WO2016102841A1 - Procédé et dispositif de maintien d'associations d'adresses de transport auprès d'une entité de traduction d'adresses - Google Patents

Procédé et dispositif de maintien d'associations d'adresses de transport auprès d'une entité de traduction d'adresses Download PDF

Info

Publication number
WO2016102841A1
WO2016102841A1 PCT/FR2015/053624 FR2015053624W WO2016102841A1 WO 2016102841 A1 WO2016102841 A1 WO 2016102841A1 FR 2015053624 W FR2015053624 W FR 2015053624W WO 2016102841 A1 WO2016102841 A1 WO 2016102841A1
Authority
WO
WIPO (PCT)
Prior art keywords
message
address
protocol
transport
transport address
Prior art date
Application number
PCT/FR2015/053624
Other languages
English (en)
Inventor
Jean-Claude Le Rouzic
José DOREE
Original Assignee
Orange
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Orange filed Critical Orange
Priority to US15/539,097 priority Critical patent/US10855653B2/en
Priority to ES15823674T priority patent/ES2911291T3/es
Priority to EP15823674.5A priority patent/EP3238422B1/fr
Publication of WO2016102841A1 publication Critical patent/WO2016102841A1/fr

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L61/00Network arrangements, protocols or services for addressing or naming
    • H04L61/09Mapping addresses
    • H04L61/25Mapping addresses of the same type
    • H04L61/2503Translation of Internet protocol [IP] addresses
    • H04L61/256NAT traversal
    • H04L61/2564NAT traversal for a higher-layer protocol, e.g. for session initiation protocol [SIP]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/10Architectures or entities
    • H04L65/1016IP multimedia subsystem [IMS]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1073Registration or de-registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L65/00Network arrangements, protocols or services for supporting real-time applications in data packet communication
    • H04L65/1066Session management
    • H04L65/1101Session protocols
    • H04L65/1104Session initiation protocol [SIP]

