WO2016098425A1 - 電圧変換回路、電子装置、および、電圧変換回路の制御方法 - Google Patents

電圧変換回路、電子装置、および、電圧変換回路の制御方法 Download PDF

Info

Publication number
WO2016098425A1
WO2016098425A1 PCT/JP2015/078514 JP2015078514W WO2016098425A1 WO 2016098425 A1 WO2016098425 A1 WO 2016098425A1 JP 2015078514 W JP2015078514 W JP 2015078514W WO 2016098425 A1 WO2016098425 A1 WO 2016098425A1
Authority
WO
WIPO (PCT)
Prior art keywords
current
signal
control unit
voltage
timing
Prior art date
Application number
PCT/JP2015/078514
Other languages
English (en)
French (fr)
Inventor
誉博 内藤
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to CN201580067509.0A priority Critical patent/CN107005159B/zh
Priority to JP2016564715A priority patent/JP6624071B2/ja
Priority to US15/531,112 priority patent/US10033280B2/en
Publication of WO2016098425A1 publication Critical patent/WO2016098425A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/156Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators
    • H02M3/158Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load
    • H02M3/1588Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of output voltage or current, e.g. switching regulators including plural semiconductor devices as final control devices for a single load comprising at least one synchronous rectifier element
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0025Arrangements for modifying reference values, feedback values or error values in the control loop of a converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0032Control circuits allowing low power mode operation, e.g. in standby mode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present technology relates to a voltage conversion circuit, an electronic device, and a method for controlling the voltage conversion circuit.
  • the present invention relates to a voltage conversion circuit using a switching element, an electronic device, and a method for controlling the voltage conversion circuit.
  • a DC (Direct Current) -DC converter is used to convert a direct-current power supply voltage into a direct-current voltage required for each circuit and component in the electronic device.
  • Examples of the DC-DC converter include a linear converter that cuts fluctuations by a semiconductor element, and a switching converter that turns on and off a switching element.
  • the switching system is often used because of its high conversion efficiency.
  • PFM Pulse Frequency Modulation
  • PWM Pulse Width Modulation
  • the loss of the DC-DC converter includes a loss due to power consumption of a control circuit that performs switching control, a switching loss in a switching element, and an inductor loss in a coil. Of these losses, switching loss and inductor loss can be reduced by performing PFM control at a low switching frequency at a light load.
  • the control circuit since the control circuit must always operate during the switching control, it is difficult to reduce the power consumption of the control circuit.
  • This technology was created in view of such a situation, and aims to reduce the power consumption of the DC-DC converter.
  • a voltage generation unit that generates an output voltage based on the current when the current is supplied;
  • a stop control unit that outputs a signal for stopping supply, a current supply unit that supplies the current to the voltage generation unit until the signal is output, and operates the stop control unit during the current supply period.
  • a voltage conversion circuit including an intermittent control unit that stops the stop control unit when the signal is output, and a control method thereof. Thereby, when a signal is detected, the stop control unit stops.
  • the start timing detection unit compares the output voltage with a predetermined reference voltage and outputs the comparison result as a start timing detection signal, and the start timing is detected.
  • a detection signal control unit that fixes the comparison result to a predetermined fixed value after the end timing is detected. This brings about the effect that the comparison result between the output voltage and the predetermined reference voltage is fixed to a predetermined fixed value between the start timing and the end timing.
  • the stop control unit may detect when the predetermined period has elapsed from the start timing as the end timing. This brings about the effect that the time when the predetermined period has elapsed from the start timing is detected as the end timing.
  • the stop control unit may detect when the current reaches a predetermined peak value as the end timing. This brings about the effect that the end timing is detected when the current reaches a predetermined peak value.
  • the stop control unit compares the current with the predetermined peak value and outputs the comparison result as the signal, and a fixed mask period from the start timing. And a detection signal masking unit that masks the signal until the time elapses. As a result, the signal is masked from the start timing until a certain mask period elapses.
  • a backflow prevention unit for preventing backflow of the current may be further provided. This brings about the effect that the backflow of current is prevented.
  • the current reduction timing detection unit and the backflow prevention unit that start detection of a current reduction timing at which the current becomes lower than a predetermined set value are Is output
  • the path between the voltage generation unit and the ground terminal is controlled to be closed
  • the current drop timing is detected
  • the path is controlled to be opened, and the intermittent control unit is controlled.
  • the current decrease timing detection unit may be controlled to stop the detection of the current decrease timing.
  • the start timing detection unit compares the output voltage with a predetermined reference voltage and outputs the comparison result as a start timing detection signal, and the start timing is detected.
  • a detection signal control unit that fixes the comparison result to a predetermined fixed value after the end timing is detected. This brings about the effect that the comparison result between the output voltage and the predetermined reference voltage is fixed to a predetermined fixed value between the start timing and the end timing.
  • a voltage generation unit that generates an output voltage based on the current
  • a stop control unit that outputs a signal for stopping the supply of the current
  • the current supply unit that supplies the current to the voltage generation unit until the signal is output, and the stop control unit is operated during the current supply period, and the stop control unit is stopped when the signal is output
  • An electronic apparatus includes a voltage conversion circuit including an intermittent control unit, and a processing circuit that performs processing for controlling the output voltage. Thereby, when a signal is detected, the stop control unit stops.
  • FIG. 1 is a block diagram illustrating a configuration example of a DC-DC converter in a first embodiment.
  • FIG. It is a block diagram which shows one structural example of the voltage drop detection part in 1st Embodiment.
  • FIG. 3 is a block diagram illustrating a configuration example of a PMOS off timing detection unit according to the first embodiment.
  • FIG. It is a block diagram which shows the example of 1 structure of the NMOS off timing detection part in 1st Embodiment.
  • 3 is a timing chart illustrating an example of the operation of the DC-DC converter according to the first embodiment. It is a figure which shows an example of the power consumption of the DC-DC converter in 1st Embodiment. 3 is a flowchart showing an example of the operation of the DC-DC converter in the first embodiment.
  • FIG. 1 is a block diagram illustrating a configuration example of the information processing apparatus 100 according to the first embodiment.
  • the information processing apparatus 100 includes a bus 110, a processor 120, an interface 130, and a DC-DC converter 200.
  • the processor 120 controls the information processing apparatus 100 as a whole.
  • the processor 120 receives an external signal through the interface.
  • As the external signal for example, a signal for instructing the processor 120 to perform an operation, a converter enable signal EN, and the like are input.
  • the processor 120 performs an operation according to an external signal.
  • the processor 120 generates a voltage control signal VoCtrl and supplies the voltage control signal VoCtrl to the DC-DC converter 200 via the interface 130.
  • the processor 120 is an example of a processing circuit described in the claims.
  • the voltage control signal VoCtrl is a signal for controlling the value of the output voltage Vo of the DC-DC converter 200.
  • the power supply voltage that is, the output voltage Vo
  • the processor 120 controls the power supply voltage by the voltage control signal VoCtrl according to the required calculation processing speed.
  • the converter enable signal EN is a signal for controlling the DC-DC converter 200 to be enabled or disabled.
  • the converter enable signal EN is set to a high level when the DC-DC converter 200 is controlled to be enabled, and is set to a low level when the DC-DC converter 200 is controlled to be disabled.
  • a high level (enable) converter enable signal EN is input from the outside.
  • the interface 130 exchanges an external signal, a voltage control signal VoCtrl, a converter enable signal EN, and the like with an external device, the processor 120, and the bus 110.
  • the bus 110 exchanges a voltage control signal VoCtrl and a converter enable signal EN between the interface 130 and the DC-DC converter 200.
  • the DC-DC converter 200 converts a DC voltage.
  • the DC-DC converter 200 receives a converter enable signal EN and a voltage control signal VoCtrl from the bus 110 via signal lines 118 and 119.
  • the converter enable signal EN is set to a high level (enable)
  • a DC voltage is converted into a DC output voltage Vo according to the voltage control signal VoCtrl.
  • the DC-DC converter 200 supplies the output voltage Vo to the processor 120 via the power line 209.
  • the DC-DC converter 200 is an example of a voltage converter described in the claims.
  • the DC-DC converter 200 is provided in the information processing apparatus 100, the DC-DC converter 200 may be provided in an electronic device other than the information processing apparatus.
  • the information processing apparatus 100 is an example of an electronic device described in the claims.
  • FIG. 2 is a block diagram illustrating a configuration example of the DC-DC converter 200 according to the first embodiment.
  • the DC-DC converter 200 includes a voltage drop detection unit 210, a converter control unit 220, a PMOS off timing detection unit 230, an NMOS off timing detection unit 240, and a driver 250.
  • the DC-DC converter 200 includes a P-type MOS transistor 261, an N-type MOS transistor 262, a coil 270, and a capacitor 280.
  • the P-type MOS transistor 261 opens and closes a path between the power source and the coil 270 according to the control of the driver 250.
  • the N-type MOS transistor 262 opens and closes a path between the ground terminal and the coil 270 according to the control of the driver 250. These transistors are not controlled to be in the on state at the same time, and are both controlled to be in the off state or exclusively so that only one of them is in the on state. This is because when both the P-type MOS transistor 261 and the N-type MOS transistor 262 are turned on, the transistors are short-circuited between the power supply and the ground terminal, and a relatively large current flows.
  • the P-type MOS transistor 261 When the P-type MOS transistor 261 is controlled to be turned on by the driver 250, a current IL1 corresponding to the power supply voltage V DD is supplied to the coil 270. When the current IL1 is supplied, the coil 270 generates the output voltage Vo by self-induction. Capacitor 280 smoothes the output voltage Vo.
  • the P-type MOS transistor 261 is an example of a current supply unit described in the claims.
  • the coil 270 and the capacitor 280 are an example of a voltage generation unit described in the claims.
  • the N-type MOS transistor 262 is controlled to be turned on.
  • current flow I L2 coil 270 corresponding to the output voltage Vo the current value gradually decreases.
  • the current I L2 is, N-type MOS transistor 262 at the timing at which drops below "0" milliamps (mA) is controlled to the OFF state, the backflow is prevented.
  • the present invention is not limited to this configuration.
  • a thyristor or the like may be provided as a switching element instead of a MOS transistor.
  • the voltage drop detection unit 210 detects whether or not the output voltage Vo has dropped below the reference voltage V REF .
  • the voltage drop detection unit 210 generates a reference voltage V REF according to the voltage control signal VoCtrl when the converter enable signal EN is at a high level (enable), and compares the reference voltage V REF with the output voltage Vo. Then, voltage drop detection unit 210 supplies the comparison result to converter control unit 220 as voltage drop detection signal Vd.
  • voltage drop detection unit 210 stops operating and does not detect a voltage drop.
  • the timing when the output voltage Vo drops below the reference voltage V REF is treated as the start timing for starting the current supply to the coil 270.
  • the voltage drop detection unit 210 is an example of a start timing detection unit described in the claims.
  • the converter control unit 220 controls the entire DC-DC converter 200.
  • the converter control unit 220 generates the PMOS control signal Pon and the NMOS control signal Non based on the voltage drop detection signal Vd, the PMOS off timing detection signal P end, and the NMOS off timing detection signal N end .
  • the converter control unit 220 supplies the PMOS control signal Pon to the PMOS off timing detection unit 230 and the driver 250, and supplies the NMOS control signal Non to the NMOS off timing detection unit 240 and the driver 250.
  • the PMOS off timing detection signal P end is a signal indicating an end timing at which the power supply to the coil 270 is finished by turning off the P-type MOS transistor.
  • the NMOS off timing detection signal Nend is a signal indicating the current decrease timing when the current from the coil 270 is decreased to “0” milliampere (mA) or less.
  • the PMOS control signal Pon is a signal for controlling the P-type MOS transistor 261 to be in an on state or an off state. For example, a high level is set for the PMOS control signal Pon when the P-type MOS transistor 261 is turned on, and a low level is set when the P-type MOS transistor 261 is turned off.
  • the NMOS control signal Non is a signal for controlling the N-type MOS transistor 262 to be in an on state or an off state. For example, a high level is set for the NMOS control signal Non when the N-type MOS transistor 262 is turned on, and a low level is set when the N-type MOS transistor 262 is turned off.
  • Converter control unit 220 sets the PMOS control signal to the high level at the start timing indicated by voltage drop detection signal Vd. As a result, the P-type MOS transistor 261 is turned on and current supply to the coil 270 is started. Then, at the end timing indicated by the PMOS off timing detection signal Pend , the converter control unit 220 sets the PMOS control signal to a low level and the NMOS control signal to a high level. As a result, the P-type MOS transistor 261 is turned off, and the current supply to the coil 270 is completed. Then, at the timing indicated by the NMOS off timing detection signal Nend , the converter control unit 220 sets the NMOS control signal to a low level. As a result, the N-type MOS transistor 262 is turned off and current backflow is prevented.
  • Converter control unit 220 is an example of the intermittent control unit described in the claims.
  • the P-type MOS transistor 261 and the N-type MOS transistor 262 are repeatedly turned on and off.
  • the frequency at which these transistors are switched is controlled according to the magnitude of the load current of the processor 120 or the like. That is, converter control unit 220 performs PFM control. Converter control unit 220 may perform PWM control instead of PFM control.
  • the PMOS off timing detection unit 230 detects a PMOS off timing (that is, current supply end timing) at which the P-type MOS transistor 261 is turned off.
  • the PMOS off timing detection unit 230 detects a timing at which a predetermined period has elapsed after the PMOS control signal has become high level as a PMOS off timing (end timing).
  • PMOS off timing detector 230 upon detecting the PMOS off timing, and supplies to the converter control unit 220 generates a PMOS OFF timing detection signal P end The.
  • the PMOS off timing detection unit 230 is an example of a stop control unit described in the claims.
  • the NMOS off timing detection unit 240 detects an NMOS off timing at which the N-type MOS transistor 262 is turned off.
  • the NMOS off timing detection unit 240 refers to the current IL2 when the N-type MOS transistor 262 is in the on state, and detects the current drop timing when the value has dropped below “0” milliamperes (mA) as the NMOS off timing. To do.
  • PMOS off timing detection unit 230 supplies the converter control unit 220 generates a NMOS off-timing detection signal N end The upon detecting the NMOS off-timing (current drop time).
  • the NMOS off timing detection unit 240 is an example of a current decrease timing detection unit described in the claims.
  • the driver 250 controls the P-type MOS transistor 261 and the N-type MOS transistor 262.
  • the driver 250 inverts the PMOS control signal Pon and supplies it to the P-type MOS transistor 261 as the driver output signal PSW.
  • the driver 250 supplies the NMOS control signal Non to the N-type MOS transistor 262 as the driver output signal NSW.
  • driver 250 generates a driver output signal so that both P-type MOS transistor 261 and N-type MOS transistor 262 are not turned on. That is, the respective signals are generated so that the driver output signal PSW is not at a low level and the driver output signal NSW is not at a high level.
  • FIG. 3 is a block diagram illustrating a configuration example of the voltage drop detection unit 210 according to the first embodiment.
  • the voltage drop detection unit 210 includes a reference voltage generation unit 211 and a comparator 212.
  • the reference voltage generator 211 generates a constant reference voltage V REF in accordance with the voltage control signal VoCtrl.
  • the reference voltage generator 211 supplies the reference voltage V REF to the non-inverting input terminal (+) of the comparator 212.
  • the comparator 212 compares the output voltage Vo and the reference voltage VREF .
  • the output voltage Vo is input to the inverting input terminal ( ⁇ ) of the comparator 212, and the reference voltage V REF is input to the non-inverting input terminal (+).
  • a converter enable signal EN is input to the enable terminal of the comparator 212.
  • Comparator 212 when the converter enable signal EN is at high level, and supplies to the converter control unit 220 compares the result of the output voltage Vo and the reference voltage V REF as a voltage detection signal Vd.
