WO2016101857A1 - 非连续接收周期管理方法和装置 - Google Patents

非连续接收周期管理方法和装置 Download PDF

Info

Publication number
WO2016101857A1
WO2016101857A1 PCT/CN2015/098116 CN2015098116W WO2016101857A1 WO 2016101857 A1 WO2016101857 A1 WO 2016101857A1 CN 2015098116 W CN2015098116 W CN 2015098116W WO 2016101857 A1 WO2016101857 A1 WO 2016101857A1
Authority
WO
WIPO (PCT)
Prior art keywords
drx
base station
long period
voice service
qci
Prior art date
Application number
PCT/CN2015/098116
Other languages
English (en)
French (fr)
Inventor
李子帅
程竹林
赵楠
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP15871925.2A priority Critical patent/EP3229531B1/en
Priority to KR1020177020853A priority patent/KR101962776B1/ko
Priority to JP2017534690A priority patent/JP6584023B2/ja
Publication of WO2016101857A1 publication Critical patent/WO2016101857A1/zh
Priority to US15/634,644 priority patent/US10542581B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/28Discontinuous transmission [DTX]; Discontinuous reception [DRX]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/04Network layer protocols, e.g. mobile IP [Internet Protocol]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W80/00Wireless network protocols or protocol adaptations to wireless operation
    • H04W80/08Upper layer protocols
    • H04W80/10Upper layer protocols adapted for application session management, e.g. SIP [Session Initiation Protocol]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of mobile communications, and in particular, to a discontinuous reception (DRX) technology in a wireless communication system.
  • DRX discontinuous reception
  • VoLTE Voice over LTE
  • IMS IP Multimedia Subsystem
  • DRX User Equipment
  • the period of the DRX indicates when the UE needs to monitor the channel and when the UE turns off the power to conserve battery power to reduce unnecessary power consumption. It can be understood that when the DRX period is relatively short, the scheduling opportunity of the UE can be guaranteed, but the frequent channel detection of the UE may make the power consumption of the UE become larger.
  • the power consumption of the UE can be effectively reduced, but the paging of the UE may have too long delay to be responded by the UE, which may cause system performance to degrade. Therefore, there is a need for a scheme for managing DRX cycles to achieve a reasonable allocation between system performance and UE power consumption.
  • This document describes a method, apparatus, and system for managing DRX cycles to achieve a reasonable allocation between system performance and UE power consumption.
  • an embodiment of the present invention provides a method for managing a DRX cycle.
  • the current service type of the UE such as a voice service, a live video service, and the like
  • DRX cycles of different cycle lengths are configured according to the service type of the UE.
  • the UE receives the paging according to the DRX cycle configured by the base station, for example, performs downlink data reception or sleep.
  • the length is less than the period length of the second DRX long period.
  • the DRX cycle of the UE can be flexibly managed by the solution provided by the embodiment of the present invention.
  • the UE When the UE performs the voice service, the UE does not configure the first DRX long period of a shorter period length, so that the UE responds to the paging more quickly and reduces the delay.
  • the second DRX long period of a longer period length is configured for the UE, so that the UE power consumption can be saved as much as possible. Therefore, a better balance is achieved between reducing latency and saving UE power consumption.
  • the UE when the UE is identified whether to perform voice service, whether the UE initiates a voice service may be identified.
  • the UE initiates a voice service for example, when a calling or called party is initiated, the identification is performed as early as possible.
  • the voice call initiation time is identified as early as possible, and the corresponding DRX cycle is configured, so that the UE can respond to the voice service more quickly, so as to reduce the call delay and improve the user experience.
  • the service type of the UE may be identified by identifying the QCI bearer, thereby breaking the limitation that the base station itself does not perceive the QCI bearer transmission data.
  • the base station when the base station identifies the QCI bearer, on the one hand, the base station can only detect whether a certain QCI bearer has a data packet transmission without parsing the content of the data packet.
  • the design scheme can simplify the processing flow of the base station and save the base station memory and CPU resource consumption.
  • the base station can also parse the data packet of the data on a certain QCI bearer to learn the service type of the UE.
  • the design scheme can enable the base station to have a clearer understanding of the service state of the UE.
  • the SIP Invite message is the first message initiated during the voice call initiation process. The parsing of the message may enable the base station to identify the UE to initiate the voice call earlier.
  • the network entity in the core network or IP Multimedia Subsystem IMS identifies whether the UE is performing voice traffic and notifies the base station of the information. For example, the network entity in the EPC or IMS network sends a voice call setup initiation indication to the base station to notify the base station UE to perform voice service.
  • the voice call setup initiation indication may carry information of the calling UE and/or the called UE.
  • the base station instructs the UE to deactivate the DRX when the user equipment UE is initiating the voice service
  • the base station instructs the UE to activate the DRX, or configures the longer period for the UE, when identifying the UE voice service ends.
  • the length of the DRX is long and indicates that the UE activates DRX.
  • the base station sends a radio resource control connection RRC message to the UE.
  • RRC message Carrying the first DRX long period mentioned in the above design, the second DRX long period, is used to indicate an indication that the UE deactivates DRX, or one or more of the indications for instructing the UE to activate DRX.
  • the RRC message may be an RRC Connection Reconfiguration message.
  • the above mentioned first and second DRX long periods may be configured according to the possible range of DRX long period specified by the communication standard protocol, for example, the first DRX long period configuration is smaller.
  • a value eg, a possible value of less than 80 subframes
  • a second DRX long period configuration is a larger possible value (eg, a possible value of 80 subframes or more).
  • the first and second DRX long periods mentioned above may be configured according to the quality of service (QoS) requirements for satisfying the corresponding service, for example, the first DRX long period configuration is less than 80 milliseconds. Duration, the second DRX long period is configured to be longer than or equal to 80 milliseconds.
  • QoS quality of service
  • an embodiment of the present invention provides a base station, including a module for performing a behavior of a base station in a design of the foregoing method.
  • the module can be software and/or hardware.
  • the base station includes a processor and a memory that is configured to support the base station to perform corresponding functions in the methods described above.
  • the memory is for coupling with a processor that stores the necessary program instructions and data for the base station.
  • an embodiment of the present invention provides a UE that includes a module for performing a UE behavior in a method design described above.
  • the modules can be software and/or hardware.
  • the terminal includes a receiver and a processor configured to support the UE to receive the first DRX long period configured by the middle base station for the UE, the second DRX long period, activate the DRX indication or deactivate DRX instructions and other instructions.
  • the processor controls the UE to deactivate the DRX indication according to the first DRX long period received by the receiver, or the second DRX long period to receive the paging.
  • an embodiment of the present invention provides a network entity.
  • the network entity may be a network entity in the core network, such as a mobility management entity MME, or a gateway (SGW and/or PGW).
  • the network entity may also be a network entity in the IP Multimedia Subsystem IMS.
  • the network entity is configured to identify the service type of the UE, and notify the identified base station service information to the base station, thereby supporting cooperation with the base station. Now the solution in the above method design.
  • an embodiment of the present invention provides a communication system, where the system includes the base station and the UE, or the base station and the network entity, or the base station, the UE, and the network entity.
  • an embodiment of the present invention provides a computer storage medium for containing a program designed to perform the above aspects.
  • the solution provided by the present invention can manage and configure the DRX cycle more flexibly.
  • FIG. 1 is a schematic diagram of a possible application scenario of the present invention
  • FIG. 2 is a schematic diagram of a possible system network for implementing the present invention
  • Figure 3 is a schematic diagram of a DRX cycle
  • FIG. 4 is a schematic flowchart of a process for managing a DRX according to an embodiment of the present invention
  • FIG. 5 is a schematic diagram of communication for managing a DRX cycle according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of another communication for managing a DRX cycle according to an embodiment of the present invention.
  • FIG. 7 is still another schematic diagram of communication for managing a DRX cycle according to an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of another communication for managing a DRX cycle according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of another communication for managing a DRX cycle according to an embodiment of the present invention.
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of a UE according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a core network device according to an embodiment of the present invention.
  • the user equipment UE accesses the IMS network through a radio access network (Radio Access Network, abbreviated as follows) and a core network (Core Network, CN for short).
  • Radio Access Network abbreviated as follows
  • Core Network Core Network
  • the technology described in the present invention can be applied to a Long Term Evolution (LTE) system, or other various wireless connections.
  • LTE Long Term Evolution
  • the wireless communication system of the technology for example, a system using access technologies such as code division multiple access, frequency division multiple access, time division multiple access, orthogonal frequency division multiple access, single carrier frequency division multiple access.
  • it can also be applied to the subsequent evolution system using the LTE system.
  • LTE system is taken as an example here.
  • the Evolved Universal Terrestrial Radio Access Network (E-UTRAN) is used as the radio access network, and the Evolved Packet (Core, EPC for short) is used as the core network.
  • E-UTRAN Evolved Universal Terrestrial Radio Access Network
  • Core Evolved Packet
  • the UE accesses the IMS network through the E-UTRAN and the EPC.
  • the user equipment UE to which the present invention relates may include a handheld device having a wireless communication function, an in-vehicle device, a wearable device, a computing device, or other processing device connected to the wireless modem, and various forms of user equipment (User Equipment, referred to as UE), a mobile station (MS), a terminal, a terminal equipment, and the like.
  • UE User Equipment
  • MS mobile station
  • terminal a terminal equipment
  • a base station (BS) is a device deployed in a radio access network to provide a wireless communication function for a UE.
  • the base station may include various forms of macro base stations, micro base stations, relay stations, access points, and the like. In systems using different radio access technologies, the names of devices with base station functions may be different. For example, in an LTE network, an evolved Node B (evolved NodeB: eNB or eNodeB) is used in a 3G network. Medium, called Node B (Node B) and so on. For convenience of description, in the present application, it is simply referred to as a base station or a BS.
  • eNB evolved NodeB
  • Node B Node B
  • FIG. 2 is a schematic diagram of a VoLTE network architecture according to an embodiment of the present invention, which mainly includes an IMS network, a core network, an access network, and a UE.
  • the IMS network is used as the service control layer system
  • the core network EPC is used as the bearer layer.
  • the IMS system not only the voice call control and other functions can be realized, but also the multimedia session can be charged reasonably and flexibly.
  • the IMS network mainly includes a Call Session Control Function (CSCF, CSCF for short) and an Application Server (AS), and a Session Border Control (SBC).
  • the IMS network cooperates with the EPC network to provide voice services and supplementary services similar to the circuit domain, such as number display, call forwarding, and call. Call waiting, conference call, etc.
  • the core network EPC mainly includes a mobility management entity (Mobility Management Entity), a serving gateway (SGW), a packet data network gateway (PGW), and a policy and charging rule function unit (Policy).
  • Policy Policy and charging rule function unit
  • PCRF Charging Rules Function
  • HSS Home Subscriber Server
  • the access network mainly includes a base station. The UE needs to support VoLTE related features, such as LTE DRX functions.
