WO2016103906A1 - 蓄電デバイス - Google Patents

蓄電デバイス Download PDF

Info

Publication number
WO2016103906A1
WO2016103906A1 PCT/JP2015/080496 JP2015080496W WO2016103906A1 WO 2016103906 A1 WO2016103906 A1 WO 2016103906A1 JP 2015080496 W JP2015080496 W JP 2015080496W WO 2016103906 A1 WO2016103906 A1 WO 2016103906A1
Authority
WO
WIPO (PCT)
Prior art keywords
storage device
ionic liquid
electrolyte
electricity storage
mass
Prior art date
Application number
PCT/JP2015/080496
Other languages
English (en)
French (fr)
Inventor
湯山 佳菜子
増田 現
Original Assignee
日清紡ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日清紡ホールディングス株式会社 filed Critical 日清紡ホールディングス株式会社
Priority to KR1020177017135A priority Critical patent/KR20170100522A/ko
Priority to US15/535,193 priority patent/US20170345584A1/en
Priority to CN201580070965.0A priority patent/CN107112146A/zh
Priority to EP15872475.7A priority patent/EP3240000A4/en
Publication of WO2016103906A1 publication Critical patent/WO2016103906A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M12/00Hybrid cells; Manufacture thereof
    • H01M12/08Hybrid cells; Manufacture thereof composed of a half-cell of a fuel-cell type and a half-cell of the secondary-cell type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0045Room temperature molten salts comprising at least one organic ion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the present invention relates to an electricity storage device, and more particularly to an electricity storage device containing a specific ionic liquid.
  • an ionic liquid As an electrolyte, it can be used as an electrolytic solution without using an organic solvent. Therefore, in recent years, as an electrolyte of an electric double layer capacitor, triethylmethylammonium ions (TEMA) and tetraethylammonium ions, which are solid salts, are used. Attempts have been made to use ionic liquids instead of electrolytes having (TEA) or the like as a cation.
  • TSA triethylmethylammonium ions
  • TEA tetraethylammonium ions
  • EMIBF4 1-ethyl-3-methylimidazolium tetrafluoroborate
  • a pyrrolidinium salt which is an alicyclic ammonium salt
  • Patent Documents 1 and 2 The technique used as is known (see Patent Documents 1 and 2).
  • EMIBF 4 used as a general ionic liquid has a relatively low viscosity, so it does not pose a major problem in terms of an increase in internal resistance, but it has a low withstand voltage, so an electricity storage device that requires a high voltage Not applicable to
  • the electricity storage device using the ionic liquid has a problem that the viscosity of the ionic liquid is significantly increased or solidified in a low temperature environment, and the performance of the electricity storage device is deteriorated.
  • the present invention has been made in view of such circumstances, and an object thereof is to provide an electricity storage device that can be used in a low temperature environment while containing an ionic liquid.
  • an ionic liquid composed of a predetermined pyrrolidinium cation and a bis (fluorosulfonyl) amide anion has excellent voltage resistance.
  • the liquid resistance is low due to its low viscosity and high electrical conductivity, so that it is suitable as a power storage device component such as an electrolyte, and power storage such as an electric double layer capacitor obtained using this ionic liquid.
  • the present inventors have found that the device can be charged / discharged even in a low temperature environment and completed the present invention.
  • An electricity storage device comprising an ionic liquid represented by formula (1), (In the formula, R 1 and R 2 each independently represent an alkyl group having 1 to 5 carbon atoms, and n represents 1 or 2.) 2.
  • a power storage device comprising a pair of polarizable electrodes, a separator interposed between the electrodes, and an electrolyte, wherein the electrolyte is an electric double layer capacitor containing an ionic liquid represented by the formula (1) , 3.
  • the electricity storage device, wherein the electrolyte does not contain an organic solvent, 4). 2 or 3 electricity storage devices, wherein the electrolyte is composed only of the ionic liquid represented by the formula (1), 5.
  • the electricity storage device according to any one of 1 to 4, wherein R 1 and R 2 each independently represents a methyl group or an ethyl group; 6).
  • the electric storage device is provided wherein R 1 and R 2 are both methyl groups.
  • the ionic liquid used in the present invention has low viscosity and high electrical conductivity compared to the tetrafluoroborate salt of the same cation, so the liquid resistance is low, and the internal resistance is reduced when used as an electrolyte for an electricity storage device. To do.
  • the ionic liquid EMIBF4 that is generally used, since it has excellent voltage resistance, there is an advantage that the operating voltage range of the electricity storage device is widened.
  • an electricity storage device having this ionic liquid as an electrolytic solution can be charged / discharged even in a low temperature environment of about ⁇ 20 ° C., and has only a small decrease in capacity during charging / discharging at low temperatures, so that only the ionic liquid is used as the electrolytic solution.
  • the device performance at low temperature is improved and the device can be used in a wide temperature range.
  • FIG. 2 is a 1 H-NMR spectrum diagram of MEMP • FSA obtained in Synthesis Example 1.
  • FIG. 3 is a 1 H-NMR spectrum of MMMP ⁇ FSA obtained in Synthesis Example 2.
  • FIG. It is a figure which shows the electric potential window measurement result of each ionic liquid obtained by the synthesis examples 1 and 2.
  • the electricity storage device includes an ionic liquid represented by the formula (1).
  • the electricity storage device in the present invention is not particularly limited, and includes various electricity storage devices such as an electric double layer capacitor, a lithium ion capacitor, a lithium secondary battery, a lithium ion secondary battery, a lithium air battery, and a proton polymer battery. Among them, an electric double layer capacitor is preferable.
  • R 1 and R 2 each independently represent an alkyl group having 1 to 5 carbon atoms, and n represents 1 or 2.
  • the alkyl group having 1 to 5 carbon atoms may be linear, branched or cyclic.
  • methyl, ethyl, n-propyl, i-propyl, c-propyl, n-butyl, i-butyl, s- Examples include butyl, t-butyl, c-butyl, n-pentyl, c-pentyl group, etc., but a linear alkyl group is preferable, among which a methyl group and an ethyl group are more preferable, and a methyl group is still more preferable.
  • the ionic liquid used in the present invention can be produced by the method described in Patent Document 2 above, for example, N-alkoxyalkyl-N-alkylpyrrolidinium halides produced according to a conventional method (for example, chloride, bromide, etc.) ) And a bis (fluorosulfonyl) amide salt of an alkali metal (for example, sodium, potassium, etc.) can be obtained by an anion exchange reaction in an aqueous solvent.
  • a conventional method for example, chloride, bromide, etc.
  • a bis (fluorosulfonyl) amide salt of an alkali metal for example, sodium, potassium, etc.
  • Examples of the cation structure of the ionic liquid that can be suitably used in the present invention include the following, but are not limited thereto.
  • the cationic structure (A) below is preferable from the viewpoint of more excellent thermal stability, and the cationic structure (B) below is preferable from the viewpoint of lower viscosity.
  • the above-described ionic liquid is used as a material of a device constituent member, and the application location is arbitrary, but it is particularly preferable to use it as a constituent material of an electrolyte or an electrode.
  • the ionic liquid When used as an electrolyte material, the ionic liquid may be used alone, or a non-aqueous organic solvent or an electrolyte salt conventionally used in general may be added to the ionic liquid, but it is preferable to use the ionic liquid alone.
  • the ionic liquid used in the present invention has a relatively low viscosity per se and has a good ability to dissolve other electrolyte salts. Therefore, even when a non-aqueous solvent or an electrolyte salt is used, a non-aqueous organic solvent is used.
  • the amount is preferably 10% by mass or less in the electrolytic solution, more preferably 5% by mass or less, and most preferably 0% by mass (that is, the liquid component is only an ionic liquid).
  • non-aqueous organic solvent examples include dibutyl ether, 1,2-dimethoxyethane, 1,2-ethoxymethoxyethane, methyl diglyme, methyl triglyme, methyl tetraglyme, ethyl glyme, ethyl diglyme, butyl diglyme, Chain ethers such as ethyl cellosolve, ethyl carbitol, butyl cellosolve, butyl carbitol; heterocycles such as tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, 4,4-dimethyl-1,3-dioxane Formula ethers; lactones such as ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, 3-methyl-1,3-oxazolidine-2-one, 3-ethyl-1,3-oxazolidine-2-one; N-methylform