  • the comparator 212 is an example of a voltage comparator described in the claims.
  • FIG. 4 is a block diagram illustrating a configuration example of the converter control unit 220 according to the first embodiment.
  • the converter control unit 220 includes a PMOS control signal generation unit 221 and an NMOS control signal generation unit 222.
  • the PMOS control signal generation unit 221 generates a PMOS control signal Pon.
  • the initial state of the PMOS control signal Pon is set to a low level, for example.
  • the PMOS control signal generation unit 221 sets the PMOS control signal Pon to a high level when the voltage detection signal Vd becomes a high level while the converter enable signal EN is at a high level (enable).
  • the PMOS control signal generation unit 221 holds the value of the PMOS control signal Pon when the converter enable signal EN is at a high level and the voltage detection signal Vd and the PMOS off timing detection signal Pend are at a low level. Then, when the PMOS off timing detection signal Pend becomes high level while the converter enable signal EN is at high level, the PMOS control signal generation unit 221 sets the PMOS control signal Pon to low level.
  • the NMOS control signal generator 222 generates an NMOS control signal Non.
  • the initial state of the NMOS control signal Non is set to a low level, for example.
  • the NMOS control signal generator 222 sets the NMOS control signal Non to a high level when the PMOS off timing detection signal Pend becomes a high level in a state where the converter enable signal EN is at a high level (enable).
  • the NMOS control signal generator 222 holds the value of the NMOS control signal Non when the converter enable signal EN is at a high level and the PMOS off timing detection signal P end and the NMOS off timing detection signal N end are at a low level. To do.
  • the NMOS control signal generation unit 222 sets the NMOS control signal Non to low level.
  • FIG. 5 is a diagram illustrating an example of an operation for controlling the P-type MOS transistor 261 of the converter control unit 220 according to the first embodiment.
  • the PMOS control signal Pon When the converter enable signal EN is at a low level (disabled), the PMOS control signal Pon is controlled to a low level.
  • the converter enable signal EN When the converter enable signal EN is at a high level (enable), the voltage drop detection signal Vd is at a high level, and the PMOS off timing detection signal Pend is at a low level, the PMOS control signal Pon is controlled to a high level.
  • the converter enable signal EN is at a high level and the voltage drop detection signal Vd and the PMOS off timing detection signal Pend are at a low level, the value of the PMOS control signal Pon is held.
  • the converter enable signal EN When the converter enable signal EN is high level, the voltage drop detection signal Vd is low level, and the PMOS off timing detection signal Pend is high level, the PMOS control signal Pon is controlled to low level.
  • FIG. 6 is a diagram illustrating an example of an operation for controlling the N-type MOS transistor 262 of the converter control unit 220 according to the first embodiment.
  • the converter enable signal EN is at a low level (disabled)
  • the NMOS control signal Non is controlled to a low level.
  • the converter enable signal EN is at a high level (enable)
  • the PMOS off timing detection signal P end is at a high level
  • the NMOS off timing detection signal N end is at a low level
  • the NMOS control signal Non is controlled to a high level.
  • the converter enable signal EN is at a high level and the PMOS off timing detection signal P end and the NMOS off timing detection signal N end are at a low level
  • the value of the NMOS control signal Non is held.
  • the converter enable signal EN is high level
  • the PMOS off timing detection signal P end is low level
  • the NMOS off timing detection signal N end is high level
  • the NMOS control signal Non is controlled to low level.
  • FIG. 7 is a block diagram illustrating a configuration example of the PMOS off timing detection unit 230 in the first embodiment.
  • the PMOS off timing detection unit 230 includes a switch 231 and an on-time timer 232.
  • the switch 231 supplies the power supply voltage V DD to the on-time timer 232 according to the PMOS control signal Pon.
  • the switch 231 supplies, for example, the power supply voltage V DD when the PMOS control signal Pon is at a high level, and the on-time timer 232 operates by the supply of the power supply voltage V DD .
  • the PMOS control signal Pon is used as an enable signal for controlling whether to operate the PMOS off timing detection unit 230 as well as on / off control of the P-type MOS transistor 261.
  • the switch 231 is provided outside the on-time timer 232, the switch 231 may be provided inside the on-time timer 232. Further, although the PMOS control signal Pon is used as the enable signal of the PMOS off timing detection unit 230, the converter control unit 220 may generate the enable signal separately from the PMOS control signal Pon.
  • the on-time timer 232 measures time for turning on the P-type MOS transistor 261.
  • FIG. 5 As a circuit of the on-time timer 232, for example, FIG. 5 is used.
  • the on-time timer 232 starts timing when the PMOS control signal Pon becomes a high level, and outputs a PMOS off timing detection signal P end over a certain pulse period when a time t pON shown in the following equation has elapsed.
  • . t pON (L ⁇ I Lpk ) / (V DD ⁇ Vo) Equation 1
  • L is the inductance of the coil 270, and its unit is, for example, Henry (H).
  • I Lpk is a value set in advance as a peak value of the current supplied to the coil 270, and its unit is, for example, milliampere (mA).
  • FIG. 8 is a block diagram illustrating a configuration example of the NMOS off timing detection unit 240 according to the first embodiment.
  • the NMOS off timing detection unit 240 includes a switch 241, a comparator 242, and a detection signal mask unit 243.
  • the detection signal mask unit 243 includes a switch 244, an on-delay timer 245, and a switch 246.
  • the switch 241 supplies the power supply voltage V DD to the comparator 242 according to the NMOS control signal Non.
  • the switch 241 supplies the power supply voltage V DD when the NMOS control signal Non is at a high level, and the comparator 242 operates by the supply of the power supply voltage V DD .
  • the switch 241 does not supply V DD and the comparator 242 stops.
  • the switch 244 supplies the power supply voltage V DD to the on-delay timer 245 in accordance with the NMOS control signal Non.
  • the switch 241 supplies the power supply voltage V DD when the NMOS control signal Non is at a high level, and the on-delay timer 245 operates by the supply of the power supply voltage V DD .
  • the switch 244 does not supply V DD and the on-delay timer 245 stops.
  • the NMOS control signal Non is used as an enable signal for controlling whether or not to operate the NMOS off timing detection unit 240 in addition to the on / off control of the N-type MOS transistor 262.
  • the switch 241 is provided outside the comparator 242, the switch 241 may be provided inside the comparator 242. Similarly, the switch 244 may be provided inside the on-delay timer 245. Further, although the NMOS control signal Non is used as the enable signal of the NMOS off timing detection unit 240, the converter control unit 220 may generate the enable signal separately from the NMOS control signal Non.
  • the switching frequency f SW is obtained by the following equation.
  • Io is a load current of a load such as the processor 120, and its unit is, for example, milliampere (mA).
  • T sw is a switching period, and its unit is, for example, second (s).
  • the unit of the switching frequency f SW is, for example, hertz (H).
  • the switching frequency f SW is controlled to a value corresponding to the load current Io. That is, voltage conversion is performed by PFM control.
  • a timer for measuring the ON time tnON of Expression 2 may be provided instead of the comparator 242.
  • the timer may start timing when the NMOS control signal Non becomes high level, and output the NMOS off timing detection signal N end when t nON has elapsed.
  • the on-delay timer 245 supplies a signal obtained by delaying the rising edge of the NMOS control signal Non over a certain mask period tz to the switch 246 as a mask period control signal ZBT.
  • the mask period control signal ZBT is used as a signal for controlling the mask period tz for masking the NMOS off-timing detection signal N end The.
  • the a low level to a mask period control signal ZBT is set, a high level is set when not masked.
  • the switch 246 opens and closes a path between the comparator 242 and the converter control unit 220 in accordance with the mask period control signal ZBT.
  • the switch 246 shifts to a closed state when the mask period control signal ZBT is at a high level, and shifts to an open state when the mask period control signal ZBT is at a low level.
  • the NMOS off-timing detection signal N end The is generated by the comparator 242, the signal is output to converter control unit 220.
  • the NMOS off timing detection signal N end is masked and is not output to the converter control unit 220.
  • the detection signal mask unit 243 masks the NMOS off timing detection signal N end over the mask period tz after the NMOS control signal Non becomes high level. This mask control can suppress malfunction caused by the intermittent operation of the NMOS off timing detection unit 240.
  • the comparator 242 may malfunction immediately after enabling the comparator 242. Further, when the N-type MOS transistor 262 is switched, a spike voltage or a spike current due to a parasitic element is generated at the LX terminal connecting the coil 270 and the driver 250, which may cause the NMOS off timing detection signal Nend to be erroneously detected. There is. However, since the detection signal mask unit 243 masks the NMOS off timing detection signal N end , it is possible to prevent these malfunctions and detection signals upon erroneous detection from being output to the converter control unit 220. Thereby, the operation of the DC-DC converter 200 is stabilized. Note that the detection signal mask unit 243 may not be provided in the case where there is no possibility that these malfunctions or erroneous detections occur.
  • FIG. 9 is a timing chart showing an example of the operation of the DC-DC converter 200 in the first embodiment.
  • the voltage drop detection unit 210 outputs a high level voltage drop detection signal Vd.
  • the converter control unit 220 controls the PMOS control signal Pon to high level.
  • the P-type MOS transistor 261 is turned on by the high level PMOS control signal Pon, and the output voltage Vo rises. As a result, the output voltage Vo becomes equal to or higher than the reference voltage VREF , and the voltage drop detection signal Vd becomes a low level.
  • PMOS off-timing detection unit 230 outputs a PMOS-off timing detection signal P end The.
  • the converter control unit 220 controls the PMOS control signal Pon to a low level and controls the NMOS control signal Non to a high level.
  • the P-type MOS transistor 261 is turned off by the low-level PMOS control signal Pon, and the current supply to the coil 270 is completed.
  • the PMOS off timing detector 230 is controlled to be enabled when the PMOS control signal Pon is at a high level, and disabled while the PMOS control signal Pon is at a low level. 9 indicates a period during which the PMOS off timing detection unit 230 is enabled.
  • the NMOS off timing detection signal N end is masked until the mask period tz elapses from the timing T2.
  • the detection signal mask unit 243 controls the mask period control signal ZBT to a high level.
  • NMOS off-timing detection unit 240 outputs an NMOS off-timing detection signal N end The.
  • the converter control unit 220 controls the NMOS control signal Non to a low level. Due to the low level NMOS control signal Non, the N-type MOS transistor 262 shifts to an off state, and current backflow is prevented.
  • the NMOS off timing detector 240 is controlled to be enabled while the NMOS control signal Non is at a high level, and disabled while the NMOS control signal Non is at a low level.
  • a gray portion in FIG. 9 indicates a period during which the NMOS off timing detection unit 240 is enabled. Note that circuits other than the PMOS off timing detection unit 230 and the NMOS off timing detection unit 240 (such as the converter control unit 220) always operate during a period in which the converter enable signal EN is enabled.
  • the voltage drop detection unit 210 outputs a high level voltage drop detection signal Vd, and switching control of the MOS transistors (261 and 262) is performed. .
  • the converter control unit 220 enables the PMOS off timing detection unit 230 and disables it during the period from the current supply start timing (T1) to the end timing (T2). Yes. Further, the converter control unit 220 enables the NMOS off timing detection unit 240 during the period from the end timing (T2) to the timing (T4) when the zero current is detected, and disables the other periods. Yes. Thus, converter control unit 220 intermittently controls PMOS off timing detection unit 230 and NMOS off timing detection unit 240. Therefore, the power consumption of the DC-DC converter 200 can be reduced as compared with a circuit such as Non-Patent Document 1 in which those detection units (230 and 240) are always enabled during switching control.
  • the program can calculate the on-time t pON , t nON , the switching frequency f SW and the switching period T sw from the respective input values using the equations 1 to 3. Further, from these parameters, the following equation, the duty ratio D PON of P-type MOS transistor 261, the duty ratio D NOn and idle periods T idle the N-type MOS transistor 262 is calculated.
  • D pON t pON / T sw
  • D nON t nON / T sw
  • idle T sw - (T pON + T nON)
  • the current consumption of each unit described above is expressed as a relative value when the current consumption Icc_cont of the control circuit is 100.
  • I cc_AOT I q_AOT ⁇ D pON
  • I cc_ZCD I q_ZCD ⁇ D nON
  • Icc_int Iq_VOD + Icc_AOT + Icc_ZCD + Iq_Others
  • Table 2 illustrates the results of calculating the respective current consumption when the intermittent control is not performed and when the intermittent control is performed using these equations.
  • FIG. 10 is a diagram illustrating the current consumption of the DC-DC converter 200 illustrated in Table 2.
  • the vertical axis represents current consumption
  • the horizontal axis represents calculation conditions.
  • the current consumption of each circuit is an integral value of the current consumption during the operation period of the circuit, so that the current consumption can be greatly reduced according to the load current Io by intermittent control.
  • the current consumption of the control circuit is 4.32 (%). That is, the intermittent control can reduce the current consumption by 95.7% compared to the case without intermittent.
  • the ratio of the intermittent pause time (T sw ⁇ t pON ⁇ t nON ) with respect to the switching cycle T sw becomes higher as the load becomes lighter, the effect of reducing the current consumption of the control circuit is increased and the power conversion efficiency is increased. be able to.
  • the load current Io is 100 milliamperes (mA)
  • the current consumption of the control circuit is 36.0 (%)
  • the load current Io is 1 milliampere (mA)
  • the current consumption is 4. It has fallen to 32 (%).
  • FIG. 11 is a flowchart showing an example of the operation of the DC-DC converter 200 in the first embodiment. This operation starts, for example, when the enable is set in the converter enable signal EN.
  • DC-DC converter 200 first, the output voltage Vo to determine whether lower or not than the reference voltage V REF (step S901). If the output voltage Vo is lower than the reference voltage V REF (step S901: Yes), DC-DC converter 200, a P-type MOS transistor 261 and a PMOS control signal Pon at the high level to the ON state (step S902) . Also, the DC-DC converter 200 controls the PMOS off timing detection unit 230 to be enabled (step S903).
  • the DC-DC converter 200 determines whether or not the PMOS off timing is detected (step S904). When the PMOS off timing is not detected (step S904: No), the DC-DC converter 200 returns to step S904.
  • the DC-DC converter 200 sets the PMOS control signal Pon to a low level to turn off the P-type MOS transistor 261 (step S905). Also, the DC-DC converter 200 controls the PMOS off timing detection unit 230 to be disabled (step S906). Then, the DC-DC converter 200 sets the NMOS control signal Non to a high level to turn on the N-type MOS transistor 262 (step S907). Further, the DC-DC converter 200 controls the NMOS off timing detection unit 240 to be enabled (step S908).
  • step S909 determines whether or not the NMOS off timing is detected.
  • step S909: No the DC-DC converter 200 returns to step S909.
  • step S909: Yes the DC-DC converter 200 sets the NMOS control signal Non to a low level to turn off the N-type MOS transistor 262 (step S910). Further, the DC-DC converter 200 controls the NMOS off timing detection unit 240 to be disabled (step S911). When the output voltage Vo is equal to or higher than the reference voltage V REF (step S901: No), or after step S911, the DC-DC converter 200 returns to step S901.
  • the PMOS off timing control unit 230 when the start timing is detected, the PMOS off timing control unit 230 starts operating, and when the end timing is detected, the converter control unit 220 detects the PMOS off timing. The unit 230 is stopped. That is, the PMOS off timing detection unit 230 operates during the period from the start timing to the end timing and stops during other periods, so that the power consumption of the entire DC-DC converter 200 can be suppressed.
  • Second Embodiment> In the first embodiment described above, switching control is performed immediately after the DC-DC converter 200 is started. However, an analog circuit that operates intermittently (for example, the PMO off timing detection unit 230) malfunctions immediately after the startup. There is a fear. If a malfunction occurs in the PMO off timing detection unit 230 or the like, problems such as inductor current overcurrent and reverse current, or abnormal output voltage may occur. For this reason, it is desirable that all the circuits in the DC-DC converter 200 are enabled and a bias current is allowed to flow within a certain preparation period t SU from the start.
  • the DC-DC converter 200 according to the second embodiment is different from the first embodiment in that all the circuits in the DC-DC converter 200 are controlled to be enabled for a certain period of time after startup.
  • FIG. 12 is a block diagram illustrating a configuration example of the DC-DC converter 200 according to the second embodiment.
  • the DC-DC converter 200 according to the second embodiment is different from the first embodiment in that it further includes a start control unit 290.
  • the activation control unit 290 controls all the circuits in the DC-DC converter 200 to be enabled over a certain preparation period tSU after activation.
