WO2016110212A1 - 污泥干化系统和方法 - Google Patents

污泥干化系统和方法 Download PDF

Info

Publication number
WO2016110212A1
WO2016110212A1 PCT/CN2015/099789 CN2015099789W WO2016110212A1 WO 2016110212 A1 WO2016110212 A1 WO 2016110212A1 CN 2015099789 W CN2015099789 W CN 2015099789W WO 2016110212 A1 WO2016110212 A1 WO 2016110212A1
Authority
WO
WIPO (PCT)
Prior art keywords
sludge
drying
drying chamber
tempering
chamber
Prior art date
Application number
PCT/CN2015/099789
Other languages
English (en)
French (fr)
Inventor
谭玮
Original Assignee
广州新致晟环保科技机械设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州新致晟环保科技机械设备有限公司 filed Critical 广州新致晟环保科技机械设备有限公司
Publication of WO2016110212A1 publication Critical patent/WO2016110212A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • C02F11/13Treatment of sludge; Devices therefor by de-watering, drying or thickening by heating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F11/00Treatment of sludge; Devices therefor
    • C02F11/12Treatment of sludge; Devices therefor by de-watering, drying or thickening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F26DRYING
    • F26BDRYING SOLID MATERIALS OR OBJECTS BY REMOVING LIQUID THEREFROM
    • F26B17/00Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement
    • F26B17/10Machines or apparatus for drying materials in loose, plastic, or fluidised form, e.g. granules, staple fibres, with progressive movement with movement performed by fluid currents, e.g. issuing from a nozzle, e.g. pneumatic, flash, vortex or entrainment dryers

