WO2016107349A1 - 计算机体层摄影方法和装置 - Google Patents

计算机体层摄影方法和装置 Download PDF

Info

Publication number
WO2016107349A1
WO2016107349A1 PCT/CN2015/095734 CN2015095734W WO2016107349A1 WO 2016107349 A1 WO2016107349 A1 WO 2016107349A1 CN 2015095734 W CN2015095734 W CN 2015095734W WO 2016107349 A1 WO2016107349 A1 WO 2016107349A1
Authority
WO
WIPO (PCT)
Prior art keywords
detector
data
source
imaging
projection
Prior art date
Application number
PCT/CN2015/095734
Other languages
English (en)
French (fr)
Inventor
奚岩
姚君
李民旭
Original Assignee
上海优益基医疗器械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海优益基医疗器械有限公司 filed Critical 上海优益基医疗器械有限公司
Priority to US15/538,799 priority Critical patent/US20170367664A1/en
Priority to BR112017013314A priority patent/BR112017013314A2/pt
Priority to EP15875028.1A priority patent/EP3241497A4/en
Priority to JP2017552204A priority patent/JP2018501062A/ja
Priority to KR1020177020291A priority patent/KR20170098283A/ko
Publication of WO2016107349A1 publication Critical patent/WO2016107349A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/027Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis characterised by the use of a particular data acquisition trajectory, e.g. helical or spiral
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/42Arrangements for detecting radiation specially adapted for radiation diagnosis
    • A61B6/4208Arrangements for detecting radiation specially adapted for radiation diagnosis characterised by using a particular type of detector
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4452Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being able to move relative to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5211Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data
    • A61B6/5229Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image
    • A61B6/5235Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT
    • A61B6/5241Devices using data or image processing specially adapted for radiation diagnosis involving processing of medical diagnostic data combining image data of a patient, e.g. combining a functional image with an anatomical image combining images from the same or different ionising radiation imaging techniques, e.g. PET and CT combining overlapping images of the same imaging modality, e.g. by stitching
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/11Region-based segmentation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/486Diagnostic techniques involving generating temporal series of image data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10081Computed x-ray tomography [CT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/416Exact reconstruction