  • the activation control unit 290 disables the output of the driver 250 over a period from when the converter enable signal EN is enabled until the preparation period tSU elapses, and generates an output enable signal OEN that is enabled after the period elapses.
  • the output enable signal OEN is set to a high level when controlled to enable, and set to a low level when controlled to disable.
  • the activation control unit 290 generates the activation enable signal BEN that enables the circuit for the preparation period tSU from when the converter enable signal EN is set to enable and disables the circuit outside the preparation period.
  • the start enable signal BEN is set to a high level when controlled to enable, and set to a low level when controlled to disable.
  • the activation control unit 290 supplies the activation enable signal BEN to the converter control unit 220 and supplies the output enable signal OEN to the driver 250.
  • the converter control unit 220 of the second embodiment sets the PMOS control signal Pon and the NMOS control signal Non to high level (enable) over a period (preparation period) in which the activation enable signal BEN is high level. After the preparation period has elapsed, the same switching control as that in the first embodiment is performed.
  • the driver 250 controls the P-type MOS transistor 261 and the N-type MOS transistor 262 to be in an off state when the output enable signal OEN is at a low level (disabled). On the other hand, when the output enable signal OEN is at a high level (enable), the driver 250 turns the transistor on and off according to the PMOS control signal Pon and the NMOS control signal Non, as in the first embodiment.
  • FIG. 13 is a block diagram illustrating a configuration example of the activation control unit 290 according to the second embodiment.
  • the activation control unit 290 includes an output enable generation unit 291 and an activation enable generation unit 293.
  • the output enable generation unit 291 includes an on-delay timer 292.
  • On-delay timer 292 is for generating a signal obtained by delaying over the rising to the preparation period t SU of the converter enable signal EN as an output enable signal OEN.
  • the on-delay timer 292 supplies the output enable signal OEN to the driver 250 and the start enable generation unit 293.
  • the activation enable generator 293 generates an activation enable signal BEN. For example, if the converter enable signal EN is at a high level and the output enable signal OEN is at a low level, the activation enable generation unit 293 sets the activation enable BEN to a high level, and otherwise sets it to a low level. .
  • FIG. 14 is a diagram illustrating an example of the operation of the activation enable generation unit 293 according to the second embodiment.
  • the activation enable generation unit 293 sets the activation enable signal BEN to a low level.
  • the activation enable generation unit 293 sets the activation enable signal BEN to a high level.
  • FIG. 15 is a diagram illustrating an example of an operation for controlling the P-type MOS transistor 261 of the converter control unit 220 according to the second embodiment.
  • the converter enable signal EN is at a low level (disabled)
  • the PMOS control signal is controlled to a low level.
  • both the converter enable signal EN and the start enable signal BEN are at a high level (enable)
  • the PMOS control signal Pon is set to a high level.
  • the converter enable signal EN is at a high level and the start enable signal BEN is at a low level, the same PMOS control signal Pon as that in the first embodiment is generated.
  • FIG. 16 is a diagram illustrating an example of an operation for controlling the N-type MOS transistor 262 of the converter control unit 220 according to the second embodiment.
  • the converter enable signal EN is at a low level (disabled)
  • the NMOS control signal Non is controlled to a low level.
  • both the converter enable signal EN and the start enable signal BEN are at a high level (enable)
  • the NMOS control signal Non is set to a high level.
  • an NMOS control signal Non similar to that in the first embodiment is generated.
  • FIG. 17 is a timing chart showing an example of the operation of the DC-DC converter 200 in the second embodiment.
  • the converter enable signal EN is set to a high level at timing T11
  • the start enable signal BEN is set to a high level until a predetermined preparation period tSU elapses.
  • the activation enable signal BEN is controlled to a low level
  • the output enable signal OEN is controlled to a high level.
  • DC-DC converter 200 operates by passing a bias current to each circuit therein.
  • driver 250 controls P-type MOS transistor 261 and N-type MOS transistor 262 to be in an off state. Then, after timing T12, the same switching control as in the first embodiment is performed.
  • this preparatory period tSU a sufficient time is set from the state where all analog circuits (PMOS off timing detection unit 230 and the like) are stopped to the circuit state during the intermittent pause (idle period).
  • a preparation period is generally required because the state of the analog circuit is different between the stop state and the intermittent stop state.
  • the stop state it is required to stop the circuit reliably and suppress the current consumption to zero, and during the intermittent stop, a standby state is required in which the current consumption is suppressed but the normal operation is started in a very short time.
  • the stop state and the intermittent stop state are the same in that the circuit operation is stopped, the internal state is different. Therefore, the necessary preparation period tSU is provided based on the difference in the state.
  • each circuit such as the PMOS off timing detection unit 230 is operated without being stopped within a certain preparation period immediately after startup, the DC-DC converter 200 can be started stably.
  • the comparison result of the comparator 212 is output as it is as the voltage drop detection signal Vd.
  • the delay time from when the output voltage Vo rises to V REF or more until the voltage drop detection signal Vd is inverted may be long. If this delay time is long, circuits after the comparator 212 (such as the converter control unit 220) may malfunction, causing problems such as a decrease in voltage conversion efficiency, an increase in ripple voltage, and an output overvoltage abnormality.
  • the DC-DC converter 200 according to the third embodiment is different from the first embodiment in that the voltage drop detection signal Vd is fixed at a low level during a period in which the PMOS control signal Pon is at a high level.
  • FIG. 18 is a block diagram illustrating a configuration example of the voltage drop detection unit 210 according to the third embodiment.
  • This voltage drop detection unit 210 is different from the first embodiment in that it further includes a switch 213 and a buffer 214.
  • One end of the switch 213 is connected to the output terminal of the comparator 212 and the input terminal of the buffer 214, and the other end is grounded.
  • the switch 213 shifts to a closed state when the PMOS control signal Pon is at a high level, and shifts to an open state when the PMOS control signal Pon is at a low level.
  • the output terminal of the buffer 214 is connected to the converter control unit 220.
  • the voltage drop detection signal Vd is fixed at the low level during the period in which the PMOS control signal Pon is at the high level.
  • the fixing is released.
  • the converter control unit 220 generates a signal for controlling the switch 213 in the closed state for the on time tpON separately from the PMOS control signal Pon. Also good.
  • FIG. 19 is a timing chart showing an example of the operation of the DC-DC converter 200 in the comparative example of the third embodiment.
  • the comparator 212 When the output voltage Vo drops below the reference voltage V REF at timing T1, the comparator 212 generates a high level voltage drop detection signal Vd. Then, the output voltage Vo after the timing T1 has risen above the reference voltage V REF, with respect to the timing at which the output voltage Vo is equal to or greater than the reference voltage V REF (immediately after T1), the voltage drop detection signal Vd Assume that the timing T21 for inversion to the low level is greatly delayed. For example, it is assumed that the timing T21 is delayed after the timing T4 when the N-type MOS transistor 262 is controlled to be turned off.
  • the PMOS control signal Pon is again controlled to the high level without shifting to the idle period at the timing T4. As a result, useless switching is performed and a malfunction occurs in the circuit.
  • the voltage drop detection signal Vd is fixed to the low level during the period in which the PMOS control signal Pon is at the high level, so that the inversion timing delay of the voltage drop detection signal Vd is delayed. Can prevent malfunctions.
  • the back flow is prevented by controlling the N-type MOS transistor 262 to the off state.
  • backflow can be prevented by providing a diode instead of the switching element.
  • the power consumption is larger than that in the case of using the NMOS transistor 262, but the switching control of the transistor becomes unnecessary.
  • the DC-DC converter 200 of the fourth embodiment is different from that of the first embodiment in that a diode that prevents backflow is provided instead of the N-type MOS transistor 262.
  • FIG. 20 is a block diagram illustrating a configuration example of the DC-DC converter 200 according to the fourth embodiment.
  • the DC-DC converter 200 of the fourth embodiment is different from that of the first embodiment in that it includes a diode 263 instead of the N-type MOS transistor 262 and does not include the NMOS off timing detection unit 240. Further, the converter control unit 220 of the fourth embodiment differs from the first embodiment in that the NMOS control signal generation unit 222 is not provided.
  • the anode of the diode 263 is grounded, and the cathode is connected to the P-type MOS transistor 261 and the coil 270. Since this diode 263 allows current to flow only in the direction from the anode to the cathode, the diode 263 prevents the current from flowing back from the coil 270.
  • the detection of the PMOS off timing is detected by the on time timer 232.
  • the current I L1 supplied to the coil 270 by the comparator may be compared with the peak current I Lpk and the time when the current I L1 reaches I Lpk may be detected as the PMOS off timing.
  • DC-DC converter 200 of the fifth embodiment, the first embodiment in that it detects when the current I L1 reaches the I Lpk by comparing the current I L1 and the peak current I Lpk as PMOS off timing The form is different.
  • FIG. 21 is a block diagram illustrating a configuration example of the PMOS off timing detection unit 230 according to the fifth embodiment.
  • the fifth PMOS off timing detection unit 230 includes a switch 233, a comparator 234, and a detection signal mask unit 235.
  • the detection signal mask unit 235 includes a switch 236, an on-delay timer 237, and a switch 238.
  • the switch 233 supplies the power supply voltage V DD to the comparator 234 according to the PMOS control signal Pon. For example, the switch 233 supplies the power supply voltage V DD when the PMOS control signal Pon is at a high level, and does not supply V DD when the PMOS control signal Pon is at a low level.
  • the comparator 234 compares the current I L1 supplied to the coil 270 with the peak current I Lpk .
  • the current IL1 is input to the non-inverting input terminal (+) of the comparator 234, and the peak current ILpk is input to the inverting input terminal (-).
  • the switch 236 supplies the power supply voltage V DD to the on-delay timer 237 according to the PMOS control signal Pon. For example, the switch 236 supplies the power supply voltage V DD when the PMOS control signal Pon is at a high level, and does not supply V DD when the PMOS control signal Pon is at a low level.
  • the on-delay timer 237 supplies a signal obtained by delaying the rising edge of the PMOS control signal Pon over a certain mask period tz to the switch 238 as a mask period control signal ZBT.
  • the switch 238 opens and closes the path between the comparator 234 and the converter control unit 220 in accordance with the mask period control signal ZBT.
  • the switch 238 shifts to a closed state when the mask period control signal ZBT is at a high level, and shifts to an open state when the mask period control signal ZBT is at a low level.
  • the switch 233 is provided outside the comparator 234, the switch 233 may be provided inside the comparator 234. Similarly, the switch 236 may be provided inside the on-delay timer 237. In addition, when there is no possibility of malfunction or erroneous detection immediately after enabling the comparator 234, the detection signal mask unit 235 may be omitted.
  • the DC-DC converter 200 detects the time when the current I L1 reaches the peak current I Lpk as the PMOS off timing. This can be used to control the PMOS off timing.
  • FIG. 22 is a block diagram illustrating a configuration example of the information processing apparatus 100 according to the sixth embodiment.
  • the information processing apparatus 100 according to the sixth embodiment differs from the first embodiment in that it further includes DC-DC converters 201 and 202.
  • the configurations of the DC-DC converters 201 and 202 are the same as those of the DC-DC converter 200. However, different converter enable signals and voltage control signals are input to the DC-DC converters 200, 201, and 202, respectively.
  • the converter enable signal EN0 and the voltage control signal VoCtrl0 are input to the DC-DC converter 200
  • the converter enable signal EN1 and the voltage control signal VoCtrl1 are input to the DC-DC converter 201.
  • the DC-DC converter 202 also receives a converter enable signal EN2 and a voltage control signal VoCtrl2.
  • DC-DC converters 200 to 202 can convert voltage with high conversion efficiency by intermittent control as described above. For this reason, the power consumption of the information processing apparatus 100 as a whole can be reduced by using these converters as the power source of the processor 120.
  • the DC-DC converters 200 to 202 perform the PFM control, the conversion efficiency is increased particularly in a light load, so that the power consumption reduction effect is increased.
  • the processor 120 stops the DC-DC converter (200, 201, or 202) that supplies power to unnecessary circuits among the internal circuits according to the required calculation amount and processing content.
  • the processor 120 stops some of the DC-DC converters to reduce power consumption. be able to.
  • the processing procedure described in the above embodiment may be regarded as a method having a series of these procedures, and a program for causing a computer to execute these series of procedures or a recording medium storing the program. You may catch it.
  • a recording medium for example, a CD (Compact Disc), an MD (MiniDisc), a DVD (Digital Versatile Disc), a memory card, a Blu-ray disc (Blu-ray (registered trademark) Disc), or the like can be used.
  • this technique can also take the following structures.
  • a voltage generation unit that generates an output voltage based on the current when a current is supplied;
  • a stop control unit that outputs a signal for stopping the supply of the current;
  • a current supply unit for supplying the current to the voltage generation unit until the signal is output;
  • a voltage conversion circuit comprising: an intermittent control unit that operates the stop control unit during the current supply period and stops the stop control unit when the signal is output.
  • the start timing detector A voltage comparator that compares the output voltage with a predetermined reference voltage and outputs the comparison result as a start timing detection signal;
  • the voltage conversion circuit according to (2) further comprising: a detection signal control unit that fixes the comparison result to a predetermined fixed value during a period from when the start timing is detected to when an end timing is detected.
  • a detection signal control unit that fixes the comparison result to a predetermined fixed value during a period from when the start timing is detected to when an end timing is detected.
  • the stop control unit detects when a predetermined period has elapsed from the start timing as the end timing.
  • the voltage conversion circuit according to (2) or (3), wherein the stop control unit detects when the current reaches a predetermined peak value as the end timing.
  • the stop control unit A current comparator that compares the current with the predetermined peak value and outputs the comparison result as the signal;
  • the voltage conversion circuit according to (5) further comprising: a signal mask unit that masks the signal during a period from the start timing until a certain mask period elapses.
  • a current decrease timing detection unit that starts detection of a current decrease timing at which the current becomes lower than a predetermined set value and the backflow prevention unit are configured to output the signal when the signal is output.
  • the said intermittent control part is a voltage conversion circuit of the said (7) description which stops the detection of the said current fall timing by controlling the said current fall timing detection part, when the said current fall timing is detected.
  • Any one of (1) to (8), further including a start control unit that controls and operates the stop control unit over a predetermined preparation period from the start of generation of the output voltage The voltage conversion circuit described in 1.
  • a current supply unit that supplies current to the voltage generation unit, an intermittent control unit that operates the stop control unit during the current supply period, and stops the stop control unit when the signal is output; and an intermittent control unit;
  • a plurality of voltage conversion circuits each comprising: An electronic device comprising: a processing circuit that performs processing for controlling the output voltage of each of the plurality of voltage conversion circuits.
  • a method for controlling a voltage conversion circuit comprising: an intermittent control unit that operates the stop control unit during the current supply period and stops the stop control unit when the signal is output.
  • Information processing device 110 Bus 120 Processor 130 Interface 200, 201, 202 DC-DC converter 210 Voltage drop detection unit 211 Reference voltage generation unit 212, 234, 242 Comparator 213, 231, 233, 236, 238, 241, 244, 246 Switch 214 Buffer 220 Converter control unit 221 PMOS control signal generation unit 222 NMOS control signal generation unit 230 PMOS off timing detection unit 232 On time timer 235, 243 Detection signal mask units 237, 245, 292 On delay timer 240 NMOS off timing detection unit 250 Driver 261 P-type MOS transistor 262 N-type MOS transistor 263 Diode 270 Coil 280 Capacitor 290 Start control unit 91 output enable generation unit 293 start enable generator unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