Definitions

  • the present invention relates to the field of sludge drying, and in particular to a sludge drying system for drying sludge having a moisture content of about 90% or more, thereby obtaining sludge having a moisture content of about 40% or less, and A method of sludge drying using the sludge drying system.
  • the treatment of sewage in modern cities is indispensable, and a large amount of sludge is produced as the sewage is treated.
  • the sewage treatment plant generally adopts the method of concentration or dehydration to pre-treatment the sludge to reduce the water content of the sludge from above 90% to 60-80%, and then the landfill and solidification of the treated sludge. Or dry processing.
  • the landfill is easy to ferment the sludge and cause secondary pollution.
  • the existing curing or drying equipment usually has low drying efficiency and high energy consumption, and it is difficult to achieve a large amount of water while reducing the moisture content of the sludge. sludge.
  • Chinese invention patent application CN101186422A proposes a closed multi-chamber fluidized bed sludge drying method.
  • the fluidized bed used in this method not only consumes energy but is also inefficient, making it difficult to achieve continuous and large-scale sludge drying.
  • the Chinese utility model patent CN203319838U proposes a sludge solidification treatment mixer. Such a mixer reduces the moisture content of the sludge by blending the additive into the sludge, thereby not only increasing the amount of sludge but also preventing the secondary pollution of the sludge after the landfill.
  • the existing sludge drying equipment is difficult to achieve large-scale drying of such sludge to reduce the moisture content of the sludge, and there is no one.
  • the plant or system is capable of directly converting sludge from a sewage treatment plant with a moisture content of more than 90% into sludge having a moisture content of less than 40%. Therefore, there is a need to provide such a sludge drying system and method to achieve the above objectives.
  • the present invention proposes to treat various sludges A sludge drying system integrated with the device and a method for sludge drying using the system.
  • the sludge drying system can directly reduce the moisture content of the sludge from the sewage treatment plant from above 90% to below 40%, so as to realize the transformation of the sludge from liquid, block, fragments, particles to particles. In turn, the drying efficiency of the sludge is improved.
  • the liquid sludge having a water content of 90% or more can be dried by using a conveying device, a tempering device, a dehydrating device, a drying device and a blowing device in the sludge drying system to reduce the moisture content of the sludge to about 40% or less, it is possible to obtain a sludge-like sludge which does not cause secondary sludge due to water immersion after landfill.
  • the pre-conditioning apparatus and the concentrating apparatus can be combined with the pre-conditioning apparatus and the concentrating apparatus in the sludge drying system of the present invention to perform pre-conditioning treatment and concentration treatment on the liquid sludge, so that more moisture can be separated from the sludge.
  • the concentrated liquid sludge is further subjected to a drying treatment by the above respective devices in the sludge drying system, whereby powdery granular sludge can be obtained.
  • the sludge block with different sizes after dewatering can be crushed into sludge pieces of uniform size by using the crushing device incorporated in the sludge drying system of the present invention, so that the sludge can be evenly dried during the drying process. effect.
  • the drying efficiency can be improved and energy can be saved.
  • the sludge is sufficiently contacted with the dry gas by the flipping of the flipping assembly of the flipping device provided in the first drying chamber of the drying device and the shearing and breaking of the sludge by the blades or ratchets on the flipping assembly, thereby solving the problem
  • the problem of uneven internal and external drying of the sludge during the drying process wherein the drying gas passes through the communication port or the communication port formed on the partition wall for separating the first drying chamber and the second drying chamber
  • the side opening formed by the bridge and the partition wall enters the first drying chamber from the second drying chamber, and the scraping of the sludge near the communication port or the side opening of the blade or the ratchet tip of the flipping assembly not only improves the drying
  • the frequency of contact between the gas and the sludge also promotes the transformation of the sludge from the fragments to the granular and granular particles, which accelerates the drying of the sludge.
  • the sludge drying system of the invention has the characteristics of high drying efficiency, low energy consumption, small floor space and strong adaptability, and the user can use the sludge treatment device in the sludge drying system of the invention as needed.
  • the existing sludge treatment plants in the wastewater treatment plant are combined to reduce costs.
  • the method for sludge drying using the sludge drying system of the present invention can significantly reduce the moisture content of the sludge by quenching, dehydrating and drying processes.
  • the flipping assembly of the indoorly arranged flipping device continuously shears, crushes and flips the sludge and the front end of the blade or ratchet scrapes off the sludge near the communication port or the side opening so that the drying gas can smoothly enter the first drying chamber, thereby Increased sludge drying efficiency and reduced energy consumption.
  • the present invention provides a sludge drying system comprising a conveying device for receiving and conveying sludge, a tempering device, the tempering device being located downstream of the conveying device, and in which Mixing the sludge from the conveying device with a tempering agent to improve dehydration of the sludge; and a dewatering device for dewatering the sludge from the upstream to reduce the sludge a moisture content; a drying device comprising a casing, wherein the casing has a partition wall to divide a space within the casing into a first drying chamber and a second drying chamber, and At least one communication port for communicating the first drying chamber and the second drying chamber is formed on the partition wall; a feed port for the sludge to be dried and disposed at an upper portion of the first drying chamber An exhaust port for drying the dry gas after the sludge, and a discharge port for the dried sludge disposed on the circumferential wall of the first drying chamber; and disposed in the second drying chamber
  • a crushing device located downstream of the dewatering device and upstream of the drying device, wherein the crushing device crushes the dewatered sludge from the upstream to Conducive to the drying treatment of the sludge.
  • it further includes providing at least one cleaning opening on an end wall of the second drying chamber.
  • it further includes a discharge device disposed in the second drying chamber for discharging sludge leaking from the first drying chamber into the second drying chamber to the cleaning port.
  • the tempering apparatus includes a mixer in which a tempering agent is mixed with sludge to improve dewatering of the sludge.
  • the method further includes a pre-conditioning apparatus, the pre-conditioning apparatus is located downstream of the conveying apparatus, and mixes the sludge with the tempering agent to promote sedimentation of the sludge; a device, the concentrating device being located upstream of the tempering device It is used to separate the pre-conditioned sludge from water to reduce the moisture content of the sludge.
  • the dewatering apparatus includes a plate and frame filter press, and the tempered sludge is pressure-filtered in the plate and frame filter press to obtain a solid sludge having a low water content.
  • it further includes a heating device for heating the drying gas, wherein the heating device is located upstream or downstream of the air blowing device.
  • it further includes an air guiding device, wherein the air guiding device communicates with the first drying chamber through the exhaust port.
  • the drying device is provided with a heat exchange device, the cold end of the heat exchange device is in communication with the air guiding device, and the hot end thereof is in communication with the air blowing device for exchanging from the row The heat in the exhaust from the gas outlet.
  • the at least one flipping assembly of the at least one sludge turning device has at least one blade or ratchet extending radially outward from the rotating shaft, wherein the rotating shaft rotates when the rotating shaft rotates
  • a front end of the at least one blade or ratchet of the at least one flip assembly or a scraping member mounted at a front end of the blade or ratchet may scrape or partially scrape the sludge in or near the at least one communication port.
  • a bridge disposed above the at least one communication port, wherein a side opening is formed between the bridge and the partition wall to form from the at least one communication port The curved path of the side opening.
  • the at least one flipping assembly corresponds to the bridge member such that the at least one blade or ratchet front end of the at least one flipping assembly or the scraping member mounted on the blade or ratchet The side edges of the front end may scrape or partially scrape the sludge near the side openings.
  • the partition wall has a concave upper surface.
  • the at least one includes at least two sludge turning devices, wherein each of the sludge turning devices includes a plurality of flipping assemblies, and the at least one blade or spine of each of the plurality of flipping assemblies A front end of the tooth or a scraping member mounted at a front end of the at least one blade or ratchet may scrape sludge in or near the at least one communication port, wherein one of the at least two sludge turning devices
  • the plurality of flipping assemblies of the sludge turning device and the plurality of flipping assemblies of the other are staggered with each other.
  • the present invention also provides a method for sludge drying by using the sludge drying system according to any one of the above aspects, the method comprising the steps of: transporting liquid sludge to a tempering device through a conveying device, Mixing the sludge with a tempering agent in a tempering device to improve Dehydration of the sludge; transporting the tempered sludge to a dewatering device for dehydration to obtain solid sludge; and feeding the solid sludge block through the feed port to the first drying of the drying device Having operating at least one sludge turning device disposed in the first drying chamber, wherein a rotating shaft on the at least one sludge turning device rotates at least one flipping assembly such that the at least one flipping assembly
  • the front end of the at least one blade or the ratchet may scrape the sludge near the at least one communication port formed on the partition wall between the first drying chamber and the second drying chamber; and allow the drying gas to enter through the air blowing
  • it further comprises a crushing step of feeding the dehydrated solid sludge into a crushing device, and crushing the block of the sludge into pieces in the crushing device.
  • the method further includes feeding the liquid sludge into a pre-conditioning apparatus, and mixing the sludge with a tempering agent in the pre-conditioning apparatus to promote the liquid sludge. Precipitating; and pre-treating the sludge into a concentrating device, wherein the pre- conditioned sludge is separated from water to obtain a sludge having a low water content.
  • it further includes a heating step of heating the drying gas exiting or entering the air blowing device with the heating device.
  • it further includes an air guiding device, wherein the air guiding device communicates with the first drying chamber through the exhaust port.
  • the method further includes a heat exchange step of passing the exhaust gas leaving the air introducing means through the cold end of the heat exchange means and passing the drying gas entering the air blowing means through the hot end of the heat exchange means To reuse heat from the exhaust gas from the exhaust port.
  • the above various aspects further comprising: at least one blade or ratchet front end or at least one blade or ratchet on the at least one flipping assembly of the at least one sludge flipping device when the rotating shaft rotates
  • the side edge of the front end of the scraping member may scrape the sludge disposed near the side opening formed between the at least one bridge above the at least one communication port and the partition wall.
  • the method further includes removing sludge leaking from the first drying chamber into the second drying chamber from the cleaning port by a discharge device disposed in the second drying chamber.
  • Figure 1 is a schematic view of a sludge drying system of the present invention
  • Figure 2 is a longitudinal cross-sectional view of the drying device in the sludge drying system shown in Figure 1;
  • Figure 3 is a transverse cross-sectional view of the sludge drying device of Figure 2;
  • Figure 4 is a perspective view showing the internal structure of the drying device of Figure 2;
  • Figure 5 is an enlarged perspective view of the bridge member on a portion of the partition wall of the curved portion of the circle A of Figure 1;
  • Figure 6 is an enlarged plan view of the portion A circled in Figure 1;
  • Figure 7 is a left cross-sectional view of the partition wall of Figure 6 taken in a longitudinal direction transverse to the housing;
  • Figure 8 is a flow chart of the sludge drying process of the present invention.
  • Figure 9 is a schematic illustration of the drying step in the sludge drying process of Figure 8.
  • the sludge drying system 1 shows a preferred embodiment of the sludge drying system of the present invention, wherein the sludge drying system 1 can reduce the moisture content of the sludge from about 90% or more to about 40% or less, thereby obtaining a granular shape. sludge.
  • the sludge drying system 1 generally includes a conveying device, a tempering device (or a secondary tempering device), a dehydrating device, a drying device, and an air blowing device, and further includes a front tempering (or primary tempering) device and Concentration device, crushing device, etc.
  • the sludge drying system 1 of the present invention may further include a drafting device, a heating device, and a heat exchange device.
  • the liquid sludge usually from sewage treatment equipment has a water content of 90% or more.
  • the conveying device 101 can convey the liquid sludge to the tempering device or the secondary tempering device 104 through a pipe indicated by a double line in the direction indicated by the arrow.
  • the tempering agent is mixed with the sludge in the tempering device 104 to improve the dewatering property of the sludge.
  • the tempering agent may be placed in the tempering device 104 in advance, or the sludge may enter the tempering device 104 at the same time. Or later.
  • the sludge is conveyed to a mixer as a tempering device 104 and then an inorganic tempering agent is added, and this inorganic tempering agent facilitates mechanical dewatering of the sludge.
  • the tempered sludge is piped to a dewatering device 105 located downstream of the tempering device, and the tempered sludge is filtered in the dewatering device 105 to separate a large amount of water and form solid sludge or dehydrated sewage. mud.
  • a dewatering device 105 located downstream of the tempering device, and the tempered sludge is filtered in the dewatering device 105 to separate a large amount of water and form solid sludge or dehydrated sewage. mud.
  • pressurization and The filtration method separates the water in the sludge, and usually uses a plate and frame filter press to dehydrate the tempered sludge, thereby obtaining sludge having a water content of about 40-60%, and the obtained sludge is basically
  • the top is a cake or a block, that is, a shaped block.
  • the dewatered bulk sludge is conveyed to a downstream drying device 107 by a conveying device such as a pipe, a funnel or a conveyor belt.
  • a conveying device such as a pipe, a funnel or a conveyor belt.
  • the bulk sludge is dried by the turning, shearing, and crushing of the turning device and sufficient contact with the dry gas, and finally becomes a granular granular sludge having a water content of 40% or less.
  • the dried sludge is discharged through a discharge port 9 provided in the drying device.
  • the dried sludge does not cause secondary pollution to the environment after landfilling, and can be reused if used for fattening, building materials, and the like.
  • a crushing device may be provided downstream of the dewatering device 105.
  • the dewatered bulk sludge is conveyed by the conveying device to the crushing device 106.
  • the crushing device 106 breaks the bulk sludge from the upstream dewatering device into small pieces or pieces to facilitate drying. Since the block size of the slug sludge after dewatering is not uniform, different sizes of slug sludge may cause different degrees of drying of the individual blocks during the drying process.
  • the existing crushing device can also crush the bulk sludge, the sludge is not sufficiently dehydrated, resulting in a high moisture content of the sludge, so that the crushing device cannot obtain a small block having a substantially uniform particle size.
  • the crushing device employed in the sludge drying system 1 of the present invention can effectively eliminate the above drawbacks, that is, the bulk sludge can be broken into pieces of similar size.
  • the crushing device of the present invention comprises a material control member and a crushing assembly, wherein the speed of the sludge entering the crushing device is adjusted and controlled by the material control member, so that the crushing assembly can crush the bulk sludge at a predetermined speed, thereby obtaining the desired Small chunks or fragments of sludge that are roughly uniform in size.
  • a pre-conditioning device 102 and a concentration device 103 are provided in the sludge drying system 1, in addition to the above-described devices.
  • the conveying device 101 can convey the received sludge to the front tempering device (or primary tempering device) 102 on the left side of the drawing by a pipe indicated by a double line in the direction indicated by the arrow.
  • the organic tempering agent is mixed with the liquid sludge to form a larger floc to improve the sedimentation property of the sludge.
  • the pre-treated and tempered sludge is piped to a concentrating device 103 downstream of the pre-conditioning device, and in the concentrating device, the sludge floc is separated from the water by sedimentation, thereby concentrating the liquid sludge Delivered to the downstream quenching and tempering device.
  • the concentrating device may also be a device in the form of a gravity concentrator, a centrifugal concentrator or a belt concentrator. Quenching and tempering device (or secondary The tempering unit 104 then transfers the concentrated sludge to the respective units to carry out the subsequent sludge treatment in the order mentioned above.
  • a preferred embodiment of the drying device 107 in the sludge drying system 1 shown in Fig. 1 is shown in Figs. 2 and 3, respectively, in longitudinal and transverse cross-sections.
  • the drying device 107 is a bottom-type sludge drying device in a monomer form, and includes a first drying chamber 6a, a second drying chamber 6b, and a partition wall separating the first drying chamber 6a and the second drying chamber 6b. 4.
  • a communication port 5 that communicates the first drying chamber 6a and the second drying chamber 6b is formed on the partition wall 4 so that the drying gas enters the first drying chamber 6a through the communication port 5 and the sludge therein is dried.
  • FIG. 2 shows a preferred embodiment of the bottom dry sludge drying apparatus of the present invention
  • Figure 3 is a transverse cross-sectional view of the sludge drying apparatus of Figure 1, schematically showing a monomer form Sludge drying device.
  • the bottom dry sludge drying device 107 includes a casing, and the casing includes an upper casing 2, a lower casing 4a, and an upper cover (or cover) 3.
  • the bottom of the upper casing 2 serves as a partition wall 4 that partitions the internal space of the casing into the first drying chamber 6a and the second drying chamber 6b.
  • the upper casing 2 and the upper cover 3 constitute a first drying chamber 6a
  • the lower casing 4a and the bottom of the upper casing 2, that is, the partition wall constitute a second drying chamber 6b.
  • a communication port 5 for communicating the first drying chamber 6a and the second drying chamber 6b is formed on the partition wall 4 to enable the drying gas to enter the first drying chamber 6a from the second drying chamber 6b.
  • the first drying chamber 6a and the second drying chamber 6b are arranged one above the other, other arrangements are possible.
  • the housing may be constructed of a plurality of components or a plurality of ways, for example, the illustrated side wall of the upper casing 2 may be separately manufactured from the partition wall 4, wherein the plate member may be used as the partition plate Instead of the partition wall and mounting the partition plate on the side wall, it is also possible to assemble the side wall, the partition plate and the lower casing 4a together. Further, it is also possible to integrally form the lower casing 4a with the partition wall 4, and to cancel the bottom of the lower casing, the lower casing 4a on the floor B, and the like.
  • the shape of the housing is rectangular, but it can also be square, polygonal, elliptical or other shapes.
  • a feed port 8 for allowing the sludge to be dried or dried to enter the first drying chamber and an exhaust gas or a drying gas for discharging the dried sludge are respectively provided on the upper cover 3 of the casing.
  • the exhaust port 10 is provided with a discharge port 9 for the dried sludge on the end wall of the upper casing 2 in the vicinity of the partition wall 4 remote from the feed port 8.
  • the feed port 8 and the exhaust port 10 for the first drying chamber may be disposed at any position on one of the upper casing 2 and the upper cover 3 as needed, that is, the first drying Any position of the upper portion of the chamber 6a.
  • the discharge port 9 may be provided in any of the circumferential walls of the upper casing 2 including the side walls and the end walls. The position, that is, the arbitrary position of the circumferential wall of the first drying chamber 6a.
  • Fig. 4 shows the internal configuration of the sludge drying device of Fig. 1.
  • Two rows of communication ports 5 are formed at the bottom of the first drying chamber 6a, that is, the partition wall 4, and a plurality of spaced-apart communication ports 5 are arranged in each row, but each of the plurality of communication ports in one of the rows is connected.
  • a bridge 401 is provided above.
  • the communication port 5 can have various shapes such as a trapezoid, a rectangle, a triangle, an arch, a circle, and the like.
  • the longitudinal direction X of each of the communication ports 5 intersects with the longitudinal direction G of the casing, preferably perpendicular to each other, and therefore, the plurality of communication ports 5 in a row intersect or substantially parallel with the longitudinal direction G of the casing.
  • the flipping device 7a has a rotating shaft 701a and a flipping assembly 702a fixed to the rotating shaft 701a for turning the sludge.
