で表される。ここでは、検出角θsnsおよび電気角θeの初期位相が異なる場合を説明するために、初期位相差θofsだけオフセットしている。
Figure JPOXMLDOC01-appb-M000029
 上式(28)と上式(29)より、下式(30)が得られる。
Figure JPOXMLDOC01-appb-M000030
 次に、磁場発生器3が生成する角度検出用磁場が強く、角度検出器4が飽和感度領域において使用される場合について説明する。角度検出器4を安定的に使用するために、磁場発生器3が角度検出器4の位置に発生する磁場を、角度検出器4の飽和感度領域に入る強度となるようにした場合には、上式(30)のノイズ磁場Bi全てを角度として検出するというわけでは無く、磁場発生器3が発生する磁場の主成分ベクトルと同一方向の成分に対しては、飽和しているために検知しない。つまり、磁場発生器3が発生する磁場の主成分ベクトルに対して法線方向のベクトルが角度誤差となる成分であると考えられる。
 磁場発生器3が発生する磁場の主成分ベクトルBは、上式(12)をベクトル表記にすることにより下式(31)で表される。
Figure JPOXMLDOC01-appb-M000031
 主成分ベクトルBの法線方向の単位ベクトルtは、下式(32)で表される。
Figure JPOXMLDOC01-appb-M000032
 ノイズ磁場Biをベクトル表記にすると、下式(33)で表される。
Figure JPOXMLDOC01-appb-M000033
 上式(31)、(27)および(28)から、角度誤差として検知するノイズ磁場のベクトルBsnsは、ノイズ磁場ベクトルBiを法線ベクトルtに投影したものとなるから、下式(34)で表される。
Figure JPOXMLDOC01-appb-M000034
 したがって、磁場発生器3が生成する角度検出用磁場が強く、角度検出器4が飽和感度領域において使用される場合には、ノイズ磁場によって正弦信号に重畳されるノイズ成分esinおよび余弦信号に重畳されるノイズ成分ecosは、下式(35)で表される。つまり、電気角の1次成分の正弦波で表せた先の実施の形態1の場合に対して、電気角の(1±2Psns/P)次成分の正弦波が更に重畳されたものになっている。
Figure JPOXMLDOC01-appb-M000035
 つまり、正弦信号用補正信号hsinをesinとし、余弦信号用補正信号hcosをecosとして、先の実施の形態1~3と同様に角度補正演算部20を構成することで、インバータ接続部に流れる多相交流電流が発生するノイズ磁場による角度検出器の検出誤差を、インバータ接続部と角度検出器との相対的な位置関係と多相交流電流の値とによって位相および振幅が決定される補正信号を用いて補正できる。この結果、回転子の角度位置を高精度に検出できる簡素で低コストな交流回転機の制御装置を得ることができる。
 ここでは、3相交流電流が電気角θeの1次(基本周期)成分のみで表せるとしたが、上式(27)に、電気角θeのn次成分(nは2以上の自然数)を含む項が含まれる場合(例えば、フーリエ級数で表される場合)でも、電磁場の重ね合わせの性質から、同様の手順により、上式(35)に相当する式を得ることができる。
 すなわち、3相交流電流に電気角θeに高次の成分が含まれる場合には、正弦信号用補正信号hsinおよび余弦信号用補正信号hcosには、電流指令id*、iq*または検出電流id1、iq1の電流ベクトルの絶対値に、振幅補正定数が乗算された振幅値と、電流指令id*、iq*または検出電流id1、iq1の電流ベクトルのq軸に対する位相角θβに、電気角θeの(n±2Psns/P)次成分(nは2以上の自然数)および位相補正定数が加算された位相値とを有する(n±2Psns/P)次正弦波の項が先の実施の形態1の場合に対して更に含まれることになる。
 なお、正弦信号用補正信号hsinおよび余弦信号用補正信号hcosの計算に用いる電流ベクトルとしては、電流指令id*、iq*を用いてもよいし、第1の電流検出器6a1が検出した3相交流電流iu1、iv1、iw1の値を用いてもよいし、第2の電流検出器6a2が検出した3相交流電流iu2、iv2、iw2の値を用いてもよい。
 また、検出角θsnsに生じる角度誤差esnsは下式(36)で表される。つまり、電気角の(1±2Psns/P)次成分の正弦波で表せた先の実施の形態1の場合と同様のものになっている。
Figure JPOXMLDOC01-appb-M000036
 つまり、検出角補正信号hθsnsをesnsとして、先の実施の形態4~6と同様に角度補正演算部20を構成することで、インバータ接続部に流れる多相交流電流が発生するノイズ磁場による角度検出器の検出誤差を、インバータ接続部と角度検出器との相対的な位置関係と多相交流電流の値とによって位相および振幅が決定される補正信号を用いて補正できる。この結果、正弦信号Vsinおよび余弦信号Vcosの基本波振幅を使用せずに、かつ少ない補正信号で角度誤差を補正することができるという従来に無い効果を得ることができる。
 ここでは、3相交流電流が電気角θeの1次(基本周期)成分のみで表せるとしたが、上式(27)に、電気角θeのn次成分(nは2以上の自然数)を含む項が含まれる場合(例えば、フーリエ級数で表される場合)でも、電磁場の重ね合わせの性質から、同様の手順により、上式(36)に相当する式を得ることができる。