 DC-DCコンバータの消費電力を低減する。 電圧変換回路は、電圧生成部、停止制御部、電流供給部、および、間欠制御部を具備する。電圧生成部は、電流が供給されると電流に基づいて出力電圧を生成する。停止制御部は、電流の供給を停止させるための信号を出力する。電流供給部は、その信号が出力されるまで電流を電圧生成部に供給する。間欠制御部は、電流の供給期間において停止制御部を動作させ、信号が出力されると停止制御部を停止させる。

Description

電圧変換回路、電子装置、および、電圧変換回路の制御方法
 本技術は、電圧変換回路、電子装置、および、電圧変換回路の制御方法に関する。詳しくは、スイッチング素子を用いる電圧変換回路、電子装置、および、電圧変換回路の制御方法に関する。
 従来より、電子機器においては、直流の電源電圧を、その電子機器内部の回路や部品のそれぞれに必要な直流電圧に変換するために、DC(Direct Current)-DCコンバータが用いられている。このDC-DCコンバータの種類として、半導体素子により変動分をカットするリニア方式のコンバータや、スイッチング素子をオンオフするスイッチング方式のコンバータなどが挙げられる。これらの方式の中では、その変換効率の高さから、スイッチング方式がよく用いられている。
 このスイッチング方式の制御としては、周波数を制御するPFM(Pulse Frequency Modulation)制御や、パルス幅を制御するPWM(Pulse Width Modulation)制御が挙げられる。このPWM制御では、負荷の大きさにかかわらず、一定の周波数でスイッチングするために一定のスイッチング損失が生じる。これに対し、PFM制御では、負荷が小さいほどスイッチングの周波数を低下させるため、軽負荷におけるスイッチング損失を低減することができる。このため、軽負荷ではPFM制御がよく用いられる(例えば、非特許文献1参照。)。
Biranchinath Sahu, et al., "An Accurate, Low-Voltage, CMOS Switching Power Supply With Adaptive On-Time Pulse-Frequency Modulation (PFM) Control", IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-1: REGULAR PAPERS, VOL. 54, NO. 2, FEBRUARY 2007
 上述のPFM制御のDC-DCコンバータでは、そのコンバータ内の電力の損失が少ないほど変換効率を高くすることができるため、損失を可能な限り低減させることが望ましい。ここで、DC-DCコンバータの損失としては、スイッチング制御を行う制御回路の消費電力による損失のほか、スイッチング素子におけるスイッチング損失や、コイルにおけるインダクタ損失などがある。これらの損失のうちスイッチング損失およびインダクタ損失については、軽負荷において低いスイッチング周波数によりPFM制御を行うことにより低減させることができる。しかしながら、制御回路は、スイッチング制御中において常に動作していなくてはならないため、この制御回路の消費電力を低減することは困難である。
 本技術はこのような状況に鑑みて生み出されたものであり、DC-DCコンバータの消費電力を低減することを目的とする。
 本技術は、上述の問題点を解消するためになされたものであり、その第1の側面は、電流が供給されると上記電流に基づいて出力電圧を生成する電圧生成部と、上記電流の供給を停止させるための信号を出力する停止制御部と、上記信号が出力されるまで上記電流を上記電圧生成部に供給する電流供給部と、上記電流の供給期間において上記停止制御部を動作させ、上記信号が出力されると上記停止制御部を停止させる間欠制御部とを具備する電圧変換回路、および、その制御方法である。これにより、信号が検出されると停止制御部が停止するという作用をもたらす。
 また、この第1の側面において、上記供給期間の開始タイミングを検出する開始タイミング検出部をさらに具備し、上記停止制御部は、上記供給期間の終了タイミングを検出して上記信号を出力してもよい。これにより、開始タイミングから終了タイミングまでの間において、出力電圧と所定の基準電圧との比較結果が所定の固定値に固定されるという作用をもたらす。
 また、この第1の側面において、上記開始タイミング検出部は、上記出力電圧と所定の基準電圧とを比較して当該比較結果を開始タイミング検出信号として出力する電圧比較器と、上記開始タイミングが検出されてから終了タイミングが検出されるまでの間において上記比較結果を所定の固定値に固定する検出信号制御部とを備えてもよい。これにより、開始タイミングから終了タイミングまでの間において、出力電圧と所定の基準電圧との比較結果が所定の固定値に固定されるという作用をもたらす。
 また、この第1の側面において、上記停止制御部は、上記開始タイミングから所定期間が経過したときを上記終了タイミングとして検出してもよい。これにより、開始タイミングから所定期間が経過したときが終了タイミングとして検出されるという作用をもたらす。
 また、この第1の側面において、上記停止制御部は、上記電流が所定のピーク値に達したときを上記終了タイミングとして検出してもよい。これにより電流が所定のピーク値に達したときに終了タイミングが検出されるという作用をもたらす。
 また、この第1の側面において、上記停止制御部は、上記電流と上記所定のピーク値とを比較して当該比較結果を上記信号として出力する電流比較器と、上記開始タイミングから一定のマスク期間が経過するまでの間において上記信号をマスクする検出信号マスク部とを備えてもよい。これにより、開始タイミングから一定のマスク期間が経過するまでの間において、信号がマスクされるという作用をもたらす。
 また、この第1の側面において、上記電流の逆流を防止する逆流防止部をさらに具備してもよい。これにより、電流の逆流が防止されるという作用をもたらす。
 また、この第1の側面において、上記信号が出力された場合には上記電流が所定の設定値より低くなる電流低下タイミングの検出を開始する電流低下タイミング検出部と上記逆流防止部は、上記信号が出力された場合には上記電圧生成部と接地端子との間の経路を閉状態に制御し、上記電流低下タイミングが検出された場合には上記経路を開状態に制御し、上記間欠制御部は、上記電流低下タイミングが検出された場合には上記電流低下タイミング検出部を制御して上記電流低下タイミングの検出を停止させてもよい。これにより、信号が出力された場合には、電流低下タイミング検出部による電流低下タイミングの検出が停止するという作用をもたらす。
 また、この第1の側面において、上記出力電圧の生成開始が指示されたときから所定の準備期間に亘って上記停止制御部を制御して動作させる起動制御部をさらに具備してもよい。これにより、所定の準備期間に亘って終了タイミング検出部が動作するという作用をもたらす。
 また、この第1の側面において、上記開始タイミング検出部は、上記出力電圧と所定の基準電圧とを比較して当該比較結果を開始タイミング検出信号として出力する電圧比較器と、上記開始タイミングが検出されてから終了タイミングが検出されるまでの間において上記比較結果を所定の固定値に固定する検出信号制御部とを備えてもよい。これにより、開始タイミングから終了タイミングまでの間において、出力電圧と所定の基準電圧との比較結果が所定の固定値に固定されるという作用をもたらす。
 また、本技術の第2の側面は、電流が供給されると上記電流に基づいて出力電圧を生成する電圧生成部と、上記電流の供給を停止させるための信号を出力する停止制御部と、上記信号が出力されるまで上記電流を上記電圧生成部に供給する電流供給部と、上記電流の供給期間において上記停止制御部を動作させ、上記信号が出力されると上記停止制御部を停止させる間欠制御部とを備える電圧変換回路と、上記出力電圧を制御する処理を行う処理回路とを具備する電子装置である。これにより、信号が検出されると停止制御部が停止するという作用をもたらす。
 また、本技術の第3の側面は、電流が供給されると上記電流に基づいて出力電圧を生成する電圧生成部と、上記電流の供給を停止させるための信号を出力する停止制御部と、上記信号が出力されるまで上記電流を上記電圧生成部に供給する電流供給部と、上記電流の供給期間において上記停止制御部を動作させ、上記信号が出力されると上記停止制御部を停止させる間欠制御部と間欠制御部とをそれぞれが備える複数の電圧変換回路と、上記複数の電圧変換回路のそれぞれの上記出力電圧を制御する処理を行う処理回路とを具備する電子装置である。これにより、複数の電圧変換回路のそれぞれにおいて、終了タイミングが検出された場合に終了タイミング検出部が停止するという作用をもたらす。
 本技術によれば、DC-DCコンバータの消費電力を低減することができるという優れた効果を奏し得る。なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
第1の実施の形態における情報処理装置の一構成例を示すブロック図である。 第1の実施の形態におけるDC-DCコンバータの一構成例を示すブロック図である。 第1の実施の形態における電圧低下検出部の一構成例を示すブロック図である。 第1の実施の形態におけるコンバータ制御部の一構成例を示すブロック図である。 第1の実施の形態におけるコンバータ制御部のP型MOSトランジスタを制御する動作の一例を示す図である。 第1の実施の形態におけるコンバータ制御部のN型MOSトランジスタを制御する動作の一例を示す図である。 第1の実施の形態におけるPMOSオフタイミング検出部の一構成例を示すブロック図である。 第1の実施の形態におけるNMOSオフタイミング検出部の一構成例を示すブロック図である。 第1の実施の形態におけるDC-DCコンバータの動作の一例を示すタイミングチャートである。 第1の実施の形態におけるDC-DCコンバータの消費電力の一例を示す図である。 第1の実施の形態におけるDC-DCコンバータの動作の一例を示すフローチャートである。 第2の実施の形態におけるDC-DCコンバータの一構成例を示すブロック図である。 第2の実施の形態における起動制御部の一構成例を示すブロック図である。 第2の実施の形態における起動イネーブル生成部の動作の一例を示す図である。 第2の実施の形態におけるコンバータ制御部のP型MOSトランジスタを制御する動作の一例を示す図である。 第2の実施の形態におけるコンバータ制御部のN型MOSトランジスタを制御する動作の一例を示す図である。 第2の実施の形態におけるDC-DCコンバータの動作の一例を示すタイミングチャートである。 第3の実施の形態における電圧低下検出部の一構成例を示すブロック図である。 第3の実施の形態の比較例におけるDC-DCコンバータの動作の一例を示すタイミングチャートである。 第4の実施の形態におけるDC-DCコンバータの一構成例を示すブロック図である。 第5の実施の形態におけるPMOSオフタイミング検出部の一構成例を示すブロック図である。 第6の実施の形態における情報処理装置の一構成例を示すブロック図である。
 以下、本技術を実施するための形態(以下、実施の形態と称する)について説明する。説明は以下の順序により行う。
 1.第1の実施の形態(タイミング検出部を間欠制御する例)
 2.第2の実施の形態(起動制御の後にタイミング検出部を間欠制御する例)
 3.第3の実施の形態(電圧低下検出部の誤動作を防止し、タイミング検出部を間欠制御する例)
 4.第4の実施の形態(ダイオードにより逆流を防止し、タイミング検出部を間欠制御する例)
 5.第5の実施の形態(コンパレータを設けたタイミング検出部を間欠制御する例)
 6.第6の実施の形態(複数のコンバータのそれぞれにおいてタイミング検出部を間欠制御する例)
 <1.第1の実施の形態>
 [情報処理装置の構成例]
 図1は、第1の実施の形態における情報処理装置100の一構成例を示すブロック図である。この情報処理装置100は、バス110、プロセッサ120、インターフェース130およびDC-DCコンバータ200を備える。
 プロセッサ120は、情報処理装置100全体を制御するものである。このプロセッサ120は、インターフェースを介して、外部信号を受け取る。この外部信号として、例えば、プロセッサ120に演算を指示する信号やコンバータイネーブル信号ENなどが入力される。プロセッサ120は、外部信号に従って演算を行う。そして、プロセッサ120は、電圧制御信号VoCtrlを生成して、インターフェース130を介してDC-DCコンバータ200に供給する。なお、プロセッサ120は、特許請求の範囲に記載の処理回路の一例である。
 ここで、電圧制御信号VoCtrlは、DC-DCコンバータ200の出力電圧Voの値を制御する信号である。一般にプロセッサ120の電源電圧(すなわち、出力電圧Vo)を高くすると消費電力が大きくなるが、演算処理速度を高くすることができる。一方、電源電圧を低くすると消費電力が小さくなるものの演算処理速度が低下する。このため、プロセッサ120は、求められる演算処理速度に応じて、電圧制御信号VoCtrlにより電源電圧を制御する。
 また、コンバータイネーブル信号ENは、DC-DCコンバータ200をイネーブルまたはディセーブルに制御する信号である。例えば、コンバータイネーブル信号ENは、DC-DCコンバータ200をイネーブルに制御する場合にハイレベルに設定され、ディセーブルに制御する際にローレベルに設定される。例えば、プロセッサ120に演算を開始させる際に、ハイレベル(イネーブル)のコンバータイネーブル信号ENが外部から入力される。
 インターフェース130は、外部信号、電圧制御信号VoCtrlおよびコンバータイネーブル信号ENなどを、外部の装置、プロセッサ120およびバス110との間でやり取りするものである。バス110は、電圧制御信号VoCtrlおよびコンバータイネーブル信号ENなどを、インターフェース130およびDC-DCコンバータ200の間でやり取りするものである。
 DC-DCコンバータ200は、直流電圧を変換するものである。このDC-DCコンバータ200は、信号線118および119を介してバス110からコンバータイネーブル信号ENおよび電圧制御信号VoCtrlを受け取る。コンバータイネーブル信号ENにハイレベル(イネーブル)が設定されると、電圧制御信号VoCtrlに従って、直流の電圧を直流の出力電圧Voに変換する。そして、DC-DCコンバータ200は、その出力電圧Voを電源線209を介してプロセッサ120に供給する。なお、DC-DCコンバータ200は、特許請求の範囲に記載の電圧変換装置の一例である。
 なお、DC-DCコンバータ200を情報処理装置100に設けているが、DC-DCコンバータ200を情報処理装置以外の電子装置に設けてもよい。また、情報処理装置100は、特許請求の範囲に記載の電子装置の一例である。
 [DC-DCコンバータの構成例]
 図2は、第1の実施の形態におけるDC-DCコンバータ200の一構成例を示すブロック図である。このDC-DCコンバータ200は、電圧低下検出部210、コンバータ制御部220、PMOSオフタイミング検出部230、NMOSオフタイミング検出部240、ドライバ250を備える。また、DC-DCコンバータ200は、P型MOSトランジスタ261、N型MOSトランジスタ262、コイル270およびコンデンサ280を備える。
 P型MOSトランジスタ261のゲートは、ドライバ250に接続され、ソースには電源電圧VDDが印加され、ドレインはコイル270に接続される。また、N型MOSトランジスタ262のゲートはドライバ250に接続され、ドレインはP型MOSトランジスタ261、コイル270およびNMOSオフタイミング検出部240に接続され、ソースは接地端子に接続される。コイル270の一端は、P型MOSトランジスタ261およびN型MOSトランジスタ262に接続され、他端は、コンデンサ280、プロセッサ120、電圧低下検出部210に接続される。
 P型MOSトランジスタ261は、ドライバ250の制御に従って電源とコイル270との間の経路を開閉するものである。また、N型MOSトランジスタ262は、ドライバ250の制御に従って、接地端子とコイル270の間の経路を開閉するものである。これらのトランジスタは、同時にオン状態に制御されることはなく、両方ともオフ状態か、または、一方のみがオン状態となるように排他的に制御される。P型MOSトランジスタ261およびN型MOSトランジスタ262が両方ともオン状態になると、これらのトランジスタにより電源と接地端子との間が短絡した状態となり、比較的大きな電流が流れてしまうためである。
 P型MOSトランジスタ261がドライバ250によりオン状態に制御されると、電源電圧VDDに応じた電流IL1が、コイル270に供給される。電流IL1が供給されると、コイル270は、自己誘導により出力電圧Voを生成する。コンデンサ280は、その出力電圧Voを平滑化する。なお、P型MOSトランジスタ261は、特許請求の範囲に記載の電流供給部の一例である。また、コイル270およびコンデンサ280は、特許請求の範囲に記載の電圧生成部の一例である。
 一方、P型MOSトランジスタ261がドライバ250によりオフ状態に制御されると、N型MOSトランジスタ262がオン状態に制御される。これにより出力電圧Voに応じた電流IL2がコイル270を流れ、その電流値は徐々に小さくなる。この電流IL2が、「0」ミリアンペア(mA)以下に低下したタイミングでN型MOSトランジスタ262がオフ状態に制御され、逆流が防止される。
 なお、P型MOSトランジスタ261およびN型MOSトランジスタ262をスイッチング素子として設けているが、この構成に限定されない。例えば、MOSトランジスタの代わりにサイリスタなどをスイッチング素子として設けてもよい。