  • the flip assembly 702a includes four vanes or ratchets 703a, and each vane or ratchet 703a extends radially outward from the rotational axis 701a.
  • the length of the plurality of blades or ratchets 703a of each flipping member 702a extending from the rotating shaft 701a may be different from each other, and at least one of the plurality of flipping assemblies 702a may have longer length blades or ratchets Other flipping components may have shorter length blades or ratchets.
  • each of the flipping assemblies 702a on the rotating shaft 701a respectively correspond to each of the plurality of communicating ports 5, and generally the tip of the blade or ratchet 703a on the flipping member faces
  • the communication port 5 is formed, and the length of the blade or the ratchet 703a is configured such that the front end or the tip end thereof can scrape the sludge in or near the communication port, so that the dry gas in the second drying chamber 6b can smoothly enter through the communication port 5.
  • a drying chamber 6a is configured such that the front end or the tip end thereof can scrape the sludge in or near the communication port, so that the dry gas in the second drying chamber 6b can smoothly enter through the communication port 5.
  • the drying gas enters the first drying chamber 6a from the second drying chamber 6b through the communication port 5 on the partition wall 4, and is discharged from the exhaust port 10 after interacting with the sludge to increase the drying gas. Opportunity to contact with sludge.
  • the sludge to be dried is discharged into the first drying chamber 6a through the feed port 8 and stacked on the partition wall 4, with the turning of the turning members 702a, 702b of the turning devices 7a, 7b and the action of the drying gas A part of the sludge may fall or leak into the second drying chamber 6b through the communication port 5 from the first drying chamber 6a.
  • the bridge member 401 is disposed above the communication port 5 to block the leakage of the sludge through the communication port to the second drying chamber 6b by the bridge member 401.
  • a bridge 401 is provided above each of the plurality of communication ports of the other row.
  • the bridge member 401 is disposed to cross the communication port 5 in the longitudinal direction X of the communication port and is long with the communication port 5 The degrees of direction are roughly parallel.
  • the length of the bridge member 401 is longer than the length of the communication port 5, so that the bridge member 401 can be spanned over the communication port 5 in the longitudinal direction of the communication port 5 like a bridge, and the two ends thereof are respectively fixed to the communication port.
  • a side opening 402 is formed between the bridge 401 and the partition wall 4, and a side opening 402 may be formed on one side of the bridge 401 or in each of them.
  • One side opening 402 is formed on one side. Therefore, the opening direction of the side opening 402 is substantially parallel to the axial direction of the rotating shaft or the longitudinal direction G of the casing.
  • the bridge 401 above the communication port 5 is advantageous for reducing the sludge from falling or leaking from the first drying chamber 6a to the second drying chamber 6b, but the sludge accumulated near the side opening also interferes with the drying gas from the second drying.
  • the chamber 6b enters the first drying chamber 6a.
  • each of the flipping assembly 702b of the flipping device 7b is formed such that the leading end of the blade or ratchet 703b or the side edge of the leading end can scrape the sludge near the side opening 402 of the bridge 401.
  • the spacing of the flipping assemblies 702a, 702b of the flipping devices 7a, 7b on the rotating shafts 701a, 701b can be determined in accordance with the distance between the plurality of communicating ports or the bridges in each row on the partition wall 4 to rotate on the rotating shaft The sludge near each communication port or bridge can be scraped off by the tips of the blades or ratchets of the flip assembly.
  • the position of the communication port or the bridge on the partition wall is associated with the position of the flipping assembly on the rotating shaft, but the number of the flipping assemblies 702a, 702b and the number of the communicating ports 5 or the bridges 401 thereon need not be one. A correspondence.
  • the partition wall 4 between the first drying chamber 6a and the second drying chamber 6b has a concave upper surface.
  • the upper surface of the partition wall 4 has a concave shape when viewed in a direction transverse to the longitudinal direction G of the casing, that is, a curved section of the concave surface is directed downward from the first drying chamber 6a toward the second drying chamber 6b.
  • the first drying chamber 6a has a concave bottom. Therefore, the partition wall is shown as a recessed area in the longitudinal direction G of the casing.
  • each recessed area corresponds to the flipping assembly 702a or 702b, and the recessed area It can be rounded.
  • the bridge member disposed above the communication port may be a plate member including a flat plate, a curved plate, a herringbone plate, or the like.
  • Figure 5 shows a preferred embodiment of the bridge on the dividing wall.
  • the bridge 401 of the flat plate is located above the communication port 5 and is parallel to the communication port in the longitudinal direction, thereby forming a side opening 402 between the bridge 401 and the partition wall 4. If the depressed area of the partition wall 4 is a circular arc shape, the shape of the side opening 402 assumes a crescent shape. Therefore, the shape of the side opening 402 depends on the shape of the bridge 401 and the depressed area of the partition wall.
  • Figure 6 shows an enlarged cross-sectional view of the portion A circled in Figure 2, wherein the flipping assembly of the flipping device is shown adjacent a side opening.
  • the bridge member 401 of the flat plate is located above the communication port 5 and has two side openings 402 formed on both sides thereof with the partition wall.
  • the drying gas as indicated by the arrow enters the communication port 5 from below the partition wall 4, that is, the second drying chamber 6b, and needs to be turned to pass through the left or right opening 402 to reach the first drying chamber 6a. Therefore, there is at least one curved path from the communication port to the side opening between the first drying chamber and the second drying chamber in order to reduce leakage of sludge from the first drying chamber to the second drying chamber.
  • the flipping assembly 702b of the flipping device 7b is positioned such that the leading end of its blade or ratchet can scrape the sludge near one of the side openings 402 between the bridge 401 and the dividing wall 4, while the dirt near the opposite side opening
  • the scraping of the mud not only helps to reduce the leakage of the sludge, but also contributes to the flow of the drying gas from the first drying chamber to the second drying chamber.
  • a scrapable component can be mounted on the blade or ratchet of the flip assembly to scrape the sludge near the side opening with the front end of the scrapable component.
  • a side baffle may be provided on one side of the bridge 401 to block one of the side openings, while leaving only the other side opening to allow the drying gas to enter the first drying chamber 6a in one direction .
  • the side dam is disposed in the side opening 402 along the length of the bridge 401 to prevent dry gas from passing therethrough, so that the flipping assembly 702 of the flipping device 7 can only scrape the sludge near the other side opening 402.
  • This arrangement of the baffles is such that the drying gas flows out of the side opening 402 into the first drying chamber 6a in only one direction, while preventing the drying gas from entering the first drying chamber from the opposite direction to prevent the sludge from leaking therefrom.
  • the scraping front end of the blade or ratchet of the first flipping assembly 702a on the first rotating shaft 701a is adjacent to the second rotational axis.
  • 701b is located between two adjacent second flipping assemblies 702b, and vice versa. This shortens the spacing between the first rotational axis 701a and the second rotational axis 701b and also avoids interference between the first flipping assembly 702a and the second flipping component 702b.
  • the partition wall 4 may be configured to form only a plurality of communication ports 5 thereon, and the plurality of flipping assemblies 702a, 702b of each of the flipping devices 7a, 7b respectively correspond to the plurality of communication ports 5
  • the scrapable front end of the blades or ratchets 703a, 703b of the flipping assemblies 702a, 702b can scrape the sludge in or near the communication port 5.
  • the plurality of flipping assemblies 702a, 702b of each of the flipping devices 7a, 7b respectively correspond to the plurality of bridge members 401 so as to flip the blades of the components 702a, 702b or
  • the side edges of the scrapable front end of the ratchet teeth 703a, 703b can scrape off the side opening 402
  • the sludge is passed so that the dry gas smoothly flows into the first drying chamber 6a.
  • the blades or ratchets 703a, 703b of the flipping assemblies 702a, 702b also function to shear, break and flip the sludge.
  • the scrapable member can be mounted on the blade or ratchet so that the front end of the scrapable member can scrape the sludge near the communication port or side opening.
  • one end of the rotating shafts 701a, 701b of the two flipping devices 7a, 7b may be respectively provided with a power input member.
  • the transmission is driven by an external power unit, and the transmission sequentially drives the rotation shafts 701a, 701b to rotate such that a power input member such as a gear or pulley 18a on the rotation shafts 701a, 701b drives one of the two rotation shafts 701a, 701b, thereby The other rotating shaft rotates.
  • the first rotating shaft 701a and the second rotating shaft 701b may be rotated in opposite directions with respect to each other or may be rotated together in the same direction.
  • Figure 7 shows a preferred embodiment of the rotational trajectory at the concave portion of the dividing wall 4 of the curved surface of the blade or ratchet on the flipping assembly of the flipping device.
  • the blade or ratchet 703b has a circular rotational trajectory, and when the tip end of the blade or ratchet 703b is swept along the curved surface of the partition wall 4, the tip of the blade or ratchet 703b is adjacent to the partition wall 4 near the communication port 5.
  • the distances of the surfaces are approximately equal.
  • Such an arcuate shape facilitates sweeping the side opening 402 at the side edge of the front end of the blade or ratchet of the flipping assembly or the wiper member mounted on the blade or ratchet to remove dirt in the vicinity thereof After the mud, the scraped and turned-up sludge is more likely to fall back along the concave curved contour of the partition wall to a lower position in the first drying chamber 6a, thereby increasing the frequency of contact of the drying gas with the sludge.
  • the contour of the inner surface of the recessed area of the partition wall 4 in the lateral direction and the scrapable top end of the blade or ratchet 703a, 703b of the flipping assembly 702a, 702b of each of the flipping devices 7a, 7b or thereon is similar, that is, the radius R of the curved partition plate facing the concave arcuate region of the flipping device is slightly larger than the distance r from the axis of the rotating shaft to the tip end of the flipping assembly.
  • the second drying chamber 6b includes an air inlet 15 disposed on a side wall of the lower casing 4a, that is, the air inlet 15 is located on the side wall of the second drying chamber 6b for use in waiting
  • the drying gas of the dried sludge enters the second drying chamber 6b, and the air inlet may be one or more.
  • the scraping front end of the blade or ratchet 703a, 703b of the flipping assembly 702a, 702b or the front end of the scrapable member fixed to the blade or ratchet is open to the side of the communication port 5 or the bridge 401 above the communication port
  • the scraping of the sludge near 402 helps to reduce the sludge in the first drying chamber 6a from falling into the second drying chamber 6b, but there may still be some sludge passing through the communication port 5 or from the side opening to the communication port.
  • the curved path leaks into the second drying chamber 6b.
  • a cleaning port 15a is provided, wherein the cleaning port 15a is for discharging sludge accumulated in the second drying chamber 6b.
  • a discharge device may be provided at a position near the bottom in the second drying chamber 6b to convey the sludge to the cleaning port 15a at one end of the second drying chamber 6b and to discharge the casing.
  • the second drying chamber 6b is substantially funnel-shaped in the lateral direction, and the side wall thereof, that is, the side wall of the lower casing 4a is gradually narrowed from the partition wall toward the bottom portion, and the shape at the narrowed portion, that is, at the bottom portion is curved or half.
  • the sludge leaking from the first drying chamber 6a by the curved path from the side opening to the communication port may be collected into the longitudinal passage of the curved section so as to be conveniently discharged outside the casing by the discharge device provided in the longitudinal passage .
  • the sludge leaking into the second drying chamber 6b may be dried or secondarily dried by the drying gas entering the second drying chamber 6b to further reduce the moisture content of the sludge.
  • a movable baffle may be provided at the cleaning port 15a so that the drying gas does not leak, and the movable baffle is opened when the sludge is discharged.
  • the sludge drying system 1 further includes an air blowing device 12.
  • the drying device 107 communicates with the air blowing device 12 via the air inlet 15 through a connecting pipe indicated by a double line, wherein the air blowing device 12 can blow the drying gas to be dried sludge in the direction of the arrow to the second of the drying device 107. Drying chamber 6b.
  • the sludge drying system 1 may further include a drafting device 13, a heating device 108, or a heat exchange device 109. As shown in FIG. 1, if it is necessary to blow the hot dry gas into the second drying chamber 6b, a heating device 108 may be provided at a position downstream of the air blowing device 12 to supply the drying device 107 with the heated drying gas.
  • the air guiding device 13 may be disposed at a position downstream of the drying device 107 to allow the exhaust gas or the drying gas after the drying sludge to flow out from the first drying chamber 6a as quickly as possible.
  • the heat exchange device 109 can be associated with the air blowing device 12 and the air guiding device 13, wherein the hot end of the heat exchange device 109 is connected to the air blowing device 12 and the cold end thereof is connected to the air guiding device 13.
  • the exhaust gas from the air introducing means 13 passes through the cold end of the heat exchange means 109, and the drying gas which is to enter the outside of the air blowing means 12 passes through the hot end of the heat exchange means 109, so that the heat exchange means 109 recovers the exhaust gas through the heat exchange means
  • the heat in the heat is transferred to the drying gas for the sludge to be dried to enter the air blowing device 12 to improve the heat efficiency.
  • the air blowing device 12 communicates with the second drying chamber 6b via a duct and an air inlet 15 to blow dry gas into the second drying chamber 6b.
  • the air guiding device 13 communicates with the first drying chamber 6a via a duct and an exhaust port 10.
  • the drying gas delivered into the second drying chamber 6b may be a drying medium such as a hot gas, a chemical-containing gas, hot air, a normal temperature gas or a freezing gas, or a specially prepared drying medium.
  • the air blowing device 12 can be used The speed at which the drying gas flows into the second drying chamber 6b is increased, and the air introducing means 13 can accelerate the outflow of the exhaust gas from the first drying chamber 6a.
  • the air blowing device may be a blower or a fan, and the air guiding device may be an induced draft fan.
  • the air blowing device 12 may be replaced with a supercharging device to deliver the drying gas to the second drying chamber 6b at a certain pressure, so that the drying gas is accelerated to flow into the first drying chamber 6a.
  • the air guiding device 13 may be replaced with a pressure reducing device to speed up the flow of the exhaust gas, thereby improving the sludge drying efficiency.
  • the heating device (not shown) may be provided separately or integrated with the air blowing device. Further, the heated drying gas is sent to the second drying chamber 6b by the air blowing device or the charging device to re-dry the sludge therein.
  • the heated drying gas is subjected to secondary drying of the sludge dropped or leaked into the second drying chamber 6b, a part of the heat may be transferred to the shop through the upper casing 2 and the partition wall 4 made of a metal material.
  • the sludge placed on the partition wall 4 serves to assist the drying of the sludge in the first drying chamber 6a.
  • Figure 8 illustrates a sludge drying process or process of the present invention.
  • the sludge drying system 1 of the present invention can directly obtain sludge having a moisture content of about 40% or less after a series of sludge treatment and drying of the sludge having a moisture content of about 90% or more.
  • the moisture content of the sludge is gradually reduced at each treatment stage.
  • the sludge drying method using the sludge drying system 1 can be applied to treat liquid sludge having different water content of 90% or more.
  • the conveying step 101a can be carried out, and the conveying device 101 can be used.
  • the liquid sludge is sent to the tempering device or the secondary tempering device 104 for quenching and tempering treatment.
  • the organic tempering agent is mixed with the sludge to make the liquid sludge suitable for mechanical dewatering, and the tempered sludge is sent to the downstream dewatering device 105.
  • the dehydration step 105a the tempered sludge is mechanically dehydrated by a dehydration device, and the sludge filtered out is discharged to leave a sludge which becomes a solid block, wherein the moisture content of the lump sludge is about It is 40-60%, and the dehydrated bulk sludge is sent to a drying device for drying.
  • the bulk sludge is conveyed to the first drying chamber of the drying device 107, and the sludge is sheared, broken and turned by the turning assembly of the turning device, and the second drying chamber is passed through the communication port or the side opening.
  • the dry gas entering the first drying chamber is in contact with the sludge, and the scraping front end of the blade or ratchet of the flipping assembly scrapes off the sludge near the communication port or the side opening, and the sludge is sufficiently dried.
  • the dried sludge is discharged to the drying device by performing the discharging step 9a.
  • the liquid sludge can be conveyed by the conveying device 101 to the pre-conditioning apparatus 102 and the concentration unit 103 to carry out the pre-conditioning step 102a and the concentration step 103a.
  • Organic conditioning agent in pre-conditioning step 102a Mixing with the sludge to promote the formation of sludge floc, and in the concentration step 103a, the sludge floc is separated from the moisture to reduce the moisture content of the sludge.
  • the concentrated sludge is then conveyed to a conditioning step 104a as described above to carry out a subsequent drying process. Further, in order to sufficiently dry the sludge, the dehydrated bulk sludge can be crushed.
  • the crushing step 106a can be carried out before the drying step 107a.
  • the crushing device 106 breaks the dehydrated bulk sludge into small pieces or pieces of similar size so that the individual pieces are uniformly heated during the drying process.
  • the blasting step 12b in which the drying gas is introduced into the air blowing device 12, and the drying gas is blown by the air blowing device 12 to the air inlet 15 of the second drying chamber 6b.
  • a draft step 13b may be implemented by which the exhaust gas is recovered from the exhaust port 10 of the first drying chamber for delivery to a subsequent processing facility.
  • a heating step 108a can also be implemented to cause an external drying gas to flow through the heating device 108 to heat the drying gas to a desired temperature. It is also possible to carry out a heat recovery step 109a for conveying the tail gas recovered by the air introducing means 13 to the cold end of the heat exchange unit 109, and transferring the heat in the exhaust gas to the drying gas of the hot end of the heat exchange unit 109 through the heat exchange process, thereby Increase the utilization rate of waste heat.
  • FIG. 9 shows the flow of a sludge drying process or method using a drying device 107.
  • the sludge drying process can be carried out by means of the various devices illustrated.
  • the dewatered sludge or crushed sludge is fed by the conveying means through the feeding step 8a to the first drying chamber 6a of the drying device 107 (shown by the broken line portion).
  • an external power unit (not shown) drives the rotating shafts 701a, 701b to rotate by a transmission and a power input member such as the power input member 18b, thereby driving the flipping assemblies 702a, 702b to rotate.
  • Each blade or ratchet 703a, 703b of the flip assembly continuously flips the sludge. While the flipping assembly is continuously sheared and broken, the scraping front end of the blade or ratchet 702a, 702b of the flipping assembly 701a, 701b or the side edge of the front end of the scraping member mounted on the blade or ratchet is fixed. The sludge in the vicinity of the communication port 5 or the side opening 402 is scraped off at intervals.
  • the air intake step 15b is carried out, and the dry gas is supplied from the air blowing device 12 through the duct and the air inlet 15 to the second drying chamber 6b of the drying device 107.
  • the flow rate of the drying gas into the second drying chamber 6b is associated with the blowing speed.
  • the front end of the blade or ratchet 702a, 702b of the flipping assembly or the front end of the scrapable member mounted on the blade or the ratchet scrapes off the sludge in the vicinity of the communication port or side opening 402 so that the dry gas smoothly flows into the first drying Room 6a.
  • the blades or ratchets 702a, 702b of the flipping assembly in the first drying chamber 6a shear, crush and tumbling the sludge and the drying of the drying gas to the sludge, the granularity of the sludge gradually becomes smaller and the powder is granulated.
  • step 9a the dried sludge discharge port 9 is discharged.
  • the drying gas delivered into the second drying chamber 6b by the air blowing device 12 leaks to the curved path passing through the communication port 5 or from the communication port to the side opening to the second
  • the sludge in the drying chamber is subjected to secondary drying to further reduce the moisture content of the sludge.
  • the dried sludge and the secondary dried sludge may be separately sent to the sludge collecting device through the discharge port 9 of the first drying chamber and the cleaning port 15a of the second drying chamber.
  • the feeding step 8a, the tumbling and scraping step 107a, the intake step 15b, the venting step 10a, and the secondary drying or re-drying step 107a2 may be carried out sequentially or simultaneously.