  • the 3rd Generation Partnership Project (3GPP) standardized a series of processing procedures for DRX through the 36.321 protocol.
  • the DRX cycle will be described in detail below with reference to FIG. 3.
  • time is divided into consecutive DRX cycles.
  • the DRX cycle is used to describe the period in which the On Duration repeats in DRX mode.
  • a DRX cycle consists of "On Duration” and "Opportunity for DRX".
  • the UE monitors the Physical Downlink Control Channel (PDCCH), so that downlink data can be received. Therefore, the time period of "On Duration” can also be called the activation period.
  • PDCCH Physical Downlink Control Channel
  • "Opportunity for DRX" is a possible sleep time.
  • the UE turns off the receiver, the UE does not listen to the PDCCH, and does not receive data of the downlink channel to save power consumption. Therefore, the period of "Opportunity for DRX" can also be called the sleep period.
  • the choice of DRX Cycle includes a balance between reducing UE power consumption and traffic delay.
  • a long DRX cycle is beneficial to reduce the power consumption of the UE. For example, when a user browses a web page that has already been downloaded, the UE wastes resources if it continuously receives downlink data.
  • a short DRX cycle facilitates a faster response when there is new data transmission. For example, when a user requests a voice call or requests another web page, a short DRX cycle facilitates the UE to respond to the request as quickly as possible. Therefore, a combination of a short cycle (short DRX cycle) and a long cycle (long DRX cycle) is adopted in the VoLTE system.
  • the range of DRX short period and DRX long period has been standardized by communication protocols.
  • the DRX long cycle is a mandatory configuration of the system, and the short DRX cycle is an optional configuration.
  • the DRX cycle is the long DRX cycle, and the cycle length of the DRX cycle is the cycle length of the long DRX cycle.
  • the system adopts DRX short cycle short DRX cycle
  • the DRX cycle is the short DRX cycle
  • the cycle length of the DRX cycle is the cycle length of the short DRX Cycle.
  • the DRX long-cycle (long DRX Cycle) value range is SF10 (ie, 10 subframes), SF20 (ie, 20 subframes), and SF32 (ie, 32 subframes).
  • SF40 (ie, 40 subframes), SF64 (ie, 64 subframes), SF80 (ie, 80 subframes), SF128 (ie, 128 subframes), SF160 (ie, 160 subframes), SF256 (ie, 256 subframes, SF320 (ie, 320 subframes), SF512 (ie, 512 subframes), SF 640 (ie, 640 subframes), SF 1024 (ie, 1024 subframes), SF 1280 (ie, 1280 subframes) SF2048 (ie, 2048 subframes), SF2560 (ie 2560 subframes).
  • 1 subframe is 1 millisecond (ms).
  • ms millisecond
  • the configuration information may include: a start subframe of the DRX long period, a number of subframes occupied, and/or a number of consecutive subframes during the On duration.
  • the UE knows the configuration information, it can know when to monitor the PDCCH channel and when to sleep. This information can be indicated by making different parameters or timers.
  • the value of the period length of the DRX long period that is, the number of subframes occupied by the DRX long period may be selected from the possible values in the foregoing communication protocol, or may be based on the QoS requirements of the service. determine.
  • the initial subframe of the DRX long period and the number of consecutive subframes occupied by the On Duration may be in a system default configuration manner, or may be indicated to the UE by different parameters or timers on the network side.
  • the drxStartOffset parameter may be used to indicate the starting subframe of the DRX cycle and the number of subframes occupied by the long DRX Cycle
  • the onDurationTimer is used to indicate the number of consecutive subframes during the On duration.
  • the VoLTE technology uses a dedicated IMS access point (APN) to provide voice services.
  • APN IMS access point
  • QoS quality of service
  • a specific QOS classification is used for signaling and voice data.
  • QCI can indicate the quality requirements such as the resource type, priority, delay, and packet loss rate of the service.
  • QCI is transmitted in each network element in the EPS, avoiding negotiation and passing a large number of specific QoS parameters.
  • EPS according to QCI To control QoS. Different Service Data Flows (SDFs) of different QCIs are mapped to different EPS bearers.
  • SDFs Service Data Flows
  • the configuration for QCI has been standardized.
  • QCI includes two major categories: standard QCI and extended QCI.
  • IMS signaling IMS Singaling
  • the bearer is an IMS default bearer, which has the highest priority. Used to carry signaling between the UE and the IMS.
  • QCI is 6-9 for some different priority video bearers.
  • the extended QCI can set different values according to requirements. For example, the extended QCI values of 10 to 254 can be set according to the type of controllable service.
  • One embodiment of the present invention provides a method of managing the length of a DRX cycle length, a base station, a UE, a core network entity, and a system.
  • the base station identifies the current service type of the UE, and configures a DRX cycle of a different cycle length for the UE according to the identified current service type of the UE.
  • There are various types of services of the UE including voice services (such as voice calls, video, etc.) and live video services.
  • the base station confirms that the service type established by the UE has a delay requirement that is different from the existing DRX period configuration of the UE, the base station performs DRX reconfiguration on the UE to adjust the DRX period of the UE.
  • the UE performs corresponding receiver switch control according to the DRX cycle configured by the base station to receive downlink data or perform sleep.
  • the adjusting the DRX cycle may include adjusting a period length of the DRX cycle (ie, the number of subframes occupied by the DRX cycle), and/or adjusting a number of consecutive subframes during the On duration in the DRX cycle.
  • the following is an example of adjusting the period length of the DRX cycle as an example.
  • the conventional DRX cycle configuration is configured based on the UE, rather than being configured on a per-radio bearer, that is, the conventional DRX cycle configuration does not consider the type of the current service of the UE.
  • the base station can flexibly configure the DRX cycle of the UE, so that a better balance can be achieved in saving UE power consumption and improving user experience.
  • the base station identifies whether the current service of the UE is a voice service.
  • the base station identifies whether the UE is initiating a voice service to confirm whether the current service state of the UE is a voice service. For example, the base station detects whether the UE is making a voice call, voice called or video service. If the base station recognizes that the UE is initiating a voice call, is in a voice call, or is performing a video service, the base station identifies the UE to perform a voice service, and otherwise identifies that the UE does not perform a voice service.
  • the base station can identify the UE voice call initiation event, so that the UE can perform DRX reconfiguration as soon as possible when the UE initiates the voice service, so that the UE can quickly respond to the voice service, thereby reducing the call delay and improving the user experience.
  • the voice service bearer of the UE is established or activated, the UE is identified to perform voice service. If the voice service bearer of the UE is deactivated or released, the voice call identifying the UE has ended, that is, the UE does not perform voice service.
  • the base station when the base station recognizes that the current service of the UE is a voice service, the base station configures the DRX long period with the first period length for the UE.
  • the length of the first period may be a smaller value according to a possible range of values of the DRX long period in the communication standard protocol, for example, a possible value of less than 80 subframes (such as 20 subframes or 40 subframes, etc.).
  • the length of the first period may also be a value configured according to service QoS requirements, for example, configuring a voice service with a possible duration of less than 80 milliseconds (such as 20 milliseconds or 40 milliseconds, etc.).
  • the UE's activation period interval becomes shorter, and the UE can be scheduled to be more quickly, thereby responding to the voice call more quickly, thereby greatly shortening the UE call setup delay and improving the user experience.
  • the UE when the base station recognizes that the UE does not perform voice service, the UE is configured with a DRX long period having a second period length.
  • the second period length is greater than the first period length.
  • the length of the second period is relatively long.
  • the second period length may be according to the communication standard protocol regarding DRX
  • the larger value of the possible range of the long period such as a possible value of 80 subframes or more (such as 160 subframes or 320 subframes, etc.).
  • the length of the second period may also be a value configured according to service QoS requirements, for example, a possible duration (for example, 160 milliseconds or 320 milliseconds, etc.) configured for the voice service to be greater than or equal to 80 milliseconds. Because the DRX long period with a longer period length is configured, the UE can be in a sleep period for as long as possible, thereby saving power.
  • a corresponding bearer is established.
  • the base station identifies that the UE initiates a voice service.
  • the UE initiates a voice service, including the UE initiating a voice call, the UE responding to the called, initiating a video service, and the like.
  • a base station serving a calling UE and a called UE in a voice service may be the same base station or different base stations.
  • SIP Session Initiation Protocol
  • the base station identifies that the UE is initiating a voice call or responds to the called party; otherwise, the base station identifies that the UE does not initiate a voice call or responds to the called party.
  • the complexity of the base station processing can be simplified, thereby saving the base station memory and the CPU resource consumption.
  • the UE when the base station identifies that the UE initiates a voice service, the UE is configured with a DRX long period having a shorter period length or instructs the UE to perform DRX deactivation.
  • the base station may carry the configuration information of the DRX long period by sending a Radio Resource Control (RRC) message to the UE.
  • RRC Radio Resource Control
  • the base station sends an RRC Connection Reconfiguration (RRC Connection Reconfiguration) message to the UE, where the message carries the configuration information of the DRX long period.
  • the configuration information of the DRX long period includes at least a period length of the DRX long period.
  • the base station configures the DRX long period with a shorter period length for the UE.
  • the shorter period length may be configured with reference to the design described in section 402 above, such as configuring 20 ms, 40 ms or 20 or 40 subframes, and the like.
  • the base station may indicate that the DRX long period occupies 20 subframes by the drxStartOffset cell in the RRC Connection Reconfiguration message.
  • the base station instructs the UE to deactivate the DRX by transmitting an RRC Connection Reconfiguration message to the UE when identifying that the UE initiates the voice service. For example, set the cell DRX-config in the RRC Connection Reconfiguration message to release.
  • the UE sends an RRC Connection Reconfiguration Complete message to the base station.
  • the UE receives the RRC Connection Reconfiguration message sent by the base station, and performs corresponding receiver switching operation according to the configuration information of the DRX long period carried in the message. And retransmitting the DRX by sending the RRC Connection Reconfiguration Complete message. Because the base station configures the DRX long period with a shorter period length for the UE, the UE can enter the DRX activation period as soon as possible, thereby responding to the voice service more quickly.
  • the UE after receiving the DRX deactivation indication sent by the base station, the UE performs DRX deactivation and enters a continuous reception mode of operation. At this time, the UE can better guarantee the voice service of the UE.
  • the step of the UE transmitting the RRC connection reconfiguration complete message is optional.
  • the DRX long period is configured for the UE and is indicated to the UE, and the configuration on the base station side is completed.
  • the UE may send an RRC connection reconfiguration message to the base station after the DRX reconfiguration succeeds. After receiving the message, the base station may know that the UE has successfully completed the DRX reconfiguration.
  • the portions 601, 604, and 605 of the embodiment provided in FIG. 6 are identical to the portions of 501, 503, and 504 of the embodiment provided in FIG. 5, respectively.
  • the base station learns that the UE initiates a voice service (parts 602, 603) by receiving a notification from the EPC or IMS (EPC/IMS).
  • the notification from the EPC/IMS may be sent by the MME to the base station as shown in FIG. 2, or sent by the SGW and/or the PGW to the base station through the MME, or in the IMS network.
  • the entity is sent to the base station through an entity in the EPC network.
  • the form informs the base station that is called the UE or the called UE.
  • the EPC/IMS sends a voice call setup initiation indication to the base station.
  • the voice call setup initiation indication includes information of a voice call user and/or a UE, and the like.
  • the base station When receiving the voice call setup initiation indication, the base station identifies that the UE initiates a voice call or the UE is called.
