WO2016112878A1 - Electronic germicidal device - Google Patents

Electronic germicidal device Download PDF

Info

Publication number
WO2016112878A1
WO2016112878A1 PCT/CZ2015/000002 CZ2015000002W WO2016112878A1 WO 2016112878 A1 WO2016112878 A1 WO 2016112878A1 CZ 2015000002 W CZ2015000002 W CZ 2015000002W WO 2016112878 A1 WO2016112878 A1 WO 2016112878A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrodes
device
plastic film
electronic
source
Prior art date
Application number
PCT/CZ2015/000002
Other languages
French (fr)
Inventor
Mojmír ČERMÁK
Original Assignee
Čermák Mojmír
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Čermák Mojmír filed Critical Čermák Mojmír
Priority to PCT/CZ2015/000002 priority Critical patent/WO2016112878A1/en
Publication of WO2016112878A1 publication Critical patent/WO2016112878A1/en

Links

Classifications

    • F21S48/225
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/0404Electrodes for external use
    • A61N1/0408Use-related aspects
    • A61N1/0468Specially adapted for promoting wound healing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/235Light guides
    • F21S43/236Light guides characterised by the shape of the light guide
    • F21S43/241Light guides characterised by the shape of the light guide of complex shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/235Light guides
    • F21S43/242Light guides characterised by the emission area
    • F21S43/243Light guides characterised by the emission area emitting light from one or more of its extremities
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/235Light guides
    • F21S43/242Light guides characterised by the emission area
    • F21S43/245Light guides characterised by the emission area emitting light from one or more of its major surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S43/00Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights
    • F21S43/20Signalling devices specially adapted for vehicle exteriors, e.g. brake lamps, direction indicator lights or reversing lights characterised by refractors, transparent cover plates, light guides or filters
    • F21S43/235Light guides
    • F21S43/249Light guides with two or more light sources being coupled into the light guide
    • F21S48/2262
    • F21S48/2268
    • F21S48/2281

Abstract

In the electronic germicidal device comprising a source of pulsed voltage and a pair of electrodes to be applied on the treated tissue the electrodes (8, 9) placed on a plastic film form at least partially a system of parallel or concentric lines with opposite polarity of the neighbouring electrodes (8, 9).

Description

Electronic Germicidal Device

BACKGROUND OF THE INVENTION

The invention relates to an electronic germicidal device comprising a source of pulsed voltage and a pair of electrodes applied on the treated tissue.

Secondary healing of wounds is a frequent complication occurring in all surgical fields. Especially diabetes brings about development of poorly healing skin defects, usually complicated by infection. Another problem is represented by infected decubiti in immobile patients, infected varicose ulcers as well as infected common injuries. Wound infections prolong hospitalisation, force the patients to pay long-term periodic visits to outpatient surgeries with painful dressing changes and use of often high doses of antibiotics.

Electrical therapy uses various types of electric currents improving blood circulation in tissues, releasing muscle tension or on the other hand strengthening the muscles. Galvanic therapy currently offers a whole range of therapeutic methods using electrical current in various forms - direct current, alternating current of low or medium frequency or high-frequency current with pulses of various shapes. Galvanic therapy is therefore indicated for treatment of diseases of the mobile apparatus, especially in the case of chronic and degenerative diseases, post-operative conditions, traumatic conditions, chronic gynaecological and urological inflammations, diseases of digestive and respiratory tracts, dermatological diseases and many more. Generally speaking electric therapy is basically used for treatment of deep tissues in cases of problems of other than bacterial origin.

New uses of galvanic therapy are proposed in JP 2007068748. The patent application describes a device for antibacterial treatment of burns or surgical wounds by ions of silver and electrical stimulation. The device comprises a source of pulsed voltage connected to two separate electrodes made of very pure silver and placed on the patient 's body in a distance from each other, with one of them directly placed on the treated site. Disadvantages of this device include a relatively low efficiency as a consequence of the mutual distance of the electrodes and also high costs of the electrode manufacture. Thus, it is desirable to provide an efficient electronic germicidal device whose price will not considerably increase costs of treatment even with disposable contact parts.