  • the electrolyte salt is appropriately selected depending on the type of the electricity storage device. Specific examples thereof include lithium tetrafluoroborate, lithium hexafluorophosphate, lithium bis (trifluoromethanesulfonyl) amide, lithium bis ( Fluorosulfonyl) amide, lithium perchlorate, lithium acetate, lithium trifluoroacetate, lithium benzoate, lithium p-toluenesulfonate, lithium nitrate, lithium bromide, lithium iodide, etc .; tetramethylammonium hexafluorophosphate , Tetraethylammonium hexafluorophosphate, tetrapropylammonium hexafluorophosphate, methyltriethylammonium hexafluorophosphate, tetraethylammonium tetra Ruoroboreto, and quaternary ammonium salts such as tetra
  • the concentration thereof is not particularly limited and is usually about 0.5 to 3 mol / L, preferably about 0.8 to 2 mol / L, preferably 0.9 to 1.5 mol / L. About L is more preferable.
  • the carbonaceous material is not particularly limited, and various conventionally known carbonaceous materials can be used.
  • activated carbon, graphite, graphene, carbon nanotube, carbon nanofiber, carbon nanohorn, etc. can be used.
  • carbon nanotubes are preferable from the viewpoint of conductivity.
  • a single-walled carbon nanotube in which one graphene sheet is wound in a cylindrical shape, a double-walled carbon nanotube in which two graphene sheets are wound in a concentric shape, and a plurality of graphene sheets are concentrically wound in a carbon nanotube Multi-walled carbon nanotubes are known, but any of them may be used in the present invention, or two or more of them may be used in combination.
  • the content of the carbonaceous material in the gel composition is not particularly limited, but is usually about 0.1 to 80% by mass, preferably 1 to 40% by mass, and 3 to 15% by mass. More preferred.
  • the gel composition can be obtained by mixing a carbonaceous material and an ionic liquid and kneading them. During mixing, an ionic liquid may be added to the carbonaceous material or vice versa.
  • the kneading method is not particularly limited, and examples thereof include a method using a mortar and a method using a wet pulverizer such as a ball mill, a roller mill, a bead mill, a jet mill, and a vibration mill.
  • the said gel-like composition can be prepared using only an ionic liquid and a carbonaceous material, you may use a well-known binder polymer and electrically conductive material as needed.
  • the binder polymer can be appropriately selected from known materials and used.
  • PVdF polyvinylidene fluoride
  • PVD polyvinylidene fluoride
  • PVD polyvinyl pyrrolidone
  • polytetrafluoroethylene polytetrafluoroethylene-hexafluoropropylene copolymer
  • Vinylidene fluoride-hexafluoropropylene copolymer [P (VDF-HFP)]
  • vinylidene fluoride-trichloroethylene copolymer [P (VDF-CTFE)]
  • polyvinyl alcohol ethylene-propylene-diene ternary Copolymers
  • styrene-butadiene rubber carboxymethyl cellulose (CMC) and the like can be mentioned.
  • CMC carboxymethyl cellulose
  • Examples of conductive materials added as necessary include carbon fibers such as carbon black, ketjen black, acetylene black, carbon whiskers, carbon fibers, natural graphite, artificial graphite, titanium oxide, ruthenium oxide, aluminum, and nickel. These may be used alone or in combination of two or more.
  • the amount of the conductive material added can be, for example, 0.1 to 20 parts by mass with respect to 100 parts by mass of the carbonaceous material, and preferably 0.5 to 10 parts by mass.
  • An electrode can be produced by applying and laminating a gel-like composition prepared by kneading the ionic liquid, carbonaceous material, and binder polymer or conductive material used as necessary onto a current collector. It can.
  • the positive electrode current collector include an aluminum foil and an aluminum alloy foil.
  • Specific examples of the negative electrode current collector include copper foil, copper alloy foil, nickel foil, nickel alloy foil, stainless steel foil, aluminum foil, and aluminum alloy foil.
  • the electricity storage device is not particularly limited as long as it includes an electrolyte and / or an electrode using the ionic liquid described above.
  • a pair of polarizable electrodes and a separator interposed between these electrodes And / or an electrolyte of an electric double layer capacitor configured to include an electrolyte, and / or an electrode containing an electrolytic solution or gel-like composition containing the above ionic liquid as at least one, preferably both polarizable electrodes are provided.
  • device constituent materials other than the electrolyte and electrode using the ionic liquid may be appropriately selected from conventionally known materials and are not particularly limited, but examples thereof are as follows. It is.
  • Examples of a general polarizable electrode include those obtained by applying a composition containing a carbonaceous material such as various activated carbons, a binder polymer, and, if necessary, a conductive material on a current collector. Examples of the positive electrode current collector and the negative electrode current collector constituting the binder polymer, the conductive material, and the polarizable electrode include the same ones as described above.
  • a solvent may be used when preparing the composition. This solvent is selected according to the kind of the binder polymer, but generally N-methyl-2-pyrrolidone or water is used.
  • the separator include polyolefin separators such as polyethylene and polypropylene, polyester separators such as polyethylene terephthalate, polyamide separators, polyimide separators, cellulose separators, and glass fiber separators.
  • polyolefin separators such as polyethylene and polypropylene
  • polyester separators such as polyethylene terephthalate
  • polyamide separators such as polyethylene terephthalate
  • polyamide separators such as polyamide separators
  • polyimide separators such as polyimide separators
  • cellulose separators such as polyimide separators
  • glass fiber separators such as a general electrolyte
  • electrolyte for example, a non-aqueous electrolyte solution in which the above-described quaternary ammonium salt is dissolved in the above-described non-aqueous organic solvent can be mentioned.
  • an electric double layer capacitor structure having a separator interposed between a pair of electrodes is stacked, folded, or wound, and this is a battery can or a laminate pack.
  • the battery pack can be obtained by being sealed, while the laminate pack can be heat-sealed (heat-welded).
  • N-methoxymethyl-N-methylpyrrolidinium chloride (8.58 parts by mass) was dissolved in 10 parts by mass of ion-exchanged water. This solution was added with stirring to a solution prepared by dissolving 12.5 parts by mass of potassium bis (fluorosulfonyl) amide (manufactured by Kanto Chemical Co., Ltd.) in 5 parts by mass of ion-exchanged water. After stirring overnight at room temperature, the reaction solution separated into two layers was separated, and the lower organic layer was washed four times with ion-exchanged water and then dried using a vacuum pump.
  • the potential window was measured for each ionic liquid obtained in Synthesis Examples 1 and 2. The result is shown in FIG. As shown in FIG. 3, it can be seen that any ionic liquid has a wide potential window.
  • Example 1-1 Production of positive electrode structure Activated carbon Maxsorb MSP20 (manufactured by Kansai Thermochemical Co., Ltd.), conductive agent (HS-100, manufactured by Denki Kagaku Kogyo Co., Ltd.), and PVDF (manufactured by Aldrich) as a binder )
  • NMP coating solvent N-methyl-2-pyrrolidone
  • Example 1-2 An electric double layer capacitor was produced in the same manner as in Example 1-1 except that MMMP ⁇ FSA obtained in Synthesis Example 2 was used as the electrolyte instead of MEMP ⁇ FSA.
  • Example 1-1 A method similar to Example 1-1 was used except that 1-ethyl-3-methylimidazolium tetrafluoroborate (EMI • BF4, manufactured by Kanto Chemical Co., Inc.) was used as the electrolyte instead of MEMP • FSA. An electric double layer capacitor was produced.
  • EMI • BF4 1-ethyl-3-methylimidazolium tetrafluoroborate
  • Example 1-1 and Example 1-1 were used except that 2-methoxyethyl-N-methylpyrrolidinium tetrafluoroborate (MEMP ⁇ BF4) synthesized by the method described in Patent Document 1 was used instead of MEMP ⁇ FSA as the electrolytic solution.
  • MEMP ⁇ FSA 2-methoxyethyl-N-methylpyrrolidinium tetrafluoroborate
  • the initial characteristics of the electric double layer capacitor produced above were measured by the following method. The results are shown in Table 2. First, a constant current charge is performed to 3.0V at a current value of one hour rate, a constant voltage charge is performed for 30 minutes, and then a constant current discharge is performed from 3.0V to 0V at a current value of one hour rate. The electrostatic capacity was calculated from the total discharge energy amount. The internal resistance was measured with a resistance meter (RM3548, manufactured by Hioki Electric Co., Ltd.). Each measurement was performed after being left in a thermostatic bath at 25 ° C. for 2 hours or more.
  • the electric double layer capacitor of the present invention is a device having a wide applicable temperature range that can be charged and discharged at ⁇ 20 to 60 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Materials Engineering (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