 電圧低下検出部210は、出力電圧Voが基準電圧VREF未満に低下したか否かを検出するものである。この電圧低下検出部210は、コンバータイネーブル信号ENがハイレベル(イネーブル)の場合に電圧制御信号VoCtrlに従って基準電圧VREFを生成し、その基準電圧VREFと出力電圧Voとを比較する。そして、電圧低下検出部210は、比較結果を電圧低下検出信号Vdとしてコンバータ制御部220に供給する。一方、コンバータイネーブル信号ENがローレベル(デイセーブル)の場合には、電圧低下検出部210は動作を停止し、電圧低下の検出を行わない。ここで、出力電圧Voが基準電圧VREF未満に低下したタイミングは、コイル270への電流供給を開始する開始タイミングとして扱われる。なお、電圧低下検出部210は、特許請求の範囲に記載の開始タイミング検出部の一例である。
 コンバータ制御部220は、DC-DCコンバータ200全体を制御するものである。このコンバータ制御部220は、電圧低下検出信号Vd、PMOSオフタイミング検出信号PendおよびNMOSオフタイミング検出信号Nendに基づいてPMOS制御信号PonおよびNMOS制御信号Nonを生成する。コンバータ制御部220は、PMOS制御信号PonをPMOSオフタイミング検出部230およびドライバ250に供給し、NMOS制御信号NonをNMOSオフタイミング検出部240およびドライバ250に供給する。
 ここで、PMOSオフタイミング検出信号Pendは、P型MOSトランジスタをオフ状態にして、コイル270への電源供給を終了する終了タイミングを示す信号である。NMOSオフタイミング検出信号Nendは、コイル270からの電流が「0」ミリアンペア(mA)以下に低下した電流低下タイミングを示す信号である。また、PMOS制御信号Ponは、P型MOSトランジスタ261をオン状態またはオフ状態に制御する信号である。例えば、P型MOSトランジスタ261をオン状態にする際にPMOS制御信号Ponにハイレベルが設定され、オフ状態にする際にローレベルが設定される。NMOS制御信号Nonは、N型MOSトランジスタ262をオン状態またはオフ状態に制御する信号である。例えば、N型MOSトランジスタ262をオン状態にする際にNMOS制御信号Nonにハイレベルが設定され、オフ状態にする際にローレベルが設定される。
 コンバータ制御部220は、電圧低下検出信号Vdの示す開始タイミングにおいて、PMOS制御信号をハイレベルにする。これにより、P型MOSトランジスタ261がオン状態となり、コイル270への電流供給が開始される。そして、PMOSオフタイミング検出信号Pendの示す終了タイミングにおいて、コンバータ制御部220は、PMOS制御信号をローレベルにするとともに、NMOS制御信号をハイレベルにする。これにより、P型MOSトランジスタ261がオフ状態となり、コイル270への電流供給が終了する。そして、NMOSオフタイミング検出信号Nendの示すタイミングにおいて、コンバータ制御部220は、NMOS制御信号をローレベルにする。これにより、N型MOSトランジスタ262がオフ状態となり、電流の逆流が防止される。なお、コンバータ制御部220は、特許請求の範囲に記載の間欠制御部の一例である。
 このようにして、P型MOSトランジスタ261およびN型MOSトランジスタ262が繰り返しオンオフされる。これらのトランジスタをスイッチングする周波数は、プロセッサ120などの負荷電流の大きさに応じて制御される。すなわち、コンバータ制御部220は、PFM制御を行っている。なお、コンバータ制御部220は、PFM制御の代わりに、PWM制御を行ってもよい。
 PMOSオフタイミング検出部230は、P型MOSトランジスタ261をオフ状態にするPMOSオフタイミング(すなわち、電流供給の終了タイミング)を検出するものである。このPMOSオフタイミング検出部230は、PMOS制御信号がハイレベルになってから一定期間が経過したタイミングをPMOSオフタイミング(終了タイミング)として検出する。PMOSオフタイミング検出部230は、PMOSオフタイミングを検出した際に、PMOSオフタイミング検出信号Pendを生成してコンバータ制御部220に供給する。なお、PMOSオフタイミング検出部230は、特許請求の範囲に記載の停止制御部の一例である。
 NMOSオフタイミング検出部240は、N型MOSトランジスタ262をオフ状態にするNMOSオフタイミングを検出するものである。このNMOSオフタイミング検出部240は、N型MOSトランジスタ262がオン状態の際の電流IL2を参照し、その値が「0」ミリアンペア(mA)以下に低下した電流低下タイミングをNMOSオフタイミングとして検出する。PMOSオフタイミング検出部230は、NMOSオフタイミング(電流低下タイミング)を検出した際にNMOSオフタイミング検出信号Nendを生成してコンバータ制御部220に供給する。なお、NMOSオフタイミング検出部240は、特許請求の範囲に記載の電流低下タイミング検出部の一例である。
 ドライバ250は、P型MOSトランジスタ261およびN型MOSトランジスタ262を制御するものである。このドライバ250は、PMOS制御信号Ponを反転し、ドライバ出力信号PSWとしてP型MOSトランジスタ261に供給する。また、ドライバ250は、NMOS制御信号Nonをドライバ出力信号NSWとしてN型MOSトランジスタ262に供給する。ただし、ドライバ250は、P型MOSトランジスタ261およびN型MOSトランジスタ262が両方ともオン状態にならないように、ドライバ出力信号を生成する。すなわち、ドライバ出力信号PSWがローレベル、かつ、ドライバ出力信号NSWがハイレベルの状態とならないように、それぞれの信号が生成される。
 [電圧低下検出部の構成例]
 図3は、第1の実施の形態における電圧低下検出部210の一構成例を示すブロック図である。この電圧低下検出部210は、基準電圧生成部211およびコンパレータ212を備える。
 基準電圧生成部211は、電圧制御信号VoCtrlに従って、一定の基準電圧VREFを生成するものである。この基準電圧生成部211は、その基準電圧VREFをコンパレータ212の非反転入力端子(+)に供給する。
 コンパレータ212は、出力電圧Voと基準電圧VREFとを比較するものである。このコンパレータ212の反転入力端子(-)には、出力電圧Voが入力され、非反転入力端子(+)には、基準電圧VREFが入力される。また、コンパレータ212のイネーブル端子には、コンバータイネーブル信号ENが入力される。コンパレータ212は、コンバータイネーブル信号ENがハイレベルの場合に、出力電圧Voおよび基準電圧VREFの比較結果を電圧検出信号Vdとしてコンバータ制御部220に供給する。なお、コンパレータ212は、特許請求の範囲に記載の電圧比較器の一例である。
 [コンバータ制御部の構成例]
 図4は、第1の実施の形態におけるコンバータ制御部220の一構成例を示すブロック図である。このコンバータ制御部220は、PMOS制御信号生成部221およびNMOS制御信号生成部222を備える。
 PMOS制御信号生成部221は、PMOS制御信号Ponを生成するものである。PMOS制御信号Ponの初期状態は、例えば、ローレベルに設定される。PMOS制御信号生成部221は、コンバータイネーブル信号ENがハイレベル(イネーブル)の状態において、電圧検出信号Vdがハイレベルになると、PMOS制御信号Ponをハイレベルにする。また、PMOS制御信号生成部221は、コンバータイネーブル信号ENがハイレベルで、電圧検出信号VdおよびPMOSオフタイミング検出信号Pendがローレベルの場合には、PMOS制御信号Ponの値を保持する。そして、コンバータイネーブル信号ENがハイレベルの状態において、PMOSオフタイミング検出信号Pendがハイレベルになると、PMOS制御信号生成部221は、PMOS制御信号Ponをローレベルにする。
 NMOS制御信号生成部222は、NMOS制御信号Nonを生成するものである。NMOS制御信号Nonの初期状態は、例えば、ローレベルに設定される。NMOS制御信号生成部222は、コンバータイネーブル信号ENがハイレベル(イネーブル)の状態において、PMOSオフタイミング検出信号Pendがハイレベルになると、NMOS制御信号Nonをハイレベルにする。また、NMOS制御信号生成部222は、コンバータイネーブル信号ENがハイレベルで、PMOSオフタイミング検出信号PendおよびNMOSオフタイミング検出信号Nendがローレベルの場合には、NMOS制御信号Nonの値を保持する。そして、コンバータイネーブル信号ENがハイレベルの状態において、NMOSオフタイミング検出信号Nendがハイレベルになると、NMOS制御信号生成部222は、NMOS制御信号Nonをローレベルにする。
 図5は、第1の実施の形態におけるコンバータ制御部220のP型MOSトランジスタ261を制御する動作の一例を示す図である。コンバータイネーブル信号ENがローレベル(ディセーブル)の場合には、PMOS制御信号Ponはローレベルに制御される。また、コンバータイネーブル信号ENがハイレベル(イネーブル)、電圧低下検出信号VdがハイレベルでPMOSオフタイミング検出信号Pendがローレベルの場合には、PMOS制御信号Ponはハイレベルに制御される。また、コンバータイネーブル信号ENがハイレベルで、電圧低下検出信号VdおよびPMOSオフタイミング検出信号Pendがローレベルの場合には、PMOS制御信号Ponの値が保持される。そして、コンバータイネーブル信号ENがハイレベル、電圧低下検出信号VdがローレベルでPMOSオフタイミング検出信号Pendがハイレベルの場合には、PMOS制御信号Ponはローレベルに制御される。
 図6は、第1の実施の形態におけるコンバータ制御部220のN型MOSトランジスタ262を制御する動作の一例を示す図である。コンバータイネーブル信号ENがローレベル(ディセーブル)の場合には、NMOS制御信号Nonはローレベルに制御される。また、コンバータイネーブル信号ENがハイレベル(イネーブル)、PMOSオフタイミング検出信号PendがハイレベルでNMOSオフタイミング検出信号Nendがローレベルの場合には、NMOS制御信号Nonはハイレベルに制御される。また、コンバータイネーブル信号ENがハイレベルで、PMOSオフタイミング検出信号PendおよびNMOSオフタイミング検出信号Nendがローレベルの場合には、NMOS制御信号Nonの値が保持される。そして、コンバータイネーブル信号ENがハイレベル、PMOSオフタイミング検出信号PendがローレベルでNMOSオフタイミング検出信号Nendがハイレベルの場合には、NMOS制御信号Nonはローレベルに制御される。
 [PMOSオフタイミング検出部の構成例]
 図7は、第1の実施の形態におけるPMOSオフタイミング検出部230の一構成例を示すブロック図である。このPMOSオフタイミング検出部230は、スイッチ231およびオン時間タイマ232を備える。
 スイッチ231は、PMOS制御信号Ponに従って、オン時間タイマ232に電源電圧VDDを供給するものである。このスイッチ231は、例えば、PMOS制御信号Ponがハイレベルの場合に電源電圧VDDを供給し、この電源電圧VDDの供給によりオン時間タイマ232が動作する。一方、PMOS制御信号Ponがローレベルの場合にはスイッチ231は電源電圧VDDを供給せず、オン時間タイマ232は停止する。このように、PMOS制御信号Ponは、P型MOSトランジスタ261のオンオフ制御の他、PMOSオフタイミング検出部230を動作させるか否かを制御するイネーブル信号としても用いられる。
 なお、スイッチ231をオン時間タイマ232の外部に設けているが、このスイッチ231をオン時間タイマ232の内部に設けてもよい。また、PMOS制御信号PonをPMOSオフタイミング検出部230のイネーブル信号として用いているが、PMOS制御信号Ponとは別に、コンバータ制御部220がイネーブル信号を生成してもよい。
 オン時間タイマ232は、P型MOSトランジスタ261をオンにする時間を計時するものである。このオン時間タイマ232の回路として、例えば、非特許文献1のFig.5に記載のアナログ回路が用いられる。オン時間タイマ232は、例えば、PMOS制御信号Ponがハイレベルになると計時を開始し、次式に示す時間tpONが経過すると、一定のパルス期間に亘ってPMOSオフタイミング検出信号Pendを出力する。
  tpON=(L×ILpk)/(VDD-Vo)            ・・・式1
上式において、Lは、コイル270のインダクタンスであり、その単位は、例えば、ヘンリー(H)である。また、ILpkは、コイル270に供給される電流のピーク値として予め設定された値であり、その単位は、例えば、ミリアンペア(mA)である。
 [NMOSオフタイミング検出部の構成例]
 図8は、第1の実施の形態におけるNMOSオフタイミング検出部240の一構成例を示すブロック図である。このNMOSオフタイミング検出部240は、スイッチ241、コンパレータ242および検出信号マスク部243を備える。検出信号マスク部243は、スイッチ244およびオンディレータイマ245およびスイッチ246を備える。
 スイッチ241は、NMOS制御信号Nonに従って、コンパレータ242に電源電圧VDDを供給するものである。このスイッチ241は、例えば、NMOS制御信号Nonがハイレベルの場合に電源電圧VDDを供給し、この電源電圧VDDの供給によりコンパレータ242が動作する。一方、NMOS制御信号Nonがローレベルの場合にはスイッチ241はVDDを供給せず、コンパレータ242は停止する。
 スイッチ244は、NMOS制御信号Nonに従って、オンディレータイマ245に電源電圧VDDを供給するものである。このスイッチ241は、例えば、NMOS制御信号Nonがハイレベルの場合に電源電圧VDDを供給し、この電源電圧VDDの供給によりオンディレータイマ245が動作する。一方、NMOS制御信号Nonがローレベルの場合にはスイッチ244はVDDを供給せず、オンディレータイマ245は停止する。
 このように、NMOS制御信号Nonは、N型MOSトランジスタ262のオンオフ制御の他、NMOSオフタイミング検出部240を動作させるか否かを制御するイネーブル信号としても用いられる。
 なお、スイッチ241をコンパレータ242の外部に設けているが、このスイッチ241をコンパレータ242の内部に設けてもよい。スイッチ244についても同様に、オンディレータイマ245の内部に設けてもよい。また、NMOS制御信号NonをNMOSオフタイミング検出部240のイネーブル信号として用いているが、NMOS制御信号Nonとは別に、コンバータ制御部220がイネーブル信号を生成してもよい。
 コンパレータ242は、コイル270に流れる電流Isenseと、所定値(例えば、「0」ミリアンペア)とを比較するものである。このコンパレータ242の反転入力端子(-)には電流Isenseが入力され、非反転入力端子(+)には「0」ミリアンペア(mA)が入力される。コンパレータ242は、それらを比較した結果を、NMOSオフタイミング検出信号Nendとして、スイッチ246に供給する。なお、コンパレータ242は、特許請求の範囲に記載の電流比較器の一例である。
 ここで、コンパレータ242によりゼロ電流が検出されたときにN型MOSトランジスタ262がオフ状態に制御されることから、このトランジスタのオン時間tnONは、次式により求められる。
  tnON=(L×ILpk)/Vo                  ・・・式2
 式1および式2に基づいて、スイッチング周波数fSWが次式により求められる。
  fSW=2Io×Vo×(VDD-Vo)/(L×ILpk 2×VDD)=1/Tsw…式3
上式において、Ioは、プロセッサ120などの負荷の負荷電流であり、その単位は、例えば、ミリアンペア(mA)である。Tswは、スイッチング周期であり、その単位は、例えば、秒(s)である。また、スイッチング周波数fSWの単位は、例えば、ヘルツ(H)である。
 式3より、スイッチング周波数fSWは、負荷電流Ioに応じた値に制御される。すなわち、PFM制御により電圧の変換が行われている。
 なお、コンパレータ242によりゼロ電流を検出しているが、コンパレータ242の代わりに、式2のオン時間tnONを計時するタイマを設けてもよい。この構成の場合、タイマは、NMOS制御信号Nonがハイレベルになったときに計時を開始し、tnONが経過したときにNMOSオフタイミング検出信号Nendを出力すればよい。
 オンディレータイマ245は、NMOS制御信号Nonの立上りを一定のマスク期間tzに亘って遅延させた信号をマスク期間制御信号ZBTとしてスイッチ246に供給するものである。ここで、マスク期間制御信号ZBTは、NMOSオフタイミング検出信号Nendをマスクするマスク期間tzを制御する信号として用いられる。例えば、NMOSオフタイミング検出信号Nendをマスクする場合には、マスク期間制御信号ZBTにローレベルが設定され、マスクしない場合にはハイレベルが設定される。
 スイッチ246は、マスク期間制御信号ZBTに従って、コンパレータ242とコンバータ制御部220との間の経路を開閉するものである。このスイッチ246は、マスク期間制御信号ZBTがハイレベルの場合に閉状態に移行し、ローレベルの場合に開状態に移行する。スイッチ246が閉状態の期間において、コンパレータ242によりNMOSオフタイミング検出信号Nendが生成されると、その信号はコンバータ制御部220に出力される。一方、スイッチ246が開状態の期間においては、NMOSオフタイミング検出信号Nendがマスクされ、コンバータ制御部220に出力されない。
 このように、検出信号マスク部243により、NMOS制御信号Nonがハイレベルになってからマスク期間tzに亘って、NMOSオフタイミング検出信号Nendがマスクされる。このマスク制御により、NMOSオフタイミング検出部240の間欠動作に起因する誤動作を抑制することができる。