  • the base station configures the DRX long period of a shorter period length or deactivates DRX (parts 604, 605) for the UE.
  • DRX parts 604, 605
  • the base station identifies the method for the UE to initiate the voice service, and may refer to the description of the embodiment related to FIG. 5 or FIG. 6 , and details are not described herein again.
  • the base station starts a timer at the same time as or after the base station recognizes that the UE initiates the voice service.
  • the bearer setup request such as an E-RAB Setup Request
  • the base station may perform DRX reconfiguration or DRX deactivation on the UE by referring to the solution described in the foregoing embodiment with reference to FIG. 5 or FIG. 6, and details are not described herein again.
  • the timer is set to prevent the voice service bearer from being successfully established due to radio resources or other reasons, which affects the user experience.
  • the duration of this timer can be 2 seconds (s). Of course, it can be understood that other timers can also be set for the timer, for example, within 10 seconds.
  • Parts 801 and 802 are similar to the parts of 701 and 702 in FIG. 7 described above, and are not described herein again.
  • the difference between the 803 part and the above 703 part is that the voice service bearer establishment fails.
  • section 805 is an optional step.
  • the base station resumes the DRX long-period configuration of the UE with a longer period length.
  • the base station can carry the configuration information of the DRX long period through the RRC message.
  • the configuration of the DRX long period of the UE can be completed as described in the above section 403 and the embodiment related to FIG. 5 or FIG. 6.
  • the DRX long period period length can be configured to be 160 milliseconds, 320 milliseconds or more, or 160 subframes, 320 subframes or more.
  • the base station when the base station identifies that the UE is not performing voice service, the base station may not perform DRX. Reconfigured operation. In other words, the base station may not perform step 805.
  • the base station configures a long DRX long period, for example, 80 milliseconds or longer, or a possible value of 80 subframes or more for the UE according to the communication protocol.
  • the originally configured DRX long period can meet the system requirements, such as meeting the quality of service (QoS) requirements of the guaranteed service, so the base station does not need to reconfigure the DRX long period for the UE.
  • QoS quality of service
  • the base station can also confirm whether the long DRX period configured for the UE meets the system requirements, for example, whether the system length requirement is met by determining whether the length of the DRX long period configured for the UE reaches a predetermined threshold. .
  • the base station performs DRX reconfiguration on the UE by referring to the method described in the foregoing 503, 504, and configures the base station to configure the DRX long period that meets the system requirements.
  • the base station identifies that the UE is not performing voice traffic.
  • the non-voice service includes that the UE does not initiate a voice call, the UE does not respond to the called party, or the UE voice service has ended, and the like.
  • the method described in Section 502 above may be referenced to identify that the UE is not performing voice traffic.
  • the base station identifies that the UE has not initiated a voice call.
  • the base station may refer to the embodiment described above in connection with FIG. 6, and the EPC/IMS identifies that the UE is not performing voice traffic and notifies the base station. For example, when the EPC/IMS identifies that the UE does not initiate a voice call or the UE is called, the EPC/IMS notifies the base station serving the called UE or the called UE in the form of a message or event trigger.
  • the base station configures the DRX long period with a longer period length for the UE or instructs the UE to perform a DRX activation operation, thereby enabling the UE to reduce power consumption.
  • the base station when the base station identifies that the UE is not performing voice traffic, the base station configures the UE with a DRX long period having a longer period length.
  • the longer period length can be configured with reference to the design described in Section 403 above. For example, 80 milliseconds or 160 milliseconds is configured, or 80 subframes or 160 subframes, and the like.
  • the DRX reconfiguration can be performed with reference to the reconfiguration procedure in Section 503 above.
  • the base station may send an RRC Connection Reconfiguration message to the UE. This message carries the configuration information of the DRX long period.
  • the configuration information includes at least a period length of a DRX long period.
  • the drxStartOffset cell in the RRC Connection Reconfiguration message indicates that the DRX long period occupies 160 subframes.
  • the base station if the base station instructs the UE to perform DRX deactivation when the UE is performing voice service, when the base station recognizes that the voice service ends, the base station sends an indication to the UE to instruct the UE to perform the DRX activation operation.
  • the base station may also instruct the UE to configure a DRX long period with a longer period length while instructing the UE to perform the DRX activation operation.
  • the base station may instruct the UE to perform a DRX activation operation by setting the cell DRX-config in the RRC Connection Reconfiguration message to Setup.
  • the period length of the DRX long period may also be indicated by the RRC Connection Reconfiguration message carrying the cell DRX-Config and setting the Setup, drxStartOffset cell.
  • Section 903 is similar to Section 504 above and is an optional step.
  • the UE may also perform an operation similar to the above section 504 to send an RRC Connection Reconfiguration Complete message to the base station.
  • RRC Connection Reconfiguration Complete message For details, refer to the relevant part in the above section 504, and details are not described herein again.
  • each network element such as a UE, a base station, a core network entity, etc.
  • each network element such as a UE, a base station, a core network entity, etc.
  • each network element includes software structures and/or software modules corresponding to each function.
  • Those skilled in the art should readily appreciate that the elements and algorithm steps of the various examples described in connection with the embodiments disclosed herein can be implemented in a combination of hardware and computer software. Whether certain functions are performed in hardware or computer software-driven hardware depends on the specific application and design constraints of the solution. A person skilled in the art can use different methods for implementing the described functions for each particular application, but such implementation should not be considered to be beyond the scope of the present invention.
  • Fig. 10 is a block diagram showing the design of a base station involved in the above embodiment.
  • the base station includes a transmitter/receiver 1001, a controller/processor 1002, a memory 1003, and a communication unit 1004.
  • the transmitter/receiver 1001 is configured to support the base station to transmit and receive information with the UE in the foregoing embodiment, and to support radio communication between the UE and other UEs.
  • the controller/processor 1002 performs various functions for communicating with the UE.
  • On the uplink the uplink signal from the UE is received via the antenna, coordinated by the receiver 1001, and further processed by the controller/processor 1102 to recover the service data and signaling information transmitted by the UE.
  • traffic data and signaling messages are processed by controller/processor 1002 and mediated by transmitter 1001 to generate downlink signals for transmission to the UE via the antenna.
  • the controller/processor 1002 also performs the processes involved in the base station of Figures 4-9 and/or other processes for the techniques described herein.
  • the memory 1003 is used to store program codes and data of the base station.
  • the communication unit 1004 is configured to support the base station to communicate with other network entities. For example, it is used to support communication between the base station and other communication network entities shown in FIG. 2, such as MME, SGW and or PGW located in the core network EPC.
  • Figure 10 only shows a simplified design of the base station. It can be understood that in practical applications, the base station can include any number of transmitters, receivers, processors, controllers, memories, communication units, and the like.
  • Fig. 11 is a block diagram showing the design of the UE involved in the above embodiment.
  • Encoder 1106 receives the traffic data and signaling messages to be transmitted on the uplink.
  • Encoder 1106 Process data and signaling messages are processed (eg, formatted, encoded, and interleaved).
  • Modulator 1107 further processes (e.g., symbol maps and modulates) the encoded traffic data and signaling messages and provides output samples.
  • Transmitter 1101 conditions (e.g., analog transforms, filters, amplifies, and upconverts, etc.) the output samples and generates an uplink signal that is transmitted via an antenna to the base station described in the above embodiments.
  • the antenna receives the downlink signal transmitted by the base station in the above embodiment.
  • Receiver 1102 conditions (eg, filters, amplifies, downconverts, digitizes, etc.) the signals received from the antenna and provides input samples.
  • Demodulator 1109 processes (e.g., demodulates) the input samples and provides symbol estimates.
  • the decoder 1108 processes (e.g., deinterleaves and decodes) the symbol estimate and provides decoded data and signaling messages that are sent to the UE.
  • Encoder 1106, modulator 1107, demodulator 1109, and decoder 1108 may be implemented by modem processor 1105. These units are processed according to the radio access technology employed by the radio access network (e.g., access technologies of LTE and other evolved systems).
  • the controller/processor 1103 performs control management on the actions of the UE for performing the processing performed by the UE in the above embodiment. For example, other procedures for controlling the UE to receive paging according to the received DRX long period and/or the techniques described herein.
  • the controller/processor 1103 is configured to support the UE in performing processes 501 and 504 in FIG. 5, processes 601 and 605 in FIG. 6, processes 702 and 705 in FIG. 7, processes 801, 803 in FIG. 805, process 903 in FIG.
  • Memory 1104 is used to store program code and data for UE 110.
  • Fig. 12 is a block diagram showing the design of a core network device involved in the above embodiment.
  • the core network may be an EPC network, and the core network device may refer to an MME, an SGW, a PGW, or any combination thereof.
  • the core network device includes a controller/processor 1202 for controlling management of actions of the core network device and performing various functions to support communication services of the UE.
  • the controller/processor 1202 is configured to support the core network device to perform the process 501 of FIG. 5, the process 601 and or 602 of FIG. 6, the process 702 of FIG. 7, the processes 801, 803 of FIG. 8, and/or Or other processes for the techniques described herein.
  • Memory 1201 is for storing program code and data for the core network device.
  • Communication unit 1203 is used to support communication with other network entities.
  • communication with the network entity shown in FIG. 2 is supported.
  • the controller/processor for performing the above-mentioned base station, UE or core network device function of the present invention may be a central processing unit (CPU), a general purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), and an on-site Program gate array (FPGA) or other programmable logic device, transistor logic device, hardware component, or any combination thereof. It is possible to implement or carry out the various illustrative logical blocks, modules and circuits described in connection with the present disclosure.
  • the processor may also be a combination of computing functions, for example, including one or more microprocessor combinations, a combination of a DSP and a microprocessor, and the like.
  • the steps of a method or algorithm described in connection with the present disclosure may be embodied directly in hardware, a software module executed by a processor, or a combination of both.
  • the software modules can reside in RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, registers, hard disk, removable hard disk, CD-ROM, or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor to enable the processor to read information from, and write information to, the storage medium.
  • the storage medium can also be an integral part of the processor.
  • the processor and the storage medium can be located in an ASIC. Additionally, the ASIC can be located in the user equipment.
  • the processor and the storage medium may also reside as discrete components in the user equipment.
  • the functions described herein can be implemented in hardware, software, firmware, or any combination thereof.
  • the functions may be stored in a computer readable medium or transmitted as one or more instructions or code on a computer readable medium.
  • Computer readable media includes both computer storage media and communication media including any medium that facilitates transfer of a computer program from one location to another.
  • a storage medium may be any available media that can be accessed by a general purpose or special purpose computer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephone Function (AREA)