Definitions

  • the present invention relates to an imaging method, and more particularly to a method of photographing a body layer using a computer, and an apparatus for carrying out the method.
  • CT imaging technology Since the invention of the first CT prototype in 1971, CT imaging technology has played an important role in modern medical diagnosis. CT imaging equipment with large imaging fields is an urgent need for clinical applications. However, due to the high cost of CT detectors, the size of the detector will significantly affect the manufacturing cost of CT equipment. Configuring large size detectors can significantly increase the manufacturing cost of CT imaging equipment.
  • helical scanning is an ideal way to increase the imaging field of view.
  • German scientist Willi208 developed the first helical scanning CT device in 1989, which can effectively improve the CT imaging device in the Z-axis direction (the patient's scanning process, the method of moving the bed)
  • the coverage area enables continuous CT scanning of "long" objects.
  • the existing patents all describe the use of helical scanning to improve the coverage area of the CT imaging device in the Z-axis direction (the Z-axis is the coordinate axis opposite to the plane where the CT tomographic image is located), such as: 200410026596.9.
  • this scanning method is limited to improving the imaging field of view in the Z-axis direction.
  • the required detector size can only be reduced in the Z-axis direction, and the CT imaging device can be significantly reduced without ensuring the size of the imaging field of view.
  • cone beam CT manufacturers have used the overall movement of scanning devices (mainly including X-ray tubes and detectors) to expand the coverage area of the cone beam CT device in the Z-axis direction.
  • the implementation method is firstly fixed imaging system at a certain height Degrees, then CT scan and image reconstruction, to obtain three-dimensional volume data within the imaging range.
  • the scanning device of the imaging system including the X-ray source and the detector, is raised to another height, and then CT imaging is performed to obtain three-dimensional volume data of the height position.
  • the three-dimensional volume data of the two scan images are spliced to obtain a complete three-dimensional volume data covered by the long Z-axis.
  • Another object of the present invention is to provide an imaging method that significantly improves the utilization efficiency of the cone beam CT for the detector, and reduces the cost of the CT device while ensuring the imaging field of view and the image quality are unchanged.
  • the invention provides an imaging method comprising the following steps:
  • the imaging system composed of the radiation source and the radiation detector is moved along the longitudinal Z axis, and at the same time, the radiation source and the detector synchronously scan around the object for scanning, and data acquisition;
  • Another imaging method provided by the present invention includes the following steps:
  • the object is placed in the detection area, and the detector is biased relative to the object, so that part of the data scanned by the source of the object is obtained by the detector;
  • the following steps are repeated to adjust the imaging range and perform image stitching to achieve the target imaging area positioning;
  • step i) First, adjust the position of the detector, obtain the data from the detector for the first projection of the object by the source, move the detector horizontally or move the imaging system in the vertical direction (including source and ray detection) Obtaining the data of the second projection of the object by the ray source to make up for the data not acquired by the first projection; splicing the data of the first projection and the data of the second projection; if the desired projection image cannot be obtained , continue to repeat step i) to capture more different positions of the projected image until the demand is met;
  • Iii) then adjust the position of the detector as described in i), obtain data from the detector for the third projection of the object from the source, move the detector horizontally or move the imaging system in the vertical direction (including The ray source and the ray detector obtain the data of the fourth projection of the object by the ray source to make up for the data not acquired by the third projection; and combine the data of the third projection and the data of the fourth projection, if not Obtaining the desired projected image, and continuing to repeat step iii) to obtain the requirement for the target imaging area to be positioned at the angle;
  • the object is moved along the longitudinal Z axis, and the radiation source and the detector synchronously move around the circumference of the object for scanning and data acquisition;
  • the maximum velocity at which the object moves along the longitudinal Z-axis satisfies p/t.
  • p is the height of the detector in the Z-axis direction
  • t is the time required for the source and detector to rotate 360 degrees.
  • the line of focus of the source and the center point of the source-detector component intersect the detector.
  • the detector assembly includes a detector and a slide mechanism that slides in the slide rail.
  • the source of radiation and the detector are rotated at least 360 degrees around the object.
  • the detector preferentially selects a flat panel detector.
  • the present invention provides various imaging methods, including organisms, especially humans, wild animals, and livestock (Livestock).
  • Wild animals are animals that have not been artificially domesticated in their natural state.
  • Livestock are animals that are artificially raised to provide a source of food, such as dogs, cats, rats, hamsters, pigs, rabbits, cows, buffalo, bulls, sheep, goats, geese, and chickens.
  • the "organism” imaged by the method of the invention preferentially selects a mammal, especially a human, in a standing or sitting position within the detection zone.
  • an imaging apparatus includes
  • a rotating frame that is movably connected to the frame body, including a slide rail mechanism
  • the data transmission component is disposed at a connection between the frame body and the rotating frame, and is respectively connected to the power line and the data line;
  • a ray source disposed on the rotating frame
  • the detector slides on the slide rail mechanism.
  • the detector preferentially selects a flat panel detector.
  • the slide rail mechanism includes at least one slide rail, and the detector slides on the slide rail.
  • the movable connection between the rotating frame and the frame body is a center of rotation, and when the rotating frame rotates, the area covered by the radiation source and the detector always surrounds the center of rotation.
  • the imaging method of the present invention uses a flat panel detector to bias the helical scanning structure, and solves the image splicing method used in the conventional CT imaging (especially the cone beam CT imaging) to generate a pseudo image at the splicing image of the cone beam CT covered by the long Z axis. Shadow problem.
  • the method of the invention adopts a combination of detector biasing and spiral trajectory scanning, and simultaneously realizes an imaging field of view in the XY plane and an imaging field of view in the Z-axis direction, and also realizes large-field projection imaging using a small-area flat panel detector. Methods.
  • the imaging method of the present invention is applied to cone beam CT imaging, and large-field imaging can be realized using a small-sized flat panel detector (for example, 18 cm ⁇ 7 cm), which significantly reduces the cost of the overall CT imaging apparatus while achieving the same imaging field of view.
  • the imaging method of the present invention is suitable for living organisms, especially in a standing or sitting position in a detection area, and medical compliance is significantly improved.
  • the imaging device of the invention uses a slip ring structure at the center of rotation, allows the radiation source and the detector to perform continuous rotation scanning imaging, saves the overall scanning time, and effectively avoids potential motion artifacts.
  • the imaging device of the invention adopts a slide rail mechanism, which is beneficial to adjust the horizontal position of the flat plate for full-field imaging, and solves the positioning problem brought by the offset detector.
  • FIG. 1 is a schematic structural view of an embodiment of an apparatus for implementing an imaging method of the present invention
  • FIG. 2 is a schematic structural view of an embodiment of a data signal transmission component of FIG. 1;
  • FIG. 3 is a schematic structural view of an embodiment of the detector component of FIG. 1;
  • FIG. 4 is a first projection number of an object obtained by obtaining a radiation source from a detector according to the present invention. According to the CT image for imaging;
  • FIG. 5 is a CT diagram of obtaining a second projection data of an object from a detector by obtaining a radiation source according to the present invention
  • 6 is a complete projection image obtained by splicing and combining the data of the first projection and the data of the second projection;
  • FIG. 7 is a schematic structural view of an embodiment of an offset scanning and imaging of an object according to the present invention.
  • FIG. 8 is a schematic diagram of complementing data missing from one side offset scan when imaging the method of the present invention.