SUMMARY OF THE INVENTION

The present invention provides an improved electronic germicidal device comprising a source of pulsed voltage and a pair of electrodes to be applied on the treated tissue, wherein the electrodes placed on a plastic film form at least partially a system of parallel or concentric lines, with opposite polarity of the neighbouring electrodes.

The distance between the electrodes is the beneficial 0.1 to 1.5 mm.

In another beneficial embodiment of the invention the electrode system is a printed circuit applied on a plastic film.

The electrodes may be covered with a silver or gold layer for increased antibacterial effect.

Input voltage of the electrodes is single-phase substantially rectangular-shaped DC pulsed voltage ranging between 2 V and 12 V with the frequency range from 40 Hz to 200 Hz.

To prevent clogging the electrodes are adapted to polarity alternation in an interval of 1 to 30 seconds.

In the basic embodiment the plastic film with the electrodes is made for single use.

The objects and advantages of the present invention will be more apparent upon reading the following detailed description in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a block diagram of the power source for the electrodes and

FIGs. 2 to 4 show three different embodiments of the electrode system on the plastic film. DESCRIPTION OF PREFFERRED EMBODIMENTS

An exemplary embodiment of an electronic germicidal device comprises a source of pulsed voltage shown in FIG. 1 known from prior art and a pair of electrodes implemented as a printed circuit applied on a plastic film, see FIGs. 2 to 4. The source comprises a power input device 1 , working within the range of up to 12 V with current limitation by max. 1.8 A, a frequency generator 2 connected to it that can be regulated within the range of 40 to 200 Hz and a power amplifier 3, to which the electrode power input cables 4 are connected. The source is provided with alternative power inputs either from an 11 .4 V accumulator 5 with the capacity of 3500 mAh with a connected 220/1 1.4 V charger 6, or from a 220/12 V mains adaptor 7. The pulsed voltage source is connected to electrodes 8, 9 placed on a plastic film and making a system of parallel lines with opposite polarities of the neighbouring electrodes 8, 9. The distance between the electrodes 8, 9 in the case of the described embodiment is 0.25 mm. The electrodes 8, 9 are galvanised with a silver layer to increase the antibacterial effect. The electrodes 8, 9 are supplied with rectangular-shaped single-phase pulsed 3.8 V voltage with the frequency of 112 Hz. Polarity of the electrodes 8, 9 alternates in a 10 s interval. The plastic film with the electrodes 8, 9 is disposable. FIGs. 2 to 4 document straight and circular shapes of the parallel or concentric electrodes 8, 9, respectively. However, the solution according to the present invention may also be implemented with a system of line electrodes with any progress if they remain at least partly parallel.

The skin serves as the basic barrier protecting the body against bacterial infections. Where this barrier is weakened by an injury (wounds, burns) or circulation insufficiencies (decubiti, varicose ulcers) bacteria may more easily penetrate to the tissues of the damaged site which may considerably increase overall risk of infection. The danger of future infection, in addition to the nature of the damage to this basic barrier, may also be affected by the types and numbers of microorganisms colonising the respective skin defect. The most frequently occurring bacteria colonising poorly healing dermal tissue include the gram-positive bacterium Staphylococcus aureus and the gram-negative bacteria Pseudomonas aeruginosa, Klebsiella pneumoniae,

Acinetobacter baumannii, Escherichia coli and others. Factors assisting infection prevention include timely surgical treatment locally administered and prophylactic antibiotics and intensive anti-inflammatory measures. In the case of older processes a bacterial bio plastic film may develop with increased resistance against antibiotics and antiseptics. Healing may further be complicated by infections caused by resistant hospital-borne strains (nosocomial infections) such as the methici!lin-resistant S. aureus (MRSA), extended-spectrum beta-lactamases (ESBL) forming gram-negative bacteria and vancomycin-resistant enterococci (VRE).