Definitions

  • the invention relates to the general field of telecommunications.
  • NAT Network Address Translation
  • a NAT entity is an entity that associates with a network address, respectively with a so-called private (or internal) transport address of one of the devices, a network address, respectively a so-called public (or external) transport address, which proceeds to the translation of the private address into the public address and vice versa on detection of a message containing this private address, respectively public.
  • transport address of a device here is meant the combination of an IP (Internet Protocol) address and a port that identify the device at the transport level.
  • IP Internet Protocol
  • Each association of a private address with a public address is carried out for a given mode of transport, that is to say a transport protocol.
  • a protocol is, for example, Transmission Control Protocol (TCP), User Datagram Protocol (UDP), or Stream Control Transmission Protocol (SCTP).
  • Such a NAT or NAPT entity is commonly used to protect telecommunications networks, and in particular telecommunications networks implementing the Session Initiation Protocol (SIP), standardized and standardized by the Internet Engineering Task Force (IETF), and describes in RFC 3261 published by the IETF and entitled "SIP Session Initiation Protocol", June 2002.
  • SIP Session Initiation Protocol
  • IETF Internet Engineering Task Force
  • Such a network is for example a voice network on LTE (Long Term Evolution) or VoLTE (for Voice over LTE), a network video on LTE or ViLTE (for Video over LTE), etc., based on an IP Multimedia Subsystem (IMS) as defined by the 3GPP (Third Generation Partnership Project) standard.
  • IMS IP Multimedia Subsystem
  • an NAPT entity may be used in a flow cutoff between the terminals and the point of entry into the operator's IMS core network, also called the Proxy Call Session Control Function (P-CSCF) server, and where the terminals register to access the services offered by the core network. It makes it possible to accept or refuse certain streams according to rules that are specific to it, for example depending on the source transport address used to transport these flows. It is customary to consider that the flows coming from the terminals are authorized and trigger the opening of a gate (or "pinhole") on the NAT entity, a gate being identified by the association of several pieces of information namely a private transport address (including an IP address and port), a public transport address, and a transport (protocol) mode.
  • P-CSCF Proxy Call Session Control Function
  • a SIP REGISTER registration request is sent by the terminal to the P-CSCF server.
  • the size of this registration request depends on the number of applications requiring connectivity to the network: each application corresponds (ent) indeed one or more characteristics multimedia (or "feature tags" in English) to enrich the content of a Contact field of the SIP REGISTER request sent by the terminal. Consequently, the more applications wanting to register with the backbone, the longer the Contact field of the request, and therefore the SIP request REGISTER itself.
  • the SIP standard requires devices implementing this protocol (that is to say in particular terminals and core network entities such as the P-CSCF server) to support both UDP and TCP transport protocols. Most terminals today, however, use the default UDP transport protocol, for reasons of low complexity in particular. However, the SIP standard provides that when a SIP request exceeds a certain size, the devices implementing the SIP protocol must use the TCP transport protocol to transport this request, in particular to limit the risks associated with fragmentation of the UDP packets. In other words, a device configured by default to use a transport mode (i.e. protocol) UDP must switch to a TCP transport mode if it wishes to transmit a SIP request having a size greater than a determined threshold. This threshold is defined in RFC 3261 (chapter 18.1.1) edited by the IETF at 1300 bytes.
  • This mode of operation imposed by the SIP standard can be at the origin of various problems in the presence of a NAT entity between a terminal and a P-CSCF server.
  • a terminal registers with the core network using the UDP transport mode: for this purpose, it sends to the P-CSCF server a SIP REGISTER request having as its source transport address an address.
  • SIP REGISTER request having as its source transport address an address.
  • private transport @IPpriv_UDP and conveyed (transported) in accordance with the UDP protocol.
  • This request is intercepted by the NAT entity that associates @IPpriv_UDP with a public transport address @IPpub_UDP, and thus opens a gate for this terminal for the UDP protocol.
  • the NAT entity then transfers the SIP REGISTER request from the terminal to the P-CSCF server with this @IPpub_UDP transport address as the source address.
  • the SIP REGISTER request sent by the terminal to the P-CSCF server may indicate in the Contact field of the header a contact address (or AoC for Address of Contact) reachable in UDP mode even though the request SIP REGISTER is transported according to the TCP protocol.
  • NAT entity level upon receipt of such a SIP REGISTER request, a gate is opened for the TCP transport mode, but no gate is open for the UDP transport mode although the terminal wishes to receive the requests. network on a reachable address in UDP mode.
  • the NAT entity receives a request to the terminal from the P-CSCF server and sent using the UDP mode, then the NAT entity is unable to process that request. Indeed, no UDP gate is open on the NAT entity to let this request pass, and as mentioned above, a request from the heart network is not able to trigger such an opening. As a result, the P-CSCF server will not receive any response from the terminal to its request.
  • the invention aims in particular to overcome these drawbacks by proposing a method for maintaining transport address associations with a transport address translation entity placed in a power cut between a first device and a second device, the holding method being intended to be implemented by the first device and comprising:
  • the invention also relates to a device, said first device, comprising:
  • a first sending module configured to send according to a first transport protocol, a first message having a first private called transport address to a second device, this first message being able to trigger a first association, by a a transport address translation entity placed in a flow cutoff between said first device and said second device, from a first so-called public address to the first private address and the first transport protocol;
  • a second sending module activated upon receipt of a response to the first message from the second device, and configured to send in accordance with a second transport protocol, a second message having a second private transport address to the second device; , this second message being able to trigger a second association by the transport address translation entity of said second private address to a second so-called public address and to the second transport protocol, the second message also containing information known as correspondence, also included in the first message and / or in the response to the first message, and able to trigger, following the receipt of the second message by the second device, the matching by the second device of the second public transport address with the first public transport address.
  • the first device is typically a terminal
  • the second device a P-CSCF server of an IP core network
  • the first and second protocols are selected from the UDP and TCP protocols.
  • the invention is not limited exclusively to IMS architectures or only UDP and TCP transport protocols. It can also be applied to any other architecture implementing the SIP protocol or an application-level protocol having the same or similar behavior, and which imposes on equipment communicating on the network and separated by a NAT entity to switch from one to another. transport to another, these modes of transport can be UDP, TCP, SCTP, etc.
  • the invention thus enables the first device, by means of the two messages sent to the second device according to the first mode of transport and according to the second mode of transport, to dynamically create and maintain simultaneously with the NAT entity two open gates, in other words, two transport address associations for the first transport protocol and for the second transport protocol respectively. In this way, it is ensured that the NAT entity is able to process requests addressed to the first device according to the two modes of transport.
  • the public transport addresses used according to the two transport protocols are advantageously matched at the second device.
  • the second device is capable of correctly processing and routing to the first device a request destined for it and arriving at the second device.
  • the purpose of this second message is, on the one hand, to create an address association for the second mode of transport with the NAT entity, and secondly to inform the second device of this association of addresses and to convey a so-called correspondence information which allows this second device to map the association of addresses, and more particularly the public address, created for the first mode of transport with the address association, and more particularly the public address, created for the second mode of transport.
  • the second device is capable of correctly managing and guiding the requests that reach it and which are intended for the first device.
  • the aforementioned problems are solved by the invention, whether it is applied in a context where there is or not a difference between the protocol used by the first device to register with the second device and the protocol used to convey his registration request.
  • the terminal may according to the invention be attached to one or the other of the protocols.
  • the method further comprises a step of sending a refresh message of the first address association and / or a refresh message of the second address association to the address association. address translation entity.
  • refresh messages are intended to keep (keep) open the doors created on the NAT entity so that the first device can receive requests from the second device according to one or other of the protocols.
  • the response to the first message may moreover advantageously comprise a refresh period of the first and / or the second association of addresses.
  • the invention relies on the activation of two address associations according to two different transport protocols with the NAT entity by the first device but also on the matching by the second device of the public addresses. allocated to the first device according to the two transport protocols.
  • the invention also aims at a method for matching public transport addresses, this method being intended to be implemented by a device, said second device, and comprising:
  • a step of matching the first public transport address with the second public transport address using the correspondence information is a step of matching the first public transport address with the second public transport address using the correspondence information.
  • the invention relates to a second device, comprising:
  • a receiving module configured to receive a first message transported in accordance with a first transport protocol, said first message having as its source transport address a first so-called public transport address which has been allocated to a first device by a translation entity transport address set in flux cutoff between said first and second devices;
  • a storage module configured to store the first public transport address in association with the first transport protocol and a so-called correspondence information
  • a sending module configured to send the first device a response to the first message
  • a receiving module configured to receive a second message transported in accordance with a second transport protocol, said second message having as its source transport address a second so-called public transport address which has been allocated to the first device by the translation entity of transport addresses, this second message comprising said correspondence information;
  • a mapping module configured to map the first public transport address to the second public transport address using the matching information.
  • mapping method and the second device benefit from the same advantages previously described for the holding method and the first device.
  • the first message is a request to register the first device with the second device and / or the second message is a refresh message of an association of addresses with the translation entity of the first device. addresses.
  • the second message is an empty SBR (STUN Binding Request) (ie without message content or with a minimum non-intrusive message, that is to say insignificant) in accordance with the STUN protocol (Simple Traversai of UDP through NATs), able to refresh the address association created at the NAT entity level for the first device for the second protocol.
  • SBR STUN Binding Request
  • the second message is an address association refresh message for TCP, consistent with the mechanism described in RFC 6223 entitled "Indication of Support for keep -alive ", April 2011, and which includes two sequences of carriage return and line feed or CLRF (Carriage Return and Line Feed).
  • the invention takes advantage of message formats already existing at the level of conventional transport protocols, and therefore does not require the introduction of new message formats, on the one hand, to trigger the address associations according to the two protocols with the NAT entity, and secondly for conveying the correspondence information that allows the second device to link the public transport address on the first protocol with the transport address the second protocol.
  • This mapping information may be generated by either the first device or the second device. It is preferentially a unique identifier for the second device in space and in time for at least the recording time of the first device with the network, so that the second device can uniquely map the first public address with the second public address.
  • This correspondence information is for example a string of random characters or a UUID (for Universal Unique Identifier).
  • the correspondence information is generated by the second device (for example on receipt of the first message) and inserted by it in the response to the first message.
  • the presence of the correspondence information in the response to the first message and in the second message makes it easy to map the first public source transport address of the first message to the second public source transport address of the second message.
  • the correspondence information can be in particular a digital character string generated by the second device and then inserted by the first device into a "Transaction" field. -Id "of a header of the SBR request.
  • the second message contains a dummy response according to a session control protocol, this dummy response including the correspondence information.
  • the session control protocol considered is preferably the SIP protocol.
  • the correspondence information comprises the first public transport address allocated to the first device, this first public transport address having been inserted in the response to the first message by the second device.
  • information already conventionally returned by the second device is used in its response message according to the SIP protocol when the second device has detected the presence of a NAT entity in a message flow cutoff. that he exchanges with the first device.
  • detection can be implemented easily, in a manner known per se, by analyzing the different transport addresses specified in the header of the first message arriving at the second device.
  • the match information can then be inserted by the first device into a field of the refresh SBR request having a format identical to a MAPPED-ADDRESS or XOR field.
  • MAPPED-ADDRESS defined by the STUN protocol.
  • Such a field is already conventionally used in the STUN protocol to convey this type of information in the network-to-terminal direction.
  • the invention proposes in this embodiment to use a similar field to convey this same type of information in the terminal direction to the network.
  • the correspondence information may be generated by the first device and inserted by the first device in the first message to be transmitted to the second device.
  • the various steps of the maintenance method and / or the matching method are determined by computer program instructions.
  • the invention also relates to a computer program on an information medium, this program being capable of being implemented in a first device or more generally in a computer, this program comprising instructions adapted to the implementation implement steps of a maintenance method as described above.
  • the invention also relates to a computer program on an information medium, this program being capable of being implemented in a second device or more generally in a computer, this program comprising instructions adapted to the implementation of steps of a mapping method as described above.
  • Each of these programs can use any programming language, and be in the form of source code, object code, or intermediate code between source code and object code, such as in a partially compiled form, or in any form what other form is desirable.
  • the invention also relates to a computer-readable information medium, comprising instructions of a computer program as mentioned above.
  • the information carrier may be any entity or device capable of storing the program.
  • the medium may comprise storage means, such as a ROM, for example a CD ROM or a microelectronic circuit ROM, or a magnetic recording medium, for example a floppy disk or a disk. hard.
  • the information medium may be a transmissible medium such as an electrical or optical signal, which may be conveyed via an electrical or optical cable, by radio or by other means.
  • the program according to the invention can be downloaded in particular on an Internet type network.
  • the information carrier may be an integrated circuit in which the program is incorporated, the circuit being adapted to execute or to be used in the execution of the method in question.
  • the invention also relates to a communication system comprising:
  • a first device according to the invention is a first device according to the invention.
  • the first protocol and the second protocol are separate protocols that can be chosen from TCP, UDP and SCTP protocols in particular; and or
  • the first device is a terminal and the second device is an entry point of a network core from which the first device must register to access the core network.
  • the holding method, the matching method, the first and the second device and the communication system according to the invention present in combination all or some of the aforementioned characteristics.
  • FIG. 1 shows, schematically, a communication system according to the invention in a particular embodiment
  • FIG. 2 and 3 respectively show the hardware architecture of a first device and a second device according to the invention, in a particular embodiment
  • FIGS. 4 to 6 illustrate the main steps of the maintenance and matching methods according to the invention in various embodiments in which they are implemented by the communication system of FIG. 1.
  • FIG. 1 represents, in its environment, a communication system 1 according to the invention.
  • This communication system 1 comprises:
  • a first device 2 according to the invention.
  • a second device 3 according to the invention.
  • the first device 2 is a mobile terminal (eg a smartphone or "smartphone", a digital tablet, a laptop, etc.), hosting a plurality of applications, such as for example applications RCS, VoLTE, etc., based on the functionalities offered by an IP core network 5.
  • a mobile terminal eg a smartphone or "smartphone", a digital tablet, a laptop, etc.
  • applications such as for example applications RCS, VoLTE, etc., based on the functionalities offered by an IP core network 5.
  • This core network IP 5 implements here an IMS architecture implementing the SIP session initiation protocol.
  • IMS architecture is known to those skilled in the art and described for example in 3GPP documents TS 23.228 and TS 24.229. However, this hypothesis is not limiting in itself, and other architectures can be envisaged, such as a proprietary architecture, etc.
  • the second device 3 is a P-CSCF server of the IP core network 5 as described in the aforementioned documents 3GPP TS 23.228 and TS 24.229 and not described in detail here, except for the characteristics implemented by this server in accordance with FIG. invention.
  • the NAT 4 entity placed in a flow cutoff between the terminal 2 and the P-CSCF server 3, is here an NAPT entity (for Network Address and Port Translation), able to associate with a so-called private (or internal) transport address. ) of the terminal 2, a so-called public (or external) transport address for a given transport mode, such as for example TCP, UDP or SCTP.
  • a transport address here consists of the combination of an IP address and a port. It should be noted, however, that the invention also applies to a transport address identified only by a network or IP address.
  • the association (public IP address, public port, private IP address, private port, mode of transport) created for the terminal 2 is stored in a database 7 maintained by the entity NAT 4.
  • the creation of such an association open a gate (or pinhole) at NAT 4; in other words, all requests originating from the core network 5 and transported using the public transport address as a destination and a transport mode registered by the NAT 4 for the terminal 2 are forwarded by the latter to the terminal 2 using the associated private transport address.
  • the NAT 4 entity translates the private source transport address of a message from the terminal 2 to the associated public source transport address in the database 7.
  • the terminal 2 has the hardware architecture of a computer, as schematically illustrated in FIG.
  • the terminal 2 comprises in particular a processor 8, a read-only memory 9, a random access memory 10, a non-volatile memory 11 in which are stored the applications hosted by the terminal 2, and a communication module 12.
  • the communication module 12 allows in particular the terminal 2 to communicate with the core network 5 and in particular with the P-CSCF server 3.
  • This communication module 12 includes for this purpose a protocol stack including in particular the session control protocol SIP and UDP and TCP transport protocols, as well as other protocols conventionally used to communicate over a network.
  • the read-only memory 9 of the terminal 2 constitutes a recording medium in accordance with the invention, readable by the processor 8 and on which a computer program is recorded. according to the invention comprising instructions for performing the steps of a holding method according to the invention, the steps of which are described in more detail later.
  • This computer program equivalently defines functional modules (and software here) of the terminal 2 and in particular a first module 2A for sending and receiving messages according to a first transport protocol (for example here TCP) and a second module 2B sending and receiving messages according to a second transport protocol (for example here UDP).
  • TCP first transport protocol
  • UDP second transport protocol
  • the P-CSCF server 3 has the hardware architecture of a computer, as schematically illustrated in FIG.
  • It comprises in particular a processor 13, a read-only memory 14, a random access memory 15, a non-volatile memory 16 in which the context database 6 is stored, and a communication module 17.
  • the communication module 17 allows in particular the P-CSCF server 3 to communicate with other entities of the core network 5 (not shown in FIG. 1) and with terminals managed by this core network, for example the terminal 2.
  • This communication module 17 includes for this purpose a protocol stack including in particular the SIP session initiation protocol and the UDP and TCP transport protocols, as well as other protocols conventionally used to communicate over a network.
  • the read-only memory 14 of the P-CSCF server 3 constitutes a recording medium in accordance with the invention, readable by the processor 13 and on which is recorded a computer program according to the invention comprising instructions for the execution of the steps of a matching method according to the invention, the steps of which are described later in more detail.
  • This computer program equivalently defines functional modules (and software here) of the P-CSCF server 3 and in particular a module 3A for sending and receiving messages from the terminal 2 according to a first transport protocol (TCP here), a module 3B for storing the public transport addresses used by the terminal 2 in the context of the terminal stored in the database 6, a module 3C for sending and receiving messages from the terminal 2 according to a second transport protocol (UDP here), and a 3D module for mapping public addresses.
  • TCP transport protocol
  • UDP second transport protocol
  • terminal 2 registers with the P-CSCF 3 server using a transport mode (eg TCP) different from the one on which it wishes to be contacted (eg UDP), for example for reasons mentioned above, namely the terminal 2 is configured by default to use the UDP protocol in transmission and reception, but because, for example, the plurality of applications wishing to register with the core network 5, the request the recording rate issued by the terminal 2 exceeds the maximum size allowed to use this protocol and the terminal 2 must switch to a TCP transport mode.
  • TCP transport mode
  • UDP transport mode
  • the terminal 2 registers according to a mode of transportation consistent with that to which he wishes to be contacted (eg UDP.).
  • FIG. 4 illustrates the main steps of a maintenance method and a matching method as implemented respectively by the terminal 2 and the server 3 according to a first embodiment applied to the first case. aforementioned figure.
  • the terminal 2 sends, via its module 2A, a registration request RI SIP REGISTER to the server P-CSCF 3 (step E10) containing, in its header, the following Via and Contact fields:
  • IPadr_priv is the private IP address of terminal 2 (used for both UDP and TCP);
  • - port_privTCP is the private port of terminal 2 for the TCP protocol
  • - port_privUDP is the private port of terminal 2 for the UDP protocol.
  • the private IPadr_priv IP address and the private port portprivTCP here constitute the private transport address @PrivTCP of the terminal 2 for the TCP transport protocol.
  • the private IPadr_priv IP address and the private port portprivUDP constitute the private transport address @PrivUDP of the terminal 2 for the UDP transport protocol.