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Drying Of Solid Materials (AREA)
  • Treatment Of Sludge (AREA)

Abstract

一种污泥干化系统(1),包括输送装置(101)、调质装置(102)、脱水装置(105)以及干化装置(107),干化装置(107)包括壳体,壳体具有分隔壁(4),将壳体内的空间分隔成第一干燥室(6a)和第二干燥室(6b),在分隔壁(4)上形成用于连通第一干燥室(6a)和第二干燥室(6b)的连通口(5)。设置在第一干燥室(6a)的上部的进料口(8)和排气口(10),和设置在第一干燥室(6a)的周向壁上的出料口(9)。设置在第二干燥室(6b)的侧壁上的进气口(15)。设置在第一干燥室(6a)内的翻动装置(7a,7b),包括转动轴(701a,701b)和设置在转动轴(701a,701b)上的翻动组件(702a,702b),其可刮除连通口(5)附近的污泥。鼓风装置(12)经过进气口(15)与第二干燥室(6b)连通。还提出一种利用污泥干化系统(1)进行污泥干化的方法。

Description

污泥干化系统和方法 技术领域
本发明涉及污泥干化领域,具体而言,涉及一种污泥干化系统,用来干燥含水率大约90%以上的污泥,从而获得含水率在大约40%以下的污泥,以及一种利用这种污泥干化系统进行污泥干化的方法。
背景技术
在现代城市中污水的处理是必不可少的,而随着污水的处理会产生大量的污泥。目前,污水处理厂一般采用浓缩或脱水的方法对污泥进行前期处理,以便将污泥的含水率从90%以上降低到60-80%,之后对经处理过的污泥进行填埋、固化或干化处理。填埋易使污泥发酵而出现二次污染环境的问题,而现有的固化或干化设备通常干化效率低且能源消耗大,难以实现在降低污泥含水率的同时也能处理大量的污泥。通常需要经过多个污泥处理过程才能将污泥的含水率从90%以上降低到40-60%,而这些污泥处理过程都是在各个设备中单独完成的。这些污泥处理设备具有体积大、布置分散、功能单一以及能耗大等缺陷。
中国发明专利申请CN101186422A提出了一种闭式多室流化床污泥干燥方法。这种方法中所采用的流化床不仅消耗能源且效率很低,难以实现连续且大规模的污泥干化处理。
中国实用新型专利CN203319838U提出了一种污泥固化处理搅拌机。这种搅拌机通过将添加剂掺混到污泥中降低污泥的含水率,不仅增加了污泥的量而且也难以防止在填埋后污泥导致二次污染环境的问题。
由于污泥具有粘性强、易结块、难破碎的特性,现有的污泥干化设备难以实现对这类污泥进行大规模地干化处理以降低污泥的含水率,而且没有一种设备或系统能够将来自污水处理厂的含水率90%以上的污泥直接转化为含水率大约在40%以下的污泥。因此,需要提供这样一种污泥干化系统和方法实现上述目的。
发明内容
针对现有技术中存在的缺陷,本发明提出了一种将各种污泥处理 装置集成在一起的污泥干化系统以及利用这一系统进行污泥干化的方法。这种污泥干化系统可以将来自污水处理厂的污泥的含水率从90%以上直接降低到40%以下,以实现污泥从液态、块体、碎块、颗粒到粉粒的转变,进而提高污泥的干化效率。
利用污泥干化系统中的输送装置、调质装置、脱水装置、干化装置和鼓风装置可以对含水率90%以上的液态污泥进行干化,以将污泥的含水率降低到大约40%以下,从而可以获得在填埋后不会因水浸而导致二次污泥的粉粒状的污泥。另外,可以在本发明的污泥干化系统中结合前置调质装置和浓缩装置以对液态污泥实施前置调质处理和浓缩处理,从而可以从污泥中分离出更多的水分,经过浓缩的液态污泥再通过污泥干化系统中的上述各个装置进行干化处理,从而可以获得粉粒状的污泥。
利用结合到本发明的污泥干化系统中的破碎装置可以将脱水后的尺寸不同的污泥块体破碎成尺寸均匀的污泥碎块,以使污泥在干化过程中达到均衡的干燥效果。
利用结合到本发明的污泥干化系统中的引风装置、加热装置以及热交换装置,可以提高干化效率并节约能源。
通过设置在干化装置的第一干燥室内的翻动装置的翻动组件的翻动以及翻动组件上的叶片或棘齿对污泥的剪切和破碎,使污泥与干燥气体充分地接触,从而解决了污泥在干燥过程中存在的内、外部干燥程度不均匀的问题,其中,干燥气体通过设置在用于分隔第一干燥室和第二干燥室的分隔壁上形成的连通口或连通口上方的桥形件与分隔壁形成的侧开口由第二干燥室进入到第一干燥室,而且,翻动组件的叶片或棘齿的前端对连通口或侧开口附近的污泥的刮除不仅提高了干燥气体与污泥的接触频率,也促进了污泥从碎块向颗粒状和粉粒状转变,加快了污泥的干燥。
本发明的污泥干化系统具有干化效率高、能耗低、占地面积小以及适应性强的特点,使用者可以根据需要将本发明的污泥干化系统中的污泥处理装置与污水处理厂中现有的污泥处理装置进行结合,以降低成本。
本发明的利用污泥干化系统进行污泥干燥的方法通过调质、脱水和干燥过程可以显著降低污泥的含水率。通过在干化装置的第一干燥 室内设置的翻动装置的翻动组件不断地剪切、破碎和翻动污泥以及其叶片或棘齿的前端刮除连通口或侧开口附近的污泥使得干燥气体可以顺畅地进入第一干燥室,从而提高了污泥的干化效率并降低了能耗。
本发明提供一种污泥干化系统,所述污泥干化系统包括用于接收和输送污泥的输送装置;调质装置,所述调质装置位于所述输送装置的下游,且在其中将来自输送装置的所述污泥与调质剂混合,以改善所述污泥的脱水性;脱水装置,所述脱水装置将来自上游的所述污泥进行脱水,以降低所述污泥的含水率;干化装置,所述干化装置包括壳体,其中,所述壳体具有分隔壁,以将所述壳体内的空间分隔成第一干燥室和第二干燥室,且在所述分隔壁上形成用于连通所述第一干燥室和所述第二干燥室的至少一个连通口;设置在所述第一干燥室的上部的用于要干化的污泥的进料口和用于干化污泥后的干燥气体的排气口,和设置在所述第一干燥室的周向壁上的用于干化后的污泥的出料口;设置在所述第二干燥室的侧壁上的至少一个用于要干燥污泥的干燥气体的进气口;设置在所述第一干燥室内的用于翻动污泥的翻动装置,所述翻动装置包括转动轴和设置在所述转动轴上的至少一个翻动组件,其中,所述至少一个翻动组件可刮除所述至少一个连通口附近的污泥;以及鼓风装置,其中,所述鼓风装置经过所述至少一个进气口与所述第二干燥室连通。
根据上述方案,其还包括破碎装置,所述破碎装置位于所述脱水装置的下游并位于所述干化装置的上游,其中,所述破碎装置将来自上游的经过脱水的污泥进行破碎,以利于所述污泥的干化处理。
根据上述各个方案,其还包括在所述第二干燥室的端壁上设置至少一个清理口。
根据上述各个方案,其还包括设置在所述第二干燥室内的排料装置,用于将从所述第一干燥室泄漏到所述第二干燥室内的污泥排出所述清理口。
根据上述各个方案,所述调质装置包括混合器,在所述混合器中将调质剂与污泥进行混合,以改善污泥的脱水性。
根据上述各个方案,其还包括前置调质装置,所述前置调质装置位于所述输送装置的下游,且在其中将污泥与调质剂混合,以促进污泥的沉淀;以及浓缩装置,所述浓缩装置位于所述调质装置的上游, 用于将前置调质的污泥与水进行分离,以降低污泥的含水率。
根据上述各个方案,所述脱水装置包括板框压滤机,在所述板框压滤机中将调质的污泥加压过滤,以获得低含水率的固态污泥。
根据上述各个方案,其还包括用于加热干燥气体的加热装置,其中,所述加热装置位于所述鼓风装置的上游或下游。
根据上述各个方案,其还包括引风装置,其中,所述引风装置经过所述排气口与所述第一干燥室连通。
根据上述各个方案,所述干化装置配备热交换装置,所述热交换装置的冷端与所述引风装置连通,且其热端与所述鼓风装置连通,用以交换从所述排气口出来的尾气中的热量。
根据上述各个方案,所述至少一个污泥翻动装置的所述至少一个翻动组件具有从所述转动轴径向向外延伸的至少一个叶片或棘齿,其中,在所述转动轴旋转时所述至少一个翻动组件的所述至少一个叶片或棘齿的前端或者安装在叶片或棘齿的前端的刮除部件可以刮除或部分刮除所述至少一个连通口内或附近的污泥。
根据上述各个方案,其还包括设置在所述至少一个连通口上方的桥形件,其中,所述桥形件与所述分隔壁之间形成侧开口,以形成从所述至少一个连通口到所述侧开口的弯曲路径。
根据上述各个方案,所述至少一个翻动组件与所述桥形件相对应,以便所述至少一个翻动组件的所述至少一个叶片或棘齿的前端或者安装在叶片或棘齿上的刮除部件的前端的侧边缘可以刮除或部分刮除所述侧开口附近的污泥。
根据上述各个方案,所述分隔壁具有下凹的上表面。
根据上述各个方案,所述至少一个包括至少两个污泥翻动装置,其中每个污泥翻动装置包括多个翻动组件,且所述多个翻动组件中的每个的所述至少一个叶片或棘齿的前端或安装在所述至少一个叶片或棘齿的前端的刮除部件可刮除所述至少一个连通口内或附近的污泥,其中,所述至少两个污泥翻动装置中的其中一个污泥翻动装置的所述多个翻动组件与另一个的所述多个翻动组件彼此交错布置。
本发明还提供一种采用上述方案中任一项所述的污泥干化系统进行污泥干化的方法,所述方法包括以下步骤:通过输送装置将液态污泥输送到调质装置,在调质装置中使所述污泥与调质剂混合,以改善 所述污泥的脱水性;将调质的污泥输送到脱水装置内进行脱水,以获得固态污泥;通过进料口将所述固态污泥的块体送入干化装置的第一干燥室内;使设置在所述第一干燥室内的至少一个污泥翻动装置运行,其中,所述至少一个污泥翻动装置上的转动轴使至少一个翻动组件转动,从而所述至少一个翻动组件上的至少一个叶片或棘齿的前端可刮除位于所述第一干燥室和第二干燥室之间的分隔壁上形成的至少一个连通口附近的污泥;和通过鼓风装置使干燥气体进入所述第二干燥室内并通过所述至少一个连通口进入所述第二干燥室。
根据上述方案,其还包括破碎步骤:将脱水的固态污泥送入破碎装置,且在所述破碎装置中将所述污泥的块体破碎成碎块。
根据上述各个方案,其还包括将所述液态污泥送入前置调质装置,在所述前置调质装置中使所述污泥与调质剂混合,以促进所述液态污泥的沉淀;以及将前置调质的污泥送入浓缩装置,在所述浓缩装置中使所述前置调质的污泥与水进行分离,以获得低含水率的污泥。
根据上述各个方案,其还包括加热步骤:利用所述加热装置对离开或进入所述鼓风装置的干燥气体加热。
根据上述各个方案,其还包括引风装置,其中,所述引风装置经过所述排气口与所述第一干燥室连通。
根据上述各个方案,其还包括热交换步骤:使离开引风装置的尾气经过所述热交换装置的冷端,且使进入与所述鼓风装置的干燥气体经过所述热交换装置的热端,以再利用从所述排气口出来的尾气中的热量。
根据上述各个方案,其还包括在所述转动轴旋转时使所述至少一个污泥翻动装置的所述至少一个翻动组件上的至少一个叶片或棘齿的前端或安装至少一个叶片或棘齿上的刮除部件的前端的侧边缘可刮除设置在所述至少一个连通口上方的至少一个桥形件与所述分隔壁之间形成的侧开口附近的污泥。
根据上述各个方案,其还包括通过设置在所述第二干燥室内的排出装置将从所述第一干燥室泄漏到所述第二干燥室内的污泥从清理口清除。
附图说明
下面将结合附图以及具体实施例详细说明本发明的优选实施方案的构造、优点以及技术效果,其中:
图1是本发明的污泥干化系统的示意图;
图2是图1所示的污泥干化系统中的干化装置的纵向剖视图;
图3是图2中污泥干化装置的横向剖视图;
图4是图2中的干化装置的内部构造的立体示意图;
图5是图1中圈出的A部分的曲面的分隔壁的一部分上的桥形件放大的立体图;
图6是图1中圈出的A部分的放大视图;
图7是在横截于壳体的纵向方向取的图6的分隔壁左剖视图;
图8是本发明的污泥干化过程的流程图;以及
图9是图8的污泥干化过程中的干化步骤的示意图。