  • FIG. 9 is a schematic diagram of a trajectory of scanning an object by the method of the present invention.
  • FIG. 11 is a flow chart of an embodiment of a method of the present invention.
  • FIG. 1 is a schematic structural view of an embodiment of a device for implementing the imaging method of the present invention
  • FIG. 2 is a schematic structural view of an embodiment of the data signal transmitting component of FIG. 1
  • FIG. 3 is a schematic structural view of an embodiment of the detector component of FIG.
  • a CT scanning system e.g., cone beam CT
  • an imaging portion (1-2) is The column portion (1-1) has a sliding structure for vertical movement in the vertical direction.
  • slip ring system (1-3) to connect to the power cable (1-5) and the data cable (1-6), respectively, to replace the traditional wire connection, to realize the detecting component (1-4) and the radiation source (1-7) ) Continuously rotate around the object to prevent entanglement of the wires.
  • the detecting member (1-4) includes two parallel rails (1-9), and the detector (1-8) slides between the two parallel rails (1-9).
  • the guide rail is a slide rail mechanism, so as to facilitate the adjustment of the horizontal position of the flat plate for full-field imaging, and solve the positioning problem brought by the bias detector.
  • the area of the detector (1-8) should generally be smaller than the area of the two parallel rails (1-9).
  • the detector (1-8) employs a cone beam CT flat panel detector having a length of 18 cm and a width of 7 cm. During the CT scan, the imaging portion moves, and the detector and the ray source are rotated around the object to realize the spiral trajectory scanning.
  • FIG. 7 is a schematic structural view of an embodiment of an offset scanning and imaging of an object according to the present invention. Locating the detector of the cone beam CT imaging system relative to the object and ensuring the connection of the source focus (3-1) to the center point (3-3) of the source-detector component and the flat panel detector ( 3-2) Intersect.
  • the detectors (1-8) are attached to the X-direction rails and the movement of the flat panel detectors (1-8) along the rails (1-9) is controlled electrically.
  • the detector (1-8) is biased, i.e., the detector is offset on one side of the X direction, with the circular shaded portion being the target area for the image reconstruction (2-4).
  • the imaging portion (1-2) moves longitudinally along the Z-axis direction, while the radiation source (1-7) and the detecting member (1-4) are circularly moved around the object, X-ray exposure and acquisition.
  • the data, the trace of its scan is shown in Figure 9.
  • the object is a person, which is in a standing or sitting position in the detection area.
  • the maximum velocity at which the object moves along the longitudinal Z axis satisfies p/t.
  • p is the length of the object and t is the time required for the source and detector to rotate 360 degrees.
  • the detector is 7 cm in the Z-axis direction and 10 seconds in the CT scan.
  • the velocity of the object in the system is 0.7 cm/sec during the CT scan.
  • the rotation speed of the source and detector is 36 degrees/second.
  • the source emits X-rays (3-1)
  • the detector detects the X-ray signal (3-2), and performs a continuous circular motion along the object being scanned until the system is completed.
  • the moving distance of the image structure completely covers the object to be scanned, and the X-ray source is rotated at least 360 degrees.
  • the center of rotation (1-0) of the ray source and the detector for circular motion is shown in Fig. 1 or Fig. 7 at the center point (3-3).
  • the data acquisition system consisting of a ray source and a detector does not need to completely cover the entire image to be imaged. It is only necessary to ensure that the area covered by the ray source and the detector always contains the center of rotation around them when rotating along the center of rotation.
  • Figure 9 illustrates a trajectory of an embodiment of a CT scan involved in the imaging method of the present invention.
  • the projection data is collected by the detector and imaged as shown in FIG.
  • Figure 4 reveals the characteristics of the image formed in the offset spiral CT. Due to the small detector area, the primary imaging cannot cover the horizontal structure of the complete object, but only its first local feature (2-1). Sliding the flat panel detector along the guide rail for re-imaging to obtain a second partial feature (2-2) (see FIG. 5), the second partial feature may compensate for the portion not shown in the first partial feature, thereby The two imaging results are stitched together into a complete head projection image (2-3) (see Figure 6). The projected image of the radiation source at the 90 degree position is acquired in the same manner to determine whether the object is placed at the imaging center.
  • the imaging method provided in this embodiment is as shown in FIG. 11 , and specifically:
  • Step 10 Place the object in the detection area and offset the detector relative to the object so that part of the data scanned by the source of the object is obtained by the detector.
  • the imaging range is adjusted and the image is stitched to achieve the target imaging area positioning, specifically:
  • Step 211 Adjusting the position of the detector, obtaining data of the first projection of the object by the radiation source from the detector;
  • Step 213 combines the data of the first projection and the data of the second projection, and can obtain a complete projection image; if the desired projection image cannot be obtained, continue to repeat steps 221 to 213 to collect more projection images at different positions. Until the demand is met.
  • step 221 rotating the source-detector component relative to the object by 90 degrees
  • step 231 obtaining data of the third projection of the object by the radiation source from the detector; step 232: moving the detector in the horizontal direction or moving the imaging system in the vertical direction (including the X-ray source and the X-ray) Detector) obtaining data of a fourth projection of the object by the ray source to compensate for data not acquired by the third projection; and step 233: splicing and combining the data of the third projection and the data of the fourth projection, and Obtain a complete projected image of the object rotated 90 degrees with respect to the source. If the desired projected image cannot be obtained, continue to repeat steps 231 to 233 to obtain the requirement for the target imaging area to be positioned at the angle.
  • Step 30 The object is moved along the longitudinal Z-axis, and the radiation source and the detector are synchronized around the object for circular motion to perform X-ray scanning and data acquisition.
  • Step 40 Reconstruct the collected data to obtain a complete object image.
  • FIG. 8 is a schematic diagram of complementing data missing from one side offset scan when imaging the method of the present invention.
  • the radiation source when operated to the ⁇ 1 angle and the h 1 position (4-1), only the local region (4-4) in Fig. 4 can detect the X-ray signal by the detector, Fig. 4
  • the planar area indicated by the middle area (4-5) has no corresponding detector for data acquisition. In order to compensate for the missing signal in this area, it is necessary to use the radiation source to collect the projection data to compensate when running to other locations.
  • the projection data of the ray source shown by the broken line in Fig. 4 at the original position ( ⁇ 1 , h 1 ) is The projection data when the source is operated to the ⁇ 2 position (4-3) is complemented.
  • the dashed line (4-2) in Fig. 4 needs to intersect at the same time with the radiation source at the ⁇ 2 position and the detector plane corresponding to the angular ray source.
  • the projection data of the f(x, h) point of the region to be reconstructed is not collected by the detector.
  • the position of the focus of the ray source at the angle ⁇ 1 is linearly connected with the point f(x, h) of the region to be reconstructed, and the line is connected with the position of the focus of the ray source at the angle of ⁇ 1 and the center of rotation of the imaging system.
  • the angle is denoted by ⁇ .
  • the measured value of the position at the f(x, h) point of the region is intersected with the measured value of the detector.
  • NVIDIA's graphics computing card and CUDA parallel computing technology are used to reconstruct 3D volume data according to the classical filtered back projection reconstruction algorithm.
  • the 3D volume data reconstruction is divided into two parts, image filtering and back projection.
  • image filtering step we use the complete projection data obtained by the method described in the above completion strategy for filtering; in the back projection step, only the filtered data directly measured at each angle is used for back projection, using the completion strategy.
  • the supplemental data area does not perform a back projection operation.
  • the present embodiment provides a method combining detector offset and spiral trajectory scanning, while expanding the imaging field of view in the X-Y plane and the Z-axis direction, and proposes a method of large-field projection imaging using a small-area flat panel detector.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Apparatus For Radiation Diagnosis (AREA)
  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