 詳細には、コンパレータ242をイネーブルにした直後においては、コンパレータ242が誤動作するおそれがある。また、N型MOSトランジスタ262のスイッチング時において、コイル270およびドライバ250を接続するLX端子に、寄生素子によるスパイク電圧やスパイク電流が生じ、それらによりNMOSオフタイミング検出信号Nendが誤検出されるおそれがある。しかし、検出信号マスク部243がNMOSオフタイミング検出信号Nendをマスクすることにより、これらの誤動作や誤検出時の検出信号がコンバータ制御部220に出力されることを抑制することができる。これにより、DC-DCコンバータ200の動作が安定する。なお、これらの誤動作や誤検出が生じるおそれがない場合には、検出信号マスク部243を設けない構成としてもよい。
 [DC-DCコンバータの動作例]
 図9は、第1の実施の形態におけるDC-DCコンバータ200の動作の一例を示すタイミングチャートである。タイミングT1において、出力電圧Voが基準電圧VREFより低くなると、電圧低下検出部210は、ハイレベルの電圧低下検出信号Vdを出力する。電圧低下検出信号Vdがハイレベルになると、コンバータ制御部220は、PMOS制御信号Ponをハイレベルに制御する。ハイレベルのPMOS制御信号Ponにより、P型MOSトランジスタ261がオン状態に移行し、出力電圧Voが上昇する。これにより、出力電圧Voが基準電圧VREF以上となり、電圧低下検出信号Vdがローレベルになる。
 そして、タイミングT1から式1に例示したオン時間tpONが経過したタイミングT2において、PMOSオフタイミング検出部230は、PMOSオフタイミング検出信号Pendを出力する。PMOSオフタイミング検出信号Pendが出力されると、コンバータ制御部220は、PMOS制御信号Ponをローレベルに制御し、NMOS制御信号Nonをハイレベルに制御する。ローレベルのPMOS制御信号Ponにより、P型MOSトランジスタ261がオフ状態に移行し、コイル270への電流供給が終了する。
 また、PMOS制御信号Ponがハイレベル期間において、PMOSオフタイミング検出部230はイネーブルに制御され、PMOS制御信号Ponがローレベルの期間においてディセーブルに制御される。図9における斜線部分は、PMOSオフタイミング検出部230をイネーブルにする期間を示す。
 そして、タイミングT2からマスク期間tzが経過するまでの間、NMOSオフタイミング検出信号Nendはマスクされる。マスク期間tzが経過したタイミングT3において、検出信号マスク部243は、マスク期間制御信号ZBTをハイレベルに制御する。
 続いて、電流IL2が「0」ミリアンペア(mA)以下に低下すると、NMOSオフタイミング検出部240がNMOSオフタイミング検出信号Nendを出力する。NMOSオフタイミング検出信号Nendが出力されると、コンバータ制御部220は、NMOS制御信号Nonをローレベルに制御する。ローレベルのNMOS制御信号Nonにより、N型MOSトランジスタ262がオフ状態に移行し、電流の逆流が防止される。
 また、NMOS制御信号Nonがハイレベルの期間において、NMOSオフタイミング検出部240はイネーブルに制御され、NMOS制御信号Nonがローレベルの期間においてディセーブルに制御される。図9における灰色の部分は、NMOSオフタイミング検出部240をイネーブルにする期間を示す。なお、PMOSオフタイミング検出部230およびNMOSオフタイミング検出部240以外の回路(コンバータ制御部220など)は、コンバータイネーブル信号ENがイネーブルの期間において常に動作している。
 そして、出力電圧Voが再び基準電圧VREFより低くなるタイミングT5において、電圧低下検出部210は、ハイレベルの電圧低下検出信号Vdを出力し、MOSトランジスタ(261および262)のスイッチング制御が行われる。
 このように、電流供給の開始タイミング(T1)から、終了タイミング(T2)までの期間に亘って、コンバータ制御部220はPMOSオフタイミング検出部230をイネーブルにし、それ以外の期間はディセーブルにしている。また、終了タイミング(T2)から、ゼロ電流が検出されるタイミング(T4)までの期間に亘って、コンバータ制御部220はNMOSオフタイミング検出部240をイネーブルにし、それ以外の期間はディセーブルにしている。このように、コンバータ制御部220は、PMOSオフタイミング検出部230およびNMOSオフタイミング検出部240を間欠的に制御する。このため、それらの検出部(230および240)をスイッチング制御中において常にイネーブルにする非特許文献1などの回路と比較して、DC-DCコンバータ200の消費電力を低減することができる。
 次に、間欠制御を行う場合と間欠制御を行わない場合とのそれぞれにおける消費電流の算出を試みる。例えば、消費電流の算出を行うプログラムを用意し、次の諸条件を入力する。
  電源電圧VDD=3.6(V)
  出力電圧Vo=1.8(V)
  インダクタンスL=2.20E-06(H)
  ピーク電流ILpk=300(mA)
 さらに、負荷電流Ioを入力すれば、プログラムは、各入力値から式1乃至式3を用いてオン時間tpON、tnON、スイッチング周波数fSWおよびスイッチング周期Tswを算出することができる。また、これらのパラメータから、次式により、P型MOSトランジスタ261のデューティ比DpON、N型MOSトランジスタ262のデューティ比DnONおよびアイドル期間Tidleが算出される。
  DpON=tpON/Tsw
  DnON=tnON/Tsw
  Tidle=Tsw-(TpON+TnON
 また、上式のアイドル期間Tidleおよびスイッチング周期Tswから、次式に示すデューティ比が算出される。
  Didle=Tidle/Tsw
 負荷電流Ioを5パターン用意して、それらのIoごとに算出した上述の各パラメータを次の表1に例示する。
Figure JPOXMLDOC01-appb-T000001
 また、消費電流の具体的な値を求めるために、PMOSオフタイミング検出部230およびNMOSオフタイミング検出部240を間欠的に制御しない場合の各部の消費電流として、例えば、次の値をプログラムに入力したものとする。
  電圧低下検出部210の消費電流Iq_VOD:2.0(%)
  PMOSオフタイミング検出部230の消費電流Iq_AOT:48.0(%)
  NMOSオフタイミング検出部240の消費電流Iq_ZCD:48.0(%)
  その他の回路の消費電流Iq_Others:2.0(%)
 ただし、上述の各部の消費電流は、制御回路の消費電流Icc_contを100とした場合の相対値により表されている。ここで、制御回路は、DC-DCコンバータ200内の回路のうち、コイル270とトランジスタ(261および262)とを除いた回路全体である。すなわち、電圧低下検出部210、コンバータ制御部220、PMOSオフタイミング検出部230およびNMOSオフタイミング検出部240などの回路全体が制御回路に該当する。したがって、DC-DCコンバータ200内の制御回路の消費電流Icc_contは、次式により表される。
  Icc_cont=Iq_VOD+Iq_AOT+Iq_ZCD+Iq_Others
 PMOSオフタイミング検出部230を間欠制御する場合には、その消費電流Icc_AOTは、次の式により求められる。
  Icc_AOT=Iq_AOT×DpON
 また、NMOSオフタイミング検出部240を間欠制御する場合には、その消費電流Icc_ZCDは、次の式により求められる。
  Icc_ZCD=Iq_ZCD×DnON
 したがって、間欠制御する場合において、制御回路の消費電流Icc_intは、次式により表される。
  Icc_int=Iq_VOD+Icc_AOT+Icc_ZCD+Iq_Others
 これらの式を用いて、間欠制御を行わない場合と、間欠制御を行った場合とのそれぞれの消費電流を算出した結果を次の表2に例示する。
Figure JPOXMLDOC01-appb-T000002
 図10は、表2に例示したDC-DCコンバータ200の消費電流を示す図である。同図において、縦軸は消費電流を示し、横軸は算出条件を示す。同図に例示するように、各回路の消費電流は、その回路の動作期間の消費電流の積分値となるため、間欠制御により、負荷電流Ioに応じて消費電流を大幅に削減することができる。例えば、負荷電流1ミリアンペア(mA)の条件下で間欠制御を行った際に、制御回路の消費電流は4.32(%)となる。つまり、間欠制御により、間欠なしの場合と比較して、消費電流を95.7%も削減することができる。また、軽負荷ほど、スイッチング周期Tswに対する、間欠休止時間(Tsw-tpON-tnON)の比率が高くなるため、制御回路の消費電流の削減効果を高くし、電力変換効率を高くすることができる。例えば、負荷電流Ioが100ミリアンペア(mA)の際の制御回路の消費電流が36.0(%)であるのに対し、負荷電流Ioが1ミリアンペア(mA)の際は、消費電流が4.32(%)に低下している。
 [DC-DCコンバータの動作例]
 図11は、第1の実施の形態におけるDC-DCコンバータ200の動作の一例を示すフローチャートである。この動作は、例えば、コンバータイネーブル信号ENにイネーブルが設定されたときに開始する。DC-DCコンバータ200は、まず、出力電圧Voが基準電圧VREFより低いか否かを判断する(ステップS901)。出力電圧Voが基準電圧VREFより低い場合には(ステップS901:Yes)、DC-DCコンバータ200は、PMOS制御信号PonをハイレベルにしてP型MOSトランジスタ261をオン状態にする(ステップS902)。また、DC-DCコンバータ200は、PMOSオフタイミング検出部230をイネーブルに制御する(ステップS903)。
 そして、DC-DCコンバータ200は、PMOSオフタイミングが検出されたか否かを判断する(ステップS904)。PMOSオフタイミングが検出されていない場合に(ステップS904:No)、DC-DCコンバータ200は、ステップS904に戻る。
 PMOSオフタイミングが検出された場合に(ステップS904:Yes)、DC-DCコンバータ200は、PMOS制御信号PonをローレベルにしてP型MOSトランジスタ261をオフ状態にする(ステップS905)。また、DC-DCコンバータ200は、PMOSオフタイミング検出部230をディセーブルに制御する(ステップS906)。そして、DC-DCコンバータ200は、NMOS制御信号NonをハイレベルにしてN型MOSトランジスタ262をオン状態にする(ステップS907)。また、DC-DCコンバータ200は、NMOSオフタイミング検出部240をイネーブルに制御する(ステップS908)。
 そして、DC-DCコンバータ200は、NMOSオフタイミングが検出されたか否かを判断する(ステップS909)。NMOSオフタイミングが検出されていない場合に(ステップS909:No)、DC-DCコンバータ200は、ステップS909に戻る。
 NMOSオフタイミングが検出された場合に(ステップS909:Yes)、DC-DCコンバータ200は、NMOS制御信号NonをローレベルにしてN型MOSトランジスタ262をオフ状態にする(ステップS910)。また、DC-DCコンバータ200は、NMOSオフタイミング検出部240をディセーブルに制御する(ステップS911)。出力電圧Voが基準電圧VREF以上の場合(ステップS901:No)、または、ステップS911の後、DC-DCコンバータ200は、ステップS901に戻る。
 このように、本技術の第1の実施の形態では、開始タイミングが検出されるとPMOSオフタイミング制御部230が動作を開始し、終了タイミングが検出されるとコンバータ制御部220がPMOSオフタイミング検出部230を停止させる。すなわち、開始タイミングから終了タイミングまでの期間においてPMOSオフタイミング検出部230が動作し、それ以外の期間は停止するため、DC-DCコンバータ200全体の消費電力を抑制することができる。
 <2.第2の実施の形態>
 上述の第1の実施の形態では、DC-DCコンバータ200の起動直後からスイッチング制御を行っていたが、起動直後においては、間欠動作するアナログ回路(例えば、PMOオフタイミング検出部230)が誤動作するおそれがある。PMOオフタイミング検出部230等に誤動作が生じると、インダクタ電流の過電流や逆流、あるいは、出力電圧の異常などの問題が生じる可能性がある。このため、起動から一定の準備期間tSU内においては、DC-DCコンバータ200内の全回路をイネーブルにして、バイアス電流を流すことが望ましい。この第2の実施の形態のDC-DCコンバータ200は、起動から一定時間に亘ってDC-DCコンバータ200内の全回路をイネーブルに制御する点において第1の実施の形態と異なる。
 図12は、第2の実施の形態におけるDC-DCコンバータ200の一構成例を示すブロック図である。第2の実施の形態のDC-DCコンバータ200は、起動制御部290をさらに備える点において第1の実施の形態と異なる。
 起動制御部290は、起動から一定の準備期間tSUに亘って、DC-DCコンバータ200内の全回路をイネーブルに制御するものである。この起動制御部290は、コンバータイネーブル信号ENのイネーブルから準備期間tSUが経過するまでの期間に亘ってドライバ250の出力をディセーブルにし、その期間経過後にイネーブルにする出力イネーブル信号OENを生成する。この出力イネーブル信号OENには、例えば、イネーブルに制御する際にハイレベルが設定され、ディセーブルに制御する際にローレベルが設定される。
 また、起動制御部290は、コンバータイネーブル信号ENがイネーブルに設定されたときから準備期間tSUに亘って回路をイネーブルにし、その準備期間外はディセーブルにする起動イネーブル信号BENを生成する。例えば、起動イネーブル信号BENには、イネーブルに制御する際にハイレベルが設定され、ディセーブルに制御する際にローレベルが設定される。起動制御部290は、起動イネーブル信号BENをコンバータ制御部220に供給し、出力イネーブル信号OENをドライバ250に供給する。
 第2の実施の形態のコンバータ制御部220は、起動イネーブル信号BENがハイレベルの期間(準備期間)に亘って、PMOS制御信号PonおよびNMOS制御信号Nonをハイレベル(イネーブル)に設定する。準備期間の経過後においては、第1の実施の形態と同様のスイッチング制御が行われる。
 また、第2の実施の形態のドライバ250は、出力イネーブル信号OENがローレベル(ディセーブル)の場合に、P型MOSトランジスタ261およびN型MOSトランジスタ262をオフ状態に制御する。一方、出力イネーブル信号OENがハイレベル(イネーブル)の場合にドライバ250は、第1の実施の形態と同様に、PMOS制御信号PonおよびNMOS制御信号Nonに従ってトランジスタをオンオフする。
 図13は、第2の実施の形態における起動制御部290の一構成例を示すブロック図である。この起動制御部290は、出力イネーブル生成部291および起動イネーブル生成部293を備える。この出力イネーブル生成部291は、オンディレータイマ292を備える。
 オンディレータイマ292は、コンバータイネーブル信号ENの立上りを準備期間tSUに亘って遅延させた信号を出力イネーブル信号OENとして生成するものである。このオンディレータイマ292は、出力イネーブル信号OENをドライバ250および起動イネーブル生成部293に供給する。
 起動イネーブル生成部293は、起動イネーブル信号BENを生成するものである。この起動イネーブル生成部293は、例えば、コンバータイネーブル信号ENがハイレベルであり、出力イネーブル信号OENがローレベルであれば、起動イネーブルBENにハイレベルを設定し、そうでなければローレベルに設定する。
 図14は、第2の実施の形態における起動イネーブル生成部293の動作の一例を示す図である。コンバータイネーブル信号ENおよび出力イネーブル信号OENがいずれもハイレベル、または、いずれもローレベルの場合に起動イネーブル生成部293は、起動イネーブル信号BENをローレベルに設定する。また、コンバータイネーブル信号ENがハイレベルで、出力イネーブル信号OENがローレベルの場合に、起動イネーブル生成部293は、起動イネーブル信号BENをハイレベルに設定する。
 図15は、第2の実施の形態におけるコンバータ制御部220のP型MOSトランジスタ261を制御する動作の一例を示す図である。コンバータイネーブル信号ENがローレベル(ディセーブル)の場合には、PMOS制御信号はローレベルに制御される。また、コンバータイネーブル信号ENおよび起動イネーブル信号BENがいずれもハイレベル(イネーブル)の場合には、PMOS制御信号Ponはハイレベルに設定される。コンバータイネーブル信号ENがハイレベルで、起動イネーブル信号BENがローレベルの場合には、第1の実施の形態と同様のPMOS制御信号Ponが生成される。
 図16は、第2の実施の形態におけるコンバータ制御部220のN型MOSトランジスタ262を制御する動作の一例を示す図である。コンバータイネーブル信号ENがローレベル(ディセーブル)の場合には、NMOS制御信号Nonはローレベルに制御される。また、コンバータイネーブル信号ENおよび起動イネーブル信号BENがいずれもハイレベル(イネーブル)の場合には、NMOS制御信号Nonはハイレベルに設定される。コンバータイネーブル信号ENがハイレベルで、起動イネーブル信号BENがローレベルの場合には、第1の実施の形態と同様のNMOS制御信号Nonが生成される。
 図17は、第2の実施の形態におけるDC-DCコンバータ200の動作の一例を示すタイミングチャートである。タイミングT11においてコンバータイネーブル信号ENがハイレベルに設定されると、一定の準備期間tSUが経過するまでの間、起動イネーブル信号BENがハイレベルに設定される。準備期間tSUが経過したタイミングT12において、起動イネーブル信号BENはローレベルに制御され、出力イネーブル信号OENはハイレベルに制御される。
 タイミングT11からタイミングT12までの準備期間tSUに亘って、DC-DCコンバータ200は、その内部の各回路にバイアス電流を流して動作させる。一方、ドライバ250は、P型MOSトランジスタ261およびN型MOSトランジスタ262をオフ状態に制御する。そして、タイミングT12以降は、第1の実施の形態と同様のスイッチング制御が行われる。