 すなわち、3相交流電流に電気角θeに高次の成分が含まれる場合には、電気角補正信号hθeには、電流指令id*、iq*または検出電流id1、iq1の電流ベクトルの絶対値に、振幅補正定数が乗算された振幅値と、電流指令id*、iq*または検出電流id1、iq1の電流ベクトルのq軸に対する位相角θβに、電気角θeの(n±2Psns/P)次成分(nは2以上の自然数)および位相補正定数が加算された位相値とを有する(n±2Psns/P)次正弦波の項が更に含まれることになる。
 なお、交流回転機1aの3相の電機子巻線が2組の場合について説明したが、それ以外の多相複数組の電機子巻線を持つ交流回転機であっても同様の効果を得る。
 実施の形態8.
 先の実施の形態7では、第1の電機子巻線と第2の電機子巻線に流れる電流で30degの位相差を設けたが、本実施の形態8では第1の電機子巻線と第2の電機子巻線に流れる電流は同一位相であることが先の実施の形態7と異なっている。その他の構成については先の実施の形態7と同様であるので説明は省略する。
 図12は、本発明の実施の形態8に係る交流回転機の制御装置における角度検出器とインバータ接続部との相対的な位置関係を示す断面図および側面図である。図12のように、第1のインバータ接続部5a1と第2のインバータ接続部5a2は、角度検出器4に関して対応する各相を点対称に配置している。
 第1の電機子巻線と第2の電機子巻線に流れる電流は同一位相である本実施の形態8では、インバータ接続部5u1、5v1、5w1により生じる磁場とインバータ接続部5u2、5v2、5w2により生じる磁場が相殺されることにより、角度検出器4で得られる信号に生じる誤差が零となる。
 以下では、第2の電機子巻線、第2のインバータ2a2、第2のインバータ接続部5a2のいずれかにおいて故障が発生した場合について説明する。
 まず、第2の電機子巻線への電力の供給を停止する場合、角度検出器4の位置に発生するノイズ磁場は、第2のインバータ接続部5a2に流れる電流により発生する成分としては0であり、第1のインバータ接続部5a1に流れる電流により発生する成分のみが残ることとなる。
 つまり、この場合には先の実施の形態1から7にて説明した補正信号により補正することで、同様の効果が得られる。
 次に、第2の電機子巻線において故障した相への電力の供給を停止する場合、第2のインバータ接続部5a2に流れる電流により発生する角度検出器4での磁場はインバータ接続部5a2のうち故障していない2相の接続線により発生した磁場となる。第1のインバータ接続部5a1に流れる電流により発生する角度検出器4での磁場はインバータ接続部5a1の3相の接続線により発生した磁場である。
 つまり、第2のインバータ接続部5a2の2相の接続線と第1のインバータ接続部5a1の3相の接続線に流れる電流に基づいて先の実施の形態1から7のように補正信号により補正することで同様の効果が得られる。
 ここでは、単純に故障した相への電力の供給を停止したが、第2のインバータ2a2のスイッチング素子が短絡した場合などに強制的に電流が流れる場合には、それを加味した補正式とすれば同様の効果が得られる。
 また、ここでは補正信号を単純な正弦波として式で表しているが、式で表しにくい波形となる場合には電気角に応じたテーブルを予め準備して実装してもよい。
 以上のように、実施の形態8では、インバータ接続部を流れる多相交流電流が形成するノイズ磁場が、角度検出器の位置において相殺するように複数のインバータ接続部が配置されている。この結果、インバータ接続部に故障が発生した場合に、故障により相殺しきれなくなったノイズ磁場のみを補正すればよく、簡単な計算によりノイズ磁場による正弦信号および余弦信号の誤差を補正することができる。
 なお、ここでは第1の電機子巻線と第2の電機子巻線に流れる電流の位相を同じで、インバータ接続部5a1と5a2で生じる磁場が完全に相殺される配置の場合について説明したが、製造上の制約や他部品との関係などから完全には相殺されない配置の場合についても配置に合った補正式とすることによって同様の効果が得られることはいうまでも無い。
 また、正常時に完全に相殺する配置に無くノイズ磁場による角度誤差が無視できない場合には、正常時においても先の実施の形態1から7のように補正信号により補正してもよいことはいうまでも無い。その場合には、正常時と故障時に生じるノイズ磁場が異なるため、補正式を変更すればよい。
 また、位相差が無い場合について正常時にインバータ接続部5a1と5a2で生じる磁場が相殺される場合について述べたが、位相差がある場合についても本実施の形態8で示した配置とは異なる磁場が相殺される適正配置とすることにより、同様の効果を得ることが可能である。
 更に、交流回転機1aがステアリング系の操舵トルクを補助するトルクを発生するように、この発明による交流回転機の制御装置を電動パワーステアリングに設けることができる。それによって、振動に敏感な電動パワーステアリングにおいて故障した相がある場合にも、角度誤差により生じるトルクリプルの小さい操舵系を構成することが可能となる効果を得ることができる。