 式(1)で示されるイオン液体を、例えば、電解質や電極に含んで構成される蓄電デバイスは、イオン液体を含んでいながら、低温環境下で使用可能であるという利点を有する。 (式中、R1およびR2は、互いに独立して炭素数1~5のアルキル基を表し、nは、1または2を表す。)

Description

蓄電デバイス
 本発明は、蓄電デバイスに関し、さらに詳述すると、特定のイオン液体を含む蓄電デバイスに関する。
 イオン液体を電解質とすることで、有機溶媒を使用することなく電解液として用いることができるため、近年、電気二重層キャパシタの電解質として、固体塩であるトリエチルメチルアンモニウムイオン(TEMA)、テトラエチルアンモニウムイオン(TEA)等をカチオンとする電解質に代わり、イオン液体を用いる試みがなされている。
 中でも、アニオンがテトラフルオロボレート塩である1-エチル-3-メチルイミダゾリウムテトラフルオロボレート(EMIBF4)が最も一般的であるが、それ以外にも、脂環式アンモニウム塩であるピロリジニウム塩を電解液として用いる技術が知られている(特許文献1,2参照)。
 ところで、電気二重層キャパシタをはじめとしたキャパシタの容量向上には、定格電圧を上げることが肝要であるが、電解質塩を有機溶媒で希釈した電解液は、電圧の上昇に伴い有機溶媒の分解が起こるという問題がある。
 また、高温環境下で使用した際に、有機溶媒が揮発することにより、ガス発生や電解液の枯渇による内部短絡が起こるという問題がある。
 これらの問題点は、イオン液体のみを電解液として用いることで解決可能ではあるものの、イオン液体のみを電解液として用いた場合、粘性が高いため蓄電デバイスの内部抵抗が上昇するという別の問題が生じる。この点、一般的なイオン液体として使用されているEMIBF4は比較的粘性が低いため、内部抵抗の上昇という点では大きな問題とはならないものの、耐電圧が低いため、高電圧化が必要な蓄電デバイスには適用できない。
 しかも、イオン液体を用いた蓄電デバイスは、低温環境下においてイオン液体の粘性が著しく上昇する、固体化するなどの現象が起こり、蓄電デバイスの性能が低下するという問題もある。
特許第5083577号公報 中国特許出願公開第101747243号明細書
 本発明は、このような事情に鑑みてなされたものであり、イオン液体を含んでいながら、低温環境下で使用可能な蓄電デバイスを提供することを目的とする。
 本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、所定のピロリジニウムカチオンと、ビス(フルオロスルホニル)アミドアニオンとから構成されるイオン液体が、耐電圧性に優れるとともに、粘性が低く電気伝導率が高いため液抵抗が低いことから、電解液等の蓄電デバイス構成要素として好適であることを見出すとともに、このイオン液体を用いて得られた電気二重層キャパシタ等の蓄電デバイスが、低温環境下においても充放電可能であることを見出し、本発明を完成した。
 すなわち、本発明は、
1. 式(1)で示されるイオン液体を含んで構成されることを特徴とする蓄電デバイス、
Figure JPOXMLDOC01-appb-C000002
(式中、R1およびR2は、互いに独立して炭素数1~5のアルキル基を表し、nは、1または2を表す。)
2. 一対の分極性電極と、これら電極間に介在するセパレータと、電解質とを備えて構成され、前記電解質が、前記式(1)で示されるイオン液体を含む電気二重層キャパシタである1の蓄電デバイス、
3. 前記電解質が、有機溶媒を含まない2の蓄電デバイス、
4. 前記電解質が、前記式(1)で示されるイオン液体のみからなる2または3の蓄電デバイス、
5. 前記R1およびR2が、互いに独立してメチル基またはエチル基を表す1~4のいずれかの蓄電デバイス、
6. 前記R1およびR2が、共にメチル基である5の蓄電デバイス
を提供する。
 本発明で用いられるイオン液体は、同一カチオンのテトラフルオロボレート塩と比較して粘性が低く電気伝導率が高いため、液抵抗が低くなり、蓄電デバイスの電解液として用いた際に内部抵抗が低下する。
 また、一般的に用いられるイオン液体EMIBF4と比較し、耐電圧性に優れるため、蓄電デバイスの使用電圧範囲が広がるという利点がある。
 さらに、このイオン液体を電解液として有する蓄電デバイスは、-20℃程度という低温環境下でも充放電可能であるうえに、低温時充放電における容量低下が少ないため、イオン液体のみを電解液としていながら低温下でのデバイス性能が向上し、広い温度範囲で使用が可能となるという利点もある。 
合成例1で得られたMEMP・FSAの1H-NMRスペクトル図である。 合成例2で得られたMMMP・FSAの1H-NMRスペクトル図である。 合成例1,2で得られた各イオン液体の電位窓測定結果を示す図である。
 以下、本発明についてさらに詳しく説明する。
 本発明に係る蓄電デバイスは、式(1)で示されるイオン液体を含む。
 本発明における蓄電デバイスとしては、特に限定されるものではなく、電気二重層キャパシタ、リチウムイオンキャパシタ、リチウム二次電池、リチウムイオン二次電池、リチウム空気電池、プロトンポリマー電池等の各種蓄電デバイスが挙げられるが、中でも、電気二重層キャパシタが好ましい。
Figure JPOXMLDOC01-appb-C000003
 式中、R1およびR2は、互いに独立して炭素数1~5のアルキル基を表し、nは、1または2を表す。
 炭素数1~5のアルキル基としては、直鎖、分岐、環状のいずれでもよく、例えば、メチル、エチル、n-プロピル、i-プロピル、c-プロピル、n-ブチル、i-ブチル、s-ブチル、t-ブチル、c-ブチル、n-ペンチル、c-ペンチル基等が挙げられるが、直鎖状のアルキル基が好ましく、中でもメチル基、エチル基がより好ましく、メチル基がより一層好ましい。