  • the IN request is sent in accordance with the TCP protocol with the private transport address @PrivTCP (as mentioned in the Via field of the header) as the source transport address, although the terminal 2 wishes to be contacted using a transport address according to the UDP protocol (as mentioned in the Contact field of the header).
  • the request RI is intercepted by the NAT 4 entity placed in a flow cut of the terminal 2 and the entity P-CSCF 3 (step E20), and triggers the opening on the entity NAT 4 of a door for the terminal 2 for the TCP protocol.
  • the entity NAT 4 upon receipt of the request RI, creates in a manner known per se, in its database 7, an association (or "binding") between the private transport address @PrivTCP source of the request RI and a public transport address @PubTCP allocated dynamically to terminal 2 for the TCP protocol.
  • This public transport address @PubTCP consists of an IPadr_pubTCP public IP address and a public port_pubTCP port.
  • the NAT 4 stores in its database 7 a quintuplet for the terminal 2 comprising:
  • the NAT entity 4 transfers the request RI to the server P-CSCF 3 in a manner known per se, in the form of a request RI 'issued using the transport address @PubTCP (step E30).
  • This request RI ' is received by the server P-CSCF 3 via its module 3A with the source transport address @PubTCP.
  • the server P-CSCF 3 creates a context in its database 6 for the terminal 2 in which it stores, via its module 3B, in addition to the other data conventionally stored by a P-CSCF server during the recording of a terminal, the public transport address @PubTCP allocated by NAT 4 to terminal 2 (including the public IP address and the public port), the transport mode used (TCP here) and the contact address specified by the terminal in the Contact field (step E40).
  • a NAT entity is present between the terminal 2 and him (step E40).
  • the P-CSCF server generates a so-called TCP / UDP correspondence information item designated by tcpudpCK in the remainder of the description (step E50).
  • This correspondence information is here a string of numeric characters of a predetermined size (eg 96 bits), generated randomly by the server P-CSCF 3, and unique in space and time (at least for the time of terminal registration 2) for the P-CSCF server 3.
  • a string of numeric or alphanumeric characters is also called "cookie”. It's about for example a unique universal identifier or UUID.
  • this correspondence information is equal to the value 345345345387.
  • This correspondence information is stored by the P-CSCF server 3 in the context of the terminal 2 in association with the transport address @PubTCP.
  • the P-CSCF server 3 sends a SIP response 200 OK to the registration request of the terminal 2, on the TCP protocol using the public transport address @PubTCP, through its module 3A. It inserts in this response, indicated here by Ml, the TCP / UDP correspondence information tcpudpCK in a parameter tcpudpCK of the Via field provided for this purpose (step E60).
  • the header of this response M1 thus notably comprises the following Via and Contact headers:
  • the P-CSCF server 3 having detected the presence of the NAT entity 4 has also indicated to the terminal 2 in its response, according to the SIP protocol, the public transport address @PubTCP, in the attributes rport and received. Finally, the duration of the expires record is given in the Contact field.
  • the response Ml is intercepted by the NAT 4, which translates the public transport address @PubTCP into the private transport address @PrivTCP according to the association stored in its database 7 (step E70), before transferring the resulting response vers to terminal 2 (step E80).
  • the terminal 2 On receiving the response ⁇ via its module 2A, the terminal 2 stores in memory the correspondence information tcpudpCK, and is able to determine that a NAT entity is present between the P-CSCF server 3 and it, as well as the public transport address assigned to it (allocated) by this entity for the TCP port.
  • this request R2 sends a new request R2 to the P-CSCF server 3 this time compliant with the UDP protocol, this request R2 having, as the source transport address, the UDP private transport address @PrivUDP of the terminal 2 (step E90).
  • this request R2 is a SBR (STUN Binding Request) request for refreshing a UDP address association created with a user.
  • NAT entity according to the STUN protocol.
  • the STUN protocol is a known protocol described in particular in the document RFC 5389 published in October 2008 by the IETF.
  • this request R2 is an empty SBR request (ie without message content or with a minimum insubstantial non-intrusive content), in which the terminal 2 via its module 2B inserts the correspondence information tcpudpCK that it received from the P-CSCF server 3 in the response message ⁇ .
  • the tcpudpCK match information is inserted here in a Transaction attribute
  • a new attribute may be created to convey the correspondence information in the SBR request.
  • another type of request may be used for the request R2.
  • the terminal 2 by means of its module 2B inserts an application information into the refresh request SBR, namely the correspondence information tcpudpCK.
  • This request R2 is intercepted by the NAT 4 entity placed in a flow cut between the terminal 2 and the P-CSCF server 3, and triggers the opening on the NAT 4 of a gate for the terminal 2 for the protocol UDP this time (step E100).
  • the NAT entity 4 upon receipt of the request R2, the NAT entity 4 creates in a manner known per se, in its database 7, an association (or "binding") between the private source transport address @PrivUDP of the request. R2, and a public transport address @PubUDP allocated dynamically to the terminal 2 for the UDP protocol. This public transport address
  • @PubUDP consists of a public IPadr_pubUDP IP address and a public port port_pubUDP.
  • the NAT 4 stores in its database 7 a new quintuplet for the terminal 2 comprising:
  • the request R2 has the effect of creating and maintaining with the NAT 4 an address association for the terminal 2 for the UDP protocol that completes the association of addresses created in response to the request RI for the TCP protocol.
  • the request RI and R2 following the reception of the requests RI and R2, one simultaneously has at the level of the entity NAT 4 of two address associations for terminal 2 respectively on the TCP protocol and on the UDP protocol.
  • the NAT 4 transfers the request R2 to the P-CSCF server 3 in a manner known per se, in the form of a request R2 'having as its source transport address the public transport address @PubUDP (step E110).
  • This request R2 ' is received by the server P-CSCF 3 via its module
  • the P-CSCF server via its 3D module, extracts from the request R2 'the correspondence information tcpudpCK. Then it uses this correspondence information to map the public source transport address @PubUDP of the request R2 'to the public source transport address @PubTCP of the request RI' (step E120). It then stores the transport address @PubUDP in the context of the terminal 2 stored in the database 6 in association with the public transport address @PubTCP.
  • this mapping triggered by the presence of the correspondence information tcpudpCK in the request R2 ' enables the server P-CSCF 3 not only to determine which terminal 2 is associated with the public transport address @PubUDP of the request R2 ', but also to make the link with the association of TCP addresses that he already had for this terminal in the database 6.
  • the server P-CSCF 3 is able to transmit without difficulty the messages destined for the terminal 2 arriving from the core network 5 or its own messages.
  • the response M2 is intercepted by the entity NAT 4, which translates the public transport address @PubUDP into the private transport address @PrivUDP according to the association stored in its database 7 (step E140), before transfer the resulting response M2 'to the terminal 2 (step E150).
  • the terminal 2 can determine which public transport address is allocated to it by the NAT 4 for the UDP protocol.
  • the terminal 2 via its modules 2A and 2B respectively, sends periodically (according to the periods specified by the P-CSCF server 3 in the response M1) requests for refresh to the P-CSCF server 3 address associations which have him have been allocated for the TCP and UDP protocols (steps E160 and E170 respectively).
  • such a request comprises in a known manner, in accordance with the refresh mechanism (or "keep alive") described in the document RFC 6223 cited above, a sequence of two carriage returns and CRLF line jumps, while for the UDP protocol, it is constituted, as mentioned above, a SBR request empty or insignificant content.
  • FIG. 5 illustrates the main steps of a configuration method and a mapping method as implemented respectively by the terminal 2 and by the server 3 according to a second embodiment applied to the first case.
  • Figure envisaged previously ie difference between the transport protocol on which the server 3 receives the registration request of the terminal 2 and the transport protocol on which the terminal indicates in this request to be contacted).
  • the terminal 2 sends, via its module 2A, a registration request R3 SIP REGISTER to the server P-CSCF 3 (step F10) containing, in its header, the following Via and Contact fields:
  • IPadr_priv is the private IP address of terminal 2 (used for both UDP and TCP);
  • - port_privTCP is the private port of terminal 2 for the TCP protocol
  • - port_privUDP is the private port of terminal 2 for the UDP protocol.
  • the private IPadr_priv IP address and the private port portprivTCP here constitute the private transport address @PrivTCP of the terminal 2 for the TCP transport protocol.
  • the private IPadr_priv IP address and the private port portprivUDP constitute the private transport address @PrivUDP of the terminal 2 for the UDP transport protocol.
  • the request R3 is sent in accordance with the TCP protocol with the source transport address as the private transport address @PrivTCP (as mentioned in the Via field of the header), although the terminal 2 wishes to be contacted on a transport address according to the UDP protocol (as mentioned in the Contact field of the header).
  • the request R3 is intercepted by the NAT 4 entity placed in terminal flow cutoff
  • step F20 the P-CSCF 3 entity
  • step F30 the P-CSCF 3 entity
  • the NAT 4 transfers the request R3 to the server P-CSCF 3 in the form of a request R3 'with as source transport address, the transport address @PubTCP resulting from the opening of the door (step F30) .
  • the steps F20 and F30 being identical respectively to the steps E20 and E30 described for the first embodiment, they are not detailed further here.
  • the request R3 ' is received by the server P-CSCF 3 via its module 3A, which creates a context in its database 6 for the terminal 2 in which it stores the public transport address @PubTCP allocated to terminal 2 (including the IPadr_pubTCP public IP address and the public port_pubTCP port), the transport mode used (TCP here) and the contact address specified by the terminal in the Contact field (step F40). It also detects, as in the first embodiment, that a NAT entity is present between the terminal 2 and it, as well as the difference between the TCP transport protocol used by the terminal 2 to issue the RI request and the protocol. UDP transport mentioned in this request to contact the terminal 2.
  • the step F40 is identical to the step E40 described above.
  • the P-CSCF server 3 sends a SIP response 200 OK (designated M3) to the registration request of the terminal 2, on the TCP protocol using the address. public transport @PubTCP, through its module 3A.
  • the header of this M3 response includes the following Via and Contact headers:
  • the P-CSCF server 3 has inserted in the header Via of the response M3 keeptcp refresh time values and keepudp NAT associations with the NAT 4 entity for the two TCP and UDP protocols respectively.
  • the P-CSCF server 3 having further detected the presence of the NAT entity 4 has also indicated to the terminal 2 in its response the source transport address of the request R3 ', in the attributes rport and received. In the second embodiment described here, it is the information contained in these attributes rport and received that is used as correspondence information within the meaning of the invention.
  • the storage of this correspondence information in the context of the terminal 2 is implicit, as regards the public transport address of the terminal 2 already stored by the P-CSCF server 3 during the step F40.
  • the response M3 is intercepted by the entity NAT 4, which translates the public transport address @PubTCP into the private transport address @PrivTCP according to the association stored in its database 7 (step F70), before transfer the resulting response M3 'to the terminal 2 (step F80).
  • the terminal 2 On receiving the response M3 'via its module 2A, the terminal 2 is able to determine that a NAT entity is present between the P-CSCF server 3 and it, as well as the public transport address allocated to it by this entity for the TCP port. Then, it sends a new request R4 to the P-CSCF server 3, this time compliant with the UDP protocol, this request R4 having as its source transport address the UDP private transport address @PrivUDP of the terminal 2 (step F90).
  • This request R4 is, as for the request R2 in the first embodiment, an SBR request for refreshing a UDP association STUN protocol compliant. In other words, it is an empty SBR request (i.e. with no message content or insignificant minimum content).
  • the terminal 2 via its module 2B, inserts into this request the correspondence information it received from the P-CSCF server 3 in the response message ⁇ 3 '.
  • this is the TCP @PubTCP public transport address contained in the rport and received attributes of the Via field of the message M3 '.
  • the MAPPED-ADDRESS or XOR-MAPPED-ADDRESS attributes are, according to the STUN protocol, used in the network-to-terminal direction in response to SBR requests, and described in RFC 5389.
  • Another attribute format may be defined to convey the correspondence information constituted by the TCP @PubTCP public transport address.
  • Step F100 proceeds identically to step E100 previously described.
  • the NAT entity 4 upon receipt of the request R4, the NAT entity 4 creates in a manner known per se, in its database 7, an association (or "binding") between the private source transport address @PrivUDP of the request. R4 and a public transport address @PubUDP allocated dynamically to terminal 2 for the UDP protocol.
  • This public transport address @PubUDP consists of a public IPadr_pubUDP and a public port port_pubUDP.
  • the NAT 4 stores in its database 7 a new quintuplet for the terminal 2 comprising:
  • the request R4 has the effect of creating and maintaining with the NAT 4 an address association for the terminal 2 for the UDP protocol which completes the association of addresses created in response to the request R3 for the TCP protocol.
  • the request R4 following the reception of the requests R3 and R4, one simultaneously has at the level of the entity NAT 4 two associations of addresses for the terminal 2 respectively on the protocol TCP and on the protocol UDP.
  • the NAT 4 transfers the request R4 to the P-CSCF server 3 in a manner known per se, in the form of a request R4 'having as source transport address the public transport address @PubUDP (step F110).
  • This request R4 ' is received by the server P-CSCF 3 via its module
  • the P-CSCF server 3 via its 3D module, extracts from the request R4 'the correspondence information constituted by the public transport address @PubTCP. Then it uses this correspondence information stored in the database 6 to map (ie to associate) the source transport address @PubUDP of the request R4 'and the source transport address @PubTCP of the request R3' (step F120). It then stores the transport address @PubUDP in the context of the terminal 2 stored in the database 6 in association with the public transport address @PubTCP.
  • this mapping triggered by the presence of the correspondence information @PubTCP in the request R4 ' enables the P-CSCF server 3 not only to determine which terminal 2 is associated with the public transport address @PubUDP of the R4 'request, but also to make the link with the association of TCP addresses that he already had for this terminal in the database 6.
  • the server P-CSCF 3 is able to transmit safely messages destined for the terminal 2 arriving from the core network 5 or its own messages according to any of the UDP and TCP protocols.
  • Step F120 is followed by a step F130 of sending by the P-CSCF3 server an M4 SBResp response to the terminal 2 on the public transport address @PubUDP containing, in a MAPPED-ADDRESS or XOR-MAPPED attribute , the public transport address @PubUDP, a step F140 of interception of this response by the NAT 4 and a step F150 transfer of the response M4 'corresponding to the response M4 using the transport address @PrivUDP, and refresh steps F160 and F170, identical respectively to steps E130, E140, E150, E160 and E170 previously described for the first embodiment.
  • the correspondence information used is information inserted by the server P-CSCF 3 in its response to the registration request of the terminal 2.
  • This correspondence information is either information generated at this effect by the P-CSCF server 3, ie information extracted from the registration request by the latter, namely, for example, the public transport address @PubTCP on which the registration request has been sent to it (In other words, the source transport address of the registration request seen by the P-CSCF 3 server).
  • the correspondence information may be generated by the terminal 2. It may be for example a session identifier or transaction conventionally generated by the terminal 2 and that it inserts in accordance with the SIP protocol in its registration request, in the branch parameter of the Via field of the header.
  • the P-CSCF server extracts the transaction or session identifier contained in the branch parameter of the registration request, stores it in the context of the terminal 2 with the transport address @PubTCP, and returns it. in the response message to the registration request.
  • the transaction or session identifier is then sent by the terminal 2 in the refresh request SBR, for example in a REALM, NONCE or SOFTWARE attribute defined by the STUN protocol or in a dedicated attribute.
  • the P-CSCF server 3 uses the transaction or session identifier to link the @PubUDP and @PubTCP addresses.
  • FIG. 6 now illustrates the main steps of a configuration method and a mapping method as implemented respectively by the terminal 2 and by the server 3 according to a third embodiment applied to the second aforementioned case.
  • the terminal 2 sends, via its module 2B, a registration request R5 SIP REGISTER to the server P-CSCF 3 (step H10) containing, in its header, the following Via and Contact fields:
  • IPadr_priv port_privUDP
  • transport udp
  • IPadr_priv and port_privUDP respectively designate the private IP address and the private UDP port constituting the transport private address @PrivUDP of the terminal 2 for the UDP transport protocol.
  • the request R5 is sent in accordance with the UDP protocol with the private transport address @PrivUDP of the terminal 2 (as mentioned in the Via field of the header) as the source transport address, and the Terminal 2 wishes to be contacted on a transport address according to the UDP protocol (as mentioned in the Contact field of the header).
  • the request R5 is intercepted by the NAT 4 entity placed in a flow cut of the terminal 2 and the entity P-CSCF 3 (step H20), and triggers the opening on the entity NAT 4 of a door for the terminal 2 for the UDP protocol.
  • the NAT entity 4 upon receipt of the request R5, the NAT entity 4 creates in a manner known per se, in its database 7, an association (or "binding") between the private source transport address @PrivUDP of the request. R5 and a public transport address @PubUDP allocated dynamically to terminal 2 for the UDP protocol.
  • This public transport address @PubUDP consists of a public IPadr_pubUDP and a public port port_pubUDP.
  • the NAT 4 stores in its database 7 a quintuplet for the terminal 2 comprising:
  • the NAT 4 transfers the request R5 to the server P-CSCF 3 in a manner known per se, in the form of a request R5 'issued using the transport address @PubUDP as source address (step H30).
  • This request R5 ' is received by the server P-CSCF 3 via its module 3C.
  • the server P-CSCF 3 creates a context in its database 6 for the terminal 2 in which it stores, via its module 3B, in addition to the other data conventionally stored by a P-CSCF server during the recording of a terminal, the public transport address @PubUDP allocated to terminal 2 (including the public IP address and the public port), the transport mode used (UDP here) and the contact address specified by the terminal in the Contact field (step H50).
  • the P-CSCF server generates a TCP / UDP match information referred to herein as tcpudpCK (step H50).
  • This correspondence information is here, as in the first embodiment, a string of numeric characters of a predetermined size (eg 96 bits), randomly generated by the P-CSCF server 3, and unique in space and time. time for the server P-CSCF 3. Its value is equal for example here to 345345345387.
  • This correspondence information is stored by the P-CSCF server 3 in the context of the terminal 2 in association with the transport address @PubUDP. Then the P-CSCF server 3 sends a SIP response 200 OK to the registration request of the terminal 2, on the UDP protocol using the public transport address @PubUDP, via its module 3C. It inserts in this response, designated here by M5, the correspondence information tcpudpCK in a parameter of the Via field provided for this purpose (step H60).
  • the header of this response M5 thus includes the following Via and Contact headers:
  • the response M5 is intercepted by the entity NAT 4, which translates the public transport address @PubUDP into the private transport address @PrivUDP according to the association stored in its database 7 (step H70), before transfer the resulting response M5 'to the terminal 2 (step H80).
  • the terminal 2 On receiving the response M5 'via its module 2B, the terminal 2 stores in memory the correspondence information tcpudpCK, and is able to determine that a NAT entity is present between the P-CSCF server 3 and it, as well as the public transport address assigned to it by this entity for the UDP protocol.
  • this request R6 is a request for refreshing a TCP address association created with a NAT entity, as described in RFC 6223.
  • This request R6 is thus constituted as described in the document RFC 6223, two CRLF sequences, which are followed in accordance with the invention of a fake SIP response (for example a SIP response 499) containing the correspondence information tcpudpCK, by example in a "Binding-link" parameter of the response.
  • the SIP response is then followed by a new CRLF sequence.
  • the SIP response inserted in the request R6 is factitious in that it does not respond to any request per se. In this way, it is necessary to signal to the P-CSCF server 3 for which this message is intended that it carries correspondence information that it must use in accordance with the invention.
  • the terminal 2 through its module 2A, inserts information application in the TCP refresh request, namely the correspondence information tcpudpCK.
  • This request R6 is intercepted by the NAT 4 entity placed in a flow cut between the terminal 2 and the P-CSCF server 3, and triggers the opening on the NAT 4 of a gate for the terminal 2 for the protocol TCP this time (step H 100).
  • This step is identical to the steps E70 and F70 described above with reference to the first and second embodiments.
  • the NAT entity 4 upon receipt of the request R6, the NAT entity 4 creates in a manner known per se, in its database 7, an association (or "binding") between the private source transport address @PrivTCP of the request. R6 and a public transport address @PubTCP allocated dynamically to terminal 2 for the TCP protocol.
  • This public transport address @PubTCP consists of an IPadr_pubTCP public IP address and a public port_pubTCP port.
  • the NAT 4 stores in its database 7 a new quintuplet for the terminal 2 comprising:
  • the request R6 has the effect of creating and maintaining with the NAT 4 an address association for the terminal 2 for the TCP protocol which completes the association of addresses created in response to the request R5 for the UDP protocol.
  • the request R6 following the reception of the requests R5 and R6, at the level of the entity NAT 4, two associations of addresses for the terminal 2 respectively on the TCP protocol and on the UDP protocol are simultaneously available.
  • the NAT 4 transfers the request R6 to the server P-CSCF 3 in a manner known per se, in the form of a request R6 'having as source transport address the public transport address @PubTCP (step H 110) .
  • This request R6 ' is received by the server P-CSCF 3 via its module
  • the server P-CSCF 3 via its 3D module, identifies in the request R6 'the presence of the dummy response SIP 499 OK and extracted from it, the correspondence information tcpudpCK. Then it uses this correspondence information to map the source transport address @PubTCP of the request R6 'to the source transport address @PubUDP of the request R5' (step H 120). It then stores the transport address @PubTCP in the context of the terminal 2 stored in the database 6 in association with the transport address @PubUDP.
  • this mapping triggered by the presence of the correspondence information tcpudpCK in the request R6 ' enables the P-CSCF server 3 not only to determine which terminal 2 is associated with the public transport address @PubTCP of the request. R6 ', but also to make the link with the association of UDP addresses that he already had for this terminal in the database 6.
  • the server P-CSCF 3 is able to transmit without any problems.
  • it can manage and transfer to the terminal 2 requests having a size greater than the MTU size defined for the UDP protocol, as a TCP gate is opened on the NAT 4 entity and can be used.
  • the response M6 is intercepted by the entity NAT 4, which translates the public transport address @PubTCP into the private transport address @PrivTCP according to the association stored in its database 7 (step H 140), before to transfer the resulting response M6 'to the terminal 2 (step H150).
  • the terminal 2 via its modules 2B and 2A respectively, periodically sends (according to the periods specified by the P-CSCF server 3 in the response M5) refresh requests to the server P-CSCF 3 address associations that have him have been allocated for the UDP and TCP protocols (steps H160 and E170 respectively).
  • the third embodiment has been described according to a variant similar to that implemented in the first embodiment (generation of the correspondence information by the P-CSCF server 3). However, this third embodiment can be envisaged also in combination with the variants described in the second embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Business, Economics & Management (AREA)
  • General Business, Economics & Management (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