具体实施方式
图1示出了本发明的污泥干化系统的优选实施例,其中,污泥干化系统1可以将污泥的含水率从大约90%以上降低到大约40%以下,从而获得粉粒状的污泥。
污泥干化系统1总体上包括输送装置、调质装置(或二次调质装置)、脱水装置、干化装置和鼓风装置,且还包括前置调质(或一次调质)装置和浓缩装置、破碎装置等。本发明的污泥干化系统1还可以包括引风装置、加热装置和热交换装置。
通常来自污水处理设备的液态污泥的含水率是90%以上。在接收到液态污泥后,输送装置101可以如沿箭头指示的方向通过双线表示的管道将液态污泥输送到调质装置或二次调质装置104中。在调质装置104中将调质剂与污泥进行混合,以改善污泥的脱水性,其中,调质剂可以预先放置到调质装置104中,也可以在污泥进入调质装置104同时或之后投放。例如,将污泥输送到作为调质装置104的混合器中并随后添加无机调质剂,而这种无机调质剂有利于对污泥进行机械脱水。
经调质后的污泥经过管道输送到位于调质装置下游的脱水装置105,在脱水装置105中对调质的污泥进行过滤,以分离出大量的水并形成固态的污泥或脱水的污泥。优选地,在本发明中例如采用加压与 过滤的方法将污泥中的水分离出,通常利用板框压滤机使调质的污泥脱水,由此可以获得含水率为大约40-60%的污泥,而所得到的污泥基本上为饼状或块状,也即成形的块状体。
经过脱水的块状污泥通过传送装置如管道、漏斗或传送带等被输送到下游的干化装置107。在干化装置107中,块状污泥通过翻动装置的翻动、剪切和破碎以及与干燥气体的充分接触而得以干燥,最终成为含水率40%以下的粉粒状的污泥。经干燥后的污泥通过设置在干化装置的出料口9排出。经过干燥处理的这种污泥在填埋之后不会出现对环境的二次污染问题,而且如果用于育肥、制成建筑材料等还可以实现资源的再利用。
为了更好地发挥干化装置的作用,也可以在脱水装置105的下游设置破碎装置。经脱水后的块状污泥由传送装置输送到破碎装置106。破碎装置106将来自上游的脱水装置的块状污泥破碎成小块体或碎块,以利于干燥。由于脱水后的块状污泥的块体尺寸不均匀,因而在干燥过程中不同尺寸的块状污泥可能导致各个块体的干燥程度不同。尽管现有的破碎装置也可以对块状污泥进行破碎,但因污泥的脱水不充分,导致污泥的含水率较高,所以这种破碎装置不仅不能获得粒径大致均匀的小块体,而且也难以避免经破碎后的小块体或团块再次粘结成团。在本发明的污泥干化系统1中所采用的破碎装置可以有效地消除上述缺陷,即可以将块状污泥破碎成尺寸大小接近的碎块。本发明的破碎装置包括控料部件和破碎组件,其中,通过控料部件调整并控制进入破碎装置的污泥的速度,使得破碎组件可以预定的速度对块状污泥进行破碎,从而获得所希望的尺寸大致均匀的污泥的小块体或碎块。
如图1所示,在污泥干化系统1中除了上述装置外还设置有前置调质装置102和浓缩装置103。输送装置101可以将所接收的污泥如沿箭头指示的方向通过双线表示的管道将污泥输送到附图左侧的前置调质装置(或一次调质装置)102。在前置调质装置102中通过有机调质剂与液态污泥进行混合使污泥形成较大的絮凝体,以提高污泥的沉降性。将经前置调质后的污泥通过管道输送到前置调质装置下游的浓缩装置103,在浓缩装置中,通过沉降方式将污泥絮凝体与水分离,从而将浓缩后的液态污泥输送到下游的调质装置。浓缩装置也可以是重力浓缩机、离心浓缩机或带式浓缩机等形式的装置。调质装置(或二次 调质装置)104随后将浓缩的污泥传送到在各个装置中以便按照上面提到的次序实施后续的污泥处理过程。
在图2和3中分别以纵向和横向剖开的形式示出了图1所示的污泥干化系统1中的干化装置107的一个优选实施例。干化装置107是一种单体形式的底部干燥式污泥干化装置,且包括第一干燥室6a、第二干燥室6b以及将第一干燥室6a和第二干燥室6b分开的分隔壁4。在分隔壁4上形成有连通第一干燥室6a和第二干燥室6b的连通口5,以使干燥气体经过连通口5进入第一干燥室6a内并对其中的污泥进行干燥。
图2示出了本发明的底部干燥式污泥干化装置的一个优选实施例,而图3是图1中污泥干化装置的横向剖视图,其中示意性地表示了一种单体形式的污泥干化装置。底部干燥式污泥干化装置107包括壳体,且壳体包括上壳体2、下壳体4a和上盖(或盖)3。上壳体2的底部用作将壳体的内部空间分隔成第一干燥室6a和第二干燥室6b的分隔壁4。其中,上壳体2与上盖3构成第一干燥室6a,而下壳体4a与上壳体2的底部即分隔壁构成第二干燥室6b。在分隔壁4上形成用于连通第一干燥室6a和第二干燥室6b的连通口5,以使干燥气体能够从第二干燥室6b进入到第一干燥室6a中。如图所示,尽管第一干燥室6a和第二干燥室6b是上下布置的,但也可以有其它布置形式。然而,壳体可以由多个部件或多种方式构造而成,例如,图示出的上壳体2的侧壁与分隔壁4可以分开制造,其中,可以将板状部件用作分隔板以替代分隔壁并将分隔板安装在侧壁上,且也可以将侧壁、分隔板和下壳体4a组装在一起。另外,还可以将下壳体4a与分隔壁4一体形成,并取消下壳体的底部,将下壳体4a设置在地面B上等等。壳体的形状是长方形的,但也可以是正方形、多边形、椭圆形或其它形状。
如图所示,在壳体的上盖3上分别设有用于使待干燥或要干燥的污泥进入第一干燥室的进料口8和用于排出干燥污泥后的尾气或干燥气体的排气口10,而在远离进料口8的分隔壁4附近的上壳体2的端壁上设有用于干燥后的污泥的出料口9。在另外的实施例中,可以根据需要将用于第一干燥室的进料口8和排气口10设置在上壳体2和上盖3的其中一个上的任意位置,也即第一干燥室6a的上部分的任意位置。同样,出料口9可以设置在上壳体2的包括侧壁和端壁的周向壁的任 意位置,也即第一干燥室6a的周向壁的任意位置。
图4示出了图1的污泥干化装置的内部构造。在第一干燥室6a的底部即分隔壁4上形成两排连通口5且在每排中有多个间隔开布置的连通口5,但在其中一排的多个连通口的每个连通口上方设有桥形件401。除了图示出的矩形,连通口5可以有各种不同的形状,例如梯形、长方形、三角形、拱形、圆形等等。每个连通口5的长度方向X与壳体的纵向方向G交叉,优选相互垂直,因此,成排的多个连通口5与壳体的纵向方向G交叉或大致平行。
在第一干燥室内沿壳体的纵向方向G平行设置两个用于翻动污泥的翻动装置7a、7b。由于两个翻动装置7a、7b具有相同或类似的构造,因此,仅对其中一个翻动装置如翻动装置7a进行详细描述。参见图2-4翻动装置7a具有转动轴701a和固定在转动轴701a上用于翻动污泥的翻动组件702a。翻动组件702a包括有四个叶片或棘齿703a,且每个叶片或棘齿703a从转动轴701a径向地向外延伸。然而,每个翻动组件702a的多个叶片或棘齿703a从转动轴701a延伸出的长度可以彼此不相同,而且多个翻动组件702a中的至少一个翻动组件可以有长度较长的叶片或棘齿,而其它翻动组件可以有长度较短的叶片或棘齿。优选地,在转动轴701a上的多个翻动组件702a的每个翻动组件分别与多个连通口5中的每个连通口彼此对应,且通常翻动组件上的叶片或棘齿703a的顶端面对连通口5,且叶片或棘齿703a的长度构形成使它的前端或顶端可以刮除连通口内或附近的污泥,以便第二干燥室6b内的干燥气体可以顺畅地通过连通口5进入第一干燥室6a。
虽然干燥气体(如箭头所示)通过分隔壁4上的连通口5从第二干燥室6b进入第一干燥室6a,并在与污泥相互作用后由排气口10排出,以增加干燥气体与污泥接触的机会。然而,当待干燥的污泥经过进料口8投放到第一干燥室6a内并堆放在分隔壁4上之后,随着翻动装置7a、7b的翻动组件702a、702b的翻动以及干燥气体的作用,一部分污泥会通过连通口5从第一干燥室6a掉落或泄漏到第二干燥室6b中。为了减少污泥的泄漏,将桥形件401设置在连通口5的上方,以便利用桥形件401来阻挡污泥经过连通口向第二干燥室6b的泄漏。如图所示,在另一排的多个连通口的每一个上方设有桥形件401。桥形件401设置成在连通口的长度方向X上跨过连通口5,并与连通口5的长 度方向大致平行。桥形件401的长度比连通口5的长度长,从而桥形件401可以像桥一样在连通口5的长度方向上跨置在连通口5的上方,且其两端分别固定在连通口的端边缘附近的分隔壁4上。由于桥形件401的中间段位于连通口5的上方,从而在桥形件401与分隔壁4之间形成侧开口402,且可以在桥形件401的一侧形成侧开口402或在其每一侧形成一个侧开口402。因此,侧开口402的开口方向与转动轴的轴向方向或壳体的纵向方向G大致平行。连通口5的上方的桥形件401有利于减少污泥从第一干燥室6a掉落或泄漏到第二干燥室6b,但堆积在侧开口附近的污泥也干扰了干燥气体从第二干燥室6b进入到第一干燥室6a内。为了促进干燥气体的流动,翻动装置7b的翻动组件702b的每个构形成它的叶片或棘齿703b的前端或者前端的侧边缘可以刮除桥形件401的侧开口402附近的污泥。可以根据分隔壁4上每排中的多个连通口或桥形件的彼此间隔距离来确定翻动装置7a、7b的翻动组件702a、702b在转动轴701a、701b上的间隔,以便在转动轴转动时每个连通口或桥形件附近污泥可以由翻动组件的叶片或棘齿的前端刮除。总之,连通口或桥形件在分隔壁上的位置与翻动组件在转动轴上的位置相关联,但翻动组件702a、702b的数量与连通口5或其上的桥形件401的数量不必一一对应。
如图3所示,位于第一干燥室6a和第二干燥室6b之间的分隔壁4具有下凹的上表面。在横截于壳体的纵向方向G的方向上看,分隔壁4的上表面具有下凹的形状,也即下凹的表面的曲线段从第一干燥室6a朝第二干燥室6b向下突出,或者说,第一干燥室6a具有内凹的底部。因此,分隔壁在壳体的纵向方向G显示为下凹区域。如图所示,曲面的分隔壁4面向两个翻动装置7a、7b的每一个翻动装置的区域是下凹的,优选地每个下凹区域与翻动组件702a或702b相对应,且下凹区域可以是圆弧形的。设置在连通口的上方的桥形件可以是板件,其中,包括平板、弯曲板、人字形板等。
图5示出了在分隔壁上的桥形件的优选实施例。平板的桥形件401位于连通口5的上方且在长度方向上与连通口相互平行,从而在桥形件401和分隔壁4之间形成侧开口402。如果分隔壁4的下凹区域是圆弧形时,那么侧开口402的形状就呈现月牙形。因此,侧开口402的形状取决于桥形件401和分隔壁的下凹区域的形状。
图6示出了图2中圈出的A部分的放大剖视图,其中,示出了翻动装置的翻动组件正处于一个侧开口附近。平板的桥形件401位于连通口5的上方且其两侧与分隔壁形成了两个侧开口402。如箭头所示的干燥气体从分隔壁4的下方即第二干燥室6b进入连通口5就需要转向经过左或右侧开口402才能到达第一干燥室6a。因此,在第一干燥室和第二干燥室之间存在着从连通口到侧开口的至少一个弯曲路径,以便减少污泥从第一干燥室向第二干燥室的泄漏。翻动装置7b的翻动组件702b的位置使得它的叶片或棘齿的前端可刮除在桥形件401与分隔壁4之间的其中一个侧开口402的附近污泥,而对侧开口附近的污泥的刮除不仅有利于减少污泥的泄漏,而且也有助于干燥气体从第一干燥室向第二干燥室的流动。在另一实施例中,可以在翻动组件的叶片或棘齿上安装可刮除部件,以利用可刮除部件的前端刮除侧开口附近的污泥。在又一实施例中,可以在桥形件401的一侧设置侧挡板以将其中一个侧开口堵住,而仅保留另一侧开口,以允许干燥气体沿一个方向进入第一干燥室6a。侧挡板沿着桥形件401的长度方向设置在侧开口402内,以阻止干燥气体从中通过,这样可以使翻动装置7的翻动组件702仅刮除另一侧开口402附近的污泥。挡板的这种设置是为了使干燥气体仅朝一个方向流出侧开口402进入第一干燥室6a,而防止干燥气体从相反的另一方向进入第一干燥室从而防止污泥从中泄漏。