一种成像方法,包括步骤:首先将物体置于检测区域内,并将探测器(1-8)相对于物体偏置放置,然后使成像系统沿纵向Z轴移动,射线源(1-7)和探测器(1-8)同步绕物体进行圆周运动,进行扫描和采集数据,并对数据进行补全,最后对所采集的数据进行重建,获得完整的物体图像。该成像方法将探测器偏置和螺旋扫描相结合,解决了传统CT成像使用的图像拼接方法所产生的伪影问题,并且减少了探测器使用面积,节约了系统成本。

Description

计算机体层摄影方法和装置
本申请要求2014年12月30日提交中国专利局、申请号为201410857172.0、发明名称为“计算机体层摄影方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种成像方法,尤其涉及一种利用计算机对体层进行摄影的方法,以及实施该方法的装置。
背景技术
自1971年第一台CT原型机发明以来,CT成像技术在现代医学诊断中发挥着重要的作用。大成像视野的CT成像设备更是临床应用的迫切需求。但是,由于CT探测器价格昂贵,探测器的尺寸将显著影响CT设备的制造成本。配置大尺寸探测器会显著提高CT成像设备的制造成本。
为获得更大的CT成像覆盖体积,螺旋扫描是一种理想的增大成像视野的方式。据学术论文数据库检索结果,德国科学家Willi Kalender在1989年研发出第一台螺旋扫描的CT设备,该设备可以有效地提高CT成像设备在Z轴方向(病人扫描过程中,病床的移动方法)的覆盖面积,实现了“长”物体的连续CT扫描。经相关专利检索发现,现有的专利均描述采用螺旋扫描方式来提高CT成像设备在Z轴方向(Z轴是与CT断层图像所在平面相对的坐标轴)的覆盖面积,如:200410026596.9等。但该种扫描方式仅限于提高Z轴方向的成像视野,所需要的探测器尺寸只能够在Z轴方向减小,并不能在保证成像视野大小不变的前提下,显著减小CT成像设备所需要的探测器尺寸。
目前市场上,已经有一些锥形束CT厂商使用扫描装置(主要包括X射线球管和探测器)整体移动的方法来扩大其锥形束CT设备在Z轴方向的覆盖面积。其实现方法首先是固定成像系统在某一个高 度,然后进行CT扫描和图像重建,得到该成像范围内的三维体数据。然后将该成像系统的扫描装置,包括X射线源和探测器等,上升至另一个高度,再进行一次CT成像,得到该高度位置的三维体数据。最后将两次扫描成像的三维体数据进行拼接,得到一个完整的,长Z轴覆盖的三维体数据。该方法的一个明显缺陷是两个三维体数据拼接处留下明显的图像伪影,不利于医生辨别和诊断,而且在两个位置分别进行CT扫描,需要增加额外的扫描装置移动过程,增加了整体的扫描时间,容易导致图像中产生不必要的运动伪影。
发明内容
本发明的一个目的在于提供一种成像方法,利用计算机对体层进行摄影,实现大成像视野的方法。
本发明的另一个目的在于提供一种成像方法,显著提高锥形束CT对探测器的利用效率,实现在保证成像视野和成像质量不变的前提下,降低CT设备的成本。
本发明的再一个目的在于提供一种成像方法,显著减少长Z轴尺寸物体的扫描时间。
本发明的又一个目的在于提供一种成像方法,以显著减少图像拼接处的伪影对辨别和诊断产生的影响。
本发明的又一个目的在于提供一种成像装置,以实施各种成像方法。
本发明提供的一种成像方法,包括如下步骤:
首先,将物体置于检测区域内,并将探测器相对于物体偏置,使得射线源对物体进行扫描的部分数据被探测器获得;
然后,将射线源和射线探测器组成的成像系统沿纵向Z轴移动,同时,射线源和探测器同步环绕物体圆周运动进行扫描,以及数据采集;
最后,对所采集数据进行重建,获得完整的物体图像。
由于本发明采用了射线源和探测器相对物体偏置的检测方法。对于不同规格的物体进行成像时或探测器规格发生变化时,还需要对物体是否被置于成像中心区域进行检验。本发明提供的另一种成像方法,包括如下步骤:
第一步,将物体置于检测区域内,并将探测器相对于物体偏置,使得射线源对物体进行扫描的部分数据被探测器获得;
第二步,按二维投影成像范围需求,重复如下步骤调整成像范围并进行图像拼接,以实现目标成像区域定位;
i)首先,调整探测器的位置,从探测器上获得射线源对物体进行第一次投影的数据,在水平方向上移动探测器或者在竖直方向上移动成像系统(包括射线源和射线探测器)获得射线源对物体进行第二次投影的数据,以弥补第一次投影未获取的数据;将第一次投影的数据和第二次投影的数据拼接组合;如果无法获得需要的投影图像,继续重复步骤i)采集更多不同位置的投影图像直到满足需求;
ii)接着,将射线源-探测器部件相对物体转动90度;
iii)然后按照i)中所述方法调整探测器位置,从探测器上获得射线源对物体进行第三次投影的数据,在水平方向上移动探测器或者在竖直方向上移动成像系统(包括射线源和射线探测器)获得射线源对物体进行第四次投影的数据,以弥补第三次投影未获取的数据;将第三次投影的数据和第四次投影的数据拼接组合,如果无法获得需要的投影图像,继续重复步骤iii)以获得该角度下的满足目标成像区域定位的需求;
第三步,将物体沿纵向Z轴移动,射线源和探测器同步环绕物体圆周运动,进行扫描和数据采集;
最后,对所采集数据进行重建,获得完整的物体图像。
本发明提供的各种成像方法,物体沿纵向Z轴移动的最大速度满足p/t。其中,p为探测器在Z轴方向所具有的高度,t为射线源和探测器旋转360度所需的时间。
本发明提供的各种成像方法,射线源焦点与射线源-探测器部件的中心点的连线与探测器相交。探测器部件包括探测器和滑轨机构,探测器于滑轨中滑动。