 本発明で用いられるイオン液体は、上記特許文献2に記載の方法等により製造することができ、例えば、定法に従って製造したN-アルコキシアルキル-N-アルキルピロリジニウムハライド(例えば、クロライド、ブロマイド等)と、アルカリ金属(例えば、ナトリウム、カリウム等)のビス(フルオロスルホニル)アミド塩とを水溶媒中でアニオン交換反応させて得ることができる。
 本発明で好適に用いることができるイオン液体のカチオン構造としては下記のものが挙げられるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000004
 中でもより熱安定性に優れているという点から、下記(A)のカチオン構造が好ましく、またより低粘度という点から、下記(B)のカチオン構造が好ましい。
Figure JPOXMLDOC01-appb-C000005
 本発明の蓄電デバイスでは、上述したイオン液体をデバイス構成部材の一材料として用いるものであり、その適用箇所は任意であるが、特に、電解質や電極の構成材料として用いることが好ましい。
 電解質材料として用いる場合、上記イオン液体単独で用いても、イオン液体に従来汎用されている非水系有機溶媒や電解質塩を添加して用いてもよいが、イオン液体単独で用いることが好ましい。
 なお、本発明で用いる上記イオン液体は、それ自体比較的粘度が低く、またその他の電解質塩の溶解能も良好であるため、非水系溶媒や電解質塩を用いる場合でも、非水系有機溶媒の使用量は電解液中に10質量%以下が好ましく、5質量%以下がより好ましく、0質量%(すなわち、液体成分はイオン液体のみ)であることが最適である。
 非水系有機溶媒としては、例えば、ジブチルエーテル、1,2-ジメトキシエタン、1,2-エトキシメトキシエタン、メチルジグライム、メチルトリグライム、メチルテトラグライム、エチルグライム、エチルジグライム、ブチルジグライム、エチルセルソルブ、エチルカルビトール、ブチルセルソルブ、ブチルカルビトール等の鎖状エーテル類;テトラヒドロフラン、2-メチルテトラヒドロフラン、1,3-ジオキソラン、4,4-ジメチル-1,3-ジオキサン等の複素環式エーテル類;γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、3-メチル-1,3-オキサゾリジン-2-オン、3-エチル-1,3-オキサゾリジン-2-オン等のラクトン類;N-メチルホルムアミド、N,N-ジメチルホルムアミド、N-メチルアセトアミド、N-メチルピロリジノン等のアミド類;ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート等のカーボネート類;1,3-ジメチル-2-イミダゾリジノン等のイミダゾリン類、アセトニトリル、プロピオニトリル等のニトリル類などが挙げられ、これらは単独で、または2種以上混合して用いることができる。
 また、電解質塩は蓄電デバイスの種類に応じて適宜選択されるものであるが、その具体例としては、リチウムテトラフルオロボレート、リチウムヘキサフルオロフォスフェート、リチウムビス(トリフルオロメタンスルホニル)アミド、リチウムビス(フルオロスルホニル)アミド、過塩素酸リチウム、酢酸リチウム、トリフルオロ酢酸リチウム、安息香酸リチウム、p-トルエンスルホン酸リチウム、硝酸リチウム、臭化リチウム、ヨウ化リチウム等のリチウム塩;テトラメチルアンモニウムヘキサフルオロホスフェート、テトラエチルアンモニウムヘキサフルオロホスフェート、テトラプロピルアンモニウムヘキサフルオロホスフェート、メチルトリエチルアンモニウムヘキサフルオロホスフェート、テトラエチルアンモニウムテトラフルオロボレート、テトラエチルアンモニウムパークロレート等の4級アンモニウム塩などが挙げられる。
 電解質塩を用いる場合、その濃度は特に限定されるものではなく、通常、0.5~3mol/L程度であるが、0.8~2mol/L程度が好ましく、0.9~1.5mol/L程度がより好ましい。
 一方、電極材料として用いる場合、活物質である炭素質材料と上記イオン液体とを混合して調製したゲル状組成物を備える電極とすることが好ましい。
 炭素質材料としては、特に限定されるものではなく、従来公知の種々の炭素質材料を用いることができ、例えば、活性炭、グラファイト、グラフェン、カーボンナノチューブ、カーボンナノファイバー、カーボンナノホーン等を用いることができるが、中でも、導電性などの点からカーボンナノチューブが好ましい。
 カーボンナノチューブには、1枚のグラフェンシートが円筒状に巻かれた単層カーボンナノチューブ、2枚のグラフェンシートが同心円状に巻かれた2層カーボンナノチューブ、複数のグラフェンシートが同心円状に巻かれた多層カーボンナノチューブが知られているが、本発明ではいずれを用いてもよく、またそれらの2種以上を組み合わせて用いてもよい。
 ゲル状組成物中における炭素質材料の含有量は、特に限定されるものではないが、通常、0.1~80質量%程度であり、1~40質量%が好ましく、3~15質量%がより好ましい。
 ゲル状組成物は、炭素質材料とイオン液体とを混合し、これを混練して得ることができる。混合の際、炭素質材料にイオン液体を加えても、その逆でもよい。
 混練手法としては特に限定されるものではなく、例えば、乳鉢を用いた手法や、ボールミル、ローラーミル、ビーズミル、ジェットミル、振動ミルなど湿式粉砕機を用いた手法などが挙げられる。
 なお、上記ゲル状組成物は、イオン液体と炭素質材料のみを用いて調製することができるが、必要に応じて公知のバインダーポリマーや導電材を用いてもよい。
 バインダーポリマーとしては、公知の材料から適宜選択して用いることができ、その具体例としては、ポリフッ化ビニリデン(PVdF)、ポリビニルピロリドン、ポリテトラフルオロエチレン、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体、フッ化ビニリデン-ヘキサフルオロプロピレン共重合体〔P(VDF-HFP)〕、フッ化ビニリデン-塩化3フッ化エチレン共重合体〔P(VDF-CTFE)〕、ポリビニルアルコール、エチレン-プロピレン-ジエン三元共重合体、スチレン-ブタジエンゴム、カルボキシメチルセルロース(CMC)等が挙げられる。