参见图2-4所示,在两个彼此相互交错布置的翻动装置7a、7b中,第一转动轴701a上的第一翻动组件702a的叶片或棘齿的可刮除前端接近第二转动轴701b且位于两个相邻的第二翻动组件702b之间,且反之也如此。这样既缩短了第一转动轴701a和第二转动轴701b之间的间距,也避免了第一翻动组件702a和第二翻动组件702b之间出现干涉。在另一实施例中,可以将分隔壁4构形成仅在其上形成多个连通口5,且每个翻动装置7a、7b的多个翻动组件702a、702b分别与多个连通口5相互对应,以便翻动组件702a、702b的叶片或棘齿703a、703b的可刮除前端可以刮除连通口5内或附近的污泥。也可以在连通口5的上方设置桥形件401,且每个翻动装置7a、7b的多个翻动组件702a、702b分别与多个桥形件401相互对应,以便翻动组件702a、702b的叶片或棘齿703a、703b的可刮除前端的侧边缘可以刮除侧开口402附近 的污泥,以使干燥气体顺畅地流入第一干燥室6a。除了刮除作用外,翻动组件702a、702b的叶片或棘齿703a、703b也起到剪切、破碎和翻动污泥的作用。在另一实施例中,可以在叶片或棘齿上安装可刮除部件,以便可刮除部件的前端可以刮除连通口或侧开口附近的污泥。
参见图2,两个翻动装置7a、7b的转动轴701a、701b的一端上可以分别设有与动力输入件。由外部动力设备驱动传动装置,并且传动装置依次驱动转动轴701a、701b旋转,使得转动轴701a、701b上的动力输入件例如齿轮或皮带轮18a带动两个转动轴701a、701b中的一个,从而使另一转动轴转动。第一转动轴701a和第二转动轴701b既可以相对彼此朝相反的方向转动,也可以一起朝相同的方向转动。
图7示出了翻动装置的翻动组件上的叶片或棘齿的顶端经过曲面的分隔壁4的下凹部分处的旋转轨迹的优选实施例。叶片或棘齿703b具有圆形的旋转轨迹,且当叶片或棘齿703b的顶端沿分隔壁4的弧形表面扫过时,在连通口5附近叶片或棘齿703b的顶端与分隔壁4的内表面的距离大致相等。这种弧形形状有助于在翻动组件的叶片或棘齿的可刮除前端或安装在叶片或棘齿上的可刮除部件的前端的侧边缘掠过侧开口402以清除其附近的污泥之后,被刮除以及翻起的污泥更容易沿着分隔壁的下凹的弧形轮廓回落到第一干燥室6a内的较低位置,从而提高了干燥气体与污泥的接触频率。优选地,分隔壁4的下凹区域在横向上的内表面的轮廓线与每个翻动装置7a、7b的翻动组件702a、702b的叶片或棘齿703a、703b的可刮除顶端或者其上安装的可刮除部件的顶端的旋转轨迹相似,也即曲面的分隔板面对翻动装置的下凹的圆弧形区域的半径R略大于转动轴的轴线到翻动组件的顶端的距离r。
如图2和3所示,第二干燥室6b包括设置在下壳体4a的侧壁上的进气口15,也即进气口15位于第二干燥室6b的侧壁上,以使用于待干燥污泥的干燥气体进入到第二干燥室6b中,而且进气口可以是一个或多个。尽管翻动组件702a、702b的叶片或棘齿703a、703b的可刮除前端或者固定在叶片或棘齿上的可刮除部件的前端对连通口5或连通口上方的桥形件401的侧开口402附近的污泥的刮除有助于减少第一干燥室6a内的污泥掉落到第二干燥室6b中,但仍然可能有一些污泥通过连通口5或从侧开口到连通口的弯曲路径泄漏到第二干燥室6b中。为了清除泄漏到第二干燥室6b内的污泥,在下壳体4a的端壁上 设有清理口15a,其中,清理口15a用来排出淤积在第二干燥室6b中的污泥。另外,可以在第二干燥室6b内靠近底部的位置设置排料装置,以将污泥传送到第二干燥室6b的一端的清理口15a并排出壳体。第二干燥室6b横向上大致呈漏斗形,其侧壁也即下壳体4a的侧壁从分隔壁朝向底部逐渐收窄,且在收窄的部位也即底部处的形状是弧形或半圆形的,从而在第二干燥室6b的底部形成一条弧形截面的纵向通道。通过从侧开口到连通口的弯曲路径由第一干燥室6a泄漏的污泥可以汇集到弧形截面的纵向通道中,以便由设置在纵向通道内的排料装置方便地排出到壳体之外。泄漏到第二干燥室6b内的污泥可以由进入到第二干燥室6b内的干燥气体再干燥或二次干燥,以进一步降低污泥的含水率。为了保持第二干燥室6b的相对密封,可以在清理口15a处设置可活动挡板,以使干燥气体不外泄,并在排出污泥时将活动挡板开启。
污泥干化系统1还包括鼓风装置12。干化装置107通过由双线表示的连接管道经由进气口15与鼓风装置12连通,其中,鼓风装置12可以将要干燥污泥的干燥气体沿箭头方向吹送到干化装置107的第二干燥室6b。
污泥干化系统1还可以包括引风装置13、加热装置108或热交换装置109。如图1所示,如果需要向第二干燥室6b内吹送热干燥气体,可以在鼓风装置12的下游位置设置加热装置108,以便向干化装置107提供加热的干燥气体。引风装置13可以设置在干化装置107的下游位置,以使干燥污泥后的尾气或干燥气体从第一干燥室6a尽快流出。热交换装置109可以与鼓风装置12和引风装置13相关联,其中,热交换装置109的热端与鼓风装置12相连,而其冷端与引风装置13相连。这样,来自引风装置13的尾气通过热交换装置109的冷端,而要进入鼓风装置12的外部的干燥气体通过热交换装置109的热端,使得热交换装置109通过热交换部件回收尾气中的热量并将热量传递给要进入鼓风装置12的用于待干燥污泥的干燥气体,以提高热效率。
参见图1和3,鼓风装置12经管道和进气口15与第二干燥室6b连通,以便将干燥气体吹送到第二干燥室6b内。引风装置13经管道和排气口10与第一干燥室6a连通。输送到第二干燥室6b内的干燥气体可以是如热气体、含有化学物质的气体、热空气、常温气体或冷冻气体等干燥介质,也可以是特殊配制的干燥介质。鼓风装置12可以用 来提高干燥气体流入第二干燥室6b内的速度,而引风装置13可以加快尾气从第一干燥室6a的流出。典型地,鼓风装置可以是鼓风机或风扇,而引风装置可以是引风机。另外,也可以用增压装置替代鼓风装置12,以将干燥气体以一定的压力输送到第二干燥室6b,从而使干燥气体加快流入第一干燥室6a。同样可以用减压装置替代引风装置13,以加快尾气的流动,从而提高污泥干化效率。加热装置(未示出)可以单独设置,也可以与鼓风装置集成在一起。另外,经过加热的干燥气体被鼓风装置或增压装置输送到第二干燥室6b内可以对其中的污泥进行再干燥。在加热的干燥气体对掉落或泄漏到第二干燥室6b内的污泥进行二次干燥的同时,其中的一部分热量也可以通过金属材料制成的上壳体2和分隔壁4传递到铺放在分隔壁4上的污泥,以对第一干燥室6a内的污泥起辅助干化的作用。
图8示出了本发明的污泥干化流程或方法。如上所述,本发明的污泥干化系统1可以将所接收的含水率大约90%以上的污泥经过一系列的污泥处理及干化后直接获得含水率大约40%以下的污泥,而在污泥干化过程中,污泥的含水率在各个处理阶段被逐渐的降低。利用污泥干化系统1进行污泥干化方法可适用于处理90%以上的不同含水率的液态污泥,例如,检测完污泥的含水率后实施输送步骤101a,可以利用输送装置101将液态污泥输送至调质装置或二次调质装置104进行调质处理。在调质步骤104a,将有机调质剂与污泥进行混合,以使液态污泥适用于机械脱水,且经调质后的污泥被输送到下游的脱水装置105。在脱水步骤105a,利用脱水装置对调质的污泥进行机械脱水处理,将从中滤出的水分排放掉而留下的污泥成为固态的块体,其中,这种块状污泥的含水率大约为40-60%,而经过脱水后的块状污泥被输送到干化装置进行干化处理。在干化步骤107a,将块状污泥输送到干化装置107的第一干燥室内,通过翻动装置的翻动组件对污泥剪切、破碎和翻动、经过连通口或侧开口从第二干燥室进入第一干燥室内的干燥气体与污泥接触以及翻动组件的叶片或棘齿的可刮除前端对连通口或侧开口附近的污泥的刮除,污泥得到了充分的干燥。干燥完的污泥通过实施出料步骤9a被排出干化装置。如果需要,可以由输送装置101将液态污泥输送到前置调质装置102和浓缩装置103,以实施前置调质步骤102a和浓缩步骤103a。在前置调质步骤102a将有机调质剂 与污泥混合以促进污泥絮状体的生成,而在浓缩步骤103a使污泥絮状体与水分分离而降低污泥的含水率。之后将浓缩的污泥输送到如上所述的调质步骤104a,以实施后续的干化处理过程。另外,为了使污泥得到充分的干燥可以对脱水后的块状污泥进行破碎,因此,可以在干化步骤107a之前实施破碎步骤106a。在破碎步骤106a中,破碎装置106将脱水后的块状污泥破碎成类似尺寸大小的小块体或碎块,以便于各个碎块在干燥过程中受热均匀。此外,在污泥的干化过程需要实施鼓风步骤12b,其中,使干燥气体进入鼓风装置12,并且由鼓风装置12将干燥气体吹送到第二干燥室6b的进气口15。在另一实施例中,可以实施引风步骤13b,通过引风装置13将尾气从第一干燥室的排气口10回收,以输送给后续的处理设备。也可以实施加热步骤108a,使外部干燥气体流过加热装置108以将干燥气体加热到所希望的温度。还可以实施热量回收步骤109a,将由引风装置13回收的尾气输送到热交换装置109的冷端,通过热交换过程将尾气中的热量传递给流过热交换装置109的热端的干燥气体,从而可以提高废热的利用率。
图9示出了利用干化装置107实现污泥干化过程或方法的流程。结合图2和3,通过图示出的各个装置可以实施污泥干化过程。脱水污泥或破碎污泥由输送装置经过进料步骤8a送入到干化装置107(如虚线部分所示)的第一干燥室6a中。在翻动和刮除步骤107a1,外部动力设备(未示出)通过传动装置和动力输入件例如动力输入件18b驱动转动轴701a、701b转动,进而带动翻动组件702a、702b旋转。翻动组件的各个叶片或棘齿703a、703b不断地翻动污泥。在翻动组件连续剪切和破碎的同时,翻动组件701a、701b的叶片或棘齿702a、702b的可刮除前端或者安装在叶片或棘齿上的可刮除部件的前端的侧边缘按一定的时间间隔刮除连通口5或侧开口402附近的污泥。与此同时实施进气步骤15b,由鼓风装置12经管道以及进气口15将干燥气体输送到干化装置107的第二干燥室6b。干燥气体进入第二干燥室6b的流动速度与送风速度相关联。翻动组件的叶片或棘齿702a、702b的前端或安装在叶片或棘齿上的可刮除部件的前端对连通口或侧开口402附近的污泥的刮除使得干燥气体顺畅地流入第一干燥室6a。随着第一干燥室6a内翻动组件的叶片或棘齿702a、702b对污泥的剪切、破碎和翻动以及干燥气体对污泥的干燥作用,污泥的颗粒度逐渐变小并粉粒化, 从而污泥的干燥程度也不断提高。在完成污泥的干燥之后干燥气体在排气步骤10a由引风装置13经位于第一干燥室6a的上部的排气口10以及管道输送到大气中或热交换装置107中,而在出料步骤9a将干燥后的污泥出料口9排出。另外,在污泥的二次干燥或再干燥步骤107a2,由鼓风装置12输送到第二干燥室6b内的干燥气体对通过连通口5或从连通口到侧开口的弯曲路径泄漏到第二干燥室内的污泥进行二次干燥,以进一步降低污泥的含水率。在出料步骤9a和清理步骤可以将干燥后的污泥和二次干燥后的污泥分别通过第一干燥室的出料口9和第二干燥室的清理口15a输送到污泥收集设备。另外,进料步骤8a、翻动和刮除步骤107a、进气步骤15b、排气步骤10a以及二次干燥或再干燥步骤107a2既可以依次实施,又可以同时实施。
在本申请中尽管列举了多种优选的实施方式,但本发明不仅限于说明书所提及到的内容,本领域技术人员完全可以通过本发明的上述设计思想对本发明的底部干燥式污泥干化装置中的各个部件或装置进行变化和改型,而这些变化或改型都在本发明的构思范围之内。