Claims (20)

  1.  固定子の電機子巻線に流れる多相交流電流が形成する回転磁場によって回転子が回転する交流回転機を制御する交流回転機の制御装置であって、
     前記交流回転機の前記電機子巻線に電圧を印加するインバータと、
     前記電機子巻線と前記インバータとを接続するインバータ接続部と、
     前記回転子と同期して回転することにより、前記交流回転機の回転角を検出するための角度検出用磁場を発生する磁場発生器と、
     前記磁場発生器が発生する前記角度検出用磁場の互いに直交する2つの成分を正弦信号および余弦信号として検出する角度検出器と、
     前記交流回転機の電流指令と、前記正弦信号および前記余弦信号から得られる角度情報とに基づいて前記インバータに印加する電圧を制御する制御演算部と、
     を備え、
     前記制御演算部は、
      前記インバータ接続部に流れる前記多相交流電流が発生するノイズ磁場による前記角度情報の誤差を、
       前記インバータ接続部に流れる前記多相交流電流の電流ベクトルと、
       前記インバータ接続部と前記角度検出器との相対的な位置関係により決定される位相補正定数および振幅補正定数と、
      によって位相および振幅が決定される補正信号を用いて補正し、補正後電気角として出力する角度補正演算部を有し、
      前記補正後電気角に基づいて前記インバータを制御する
     交流回転機の制御装置。
  2.  前記角度情報は、電気角、または前記電気角を定数倍したものであり、
     前記角度補正演算部は、
      前記補正信号として、前記電気角に対する正弦信号用補正信号または余弦信号用補正信号の少なくとも1つを算出し、
      前記正弦信号と前記正弦信号用補正信号との差を、補正後の正弦信号として算出し、
      前記余弦信号と前記余弦信号用補正信号との差を、補正後の余弦信号として算出し、
      前記補正後の正弦信号および前記補正後の余弦信号から得られる補正後の電気角を、前記補正後電気角として出力する
     請求項1に記載の交流回転機の制御装置。
  3.  前記角度情報は、前記角度検出器の検出角、または前記検出角を定数倍したものであり、
     前記交流回転機の極対数をP、前記角度検出器の軸倍角をPsnsとするとき、
     前記角度補正演算部は、
      前記補正信号として、前記検出角に対する正弦信号用補正信号または余弦信号用補正信号の少なくとも1つを算出し、
      前記正弦信号と前記正弦信号用補正信号との差を、補正後の正弦信号として算出し、
      前記余弦信号と前記余弦信号用補正信号との差を、補正後の余弦信号として算出し、
      前記補正後の正弦信号および前記補正後の余弦信号から得られる補正後検出角をKp=P/Psns倍した値から算出される前記補正後電気角を出力する
     請求項1に記載の交流回転機の制御装置。
  4.  前記正弦信号および前記余弦信号のうち、前記ノイズ磁場による誤差が大きい方を第1信号、前記ノイズ磁場による誤差が小さい方を第2信号とするとき、
     前記角度補正演算部は、
      前記補正信号として、前記第1信号に対する第1信号用補正信号を算出し、
      前記第1信号と前記第1信号用補正信号との差を、補正後の第1信号として算出し、
      前記補正後の第1信号および前記第2信号から得られる補正後の電気角を、前記補正後電気角として出力する
     請求項2または3に記載の交流回転機の制御装置。
  5.  前記補正信号は正弦波であり、
      前記電流ベクトルの絶対値に対して、前記振幅補正定数が乗算された振幅値を有し、
      前記電流ベクトルのq軸に対する位相角に対して、電気角または前記補正後電気角の基本周期である1次位相と、前記位相補正定数とが加算された位相値を有する
     請求項2から4のいずれか1項に記載の交流回転機の制御装置。
  6.  前記角度検出器は、飽和感度領域において使用され、