 必要に応じて添加される導電材としては、例えば、カーボンブラック、ケッチェンブラック、アセチレンブラック、カーボンウイスカー、炭素繊維、天然黒鉛、人造黒鉛、酸化チタン、酸化ルテニウム、アルミニウム,ニッケル等の金属ファイバなどが挙げられ、これらは、1種単独でまたは2種以上を組み合わせて用いることができる。
 導電材の添加量は、例えば、炭素質材料100質量部に対して0.1~20質量部とすることができるが、好ましくは0.5~10質量部である。
 以上のようなイオン液体、炭素質材料および必要に応じて用いられるバインダーポリマーや導電材を混練して調製したゲル状組成物を集電体上に塗布・積層することで電極を作製することができる。
 正極集電体の具体例としては、アルミニウム箔、アルミニウム合金箔等が挙げられる。
 負極集電体の具体例としては、銅箔、銅合金箔、ニッケル箔、ニッケル合金箔、ステンレス箔、アルミニウム箔、アルミニウム合金箔等が挙げられる。
 本発明に係る蓄電デバイスは、上述のイオン液体を用いた電解質および/または電極を備えるものであれば特に限定されるものではなく、例えば、一対の分極性電極と、これら電極間に介在するセパレータと、電解質とを備えて構成される電気二重層キャパシタの電解質として、および/または、少なくとも一方、好ましくは双方の分極性電極として、上述したイオン液体を含む電解液やゲル状組成物を含む電極を備えるものが挙げられる。
 この場合、上記イオン液体を用いた電解質や電極以外のデバイス構成材料としては、従来公知のものから適宜選択して用いればよく、特に限定されるものではないが、その一例を挙げると次のとおりである。
 一般的な分極性電極としては、各種活性炭等の炭素質材料とバインダーポリマーと必要に応じて導電材を含む組成物を集電体上に塗布したものが挙げられる。
 バインダーポリマー、導電材、並びに分極性電極を構成する正極集電体および負極集電体としては、上記と同様のものが挙げられる。
 また、上記組成物の調製時には溶媒を用いてもよい。この溶媒は、バインダーポリマーの種類に応じて選定されるものであるが、一般的には、N-メチル-2-ピロリドンや水が用いられる。
 セパレータの具体例としては、ポリエチレン、ポリプロピレン等のポリオレフィン系セパレータ、ポリエチレンテレフタレート等のポリエステル系セパレータ、ポリアミド系セパレータ、ポリイミド系セパレータ、セルロース系セパレータ、ガラス繊維系セパレータなどが挙げられる。
 一般的な電解質としては、例えば、上述した4級アンモニウム塩を上述した非水系有機溶媒に溶かした非水系電解液が挙げられる。
 本発明の蓄電デバイス(電気二重層キャパシタ)は、例えば、一対の電極間に、セパレータを介在させてなる電気二重層キャパシタ構造体を積層、折畳、または捲回し、これを電池缶またはラミネートパック等の電池容器に収容した後、電解液を充填し、電池缶であれば封缶して、一方、ラミネートパックであればヒートシール(熱溶着)して得ることができる。
 以下、合成例、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。
 なお、実施例で使用した分析装置は下記のとおりである。
[1]1H-NMRスペクトル
装置:日本電子(株)製 AL-400
溶媒:重ジメチルホルムアミド
[2]粘度計
装置:BROOK FIELD社製 プログラマブルレオメーター
[3]電気伝導率
装置:東亜ディーケーケー(株)製 電気伝導率計CM-30R
[4]電位窓
装置:北斗電工(株)製 スタンダードボルタンメトリツールHSV-100
[5]内部抵抗
装置:日置電気(株)製 抵抗計RM3548
[1]イオン液体の合成
[合成例1]MEMP・FSAの合成
Figure JPOXMLDOC01-appb-C000006
 ピロリジン(和光純薬工業(株)製)1.51質量部と塩化2-メトキシエチル(関東化学(株)製)1.00質量部とを混合し、還流しながら1時間反応させた。反応後、反応液は2層に分離したが、しばらく放冷すると下層は固化した。デカンテーションにより上層のみ回収し、減圧蒸留により精製し、目的物であるN-2-メトキシエチルピロリジン(沸点76℃/蒸気圧45mmHg)0.96質量部を得た(収率70%)。
 得られたN-2-メトキシエチルピロリジン1.00質量部、およびこれに対して2倍容量のトルエン(和光純薬工業(株)製)を混合し、オートクレーブ中に入れ、系内を窒素置換した。密閉系にした後、室温撹拌下で塩化メチルガス(日本特殊化学工業(株)製)約1.00質量部を加えた。塩化メチルガス導入時には温度および内圧の上昇が見られ、最高時で温度は約53℃、内圧は5.5kgf/cm2(約5.4×105Pa)まで上昇した。そのまま加熱せずに反応させ、2日後に塩化メチルガス約0.75質量部を加えた。さらに1日反応させた後、加圧を解除し、系中に生成した結晶を減圧濾過にてろ別し、真空ポンプを用いて乾燥させ、N-2-メトキシエチル-N-メチルピロリジニウムクロライド1.29質量部を得た(収率92%)。
 得られたN-2-メトキシエチル-N-メチルピロリジニウムクロライド1.00質量部に当倍容量のイオン交換水を加え、撹拌して溶解させた。この溶液をカリウムビス(フルオロスルホニル)アミド(関東化学(株)製)1.29質量部を当倍容量のイオン交換水に溶かした溶液に撹拌下で加えた。室温で反応させ、3時間以上経過した後に、2層に分離した反応液を分液し、下層の有機層を2回イオン交換水で洗浄後、真空ポンプを用いて乾燥させ、目的物であるN-2-メトキシエチル-N-メチルピロリジニウムビス(フルオロスルホニル)アミド(MEMP・FSA)1.50質量部を得た(収率83%)。MEMP・FSAの1H-NMRスペクトルを図1に示す。なお25℃での粘度は、35cPであった。