L'invention concerne un procédé de maintien d'associations d'adresses de transport auprès d'une entité de traduction d'adresses de transport (4) placée en coupure de flux entre un premier dispositif (2) et un second dispositif (3), le procédé de maintien étant destiné à être mis en œuvre par le premier dispositif (2) et comprenant :  une étape d'envoi (E10,F10,H10), conformément à un premier protocole de transport, d'un premier message (R1,R3,R5) ayant une première adresse de transport dite privée à destination du second dispositif, ce premier message étant apte à déclencher une première association par l'entité de traduction d'adresses de transport d'une première adresse dite publique à la première adresse privée et au premier protocole de transport;  sur réception d'une réponse (M1',M3',M5') au premier message provenant du second dispositif, une étape d'envoi (E90,F90,H90), conformément à un second protocole de transport, d'un second message ayant une seconde adresse de transport privée à destination du second dispositif, ce second message étant apte à déclencher une seconde association par l'entité de traduction d'adresses de transport (4) de ladite seconde adresse privée à une seconde adresse dite publique et au second protocole de transport, le second message contenant en outre une information dite de correspondance, comprise également dans le premier message et/ou dans la réponse au premier message, et apte à déclencher, suite à la réception du second message par le second dispositif, la mise en correspondance par le second dispositif de la seconde adresse de transport publique avec la première adresse de transport publique.