本发明提供的各种成像方法,射线源和探测器围绕物体至少旋转360度。
本发明提供的各种成像方法,探测器优先选择平板探测器。
本发明提供的各种成像方法,物体包括生物体,尤其是指人、野生动物和家畜(Livestock)。野生动物为自然状态下未经人工驯化的动物。家畜是为了提供食物来源而人工饲养的动物,如:狗、猫、鼠、仓鼠、猪、兔、奶牛、水牛、公牛、绵羊、山羊、鹅和鸡等。按本发明方法进行成像的“生物体”优先选择哺乳动物,尤其是人,其以站姿或坐姿于检测区域内。
为实现本发明提供的各种成像方法,一种成像装置,包括
架体,用于升降移动;
旋转架,与架体活动连接,包括滑轨机构;
数据传输部件,设于架体与旋转架的连接处,与电源线和数据线分别连接;
射线源,设于旋转架;
探测器,于所述的滑轨机构滑动。
本发明所提供的装置,探测器优先选择平板探测器。
本发明所提供的装置,滑轨机构至少包括一条滑轨,探测器于滑轨上滑动。
本发明所提供的装置,旋转架与架体的活动连接处为旋转中心,旋转架旋转时,射线源和探测器所覆盖的区域始终包含围绕着旋转中心。
本发明技术方案实现的有益效果:
本发明成像方法,使用平板探测器偏置螺旋扫描结构,解决传统CT成像(尤其是锥形束CT成像)使用的图像拼接方法以对长Z轴覆盖的锥形束CT在拼接处图像产生伪影问题。
本发明方法采用探测器偏置和螺旋轨迹扫描相结合的方法,同时实现了扩大X-Y平面内的成像视野和Z轴方向上的成像视野,还实现了使用小面积平板探测器进行大视野投影成像的方法。
本发明成像方法应用于锥形束CT成像中,能使用小尺寸平板探测器(如:18cm×7cm)实现大视野成像,在实现相同成像视野的情况下显著降低了整体CT成像设备的成本。
本发明成像方法适合于生物体,尤其是人以站姿或坐姿于检测区域,医疗的顺应性得到显著提高。
本发明成像装置,在旋转中心处使用滑环结构,容许射线源和探测器进行连续旋转扫描成像,节省整体扫描时间,有效避免潜在的运动伪影产生。
本发明成像装置,采用了滑轨机构,有利于调整平板水平位置进行全视野成像,解决偏置探测器带来的定位问题。
附图说明
图1为实施本发明成像方法的装置一实施例的结构示意图;
图2为图1中数据信号传输部件一实施例的结构示意图;
图3为图1中探测器部件一实施例的结构示意图;
图4为本发明从探测器上获得射线源对物体进行第一次投影数 据进行成像的CT图;
图5为本发明从探测器上获得射线源对物体进行第二次投影数据进行成像的CT图;
图6为将第一次投影的数据和第二次投影的数据拼接组合,获得的完整投影图像;
图7为本发明对物体进行偏置扫描并成像的一实施例结构示意图;
图8为本发明方法成像时对一侧偏置扫描所缺失的数据进行补全的示意图;
图9为本发明方法对物体进行扫描的轨迹示意图;
图10为本发明方法对物体扫描所采集到的数据进行成像产生的投影图像;
图11为本发明方法一实施例的流程图。
具体实施方式
以下结合附图详细描述本发明的技术方案。本发明实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围中。
图1为实施本发明成像方法的装置一实施例的结构示意图,图2为图1中数据信号传输部件一实施例的结构示意图,图3为图1中探测器部件一实施例的结构示意图。如图1、图2和图3所示,将CT扫描系统(如:锥形束CT)设计为成像部分(1-2)和立柱部分(1-1),成像部分(1-2)于立柱部分(1-1)内为滑动结构,可进行竖直方向的升降移动。
使用滑环系统(1-3)与电源线(1-5)和数据线(1-6)分别连接,以代替传统的导线连接,实现探测部件(1-4)和射线源(1-7)环绕物体连续转动,防止导线纠缠。
探测部件(1-4)包括两条平行的导轨(1-9),探测器(1-8)于两条平行的导轨(1-9)间滑动。本实施例中,导轨为滑轨机构,以利于调整平板水平位置进行全视野成像,解决偏置探测器带来的定位问题。探测器(1-8)的面积一般应小于两条平行的导轨(1-9)所成的面积。本实施例中,探测器(1-8)采用长度为18厘米,宽度为7厘米的锥行束CT平板探测器。在CT扫描过程中,成像部分移动,结合探测器和射线源环绕物体转动,实现螺旋轨迹扫描。
图7为本发明对物体进行偏置扫描并成像的一实施例结构示意图。将锥形束CT成像系统的探测器相对于物体偏置放置,并确保射线源焦点(3-1)与射线源-探测器部件的中心点(3-3)的连线与平板探测器(3-2)相交。结合图1和图3,参见图7,将探测器(1-8)固定在X方向的导轨上,并采用电动控制将平板探测器(1-8)沿导轨(1-9)的运动。将探测器(1-8)偏置,即探测器偏置在X方向的一边,其中圆形阴影部分是拟图像重建的目标区域(2-4)。在CT扫描过程中,成像部分(1-2)沿Z轴方向纵向移动,与此同时,射线源(1-7)和探测部件(1-4)环绕物体进行圆周运动,X射线曝光和采集数据,其扫描的轨迹如图9所示。本实施例中,物体为人,其以站姿或坐姿于检测区域。
物体沿纵向Z轴移动的最大速度满足p/t。其中,p为物体所具有的长度,t为射线源和探测器旋转360度所需的时间。比如:探测器在Z轴方向为7厘米,CT扫描一圈的时间为10秒,该系统中的物体在CT扫描过程中位移的速度为0.7厘米/秒。射线源和探测器的旋转速度为36度/秒。
参见图7,与此同时射线源发射X射线(3-1),探测器探测X射线信号(3-2),并沿着被扫描物体进行连续圆周运动,直到系统的成 像结构的移动距离完全覆盖待扫描物体,并且X射线源至少转动360度。射线源和探测器进行圆周运动的旋转中心(1-0)参见图1或图7中心点(3-3)所示。射线源和探测器组成的数据采集系统不需要完整覆盖整个待成像平面,仅需要保证在沿着旋转中心旋转时,射线源和探测器所覆盖的区域一直包含他们围绕的旋转中心。