 この準備期間tSUには、アナログ回路(PMOSオフタイミング検出部230など)を全て停止した状態から、間欠休止時(アイドル期間)の回路状態になるまで十分な時間が設定される。このような準備期間が必要なのは、一般的に、停止状態と間欠休止状態とでは、アナログ回路の状態が異なるためである。例えば、停止状態は、回路を確実に停止させ、消費電流をゼロに抑えることが求められ、間欠休止中には消費電流を抑えるが極めて短時間で正常動作に移行する待機状態が求められる。このように、停止状態と間欠休止状態とでは、回路動作を止める点では同じでも、その内部状態は異なるため、その状態の相違に基づいて必要な準備期間tSUが設けられる。
 このように、本技術の第2の実施の形態によれば、起動直後から一定の準備期間内にはPMOSオフタイミング検出部230などの各回路を停止させることなく動作させるため、DC-DCコンバータ200を安定して起動することができる。
 <3.第3の実施の形態>
 上述の第1の実施の形態では、コンパレータ212の比較結果をそのまま、電圧低下検出信号Vdとして出力していた。しかし、コンパレータ212の消費電流を低減した回路では、出力電圧VoがVREF以上に上昇したときから、電圧低下検出信号Vdが反転するまでの遅延時間が長くなることがある。この遅延時間が長いと、コンパレータ212以降の回路(コンバータ制御部220など)が誤動作して、電圧変換効率の低下、リプル電圧上昇や、出力過電圧異常などの問題が生じるおそれがある。P型MOSトランジスタ261をオンに制御してからは、電圧低下検出信号Vdが不要となるため、PMOS制御信号がハイレベルの期間において、電圧低下検出信号Vdをローレベルに固定することが望ましい。これにより、コンパレータ212の遅延による誤動作を防止することができる。この第3の実施の形態のDC-DCコンバータ200は、PMOS制御信号Ponがハイレベルの期間において、電圧低下検出信号Vdをローレベルに固定する点において第1の実施の形態と異なる。
 図18は、第3の実施の形態における電圧低下検出部210の一構成例を示すブロック図である。この電圧低下検出部210は、スイッチ213およびバッファ214をさらに備える点において第1の実施の形態と異なる。スイッチ213の一端は、コンパレータ212の出力端子とバッファ214の入力端子とに接続され、他端は接地される。このスイッチ213は、PMOS制御信号Ponがハイレベルの場合に閉状態に移行し、ローレベルの場合に開状態に移行する。また、バッファ214の出力端子は、コンバータ制御部220に接続される。
 この構成により、PMOS制御信号Ponがハイレベルの期間において、電圧低下検出信号Vdがローレベルに固定される。PMOS制御信号Ponがローレベルになると、その固定が解除される。
 なお、PMOS制御信号Ponにより、スイッチ213を制御しているが、オン時間tpONに亘ってスイッチ213を閉状態に制御する信号をPMOS制御信号Ponとは別に、コンバータ制御部220が生成してもよい。
 図19は、第3の実施の形態の比較例におけるDC-DCコンバータ200の動作の一例を示すタイミングチャートである。タイミングT1において出力電圧Voが基準電圧VREF未満に低下すると、コンパレータ212によりハイレベルの電圧低下検出信号Vdが生成される。そして、タイミングT1の後に出力電圧Voが基準電圧VREF以上に上昇しているが、出力電圧Voが基準電圧VREF以上になったタイミング(T1の直後)に対して、電圧低下検出信号Vdがローレベルへ反転するタイミングT21が大きく遅延したものとする。例えば、タイミングT21が、N型MOSトランジスタ262がオフに制御されるタイミングT4以降に遅延したものとする。
 ここで、仮に、スイッチ213を設けない構成とすると、タイミングT4においてアイドル期間に移行せずに、再度PMOS制御信号Ponがハイレベルに制御される。この結果、無駄なスイッチングが行われて、回路に誤動作が生じる。
 これに対して、PMOS制御信号Ponがハイレベルの場合に電圧低下検出信号Vdをローレベルに固定する構成では、第1の実施の形態の図9と同様のスイッチングを実現することができる。したがって、DC-DCコンバータ200の消費電力の低減と、高速応答とを両立することができる。
 このように、本技術の第3の実施の形態によれば、PMOS制御信号Ponがハイレベルの期間において電圧低下検出信号Vdをローレベルに固定するため、電圧低下検出信号Vdの反転タイミングの遅延による誤動作を抑制することができる。
 <4.第4の実施の形態>
 上述の第1の実施の形態では、N型MOSトランジスタ262をオフ状態に制御して逆流を防止していたが、スイッチング素子の代わりにダイオードを設けて逆流を防止することもできる。ダイオードにより逆流を防止する場合には、NMOSトランジスタ262を用いる場合と比較して消費電力が大きくなるものの、そのトランジスタのスイッチング制御が不要になる。この第4の実施の形態のDC-DCコンバータ200は、N型MOSトランジスタ262の代わりに、逆流を防止するダイオードを設けた点において第1の実施の形態と異なる。
 図20は、第4の実施の形態におけるDC-DCコンバータ200の一構成例を示すブロック図である。第4の実施の形態のDC-DCコンバータ200は、N型MOSトランジスタ262の代わりにダイオード263を備え、NMOSオフタイミング検出部240を備えない点において第1の実施の形態と異なる。また、第4の実施の形態のコンバータ制御部220は、NMOS制御信号生成部222を備えない点において第1の実施の形態と異なる。
 ダイオード263のアノードは接地され、カソードは、P型MOSトランジスタ261およびコイル270に接続される。このダイオード263はアノードからカソードの方向にしか電流を流さないため、ダイオード263により、コイル270からの電流の逆流が防止される。
 このように、本技術の第4の実施の形態によれば、N型MOSトランジスタ262の代わりにダイオード263を設けたため、N型MOSトランジスタ262のスイッチング制御を行う必要がなくなる。これにより、簡易な構成によりコンバータ制御部220を実現することができる。
 <5.第5の実施の形態>
 上述の第1の実施の形態では、PMOSオフタイミングの検出をオン時間タイマ232により検出していた。しかし、コンパレータによりコイル270に供給される電流IL1をピーク電流ILpkと比較して電流IL1がILpkに達したときをPMOSオフタイミングとして検出してもよい。この第5の実施の形態のDC-DCコンバータ200は、電流IL1をピーク電流ILpkと比較して電流IL1がILpkに達したときをPMOSオフタイミングとして検出する点において第1の実施の形態と異なる。
 図21は、第5の実施の形態におけるPMOSオフタイミング検出部230の一構成例を示すブロック図である。第5のPMOSオフタイミング検出部230は、スイッチ233、コンパレータ234および検出信号マスク部235を備える。この検出信号マスク部235は、スイッチ236、オンディレータイマ237およびスイッチ238を備える。
 スイッチ233は、PMOS制御信号Ponに従って、コンパレータ234に電源電圧VDDを供給するものである。このスイッチ233は、例えば、PMOS制御信号Ponがハイレベルの場合に電源電圧VDDを供給し、ローレベルの場合にVDDを供給しない。
 コンパレータ234は、コイル270に供給される電流IL1と、ピーク電流ILpkとを比較するものである。このコンパレータ234の非反転入力端子(+)には電流IL1が入力され、反転入力端子(-)にはピーク電流ILpkが入力される。コンパレータ234は、それらを比較した結果を、PMOSオフタイミング検出信号Pendとしてスイッチ238に供給する。
 スイッチ236は、PMOS制御信号Ponに従って、オンディレータイマ237に電源電圧VDDを供給するものである。このスイッチ236は、例えば、PMOS制御信号Ponがハイレベルの場合に電源電圧VDDを供給し、ローレベルの場合にVDDを供給しない。
 オンディレータイマ237は、PMOS制御信号Ponの立上りを一定のマスク期間tzに亘って遅延させた信号をマスク期間制御信号ZBTとしてスイッチ238に供給するものである。
 スイッチ238は、マスク期間制御信号ZBTに従って、コンパレータ234とコンバータ制御部220との間の経路を開閉するものである。このスイッチ238は、マスク期間制御信号ZBTがハイレベルの場合に閉状態に移行し、ローレベルの場合に開状態に移行する。
 なお、スイッチ233をコンパレータ234の外部に設けているが、このスイッチ233をコンパレータ234の内部に設けてもよい。スイッチ236についても同様に、オンディレータイマ237の内部に設けてもよい。また、コンパレータ234をイネーブルにした直後に誤動作や誤検出が生じるおそれがない場合には、検出信号マスク部235を設けない構成としてもよい。
 このように、本技術の第5の実施の形態によれば、電流IL1がピーク電流ILpkに達したときをPMOSオフタイミングとして検出するため、DC-DCコンバータ200はタイマの代わりにコンパレータを用いてPMOSオフタイミングを制御することができる。
  <6.第6の実施の形態>
 上述の第1の実施の形態では、情報処理装置100にDC-DCコンバータを1つ設けてプロセッサ120に電源を供給していた。このプロセッサ120は、求められる演算量や処理内容に応じて、その内部の回路のうち、必要のない回路への電源供給を停止させて消費電力を削減することができる。しかし、プロセッサ120の全ての回路への電源供給を停止させると、プロセッサ120自身が停止してしまうため、複数の電源系統(DC-DCコンバータなど)を設けて、一部の系統からの電源供給のみを停止させることが望ましい。この第6の実施の形態の情報処理装置100は、複数のDC-DCコンバータを備える点において第1の実施の形態と異なる。
 図22は、第6の実施の形態における情報処理装置100の一構成例を示すブロック図である。第6の実施の形態の情報処理装置100は、DC-DCコンバータ201および202をさらに備える点において第1の実施の形態と異なる。
 DC-DCコンバータ201および202の構成は、DC-DCコンバータ200と同様である。ただし、DC-DCコンバータ200、201および202には、それぞれ異なるコンバータイネーブル信号および電圧制御信号が入力される。例えば、DC-DCコンバータ200にはコンバータイネーブル信号EN0および電圧制御信号VoCtrl0が入力され、DC-DCコンバータ201にはコンバータイネーブル信号EN1および電圧制御信号VoCtrl1が入力される。また、DC-DCコンバータ202にはコンバータイネーブル信号EN2および電圧制御信号VoCtrl2が入力される。
 これらのDC-DCコンバータ200乃至202は、前述したように間欠制御により高い変換効率で電圧を変換することができる。このため、これらのコンバータをプロセッサ120の電源として用いることにより、情報処理装置100全体の消費電力を低減することができる。DC-DCコンバータ200乃至202がPFM制御を行う場合には、特に軽負荷において変換効率が高くなるため、消費電力の削減効果が大きくなる。
 第6の実施の形態のプロセッサ120は、求められる演算量や処理内容に応じて、その内部の回路のうち、必要のない回路へ電源供給するDC-DCコンバータ(200、201または202)を停止させる。
 このように、本技術の第6の実施の形態によれば、複数のDC-DCコンバータを設けたため、プロセッサ120は、それらのうち一部のDC-DCコンバータを停止させて消費電力を低減することができる。
 なお、上述の実施の形態は本技術を具現化するための一例を示したものであり、実施の形態における事項と、特許請求の範囲における発明特定事項とはそれぞれ対応関係を有する。同様に、特許請求の範囲における発明特定事項と、これと同一名称を付した本技術の実施の形態における事項とはそれぞれ対応関係を有する。ただし、本技術は実施の形態に限定されるものではなく、その要旨を逸脱しない範囲において実施の形態に種々の変形を施すことにより具現化することができる。
 また、上述の実施の形態において説明した処理手順は、これら一連の手順を有する方法として捉えてもよく、また、これら一連の手順をコンピュータに実行させるためのプログラム乃至そのプログラムを記憶する記録媒体として捉えてもよい。この記録媒体として、例えば、CD(Compact Disc)、MD(MiniDisc)、DVD(Digital Versatile Disc)、メモリカード、ブルーレイディスク(Blu-ray(登録商標)Disc)等を用いることができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載されたいずれかの効果であってもよい。
 なお、本技術は以下のような構成もとることができる。
(1)電流が供給されると前記電流に基づいて出力電圧を生成する電圧生成部と、
 前記電流の供給を停止させるための信号を出力する停止制御部と、
 前記信号が出力されるまで前記電流を前記電圧生成部に供給する電流供給部と、
 前記電流の供給期間において前記停止制御部を動作させ、前記信号が出力されると前記停止制御部を停止させる間欠制御部と
を具備する電圧変換回路。
(2)前記供給期間の開始タイミングを検出する開始タイミング検出部をさらに具備し、
 前記停止制御部は、前記供給期間の終了タイミングを検出して前記信号を出力する
前記(1)記載の電圧変換回路。
(3)前記開始タイミング検出部は、
 前記出力電圧と所定の基準電圧とを比較して当該比較結果を開始タイミング検出信号として出力する電圧比較器と、
 前記開始タイミングが検出されてから終了タイミングが検出されるまでの間において前記比較結果を所定の固定値に固定する検出信号制御部と
を備える前記(2)記載の電圧変換回路。
(4)前記停止制御部は、前記開始タイミングから所定期間が経過したときを前記終了タイミングとして検出する
前記(2)または(3)に記載の電圧変換回路。
(5)前記停止制御部は、前記電流が所定のピーク値に達したときを前記終了タイミングとして検出する
前記(2)または(3)に記載の電圧変換回路。
(6)前記停止制御部は、
 前記電流と前記所定のピーク値とを比較して当該比較結果を前記信号として出力する電流比較器と、
 前記開始タイミングから一定のマスク期間が経過するまでの間において前記信号をマスクする信号マスク部と
を備える前記(5)記載の電圧変換回路。
(7)前記電流の逆流を防止する逆流防止部をさらに具備する
前記(1)から(6)のいずれかに記載の電圧変換回路。
(8)前記信号が出力された場合には前記電流が所定の設定値より低くなる電流低下タイミングの検出を開始する電流低下タイミング検出部と
 前記逆流防止部は、前記信号が出力された場合には前記電圧生成部と接地端子との間の経路を閉状態に制御し、前記電流低下タイミングが検出された場合には前記経路を開状態に制御し、
 前記間欠制御部は、前記電流低下タイミングが検出された場合には前記電流低下タイミング検出部を制御して前記電流低下タイミングの検出を停止させる
前記(7)記載の電圧変換回路。
(9)前記出力電圧の生成開始が指示されたときから所定の準備期間に亘って前記停止制御部を制御して動作させる起動制御部をさらに具備する
前記(1)から(8)のいずれかに記載の電圧変換回路。
(10)電流が供給されると前記電流に基づいて出力電圧を生成する電圧生成部と、前記電流の供給を停止させるための信号を出力する停止制御部と、前記信号が出力されるまで前記電流を前記電圧生成部に供給する電流供給部と、前記電流の供給期間において前記停止制御部を動作させ、前記信号が出力されると前記停止制御部を停止させる間欠制御部とを備える電圧変換回路と、
 前記出力電圧を制御する処理を行う処理回路と
を具備する電子装置。
(11)電流が供給されると前記電流に基づいて出力電圧を生成する電圧生成部と、前記電流の供給を停止させるための信号を出力する停止制御部と、前記信号が出力されるまで前記電流を前記電圧生成部に供給する電流供給部と、前記電流の供給期間において前記停止制御部を動作させ、前記信号が出力されると前記停止制御部を停止させる間欠制御部と間欠制御部とをそれぞれが備える複数の電圧変換回路と、
 前記複数の電圧変換回路のそれぞれの前記出力電圧を制御する処理を行う処理回路と
を具備する電子装置。
(12)停止制御部が、電流が供給されると前記電流に基づいて出力電圧を生成する電圧生成部への前記電流の供給を停止させるための信号を出力する停止制御手順と、
 電流供給部が、前記信号が出力されるまで前記電流を前記電圧生成部に供給する電流供給手順と、
 間欠制御部が、前記電流の供給期間において前記停止制御部を動作させ、前記信号が出力されると前記停止制御部を停止させる間欠制御手順と
を具備する電圧変換回路の制御方法。
 100 情報処理装置
 110 バス
 120 プロセッサ
 130 インターフェース
 200、201、202 DC-DCコンバータ
 210 電圧低下検出部
 211 基準電圧生成部
 212、234、242 コンパレータ
 213、231、233、236、238、241、244、246 スイッチ
 214 バッファ
 220 コンバータ制御部
 221 PMOS制御信号生成部
 222 NMOS制御信号生成部
 230 PMOSオフタイミング検出部
 232 オン時間タイマ
 235、243 検出信号マスク部
 237、245、292 オンディレータイマ
 240 NMOSオフタイミング検出部
 250 ドライバ
 261 P型MOSトランジスタ
 262 N型MOSトランジスタ
 263 ダイオード
 270 コイル
 280 コンデンサ
 290 起動制御部
 291 出力イネーブル生成部
 293 起動イネーブル生成部
 