Description

PROCEDE ET DISPOSITIF DE MAINTIEN D'ASSOCIATIONS D'ADRESSES DE TRANSPORT AUPRES D'UNE ENTITE DE TRADUCTION D'ADRESSES
Arrière-plan de rinvention
L'invention se rapporte au domaine général des télécommunications.
Elle concerne plus particulièrement un mécanisme de configuration d'une entité de traduction d'adresses (ou NAT pour Network Address Translation) placée en coupure de flux entre deux dispositifs (ex. un terminal et un serveur) dans un réseau de télécommunications.
De façon connue, une entité NAT, respectivement NAPT (pour Network Address and Port Translation), est une entité qui associe à une adresse réseau, respectivement à une adresse de transport, dite privée (ou interne) de l'un des dispositifs, une adresse réseau, respectivement une adresse de transport, dite publique (ou externe), et qui procède à la traduction de l'adresse privée en l'adresse publique et inversement sur détection d'un message contenant cette adresse privée, respectivement publique. Par adresse de transport d'un dispositif, on entend ici la combinaison d'une adresse IP (Internet Protocol) et d'un port qui identifient le dispositif au niveau transport. Chaque association d'une adresse privée avec une adresse publique est réalisée pour un mode de transport donné, c'est-à-dire un protocole de transport. Un tel protocole est par exemple le protocole TCP (Transmission Control Protocol), UDP (User Datagram Protocol) ou SCTP (Stream Control Transmission Protocol).
Une telle entité NAT ou NAPT est couramment utilisée pour protéger les réseaux de télécommunications, et notamment les réseaux de télécommunications mettant en œuvre le protocole SIP (Session Initiation Protocol), normalisé et standardisé par l'IETF (Internet Engineering Task Force), et décrit dans le document RFC 3261 édité par l'IETF et intitulé « SIP Session Initiation Protocol », Juin 2002. Un tel réseau est par exemple un réseau de voix sur LTE (Long Term Evolution) ou VoLTE (pour Voice over LTE), un réseau de vidéo sur LTE ou ViLTE (pour Vidéo over LTE), etc., qui s'appuie sur une architecture IMS (IP Multimedia Subsystem) telle que définie par le standard 3GPP (Third Génération Partnership Project). Dans ces réseaux, une entité NAPT peut être utilisée en coupure de flux entre les terminaux et le point d'entrée dans le cœur de réseau IMS de l'opérateur, aussi appelé serveur P-CSCF (pour Proxy Call Session Control Function), et auprès duquel les terminaux s'enregistrent pour pouvoir accéder aux services offerts par le cœur de réseau. Elle permet d'accepter ou au contraire de refuser certains flux selon des règles qui lui sont propres, par exemple en fonction de l'adresse de transport source utilisée pour transporter ces flux. Il est d'usage de considérer que les flux venant des terminaux sont autorisés et déclenchent l'ouverture d'une porte (ou « pinhole ») sur l'entité NAT, une porte étant identifiée par l'association de plusieurs informations à savoir une adresse de transport privée (incluant une adresse IP et un port), une adresse de transport publique et un mode (protocole) de transport. Autrement dit, des portes sont créées sur l'entité NAT en réponse à des messages émis dans le sens terminal (ou réseau d'accès) vers cœur de réseau seulement, aucune porte ne pouvant être créée dans le sens cœur de réseau vers terminal. Les terminaux mobiles hébergent aujourd'hui de plus en plus d'applications communiquant au travers d'un ou de plusieurs réseaux d'opérateurs, parmi lesquelles notamment les applications de communication enrichie RCS (pour Rich Communication Services) ou dérivant de la technologie RCS comme les applications de SMS/MMS personnalisés, la voix sur LTE, etc.
Pour fonctionner, ces applications ont besoin de s'enregistrer auprès du cœur de réseau de l'opérateur. A cet effet, une requête d'enregistrement SIP REGISTER est émise par le terminal vers le serveur P-CSCF. La taille de cette requête d'enregistrement dépend du nombre d'applications requérant une connectivité au réseau : à chaque application correspond(ent) en effet une ou plusieurs caractéristiques multimédia (ou « feature tags » en anglais) venant enrichir le contenu d'un champ Contact de la requête SIP REGISTER émise par le terminal. Par conséquent, plus nombreuses sont les applications voulant s'enregistrer auprès du cœur de réseau, plus long est le champ Contact de la requête, et donc la requête SIP REGISTER elle-même.
La norme SIP impose aux dispositifs mettant en œuvre ce protocole (c'est-à-dire notamment aux terminaux et aux entités du cœur de réseau telles que le serveur P-CSCF) de supporter les deux protocoles de transport UDP et TCP. La plupart des terminaux aujourd'hui utilisent toutefois par défaut le protocole de transport UDP, pour des raisons de faible complexité notamment. La norme SIP prévoit cependant que lorsqu'une requête SIP dépasse une certaine taille, les dispositifs mettant en œuvre le protocole SIP doivent utiliser pour transporter cette requête le protocole de transport TCP, afin notamment de limiter les risques liés à une fragmentation des paquets UDP. Autrement dit, un dispositif configuré par défaut pour utiliser un mode de transport (i.e. un protocole) UDP doit basculer sur un mode de transport TCP s'il souhaite transmettre une requête SIP ayant une taille supérieure à un seuil déterminé. Ce seuil est défini dans le document RFC 3261 (chapitre 18.1.1) édité par l'IETF à 1300 octets.
Ce mode de fonctionnement imposé par la norme SIP peut être à l'origine de divers problèmes en présence d'une entité NAT entre un terminal et un serveur P-CSCF.
Plus précisément, on suppose par exemple qu'un terminal s'enregistre auprès du cœur de réseau en utilisant le mode de transport UDP : à cet effet, il envoie au serveur P-CSCF une requête SIP REGISTER ayant pour adresse de transport source une adresse de transport privée @IPpriv_UDP et véhiculée (transportée) conformément au protocole UDP. Cette requête est interceptée par l'entité NAT qui associe à l'adresse @IPpriv_UDP une adresse de transport publique @IPpub_UDP, et ouvre ainsi une porte pour ce terminal pour le protocole UDP. L'entité NAT transfère ensuite la requête SIP REGISTER du terminal au serveur P-CSCF avec cette adresse de transport @IPpub_UDP comme adresse source.
On suppose maintenant qu'une requête provenant du serveur P-CSCF et destinée au terminal dépasse la taille maximale autorisée pour utiliser le protocole UDP. Conformément à la norme SIP, le serveur P-CSCF doit envoyer cette requête au terminal selon le protocole de transport TCP. Or, aucune entité (et en particulier ni le serveur P-CSCF ni l'entité NAT) ne dispose d'une association d'adresses de transport publique/privée pour ce mode de transport TCP pour le terminal (i.e. aucune porte ouverte) puisque le terminal s'est enregistré avec le protocole de transport UDP. Par conséquent la requête du serveur P-CSCF ne peut être transmise dans ce contexte au terminal.
Un autre problème peut se poser également dans le sens des communications montantes (i.e. du terminal vers le réseau).
On suppose par exemple que le nombre d'applications hébergées par un terminal souhaitant s'enregistrer impose au terminal de basculer sur un mode de transport TCP bien que celui-ci soit configuré par défaut pour utiliser le mode de transport UDP. Dans ce contexte, la requête SIP REGISTER émise par le terminal à destination du serveur P-CSCF peut indiquer dans le champ Contact de l'entête une adresse de contact (ou AoC pour Address of Contact) joignable en mode UDP alors même que la requête SIP REGISTER est transportée selon le protocole TCP.
Au niveau de l'entité NAT, sur réception d'une telle requête SIP REGISTER, une porte est ouverte pour le mode de transport TCP, mais aucune porte n'est ouverte pour le mode de transport UDP bien que le terminal souhaite recevoir les requêtes du réseau sur une adresse joignable en mode UDP.
Par conséquent, si l'entité NAT reçoit une requête destinée au terminal, provenant du serveur P-CSCF et émise en utilisant le mode UDP, l'entité NAT est alors incapable de traiter cette requête. En effet, aucune porte UDP n'est ouverte sur l'entité NAT pour laisser passer cette requête, et comme mentionné précédemment, une requête provenant du cœur de réseau n'est pas apte à déclencher une telle ouverture. Il en résulte que le serveur P-CSCF ne recevra aucune réponse du terminal à sa requête.
Objet et résumé de l'invention
L'invention vise notamment à pallier à ces inconvénients en proposant un procédé de maintien d'associations d'adresses de transport auprès d'une entité de traduction d'adresses de transport placée en coupure de flux entre un premier dispositif et un second dispositif, le procédé de maintien étant destiné à être mis en œuvre par le premier dispositif et comprenant :
— une étape d'envoi, conformément à un premier protocole de transport, d'un premier message ayant une première adresse de transport dite privée à destination du second dispositif, ce premier message étant apte à déclencher une première association par l'entité de traduction d'adresses de transport d'une première adresse dite publique à la première adresse privée et au premier protocole de transport ;
— sur réception d'une réponse au premier message provenant du second dispositif, une étape d'envoi, conformément à un second protocole de transport, d'un second message ayant une seconde adresse de transport privée à destination du second dispositif, ce second message étant apte à déclencher une seconde association par l'entité de traduction d'adresses de transport de ladite seconde adresse privée à une seconde adresse dite publique et au second protocole de transport, le second message contenant en outre une information dite de correspondance, comprise également dans le premier message et/ou dans la réponse au premier message, et apte à déclencher, suite à la réception du second message par le second dispositif, la mise en correspondance par le second dispositif de la seconde adresse de transport publique avec la première adresse de transport publique.
Corrélativement, l'invention vise aussi un dispositif, dit premier dispositif, comprenant :
— un premier module d'envoi configuré pour envoyer conformément à un premier protocole de transport, un premier message ayant une première adresse de transport dite privée à destination d'un second dispositif, ce premier message étant apte à déclencher une première association, par une entité de traduction d'adresses de transport placée en coupure de flux entre ledit premier dispositif et ledit second dispositif, d'une première adresse dite publique à la première adresse privée et au premier protocole de transport ;
— un second module d'envoi, activé sur réception d'une réponse au premier message provenant du second dispositif, et configuré pour envoyer conformément à un second protocole de transport, un second message ayant une seconde adresse de transport privée à destination du second dispositif, ce second message étant apte à déclencher une seconde association par l'entité de traduction d'adresses de transport de ladite seconde adresse privée à une seconde adresse dite publique et au second protocole de transport, le second message contenant en outre une information dite de correspondance, comprise également dans le premier message et/ou dans la réponse au premier message, et apte à déclencher, suite à la réception du second message par le second dispositif, la mise en correspondance par le second dispositif de la seconde adresse de transport publique avec la première adresse de transport publique.
Dans l'exemple envisagé précédemment, le premier dispositif est typiquement un terminal, le second dispositif un serveur P-CSCF d'un cœur de réseau IP, et les premier et second protocoles sont choisis parmi les protocoles UDP et TCP. Toutefois, l'invention ne se limite pas exclusivement à des architectures IMS ni aux seuls protocoles de transport UDP et TCP. Elle peut également s'appliquer à toute autre architecture implémentant le protocole SIP ou un protocole au niveau applicatif ayant un comportement identique ou similaire, et qui impose à des équipements communiquant sur le réseau et séparés par une entité NAT de basculer d'un mode de transport à un autre, ces modes de transport pouvant être UDP, TCP, SCTP, etc.
L'invention permet ainsi au premier dispositif, par le biais des deux messages envoyés au second dispositif selon le premier mode de transport et selon le seconde mode de transport, de créer dynamiquement et de maintenir simultanément auprès de l'entité NAT deux portes ouvertes, autrement dit, deux associations d'adresses de transport pour le premier protocole de transport et pour le second protocole de transport respectivement. De cette sorte, on s'assure que l'entité NAT est capable de traiter des requêtes adressées au premier dispositif selon les deux modes de transport.
En outre les adresses de transport publiques utilisées selon les deux protocoles de transport sont avantageusement mises en correspondance au niveau du second dispositif. De cette sorte, le second dispositif est capable de traiter et de router correctement vers le premier dispositif une requête lui étant destinée et arrivant au second dispositif.
Ceci est rendu possible conformément à l'invention par l'envoi du second message par le premier dispositif au second dispositif. Ce second message a pour fonction d'une part, de créer auprès de l'entité NAT une association (ou « binding » en anglais) d'adresses pour le second mode de transport, et d'autre part, d'informer le second dispositif de cette association d'adresses et de véhiculer une information dite de correspondance qui permet à ce second dispositif de mettre en correspondance l'association d'adresses, et plus particulièrement l'adresse publique, créée pour le premier mode de transport avec l'association d'adresses, et plus particulièrement l'adresse publique, créée pour le second mode de transport. De cette sorte, le second dispositif est capable de gérer et d'orienter correctement les requêtes qui lui parviennent et qui sont destinées au premier dispositif.
Les problèmes mentionnés précédemment sont donc résolus par l'invention, que celle- ci soit appliquée dans un contexte où il existe ou non une différence entre le protocole utilisé par le premier dispositif pour s'enregistrer auprès du second dispositif et le protocole utilisé pour véhiculer sa requête d'enregistrement. Le terminal peut conformément à l'invention être joint sur l'un ou l'autre des protocoles.
Dans un mode particulier de réalisation, le procédé comprend en outre une étape d'envoi d'un message de rafraîchissement de la première association d'adresses et/ou d'un message de rafraîchissement de la seconde association d'adresses auprès de l'entité de traduction d'adresses.
Ces messages (ou requêtes) de rafraîchissement ont pour but de conserver (maintenir) ouvertes les portes créées sur l'entité NAT afin que le premier dispositif puisse recevoir des requêtes en provenance du second dispositif selon l'un ou l'autre des protocoles.
La réponse au premier message peut d'ailleurs avantageusement comprendre une période de rafraîchissement de la première et /ou de la seconde association d'adresses.
Comme mentionné précédemment, l'invention s'appuie sur l'activation de deux associations d'adresses selon deux protocoles de transport différents auprès de l'entité NAT par le premier dispositif mais également sur la mise en correspondance par le second dispositif des adresses publiques attribuées au premier dispositif selon les deux protocoles de transport.
Ainsi l'invention vise également un procédé de mise en correspondance d'adresses de transport publiques, ce procédé étant destiné à être mis en œuvre par un dispositif, dit second dispositif, et comprenant :
— une étape de réception d'un premier message transporté conformément à un premier protocole de transport, ledit premier message ayant comme adresse de transport source une première adresse de transport dite publique qui a été allouée à un premier dispositif par une entité de traduction d'adresses de transport placée en coupure de flux entre ledit premier et ledit second dispositif ; — une étape de mémorisation de la première adresse de transport publique en association avec le premier protocole de transport et une information dite de correspondance ;
— une étape d'envoi au premier dispositif d'une réponse au premier message ;
— une étape de réception d'un second message transporté conformément à un second protocole de transport, ledit second message ayant comme adresse de transport source une seconde adresse de transport publique qui a été allouée au premier dispositif par l'entité de traduction d'adresses de transport, ce second message comprenant ladite information de correspondance ; et
— une étape de mise en correspondance de la première adresse de transport publique avec la seconde adresse de transport publique en utilisant l'information de correspondance.
Corrélativement, l'invention concerne un second dispositif, comprenant :
— un module de réception, configuré pour recevoir un premier message transporté conformément à un premier protocole de transport, ledit premier message ayant comme adresse de transport source une première adresse de transport dite publique qui a été allouée à un premier dispositif par une entité de traduction d'adresses de transport placée en coupure de flux entre ledit premier et ledit second dispositif ;
— un module de mémorisation, configuré pour mémoriser la première adresse de transport publique en association avec le premier protocole de transport et une information dite de correspondance ;
— un module d'envoi, configuré pour envoyer au premier dispositif une réponse au premier message ;
— un module de réception, configuré pour recevoir un second message transporté conformément à un second protocole de transport, ledit second message ayant comme adresse de transport source une seconde adresse de transport dite publique qui a été allouée au premier dispositif par l'entité de traduction d'adresses de transport, ce second message comprenant ladite information de correspondance ; et
— un module de mise en correspondance, configuré pour mettre en correspondance la première adresse de transport publique avec la seconde adresse de transport publique en utilisant l'information de correspondance.
Le procédé de mise en correspondance et le second dispositif bénéficient des mêmes avantages décrits précédemment pour le procédé de maintien et le premier dispositif.
Dans un mode particulier de réalisation, le premier message est une requête d'enregistrement du premier dispositif auprès du second dispositif et/ou le second message est un message de rafraîchissement d'une association d'adresses auprès de l'entité de traduction d'adresses.
Ainsi, par exemple, lorsque le second protocole est le protocole UDP, le second message est une requête SBR (STUN Binding Request) vide (i.e. sans contenu de message ou avec un message minimum non intrusif, c'est-à-dire insignifiant) conforme au protocole STUN (Simple Traversai of UDP through NATs), apte à rafraîchir l'association d'adresses créée au niveau de l'entité NAT pour le premier dispositif pour le second protocole.
Selon un autre exemple, lorsque le second protocole est le protocole TCP, le second message est un message de rafraîchissement d'une association d'adresses pour le protocole TCP, conforme au mécanisme décrit dans le document RFC 6223 intitulé « Indication of Support for keep-alive », avril 2011, et qui comprend deux séquences de retour chariot et de saut de ligne ou CLRF (Carriage Return and Line Feed).
Ainsi, dans ce mode particulier de réalisation, l'invention tire profit de formats de messages déjà existants au niveau des protocoles de transport classiques, et ne nécessite donc pas l'introduction de nouveaux formats de messages, d'une part, pour déclencher les associations d'adresses selon les deux protocoles auprès de l'entité NAT, et d'autre part pour véhiculer l'information de correspondance qui permet au second dispositif de relier l'adresse de transport publique sur le premier protocole avec l'adresse de transport publique sur le second protocole.
Cette information de mise en correspondance peut être générée soit par le premier dispositif soit par le second dispositif. Il s'agit préférentiellement d'un identifiant unique pour le second dispositif dans l'espace et dans le temps pour au moins la durée d'enregistrement du premier dispositif auprès du réseau, afin que le second dispositif puisse mettre en correspondance de manière univoque la première adresse publique avec la seconde adresse publique. Cette information de correspondance est par exemple une chaîne de caractères aléatoire ou un identifiant UUID (pour Universal Unique Identifier).
Ainsi, dans un mode particulier de réalisation, l'information de correspondance est générée par le second dispositif (par exemple sur réception du premier message) et insérée par celui-ci dans la réponse au premier message.
La présence de l'information de correspondance dans la réponse au premier message et dans le second message permet de mettre aisément en correspondance la première adresse de transport source publique du premier message et la seconde adresse de transport source publique du second message.
Dans l'exemple du second protocole UDP et du second message s'appuyant sur une requête SBR vide, l'information de correspondance peut être notamment une chaîne de caractères numériques générée par le second dispositif puis insérée par le premier dispositif dans un champ « Transaction-Id » d'un entête de la requête SBR.
Dans l'exemple du second protocole TCP, on peut envisager que le second message contienne une réponse factice conforme à un protocole de contrôle de sessions, cette réponse factice comprenant l'information de correspondance. Le protocole de contrôle de sessions considéré est préférentiellement le protocole SIP.
Par ce biais, on introduit dans les messages de rafraîchissement déjà prévus par les protocoles UDP et TCP des informations applicatives qui permettent au second dispositif la mise en correspondance des adresses publiques allouées par l'entité NAT au premier dispositif pour ces deux protocoles.
Dans un autre mode de réalisation, l'information de correspondance comprend la première adresse de transport publique allouée au premier dispositif, cette première adresse de transport publique ayant été insérée dans la réponse au premier message par le second dispositif.
Autrement dit, dans ce mode de réalisation, on utilise une information déjà retournée classiquement par le second dispositif dans son message de réponse selon le protocole SIP dès lors que le second dispositif a détecté la présence d'une entité NAT en coupure de flux des messages qu'il échange avec le premier dispositif. Une telle détection peut être mise en œuvre aisément, de façon connue en soi, en analysant les différentes adresses de transport spécifiées dans l'entête du premier message arrivant au second dispositif.
Dans ce mode de réalisation, lorsque le second protocole est le protocole UDP, l'information de correspondance peut ensuite être insérée par le premier dispositif dans un champ de la requête SBR de rafraîchissement ayant un format identique à un champ MAPPED-ADDRESS ou XOR-MAPPED-ADDRESS défini par le protocole STUN.
Un tel champ est déjà utilisé classiquement dans le protocole STUN pour véhiculer ce type d'information dans le sens réseau vers terminal. L'invention propose dans ce mode de réalisation d'utiliser un champ similaire pour véhiculer ce même type d'information dans le sens terminal vers réseau.
En réutilisant des informations existantes et/ou des formats de messages déjà prévus par les protocoles de transport, la mise en œuvre de l'invention est grandement simplifiée.
Dans un autre mode de réalisation, l'information de correspondance peut être générée par le premier dispositif et être insérée par le premier dispositif dans le premier message pour être transmise au second dispositif.
II peut s'agir par exemple d'une information déjà transmise dans les messages du premier dispositif indépendamment de l'invention, comme par exemple un identifiant de transaction ou de session.
Dans l'exemple du protocole UDP et de la requête SBR vide utilisée pour le second message, une telle information de correspondance peut ensuite être aisément insérée par le premier dispositif dans un attribut REALM, NONCE ou SOFTWARE de la requête SBR.
Dans un mode particulier de réalisation, les différentes étapes du procédé de maintien et/ou du procédé de mise en correspondance sont déterminées par des instructions de programmes d'ordinateurs.
En conséquence, l'invention vise aussi un programme d'ordinateur sur un support d'informations, ce programme étant susceptible d'être mis en œuvre dans un premier dispositif ou plus généralement dans un ordinateur, ce programme comportant des instructions adaptées à la mise en œuvre des étapes d'un procédé de maintien tel que décrit ci-dessus. L'invention vise également un programme d'ordinateur sur un support d'informations, ce programme étant susceptible d'être mis en œuvre dans un second dispositif ou plus généralement dans un ordinateur, ce programme comportant des instructions adaptées à la mise en œuvre des étapes d'un procédé de mise en correspondance tel que décrit ci-dessus.