图9揭示了本发明成像方法涉及的CT扫描一实施例的轨迹,在同一个射线源角度位置,随着物体的沿Z轴纵向移动,物体的不同部分(Z1,Z2,Z3)被扫描,其投影数据由探测器收集而成像,如图10所示。
对于不同规格的物体或使用不同规格的探测器进行成像时,还需要对物体是否被置于成像中心区域进行检验。图4揭示了偏置螺旋CT中所成图像的特点,由于探测器面积较小,一次成像无法覆盖完整的物体的水平方向结构,而仅仅是其第一局部特征(2-1)。将平板探测器沿着导轨滑动,进行再次成像,获得第二局部特征(2-2)(参见图5),第二局部特征可以将弥补未在第一局部特征中示出的部分,由此将两次成像结果拼接成一张完整的头部投影图像(2-3)(参见图6)。以相同的方式采集射线源在90度位置时的投影图像,以判断物体是否被置于成像中心。
本实施例提供的成像方法如图11所示,具体为:
步骤10:将物体置于检测区域内,并将探测器相对于物体偏置,使得射线源对物体进行扫描的部分数据被探测器获得。
按二维投影成像范围需求,调整成像范围并进行图像拼接,以实现目标成像区域定位,具体为:
步骤211:调整探测器的位置,从探测器上获得射线源对物体进行第一次投影的数据;步骤212:在水平方向上移动探测器或者在竖直方向上移动成像系统(包括X射线源和X射线探测器)获得射线源对物体进行第二次投影的数据,以弥补第一次投影未获取的数据; 步骤213将第一次投影的数据和第二次投影的数据拼接组合,并能获得完整的投影图像;如果无法获得需要的投影图像,继续重复步骤221至步骤213采集更多不同位置的投影图像直到满足需求。
接着,步骤221:将射线源-探测器部件相对物体转动90度;
然后,按步骤231:从探测器上获得射线源对物体进行第三次投影的数据;步骤232:在水平方向上移动探测器或者在竖直方向上移动成像系统(包括X射线源和X射线探测器)获得射线源对物体进行第四次投影的数据,以弥补第三次投影未获取的数据;和步骤233:将第三次投影的数据和第四次投影的数据拼接组合,并能获得物体相对射线源转动90度后的完整的投影图像,如果无法获得需要的投影图像,继续重复步骤231至步骤233以获得该角度下的满足目标成像区域定位的需求。
步骤30:将物体沿纵向Z轴移动,射线源和探测器同步环绕物体进行圆周运动,进行X射线扫描和采集数据。
步骤40:对所采集数据进行重建,获得完整的物体图像。
在对图像进行重建中,需要对数据进行不全。
由于本实施例使用小尺寸探测器,在CT扫描中,一个角度的投影图像无法覆盖整个目标成像区域,那么我们使用对侧图像补充进行三维体数据重建的策略。图8为本发明方法成像时对一侧偏置扫描所缺失的数据进行补全的示意图。如图8所示,当射线源运转到α1角度和h1位置(4-1)时,只对图4中局部的区域(4-4)能够被探测器检测到X射线信号,图4中区域(4-5)所指示的平面区域无对应探测器进行数据采集。为了补偿该区域缺失的信号,需要使用射线源运转到其他位置时探测器采集到投影数据进行补偿。以图4中虚线(4-2)所示的数据缺失补偿为例。在射线源在原位置(α1,h1)时,因为探测器横向尺寸不足以覆盖整个成像平面,那么图4中虚线所示的射线源在原位置(α1,h1)时的投影数据由射线源运转到α2位置(4-3)时 的投影数据进行补全。图4中虚线(4-2)需要与α2位置的射线源和该角度射线源对应的探测器平面同时相交。
上述过程可具体表述为,在α1角度下,待重建区域的f(x,h)点的投影数据没有被探测器采集。此时,将α1角度下射线源焦点的位置与待重建区域的f(x,h)点进行直线连接,该直线与α1角度下射线源焦点的位置和成像系统的旋转中心的连线的夹角记为Δα。为了补全在α1角度下待重建点f(x,h)的数据缺失,使用当射线源运动到α22=α1+180°±Δα)位置时,射线源焦点和待重建区域的f(x,h)点的直线连接与探测器相交的位置的测量值进行数据补全。其中,1)当以射线源为视角,其右面视野的探测器缺失,并且其向右转动,则为α2=α1+180°-Δα角度下的投影数据;2)当以射线源为视角,其右面视野的探测器缺失,并且其向左转动,则为α2=α1+180°+Δα角度下的投影数据;3)当以射线源为视角,其左面视野的探测器缺失,并且其向左转动,则为α2=α1+180°-Δα角度下的投影数据;4)当以射线源为视角,其左面视野的探测器缺失,并且其向右转动,则为α2=α1+180°+Δα角度下的投影数据。
利用这些补全数据进行滤波操作,借助NVIDIA的图形计算卡和CUDA并行计算技术,依照经典的滤波反投影重建算法进行三维体数据重建。三维体数据重建分为两部分,图像滤波和反投影。在图像滤波步骤,我们使用通过以上补全策略所述方法获得的完整的投影数据进行滤波;在反投影步骤,仅使用每一角度下直接测量的滤波后的数据进行反投影,使用补全策略补充后的数据区域不进行反投影操作。
虽然目前已有一些锥形束CT企业使用射线源和探测器平移的方法,在两个位置分别进行CT扫描,最后再进行图像拼接以达到长Z轴的覆盖。但该方法需要增加额外的扫描装置移动过程,增加了整体的扫描时间,容易导致图像中有不必要的运动伪 影。
也有一些锥形束CT企业采用探测器偏置的方法扩大成像视野。但该方法仅能扩大X-Y平面内的成像视野,无法扩大Z方向的成像视野。本实施例提供方法结合探测器偏置和螺旋轨迹扫描,同时扩大X-Y平面内和Z轴方向上的成像视野,并且提出了使用小面积平板探测器进行大视野投影成像的方法。