Abstract

本发明涉及一种管理非连续接收(DRX)的技术。根据UE的业务类型来配置不同周期长度的DRX周期。在识别用户设备(UE)发起语音业务时,为UE配置较短的第一DRX长周期或者指示UE去激活DRX;在识别UE未进行语音业务时,为UE配置较长的第二DRX长周期。UE根据配置的DRX长周期进行相应的接收机开关控制,以接收下行数据或者进行休眠。通过本发明提供的方案,可以灵活的对UE的DRX周期进行配置,从而可以在节省UE功耗和提升用户体验上取得更好的平衡。

Description

非连续接收周期管理方法和装置 技术领域
本发明涉及移动通信领域,尤其涉及无线通信系统中的非连续接收(Discontinuous Reception,简称DRX)技术。
背景技术
VoLTE(Voice over LTE)技术,是基于IP多媒体子系统(IP Multimedia Subsystem,简称IMS)的语音解决方案。VoLTE技术不仅可以提升无线频谱利用率,降低运营商的网络成本,还可以使得用户体验大大提升。使用VoLTE技术,用户等待时间更短,享受更高质量,更自然的音视频通话效果。
随着智能终端被广泛应用,为了降低终端,例如用户设备(User Equipment,简称UE)的功耗,DRX技术被引入。DRX的周期指示UE需要何时监测信道以及UE何时关闭电源来节省电池电量,以减少不必要功耗。可以理解的是,当DRX周期比较短时,可以保证UE的调度机会,但是UE频繁的信道检测会使得UE的功耗变大。当DRX周期比较长时,可以有效的降低UE的功耗,但对UE的寻呼会有太长的延迟才能被UE响应,可能造成系统性能下降。因此,需要有一种对DRX周期进行管理的方案,以实现系统性能和UE的功耗之间的合理调配。
发明内容
本文描述了一种管理DRX周期方法,装置及系统,以实现系统的性能和UE的功耗之间的合理调配。
一方面,本发明实施例提供一种管理DRX周期的方法。识别UE当前的业务类型(如语音业务,视频直播业务等),根据UE的业务类型来配置不同周期长度的DRX周期。UE根据基站配置的DRX周期接收寻呼,例如进行下行数据接收或者休眠。
在一个可能的设计中,所述识别UE当前的业务类型是否为语音业务(如语 音呼叫业务,视频业务等)。在识别UE进行语音业务时,为UE配置第一DRX长周期或者指示UE去激活DRX;在识别UE未进行语音业务时,为UE配置第二DRX长周期,所述第一DRX长周期的周期长度小于所述第二DRX长周期的周期长度。通过本发明实施例提供的方案,可以灵活的对UE的DRX周期进行管理。在UE进行语音业务时,未UE配置较短周期长度的第一DRX长周期,使得UE更快的响应寻呼,减少时延。在UE未进行语音业务时,为UE配置较长周期长度的第二DRX长周期,从而可以尽可能的节省UE功耗。因此在减少时延和节省UE功耗之间取得更好的平衡。
在一个可能的设计中,在识别UE是否进行语音业务时,可以对UE是否发起语音业务进行识别。在UE发起语音业务,例如发起主叫或者被叫时,尽早进行识别。对用户而言,在发起语音呼叫时,时延是否长,直接影响用户体验。因此尽早的识别语音呼叫发起时间,并配置相应的DRX周期,可以使得UE更加快速响应语音业务,以减少呼叫时延,提升用户体验。
在一个可能的设计中,可以通过对QCI承载的识别来UE的业务类型,从而突破基站本身对QCI承载传输数据不感知的限制。
在一个可能的设计中,基站在对QCI承载进行识别时,一方面基站可以仅仅检测某个QCI承载是否有数据包传输,而不用解析数据包的内容。该设计方案,可以简化基站的处理流程,节省基站内存及CPU资源消耗。另一方面基站也可以解析某个QCI承载上的数据的数据报文,来获知UE的业务类型。该设计方案,可以使得基站对UE的业务状态更加清晰的了解。
在一个可能的设计中,基站可以对QCI=5的信令承载进行识别。QCI=5的信令承载是IMS默认承载,其优先级高于其他的承载。基站通过对QCI=5的承载进行识别,可以使得基站在UE进行各种业务的更早期参与识别,从而基站可以更加灵活的对DRX进行管理。例如,通过识别QCI=5的承载来完成语音呼叫发起事件的识别。
在一个可能的设计中,基站可以对QCI=5的信令承载的数据报文进行解析,如果检测出QCI=5的信令承载上传输的消息是会话发起协议邀请SIP Invite消息,或者是针对SIP Invite消息的确认响应消息,则基站识别UE发起语音呼叫或者被叫,否则,基站识别UE未发起语音呼叫或者被叫。SIP Invite消息是语音呼叫发起过程中最先发起的消息,对该消息的解析,可以使得基站更早的识别UE发起了语音呼叫。
当然,可以理解,基站也可以对QCI=5的承载上其他的消息进行解析,来识别UE是否进行语音业务。
在一个可能的设计中,基站可以通过检测QCI=1的承载建立,激活,去激活或者释放来识别UE是否进行语音业务。例如,当QCI=1的承载建立或者激活,识别UE进行语音业务。当QCI=1的承载去激活或者释放,识别UE语音业务结束。
在一个可能的设计中,由核心网络或者IP多媒体子系统IMS中的网络实体来识别UE是否进行语音业务,并将该信息通知给基站。例如EPC或IMS网络中的网络实体向基站发送语音呼叫建立发起指示来通知基站UE进行语音业务。可选的,该语音呼叫建立发起指示中可以携带主叫UE和/或被叫UE的信息。
在一个可能的设计中,基站识别UE发起语音业务的同时或者之后,基站启动定时器,定时器期满时,基站检测QCI=1的承载是否建立成功,当QCI=1的承载建立成功时,为UE配置第一DRX长周期或者指示UE去激活DRX。基站通过设定定时器,可以防止QCI=1的承载可能因为建立不成功时,避免不必要的对UE的DRX长周期进行重配置。
在一个可能的设计中,如果在识别用户设备UE发起语音业务时,基站指示了UE去激活DRX,那么在识别UE语音业务结束时,基站指示UE激活DRX,或者为UE配置所述较长周期长度的DRX长周期,并指示UE激活DRX。
在一个可能的设计中,基站通过向UE发送无线资源控制连接RRC消息,来 携带上述设计中提到的第一DRX长周期,第二DRX长周期,用于指示UE去激活DRX的指示,或者用于指示UE激活DRX的指示中的一个或多个。例如,该RRC消息可以是RRC连接重配置消息。
在一个可能的设计中,上述提到第一和第二DRX长周期可以是根据通信标准协议规定的DRX长周期可能的取值范围来配置,例如第一DRX长周期配置为较小的可能取值(例如小于80个子帧的可能取值),而第二DRX长周期配置为较大的可能取值(例如大于等于80个子帧的可能取值)。
在另一个可能的设计中,上述提到的第一和第二DRX长周期可以是根据为满足相应业务的服务质量(QoS)需求来配置,例如第一DRX长周期配置为小于80毫秒的可能时长,第二DRX长周期配置为大于等于80毫秒的可能时长。
另一方面,本发明实施例提供了一种基站,其包含用于执行上述方法设计中基站行为相对应的模块。所述模块可以是软件和/或是硬件。
在一个可能的设计中,基站包括处理器和存储器,所述处理器其被配置为支持基站执行上述方法中相应的功能。所述存储器用于与处理器耦合,其保存基站必要的程序指令和数据。
又一方面,本发明实施例提供了一种UE,其包含用于执行上述方法设计中UE行为相对应的模块。所述模块可以是软件和/或硬件。
在一个可能的设计中,终端包括接收器和处理器,所述接收器被配置为支持UE接收上述中基站为UE配置的第一DRX长周期,第二DRX长周期,激活DRX指示或者去激活DRX指示等各种指令。所述处理器控制UE根据所述接收器接收的第一DRX长周期,去激活DRX指示,或者第二DRX长周期接收寻呼。
又一方面,本发明实施例提供了一种网络实体。该网络实体可以是核心网络中的网络实体,例如移动性管理实体MME,或者网关(SGW和/或PGW)。该网络实体也可以是IP多媒体子系统IMS中的网络实体。该网络实体用于识别UE的业务类型,并将识别出的UE业务对信息通知给基站,从而支持和基站配合实 现上述方法设计中的方案。
又一方面,本发明实施例提供了一种通信系统,该系统包括上述方面所述的基站和UE,或者基站和网络实体,或者,基站,UE和网络实体。
再一方面,本发明实施例提供了一种计算机存储介质,用于其包含用于执行上述方面所设计的程序。
相较于现有技术,本发明提供的方案可以更加灵活的管理和配置DRX周期。
附图说明
图1为本发明的一种可能的应用场景示意图;
图2为实现本发明的一种可能的系统网络示意图;
图3为DRX周期示意图;
图4为本发明实施例提供的一种管理DRX周期流程示意图;
图5为本发明实施例提供的一种管理DRX周期的通信示意图;
图6为本发明实施例提供的另一种管理DRX周期的通信示意图;
图7为本发明实施例提供的又一种管理DRX周期的通信示意图;
图8为本发明实施例提供的又一种管理DRX周期的通信示意图;
图9为本发明实施例提供的再一种管理DRX周期的通信示意图;
图10为本发明实施例提供的基站结构示意图;
图11为本发明实施例提供的UE结构示意图;
图12为本发明实施例提供的核心网络装置结构示意图。
具体实施方式
下面将结合附图,对本发明的应用场景及实施例中的技术方案做说明。
如图1所示,用户设备UE通过无线接入网(Radio Access Network,简称)及核心网(Core Network,简称CN)接入IMS网络。本发明描述的技术可以适用于长期演进(Long Term Evolution,简称LTE)系统,或其他采用各种无线接 入技术的无线通信系统,例如采用码分多址,频分多址,时分多址,正交频分多址,单载波频分多址等接入技术的系统。此外,还可以适用于使用LTE系统后续的演进系统。为清楚起见,这里仅以LTE系统为例进行说明。在LTE系统中,演进的UMTS陆面无线接入(Evolved Universal Terrestrial Radio Access Network简称E-UTRAN)作为无线接入网,演进分组核心网(Evolved Packet,Core,简称EPC)作为核心网。UE通过E-UTRAN,及EPC接入IMS网络。
本申请中,名词“网络”和“系统”经常交替使用,但本领域的技术人员可以理解其含义。本发明所涉及到的用户设备UE可以包括具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,简称UE),移动台(Mobile station,简称MS),终端(terminal),终端设备(Terminal Equipment)等等。为方便描述,本申请中,简称为用户设备或UE。本发明所涉及到的基站(base station,简称BS)是一种部署在无线接入网中用以为UE提供无线通信功能的装置。所述基站可以包括各种形式的宏基站,微基站,中继站,接入点等等。在采用不同的无线接入技术的系统中,具备基站功能的设备的名称可能会有所不同,例如在LTE网络中,称为演进的节点B(evolved NodeB简称:eNB或者eNodeB),在3G网络中,称为节点B(Node B)等等。为方便描述,本申请中,简称为基站或BS。
图2示出了本发明实施例的一种VoLTE网络架构示意图,其主要包括IMS网络,核心网络,接入网络以及UE。IMS网络作为业务控制层系统,核心网络EPC作为承载层,借助IMS系统,不仅能够实现语音呼叫控制等功能,还能够合理、灵活地对多媒体会话进行计费。
所述IMS网络主要包括呼叫会话控制功能(Call Session Control Function,CSCF,简称CSCF)和应用服务器(Application Server,简称,AS),会话边界控制器(Session Border Control,简称SBC)等。IMS网络和EPC网络配合,可以提供和电路域类似的语音业务及其补充业务,如号码显示,呼叫转移,呼 叫等待,会议电话等等。所述核心网络EPC主要包括,移动性管理实体(Mobility Management Entity),服务网关(serving Gateway,简称SGW),分组数据网关(Packet Data Network Gateway,简称PGW),策略与计费规则功能单元(Policy and Charging Rules Function,简称PCRF)归属用户服务器(Home Subscriber Server,简称HSS)。所述接入网络主要包括基站。所述UE需要支持VoLTE相关特性,如LTE DRX功能等。
在LTE系统中,第三代合作伙伴计划(3rd Generation Partnership Project,简称3GPP)通过36.321协议标准化了DRX的一系列处理流程。
下面结合图3,对DRX周期进行详细描述。在时域上,时间被划分成一个个连续的DRX周期(DRX Cycle)。DRX周期是用于描述DRX模式下On Duration重复出现的周期。一个DRX周期由“On Duration”和“Opportunity for DRX”组成。在On Duration的时间段内,UE监听物理下行控制信道(Physical Downlink Control Channel,简称PDCCH),从而可以接收下行数据。因此“On Duration”的时间段也可以称为激活期。“Opportunity for DRX”即可能的休眠时间,在该时间段内,UE关闭接收机,UE不侦听PDCCH,不接收下行信道的数据以节省功耗。因此“Opportunity for DRX”的时间段,也可以称为休眠期。