Nosocomial strains may be resistant to an extent making finding an appropriate and efficient antibiotic very difficult. That is why there is the worldwide trend towards search for efficient alternatives allowing for addressing these situations. One of these solutions may be treatment of the infected skin defects by temporary bandage with electrodes according to the present invention.

Antibacterial effects of the invented device have been laboratory tested by the Institute of infectious Diseases and Microbiology of the University of Veterinary and Pharmaceutical Sciences in Brno.

Collected strains of the following bacterial cultures have been used for the experiments:

Pseudomonas aeruginosa, Staphylococcus aureus, methicillin-resistant isolate of S. aureus (MRSA), Acinetobacter, Escherichia coli (ATTC) and vancomycin-resistant Enterococcus faecalis (VRE) individually kept in cryo-protective medium at - 80°C. Before use the strains were inoculated on maso-peptone agar ( PKA) or Mc Conkey agar (Oxoid, VB), incubated at 37°C for 18-24 hours and then incubated under the same conditions at least once again.

The quantity of the culture corresponding to 3 to 4 colonies was swabbed by a sterile swab and transferred to a test tube filled with 2 ml of sterile distilled water.

Turbidity was measured with a photometer and the inoculum was adjusted to the required value of 0.5 degrees of the McFarland turbidity scale. The initial inoculum was diluted in the ratio of 1 :100 by pipetting 30 μΙ of the suspension with 0.5 turbidity to a test tube filled with 3 ml buffered saline and profoundly homogenized. This inoculum with the number of cells corresponding roughly to 106 CFU/ml was then used for the experiments. First of all the antibacterial effect of the device was subject to qualitative testing:

100 μ! of the suspension of the relevant bacterial strain with the density of 106 CFU/ml was transferred onto the surface of pre-dried MPKA agar and spread across the whole surface of the substrate. After a short drying period the surface of the inoculated MPKA was covered with a plastic film with a system of electrodes and adhesion of the plastic film was assured. The electrodes were powered with 6 V with decreasing intensity from 1400 to 200 mA for 30 or 60 minutes.

Then the treated surface of the MPKA agar was printed on sterile filtration paper and the print was transferred onto sterile MPKA. The inoculated media were incubated at 37°C for 18 to 24 hours. A control sample was made for each such sample by treatment with the same inoculum and application of the same plastic film with electrodes but without powering with electric current. On the following day the results were documented with a digital camera and evaluated. The whole process was repeated once again following the identical procedure.

Result of visual evaluation: when compared to the control samples the cultures of MRSA, Pseudomonas aeruginosa, Acinetobacter calcoaceticus, E. coli and VRE showed a significant decrease in the bacterial culture density after incubation at 37°C for 18-24 hours.

On the basis of these results semi-quantitative evaluation of the effect was performed on a model muscle tissue of domestic pig (Sus scrofa domesticus).

100 μΙ of the suspension of the bacterial strains of Pseudomonas aeruginosa, ATCC and S. aureus MRSA with the density of 10s CFU/ml was transferred on the surface of a muscle block and spread across an area corresponding to the size of the electrode-covered surface. Following short-term drying of the inoculum the plastic film with the electrodes was applied on the muscle surface and pressed in to imitate tissue bandage. The electrodes were connected for 30 minutes to a DC source with the voltage of 6 V and decreasing intensity from 1400 to 200 mA. The same muscle block covered with the identical inoculum but untreated with electric current was used as control.

The muscle blocks exposed to the effect of electric current and the control blocks were individually sampled and the number of viable bacteria on the muscle surface was measured. The test surface was swabbed with a steriie cotton wool swab in two directions and the swabbed material was transferred to 1ml of buffered saline (PBS). The obtained suspension was subject to ten-fold dilution. Twenty micro-litres were repeatedly inoculated by spreading on the surface of MPKA and MacConkey agar (MCA) to find out the number of survived bacterial cells. Following sample incubation under the abovementioned conditions the obtained colonies were counted and recalculated to the test surface of the muscle.