Chacun de ces programmes peut utiliser n'importe quel langage de programmation, et être sous la forme de code source, code objet, ou de code intermédiaire entre code source et code objet, tel que dans une forme partiellement compilée, ou dans n'importe quelle autre forme souhaitable.
L'invention vise aussi un support d'informations lisible par un ordinateur, et comportant des instructions d'un programme d'ordinateur tel que mentionné ci-dessus.
Le support d'informations peut être n'importe quelle entité ou dispositif capable de stocker le programme. Par exemple, le support peut comporter un moyen de stockage, tel qu'une ROM, par exemple un CD ROM ou une ROM de circuit microélectronique, ou encore un moyen d'enregistrement magnétique, par exemple une disquette (floppy dise) ou un disque dur.
D'autre part, le support d'informations peut être un support transmissible tel qu'un signal électrique ou optique, qui peut être acheminé via un câble électrique ou optique, par radio ou par d'autres moyens. Le programme selon l'invention peut être en particulier téléchargé sur un réseau de type Internet.
Alternativement, le support d'informations peut être un circuit intégré dans lequel le programme est incorporé, le circuit étant adapté pour exécuter ou pour être utilisé dans l'exécution du procédé en question.
L'invention vise également un système de communication comprenant :
— un premier dispositif selon l'invention ;
— un second dispositif selon l'invention ; et
— une entité de traduction d'adresses de transport placée en coupure de flux entre le premier dispositif et le second dispositif.
Par ailleurs, selon un mode de réalisation particulier :
— le premier protocole et le second protocole sont des protocoles distincts qui peuvent être choisis parmi les protocoles TCP, UDP et SCTP notamment ; et/ou
— le premier dispositif est un terminal et le second dispositif est un point d'entrée d'un cœur de réseau auprès duquel le premier dispositif doit s'enregistrer pour accéder au cœur de réseau.
On peut également envisager, dans d'autres modes de réalisation, que le procédé de maintien, le procédé de mise en correspondance, le premier et le second dispositif et le système de communication selon l'invention présentent en combinaison tout ou partie des caractéristiques précitées. Brève description des dessins
D'autres caractéristiques et avantages de la présente invention ressortiront de la description faite ci-dessous, en référence aux dessins annexés qui en illustrent un exemple de réalisation dépourvu de tout caractère limitatif. Sur les figures :
— la figure 1 représente, de façon schématique, un système de communication conforme à l'invention dans un mode particulier de réalisation ;
— les figures 2 et 3 représentent respectivement l'architecture matérielle d'un premier dispositif et d'un second dispositif conformes à l'invention, dans un mode particulier de réalisation ;
— les figures 4 à 6 illustrent les principales étapes des procédés de maintien et de mise en correspondance selon l'invention dans différents modes de réalisation dans lesquels ils sont mis en œuvre par le système de communication de la figure 1.
Description détaillée de l'invention
La figure 1 représente, dans son environnement, un système de communication 1 conforme à l'invention.
Ce système de communication 1 comprend :
— un premier dispositif 2, conforme à l'invention ;
— un second dispositif 3, conforme à l'invention ; et
— une entité NAT 4, placée en coupure de flux entre le premier dispositif 2 et le second dispositif 3.
Dans l'exemple envisagé à la figure 1, le premier dispositif 2 est un terminal mobile (ex. un téléphone intelligent ou « smartphone », une tablette numérique, un ordinateur portable, etc.), hébergeant une pluralité d'applications, telles que par exemple des applications RCS, VoLTE, etc., s'appuyant sur les fonctionnalités offertes par un cœur de réseau IP 5.
Ce cœur de réseau IP 5 implémente ici une architecture IMS mettant en œuvre le protocole d'initiation de session SIP. Une telle architecture est connue de l'homme du métier et décrite par exemple dans les documents 3GPP TS 23.228 et TS 24.229. Toutefois cette hypothèse n'est pas limitative en soi, et d'autres architectures peuvent être envisagées, comme par exemple une architecture propriétaire, etc.
Le second dispositif 3 est un serveur P-CSCF du cœur de réseau IP 5 tel que décrit dans les documents 3GPP TS 23.228 et TS 24.229 précités et non décrit plus en détail ici, excepté les caractéristiques mises en œuvre par ce serveur conformément à l'invention.
Il est connu que pour pouvoir fonctionner sur le cœur de réseau IP 5, les différentes applications hébergées par le terminal 2 doivent s'enregistrer au préalable auprès de celui-ci. Cet enregistrement est géré par le serveur P-CSCF 3, et mis en œuvre par le terminal 2 en envoyant une requête SIP REGISTER au serveur P-CSCF 3 contenant notamment les caractéristiques multimédia (ou « feature tags ») supportées par ces applications. Les contextes d'enregistrement des terminaux au cœur de réseau 5 sont stockés par le serveur P-CSCF 3 dans une base de données 6.
L'entité NAT 4, placée en coupure de flux entre le terminal 2 et le serveur P-CSCF 3, est ici une entité NAPT (pour Network Address and Port Translation), apte à associer à une adresse de transport dite privée (ou interne) du terminal 2, une adresse de transport dite publique (ou externe) pour un mode de transport donné, tel que par exemple TCP, UDP ou SCTP. Une telle adresse de transport consiste ici en la combinaison d'une adresse IP et d'un port. Il convient de noter toutefois que l'invention s'applique également à une adresse de transport identifiée seulement par une adresse réseau ou IP.
L'association (adresse IP publique, port public, adresse IP privée, port privé, mode de transport) créée pour le terminal 2 est stockée dans une base de données 7 maintenue par l'entité NAT 4. La création d'une telle association permet d'ouvrir une porte (ou « pinhole ») au niveau de l'entité NAT 4 ; autrement dit, toutes les requêtes provenant du cœur de réseau 5 et transportées en utilisant l'adresse de transport publique comme destination et un mode de transport enregistrés par l'entité NAT 4 pour le terminal 2 sont acheminées par cette dernière jusqu'au terminal 2 en utilisant l'adresse de transport privée associée. Inversement, l'entité NAT 4 procède à la traduction de l'adresse de transport source privée d'un message provenant du terminal 2 en l'adresse de transport source publique associée dans la base de données 7.
Dans le mode de réalisation décrit ici, on suppose que dès lors qu'un message est émis par un terminal (et a fortiori le terminal 2) à destination du cœur de réseau 5, avec une adresse de transport source et selon un protocole de transport, ce message est apte à déclencher l'ouverture d'une porte au niveau de l'entité NAT 4 (autrement dit, il est autorisé à accéder au réseau) si une association d'adresses IP de transport n'existe pas déjà pour ce terminal dans la base de données 7 pour cette adresse de transport source et ce protocole de transport.
Dans le mode de réalisation décrit ici, le terminal 2 a l'architecture matérielle d'un ordinateur, telle qu'illustrée schématiquement à la figure 2.
Le terminal 2 comprend notamment un processeur 8, une mémoire morte 9, une mémoire vive 10, une mémoire non volatile 11 dans laquelle sont stockées les applications hébergées par le terminal 2, et un module de communication 12.
Le module de communication 12 permet notamment au terminal 2 de communiquer avec le cœur de réseau 5 et en particulier avec le serveur P-CSCF 3. Ce module de communication 12 comprend à cet effet une pile de protocoles incluant notamment le protocole de contrôle de sessions SIP et les protocoles de transport UDP et TCP, ainsi que d'autres protocoles classiquement utilisés pour communiquer sur un réseau.
II convient de noter que l'invention ne se limite pas aux protocoles précités et d'autres protocoles pourraient être envisagés, comme par exemple le protocole SCTP.
La mémoire morte 9 du terminal 2 constitue un support d'enregistrement conforme à l'invention, lisible par le processeur 8 et sur lequel est enregistré un programme d'ordinateur conforme à l'invention comportant des instructions pour l'exécution des étapes d'un procédé de maintien selon l'invention, dont les étapes sont décrites ultérieurement plus en détail.
Ce programme d'ordinateur définit de façon équivalente des modules fonctionnels (et logiciels ici) du terminal 2 et notamment un premier module 2A d'envoi et de réception de messages selon un premier protocole de transport (par exemple ici TCP) et un second module 2B d'envoi et de réception de messages selon un second protocole de transport (par exemple ici UDP). Les fonctions mises en œuvre par ces modules sont décrites plus en détail ultérieurement en référence aux figures 4 à 6.
De façon similaire, dans le mode de réalisation décrit ici, le serveur P-CSCF 3 a l'architecture matérielle d'un ordinateur, telle qu'illustrée schématiquement à la figure 3.
Il comprend notamment un processeur 13, une mémoire morte 14, une mémoire vive 15, une mémoire non volatile 16 dans laquelle est stockée la base de contextes 6, et un module de communication 17.
Le module de communication 17 permet notamment au serveur P-CSCF 3 de communiquer avec d'autres entités du cœur de réseau 5 (non représentées sur la figure 1) et avec des terminaux gérés par ce cœur de réseau comme par exemple le terminal 2. Ce module de communication 17 comprend à cet effet une pile de protocoles incluant notamment le protocole d'initiation de session SIP et les protocoles de transport UDP et TCP, ainsi que d'autres protocoles classiquement utilisés pour communiquer sur un réseau.
II convient de noter que l'invention ne se limite pas bien entendu aux protocoles précités et d'autres protocoles pourraient être envisagés, comme par exemple le protocole SCTP.
La mémoire morte 14 du serveur P-CSCF 3 constitue un support d'enregistrement conforme à l'invention, lisible par le processeur 13 et sur lequel est enregistré un programme d'ordinateur conforme à l'invention comportant des instructions pour l'exécution des étapes d'un procédé de mise en correspondance selon l'invention, dont les étapes sont décrites ultérieurement plus en détail.
Ce programme d'ordinateur définit de façon équivalente des modules fonctionnels (et logiciels ici) du serveur P-CSCF 3 et notamment un module 3A d'envoi et de réception de messages du terminal 2 selon un premier protocole de transport (TCP ici), un module 3B de mémorisation des adresses de transport publiques utilisées par le terminal 2 dans le contexte du terminal stocké dans la base de données 6, un module 3C d'envoi et de réception de messages du terminal 2 selon un second protocole de transport (UDP ici), et un module 3D de mise en correspondance des adresses publiques. Les fonctions mises en œuvre par ces modules sont décrites plus en détail maintenant en référence aux figures 4 à 6.
Nous allons maintenant décrire, en références aux figures 4 à 6, différents modes de réalisation de l'invention, et notamment des étapes des procédés de maintien et de mise en correspondance selon l'invention, lorsque celle-ci est appliquée dans deux cas de figure distincts : — 1er cas de figure : le terminal 2 s'enregistre auprès du serveur P-CSCF 3 en utilisant un mode de transport (ex. TCP) différent de celui sur lequel il souhaite être contacté (ex. UDP), par exemple pour les motifs évoqués précédemment, à savoir le terminal 2 est configuré par défaut pour utiliser le protocole UDP en émission et en réception, mais du fait, par exemple, de la pluralité d'applications souhaitant s'enregistrer auprès du cœur de réseau 5, la requête d'enregistrement émise par le terminal 2 dépasse la taille maximale autorisée pour utiliser ce protocole et le terminal 2 doit basculer sur un mode de transport TCP. Il existe donc une différence dans ce premier cas de figure entre le mode de transport spécifié dans la requête pour contacter le terminal 2 et le mode de transport sur lequel est reçue cette requête par le serveur P-CSCF 3 ;
— 2eme cas de figure : le terminal 2 s'enregistre selon un mode de transport (ex. UDP) cohérent avec celui sur lequel il souhaite être contacté.
La figure 4 illustre les principales étapes d'un procédé de maintien et d'un procédé de mise en correspondance telles qu'elles sont mises en œuvre respectivement par le terminal 2 et par le serveur 3 selon un premier mode de réalisation appliqué au premier cas de figure précité.
On suppose dans l'exemple envisagé à la figure 4 que le terminal 2 envoie, par l'intermédiaire de son module 2A, une requête RI d'enregistrement SIP REGISTER au serveur P- CSCF 3 (étape E10) contenant, dans son entête, les champs Via et Contact suivants :
Via : SIP/2.0/TCP IPadr_priv:port_privTCP ; branch=z9hG4bKZ8WlyYt8la ; keep
Contact : userpart@IPadr_priv:port_privUDP ; transport=udp où :
— IPadr_priv désigne l'adresse IP privée du terminal 2 (utilisée pour les deux protocoles UDP et TCP) ;
— port_privTCP désigne le port privé du terminal 2 pour le protocole TCP ; et
— port_privUDP désigne le port privé du terminal 2 pour le protocole UDP.
L'adresse IP privée IPadr_priv et le port privé port_privTCP constituent ici l'adresse privée @PrivTCP de transport du terminal 2 pour le protocole de transport TCP. De façon similaire, l'adresse IP privée IPadr_priv et le port privé port_privUDP constituent l'adresse privée @PrivUDP de transport du terminal 2 pour le protocole de transport UDP.
Autrement dit, la requête RI est envoyée conformément au protocole TCP avec comme adresse de transport source l'adresse de transport privée @PrivTCP (comme mentionné dans le champ Via de l'entête), bien que le terminal 2 souhaite être contacté en utilisant une adresse de transport selon le protocole UDP (comme mentionné dans le champ Contact de l'entête). La requête RI est interceptée par l'entité NAT 4 placée en coupure de flux du terminal 2 et de l'entité P-CSCF 3 (étape E20), et déclenche l'ouverture sur l'entité NAT 4 d'une porte pour le terminal 2 pour le protocole TCP.
Plus précisément, sur réception de la requête RI, l'entité NAT 4 crée de façon connue en soi, dans sa base de données 7, une association (ou « binding ») entre l'adresse de transport privée @PrivTCP source de la requête RI et une adresse de transport publique @PubTCP allouée dynamiquement au terminal 2 pour le protocole TCP. Cette adresse de transport publique @PubTCP est constituée d'une adresse IP publique IPadr_pubTCP et d'un port public port_pubTCP. Autrement dit, l'entité NAT 4 stocke dans sa base de données 7 un quintuplet pour le terminal 2 comprenant :
— l'adresse IP privée IPadr_priv du terminal 2 ;
— le port privé port_privTCP du terminal 2 pour TCP ;
— l'adresse IP publique IPadr_pubTCP allouée au terminal 2 pour TCP ;
— le port public port_pubTCP alloué au terminal 2 pour TCP ; et
— un identifiant du mode de transport utilisé à savoir ici du protocole TCP.
Puis l'entité NAT 4 transfère la requête RI au serveur P-CSCF 3 de façon connue en soi, sous la forme d'une requête RI' émise en utilisant l'adresse de transport @PubTCP (étape E30).
Cette requête RI' est reçue par le serveur P-CSCF 3 par l'intermédiaire de son module 3A avec comme adresse de transport source @PubTCP.
Le serveur P-CSCF 3 crée un contexte dans sa base de données 6 pour le terminal 2 dans lequel il mémorise, via son module 3B, en plus des autres données classiquement mémorisées par un serveur P-CSCF lors de l'enregistrement d'un terminal, l'adresse de transport publique @PubTCP allouée par l'entité NAT 4 au terminal 2 (incluant l'adresse IP publique et le port public), le mode de transport utilisé (TCP ici) et l'adresse de contact précisée par le terminal dans le champ Contact (étape E40).
Puis il détecte, en analysant le champ Via de l'entête de la requête et en comparant l'adresse IP de transport (@PrivTCP) mentionnée dans ce champ avec l'adresse de transport source (@PubTCP) de la requête RI', qu'une entité NAT est présente entre le terminal 2 et lui (étape E40).
Suite à cette détection, dans le premier mode de réalisation décrit ici, le serveur P- CSCF génère une information dite de correspondance TCP/UDP et désignée par tcpudpCK dans la suite de la description (étape E50). Cette information de correspondance est ici une chaîne de caractères numériques d'une taille prédéterminée (ex. 96 bits), générée aléatoirement par le serveur P-CSCF 3, et unique dans l'espace et dans le temps (au moins pour le temps d'enregistrement du terminal 2) pour le serveur P-CSCF 3. Dans la terminologie SIP, une telle chaîne de caractères numériques ou alphanumériques est également appelée « cookie ». Il s'agit par exemple d'un identifiant universel unique ou UUID. Dans l'exemple envisagé ici, cette information de correspondance est égale à la valeur 345345345387.
Cette information de correspondance est mémorisée par le serveur P-CSCF 3 dans le contexte du terminal 2 en association avec l'adresse de transport @PubTCP.
Puis le serveur P-CSCF 3 envoie une réponse SIP 200 OK à la requête d'enregistrement du terminal 2, sur le protocole TCP en utilisant l'adresse de transport publique @PubTCP, par l'intermédiaire de son module 3A. Il insère préalablement dans cette réponse, désignée ici par Ml, l'information de correspondance TCP/UDP tcpudpCK dans un paramètre tcpudpCK du champ Via prévu à cet effet (étape E60). L'entête de cette réponse Ml comprend ainsi notamment les entêtes Via et Contact suivants :
Via : SIP/2.0/TCP IPadr_privTCP:port_privTCP ; branch=z9hG4bKZ8WlyYt8la ; keep=60 ; tcpudpCK=345345345387 ; keeptcp =600 ; keepudp=60 ; rport= port_pubTCP; received= IPadr_pubTCP
Contact : userpart@IPadr_privUDP:port_privUDP ; transport=udp ; expires=3600
Les éléments ajoutés par le serveur P-CSCF 3 sont représentés en caractères gras ci- dessus pour faciliter leur identification. En particulier, dans le premier mode de réalisation décrit ici, le serveur P-CSCF 3 a inséré dans l'entête Via de la réponse Ml l'information de correspondance tcpudpCK=345345345387, mais également des valeurs de durées de rafraîchissement keeptcp et keepudp des associations NAT auprès de l'entité NAT 4 pour les deux protocoles TCP et UDP respectivement. Le serveur P-CSCF 3 ayant détecté la présence de l'entité NAT 4 a également indiqué au terminal 2 dans sa réponse, conformément au protocole SIP, l'adresse de transport publique @PubTCP, dans les attributs rport et received. Enfin, la durée de l'enregistrement expires est donnée dans le champ Contact.
La réponse Ml est interceptée par l'entité NAT 4, qui traduit l'adresse de transport publique @PubTCP en l'adresse de transport privée @PrivTCP conformément à l'association stockée dans sa base de données 7 (étape E70), avant de transférer la réponse Μ en résultant vers le terminal 2 (étape E80).
Sur réception de la réponse Μ via son module 2A, le terminal 2 stocke en mémoire l'information de correspondance tcpudpCK, et est en mesure de déterminer qu'une entité NAT est présente entre le serveur P-CSCF 3 et lui, ainsi que l'adresse de transport publique qui lui est attribuée (allouée) par cette entité pour le port TCP.
Puis il envoie une nouvelle requête R2 au serveur P-CSCF 3 conforme cette fois-ci au protocole UDP, cette requête R2 ayant comme adresse de transport source l'adresse de transport privée UDP @PrivUDP du terminal 2 (étape E90).
Dans le premier mode de réalisation décrit ici, cette requête R2 est une requête SBR (STUN Binding Request) de rafraîchissement d'une association d'adresses UDP créée auprès d'une entité NAT, conforme au protocole STUN. Le protocole STUN est un protocole connu décrit notamment dans le document RFC 5389 édité en octobre 2008 par l'IETF.
Plus précisément cette requête R2 est une requête SBR vide (i.e. sans contenu de message ou avec un contenu minimum insignifiant non intrusif), dans laquelle le terminal 2 par l'intermédiaire de son module 2B, insère l'information de correspondance tcpudpCK qu'il a reçue du serveur P-CSCF 3 dans le message de réponse Μ .
L'information de correspondance tcpudpCK est insérée ici dans un attribut Transaction
ID de la requête SBR, la taille et la nature (entier codé sur 96 bits) de cet attribut étant compatible avec la taille de l'information de correspondance. Il convient de noter qu'un tel attribut est classique pour ce type de requête, de sorte que l'invention, dans ce mode de réalisation, ne requiert l'introduction d'aucun nouvel attribut, et reste compatible avec les mécanismes décrits dans le document RFC5626 intitulé « Managing Client-Initiated Connections in the Session
Initiation Protocol », édité par l'IETF.
En variante, un nouvel attribut peut être créé pour véhiculer dans la requête SBR l'information de correspondance. Dans une autre variante encore, un autre type de requête peut être utilisée pour la requête R2.
Autrement dit, conformément au premier mode de réalisation de l'invention, le terminal 2 par le biais de son module 2B insère une information applicative dans la requête de rafraîchissement SBR, à savoir l'information de correspondance tcpudpCK.
Cette requête R2 est interceptée par l'entité NAT 4 placée en coupure de flux entre le terminal 2 et le serveur P-CSCF 3, et déclenche l'ouverture sur l'entité NAT 4 d'une porte pour le terminal 2 pour le protocole UDP cette fois-ci (étape E100).
Plus précisément, sur réception de la requête R2, l'entité NAT 4 crée de façon connue en soi, dans sa base de données 7, une association (ou « binding ») entre l'adresse de transport source privée @PrivUDP de la requête R2, et une adresse de transport publique @PubUDP allouée dynamiquement au terminal 2 pour le protocole UDP. Cette adresse de transport publique
@PubUDP est constituée d'une adresse IP publique IPadr_pubUDP et d'un port public port_pubUDP. Autrement dit, l'entité NAT 4 stocke dans sa base de données 7 un nouveau quintuplet pour le terminal 2 comprenant :
— l'adresse IP privée IPadr_priv du terminal 2;
— le port privé port_privUDP du terminal 2 pour UDP ;
— l'adresse IP publique IPadr_pubUDP allouée au terminal 2 pour UDP ;
— le port public port_pubUDP alloué au terminal 2 pour UDP ; et
— un identifiant du mode de transport utilisé à savoir ici du protocole UDP.
Ainsi, la requête R2 a pour effet de créer et de maintenir auprès de l'entité NAT 4 une association d'adresses pour le terminal 2 pour le protocole UDP qui vient compléter l'association d'adresses créée en réponse à la requête RI pour le protocole TCP. Autrement dit, suite à la réception des requêtes RI et R2, on dispose simultanément au niveau de l'entité NAT 4 de deux associations d'adresses pour le terminal 2 respectivement sur le protocole TCP et sur le protocole UDP.
Puis l'entité NAT 4 transfère la requête R2 au serveur P-CSCF 3 de façon connue en soi, sous la forme d'une requête R2' ayant comme adresse de transport source l'adresse de transport publique @PubUDP (étape E110).
Cette requête R2' est reçue par le serveur P-CSCF 3 par l'intermédiaire de son module
3C.
Le serveur P-CSCF 3, via son module 3D, extrait de la requête R2' l'information de correspondance tcpudpCK. Puis il utilise cette information de correspondance pour mettre en correspondance l'adresse de transport source publique @PubUDP de la requête R2' et l'adresse de transport source publique @PubTCP de la requête RI' (étape E120). Il stocke alors l'adresse de transport @PubUDP dans le contexte du terminal 2 stocké dans la base de données 6 en association avec l'adresse de transport publique @PubTCP.
Ainsi, cette mise en correspondance déclenchée par la présence de l'information de correspondance tcpudpCK dans la requête R2' permet au serveur P-CSCF 3 non seulement de déterminer à quel terminal 2 est associée l'adresse de transport publique @PubUDP de la requête R2', mais également de faire le lien avec l'association d'adresses TCP dont il disposait déjà pour ce terminal dans la base de données 6. Il en résulte dès lors que le serveur P-CSCF 3 est apte à transmettre sans difficulté les messages destinés au terminal 2 arrivant du cœur de réseau 5 ou ses propres messages.
Il envoie, via son module 3C, une réponse SBResp au terminal 2 sur l'adresse de transport publique @PubUDP contenant, dans un attribut MAPPED-ADDRESS ou XOR-MAPPED, l'adresse de transport publique @PubUDP de la requête R2' (étape E130). Cette réponse est notée M2.
La réponse M2 est interceptée par l'entité NAT 4, qui traduit l'adresse de transport publique @PubUDP en l'adresse de transport privée @PrivUDP conformément à l'association stockée dans sa base de données 7 (étape E140), avant de transférer la réponse M2' en résultant vers le terminal 2 (étape E150).
Sur réception de la réponse M2' via son module 2B, le terminal 2 peut déterminer quelle adresse de transport publique lui est allouée par l'entité NAT 4 pour le protocole UDP.