DRX周期(DRX Cycle)的选择包含了减少UE功耗和业务延迟之间的平衡。一方面,长的DRX周期有益于减少UE的功耗。例如当用户在浏览已经下载好的网页时,UE如果持续接收下行数据会浪费资源。另一方面,当有新的数据传输时,短的DRX周期有利于更快的响应。例如,用户请求语音呼叫,或者请求另一个网页时,短的DRX周期有利于UE尽快的响应需求。因此VoLTE系统中采用短周期(short DRX cycle)和长周期(long DRX cycle)相结合的配置方式。DRX短周期和DRX长周期的取值范围已被通信协议所标准化的。DRX长周期是系统必须的配置,short DRX cycle为可选的配置。换句话说,当系统采用DRX长周期(long DRX cycle)时,DRX周期即是long DRX cycle,DRX周期的周期长度就是long DRX cycle的周期长度。当系统采用DRX短周期(short DRX cycle) 时,DRX周期即是short DRX cycle,DRX周期的周期长度就是short DRX Cycle的周期长度。
根据目前通信标准协议规定,在LTE系统中,DRX长周期(long DRX Cycle)的取值范围是SF10(即,10个子帧),SF20(即,20个子帧),SF32(即,32个子帧),SF40(即,40个子帧),SF64(即,64个子帧),SF80(即,80个子帧),SF128(即,128个子帧),SF160(即,160个子帧),SF256(即,256个子帧),SF320(即,320个子帧),SF512(即,512个子帧),SF640(即,640个子帧),SF1024(即,1024个子帧),SF1280(即,1280个子帧),SF2048(即,2048个子帧),SF2560(即2560个子帧)。对于LTE系统而言,1个子帧为1毫秒(ms)。例如,当long DRX Cycle的取值是SF160时,即DRX长周期是占用了160个子帧,也即DRX周期长度是160ms。
对于DRX长周期而言,其配置信息可以包括:DRX长周期的起始子帧,占用的子帧数,和/或On duration期间的连续子帧数。UE得知了这些配置信息,即可得知在什么时候去监听PDCCH信道,什么时候进行休眠。可以通过制定不同参数或者定时器来指示这些信息。本发明提供的方案中,对于DRX长周期的周期长度取值,即DRX长周期占用的子帧数,可以从上述通信协议中的可能取值中来选择,也可以是根据业务的QoS需求来确定。所述DRX长周期的起始子帧和On Duration期间占用的连续子帧数可以是采用系统默认配置的方式,也可以是网络侧通过不同参数或者定时器指示给UE。作为一个例子,可以通过drxStartOffset参数来指示DRX周期的起始子帧及long DRX Cycle占用的子帧数,通过onDurationTimer来指示On duration期间的连续子帧数。
VoLTE技术采用专门的IMS接入点(Access Point Name,简称APN)来提供语音业务,为保障语音业务较高的服务质量(Quality of Service,简称QoS),为信令和语音数据使用特定QOS分类识别码(QOS Class Identifier,QCI)的承载。QCI可指示业务的资源类型、优先级、时延、丢包率等质量要求。QCI在EPS中各个网元中传递,避免了协商和传递大量具体的QoS参数。EPS按照QCI 来控制QoS。不同QCI的业务数据流(Service Data Flow,简称SDF)映射到不同的EPS承载。对于QCI的配置已被标准化。QCI包括标准QCI和扩展QCI两大类。其中标准QCI分为9类,为QCI=1,2…9。例如IMS信令(IMS Singaling)采用QCI=5的承载,该承载为IMS默认承载,其优先级最高。用于承载UE和IMS之间的信令。对话语音(Conversational Voice)采用QCI=1的专用承载,视频直播(Live Video Streaming)采用QCI=2的承载,实时游戏(Real-time gaming)采用QCI=3的承载。缓存视频流(Buffered Video Streaming)采用QCI=4的承载。QCI为6-9的为一些不同优先级的视频承载。所述扩展QCI可以根据需求设定不同值。例如可以根据可控业务的种类,设定扩展QCI取值10至254。
下面将基于上面所述的本发明涉及的共性方面,对本发明实施例进一步详细说明。
本发明的一个实施例提供一种管理DRX周期长度的长度的方法,基站,UE,核心网络实体及系统。所述基站识别UE当前的业务类型,并根据识别出的UE当前的业务类型不同,为UE配置不同周期长度的DRX周期。UE的业务类型有多种,包括语音业务(如语音呼叫,视频等),视频直播业务等。当基站确认UE建立的业务类型对时延要求与UE现有的DRX周期配置不一致,则基站对UE进行DRX重配置,以调整UE的DRX周期。UE根据基站配置的DRX周期进行相应的接收机开关控制,以接收下行数据或者进行休眠。所述调整DRX周期可以包括调整DRX周期的周期长度(即DRX周期占用的子帧数),和/或调整DRX周期中的On duration期间的连续子帧数。较佳的,下面以调整DRX周期的周期长度为例进行详细说明。
由于DRX是UE级别的特性,传统的对DRX周期配置是基于UE来配置的,而不是基于每个无线承载来配置的,即传统的DRX周期配置并没有考虑UE当前业务的类型。通过本发明实施例提供的方案,基站可以灵活的对UE的DRX周期进行配置,从而可以在节省UE功耗和提升用户体验上取得更好的平衡。
下面结合附图4,对本发明的实施例进行说明。
在401部分,基站识别UE的当前业务是否为语音业务。
在一个示例中,基站识别UE是否在发起语音业务来确认UE的当前业务状态是否为语音业务。例如,基站检测UE是否在进行语音呼叫,语音被叫或者视频业务。如果基站识别出UE在发起语音呼叫,处于语音被叫,或者正进行视频业务,则基站识别UE进行语音业务,否则识别UE未进行语音业务。基站可以对UE语音呼叫发起事件进行识别,从而可以在UE发起语音业务时尽可能早的为UE进行DRX重配置,以使得UE快速响应语音业务,以减少呼叫时延,提升用户体验。
在另一个示例中,基站识别UE的语音呼叫是否结束来确认UE的当前业务是否为语音业务。例如,检测UE的语音业务承载(即QCI=1的承载)是否建立或者激活,去激活或者释放。如果UE的语音业务承载建立或者激活,则识别UE进行语音业务,如果UE的语音业务承载去激活或者释放,则识别UE的语音呼叫已经结束,也就是说UE未进行语音业务。
在402部分,当基站识别出UE当前业务为语音业务时,基站为UE配置具有第一周期长度的DRX长周期。该第一周期长度可以是根据通信标准协议中关于DRX长周期的可能取值范围中较小的取值,例如一个小于80个子帧的可能取值(如20个子帧或40个子帧等)。该第一周期长度也可以是根据业务QoS需求来配置的取值,例如对于语音业务配置一个小于80毫秒的可能时长(如20毫秒或40毫秒等)。因为配置了较短周期长度的DRX长周期,UE的激活期间隔变短,UE可以更快速被调度到,从而更快的响应语音呼叫,从而大大缩短UE呼叫建立时延,提升用户体验。
在403部分,当基站识别出UE未进行语音业务时,为UE配置具有第二周期长度的DRX长周期。所述第二周期长度大于所述第一周期长度。所述第二周期长度的取值相对较长。该第二周期长度可以是根据通信标准协议中关于DRX 长周期的可能取值范围中较大的取值,例如一个大于等于80个子帧的可能取值(如160个子帧或320个子帧等)。该第二周期长度也可以是根据业务QoS需求来配置的取值,例如对于语音业务配置一个大于等于80毫秒的可能时长(如160毫秒或320毫秒等)。因为配置了较长周期长度的DRX长周期,UE可以尽可能的长时间处于休眠期,从而节省功耗。
下面将结合图5对本发明的实施例做进一步说明。
在501部分,支持VoLTE的UE接入网络后,会建立相应的承载。QCI=5的承载作为IMS信令承载,其优先级高于其他QCI取值的承载,会被优先建立。
在502部分:基站识别UE发起语音业务。所述UE发起语音业务,包括UE发起语音呼叫,UE响应被叫,发起视频业务等。
需要说明的是,本发明提供的相关附图中,为清楚起见,仅仅示例性的示出一个UE及为该UE服务的基站。可以理解的是,UE在不同的语音业务流程中,既可以作为主叫也可以作为被叫。为一个语音业务中主叫UE和被叫UE服务的基站,既可以是同一个基站,也可以是不同的基站。
在本实施例中,基站可以通过检测QCI=5的承载(也可以称为:IMS信令承载)来识别UE是否发起语音业务。
在一个示例中,基站解析QCI=5的承载上的数据报文,以确定该承载上的会话发起协议(Session Initiation Protocol,简称SIP)消息的类型。例如,基站通过解析所述数据报文头部内容,确认所述SIP消息为SIP邀请(SIP Invite)消息时,基站识别UE发起语音呼叫。又例如,基站通过解析确定所述SIP消息为UE针对SIP Invite消息的确认响应消息,如ACK消息,基站识别UE响应被叫。如前面所介绍的,QCI=5的承载是用于承载UE和IMS之间的信令。QCI=5的承载建立是在QCI=1的承载(也可以称为:对话语音承载)建立之前就建立的。基站通过检测QCI=5的承载来识别UE是否发起语音业务,可是使得基站能更早的识别出UE何时发起语音业务,从而减少呼叫或响应时延。
在另一个示例中,基站通过检测QCI=5的承载上是否有数据包传输来识别UE是否发起语音业务。当基站检测到QCI=5的承载上有数据包传输时,基站识别UE正在发起语音呼叫或者响应被叫;否则,基站识别UE没有发起语音呼叫或者响应被叫。在本实施例中,基站只需检测QCI=5的承载上是否有数据包,而无需解析QCI=5承载上的数据包的内容,即可完成UE语音呼叫发起事件或者被叫响应事件的识别,可以简化基站处理的复杂度,从而节省基站内存及CPU的资源消耗。
在503部分,在基站识别UE发起语音业务时,为UE配置具有较短周期长度的DRX长周期或者指示UE进行DRX去激活。
在一个示例中,基站可以通过向UE发送无线资源控制(Radio Resource Control,简称RRC)消息来携带DRX长周期的配置信息。例如基站向UE发送RRC连接重配置(RRC Connection Reconfiguration)消息,该消息中携带DRX长周期的配置信息。所述DRX长周期的配置信息中至少包括DRX长周期的周期长度。为缩短用户呼叫建立时延,提升用户体验,基站为UE配置具有较短周期长度的DRX长周期。所述较短周期长度可以参照上面402部分所述的设计来配置,例如配置20ms,40ms或者20或40个子帧等。作为一个例子,基站可以通过RRC Connection Reconfiguration消息中的drxStartOffset信元来指示DRX长周期占用20个子帧。
在另一个示例中,基站在在识别出UE发起语音业务时,通过向UE发送RRC Connection Reconfiguration消息指示UE去激活DRX。例如,将RRC Connection Reconfiguration消息中的信元DRX-config设置为release。
在504部分,UE向基站发送RRC连接重配置完成(RRC Connection Reconfiguration Complete)消息。
在一个示例中,UE接收基站发送的所述RRC Connection Reconfiguration消息,并根据该消息中携带的DRX长周期的配置信息进行相应接收机开关机操 作,并发送所述RRC Connection Reconfiguration Complete消息完成DRX的重配置。因为此时基站为UE配置的是具有较短周期长度的DRX长周期,因此UE可以尽快进入DRX激活期,从而更快的响应语音业务。
在另一个示例中,UE在收到基站发送的DRX去激活指示后,进行DRX去激活,而进入连续接收工作模式。这时UE可以更好的保障UE的语音业务。
需要说明的是,504部分,UE发送RRC连接重配置完成消息的步骤是可选。尤其对于基站而言,为UE配置了DRX长周期并且指示给了UE,基站侧的配置以完成。当然,作为优选的实施例,UE可以在DRX重配置成功后,向基站发送RRC连接重配置消息,基站收到该消息后,可以知晓UE已经成功完成了DRX重配置。
下面将结合图6对本发明的实施例做进一步说明。