[合成例2]MMMP・FSAの合成
Figure JPOXMLDOC01-appb-C000007
 N-メチルピロリジン(和光純薬工業(株)製)14.4質量部をテトラヒドロフラン(和光純薬工業(株)製)200質量部に溶かした溶液を氷冷し、撹拌下、クロロメチルメチルエーテル(東京化成工業(株)製)17.1質量部を加えた。一晩反応させた後、析出した固体を、桐山ロートを用い減圧濾過した。得られた白色固体を、真空ポンプを用いて乾燥させ、中間体N-メトキシメチル-N-メチルピロリジニウムクロライド26.7質量部を得た(収率96%)。
 得られたN-メトキシメチル-N-メチルピロリジニウムクロライド8.58質量部をイオン交換水10質量部に溶解させた。この溶液をカリウムビス(フルオロスルホニル)アミド(関東化学(株)製)12.5質量部をイオン交換水5質量部に溶かした溶液に撹拌下で加えた。室温で撹拌を一晩継続させた後、2層に分かれた反応液を分液し、下層の有機層をイオン交換水で4回洗浄後、真空ポンプを用いて乾燥させ、目的物であるN-メトキシメチル-N-メチルピロリジニウムビス(フルオロスルホニル)アミド(MMMP・FSA))を10.2質量部得た(収率63%)。MMMP・FSAの1H-NMRスペクトルを図2に示す。なお25℃での粘度は、20cPであった。
 合成例1,2で得られた各イオン液体について、電気伝導率を測定した。測定は電気伝導率計(CM-30R、東亜ディーケーケー(株)製)を用い、25℃の恒温槽内で計測した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000008
 また、合成例1,2で得られた各イオン液体について電位窓を測定した。その結果を図3に示す。
 図3に示されるように、いずれのイオン液体とも広い電位窓を有することがわかる。
[2]電気二重層キャパシタの作製
[実施例1-1]
(1)正の電極構造体の作製
 活性炭マックスソーブMSP20(関西熱化学(株)製)と、導電剤(HS-100、電気化学工業(株)製)と、バインダーであるPVDF(アルドリッチ社製)とを85:8:7の質量組成になるように、塗工溶媒であるN-メチル-2-ピロリドン(以下NMP)中で混合し、正の分極性電極用塗工液を調製した。
 得られた塗工液を、正の集電体であるエッチドアルミ箔(30CB、日本蓄電器工業(株)製)に塗工した後、ロールプレスで圧延し、さらにNMPを乾燥除去して正の分極性電極を形成し、正の分極性電極構造体を得た。
(2)負の電極構造体の作製
 活性炭(LPY039、日本エンバイロケミカルズ(株)製)と、導電剤(HS-100、電気化学工業(株)製)と、バインダーであるPVDF(アルドリッチ社製、重量平均分子量:534,000)とを85:7:8の質量組成になるように、塗工溶媒であるNMP中で混合し、負の分極性電極用塗工液を調製した。
 得られた塗工液を、負の集電体であるエッチドアルミ箔(30CB、日本蓄電器工業(株)製)に塗工した後、ロールプレスで圧延し、さらにNMPを乾燥除去して負の分極性電極を形成し、負の分極性電極構造体を得た。
(3)電気二重層キャパシタの作製
 上記で得られた正の分極性電極構造体と、負の分極性電極構造体とのそれぞれに、アルミ製の電極取り出し端子をスポット溶着し、セパレータ(TF40-35、ニッポン高度紙工業(株)製)を介してセルを組み立て、アルミラミネート(大日本印刷(株)製)からなる外装容器に挿入した。この中に、電解液として合成例1で得られたMEMP・FSAを所定量注入した後、25℃、10kPa以下の減圧下で12時間以上静置して電解液を含浸させた後、熱溶着にて封止し、電気二重層キャパシタを得た。
[実施例1-2]
 MEMP・FSAに代えて、合成例2で得られたMMMP・FSAを電解液として用いた以外は、実施例1-1と同様の方法で電気二重層キャパシタを作製した。
[比較例1-1]
 MEMP・FSAに代えて、1-エチル-3-メチルイミダゾリウムテトラフルオロボレート(EMI・BF4、関東化学(株)製)を電解液として用いた以外は、実施例1-1と同様の方法で電気二重層キャパシタを作製した。
[比較例1-2]
 MEMP・FSAに代えて、特許文献1記載の方法で合成した2-メトキシエチル-N-メチルピロリジニウムテトラフルオロボレート(MEMP・BF4)を電解液として用いた以外は、実施例1-1と同様の方法で電気二重層キャパシタを作製した。
 上記で作製した電気二重層キャパシタの初期特性を下記手法により測定した。その結果を表2に示す。
 まず、一時間率の電流値で3.0Vまで定電流充電を行い、そのまま30分間、定電圧充電を行い、続いて、一時間率の電流値で3.0Vから0Vまで定電流放電したときの全放電エネルギー量から静電容量を算出した。内部抵抗は抵抗計(RM3548、日置電気(株)製)にて測定した。各測定共に25℃の恒温槽中に2時間以上放置した後に計測を行った。
Figure JPOXMLDOC01-appb-T000009
 続いて、上記で作製した各電気二重層キャパシタの温度別容量測定した。測定温度は、-20℃、0℃、60℃とし、各温度環境下に3時間放置したあと充放電試験を行った。なお、充放電条件は、初期特性での充放電条件と同様とした。その結果を表3に示す。
 表3に示されるように、比較例1-1で作製した電気二重層キャパシタは、-20℃の条件では充電することができなかったが、実施例1-1で作製した電気二重層キャパシタは、-20℃の条件においても充放電が可能であり、良好な放電容量が得られた。
Figure JPOXMLDOC01-appb-T000010
 以上のとおり、本発明の電気二重層キャパシタは、-20~60℃で充放電可能な適用温度範囲の広いデバイスであることがわかる。

Claims (6)

  1.  式(1)で示されるイオン液体を含んで構成されることを特徴とする蓄電デバイス。
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1およびR2は、互いに独立して炭素数1~5のアルキル基を表し、nは、1または2を表す。)
  2.  一対の分極性電極と、これら電極間に介在するセパレータと、電解質とを備えて構成され、
     前記電解質が、前記式(1)で示されるイオン液体を含む電気二重層キャパシタである請求項1記載の蓄電デバイス。
  3.  前記電解質が、有機溶媒を含まない請求項2記載の蓄電デバイス。
  4.  前記電解質が、前記式(1)で示されるイオン液体のみからなる請求項2または3記載の蓄電デバイス。
  5.  前記R1およびR2が、互いに独立してメチル基またはエチル基を表す請求項1~4のいずれか1項記載の蓄電デバイス。
  6.  前記R1およびR2が、共にメチル基である請求項5記載の蓄電デバイス。
PCT/JP2015/080496 2014-12-22 2015-10-29 蓄電デバイス WO2016103906A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020177017135A KR20170100522A (ko) 2014-12-22 2015-10-29 축전 디바이스
US15/535,193 US20170345584A1 (en) 2014-12-22 2015-10-29 Electricity storage device
CN201580070965.0A CN107112146A (zh) 2014-12-22 2015-10-29 蓄电器件
EP15872475.7A EP3240000A4 (en) 2014-12-22 2015-10-29 Electricity storage device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014258840A JP2016119409A (ja) 2014-12-22 2014-12-22 蓄電デバイス
JP2014-258840 2014-12-22

Publications (1)

Publication Number Publication Date
WO2016103906A1 true WO2016103906A1 (ja) 2016-06-30

Family

ID=56149942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/080496 WO2016103906A1 (ja) 2014-12-22 2015-10-29 蓄電デバイス

Country Status (6)

Country Link
US (1) US20170345584A1 (ja)
EP (1) EP3240000A4 (ja)
JP (1) JP2016119409A (ja)
KR (1) KR20170100522A (ja)
CN (1) CN107112146A (ja)
WO (1) WO2016103906A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202280A1 (ja) 2019-03-29 2020-10-08 日清紡ホールディングス株式会社 導電性金属ペースト

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3063493B1 (fr) * 2017-03-01 2023-06-09 Nawatechnologies Procede de preparation d'une electrode comprenant un support en aluminium, des nanotubes de carbone alignes et un polymere organique electro-conducteur, ladite electrode et ses utilisations
FR3098003B1 (fr) * 2019-06-26 2022-07-15 Solvionic Procédé et dispositif de fabrication d'électrodes pour un supercondensateur à base de liquide ionique et procédé de fabrication d'un tel supercondensateur
CN110828881A (zh) * 2019-08-28 2020-02-21 深圳先进技术研究院 双离子电池及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003108A1 (ja) * 2003-07-01 2005-01-13 Otsuka Chemical Co., Ltd. 第4級アンモニウム塩および電解質並びに電気化学デバイス
JP2014239006A (ja) * 2013-06-10 2014-12-18 住友電気工業株式会社 溶融塩電池

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100900132B1 (ko) * 2005-01-12 2009-06-01 오츠카 가가쿠 가부시키가이샤 제4급 암모늄염, 전해질, 전해액 및 전기 화학 디바이스
JP2006236829A (ja) * 2005-02-25 2006-09-07 Nisshinbo Ind Inc イオン液体、蓄電デバイス用非水電解液および蓄電デバイス
US20080005065A1 (en) * 2006-02-27 2008-01-03 Microsoft Corporation Base business object key
EP2023434B1 (de) * 2007-07-23 2016-09-07 Litarion GmbH Elektrolytzubereitungen für Energiespeicher auf Basis ionischer Flüssigkeiten
US8277566B2 (en) * 2009-08-04 2012-10-02 Indianhead Pipeline Services, LLC Mat washing machine and method
JP5557010B2 (ja) * 2010-06-01 2014-07-23 トヨタ自動車株式会社 電解液の製造方法
JP2014183161A (ja) * 2013-03-19 2014-09-29 Sumitomo Electric Ind Ltd リチウムイオンキャパシタおよびその充放電方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005003108A1 (ja) * 2003-07-01 2005-01-13 Otsuka Chemical Co., Ltd. 第4級アンモニウム塩および電解質並びに電気化学デバイス
JP2014239006A (ja) * 2013-06-10 2014-12-18 住友電気工業株式会社 溶融塩電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3240000A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202280A1 (ja) 2019-03-29 2020-10-08 日清紡ホールディングス株式会社 導電性金属ペースト

Also Published As

Publication number Publication date
US20170345584A1 (en) 2017-11-30
EP3240000A1 (en) 2017-11-01
JP2016119409A (ja) 2016-06-30
CN107112146A (zh) 2017-08-29
EP3240000A4 (en) 2018-07-04
KR20170100522A (ko) 2017-09-04

Similar Documents

Publication Publication Date Title
JP6592891B2 (ja) 二次電池用電解液および二次電池
JP6601094B2 (ja) 電解液用添加剤
US20140266075A1 (en) Methods Of Enhancing Electrochemical Double Layer Capacitor (EDLC) Performance And EDLC Devices Formed Therefrom
KR101016268B1 (ko) 전기 이중층 캐패시터
JP6671079B2 (ja) イオン液体、その製造方法及びその用途
JP2006236829A (ja) イオン液体、蓄電デバイス用非水電解液および蓄電デバイス
WO2016103906A1 (ja) 蓄電デバイス
JP7035579B2 (ja) 電解液用添加剤
JP6532157B2 (ja) イオン液体、その製造方法及びその用途
JP2008166342A (ja) リチウムイオンキャパシタ
KR101671301B1 (ko) 고전압 전기 이중층 캐패시터
WO2021176920A1 (ja) 蓄電デバイス用電解液およびイオン液体
JP5473296B2 (ja) 第4級アンモニウム塩
JP7415298B2 (ja) 電極用スラリー組成物、電極、及び蓄電デバイス
JP2009105028A (ja) アンモニウム塩、並びにそれを用いた電解質、電解液、添加剤及び蓄電デバイス
WO2020194438A1 (ja) 電解液用添加剤
JP4537154B2 (ja) 非水電解液電気二重層キャパシタ
JP2008130623A (ja) 常温溶融塩を用いた電気化学デバイス用電解質及び電気化学デバイス
JP4419431B2 (ja) 電気二重層キャパシタ用非水電解液
JP2010108974A (ja) キヌクリジニウム塩含有電解液
JP2002222739A (ja) 電気二重層キャパシタ及びそのための電解液
JP2000195759A (ja) 電気二重層コンデンサ―用電解液
JP2009218398A (ja) 電解液及び電気化学デバイス
JP2006332298A (ja) 電気化学デバイス用電解質及び電気化学デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15872475

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15535193

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177017135

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015872475

Country of ref document: EP