     前記交流回転機の極対数をP、前記角度検出器の軸倍角をPsnsとするとき、
     前記補正信号は正弦波であり、
      前記電流ベクトルの絶対値に対して、前記振幅補正定数が乗算された振幅値を有し、
      前記電流ベクトルのq軸に対する位相角に対して、電気角または前記補正後電気角の(1±2Psns/P)次位相と、前記位相補正定数とが加算された位相値を有する
     請求項5に記載の交流回転機の制御装置。
  7.  前記補正信号は、nを2以上の自然数とするn次正弦波の項を更に含み、
     前記n次正弦波は、
      前記電流ベクトルの絶対値に対して、前記振幅補正定数が乗算された振幅値を有し、
      前記電流ベクトルのq軸に対する位相角に対して、電気角または前記補正後電気角のn次位相と、前記位相補正定数とが加算された位相値を有する
     請求項5または6に記載の交流回転機の制御装置。
  8.  前記角度検出器は、飽和感度領域において使用され、
     前記補正信号は、nを2以上の自然数とする(n±2Psns/P)次正弦波の項を更に含み、
     前記(n±2Psns/P)次正弦波は、
      前記電流ベクトルの絶対値に対して、前記振幅補正定数が乗算された振幅値を有し、
      前記電流ベクトルのq軸に対する位相角に対して、電気角または前記補正後電気角の(n±2Psns/P)次位相と、前記位相補正定数とが加算された位相値を有する
     請求項7に記載の交流回転機の制御装置。
  9.  前記角度情報は、電気角、または前記電気角を定数倍したものであり、
     前記角度補正演算部は、
      前記補正信号として、前記電気角に対する電気角補正信号を算出し、
      前記電気角と前記電気角補正信号との差を、前記補正後電気角として出力する
     請求項1に記載の交流回転機の制御装置。
  10.  前記角度情報は、前記角度検出器の検出角、または前記検出角を定数倍したものであり、
     前記交流回転機の極対数をP、前記角度検出器の軸倍角をPsnsとするとき、
     前記角度補正演算部は、
      前記補正信号として、前記検出角に対する検出角補正信号を算出し、
      前記正弦信号および前記余弦信号から得られる前記検出角と前記検出角補正信号との差をKp=P/Psns倍した値から算出される前記補正後電気角を出力する
     請求項1に記載の交流回転機の制御装置。
  11.  前記交流回転機の極対数をP、前記角度検出器の軸倍角をPsnsとするとき、
     前記補正信号は正弦波であり、
      前記電流ベクトルの絶対値に対して、前記振幅補正定数が乗算された振幅値を有し、
      前記電流ベクトルのq軸に対する位相角に対して、電気角または前記補正後電気角の(1±Psns/P)次位相と、前記位相補正定数とが加算された位相値を有する
     請求項9または10に記載の交流回転機の制御装置。
  12.  前記補正信号は、nを2以上の自然数とする(n±Psns/P)次正弦波の項を更に含み、
     前記(n±Psns/P)次正弦波は、
      前記電流ベクトルの絶対値に対して、前記振幅補正定数が乗算された振幅値を有し、
      前記電流ベクトルのq軸に対する位相角に対して、電気角または前記補正後電気角の(n±Psns/P)次位相と、前記位相補正定数とが加算された位相値を有する
     請求項11に記載の交流回転機の制御装置。
  13.  前記電機子巻線は、第1の電機子巻線および第2の電機子巻線からなり、
     前記インバータは、前記第1の電機子巻線に電圧を印加する第1のインバータと、前記第2の電機子巻線に電圧を印加する第2のインバータからなり、
     前記インバータ接続部は、前記第1の電機子巻線と前記第1のインバータとを接続する第1のインバータ接続部と、前記第2の電機子巻線と前記第2のインバータとを接続する第2のインバータ接続部からなり、