图6提供的实施例中601,604及605部分分别与图5提供的实施例中501,503及504部分相同。其不同之处在于,在本实施例中,基站通过接收来自EPC或者IMS(EPC/IMS)的通知,获知UE发起语音业务(602,603部分)。作为一个示例,所述来自EPC/IMS的通知可以是如图2中所示出的,由MME发给基站的,或者是SGW和/或PGW通过MME发给基站的,又或者是IMS网络中的实体通过EPC网络中的实体发送给基站的。
支持VoLTE的UE发起语音呼叫时,UE在QCI=5的承载上上发送SIP消息,EPC/IMS根据收到的SIP消息内容识别出UE发起语音呼叫或者UE被叫,并以消息或者事件触发的形式通知为主叫UE或者被叫UE服务的基站。例如,EPC/IMS向基站发送语音呼叫建立发起指示。该语音呼叫建立发起指示中包含语音呼叫用户和/或UE的信息等。基站接收到所述语音呼叫建立发起指示时,识别UE发起语音呼叫或者UE被叫。从而确认UE发起语音业务。基站为UE配置较短周期长度的DRX长周期或者去激活DRX(604,605部分)。具体的可参照上述503和504部分中所述,在此不再赘述。
下面将结合图7对本发明的实施例做进一步说明。
在701部分,基站识别UE发起语音业务的方法,可以参照上面与图5或者图6有关实施例的描述,这里不再赘述。在本实施例中,在基站识别UE发起语音业务的同时或者之后,基站启动定时器。
在703部分,如果定时器期满时或者期满之前,基站识别QCI=1承载建立流程中(702部分),QCI=1承载建立成功。作为一个示例,如果基站从核心网络实体(如MME)接收的承载建立请求(如E-RAB Setup Request)消息中携带QCI=1承载的信息,基站识别QCI=1承载建立成功。作为另一个示例,如果基站在向核心网络实体(如MME)发送的承载建立响应(如E-RAB Setup Response)消息中携带QCI=1承载的信息(例如,E-RAB Setup list信元中包含QCI=1承载的信息),基站识别QCI=1承载建立成功。在704,705部分中,基站可参照上述与图5或图6有关实施例中所描述的方案对UE进行DRX重配置或者DRX去激活,在此不再赘述。在本实施例中,定时器的设置是为了防止语音业务承载可能因为无线资源或者其他原因导致无法成功建立,影响用户体验。该定时器的时长可以为2秒(s)。当然可以理解的是也可以为该定时器设定其他时长,例如10秒以内。
下面结合图8对本发明的实施例做进一步说明。
801和802部分与上述图7中701和702部分类似,在此不再赘述。803部分与上述703部分不同的是,语音业务承载建立失败了。在804部分中,当定时器超时时,基站识别QCI=1承载建立失败。
在一个示例中,805部分作为可选的步骤。基站恢复对UE进行较长周期长度的DRX长周期配置。基站可以通过RRC消息携带DRX长周期的配置信息。例如,可以参照上述403部分以及与图5或图6有关的实施例中所描述,完成对UE的DRX长周期的配置。例如,可以配置DRX长周期的周期长度为160毫秒,320毫秒或者以上,或者是160个子帧,320个子帧或者以上。
在另一个示例中,基站在识别UE未进行语音业务时,基站也可以不做DRX 重配置的操作。换句话说,基站可以不执行步骤805。通常情况下,在UE接入VoLTE网络后,基站会根据通信协议规定为UE配置取值较长的DRX长周期,例如80毫秒或者以上,又或者是80个子帧或者以上的可能取值。基站识别UE未进行语音业务时,原先配置的DRX长周期已经能满足系统需求,如满足保障业务的服务质量(QoS)需求,因此基站无需再为UE重新配置DRX长周期。当然,可选的,基站也可以先确认原先为UE配置的DRX长周期是否满足系统需求,例如通过判断原先为UE配置的DRX长周期的周期长度是否达到一个预定的门限来确认是否满足系统需求。所述达到一个预定的门限包括大于(>)、大于等于(≥)、小于(<)、小于等于(≤),或等于(=)预定的门限值、又或者是位于预定的门限区间。如果原先为UE配置的DRX长周期已经满足系统需求,则基站不做DRX重配置的操作。如果原先为UE配置的DRX长周期不满足系统需求,则基站再参照上述503,504部分所述的方法,对UE进行DRX重配置,为基站配置满足系统需求的DRX长周期。
下面结合图9对本发明的实施例做进一步说明。
在901部分,基站识别UE未进行语音业务。所述未进行语音业务包括UE未发起语音呼叫,UE未响应被叫,或者UE语音业务已经结束等等。
在一个示例中,可以参照上述502部分中所述的方法来识别UE未进行语音业务。例如基站可以通过解析QCI=5的承载上的数据报文,确认该承载上的SIP消息类型不是SIP Invite消息或者针对SIP Invite消息的确认响应消息。基站识别UE未发起语音呼叫。又例如,基站可以通过检测发现QCI=5的承载上没有数据包传输来识别UE没有发起语音呼叫或者响应被叫。具体的参照上述502部分所述,这里不再赘述。
在另一个示例中,基站可以通过检测对话语音承载(即QCI=1的承载)来识别UE未进行语音业务。例如,基站检测到QCI=1的承载去激活或者释放时,识别UE的语音业务已结束。
在又一个示例中,基站可以参照上述与图6相关的实施例中所描述,由EPC/IMS来识别UE未进行语音业务,并通知给基站。例如EPC/IMS在识别UE未发起语音呼叫或者UE被叫时,以消息或者事件触发的形式通知为主叫UE或者被叫UE服务的基站。
在902部分,基站为UE配置具有较长周期长度的DRX长周期或者指示UE进行DRX激活操作,从而使得UE可以减少功耗。
在一个示例中,在基站识别UE未进行语音业务时,基站为UE配置具有较长周期长度的DRX长周期。所述较长周期长度可以参照上述403部分所描述的设计来配置。例如,配置80毫秒或160毫秒,又或者是80个子帧或者160个子帧等等。可以参照上述503部分中的重配置过程进行DRX重配置。例如基站可以向UE发送RRC Connection Reconfiguration消息。该消息携带DRX长周期的配置信息。所述配置信息中至少包括DRX长周期的周期长度。例如通过RRC Connection Reconfiguration消息中的drxStartOffset信元来指示DRX长周期占用160个子帧。
在另一个示例中,如果当UE在进行语音业务时,基站指示UE进行DRX去激活,那么当基站识别语音业务结束时,向UE发送指示,指示UE进行DRX激活操作。可选的,基站也可以在指示UE进行DRX激活操作的同时,指示UE配置具备较长周期长度的DRX长周期。例如,基站可以通过将RRC Connection Reconfiguration消息中的信元DRX-config设置为Setup,来指示UE进行DRX激活操作。也可以通过RRC Connection Reconfiguration消息同时携带信元DRX-Config设置为Setup,drxStartOffset信元来指示DRX长周期的周期长度。
903部分与上述504部分类似,也是为可选的步骤。UE也可以执行类似上述504部分的操作,向基站发送RRC Connection Reconfiguration Complete消息。具体参照上述504部分中相关部分所述,在此不再赘述。
上述主要从各个网元之间交互的角度对本发明实施例提供的方案进行了介 绍。可以理解的是,各个网元,例如UE,基站,核心网络实体等为了实现上述功能,其包含了执行各个功能相应的软件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以硬件和计算机软件的结合形式来实现。某些功能究竟以硬件还是计算机软件驱动硬件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
图10示出了上述实施例中所涉及的基站的设计的方框图。
基站包括发射器/接收器1001,控制器/处理器1002,存储器1003以及通信单元1004。所述发射器/接收器1001用于支持基站与上述实施例中的所述的UE之间收发信息,以及支持所述UE与其他UE之间进行无线电通信。所述控制器/处理器1002执行各种用于与UE通信的功能。在上行链路,来自所述UE的上行链路信号经由天线接收,由接收器1001进行调解,并进一步由控制器/处理器1102进行处理来恢复UE所发送到业务数据和信令信息。在下行链路上,业务数据和信令消息由控制器/处理器1002进行处理,并由发射器1001进行调解来产生下行链路信号,并经由天线发射给UE。控制器/处理器1002还执行图4至图9中涉及基站的处理过程和/或用于本申请所描述的技术的其他过程。存储器1003用于存储基站的程序代码和数据。通信单元1004用于支持基站与其他网络实体进行通信。例如,用于支持基站与图2中示出的其他通信网络实体间进行通信,例如位于核心网EPC中的MME,SGW和或PGW等。
可以理解的是,图10仅仅示出了基站的简化设计。可以理解的是,在实际应用中基站可以包含任意数量的发射器,接收器,处理器,控制器,存储器,通信单元等。
图11示出了上述实施例中所涉及的UE的设计的方框图。
编码器1106接收要在上行链路上发送的业务数据和信令消息。编码器1106 对业务数据和信令消息进行处理(例如,格式化、编码和交织)。调制器1107进一步处理(例如,符号映射和调制)编码后的业务数据和信令消息并提供输出采样。发射器1101调节(例如,模拟转换、滤波、放大和上变频等)该输出采样并生成上行链路信号,该上行链路信号经由天线发射给上述实施例中所述的基站。在下行链路上,天线接收上述实施例中基站发射的下行链路信号。接收器1102调节(例如,滤波、放大、下变频以及数字化等)从天线接收的信号并提供输入采样。解调器1109处理(例如,解调)该输入采样并提供符号估计。解码器1108处理(例如,解交织和解码)该符号估计并提供发送给UE的已解码的数据和信令消息。编码器1106、调制器1107、解调器1109和解码器1108可以由调制解调处理器1105来实现。这些单元根据无线接入网采用的无线接入技术(例如,LTE及其他演进系统的接入技术)来进行处理。
控制器/处理器1103对UE的动作进行控制管理,用于执行上述实施例中由UE进行的处理。例如用于控制UE根据接收到的DRX长周期接收寻呼和/或本发明所描述的技术的其他过程。作为示例,控制器/处理器1103用于支持UE执行图5中的过程501和504、图6中的过程601和605、图7中的过程702和705,图8中的过程801,803和805,图9中的过程903。存储器1104用于存储用于UE 110的程序代码和数据。
图12示出了上述实施例中涉及到的一种核心网络装置的设计方框图。所述核心网络可以是EPC网络,所述核心网络装置可以指MME,SGW,PGW或其任意组合。
所述核心网络装置包括:控制器/处理器1202用于对核心网络装置的动作进行控制管理,执行各种功能来支持UE的通信服务。例如,控制器/处理器1202用于支持核心网络装置执行图5中的过程501,图6中的过程601和或602,图7中的过程702,图8中的过程801,803,和/或用于本文所描述的技术的其他过程。存储器1201用于存储用于所述和核心网络装置的程序代码和数据。通信单元1203用于支持与其他网络实体的通信。例如与图10中基站的通信单元1004 的通信和/或与图11中UE的通信。又例如,支持与图2中示出的网络实体之间的通信。
用于执行本发明上述基站,UE或核心网络装置功能的控制器/处理器可以是中央处理器(CPU),通用处理器、数字信号处理器(DSP)、专用集成电路(ASIC),现场可编程门阵列(FPGA)或者其他可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。其可以实现或执行结合本发明公开内容所描述的各种示例性的逻辑方框,模块和电路。所述处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,DSP和微处理器的组合等等。
结合本发明公开内容所描述的方法或者算法的步骤可直接体现为硬件、由处理器执行的软件模块或两者的组合。软件模块可以位于RAM存储器、闪存、ROM存储器、EPROM存储器、EEPROM存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于用户设备中。当然,处理器和存储介质也可以作为分立组件存在于用户设备中。
本领域技术人员应该可以意识到,在上述一个或多个示例中,本发明所描述的功能可以用硬件、软件、固件或它们的任意组合来实现。当使用软件实现时,可以将这些功能存储在计算机可读介质中或者作为计算机可读介质上的一个或多个指令或代码进行传输。计算机可读介质包括计算机存储介质和通信介质,其中通信介质包括便于从一个地方向另一个地方传送计算机程序的任何介质。存储介质可以是通用或专用计算机能够存取的任何可用介质。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的技术方案的基础之上,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。