The processing of the swabs from the test and the control samples of contaminated muscle tissue by cultivation and recalculation revealed that the MRSA culture was completely devitalised on the test muscle sample (0 CFU of MRSA ml), while the control sample count was 1 x 10s CFU of MRSA/ml.

In the case of the Pseudomonas aeruginosa culture the test sample count was 75 CFU of P. aeruginosafm\, while the control sample count was 2.75 x 105 CFU of P. aeruginosa.

Thus under laboratory conditions the invented device showed significant antibacterial effects qualifying it for subsequent clinical verification studies.

Claims

1. An electronic germicidal device comprising a source of pulsed voltage and a pair of electrodes for application on the treated tissue, wherein the electrodes (8, 9) placed on a plastic film form at least partially a system of parallel or concentric lines with opposite polarity of the neighbouring electrodes (8, 9).
2. The device of claim 1 , wherein the distance between the electrodes (8. 9) is 0.1 to 1.5 mm.
3. The device of claims 1 or 2, wherein the system formed by the electrodes (8, 9) is a printed circuit applied on a plastic film.
4. The device of claims 1 to 3, wherein the electrodes (8, 9) are covered with a silver or gold layer.
5. The device of claims 1 to 4, wherein the input voltage of the electrodes (8, 9) is single-phase substantially rectangular-shaped DC pulsed voltage ranging between 2 V and 12 V with the frequency range from 40 Hz to 200 Hz.
6. The device of claims 1 to 5, wherein the electrodes (8, 9) are adapted to polarity alternations in the interval of 1 to 30 s.
7. The device of claim , wherein the plastic film with the electrodes (8, 9) is disposable product.
PCT/CZ2015/000002 2015-01-12 2015-01-12 Electronic germicidal device WO2016112878A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CZ2015/000002 WO2016112878A1 (en) 2015-01-12 2015-01-12 Electronic germicidal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CZ2015/000002 WO2016112878A1 (en) 2015-01-12 2015-01-12 Electronic germicidal device

Publications (1)

Publication Number Publication Date
WO2016112878A1 true WO2016112878A1 (en) 2016-07-21

Family

ID=52596263

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CZ2015/000002 WO2016112878A1 (en) 2015-01-12 2015-01-12 Electronic germicidal device

Country Status (1)

Country Link
WO (1) WO2016112878A1 (en)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3964477A (en) * 1975-01-30 1976-06-22 Sybron Corporation Method of using electrodes having antiseptic properties for LIDC therapy
GB2053687A (en) * 1979-07-16 1981-02-11 Greatbatch W Germicidal and healing treatment of tissue such as bone
US20020161324A1 (en) * 2000-03-10 2002-10-31 Biophoretic Therapeutic Systems, Llc Finger-mounted electrokinetic delivery system for self-administration of medicaments and methods therefor
US20060276741A1 (en) * 2005-06-06 2006-12-07 Henley Julian L Device and method for delivery of therapeutic agents to the dermis and epidermis
JP2007068748A (en) 2005-09-07 2007-03-22 Icc Kk Skin tissue reproducing device for antibacterial treatment or sterilization for burn or after surgery by silver ion and electrical stimulation
US20100174346A1 (en) * 2007-08-17 2010-07-08 Boyden Edward S System, devices, and methods including actively-controllable sterilizing excitation delivery implants
US20100234793A1 (en) * 2007-08-17 2010-09-16 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Systems, devices and methods including infection-fighting and monitoring shunts
US20100233021A1 (en) * 2009-03-11 2010-09-16 Sliwa John W Systems and methods to deal with health-relevant fouling or plugging depositions and growths
US20140207217A1 (en) * 2006-01-17 2014-07-24 Endymed Medical Ltd. Skin treatment devices and methods