Puis le terminal 2, via respectivement ses modules 2A et 2B, envoie périodiquement (selon les périodes spécifiées par le serveur P-CSCF 3 dans la réponse Ml) des requêtes de rafraîchissement au serveur P-CSCF 3 des associations d'adresses qui lui ont été allouées pour les protocoles TCP et UDP (étapes E160 et E170 respectivement).
Pour le protocole TCP, une telle requête comprend de façon connue, conformément au mécanisme de rafraîchissement (ou « keep alive ») décrit dans le document RFC 6223 cité précédemment, une séquence de deux retours chariot et sauts de ligne CRLF, tandis que pour le protocole UDP, elle est constituée, comme mentionné précédemment, d'une requête SBR vide ou au contenu insignifiant.
La figure 5 illustre les principales étapes d'un procédé de configuration et d'un procédé de mise en correspondance telles qu'elles sont mises en œuvre respectivement par le terminal 2 et par le serveur 3 selon un deuxième mode de réalisation appliqué au premier cas de figure envisagé précédemment (i.e. différence entre le protocole de transport sur lequel le serveur 3 reçoit la requête d'enregistrement du terminal 2 et le protocole de transport sur lequel le terminal indique dans cette requête vouloir être contacté).
On suppose dans l'exemple envisagé à la figure 5 que le terminal 2 envoie, par l'intermédiaire de son module 2A, une requête R3 d'enregistrement SIP REGISTER au serveur P- CSCF 3 (étape F10) contenant, dans son entête, les champs Via et Contact suivants :
Via : SIP/2.0/TCP IPadr_priv:port_privTCP ; branch=z9hG4bKZ8WlyYt8la ; keep
Contact : userpart@IPadr_priv:port_privUDP ; transport=udp
— IPadr_priv désigne l'adresse IP privée du terminal 2 (utilisée pour les deux protocoles UDP et TCP) ;
— port_privTCP désigne le port privé du terminal 2 pour le protocole TCP ; et
— port_privUDP désigne le port privé du terminal 2 pour le protocole UDP.
L'adresse IP privée IPadr_priv et le port privé port_privTCP constituent ici l'adresse privée @PrivTCP de transport du terminal 2 pour le protocole de transport TCP. De façon similaire, l'adresse IP privée IPadr_priv et le port privé port_privUDP constituent l'adresse privée @PrivUDP de transport du terminal 2 pour le protocole de transport UDP.
Autrement dit, comme dans le premier mode de réalisation décrit en référence à la figure 4, la requête R3 est envoyée conformément au protocole TCP avec comme adresse de transport source, l'adresse de transport privée @PrivTCP (comme mentionné dans le champ Via de l'entête), bien que le terminal 2 souhaite être contacté sur une adresse de transport selon le protocole UDP (comme mentionné dans le champ Contact de l'entête).
La requête R3 est interceptée par l'entité NAT 4 placée en coupure de flux du terminal
2 et de l'entité P-CSCF 3 (étape F20), et déclenche l'ouverture sur l'entité NAT 4 d'une porte pour le terminal 2 pour le protocole TCP. L'entité NAT 4 transfère la requête R3 au serveur P-CSCF 3 sous la forme d'une requête R3' avec comme adresse de transport source, l'adresse de transport @PubTCP résultant de l'ouverture de la porte (étape F30). Les étapes F20 et F30 étant identiques respectivement aux étapes E20 et E30 décrites pour le premier mode de réalisation, elles ne sont pas détaillées davantage ici.
La requête R3' est reçue par le serveur P-CSCF 3 par l'intermédiaire de son module 3A, qui crée un contexte dans sa base de données 6 pour le terminal 2 dans lequel il mémorise l'adresse de transport publique @PubTCP allouée au terminal 2 (incluant l'adresse IP publique IPadr_pubTCP et le port public port_pubTCP), le mode de transport utilisé (TCP ici) et l'adresse de contact précisée par le terminal dans le champ Contact (étape F40). Il détecte par ailleurs, comme dans le premier mode de réalisation, qu'une entité NAT est présente entre le terminal 2 et lui, ainsi que la différence entre le protocole de transport TCP utilisé par le terminal 2 pour émettre la requête RI et le protocole de transport UDP mentionné dans cette requête pour contacter le terminal 2. L'étape F40 est identique à l'étape E40 décrite précédemment.
Suite à cette détection, dans le second mode de réalisation décrit ici, le serveur P-CSCF 3 envoie une réponse SIP 200 OK (désignée par M3) à la requête d'enregistrement du terminal 2, sur le protocole TCP en utilisant l'adresse de transport publique @PubTCP, par l'intermédiaire de son module 3A. L'entête de cette réponse M3 comprend notamment les entêtes Via et Contact suivants :
Via : SIP/2.0/TCP IPadr_privTCP:port_privTCP ; branch=z9hG4bKZ8WlyYt8la ; keep=60 ; keeptcp=600 ; keepudp=60 ; rport= port_pubTCP; received= IPadr_pubTCP
Contact : userpart@IPadr_privUDP:port_privUDP ; transport=udp ; expires=3600
Les éléments ajoutés par le serveur P-CSCF 3 sont représentés en caractères gras ci- dessus pour faciliter leur identification. En particulier, dans le second mode de réalisation décrit ici, le serveur P-CSCF 3 a inséré dans l'entête Via de la réponse M3 des valeurs de durées de rafraîchissement keeptcp et keepudp des associations NAT auprès de l'entité NAT 4 pour les deux protocoles TCP et UDP respectivement.
Le serveur P-CSCF 3 ayant en outre détecté la présence de l'entité NAT 4 a également indiqué au terminal 2 dans sa réponse l'adresse de transport source de la requête R3', dans les attributs rport et received. Dans le second mode de réalisation décrit ici, c'est l'information contenue dans ces attributs rport et received qui est utilisée comme une information de correspondance au sens de l'invention. La mémorisation de cette information de correspondance dans le contexte du terminal 2 est donc implicite, s'agissant de l'adresse de transport publique du terminal 2 déjà mémorisée par le serveur P-CSCF 3 lors de l'étape F40.
Enfin, la durée de l'enregistrement expires est donnée dans le champ Contact.
La réponse M3 est interceptée par l'entité NAT 4, qui traduit l'adresse de transport publique @PubTCP en l'adresse de transport privée @PrivTCP conformément à l'association stockée dans sa base de données 7 (étape F70), avant de transférer la réponse M3' en résultant vers le terminal 2 (étape F80).
Sur réception de la réponse M3' via son module 2A, le terminal 2 est en mesure de déterminer qu'une entité NAT est présente entre le serveur P-CSCF 3 et lui, ainsi que l'adresse de transport publique qui lui est allouée par cette entité pour le port TCP. Puis, il envoie une nouvelle requête R4 au serveur P-CSCF 3 conforme cette fois-ci au protocole UDP, cette requête R4 ayant comme adresse de transport source l'adresse de transport privée UDP @PrivUDP du terminal 2 (étape F90).
Cette requête R4 est, comme pour la requête R2 dans le premier mode de réalisation, une requête SBR de rafraîchissement d'une association d'adresses UDP conforme au protocole STUN. Autrement dit, il s'agit d'une requête SBR vide (i.e. sans contenu de message ou avec un contenu minimum insignifiant).
Conformément à l'invention, le terminal 2 par l'intermédiaire de son module 2B, insère dans cette requête l'information de correspondance qu'il a reçue du serveur P-CSCF 3 dans le message de réponse Μ3'. Il s'agit dans le second mode de réalisation décrit ici, de l'adresse de transport publique TCP @PubTCP contenue dans les attributs rport et received du champ Via du message M3'.
A cet effet, un attribut ayant un format identique au format des attributs MAPPED- ADDRESS ou XOR-MAPPED-ADDRESS déjà définis par le protocole STUN, appelé par exemple NAT- MAPPED-ADDRESS, est utilisé pour véhiculer cette adresse dans la requête R4. Les attributs MAPPED-ADDRESS ou XOR-MAPPED-ADDRESS sont, selon le protocole STUN, utilisés dans le sens réseau vers terminal en réponse aux requêtes SBR, et décrits dans le document RFC 5389.
En variante, un autre format d'attribut peut être défini pour véhiculer l'information de correspondance constituée par l'adresse de transport publique TCP @PubTCP.
La requête R4 est interceptée par l'entité NAT 4 placée en coupure de flux entre le terminal 2 et le serveur P-CSCF 3, et déclenche l'ouverture sur l'entité NAT 4 d'une porte pour le terminal 2 pour le protocole UDP cette fois-ci (étape F100). L'étape F100 se déroule de façon identique à l'étape E100 précédemment décrite.
Plus précisément, sur réception de la requête R4, l'entité NAT 4 crée de façon connue en soi, dans sa base de données 7, une association (ou « binding ») entre l'adresse de transport source privée @PrivUDP de la requête R4 et une adresse de transport publique @PubUDP allouée dynamiquement au terminal 2 pour le protocole UDP. Cette adresse de transport publique @PubUDP est constituée d'une adresse IP publique IPadr_pubUDP et d'un port public port_pubUDP. Autrement dit, l'entité NAT 4 stocke dans sa base de données 7 un nouveau quintuplet pour le terminal 2 comprenant :
— l'adresse IP privée IPadr_priv du terminal 2 ;
— le port privé port_privUDP du terminal 2 pour UDP ;
— l'adresse IP publique IPadr_pubUDP allouée au terminal 2 pour UDP ;
— le port public port_pubUDP alloué au terminal 2 pour UDP ; et
— un identifiant du mode de transport utilisé à savoir ici du protocole UDP.
Ainsi, la requête R4 a pour effet de créer et de maintenir auprès de l'entité NAT 4 une association d'adresses pour le terminal 2 pour le protocole UDP qui vient compléter l'association d'adresses créée en réponse à la requête R3 pour le protocole TCP. Autrement dit, suite à la réception des requêtes R3 et R4, on dispose simultanément au niveau de l'entité NAT 4 de deux associations d'adresses pour le terminal 2 respectivement sur le protocole TCP et sur le protocole UDP.
Puis l'entité NAT 4 transfère la requête R4 au serveur P-CSCF 3 de façon connue en soi, sous la forme d'une requête R4' ayant comme adresse de transport source l'adresse de transport publique @PubUDP (étape F110).
Cette requête R4' est reçue par le serveur P-CSCF 3 par l'intermédiaire de son module
3C.
Le serveur P-CSCF 3, via son module 3D, extrait de la requête R4' l'information de correspondance constituée par l'adresse de transport publique @PubTCP. Puis il utilise cette information de correspondance stockée dans la base de données 6 pour mettre en correspondance (i.e. pour associer) l'adresse de transport source @PubUDP de la requête R4' et l'adresse de transport source @PubTCP de la requête R3' (étape F120). Il stocke alors l'adresse de transport @PubUDP dans le contexte du terminal 2 stocké dans la base de données 6 en association avec l'adresse de transport publique @PubTCP.
Ainsi, cette mise en correspondance déclenchée par la présence de l'information de correspondance @PubTCP dans la requête R4' permet au serveur P-CSCF 3 non seulement de déterminer à quel terminal 2 est associée l'adresse de transport publique @PubUDP de la requête R4', mais également de faire le lien avec l'association d'adresses TCP dont il disposait déjà pour ce terminal dans la base de données 6. Il en résulte dès lors que le serveur P-CSCF 3 est apte à transmettre sans encombre les messages destinés au terminal 2 arrivant du cœur de réseau 5 ou ses propres messages selon l'un quelconque des protocoles UDP et TCP.
L'étape F120 est suivie d'une étape F130 d'envoi par le serveur P-CSCF3 d'une réponse M4 SBResp au terminal 2 sur l'adresse de transport publique @PubUDP contenant, dans un attribut MAPPED-ADDRESS ou XOR-MAPPED, l'adresse de transport publique @PubUDP, d'une étape F140 d'interception de cette réponse par l'entité NAT 4 et une étape F150 de transfert de la réponse M4' correspondant à la réponse M4 en utilisant l'adresse de transport @PrivUDP, et d'étapes F160 et F170 de rafraîchissement, identiques respectivement aux étapes E130, E140, E150, E160 et E170 décrites précédemment pour le premier mode de réalisation.
Dans le premier et le second mode de réalisation, l'information de correspondance utilisée est une information insérée par le serveur P-CSCF 3 dans sa réponse à la requête d'enregistrement du terminal 2. Cette information de correspondance est soit une information générée à cet effet par le serveur P-CSCF 3, soit une information extraite de la requête d'enregistrement par celui-ci, à savoir, par exemple, l'adresse de transport publique @PubTCP sur laquelle la requête d'enregistrement lui a été envoyée (autrement dit l'adresse de transport source de la requête d'enregistrement vue par le serveur P-CSCF 3). En variante, l'information de correspondance peut être générée par le terminal 2. Il peut s'agir par exemple d'un identifiant de session ou de transaction généré classiquement par le terminal 2 et que celui-ci insère conformément au protocole SIP dans sa requête d'enregistrement, dans le paramètre branch du champ Via de l'entête. Cette information est en effet un identifiant permettant la mise en correspondance de manière univoque de l'adresse de transport publique du terminal 2 sur le protocole TCP et de l'adresse de transport publique du terminal 2 sur le protocole UDP. Selon cette variante, le serveur P-CSCF extrait l'identifiant de transaction ou de session contenu dans le paramètre branch de la requête d'enregistrement, le mémorise dans le contexte du terminal 2 avec l'adresse de transport @PubTCP, puis le renvoie dans le message de réponse à la requête d'enregistrement. L'identifiant de transaction ou de session est ensuite envoyé par le terminal 2 dans la requête de rafraîchissement SBR, par exemple dans un attribut REALM, NONCE ou SOFTWARE défini par le protocole STUN ou dans un attribut dédié. Sur réception de la requête SBR, le serveur P-CSCF 3 utilise l'identifiant de transaction ou de session pour faire la liaison entre les adresses @PubUDP et @PubTCP.
La figure 6 illustre maintenant les principales étapes d'un procédé de configuration et d'un procédé de mise en correspondance telles qu'elles sont mises en œuvre respectivement par le terminal 2 et par le serveur 3 selon un troisième mode de réalisation appliqué au second cas de figure précité.
On suppose dans l'exemple envisagé à la figure 6 que le terminal 2 envoie, par l'intermédiaire de son module 2B, une requête R5 d'enregistrement SIP REGISTER au serveur P- CSCF 3 (étape H10) contenant, dans son entête, les champs Via et Contact suivants :
Via : SIP/2.0/TCP IPadr_priv:port_privUDP ; branch=z9hG4bKZ8WlyYt8la ; keep
Contact : userpart@IPadr_priv:port_privUDP ; transport=udp où IPadr_priv et port_privUDP désignent respectivement l'adresse IP privée et le port privé UDP constituant l'adresse privée @PrivUDP de transport du terminal 2 pour le protocole de transport UDP.
Autrement dit dans ce troisième mode de réalisation, la requête R5 est envoyée conformément au protocole UDP avec comme adresse de transport source l'adresse de transport privée @PrivUDP du terminal 2 (comme mentionné dans le champ Via de l'entête), et le terminal 2 souhaite être contacté sur une adresse de transport selon le protocole UDP (comme mentionné dans le champ Contact de l'entête). Il y a donc cohérence entre les informations véhiculées par la requête d'enregistrement R5 et le protocole de transport sur lequel est acheminée cette requête jusqu'au serveur 3. La requête R5 est interceptée par l'entité NAT 4 placée en coupure de flux du terminal 2 et de l'entité P-CSCF 3 (étape H20), et déclenche l'ouverture sur l'entité NAT 4 d'une porte pour le terminal 2 pour le protocole UDP.
Plus précisément, sur réception de la requête R5, l'entité NAT 4 crée de façon connue en soi, dans sa base de données 7, une association (ou « binding ») entre l'adresse de transport source privée @PrivUDP de la requête R5 et une adresse de transport publique @PubUDP allouée dynamiquement au terminal 2 pour le protocole UDP. Cette adresse de transport publique @PubUDP est constituée d'une adresse IP publique IPadr_pubUDP et d'un port public port_pubUDP. Autrement dit, l'entité NAT 4 stocke dans sa base de données 7 un quintuplet pour le terminal 2 comprenant :
— l'adresse IP privée IPadr_priv du terminal 2 ;
— le port privé port_privUDP du terminal 2 pour UDP ;
— l'adresse IP publique IPadr_pubUDP allouée au terminal 2 pour UDP ;
— le port public port_pubUDP alloué au terminal 2 pour UDP ; et
— un identifiant du mode de transport utilisé à savoir ici du protocole UDP.
Puis l'entité NAT 4 transfère la requête R5 au serveur P-CSCF 3 de façon connue en soi, sous la forme d'une requête R5' émise en utilisant l'adresse de transport @PubUDP comme adresse source (étape H30).
Cette requête R5' est reçue par le serveur P-CSCF 3 par l'intermédiaire de son module 3C.
Le serveur P-CSCF 3 crée un contexte dans sa base de données 6 pour le terminal 2 dans lequel il mémorise, via son module 3B, en plus des autres données classiquement mémorisées par un serveur P-CSCF lors de l'enregistrement d'un terminal, l'adresse de transport publique @PubUDP allouée au terminal 2 (incluant l'adresse IP publique et le port public), le mode de transport utilisé (UDP ici) et l'adresse de contact précisée par le terminal dans le champ Contact (étape H50).
Puis il détecte, en analysant le champ Via de l'entête de la requête et en comparant l'adresse de transport (@PrivUDP) mentionnée dans ce champ avec l'adresse de transport source (@PubUDP) de la requête R5', qu'une entité NAT est présente entre le terminal 2 et lui (étape H40).
Suite à cette détection, dans le troisième mode de réalisation décrit ici, le serveur P- CSCF génère une information de correspondance TCP/UDP désignée ici par tcpudpCK (étape H50). Cette information de correspondance est ici, comme dans le premier mode de réalisation, une chaîne de caractères numériques d'une taille prédéterminée (ex. 96 bits), générée aléatoirement par le serveur P-CSCF 3, et unique dans l'espace et le temps pour le serveur P-CSCF 3. Sa valeur est égale par exemple ici à 345345345387.
Cette information de correspondance est mémorisée par le serveur P-CSCF 3 dans le contexte du terminal 2 en association avec l'adresse de transport @PubUDP. Puis le serveur P-CSCF 3 envoie une réponse SIP 200 OK à la requête d'enregistrement du terminal 2, sur le protocole UDP en utilisant l'adresse de transport publique @PubUDP, par l'intermédiaire de son module 3C. Il insère préalablement dans cette réponse, désignée ici par M5, l'information de correspondance tcpudpCK dans un paramètre du champ Via prévu à cet effet (étape H60). L'entête de cette réponse M5 comprend ainsi notamment les entêtes Via et Contact suivants :
Via : SIP/2.0/TCP IPadr_privUDP:port_privUDP ; branch=z9hG4bKZ8WlyYt8la ; keep ; tcpudpCK=345345345387 ; keeptcp=600 ; keepudp=60 ; rport= port_pubUDP; received= IPadr_pubUDP
Contact : userpart@IPadr_privUDP:port_privUDP ; transport=udp ; expires=3600
Les éléments ajoutés par le serveur P-CSCF 3 sont représentés en caractères gras ci- dessus pour faciliter leur identification.
La réponse M5 est interceptée par l'entité NAT 4, qui traduit l'adresse de transport publique @PubUDP en l'adresse de transport privée @PrivUDP conformément à l'association stockée dans sa base de données 7 (étape H70), avant de transférer la réponse M5' en résultant vers le terminal 2 (étape H80).
Sur réception de la réponse M5' via son module 2B, le terminal 2 stocke en mémoire l'information de correspondance tcpudpCK, et est en mesure de déterminer qu'une entité NAT est présente entre le serveur P-CSCF 3 et lui, ainsi que l'adresse de transport publique qui lui est attribuée par cette entité pour le protocole UDP.
Puis il envoie, par le biais de son module 2A, une nouvelle requête R6 au serveur P- CSCF 3 conforme cette fois-ci au protocole TCP ayant comme adresse de transport source l'adresse de transport privée TCP @PrivTCP du terminal 2 (étape H90).
Dans le troisième mode de réalisation décrit ici, cette requête R6 est une requête de rafraîchissement d'une association d'adresses TCP créée auprès d'une entité NAT, telle que décrite dans le document RFC 6223.
Cette requête R6 est ainsi constituée comme décrit dans le document RFC 6223, de deux séquences CRLF, qui sont suivies conformément à l'invention d'une réponse SIP factice (par exemple une réponse SIP 499) contenant l'information de correspondance tcpudpCK, par exemple dans un paramètre « Binding-link » de la réponse. La réponse SIP est ensuite suivie d'une nouvelle séquence CRLF.
Il convient de noter que la réponse SIP insérée dans la requête R6 est factice en ce qu'elle ne répond à aucune requête à proprement parler. Il s'agit par ce biais de signaler au serveur P-CSCF 3 auquel est destiné ce message qu'il véhicule une information de correspondance qu'il doit utiliser conformément à l'invention. Autrement dit, conformément au troisième mode de réalisation de l'invention, le terminal 2, par le biais de son module 2A, insère une information applicative dans la requête de rafraîchissement TCP, à savoir l'information de correspondance tcpudpCK.
Cette requête R6 est interceptée par l'entité NAT 4 placée en coupure de flux entre le terminal 2 et le serveur P-CSCF 3, et déclenche l'ouverture sur l'entité NAT 4 d'une porte pour le terminal 2 pour le protocole TCP cette fois-ci (étape H 100). Cette étape est identique aux étapes E70 et F70 décrites précédemment en référence au premier et au deuxième mode de réalisation.
Plus précisément, sur réception de la requête R6, l'entité NAT 4 crée de façon connue en soi, dans sa base de données 7, une association (ou « binding ») entre l'adresse de transport source privée @PrivTCP de la requête R6 et une adresse de transport publique @PubTCP allouée dynamiquement au terminal 2 pour le protocole TCP. Cette adresse de transport publique @PubTCP est constituée d'une adresse IP publique IPadr_pubTCP et d'un port public port_pubTCP. Autrement dit, l'entité NAT 4 stocke dans sa base de données 7 un nouveau quintuplet pour le terminal 2 comprenant :
— l'adresse IP privée IPadr_priv du terminal 2 ;
— le port privé port_privTCP du terminal 2 pour TCP ;
— l'adresse IP publique IPadr_pubTCP allouée au terminal 2 pour TCP ;
— le port public port_pubTCP alloué au terminal 2 pour TCP ; et
— un identifiant du mode de transport utilisé à savoir ici du protocole TCP.
Ainsi, la requête R6 a pour effet de créer et de maintenir auprès de l'entité NAT 4 une association d'adresses pour le terminal 2 pour le protocole TCP qui vient compléter l'association d'adresses créée en réponse à la requête R5 pour le protocole UDP. Autrement dit, suite à la réception des requêtes R5 et R6, on dispose simultanément au niveau de l'entité NAT 4 de deux associations d'adresses pour le terminal 2 respectivement sur le protocole TCP et sur le protocole UDP.
Puis l'entité NAT 4 transfère la requête R6 au serveur P-CSCF 3 de façon connue en soi, sous la forme d'une requête R6' ayant comme adresse de transport source l'adresse de transport publique @PubTCP (étape H 110).
Cette requête R6' est reçue par le serveur P-CSCF 3 par l'intermédiaire de son module
3A.
Le serveur P-CSCF 3, via son module 3D, identifie dans la requête R6' la présence de la réponse factice SIP 499 OK et extrait de celle-ci, l'information de correspondance tcpudpCK. Puis il utilise cette information de correspondance pour mettre en correspondance l'adresse de transport source @PubTCP de la requête R6' et l'adresse de transport source @PubUDP de la requête R5' (étape H 120). Il stocke alors l'adresse de transport @PubTCP dans le contexte du terminal 2 stocké dans la base de données 6 en association avec l'adresse de transport @PubUDP.
Ainsi, cette mise en correspondance déclenchée par la présence de l'information de correspondance tcpudpCK dans la requête R6' permet au serveur P-CSCF 3 non seulement de déterminer à quel terminal 2 est associée l'adresse de transport publique @PubTCP de la requête R6', mais également de faire le lien avec l'association d'adresses UDP dont il disposait déjà pour ce terminal dans la base de données 6. Il en résulte dès lors que le serveur P-CSCF 3 est apte à transmettre sans encombre les messages destinés au terminal 2 arrivant du cœur de réseau 5 (ou ses propres messages) sur le protocole TCP. Il peut notamment gérer et transférer vers le terminal 2 les requêtes ayant une taille supérieure à la taille MTU définie pour le protocole UDP, comme une porte TCP est ouverte sur l'entité NAT 4 et peut être utilisée.
Il envoie, via son module 3A, au terminal 2, une réponse M6 à la requête de rafraîchissement TCP keep alive sur l'adresse de transport publique @PubTCP (étape H130).
La réponse M6 est interceptée par l'entité NAT 4, qui traduit l'adresse de transport publique @PubTCP en l'adresse de transport privée @PrivTCP conformément à l'association stockée dans sa base de données 7 (étape H 140), avant de transférer la réponse M6' en résultant vers le terminal 2 (étape H150).
Puis le terminal 2, via respectivement ses modules 2B et 2A, envoie périodiquement (selon les périodes spécifiées par le serveur P-CSCF 3 dans la réponse M5) des requêtes de rafraîchissement au serveur P-CSCF 3 des associations d'adresses qui lui ont été allouées pour les protocoles UDP et TCP (étapes H160 et E170 respectivement).
Il convient de noter que le troisième mode de réalisation a été décrit selon une variante similaire à celle implémentée dans le premier mode de réalisation (génération de l'information de correspondance par le serveur P-CSCF 3). Toutefois, ce troisième mode de réalisation peut être envisagé également en combinaison avec les variantes décrites dans le deuxième mode de réalisation.