     前記角度補正演算部は、前記第2の電機子巻線、前記第2のインバータ、前記第2のインバータ接続部の少なくとも1つにおいて故障が発生した場合には、前記位相補正定数および前記振幅補正定数を、故障時用の位相補正定数および振幅補正定数に切替えて前記補正信号を算出する
     請求項1から12のいずれか1項に記載の交流回転機の制御装置。
  14.  前記電機子巻線は、第1の電機子巻線および第2の電機子巻線からなり、
     前記インバータは、前記第1の電機子巻線に電圧を印加する第1のインバータと、前記第2の電機子巻線に電圧を印加する第2のインバータからなり、
     前記インバータ接続部は、前記第1の電機子巻線と前記第1のインバータとを接続する第1のインバータ接続部と、前記第2の電機子巻線と前記第2のインバータとを接続する第2のインバータ接続部からなり、
     前記第1のインバータ接続部および前記第2のインバータ接続部は、前記角度検出器の位置において前記ノイズ磁場が相殺されるように配置され、
     前記角度補正演算部は、前記第2の電機子巻線、前記第2のインバータ、前記第2のインバータ接続部の少なくとも1つにおいて故障が発生した場合には、故障により相殺しきれなくなったノイズ磁場により生じる電気角の誤差を補正する
     請求項1から12のいずれか1項に記載の交流回転機の制御装置。
  15.  前記角度補正演算部は、前記角度情報として、前記角度補正演算部によって補正後の角度情報の前回演算値を用いる
     請求項1から14のいずれか1項に記載の交流回転機の制御装置。
  16.  前記角度補正演算部は、前記補正後の角度情報の前回演算値を、前回演算時から今回演算時までの時間と前記角度情報の時間変化率との積を加算することにより補正する
     請求項15に記載の交流回転機の制御装置。
  17.  前記制御演算部は、前記電流指令から前記電流ベクトルを取得する
     請求項1から16のいずれか1項に記載の交流回転機の制御装置。
  18.  前記多相交流電流を検出する電流検出器を更に備え、
     前記制御演算部は、前記電流検出器が検出する検出電流から前記電流ベクトルを取得する
     請求項1から16のいずれか1項に記載の交流回転機の制御装置。
  19.  前記振幅補正定数は、前記角度検出器が出力する前記正弦信号および前記余弦信号の基本波振幅に比例する
     請求項1から18のいずれか1項に記載の交流回転機の制御装置。
  20.  電動パワーステアリングの操舵トルクを補助するために用いられる
     請求項1から19のいずれか1項に記載の交流回転機の制御装置。
PCT/JP2015/051841 2015-01-23 2015-01-23 交流回転機の制御装置 WO2016117115A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15878807.5A EP3249800B1 (en) 2015-01-23 2015-01-23 Ac rotating machine control device
PCT/JP2015/051841 WO2016117115A1 (ja) 2015-01-23 2015-01-23 交流回転機の制御装置
US15/541,601 US10608568B2 (en) 2015-01-23 2015-01-23 Control device for AC rotary machine
JP2016570450A JP6238264B2 (ja) 2015-01-23 2015-01-23 交流回転機の制御装置
CN201580072959.9A CN107251404B (zh) 2015-01-23 2015-01-23 交流旋转电机的控制装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/051841 WO2016117115A1 (ja) 2015-01-23 2015-01-23 交流回転機の制御装置