Claims (18)

  1. 一种成像方法,其特征在于包括如下步骤:
    首先,将物体置于检测区域内,并将探测器相对于物体偏置,使得射线源对物体进行扫描的部分数据被探测器获得;
    然后,将物体沿纵向Z轴移动,同时,射线源和探测器同步环绕物体进行圆周运动,进行扫描和采集数据;
    最后,对所采集数据进行重建,获得完整的物体图像。
  2. 根据权利要求1所述的成像方法,其特征在于所述对所采集数据进行重建时,还包括对数据的补全,其方法为:
    在α1角度下,待重建区域的f(x,h)点的投影数据没有被探测器采集;将α1角度下射线源焦点的位置与待重建区域的f(x,h)点进行直线连接,该直线与α1角度下射线源焦点的位置和成像系统的旋转中心的连线的夹角记为Δα;为了补全在α1角度下待重建点f(x,h)的数据缺失,使用当射线源运动到α2位置时,射线源焦点和待重建区域的f(x,h)点的直线连接与探测器相交的位置的测量值进行数据补全;
    所述α2=α1+180°±Δα;
    所述成像系统包括射线源和射线探测器。
  3. 根据权利要求1所述的成像方法,其特征在于所述物体沿纵向Z轴移动的最大速度满足p/t;其中,p为所述探测器在Z轴方向所具有的高度,t为所述射线源和所述探测器旋转360度所需的时间。
  4. 根据权利要求1所述的成像方法,其特征在于所述的射线源和所述的探测器围绕所述的物体至少旋转360度。
  5. 根据权利要求1所述的成像方法,其特征在于所述射线源的焦点与射线源-探测器部件的中心点的连线与探测器相交,所述探测器部件包含所述探测器。
  6. 根据权利要求1所述的成像方法,其特征在于所述物体为生物体,其以站姿置于所述的检测区域内。
  7. 根据权利要求1所述的成像方法,其特征在于所述物体 为人,其以站姿或坐姿置于所述的检测区域内。
  8. 一种成像方法,其特征在于包括如下步骤:
    第一步,将物体置于检测区域内,并将探测器相对于物体偏置,使得射线源对物体进行扫描的部分数据被探测器获得;
    第二步,按二维投影成像范围需求,重复如下步骤调整成像范围并进行图像拼接,以实现目标成像区域定位;
    i)首先,调整探测器的位置,从探测器上获得射线源对物体进行第一次投影的数据,在水平方向上移动探测器或者在竖直方向上移动成像系统获得射线源对物体进行第二次投影的数据,以弥补第一次投影未获取的数据;将第一次投影的数据和第二次投影的数据拼接组合;如果无法获得需要的投影图像,继续重复步骤i)采集更多不同位置的投影图像直到满足需求;
    ii)接着,将射线源-探测器部件相对物体转动90度;
    iii)然后按照i)中所述方法调整探测器位置,从探测器上获得射线源对物体进行第三次投影的数据,在水平方向上移动探测器或者在竖直方向上移动成像系统获得射线源对物体进行第四次投影的数据,以弥补第三次投影未获取的数据;将第三次投影的数据和第四次投影的数据拼接组合,如果无法获得需要的投影图像,继续重复步骤iii)以获得该角度下的满足目标成像区域定位的需求;
    第三步,将物体沿纵向Z轴移动,射线源和探测器同步环绕物体圆周运动,进行扫描和数据采集;
    最后,对所采集数据进行重建,获得完整的物体图像。
  9. 根据权利要求8所述的成像方法,其特征在于所述对所采集数据进行重建时,还包括对数据的补全,其方法为:
    在α1角度下,待重建区域的f(x,h)点的投影数据没有被探测器采集;将α1角度下射线源焦点的位置与待重建区域的f(x,h)点进行直线连接,该直线与α1角度下射线源焦点的位置和成像系统的旋转中心的连线的夹角记为Δα;为了补全在α1角度下待重建点f(x,h)的数据缺失,使用当射线源运动到α2位置时,射线源焦点和待重建区域的f(x,h)点的直线连接与探测器相交的位置的测 量值进行数据补全;
    所述α2=α1+180°±Δα;
    所述成像系统包括射线源和射线探测器。
  10. 根据权利要求8所述的成像方法,其特征在于所述物体沿纵向Z轴移动的最大速度满足p/t;其中,p为所述探测器在Z轴方向所具有的高度,t为所述射线源和所述探测器旋转360度所需的时间。
  11. 根据权利要求8所述的成像方法,其特征在于所述的射线源和所述的探测器围绕所述的物体至少旋转360度。
  12. 根据权利要求8所述的成像方法,其特征在于所述射线源的焦点与射线源-探测器部件的中心点的连线与探测器相交,所述探测器部件包含所述探测器。
  13. 根据权利要求8所述的成像方法,其特征在于所述物体为生物体,其以站姿置于所述的检测区域内。
  14. 根据权利要求8所述的成像方法,其特征在于所述物体为人,其以站姿或坐姿置于所述的检测区域内。
  15. 根据权利要求1-14之一所述的成像方法,其特征在于所述探测器为平板探测器。
  16. 一种用于权利要求1-14之一所述成像方法的装置,其特征在于包括
    架体,用于升降移动;
    旋转架,与所述的架体活动连接,包括滑轨机构;
    数据传输部件,设于所述的架体与所述旋转架的连接处,与电源线和数据线分别连接;
    射线源,设于所述的旋转架;
    探测器,于所述的滑轨机构滑动。
  17. 根据权利要求16所述的成像装置,其特征在于所述的滑轨机构至少包括一条滑轨。
  18. 根据权利要求16所述的成像装置,其特征在于所述的 旋转架与所述架体的活动连接处为旋转中心,所述的旋转架旋转时,所述的射线源和所述的探测器所覆盖的区域始终包含围绕着所述的旋转中心。
PCT/CN2015/095734 2014-12-30 2015-11-27 计算机体层摄影方法和装置 WO2016107349A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US15/538,799 US20170367664A1 (en) 2014-12-30 2015-11-27 Computed-tomography method and device
BR112017013314A BR112017013314A2 (pt) 2014-12-30 2015-11-27 método e dispositivo de tomografia computadorizada
EP15875028.1A EP3241497A4 (en) 2014-12-30 2015-11-27 Computed-tomography method and device
JP2017552204A JP2018501062A (ja) 2014-12-30 2015-11-27 コンピュータ断層撮影方法及び装置
KR1020177020291A KR20170098283A (ko) 2014-12-30 2015-11-27 컴퓨터 단층 촬영 방법 및 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410857172.0A CN104545976B (zh) 2014-12-30 2014-12-30 计算机体层摄影方法和装置
CN201410857172.0 2014-12-30