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3964477A (en) * 1975-01-30 1976-06-22 Sybron Corporation Method of using electrodes having antiseptic properties for LIDC therapy
GB2053687A (en) * 1979-07-16 1981-02-11 Greatbatch W Germicidal and healing treatment of tissue such as bone
US20020161324A1 (en) * 2000-03-10 2002-10-31 Biophoretic Therapeutic Systems, Llc Finger-mounted electrokinetic delivery system for self-administration of medicaments and methods therefor
US20060276741A1 (en) * 2005-06-06 2006-12-07 Henley Julian L Device and method for delivery of therapeutic agents to the dermis and epidermis
JP2007068748A (en) 2005-09-07 2007-03-22 Icc Kk Skin tissue reproducing device for antibacterial treatment or sterilization for burn or after surgery by silver ion and electrical stimulation
US20140207217A1 (en) * 2006-01-17 2014-07-24 Endymed Medical Ltd. Skin treatment devices and methods
US20100174346A1 (en) * 2007-08-17 2010-07-08 Boyden Edward S System, devices, and methods including actively-controllable sterilizing excitation delivery implants
US20100234793A1 (en) * 2007-08-17 2010-09-16 Searete Llc, A Limited Liability Corporation Of The State Of Delaware Systems, devices and methods including infection-fighting and monitoring shunts
US20100233021A1 (en) * 2009-03-11 2010-09-16 Sliwa John W Systems and methods to deal with health-relevant fouling or plugging depositions and growths

Similar Documents

Publication Publication Date Title
Fong et al. Nanocrystalline silver dressings in wound management: a review
de Almeida Gomes et al. In vitro evaluation of the antimicrobial activity of calcium hydroxide combined with chlorhexidine gel used as intracanal medicament
James et al. Biofilms in chronic wounds
Warriner et al. Infection and the chronic wound: a focus on silver
Whitaker et al. Larval therapy from antiquity to the present day: mechanisms of action, clinical applications and future potential
Agnihotri et al. Aerobic bacterial isolates from burn wound infections and their antibiograms—a five-year study
Vianna et al. Effect of root canal procedures on endotoxins and endodontic pathogens
Subrahmanyam Topical application of honey in treatment of burns
Isbary et al. Cold atmospheric argon plasma treatment may accelerate wound healing in chronic wounds: Results of an open retrospective randomized controlled study in vivo
Erol et al. Changes of microbial flora and wound colonization in burned patients
Khan et al. Antiseptics, iodine, povidone iodine and traumatic wound cleansing
Daeschlein et al. Skin decontamination by low-temperature atmospheric pressure plasma jet and dielectric barrier discharge plasma
Metelmann et al. Head and neck cancer treatment and physical plasma
Percival et al. The effects of pH on wound healing, biofilms, and antimicrobial efficacy
Sedghizadeh et al. Microbial biofilms in osteomyelitis of the jaw and osteonecrosis of the jaw secondary to bisphosphonate therapy
Isbary et al. Non-thermal plasma—More than five years of clinical experience
Hwang et al. Synergistic effects between silver nanoparticles and antibiotics and the mechanisms involved
Cooper et al. The efficacy of honey in inhibiting strains of Pseudomonas aeruginosa from infected burns
Prabhakara et al. Suppression of the inflammatory immune response prevents the development of chronic biofilm infection due to methicillin-resistant Staphylococcus aureus
Brehmer et al. Alleviation of chronic venous leg ulcers with a hand‐held dielectric barrier discharge plasma generator (PlasmaDerm® VU‐2010): results of a monocentric, two‐armed, open, prospective, randomized and controlled trial (NCT 01415622)
Toy et al. Evidence‐based review of silver dressing use on chronic wounds
Subrahmanyam et al. Antibacterial activity of honey on bacteria isolated from wounds
Berra et al. Antimicrobial-coated endotracheal tubes: an experimental study
JP5689580B2 (en) Inactivation of Gram-positive bacteria
Sherman Mechanisms of maggot-induced wound healing: what do we know, and where do we go from here?

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15707035

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15707035

Country of ref document: EP

Kind code of ref document: A1