Claims (15)

  1. 一种管理非连续接收DRX周期的方法,所述方法包括:
    在识别用户设备UE发起语音业务时,为UE配置第一DRX长周期或者指示UE去激活DRX;和
    在识别UE未进行语音业务时,为UE配置第二DRX长周期,
    所述第一DRX长周期的周期长度小于所述第二DRX长周期的周期长度。
  2. 如权利要求1所述的方法,其特征在于,所述识别UE发起语音业务,包括如下情形之一:
    基站检测到QCI=5的信令承载上有数据包传输,识别UE发起语音业务;
    基站检测到QCI=5的信令承载上发送的消息为会话发起协议邀请SIP Invite消息,识别UE发起语音业务;
    基站检测到QCI=5的信令承载上发送的消息为针对SIP Invite消息的确认响应消息,识别UE发起语音业务;
    基站接收来自核心网络或者IP多媒体子系统IMS的通知,该通知指示UE发起语音业务,基站识别UE发起语音业务。
  3. 如权利要求1或2所述的方法,还包括,在基站识别UE发起语音业务的同时或者之后,基站启动定时器,定时器期满时,基站检测QCI=1的承载是否建立成功,当QCI=1的承载建立成功时,为UE配置第一DRX长周期或者指示UE去激活DRX。
  4. 如权利要求1至3任意一项所述的方法,其特征在于,所述识别UE未进行语音业务包括如下情形之一:
    未检测到QCI=5的信令承载上有数据包传输,识别UE未发起语音业务;
    检测到QCI=5的信令承载上发送的消息不是会话发起协议SIP Invite消息或者针对SIP Invite消息的确认响应消息,识别UE未发起语音业务;
    检测到QCI=1的承载去激活或者释放时,识别UE的语音业务已结束;
    接收来自核心网络或者IP多媒体子系统IMS的通知,该通知指示UE未进行语音业务。
  5. 如权利要求1至4任意一项所述的方法,其特征在于,如果在识别用户设备UE发起语音业务时,指示了UE去激活DRX,那么在识别UE语音业务结束时,指示UE激活DRX,或者知识UE激活DRX并配置所述第二DRX长周期。
  6. 如权利要求1至4任意一项所述的方法,其特征在于,还包括:
    向UE发送无线资源控制连接RRC消息,该RRC消息携带以下信息中的一个或多个:所述第一DRX长周期,所述第二DRX长周期,用于指示UE去激活DRX的指示,以及用于指示UE激活DRX的指示。
  7. 一种基站,包括:
    至少一个处理器,用于在识别用户设备UE发起语音业务时,为UE配置第一DRX长周期或者指示UE去激活DRX;和在识别UE未进行语音业务时,为UE配置第二DRX长周期,所述第一DRX长周期的周期长度小于所述第二DRX长周期的周期长度;和
    发射器,用于向UE发送胚子的第一DRX长周期,配置的第二DRX长周期,或者指示UE去激活DRX的指示。
  8. 如权利要求7所述的基站,其特征在于,所述识别UE发起语音业务包括如下情形之一:
    检测到QCI=5的信令承载上有数据包传输,
    检测到QCI=5的信令承载上发送的消息为会话发起协议邀请SIP Invite消息;
    检测到QCI=5的信令承载上发送的消息为针对SIP Invite消息的确认响应消息;
    接收来自核心网络或者IP多媒体子系统IMS的通知,该通知指示UE发起 语音业务。
  9. 如权利要求7或8所述的基站,还包括定时器,所述至少一个处理器还用于:在识别UE发起语音业务的同时或者之后,启动定时器,定时器期满时,检测QCI=1的承载是否建立成功,当QCI=1的承载建立成功时,为UE配置第一DRX长周期或者指示UE去激活DRX。
  10. 如权利要求7至9任意一项所述的基站,其特征在于,所述识别UE未进行语音业务包括如下情形之一:
    未检测到QCI=5的信令承载上有数据包传输;
    检测到QCI=5的信令承载上发送的消息不是会话发起协议SIP Invite消息或者针对SIP Invite消息的确认响应消息;
    检测到QCI=1的承载去激活或者释放时;
    接收来自核心网络或者IP多媒体子系统IMS的通知,该通知指示UE未进行语音业务。
  11. 如权利要求7-10中任意一项所述的基站,其特征在于,所述至少一个处理器用于:如果在识别用户设备UE发起语音业务时,指示了UE去激活DRX,那么在识别UE语音业务结束时,指示UE激活DRX,或者在为UE配置所述第二DRX长周期的同时指示UE激活DRX。
  12. 如权利要求7至11任意一项所述基站,其特征在于还包括发射器用于:向UE发送无线资源控制连接RRC消息,该RRC消息携带以下信息中的一个或多个:所述第一DRX长周期,所述第二DRX长周期,用于指示UE去激活DRX的指示,用于指示UE激活DRX的指示。
  13. 一种用户设备UE,包括,
    接收器,用于在UE进行语音业务时,接收基站发送的第一DRX长周期或者去激活DRX指示;并用于在UE未进行语音业务时,接收所述基站发送的第二DRX长 周期,所述第一DRX长周期的周期长度小于所述第二DRX长周期的周期长度;和至少一个处理器,用于控制UE根据所述接收器接收的第一DRX长周期,去激活DRX指示,或者根据所述第二DRX长周期接收寻呼。
  14. 一种通信系统,其特征在于,包括如权利要求7-12中任意一项所述的基站和如权利要求13中所述的用户设备UE。
  15. 如权利要求13所述的系统,其特征在于,还包括核心网络实体,该核心网络实体用于在检测到UE未进行语音业务或者进行语音业务时,通知所述基站。
PCT/CN2015/098116 2014-12-27 2015-12-21 非连续接收周期管理方法和装置 WO2016101857A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15871925.2A EP3229531B1 (en) 2014-12-27 2015-12-21 Discontinuous reception cycle management method and device
KR1020177020853A KR101962776B1 (ko) 2014-12-27 2015-12-21 불연속 수신 주기 관리 방법 및 디바이스
JP2017534690A JP6584023B2 (ja) 2014-12-27 2015-12-21 間欠受信のサイクルを管理するための装置及び方法
US15/634,644 US10542581B2 (en) 2014-12-27 2017-06-27 Method for managing discontinuous reception cycle, and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410834179.0 2014-12-27
CN201410834179.0A CN105813177B (zh) 2014-12-27 2014-12-27 非连续接收周期管理方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/634,644 Continuation US10542581B2 (en) 2014-12-27 2017-06-27 Method for managing discontinuous reception cycle, and apparatus