Publications (1)

Publication Number Publication Date
WO2016117115A1 true WO2016117115A1 (ja) 2016-07-28

Family

ID=56416680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051841 WO2016117115A1 (ja) 2015-01-23 2015-01-23 交流回転機の制御装置

Country Status (5)

Country Link
US (1) US10608568B2 (ja)
EP (1) EP3249800B1 (ja)
JP (1) JP6238264B2 (ja)
CN (1) CN107251404B (ja)
WO (1) WO2016117115A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026145A1 (ja) * 2017-07-31 2019-02-07 三菱電機株式会社 交流回転機の制御装置および電動パワーステアリングの制御装置

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108631681B (zh) * 2018-04-18 2020-01-21 华中科技大学 一种旋转变压器周期性误差的在线补偿方法及补偿装置
WO2019207754A1 (ja) * 2018-04-27 2019-10-31 三菱電機株式会社 電動機制御装置
JP2020142740A (ja) * 2019-03-08 2020-09-10 日本電産エレシス株式会社 モータ通電制御方法
CN110020404B (zh) * 2019-04-10 2023-03-21 自然资源部第二海洋研究所 一种角度约束的遥感反演流场的矢量数据处理方法
US11305810B2 (en) 2020-04-24 2022-04-19 Steering Solutions Ip Holding Corporation Method and system to synchronize non-deterministic events
CN111649774B (zh) * 2020-06-23 2021-12-07 北京控制工程研究所 一种旋转变压器测角误差硬件自校正系统和方法
JP6991297B1 (ja) * 2020-10-21 2022-01-12 三菱電機株式会社 電流検出装置及び交流回転機の制御装置
CN113037159B (zh) * 2021-03-15 2022-08-02 哈尔滨工业大学 永磁同步电机转子位置偏移误差在线抑制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613379U (ja) * 1992-07-09 1994-02-18 株式会社三協精機製作所 ディスク用モータ
JP2002034278A (ja) * 2000-07-11 2002-01-31 Nissan Motor Co Ltd 電動機の磁極位置検出装置
JP2007049862A (ja) * 2005-08-12 2007-02-22 Hitachi Ltd 磁極位置センサ内蔵電気機械及び電気機械装置並びに車載電機システム
JP2010148248A (ja) * 2008-12-19 2010-07-01 Fuji Electric Systems Co Ltd 位置決め制御装置
JP2011259635A (ja) * 2010-06-10 2011-12-22 Canon Inc 駆動装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3170449B2 (ja) * 1996-03-25 2001-05-28 オークマ株式会社 アブソリュートエンコーダ
JP3812739B2 (ja) * 2002-05-28 2006-08-23 三菱電機株式会社 モータ異常検出装置及び電動パワーステアリング制御装置
US6906491B2 (en) * 2003-06-20 2005-06-14 Rockwell Automation Technologies, Inc. Motor control equipment
GB2413905B (en) * 2004-05-05 2006-05-03 Imra Europ S A S Uk Res Ct Permanent magnet synchronous motor and controller therefor
JP4708992B2 (ja) * 2005-12-12 2011-06-22 日立オートモティブシステムズ株式会社 位置検出装置及びこれを用いた同期モータ駆動装置
JP5072338B2 (ja) * 2006-12-12 2012-11-14 ルネサスエレクトロニクス株式会社 同期電動機の制御装置
JP5007581B2 (ja) 2007-03-01 2012-08-22 日本電産株式会社 モータ
JP5091535B2 (ja) * 2007-04-26 2012-12-05 三洋電機株式会社 モータ制御装置
JP5041419B2 (ja) 2007-12-28 2012-10-03 東芝機械株式会社 レゾルバ装置およびレゾルバの角度検出装置とその方法
CN101919151B (zh) * 2008-01-18 2013-04-17 三菱电机株式会社 电力变换器的控制装置
JP5819690B2 (ja) 2011-05-20 2015-11-24 アスモ株式会社 モータ及び電動パワーステアリング用モータ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0613379U (ja) * 1992-07-09 1994-02-18 株式会社三協精機製作所 ディスク用モータ
JP2002034278A (ja) * 2000-07-11 2002-01-31 Nissan Motor Co Ltd 電動機の磁極位置検出装置
JP2007049862A (ja) * 2005-08-12 2007-02-22 Hitachi Ltd 磁極位置センサ内蔵電気機械及び電気機械装置並びに車載電機システム
JP2010148248A (ja) * 2008-12-19 2010-07-01 Fuji Electric Systems Co Ltd 位置決め制御装置
JP2011259635A (ja) * 2010-06-10 2011-12-22 Canon Inc 駆動装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3249800A4 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019026145A1 (ja) * 2017-07-31 2019-02-07 三菱電機株式会社 交流回転機の制御装置および電動パワーステアリングの制御装置
JPWO2019026145A1 (ja) * 2017-07-31 2019-12-12 三菱電機株式会社 交流回転機の制御装置および電動パワーステアリングの制御装置
CN110999069A (zh) * 2017-07-31 2020-04-10 三菱电机株式会社 交流旋转电机控制装置及电动助力转向控制装置
EP3664279B1 (en) * 2017-07-31 2022-01-19 Mitsubishi Electric Corporation Control device for ac rotary machine and control device for electric power steering
US11390316B2 (en) 2017-07-31 2022-07-19 Mitsubishi Electric Corporation Control device for AC rotary machine and control device for electric power steering
CN110999069B (zh) * 2017-07-31 2023-05-02 三菱电机株式会社 交流旋转电机控制装置及电动助力转向控制装置