Claims

REVENDICATIONS
1. Procédé de maintien d'associations d'adresses de transport auprès d'une entité de traduction d'adresses de transport (4) placée en coupure de flux entre un premier dispositif (2) et un second dispositif (3), le procédé de maintien étant destiné à être mis en œuvre par le premier dispositif (2) et comprenant :
— une étape d'envoi (E10,F10,H10), conformément à un premier protocole de transport, d'un premier message (R1,R3,R5) ayant une première adresse de transport dite privée à destination du second dispositif, ce premier message étant apte à déclencher une première association par l'entité de traduction d'adresses de transport d'une première adresse dite publique à la première adresse privée et au premier protocole de transport ;
— sur réception d'une réponse (ΜΓ,Μ3',Μ5') au premier message provenant du second dispositif, une étape d'envoi (E90,F90,H90), conformément à un second protocole de transport, d'un second message ayant une seconde adresse de transport privée à destination du second dispositif, ce second message étant apte à déclencher une seconde association par l'entité de traduction d'adresses de transport (4) de ladite seconde adresse privée à une seconde adresse dite publique et au second protocole de transport, le second message contenant en outre une information dite de correspondance, comprise également dans le premier message et/ou dans la réponse au premier message, et apte à déclencher, suite à la réception du second message par le second dispositif, la mise en correspondance par le second dispositif de la seconde adresse de transport publique avec la première adresse de transport publique.
2. Procédé de maintien selon la revendication 1 comprenant en outre une étape d'envoi (E160,E170,F160,F170,H160,H170) d'un message de rafraîchissement de la première association d'adresses et/ou d'un message de rafraîchissement de la seconde association d'adresses auprès de l'entité de traduction d'adresses.
3. Procédé de mise en correspondance d'adresses de transport publiques, ledit procédé étant destiné à être mis en œuvre par un dispositif (3), dit second dispositif, et comprenant :
— une étape de réception (E30,F30,H30) d'un premier message transporté conformément à un premier protocole de transport, ledit premier message ayant comme adresse de transport source une première adresse de transport dite publique qui a été allouée à un premier dispositif (2) par une entité de traduction d'adresses de transport (4) placée en coupure de flux entre ledit premier et ledit second dispositif ;
— une étape de mémorisation (E40,F40,H40) de la première adresse de transport publique en association avec le premier protocole de transport et une information dite de correspondance ;
— une étape d'envoi (E60,F60,G60) au premier dispositif d'une réponse au premier message ; — une étape de réception (E110,F110,G110) d'un second message transporté conformément à un second protocole de transport, ledit second message ayant comme adresse de transport source une seconde adresse de transport publique qui a été allouée au premier dispositif par l'entité de traduction d'adresses de transport (4), ce second message comprenant ladite information de correspondance ; et
— une étape de mise en correspondance (E120,F120,G120) de la première adresse de transport publique avec la seconde adresse de transport publique en utilisant l'information de correspondance.
4. Procédé selon l'une quelconque des revendications 1 à 3 dans lequel :
— le premier message est une requête d'enregistrement du premier dispositif auprès du second dispositif ; et/ou
— le second message est un message de rafraîchissement d'une association d'adresses auprès de l'entité de traduction d'adresses.
5. Procédé selon l'une quelconque des revendications 1 à 4 dans lequel l'information de correspondance est générée et insérée par le second dispositif dans la réponse au premier message.
6. Procédé selon la revendication 5 dans lequel :
— le second protocole est un protocole UDP (User Datagram Protocol) ;
— le second message est une requête SBR (STUN Binding Request) vide conforme au protocole STUN (Simple Traversai of UDP through NATs) ; et
— l'information de correspondance est une chaîne de caractères numériques générée par le second dispositif puis insérée par le premier dispositif dans un champ « Transaction-Id » d'un entête de la requête SBR.
7. Procédé selon l'une quelconque des revendications 1 à 5 :
le second protocole est un protocole TCP (Transmission Control Protocol) ;
le second message est un message de rafraîchissement d'une association d'adresses pour le protocole TCP et contenant une réponse factice conforme à un protocole de contrôle de sessions, ladite réponse factice comprenant l'information de correspondance.
8. Procédé selon l'une quelconque des revendications 1 à 4 dans lequel l'information de correspondance comprend la première adresse de transport publique, cette première adresse de transport publique ayant été insérée dans la réponse au premier message par le second dispositif.
9. Procédé selon la revendication 8 dans lequel :
— le second protocole est un protocole UDP ;
— le second message est une requête SBR vide conforme au protocole STUN ; et
— l'information de correspondance est insérée par le premier dispositif dans un champ de la requête SBR ayant un format identique à un champ MAPPED-ADDRESS ou XOR-MAPPED- ADDRESS défini par le protocole STUN.
10. Procédé selon l'une quelconque des revendications 1 à 4 dans lequel l'information de correspondance est générée et insérée par le premier dispositif dans le premier message.
11. Procédé selon la revendication 10 dans lequel l'information de correspondance est un identifiant de transaction.
12. Procédé selon la revendication 11 dans lequel :
— le second protocole est un protocole UDP ;
— le second message est une requête SBR vide conforme au protocole STUN ; et
— l'information de correspondance est insérée par le premier dispositif dans un attribut REALM, NONCE ou SOFTWARE de la requête SBR.
13. Procédé selon l'une quelconque des revendications 1 à 12 dans lequel la réponse au premier message comprend en outre une période de rafraîchissement de la première et /ou de la seconde association d'adresses.
14. Procédé selon l'une quelconque des revendications 1 à 13 dans lequel le premier protocole et le second protocole sont des protocoles distincts choisis parmi les protocoles TCP (Transmission Control Protocol), UDP (User Datagram Protocol) et SCTP (Stream Control Transmission Protocol).
15. Programme d'ordinateur comportant des instructions pour l'exécution des étapes d'un procédé selon l'une quelconque des revendications 1 à 14 lorsque ledit programme est exécuté par un ordinateur.
16. Support d'enregistrement lisible par un ordinateur sur lequel est enregistré un programme d'ordinateur comprenant des instructions pour l'exécution des étapes d'un procédé selon l'une quelconque des revendications 1 à 14.
17. Dispositif (2), dit premier dispositif, comprenant :
— un premier module (3A,3B) d'envoi configuré pour envoyer conformément à un premier protocole de transport, un premier message ayant une première adresse de transport dite privée à destination d'un second dispositif, ce premier message étant apte à déclencher une première association, par une entité de traduction d'adresses de transport placée en coupure de flux entre ledit premier dispositif et ledit second dispositif, d'une première adresse dite publique à la première adresse privée et au premier protocole de transport ;
— un second module (3B,3A) d'envoi, activé sur réception d'une réponse au premier message provenant du second dispositif, et configuré pour envoyer conformément à un second protocole de transport, un second message ayant une seconde adresse de transport privée à destination du second dispositif, ce second message étant apte à déclencher une seconde association par l'entité de traduction d'adresses de transport (4) de ladite seconde adresse privée à une seconde adresse dite publique et au second protocole de transport, le second message contenant en outre une information dite de correspondance, comprise également dans le premier message et/ou dans la réponse au premier message, et apte à déclencher, suite à la réception du second message par le second dispositif, la mise en correspondance par le second dispositif de la seconde adresse de transport publique avec la première adresse de transport publique.
18. Dispositif (3), dit second dispositif, comprenant :
— un module de réception (3A,3C), configuré pour recevoir un premier message transporté conformément à un premier protocole de transport, ledit premier message ayant comme adresse de transport source une première adresse de transport dite publique qui a été allouée à un premier dispositif (2) par une entité de traduction d'adresses de transport (4) placée en coupure de flux entre ledit premier et ledit second dispositif ;
— un module de mémorisation (3B), configuré pour mémoriser la première adresse de transport publique en association avec le premier protocole de transport et une information dite de correspondance ;
— un module d'envoi (3A,3C), configuré pour envoyer au premier dispositif une réponse au premier message ;
— un module de réception (3C,3A), configuré pour recevoir un second message transporté conformément à un second protocole de transport, ledit second message ayant comme adresse de transport source une seconde adresse de transport dite publique qui a été allouée au premier dispositif par l'entité de traduction d'adresses de transport (4), ce second message comprenant ladite information de correspondance ; et
— un module de mise en correspondance (3D), configuré pour mettre en correspondance la première adresse de transport publique avec la seconde adresse de transport publique en utilisant l'information de correspondance.
19. Système de communication (1) comprenant :
— un premier dispositif (2) selon la revendication 17 ;
— un second dispositif (3) selon la revendication 18 ; et
— une entité de traduction d'adresses de transport (4) placée en coupure de flux entre le premier dispositif et le second dispositif.
PCT/FR2015/053624 2014-12-23 2015-12-18 Procédé et dispositif de maintien d'associations d'adresses de transport auprès d'une entité de traduction d'adresses WO2016102841A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/539,097 US10855653B2 (en) 2014-12-23 2015-12-18 Method and device for maintaining transport address associations for an address translation entity
ES15823674T ES2911291T3 (es) 2014-12-23 2015-12-18 Procedimiento y dispositivo de mantenimiento de asociaciones de direcciones de transporte con una entidad de traducción de direcciones
EP15823674.5A EP3238422B1 (fr) 2014-12-23 2015-12-18 Procédé et dispositif de maintien d'associations d'adresses de transport auprès d'une entité de traduction d'adresses

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1463211A FR3030968A1 (fr) 2014-12-23 2014-12-23 Procede et dispositif de maintien d'associations d'adresses de transport aupres d'une entite de traduction d'adresses
FR1463211 2014-12-23

Publications (1)

Publication Number Publication Date
WO2016102841A1 true WO2016102841A1 (fr) 2016-06-30

Family

ID=52589679

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2015/053624 WO2016102841A1 (fr) 2014-12-23 2015-12-18 Procédé et dispositif de maintien d'associations d'adresses de transport auprès d'une entité de traduction d'adresses

Country Status (5)

Country Link
US (1) US10855653B2 (fr)
EP (1) EP3238422B1 (fr)
ES (1) ES2911291T3 (fr)
FR (1) FR3030968A1 (fr)
WO (1) WO2016102841A1 (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10397182B1 (en) * 2016-03-24 2019-08-27 Sprint Communications Company L.P. Method and procedure to identify a source across a network address translation device
CN109995721B (zh) * 2017-12-29 2021-10-22 华为技术有限公司 业务请求处理方法、装置及通信系统
US10868759B2 (en) * 2018-05-03 2020-12-15 Selligent, S.A. System and method for virtual machine port translation and dynamic routing
CN113169984B (zh) * 2019-02-13 2023-06-23 联发科技(新加坡)私人有限公司 传输协议选择方法及用户设备

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090103540A1 (en) * 2007-10-19 2009-04-23 Alcatel Lucent Method for address translation device traversal for SIP signaling messages through temporary use of the TCP transport protocol
US20090157887A1 (en) * 2007-12-18 2009-06-18 Alcatel Lucent Control for the interface for sending an SIP reply message

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005013410D1 (de) * 2005-12-15 2009-04-30 Nokia Corp Verfahren, Apparat und Computerprogrammprodukt zur Beibehaltung von Abbildungszuordnungen
US7975058B2 (en) * 2006-01-31 2011-07-05 Cisco Technology, Inc. Systems and methods for remote access of network devices having private addresses
GB2513597B (en) * 2013-04-30 2021-04-07 Metaswitch Networks Ltd SIP signalling
US9838353B2 (en) * 2013-11-01 2017-12-05 Google Llc Communication across network address translation
US9648073B2 (en) * 2014-04-10 2017-05-09 Qualcomm Incorporated Streaming control for real-time transport protocol

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090103540A1 (en) * 2007-10-19 2009-04-23 Alcatel Lucent Method for address translation device traversal for SIP signaling messages through temporary use of the TCP transport protocol
US20090157887A1 (en) * 2007-12-18 2009-06-18 Alcatel Lucent Control for the interface for sending an SIP reply message

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GURBANI LUCENT TECHNOLOGIES V ET AL: "Handling Large User Datagram Protocol (UDP) Responses in the Session Initiation Protocol (SIP); draft-gurbani-sip-large-udp-response-00.txt", 20061003, 3 October 2006 (2006-10-03), XP015046567, ISSN: 0000-0004 *
JENNINGS C ET AL: "Managing Client Initiated Connections in the Session Initiation Protocol (SIP); draft-ietf-sip-outbound-06.txt", 20061122, vol. sip, no. 6, 22 November 2006 (2006-11-22), XP015048135, ISSN: 0000-0004 *

Also Published As

Publication number Publication date
US20170353429A1 (en) 2017-12-07
EP3238422B1 (fr) 2022-01-26
ES2911291T3 (es) 2022-05-18
US10855653B2 (en) 2020-12-01
EP3238422A1 (fr) 2017-11-01
FR3030968A1 (fr) 2016-06-24

Similar Documents

Publication Publication Date Title
EP3238422B1 (fr) Procédé et dispositif de maintien d'associations d'adresses de transport auprès d'une entité de traduction d'adresses
EP3556130B1 (fr) Procédé de surveillance d'un réseau de télécommunications mis en oeuvre par un point d'accès
EP2769526A1 (fr) Procede d'echange d'informations relatives a des services de communication enrichie
WO2012153033A1 (fr) Procede de traitement d'une requete de basculement d'une communication entre deux reseaux d'acces
EP1950926B1 (fr) Architecture IMS utilisant une table de hachage distribuée
EP2080345B1 (fr) Procede de gestion d'identites publiques dans un reseau de transmission d'informations, serveur de gestion d'enregistrements d'identites publiques, equipement de gestion d'une identite publique de groupe et programmes d'ordinateur correspondants
EP2856732B1 (fr) Procédé et entité de traitement d'un message
EP2353278A1 (fr) Procede de gestion d'un utilisateur dans un reseau de telecommunications, et dispositif associe
FR3059504A1 (fr) Procede de fractionnement de messages applicatifs dans un reseau ip
EP2550776A1 (fr) Procede de gestion des enregistrements dans un reseau ims et serveur s-cscf mettant en oeuvre ce procede
EP3158709A1 (fr) Procédé de sélection dynamique par un appelant parmi une pluralité de terminaux d'un appelé
WO2019002707A1 (fr) Procédé de traitement d'une requête et serveur d'un cœur de réseau ip multimédia
EP3391615B1 (fr) Procédé de communication entre un terminal appelant et une pluralité de terminaux appelés
EP2079216B1 (fr) Mémorisation d'informations contextuelles entre transmissions de messages de signalisation
EP2859704B1 (fr) Serveur d'application et procede de traitement d'un message destine a une identite publique partagee par une pluralite de dispositifs
WO2016156693A1 (fr) Procédé de création d'associations d'adresses et entité de traductions d'adresses
WO2021260290A1 (fr) Procedes et serveurs de gestion des services d'un terminal additionnel dans un reseau de coeur sip
WO2014114871A1 (fr) Enregistrement d'un equipement client par l'intermediaire d'un serveur mandataire dans un reseau de communication
WO2010112738A1 (fr) Procede d'envoi d'un message de notification, serveur de sessions d'acces et systeme de communications
FR2977114A1 (fr) Procede d'indexation d'un message court relatif a un terminal provisionne aupres d'un cœur de reseau ims
WO2013156727A1 (fr) Procede de traitement d'un message, entite et cœur de reseau
WO2012072920A1 (fr) Procédé et dispositif de gestion d'une souscription a un service dans un réseau ims

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15823674

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15539097

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015823674

Country of ref document: EP