Claims (10)

  1. 一种污泥干化系统,所述污泥干化系统包括:
    用于接收和输送污泥的输送装置;
    调质装置,所述调质装置位于所述输送装置的下游,且在其中将来自输送装置的所述污泥与调质剂混合,以改善所述污泥的脱水性;
    脱水装置,所述脱水装置将来自上游的所述污泥进行脱水,以降低所述污泥的含水率;
    干化装置,所述干化装置包括:
    壳体,其中,所述壳体具有分隔壁,以将所述壳体内的空间分隔成第一干燥室和第二干燥室,且在所述分隔壁上形成用于连通所述第一干燥室和所述第二干燥室的至少一个连通口;
    设置在所述第一干燥室的上部的用于要干化的污泥的进料口和用于干化污泥后的干燥气体的排气口,和设置在所述第一干燥室的周向壁上的用于干化后的污泥的出料口;
    设置在所述第二干燥室的侧壁上的用于要干燥污泥的干燥气体的至少一个进气口;
    设置在所述第一干燥室内的用于翻动污泥的翻动装置,所述翻动装置包括转动轴和设置在所述转动轴上的至少一个翻动组件,其中,所述至少一个翻动组件可刮除所述至少一个连通口附近的污泥;以及
    鼓风装置,其中,所述鼓风装置经过所述至少一个进气口与所述第二干燥室连通。
  2. 根据权利要求1所述的污泥干化系统,其特征在于,其还包括破碎装置,所述破碎装置位于所述脱水装置的下游并位于所述干化装置的上游,其中,所述破碎装置将来自上游的经过脱水的污泥进行破碎,以利于所述污泥的干化处理。
  3. 根据权利要求1或2所述的污泥干化系统,其特征在于,其还包括在所述第二干燥室的端壁上设置至少一个清理口。
  4. 根据权利要求1-3中任一项所述的污泥干化系统,其特征在于,其还包括设置在所述第二干燥室内的排料装置,用于将从所述第一干燥室泄漏到所述第二干燥室内的污泥排出所述清理口。
  5. 根据权利要求1-4中任一项所述的污泥干化系统,其特征在于, 所述调质装置包括混合器,在所述混合器中将调质剂与污泥进行混合,以改善污泥的脱水性。
  6. 根据权利要求1-5中任一项所述的污泥干化系统,其特征在于,其还包括前置调质装置,所述前置调质装置位于所述输送装置的下游,且在其中将污泥与调质剂混合,以促进污泥的沉淀;以及
    浓缩装置,所述浓缩装置位于所述调质装置的上游,用于将前置调质的污泥与水进行分离,以降低污泥的含水率。
  7. 根据权利要求1-6中任一项所述的污泥干化系统,其特征在于,所述脱水装置包括板框压滤机,在所述板框压滤机中将调质的污泥加压过滤,以获得低含水率的固态污泥。
  8. 根据权利要求1-7中任一项所述的污泥干化装置,其特征在于,其还包括用于加热干燥气体的加热装置,其中,所述加热装置位于所述鼓风装置的上游或下游。
  9. 根据权利要求1-8中任一项所述的污泥干化装置,其特征在于,其还包括引风装置,其中,所述引风装置经过所述排气口与所述第一干燥室连通。
  10. 一种采用上述权利要求中任一项所述的污泥干化系统进行污泥干化的方法,所述方法包括以下步骤:
    通过输送装置将液态污泥输送到调质装置,在调质装置中使所述污泥与调质剂混合,以改善所述污泥的脱水性;
    将调质的污泥输送到脱水装置内进行脱水,以获得固态污泥;
    通过进料口将所述固态污泥的块体送入干化装置的第一干燥室内;
    使设置在所述第一干燥室内的至少一个污泥翻动装置运行,其中,所述至少一个污泥翻动装置上的转动轴使至少一个翻动组件转动,从而所述至少一个翻动组件上的至少一个叶片或棘齿的前端可刮除位于所述第一干燥室和第二干燥室之间的分隔壁上形成的至少一个连通口附近的污泥;和
    通过鼓风装置使干燥气体进入所述第二干燥室内并通过所述至少一个连通口进入所述第二干燥室。
PCT/CN2015/099789 2015-01-07 2015-12-30 污泥干化系统和方法 WO2016110212A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510025406.X 2015-01-07
CN201510025406.XA CN105819652A (zh) 2015-01-07 2015-01-07 污泥干化系统和方法