Claims (12)

  1.  電流が供給されると前記電流に基づいて出力電圧を生成する電圧生成部と、
     前記電流の供給を停止させるための信号を出力する停止制御部と、
     前記信号が出力されるまで前記電流を前記電圧生成部に供給する電流供給部と、
     前記電流の供給期間において前記停止制御部を動作させ、前記信号が出力されると前記停止制御部を停止させる間欠制御部と
    を具備する電圧変換回路。
  2.  前記供給期間の開始タイミングを検出する開始タイミング検出部をさらに具備し、
     前記停止制御部は、前記供給期間の終了タイミングを検出して前記信号を出力する
    請求項1記載の電圧変換回路。
  3.  前記開始タイミング検出部は、
     前記出力電圧と所定の基準電圧とを比較して当該比較結果を開始タイミング検出信号として出力する電圧比較器と、
     前記開始タイミングが検出されてから終了タイミングが検出されるまでの間において前記比較結果を所定の固定値に固定する検出信号制御部と
    を備える請求項2記載の電圧変換回路。
  4.  前記停止制御部は、前記開始タイミングから所定期間が経過したときを前記終了タイミングとして検出する
    請求項2記載の電圧変換回路。
  5.  前記停止制御部は、前記電流が所定のピーク値に達したときを前記終了タイミングとして検出する
    請求項2記載の電圧変換回路。
  6.  前記停止制御部は、
     前記電流と前記所定のピーク値とを比較して当該比較結果を前記信号として出力する電流比較器と、
     前記開始タイミングから一定のマスク期間が経過するまでの間において前記信号をマスクする信号マスク部と
    を備える請求項5記載の電圧変換回路。
  7.  前記電流の逆流を防止する逆流防止部をさらに具備する
    請求項1記載の電圧変換回路。
  8.  前記信号が出力された場合には前記電流が所定の設定値より低くなる電流低下タイミングの検出を開始する電流低下タイミング検出部と
     前記逆流防止部は、前記信号が出力された場合には前記電圧生成部と接地端子との間の経路を閉状態に制御し、前記電流低下タイミングが検出された場合には前記経路を開状態に制御し、
     前記間欠制御部は、前記電流低下タイミングが検出された場合には前記電流低下タイミング検出部を制御して前記電流低下タイミングの検出を停止させる
    請求項7記載の電圧変換回路。
  9.  前記出力電圧の生成開始が指示されたときから所定の準備期間に亘って前記停止制御部を制御して動作させる起動制御部をさらに具備する
    請求項1記載の電圧変換回路。
  10.  電流が供給されると前記電流に基づいて出力電圧を生成する電圧生成部と、前記電流の供給を停止させるための信号を出力する停止制御部と、前記信号が出力されるまで前記電流を前記電圧生成部に供給する電流供給部と、前記電流の供給期間において前記停止制御部を動作させ、前記信号が出力されると前記停止制御部を停止させる間欠制御部とを備える電圧変換回路と、
     前記出力電圧を制御する処理を行う処理回路と
    を具備する電子装置。
  11.  電流が供給されると前記電流に基づいて出力電圧を生成する電圧生成部と、前記電流の供給を停止させるための信号を出力する停止制御部と、前記信号が出力されるまで前記電流を前記電圧生成部に供給する電流供給部と、前記電流の供給期間において前記停止制御部を動作させ、前記信号が出力されると前記停止制御部を停止させる間欠制御部と間欠制御部とをそれぞれが備える複数の電圧変換回路と、
     前記複数の電圧変換回路のそれぞれの前記出力電圧を制御する処理を行う処理回路と
    を具備する電子装置。
  12.  停止制御部が、電流が供給されると前記電流に基づいて出力電圧を生成する電圧生成部への前記電流の供給を停止させるための信号を出力する停止制御手順と、
     電流供給部が、前記信号が出力されるまで前記電流を前記電圧生成部に供給する電流供給手順と、
     間欠制御部が、前記電流の供給期間において前記停止制御部を動作させ、前記信号が出力されると前記停止制御部を停止させる間欠制御手順と
    を具備する電圧変換回路の制御方法。
     
PCT/JP2015/078514 2014-12-19 2015-10-07 電圧変換回路、電子装置、および、電圧変換回路の制御方法 WO2016098425A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201580067509.0A CN107005159B (zh) 2014-12-19 2015-10-07 电压转换电路、电子装置以及电压转换电路的控制方法
JP2016564715A JP6624071B2 (ja) 2014-12-19 2015-10-07 電圧変換回路、電子装置、および、電圧変換回路の制御方法
US15/531,112 US10033280B2 (en) 2014-12-19 2015-10-07 Voltage conversion circuit, electronic device, and method of controlling voltage conversion circuit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014256874 2014-12-19
JP2014-256874 2014-12-19

Publications (1)

Publication Number Publication Date
WO2016098425A1 true WO2016098425A1 (ja) 2016-06-23

Family

ID=56126327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078514 WO2016098425A1 (ja) 2014-12-19 2015-10-07 電圧変換回路、電子装置、および、電圧変換回路の制御方法

Country Status (4)

Country Link
US (1) US10033280B2 (ja)
JP (1) JP6624071B2 (ja)
CN (1) CN107005159B (ja)
WO (1) WO2016098425A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105553261B (zh) * 2016-02-19 2018-09-25 京东方科技集团股份有限公司 Dc-dc转换控制模块、dc-dc转换器及显示装置
CN110544452B (zh) * 2018-05-28 2021-08-17 京东方科技集团股份有限公司 供电时序控制电路及控制方法、显示驱动电路、显示装置
CN113890393B (zh) * 2021-09-27 2024-06-14 成都芯源系统有限公司 开关电源电路及其控制电路和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09294368A (ja) * 1996-04-25 1997-11-11 Canon Inc 電源回路
JP2004173421A (ja) * 2002-11-20 2004-06-17 Matsushita Electric Ind Co Ltd Dc/dcコンバータ
JP2012090384A (ja) * 2010-10-18 2012-05-10 Fujitsu Semiconductor Ltd スイッチングレギュレータ
JP2014108013A (ja) * 2012-11-29 2014-06-09 Shindengen Electric Mfg Co Ltd スイッチング電源およびその制御回路

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4850540B2 (ja) * 2005-12-26 2012-01-11 富士通セミコンダクター株式会社 Dc−dcコンバータ及びdc−dcコンバータの制御回路
JP5485390B2 (ja) * 2010-06-15 2014-05-07 パナソニック株式会社 スイッチング電源装置および半導体装置
JP2012039761A (ja) * 2010-08-06 2012-02-23 Sanken Electric Co Ltd スイッチング電源装置
JP5480919B2 (ja) * 2012-01-17 2014-04-23 株式会社日本自動車部品総合研究所 電力変換装置
JP2014003812A (ja) * 2012-06-19 2014-01-09 Rohm Co Ltd 電源装置、並びに、これを用いた車載機器及び車両
JP6043132B2 (ja) * 2012-09-11 2016-12-14 ローム株式会社 Dc/dcコンバータおよびその制御回路、制御方法、それを用いた電源装置、電源アダプタおよび電子機器
DE102014221489B4 (de) * 2014-10-22 2021-12-02 Dialog Semiconductor (UK) Ltd Genaue Stromversorgungszeitbasis für LED-Beleuchtung-Treiber
US9401642B2 (en) * 2014-11-20 2016-07-26 Sanken Electric Co., Ltd. Switching power-supply device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09294368A (ja) * 1996-04-25 1997-11-11 Canon Inc 電源回路
JP2004173421A (ja) * 2002-11-20 2004-06-17 Matsushita Electric Ind Co Ltd Dc/dcコンバータ
JP2012090384A (ja) * 2010-10-18 2012-05-10 Fujitsu Semiconductor Ltd スイッチングレギュレータ
JP2014108013A (ja) * 2012-11-29 2014-06-09 Shindengen Electric Mfg Co Ltd スイッチング電源およびその制御回路

Also Published As

Publication number Publication date
CN107005159B (zh) 2019-10-18
US20170264200A1 (en) 2017-09-14
CN107005159A (zh) 2017-08-01
US10033280B2 (en) 2018-07-24
JP6624071B2 (ja) 2019-12-25
JPWO2016098425A1 (ja) 2017-09-28

Similar Documents

Publication Publication Date Title
US8928302B2 (en) Step-up/down type power supply circuit
US9306451B2 (en) Switch mode power supply control circuit to reduce overshoot of an output voltage
US20150008895A1 (en) Current mode dc-dc conversion device with fast transient response
JP6319882B2 (ja) ハイブリッド・スイッチ・モード電源(smps)のための遷移制御
KR20080100133A (ko) 동기 정류형 스위칭 레귤레이터
JP5890814B2 (ja) Dc−dcコンバータ、および、半導体集積回路
JP2015188301A (ja) Dc/dcコンバータ
US10468989B2 (en) Switching regulator including a clamp circuit
WO2016098425A1 (ja) 電圧変換回路、電子装置、および、電圧変換回路の制御方法
JP2013183616A (ja) 動作制御回路、dc−dcコンバータ制御回路及びdc−dcコンバータ
JP2009225642A (ja) 電源装置および半導体集積回路装置
US9866099B1 (en) Adaptive high-side gate drive for ringing mitigation in switching power converters
US20160190922A1 (en) Feedback Scheme for Non-Isolated Power Supply
JP2018130011A (ja) スイッチングレギュレータ及びその制御装置
US8203812B2 (en) Secondary side protection method and apparatus for a switching power converter
JP2011147324A (ja) スイッチング電源回路
US9213344B2 (en) Ripple suppressor circuit and method therefor
JP2014048681A (ja) 電源装置
JP2009195022A (ja) Dc−dcコンバータおよび電源制御用半導体集積回路
JP2019022295A (ja) スイッチングレギュレータ
JP2018107930A (ja) 位相補償回路及びこれを用いたdc/dcコンバータ
JP2011067025A (ja) Dc−dcコンバータ
JP2010193590A (ja) 電源瞬断対策回路、スイッチング電源装置、及び、コンデンサ充電制御方法
US11463003B2 (en) Power supply control device to discharge an output voltage at a time of enable instantaneous interruption
US10727750B1 (en) System and method for improving continuous load transition of DC-DC converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15869633

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016564715

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15531112

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15869633

Country of ref document: EP

Kind code of ref document: A1