Publications (1)

Publication Number Publication Date
WO2016107349A1 true WO2016107349A1 (zh) 2016-07-07

Family

ID=53063816

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095734 WO2016107349A1 (zh) 2014-12-30 2015-11-27 计算机体层摄影方法和装置

Country Status (7)

Country Link
US (1) US20170367664A1 (zh)
EP (1) EP3241497A4 (zh)
JP (1) JP2018501062A (zh)
KR (1) KR20170098283A (zh)
CN (1) CN104545976B (zh)
BR (1) BR112017013314A2 (zh)
WO (1) WO2016107349A1 (zh)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104545976B (zh) * 2014-12-30 2017-04-19 上海优益基医疗器械有限公司 计算机体层摄影方法和装置
CN106501288A (zh) * 2016-12-21 2017-03-15 北京朗视仪器有限公司 一种装有多探测器的锥形束ct系统
WO2019000601A1 (zh) * 2017-06-27 2019-01-03 西安立人医学科技有限公司 锥形束ct多方向扫描仪
CN108652656B (zh) * 2018-05-21 2024-04-12 北京达影科技有限公司 复合探测器、体层成像系统及方法
CN108764151B (zh) * 2018-05-29 2023-08-04 深圳市金流明光电技术有限公司 一种坐姿检测装置及方法
CN108898550B (zh) * 2018-05-30 2022-05-17 中国人民解放军军事科学院国防科技创新研究院 基于空间三角面片拟合的图像拼接方法
KR102203644B1 (ko) * 2018-09-03 2021-01-15 오스템임플란트 주식회사 엑스선 영상 생성 방법, 엑스선 영상 생성 장치 및 컴퓨터 판독 가능한 기록 매체
CN112703427A (zh) * 2018-09-21 2021-04-23 深圳帧观德芯科技有限公司 一种成像系统
CN109833055B (zh) * 2019-01-07 2023-07-04 东软医疗系统股份有限公司 图像重建方法和装置
CN109620169B (zh) * 2019-01-31 2021-12-14 温州大学 一种智能制造技术的综合实践教学系统
CN111563940B (zh) * 2020-07-15 2020-10-30 南京安科医疗科技有限公司 一种步进轴扫ct重建中拼接伪影的去除方法及电子介质
CN111728632B (zh) * 2020-07-31 2023-08-15 上海联影医疗科技股份有限公司 射线探测装置、射线探测方法和ct图像重建方法
CN112085839B (zh) * 2020-09-16 2023-05-16 华中科技大学鄂州工业技术研究院 一种灵活、多功能的三维重建方法及装置
CN113533392B (zh) * 2021-07-12 2022-08-26 重庆大学 一种组合扫描cl成像方法
CN115963124B (zh) * 2021-10-08 2024-01-26 同方威视技术股份有限公司 Ct成像系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1271261A (zh) * 1997-08-01 2000-10-25 模拟技术公司 非对称检测器半扫描ct重建
CN1300201A (zh) * 1999-04-15 2001-06-20 通用电气公司 尺寸减小的半视场ct检测器
CN101505658A (zh) * 2006-08-17 2009-08-12 皇家飞利浦电子股份有限公司 计算机断层摄影图像获取
US20110176717A1 (en) * 2008-10-03 2011-07-21 Palodex Group Oy Method and device for x-ray computer tomography
CN102177430A (zh) * 2008-10-10 2011-09-07 皇家飞利浦电子股份有限公司 使用经移位的几何结构改进ct图像采集的方法和设备
US20110255655A1 (en) * 2010-04-14 2011-10-20 Varian Medical Systems, Inc. Methods of Scatter Correction of X-Ray projection data 1
CN102448376A (zh) * 2009-05-28 2012-05-09 皇家飞利浦电子股份有限公司 多探测器阵列成像系统
CN104545976A (zh) * 2014-12-30 2015-04-29 上海优益基医疗器械有限公司 计算机体层摄影方法和装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5828718A (en) * 1996-11-27 1998-10-27 Analogic Corporation Method and apparatus for helical computed tomography scanning with asymmetric detector system
WO1998023208A2 (en) * 1996-11-27 1998-06-04 Philips Electronics N.V. Computer tomography device for volume scanning
JP3827555B2 (ja) * 2001-10-29 2006-09-27 ジーイー・メディカル・システムズ・グローバル・テクノロジー・カンパニー・エルエルシー ガントリ装置、x線ctシステム、操作コンソール及びその制御方法、コンピュータプログラム及びコンピュータ可読記憶媒体
JP2005006772A (ja) * 2003-06-17 2005-01-13 Ge Medical Systems Global Technology Co Llc X線診断装置及びct画像の生成方法
US7359478B2 (en) * 2004-11-18 2008-04-15 Toshiba Medical Systems Corporation Method for restoring truncated helical cone-beam computed tomography data
JP2006314774A (ja) * 2005-04-11 2006-11-24 Morita Mfg Co Ltd スカウトビュー機能を備えたx線撮影装置
JP4662047B2 (ja) * 2005-10-24 2011-03-30 株式会社島津製作所 コンピュータ断層撮影方法
CN102076261B (zh) * 2008-10-30 2013-06-05 株式会社岛津制作所 放射线摄影装置
CN101756709A (zh) * 2008-12-26 2010-06-30 Ge医疗系统环球技术有限公司 X射线ct设备
JP2012515592A (ja) * 2009-01-21 2012-07-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 大きい視野のイメージング並びに動きのアーチファクトの検出及び補償ための方法及び装置
EP2411965B1 (en) * 2009-03-26 2016-01-13 Koninklijke Philips N.V. Method and apparatus for computed tomography image reconstruction
RU2550542C2 (ru) * 2009-08-06 2015-05-10 Конинклейке Филипс Электроникс Н.В. Способ и устройство для формирования компьютерных томографических изображений с использованием геометрий со смещенным детектором
EP2506772B1 (en) * 2009-12-04 2014-04-30 Analogic Corporation Method and system for high resolution nutated slice reconstruction using quarter detector offset
US9087404B2 (en) * 2010-05-27 2015-07-21 Koninklijke Philips N.V. Reconstruction for cone-beam computed tomography imaging with off-center flat panel detector
CN103714578A (zh) * 2014-01-24 2014-04-09 中国人民解放军信息工程大学 针对半覆盖螺旋锥束ct的单层重排滤波反投影重建方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1271261A (zh) * 1997-08-01 2000-10-25 模拟技术公司 非对称检测器半扫描ct重建
CN1300201A (zh) * 1999-04-15 2001-06-20 通用电气公司 尺寸减小的半视场ct检测器
CN101505658A (zh) * 2006-08-17 2009-08-12 皇家飞利浦电子股份有限公司 计算机断层摄影图像获取
US20110176717A1 (en) * 2008-10-03 2011-07-21 Palodex Group Oy Method and device for x-ray computer tomography
CN102177430A (zh) * 2008-10-10 2011-09-07 皇家飞利浦电子股份有限公司 使用经移位的几何结构改进ct图像采集的方法和设备
CN102448376A (zh) * 2009-05-28 2012-05-09 皇家飞利浦电子股份有限公司 多探测器阵列成像系统
US20110255655A1 (en) * 2010-04-14 2011-10-20 Varian Medical Systems, Inc. Methods of Scatter Correction of X-Ray projection data 1
CN104545976A (zh) * 2014-12-30 2015-04-29 上海优益基医疗器械有限公司 计算机体层摄影方法和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3241497A4 *

Also Published As

Publication number Publication date
BR112017013314A2 (pt) 2018-04-10
EP3241497A4 (en) 2018-12-12
US20170367664A1 (en) 2017-12-28
JP2018501062A (ja) 2018-01-18
CN104545976B (zh) 2017-04-19
KR20170098283A (ko) 2017-08-29
EP3241497A1 (en) 2017-11-08
CN104545976A (zh) 2015-04-29

Similar Documents

Publication Publication Date Title
WO2016107349A1 (zh) 计算机体层摄影方法和装置
CN104545968B (zh) 借助轮廓数据来重建图像数据
US9492125B2 (en) Patient positioning and imaging system
US9629590B2 (en) Radiation imaging apparatus and imaging method using radiation
CN103476340B (zh) 计算机断层摄影和断层合成系统
JP2022110067A (ja) 患者走査設定のための方法およびシステム
RU2526877C2 (ru) Способ калибровки на основе алгоритма нахождения центра вращения для коррекции кольцевых артефактов в неидеальных изоцентрических трехмерных вращательных рентгеновских сканирующих системах с использованием калибровочного фантома
US9579526B2 (en) Radiation therapy device with freely customizable source and imager motion trajectory
US7561659B2 (en) Method for reconstructing a local high resolution X-ray CT image and apparatus for reconstructing a local high resolution X-ray CT image
US20060291612A1 (en) X-ray CT method and X-ray CT apparatus
CN102164636B (zh) 图像引导多源放射疗法
US8005184B2 (en) Ultra low radiation dose X-ray CT scanner
KR101103133B1 (ko) 방사선 촬영 장치
CN105536153B (zh) 放射治疗装置
CN106821410B (zh) 采用高光谱ct功能成像的物质识别方法和系统
CN105615911A (zh) 用于固定的数字化胸部断层融合成像的系统及相关方法
US10124193B2 (en) X-ray therapy system and irradiation field determining method
CN1925793A (zh) 用于在患者体内引导医疗器械的系统
AU2008243204A1 (en) Apparatus and method for cone beam volume computed tomography breast imaging
JP2007089674A (ja) 外観形状計測装置およびx線ct装置
WO2005046479A3 (en) Computed tomography with z-axis scanning
CN103735252A (zh) 一种光学多模态成像系统与方法
CN112212149A (zh) 一种dr设备
WO2022198729A1 (zh) 一种x射线层析成像系统
CN209661670U (zh) 一种ct成像系统及用于ct成像的多页限束器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15875028

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15538799

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2017552204

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015875028

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177020291

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112017013314

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112017013314

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20170620