Publications (1)

Publication Number Publication Date
WO2016110212A1 true WO2016110212A1 (zh) 2016-07-14

Family

ID=56355515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/099789 WO2016110212A1 (zh) 2015-01-07 2015-12-30 污泥干化系统和方法

Country Status (3)

Country Link
CN (1) CN105819652A (zh)
TW (1) TW201641444A (zh)
WO (1) WO2016110212A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108083601A (zh) * 2016-11-23 2018-05-29 广州新致晟环保科技机械设备有限公司 干化污泥的组合装置及其干化污泥的方法
CN108083606A (zh) * 2016-11-23 2018-05-29 广州新致晟环保科技机械设备有限公司 干化污泥的组合装置及其干燥方法
CN109111074A (zh) * 2018-08-28 2019-01-01 郑州高路亚环保科技有限公司 一种油泥干化造粒装置
CN112592235A (zh) * 2020-12-09 2021-04-02 塔里木大学 利用秸秆生物质炭与畜禽粪便复合制备生物质缓释肥的方法
CN117566995A (zh) * 2023-12-21 2024-02-20 江苏方洋水务有限公司 一种污泥过滤干化处理装置

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108083602B (zh) * 2016-11-23 2024-03-19 广州正晟科技有限公司 干化污泥的组合装置及其干化污泥的方法
CN108083586B (zh) * 2016-11-23 2024-06-25 广州正晟科技有限公司 干化污泥的组合装置以及其制造方法和干化方法
CN108083587B (zh) * 2016-11-23 2024-06-28 广州正晟科技有限公司 干化污泥的组合装置以及其制造方法和干化方法
CN108083603A (zh) * 2016-11-23 2018-05-29 广州新致晟环保科技机械设备有限公司 干化污泥的组合装置及其干化污泥的方法
CN106517730A (zh) * 2016-12-07 2017-03-22 华南理工大学 基于微细粉末的污泥脱水处理方法及设备
CN108654165B (zh) * 2017-03-31 2024-06-18 广州正晟科技有限公司 过滤装置以及使用其的污泥浓缩及调质装置和方法
CN107555757A (zh) * 2017-10-19 2018-01-09 邓雨佳 一种污泥处理装置
CN109574429A (zh) * 2019-02-14 2019-04-05 北京净界新宇环保科技有限公司 一种固化油泥中重金属的方法
CN110436731A (zh) * 2019-08-05 2019-11-12 山东理工大学 基于生物质能的污泥干化系统
CN112573794B (zh) * 2019-09-12 2024-06-18 广州正晟科技有限公司 污泥干化系统和利用其干化污泥的方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040318A1 (en) * 2005-10-04 2007-04-12 Jeongwoo Ms Co., Ltd. Method of and apparatus for drying sludge
CN101007695A (zh) * 2007-01-19 2007-08-01 广州普得环保设备有限公司 一种污泥发酵脱水干燥方法
CN101844859A (zh) * 2010-04-21 2010-09-29 北京机电院高技术股份有限公司 一种污泥的蒸汽低温热调质干化成套处理装置及方法
JP2010216748A (ja) * 2009-03-18 2010-09-30 Taiheiyo Cement Corp 含水廃棄物の乾燥システム及び乾燥方法
CN204529629U (zh) * 2015-01-07 2015-08-05 广州新致晟环保科技机械设备有限公司 底部干燥式污泥干化装置
CN204529630U (zh) * 2015-01-07 2015-08-05 广州新致晟环保科技机械设备有限公司 底部进风的污泥干化装置
CN204529632U (zh) * 2015-01-07 2015-08-05 广州新致晟环保科技机械设备有限公司 底部干燥式污泥干化装置
CN204529631U (zh) * 2015-01-07 2015-08-05 广州新致晟环保科技机械设备有限公司 直接进风式污泥干化装置
CN204529628U (zh) * 2015-01-07 2015-08-05 广州新致晟环保科技机械设备有限公司 底部干燥式污泥干化装置
CN204529634U (zh) * 2015-01-07 2015-08-05 广州新致晟环保科技机械设备有限公司 用于底部通气的污泥干化装置的桥形件及其装置
CN204529633U (zh) * 2015-01-07 2015-08-05 广州新致晟环保科技机械设备有限公司 污泥干化的控制装置
CN204779273U (zh) * 2015-01-07 2015-11-18 广州新致晟环保科技机械设备有限公司 一种用于从干燥污泥后的尾气中回收热量的系统
CN204779274U (zh) * 2015-01-07 2015-11-18 广州新致晟环保科技机械设备有限公司 底部干燥式污泥干化装置
CN204779275U (zh) * 2015-01-07 2015-11-18 广州新致晟环保科技机械设备有限公司 底部干燥式污泥干化装置
CN204803203U (zh) * 2015-01-07 2015-11-25 广州新致晟环保科技机械设备有限公司 用于底部干燥式污泥干化装置的壳体
CN204803202U (zh) * 2015-01-07 2015-11-25 广州新致晟环保科技机械设备有限公司 污泥干化装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101691273B (zh) * 2009-09-28 2012-07-04 广州普得环保设备有限公司 一种污水污泥浓缩脱水好氧风干一体化的方法

Patent Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040318A1 (en) * 2005-10-04 2007-04-12 Jeongwoo Ms Co., Ltd. Method of and apparatus for drying sludge
CN101007695A (zh) * 2007-01-19 2007-08-01 广州普得环保设备有限公司 一种污泥发酵脱水干燥方法
JP2010216748A (ja) * 2009-03-18 2010-09-30 Taiheiyo Cement Corp 含水廃棄物の乾燥システム及び乾燥方法
CN101844859A (zh) * 2010-04-21 2010-09-29 北京机电院高技术股份有限公司 一种污泥的蒸汽低温热调质干化成套处理装置及方法
CN204529628U (zh) * 2015-01-07 2015-08-05 广州新致晟环保科技机械设备有限公司 底部干燥式污泥干化装置
CN204529630U (zh) * 2015-01-07 2015-08-05 广州新致晟环保科技机械设备有限公司 底部进风的污泥干化装置
CN204529632U (zh) * 2015-01-07 2015-08-05 广州新致晟环保科技机械设备有限公司 底部干燥式污泥干化装置
CN204529631U (zh) * 2015-01-07 2015-08-05 广州新致晟环保科技机械设备有限公司 直接进风式污泥干化装置
CN204529629U (zh) * 2015-01-07 2015-08-05 广州新致晟环保科技机械设备有限公司 底部干燥式污泥干化装置
CN204529634U (zh) * 2015-01-07 2015-08-05 广州新致晟环保科技机械设备有限公司 用于底部通气的污泥干化装置的桥形件及其装置
CN204529633U (zh) * 2015-01-07 2015-08-05 广州新致晟环保科技机械设备有限公司 污泥干化的控制装置
CN204779273U (zh) * 2015-01-07 2015-11-18 广州新致晟环保科技机械设备有限公司 一种用于从干燥污泥后的尾气中回收热量的系统
CN204779274U (zh) * 2015-01-07 2015-11-18 广州新致晟环保科技机械设备有限公司 底部干燥式污泥干化装置
CN204779275U (zh) * 2015-01-07 2015-11-18 广州新致晟环保科技机械设备有限公司 底部干燥式污泥干化装置
CN204803203U (zh) * 2015-01-07 2015-11-25 广州新致晟环保科技机械设备有限公司 用于底部干燥式污泥干化装置的壳体
CN204803202U (zh) * 2015-01-07 2015-11-25 广州新致晟环保科技机械设备有限公司 污泥干化装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108083601A (zh) * 2016-11-23 2018-05-29 广州新致晟环保科技机械设备有限公司 干化污泥的组合装置及其干化污泥的方法
CN108083606A (zh) * 2016-11-23 2018-05-29 广州新致晟环保科技机械设备有限公司 干化污泥的组合装置及其干燥方法
CN109111074A (zh) * 2018-08-28 2019-01-01 郑州高路亚环保科技有限公司 一种油泥干化造粒装置
CN112592235A (zh) * 2020-12-09 2021-04-02 塔里木大学 利用秸秆生物质炭与畜禽粪便复合制备生物质缓释肥的方法
CN112592235B (zh) * 2020-12-09 2022-07-26 塔里木大学 利用秸秆生物质炭与畜禽粪便复合制备生物质缓释肥的方法
CN117566995A (zh) * 2023-12-21 2024-02-20 江苏方洋水务有限公司 一种污泥过滤干化处理装置
CN117566995B (zh) * 2023-12-21 2024-05-17 江苏方洋水务有限公司 一种污泥过滤干化处理装置

Also Published As

Publication number Publication date
TW201641444A (zh) 2016-12-01
CN105819652A (zh) 2016-08-03

Similar Documents

Publication Publication Date Title
WO2016110212A1 (zh) 污泥干化系统和方法
TWI683792B (zh) 底部乾燥式污泥乾化裝置和方法
WO2016110213A1 (zh) 污泥干化系统和方法
CN204803202U (zh) 污泥干化装置
WO2016110211A1 (zh) 底部干燥式污泥干化装置和方法
CN204529633U (zh) 污泥干化的控制装置
KR101729994B1 (ko) 열매체를 이용한 저온 슬러지 건조장치 및 그 건조방법
KR101339563B1 (ko) 유기성 슬러지 일괄처리장치
CN110404934A (zh) 一种垃圾高效处理设备
CN204529631U (zh) 直接进风式污泥干化装置
WO2016110222A1 (zh) 底部干燥式污泥干化装置和方法
CN204779275U (zh) 底部干燥式污泥干化装置
KR100630324B1 (ko) 슬러지의 건조 장치
CN208458452U (zh) 用于肥料生产的烘干装置
CN105819653B (zh) 污泥干化的控制系统
CN107244792A (zh) 一种污泥快速干燥设备
CN111853825A (zh) 一种垃圾干燥热解装置
CN204529629U (zh) 底部干燥式污泥干化装置
CN105819657A (zh) 直接进风式污泥干化装置和方法
CN205115252U (zh) 污泥干化装置
CN108264209A (zh) 污泥干燥系统及方法
CN114029328A (zh) 一种土壤修复系统
CN105819648B (zh) 底部干燥式污泥干化装置和方法
CN208087445U (zh) 污泥干燥系统
TWI642634B (zh) 污泥乾燥系統及方法

Legal Events

Date Code Title Description
REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016012212

Country of ref document: BR

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15876712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112016012212

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160530

122 Ep: pct application non-entry in european phase

Ref document number: 15876712

Country of ref document: EP

Kind code of ref document: A1