Publications (1)

Publication Number Publication Date
WO2016101857A1 true WO2016101857A1 (zh) 2016-06-30

Family

ID=56149267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/098116 WO2016101857A1 (zh) 2014-12-27 2015-12-21 非连续接收周期管理方法和装置

Country Status (6)

Country Link
US (1) US10542581B2 (zh)
EP (1) EP3229531B1 (zh)
JP (1) JP6584023B2 (zh)
KR (1) KR101962776B1 (zh)
CN (1) CN105813177B (zh)
WO (1) WO2016101857A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3503654A4 (en) * 2016-08-23 2019-07-24 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR ESTABLISHING SERVICE
EP3562218A4 (en) * 2017-01-14 2019-11-20 Huawei Technologies Co., Ltd. METHOD AND MANAGEMENT DEVICE FOR DISCONTINUOUS RECEPTION

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108377537B (zh) * 2016-11-04 2020-04-07 维沃移动通信有限公司 非连续接收的配置方法、非连续接收的方法、基站及终端
JP6898992B2 (ja) * 2016-12-16 2021-07-07 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 不連続受信のための方法及び装置
BR112019012815A2 (pt) * 2016-12-22 2019-11-26 Guangdong Oppo Mobile Telecommunications Corp Ltd método de comunicação e dispositivo terminal
MX2019007858A (es) * 2017-01-05 2019-08-16 Guangdong Oppo Mobile Telecommunications Corp Ltd Procedimiento y dispositivo de transmision de datos.
CN108632995B (zh) * 2017-01-24 2022-04-15 中兴通讯股份有限公司 一种寻呼优化的方法和装置
US10701756B2 (en) * 2017-05-16 2020-06-30 Qualcomm Incorporated Service specific short DRX cycles
CN109769309B (zh) * 2017-11-09 2021-06-22 中国移动通信有限公司研究院 一种非连续监听的方法、设备及计算机可读存储介质
CN108712773B (zh) * 2018-05-04 2021-10-15 武汉虹信科技发展有限责任公司 一种参数设定方法、装置及基站
CN110691423B (zh) * 2018-07-04 2021-08-06 中国移动通信集团安徽有限公司 基于非连续接收的会话通信方法、装置、设备和介质
CN109219116B (zh) * 2018-08-09 2022-05-31 华为技术有限公司 一种终端设备的休眠方法及装置
WO2021002723A1 (ko) * 2019-07-04 2021-01-07 엘지전자 주식회사 무선통신시스템에서 사이드링크 drx에 관련된 ue의 동작 방법
WO2021114049A1 (zh) * 2019-12-09 2021-06-17 北京小米移动软件有限公司 非连续接收的处理方法及装置
KR102302616B1 (ko) * 2020-02-17 2021-09-14 주식회사 케이티 배터리 절감 기술 동적 적용 방법, 이를 구현한 단말 및 네트워크 장치
CN113518478A (zh) * 2020-04-10 2021-10-19 华为技术有限公司 一种drx控制方法及装置
CN111642033A (zh) * 2020-05-19 2020-09-08 广东小天才科技有限公司 一种配置数据接收方式的方法、网络设备及终端设备
US11589313B2 (en) * 2021-02-01 2023-02-21 At&T Intellectual Property I, L.P. Dynamic connected discontinuous reception profile based on quality of service
CN115915346A (zh) * 2021-08-13 2023-04-04 华为技术有限公司 一种通信方法和设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100128646A1 (en) * 2008-11-26 2010-05-27 Alcatel-Lucent Fast signaling services for E-UTRAN based wireless systems
US20120046030A1 (en) * 2010-08-20 2012-02-23 Telefonaktiebolaget L M Ericsson (Publ) Method and Node for Reduced Transmission Activity Pattern Configuration
CN103314633A (zh) * 2010-11-15 2013-09-18 捷讯研究有限公司 管理无线通信
CN104039027A (zh) * 2014-06-30 2014-09-10 华为技术有限公司 资源释放的处理方法及装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101043753B (zh) * 2006-03-25 2011-10-05 华为技术有限公司 一种实现可变不连续接收/不连续发送周期的方法、网络以及用户终端
US7680478B2 (en) * 2006-05-04 2010-03-16 Telefonaktiebolaget Lm Ericsson (Publ) Inactivity monitoring for different traffic or service classifications
JP4932521B2 (ja) * 2007-02-09 2012-05-16 株式会社エヌ・ティ・ティ・ドコモ 移動通信システムで使用される基地局装置及び方法
US20100034145A1 (en) * 2007-03-15 2010-02-11 Samsung Electronics Co., Ltd. Method for receiving packet in mobile communication system
US20080311903A1 (en) * 2007-06-14 2008-12-18 Microsoft Corporation Techniques for managing dual-channel wireless devices
US8233877B2 (en) * 2008-04-09 2012-07-31 Telefonaktiebolaget Lm Ericsson (Publ) Discontinuous reception of bursts for voice calls
CN101656978B (zh) * 2008-08-22 2014-01-01 株式会社Ntt都科摩 动态指示用户设备改变非连续接收状态的方法及装置
CN101924751B (zh) * 2009-05-22 2013-11-06 中兴通讯股份有限公司 一种单模业务连续性实现方法及单模业务连续性系统
US8767545B2 (en) * 2009-06-15 2014-07-01 Qualcomm Incorporated Radio access network control of multimedia application data rates
WO2012066011A1 (en) * 2010-11-15 2012-05-24 Research In Motion Limited Managing communications across a wireless network
SG194833A1 (en) * 2011-07-05 2013-12-30 Ericsson Telefon Ab L M Method and device for handling handover of a communications service
JP5260764B1 (ja) * 2012-02-28 2013-08-14 株式会社エヌ・ティ・ティ・ドコモ 無線通信システムおよび基地局
EP2850746B1 (en) * 2012-05-17 2018-09-26 Samsung Electronics Co., Ltd. Method and apparatus for dynamically adjusting drx settings of user equipment
CN103874094A (zh) * 2012-12-13 2014-06-18 中兴通讯股份有限公司 Anr任务执行方法、系统及anr用户设备管理方法、装置
US20150009874A1 (en) * 2013-07-08 2015-01-08 Amazon Technologies, Inc. Techniques for optimizing propagation of multiple types of data

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100128646A1 (en) * 2008-11-26 2010-05-27 Alcatel-Lucent Fast signaling services for E-UTRAN based wireless systems
US20120046030A1 (en) * 2010-08-20 2012-02-23 Telefonaktiebolaget L M Ericsson (Publ) Method and Node for Reduced Transmission Activity Pattern Configuration
CN103314633A (zh) * 2010-11-15 2013-09-18 捷讯研究有限公司 管理无线通信
CN104039027A (zh) * 2014-06-30 2014-09-10 华为技术有限公司 资源释放的处理方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI TECHNOLOGIES CO., LTD.: "Smartphone Solutions White Paper", 17 July 2012 (2012-07-17), pages 27, XP055396410 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3503654A4 (en) * 2016-08-23 2019-07-24 Huawei Technologies Co., Ltd. METHOD AND DEVICE FOR ESTABLISHING SERVICE
US11277780B2 (en) 2016-08-23 2022-03-15 Huawei Technologies Co., Ltd. Service setup method and device
EP3562218A4 (en) * 2017-01-14 2019-11-20 Huawei Technologies Co., Ltd. METHOD AND MANAGEMENT DEVICE FOR DISCONTINUOUS RECEPTION
JP2020504575A (ja) * 2017-01-14 2020-02-06 華為技術有限公司Huawei Technologies Co.,Ltd. 不連続受信管理方法および装置
US11259357B2 (en) 2017-01-14 2022-02-22 Huawei Technologies Co., Ltd. Management of discontinuous reception (DRX) for a terminal having a voice service

Also Published As

Publication number Publication date
EP3229531A4 (en) 2017-12-20
EP3229531B1 (en) 2020-10-28
EP3229531A1 (en) 2017-10-11
CN105813177B (zh) 2019-10-22
US10542581B2 (en) 2020-01-21
US20170295608A1 (en) 2017-10-12
JP6584023B2 (ja) 2019-10-02
CN105813177A (zh) 2016-07-27
JP2018502510A (ja) 2018-01-25
KR101962776B1 (ko) 2019-03-27
KR20170100627A (ko) 2017-09-04

Similar Documents

Publication Publication Date Title
WO2016101857A1 (zh) 非连续接收周期管理方法和装置
US11064542B2 (en) Methods and apparatus for sidelink wireless communications
US9832726B2 (en) Systems and methods for blocking excessive transmitter message signaling
JP4927944B2 (ja) Gprsシステムにおいてアップリンクパケット伝送のための無線資源要請方法
US10616942B2 (en) Information transmission method, apparatus, and system for coverage class of terminal
CN103024680B (zh) 半静态调度激活方法及基于半静态调度的集群通信系统
US20120093113A1 (en) Method and apparatus for reducing delay in establishing session
WO2014000083A1 (en) Providing a system information message having retry parameter values
JP2020504576A (ja) 無線アクセスネットワークにおける輻輳緩和のための技術
US20170135150A1 (en) Improved drx configuration
US20220191825A1 (en) Communication gaps for paging of multi-subscriber identity wireless communication devices
TW201714435A (zh) 處理尋呼程序的裝置及方法
CN110169146B (zh) 非连续接收的管理方法和装置
WO2018206821A1 (en) Timer-controlled idle mode and non-pageable mode
KR20200071736A (ko) 네트워크 액세스 우선 순위화
KR102304200B1 (ko) 기지국장치 및 단말장치
CN110691423B (zh) 基于非连续接收的会话通信方法、装置、设备和介质
KR101682051B1 (ko) 이동통신 시스템의 페이징 처리 방법, 상기 이동통신 시스템에 포함된 mme, sgw, 및 시스템

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15871925

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017534690

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015871925

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177020853

Country of ref document: KR

Kind code of ref document: A