Also Published As

Publication number Publication date
US10608568B2 (en) 2020-03-31
JPWO2016117115A1 (ja) 2017-05-25
US20180006590A1 (en) 2018-01-04
EP3249800A4 (en) 2018-08-08
JP6238264B2 (ja) 2017-11-29
CN107251404B (zh) 2019-08-16
EP3249800A1 (en) 2017-11-29
EP3249800B1 (en) 2019-03-06
CN107251404A (zh) 2017-10-13

Similar Documents

Publication Publication Date Title
JP6238264B2 (ja) 交流回転機の制御装置
US10199979B2 (en) Power conversion device
JP6735827B2 (ja) 電力変換装置
US9214886B2 (en) Control apparatus for three-phase rotary machine
JP6617500B2 (ja) 電動パワーステアリング制御方法、電動パワーステアリング制御装置、電動パワーステアリング装置および車両
WO2017187599A1 (ja) 回転機制御装置の故障判定装置および故障判定方法
US10439535B2 (en) Control device of AC rotating machine and electric power steering device
EP2924874B1 (en) Control device for ac rotating machine
JP6516857B2 (ja) 交流回転機の制御装置及びそれを備えた電動パワーステアリング装置
JP6536479B2 (ja) 回転機の制御装置
JP6183554B2 (ja) 周期外乱自動抑制装置
JP7090812B2 (ja) 交流回転電機の制御装置及び電動パワーステアリング装置
EP3664279B1 (en) Control device for ac rotary machine and control device for electric power steering
JP6116449B2 (ja) 電動機駆動制御装置
JP7385776B2 (ja) 電動機の制御装置
JP2020096452A (ja) 交流回転機の制御装置、車両用交流回転機装置、及び電動パワーステアリング装置
US9935575B2 (en) Power conversion device and control method for same, and electric power steering control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15878807

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016570450

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15541601

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2015878807

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE