WO2016095769A1 - 一种离子电导率测试装置及采用其的测试方法 - Google Patents
一种离子电导率测试装置及采用其的测试方法 Download PDFInfo
- Publication number
- WO2016095769A1 WO2016095769A1 PCT/CN2015/097224 CN2015097224W WO2016095769A1 WO 2016095769 A1 WO2016095769 A1 WO 2016095769A1 CN 2015097224 W CN2015097224 W CN 2015097224W WO 2016095769 A1 WO2016095769 A1 WO 2016095769A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- test
- ionic conductivity
- chamber
- sample
- ionic
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/041—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/06—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
- G01N27/4162—Systems investigating the composition of gases, by the influence exerted on ionic conductivity in a liquid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/26—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
- G01N27/416—Systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/36—Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
Definitions
- the present invention relates to an ion conductivity test apparatus and test method, and more particularly to a method of testing ionic conductivity in an electrode material.
- Electronic conductivity and ionic conductivity are one of the most important material properties in the fields of energy materials, sensor devices, and biological systems. It is not only related to the efficiency of charge transport and transmission, but also closely related to the chemical and electrochemical reaction mechanism and rate in the system. It is also one of the determinants of the electrode reaction interface establishment, and further determines the performance and cost of the actual application of the material. With life. In the fields of new energy technologies including fuel cells, metal-air batteries, and lithium-ion batteries, the synergistic mechanism of electron and ion transport migration is a key factor restricting its development. Therefore, the efficient detection of ionic conductivity and electronic conductivity, as well as the effective analysis of charge transport channels, is one of the key technologies including electrode material and structure preparation.
- the detection methods of electronic conductivity and ionic conductivity include the traditional two-electrode, four-electrode ohmic method or electrochemical test method. After years of development, a mature detection system has been formed. Good development with practical applications. At the same time, in the current advanced electrochemical systems including solid electrolyte systems, lithium ion batteries, electrochemical sensors, etc., the electronic conductance and ion conductance are usually present in the microstructure of the electrode in a pattern of composite conventional channels. Thereby ensuring efficient establishment of the electrochemical interface and efficient use of the active components.
- the electron conductor and the ion conductor are complicated in series and parallel connection, and it is difficult to effectively separate and detect the test system using a metal conductor or the like as a probe.
- the electronic conductivity of the electrode is usually greater than 1 S/cm, generally up to 10-10 3 S/cm, which is much higher than the order of magnitude of the ion conductivity of 10 -3 -10 -1 S/cm.
- the traditional conductivity test method is usually masked when testing the ionic conductivity of the composite conductivity material, making it difficult to perform effective separation. For this reason, finding a way to effectively separate and detect electronic conductance and ionic conductance is critical to the development of advanced materials.
- the detection of traditional ionic conductivity is mostly tested in aqueous systems.
- the environmental control conditions and materials are far apart in the electrode system, and it is difficult to reflect the ionic conductivity of the real environment. Therefore, the design and preparation of an ion conductivity detection device with electronic conductance and ion conductance can be effectively separated and the temperature and humidity are controllable can lay the foundation for the development of electrode materials.
- the present invention is directed to an ion-conducting polymer-modified four-probe detecting device capable of ion-electricity separation and characterization of an electron-ion composite conductor material, which comprises an ion-conducting polymer modification.
- the four-probe probe and the ambient temperature and humidity control device effectively solve the problem that the current electron-ion conductivity separation characterization is difficult to perform and the two-electrode and four-electrode methods measure the ionic conductivity of the material different from the real environment system. Accurate, the separation of electronic conductance and ion conductance can be realized, and the temperature and humidity control is accurate and reproducible, and the test process is simplified, and the measurement efficiency is improved.
- An ionic conductivity testing device includes a voltage/current testing device and a test electrode; the test electrode includes a bulk substrate, and four through holes linearly arranged on the block substrate, four platinum wires Inserted into four through holes respectively, the upper end of the platinum wire is outside the block base, and the lower end of the platinum wire is inside the block base.
- the linear arrangement means that the axes of the four platinum wires are on the same plane, and the four platinum wires are mutually Parallel; the distance between the lower end surface of the platinum wire and the lower surface of the bulk substrate is between 0.1 and 2 mm, at the lower end of the platinum wire
- the through hole between the face and the lower surface of the bulk substrate is filled with an ionic conductor polymer.
- the voltage/current testing device is one of a potentiostat, an ohmmeter, an ammeter, a constant voltage power source, and a constant current meter.
- the distance between the adjacent platinum wires is equal, and the platinum wires are equal in diameter.
- the bulk substrate material is one of polytetrafluoroethylene, polyetheretherketone, and polyethylene;
- the ionic conductor polymer is one of a perfluorosulfonic acid polymer, a sulfonated polyetheretherketone, a quaternized polysulfone, and a polybenzimidazole.
- Such polymers generally have a certain ionic conductivity or are capable of ion transport migration under certain conditions;
- the ionic conductivity of the test device is in the range of 0.01-1000 ⁇ cm; the ionic conductivity of the test device is preferably in the range of 0.05-100 ⁇ cm;
- the ionic conductivity testing device further comprises a humidity controllable micro test box comprising three dry chambers of a dry air chamber, a moisture chamber and a test chamber; and a separate wet and dry test chamber can be used without In the case of a humidity detecting sensor, the humidity of the test chamber is effectively controlled, and the test device is simplified;
- the voltage/current testing device and the test electrode are both placed in a test chamber of the micro test chamber;
- the dry gas outlet and the moisture outlet are connected to the test chamber through a pipeline; the gas inlet A and the gas inlet B are connected to an air supply source through a gas flow meter.
- the dry gas outlet and the moisture outlet are connected to the test chamber pipeline through a three-way valve, that is, the three interfaces of the three-way valve are respectively connected to the test chamber, the dry gas outlet and the moisture outlet;
- the gas flow meter is the rotor flow One of the meter, the electromagnetic flowmeter, and the differential pressure flowmeter.
- the bottom of the test chamber is provided with a drain port, and the drain port is provided with a valve, and the drain port can be in an open state and a closed state, and the drain port can discharge liquid water in the test chamber when the drain port is opened.
- a test bench is disposed inside the test chamber, and a through hole is disposed on the test bench surface, and the through hole can discharge liquid water to the bottom of the test chamber.
- the upper part of the test chamber is provided with a sample pick-and-place port, and the sample pick-and-place port is provided with a sealing door that can be opened and closed.
- a temperature controllable heat preservation device is disposed outside the humidity controllable micro test chamber, and the dry air chamber, the moisture chamber and the test chamber are placed in the heat preservation device.
- the temperature controllable heat preservation device is one of a constant temperature water bath and an electric heating jacket.
- the dry air chamber, the moisture chamber and the test chamber are all made of a moisture-resistant and temperature-resistant material; the moisture-resistant and temperature-resistant material is one of plexiglass, polytetrafluoroethylene and stainless steel.
- the method for detecting ionic conductivity of the testing device comprising: the following steps,
- the sample to be tested is prepared into a sheet shape and then tightly pressed against the end surface of the platinum wire in the test electrode; the second and third platinum wires from the left to the right of the test electrode are The voltage test terminals are connected, and the first and fourth platinum wires from left to right in the test electrode are respectively connected to the current test end; a voltage is applied to the voltage test end, and the response current of the current test end is recorded, and different applications are repeatedly applied. The voltage is more than 2 times, and the response current of the current test end is recorded;
- S 1 , S 2 , and S 3 are the first platinum wire and the second platinum wire, the second platinum wire, the third platinum wire, the third platinum wire, and the fourth from left to right, respectively.
- the distance between the platinum wires; the conductivity value of the sample to be tested is 1/ ⁇ .
- the voltage applied to the step (1) ranges from -1V to 1V.
- the ionic conductivity test method can be used to measure the ionic conductivity of any of the sample carbon paper, carbon powder, carbon fiber, semiconductor, metal, polymer.
- the gas inlet A and the gas inlet B are introduced into the gas, and the flow ratio of the two is Q A : Q B is equal to X: (1-X), wherein X is a preset humidity, 0 ⁇ X ⁇ 100%;
- the gas is one of nitrogen, argon, air, and oxygen.
- the invention solves the problem that the ionic conductivity in the electronic conductor is difficult to measure in the prior art, and the ionic conductivity measurement method in the electronic conductor is tested by the testing device and the method of the invention, and the conductance of the ions in the reactive material can be reacted. characteristic. At the same time, it has the advantages of accurate test, separation of electronic conductance and ion conductance, accurate temperature and humidity control, good reproducibility, etc. The invention simplifies the test flow and improves the measurement efficiency.
- Figure 1 Schematic diagram of the ionic conductivity test device of the present invention
- Figure 4 Schematic diagram of a micro-test box with controllable humidity
- Figure 5 (a) Conductivity test signals for different materials obtained using the unmodified four-probe method (Comparative Example 1 and Comparative Example 2); (b) Modified four-probe method (Example 1 and Example 2) Conductivity test signals for the different materials obtained; (c) Conductivity test results for Examples 1 and 2 and Comparative Examples 1 and 2.
- FIG. 1 The schematic diagram of the test device is shown in Figures 1 and 4.
- a cylindrical polytetrafluoroethylene block with a diameter of 2 cm On a cylindrical polytetrafluoroethylene block with a diameter of 2 cm, four linearly arranged through-holes are machined along the central axis, each having a diameter of 1 mm and an origin spacing of 3 mm. .
- Four platinum wires having the same diameter and the same hole diameter were fixed in the holes, and the end faces of the platinum wires were 1 mm from the end faces of the polytetrafluoroethylene blocks.
- a 5% Nafion polyion solution was applied dropwise to the end face of the platinum wire, and after repeated drying, the coating was repeated until the Nafion polymer solid completely covered the end face of the platinum wire.
- the test circuit is the voltage test end of the two platinum wires connected to the potentiostat (reference electrodes 1 and 2), and the outer two platinum wires are connected to the current test end (working electrode and counter electrode).
- a dried Nafion 115 film having a size of 5 ⁇ 5 cm 2 and one end of the above test electrode having a Nafion polymer were tightly pressed against the surface of the sample to be tested.
- a linear potential signal is applied to the voltage test terminal with a potentiostat, and the voltage range is -1 to 1 V, and the current response signal at the current test end is recorded.
- the measured undamaged Nafion 115 membrane ion conductivity was about 0.026 ⁇ 0.004 S cm -1 .
- Conductivity testing was performed using a four-probe test device that was not modified.
- the device is a cylindrical polytetrafluoroethylene block with a diameter of 2 cm, and four linearly arranged through-holes are machined along the central axis, each having a diameter of 1 mm and an origin spacing of 3 mm.
- Four platinum wires having the same diameter and the same hole diameter were fixed in the holes, and the end face of the platinum wire protruded from the end face of the polytetrafluoroethylene block to be 0.5 mm.
- the test circuit is the voltage test end of the two platinum wires connected to the potentiostat (reference electrodes 1 and 2), and the outer two platinum wires are connected to the current test end (working electrode and counter electrode).
- a dried Nafion 115 film having a size of 5 ⁇ 5 cm 2 and one end of the above test electrode having a Nafion polymer were tightly pressed against the surface of the sample to be tested.
- a linear potential signal is applied to the voltage test terminal with a potentiostat, and the voltage range is -1 to 1 V, and the current response signal at the current test end is recorded.
- the measured non-humidified Nafion 115 membrane ion conductivity was about 0.030 ⁇ 0.003 S cm -1 . Similar to the results measured in Example 1, it was shown that the ionic conductivity detection of the examples was effective and reliable.
- FIG. 1 The schematic diagram of the test device is shown in Figures 1 and 4.
- a cylindrical polytetrafluoroethylene block with a diameter of 2 cm On a cylindrical polytetrafluoroethylene block with a diameter of 2 cm, four linearly arranged through-holes are machined along the central axis, each having a diameter of 1 mm and an origin spacing of 3 mm. .
- Four platinum wires having the same diameter and the same hole diameter were fixed in the holes, and the end faces of the platinum wires were 1 mm from the end faces of the polytetrafluoroethylene blocks.
- a 5% Nafion polyion solution was applied dropwise to the end face of the platinum wire, and after repeated drying, the coating was repeated until the Nafion polymer solid completely covered the end face of the platinum wire.
- the test circuit is the voltage test end of the two platinum wires connected to the potentiostat (reference electrodes 1 and 2), and the outer two platinum wires are connected to the current test end (working electrode and counter electrode).
- Copper foil Cu foil
- aluminum foil Al foil
- carbon paper gas diffusion layer (GDL)
- porous polytetrafluoroethylene porous PTFE
- impregnated Nafion having a size of 5 ⁇ 5 cm 2 .
- the polyionic porous polytetrafluoroethylene (porous PTFE/Nfn) and one end of the above test electrode having a Nafion polymer are tightly pressed against the surface of the sample to be tested.
- a linear potential signal is applied to the voltage test terminal with a potentiostat, and the voltage range is -0.1 to 0.1 V, and the current response signal at the current test end is recorded.
- an approximate line curve can be obtained, as shown in Fig. 5a.
- a linear fitting is performed on a segment with a good linearity near the zero potential, and the slope d of the obtained fitting curve is the test ionic resistance of the sample to be tested.
- Conductivity testing was performed using a four-probe test device that was not modified.
- the device is a cylindrical polytetrafluoroethylene block with a diameter of 2 cm, and four linearly arranged through-holes are machined along the central axis, each having a diameter of 1 mm and an origin spacing of 3 mm.
- Four platinum wires having the same diameter and the same hole diameter were fixed in the holes, and the end face of the platinum wire protruded from the end face of the polytetrafluoroethylene block to be 0.5 mm.
- the test circuit is the voltage test end of the two platinum wires connected to the potentiostat (reference electrodes 1 and 2), and the outer two platinum wires are connected to the current test end (working electrode and counter electrode).
- Copper foil Cu foil
- aluminum foil Al foil
- carbon paper gas diffusion layer (GDL)
- porous polytetrafluoroethylene porous PTFE
- impregnated Nafion having a size of 5 ⁇ 5 cm 2 .
- the polyionic porous polytetrafluoroethylene (porous PTFE/Nfn) and one end of the above test electrode having a Nafion polymer are tightly pressed against the surface of the sample to be tested.
- a linear potential signal is applied to the voltage test terminal with a potentiostat, and the voltage range is -0.1 to 0.1 V, and the current response signal at the current test end is recorded.
- a curve with an approximate line shape can be obtained, as shown in Fig. 5b.
- a linear fitting is performed on a segment with a good linearity near the zero potential, and the slope d of the obtained fitting curve is the test ionic resistance of the sample to be tested.
- test apparatus was the same as the test apparatus in Example 1.
- a wet Nafion 115 film having a size of 5 ⁇ 5 cm 2 and one end of the above test electrode having a Nafion polymer were tightly pressed against the surface of the sample to be tested.
- a linear potential signal is applied to the voltage test terminal with a potentiostat, and the voltage range is -1 to 1 V, and the current response signal at the current test end is recorded.
- the measured non-humidified Nafion 115 membrane ion conductivity was about 0.128 ⁇ 0.012 S cm -1 .
- test apparatus was the same as the test apparatus in Example 1.
- a carbon paper having a size of 5 ⁇ 5 cm 2 and one end of the above test electrode having a Nafion polymer were tightly pressed against the surface of the sample to be tested.
- a linear potential signal is applied to the voltage test terminal with a potentiostat, and the voltage range is -1 to 1 V, and the current response signal at the current test end is recorded.
- the measured carbon paper ionic conductivity was about 4.17 ⁇ 0.09 mS cm -1 . It is shown that the results obtained by the test device basically separate the influence of the electronic conductivity.
- test apparatus was the same as the test apparatus in Example 1.
- a carbon paper impregnated with a 5% Nafion solution having a size of 5 ⁇ 5 cm 2 and one end of the above test electrode having a Nafion polymer were tightly pressed against the surface of the sample to be tested.
- a linear potential signal is applied to the voltage test terminal with a potentiostat, and the voltage range is -1 to 1 V, and the current response signal at the current test end is recorded.
- the measured carbon paper ionic conductivity was about 20.83 ⁇ 0.56 mS cm -1 . It is shown that the conductivity results obtained by the test device basically reflect the ionic conductivity characteristics of the material and separate the electronic conductivity characteristics.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Electrochemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Molecular Biology (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Measurement Of Resistance Or Impedance (AREA)
Abstract
一种离子电导率测试装置,包括一电压/电流测试装置和一测试电极;所述测试电极包括一块体基底,于所述块体基底上设有线性排列的四个通孔,四根铂丝分别插入四个通孔内,铂丝的上端处于块体基底外部,铂丝的下端处于块体基底内部,所述线性排列是指四根铂丝的轴线处于同一平面上,四根铂丝相互平行;所述铂丝下端端面与块体基底下表面的距离为0.1-2mm之间,于所述铂丝下端端面与块体基底下表面之间的通孔内部填充有离子导体聚合物。该测试装置解决了现有技术中电子导体中离子电导率难以测量的问题,采用所述测试装置和方法测试电子导体中的离子电导率测量方法准确,可反应材料中离子的电导特性。同时具有测试准确,可实现电子电导与离子电导的分离,且温湿度控制准确、重现性好等优点,简化了测试流程,提高了测量效率。
Description
本发明涉及一种用于离子电导率测试装置和测试方法,具体的说涉及一种测试电极材料中离子电导率的方法。
电子导电性与离子导电性是包括能源材料、传感器件、生物系统等领域至关重要的材料特性之一。它不仅与电荷迁移传输效率至关重要,同时与体系中的化学与电化学反应机制与速率息息相关,同时是电极反应界面建立的决定因素之一,并进一步决定了材料实际应用器件的性能、成本与寿命。在包括燃料电池、金属空气电池、锂离子电池等新型能源技术等领域,电子与离子传输迁移的协同机制更是制约其发展的关键因素。因此,实现离子电导率与电子电导率的高效检测,以及电荷迁移通道的有效分析,是包括电极材料与结构制备在内的关键技术之一。
电子电导率与离子电导率的检测,其分别的检测方法包括传统的两电极、四电极在内的欧姆法或者电化学测试法等,经过多年的发展已经形成了成熟的检测体系,在理论分析与实际应用中得到了良好的发展。但与此同时,在目前先进的包括固体电解质体系的燃料电池、锂离子电池、电化学传感器等电化学体系中,电子电导与离子电导通常以复合传统通道的模式存在于电极的微观结构中,从而保证电化学界面的高效建立与活性组分的高效利用。因此,在电子导电性与离子导电性相复合的体系中,电子导体与离子导体进行复杂的串并联,传统以金属等电子导体作为探针的测试体系难以对其进行有效的分离检测。特别指出的是,通常情况下电极的电子导电性需大于1S/cm,一般可达10-103S/cm,远高于离子电导率10-3-10-1S/cm的数量级范围,传统的电导率测试方法在测试复合电导材料的离子电导率时信号通常被掩盖掉,难以进行有效的分离。正因如此,找到一种可将电子电导与离子电导进行有效分离检测的方法对于先进材料的发展至关重要。另一方面,传统离子电导率的检测,多采用在水溶液体系中的测试,其环境控制条件与材料在电极体系中相距甚远,难以反映在真实环境中的离子电导性能。因此,设计并制备一种电子电导与离子电导可有效分离且环境温湿度可控的离子电导率检测装置,可为电极材料的发展打下检测技术的基础。
发明内容
本发明针对针对现有技术得不足,设计了一种可对电子-离子复合导体材料进行离子电导率分离表征的离子导电聚合物修饰四探针检测装置,所述检测装置包括离子导电聚合物修饰的四探针探头与环境温湿度控制装置,有效地解决了目前电子-离子电导率分离表征难以进行以及两电极、四电极法测量材料离子电导率中存在与真实环境体系不同的问题,其测试准确,可实现电子电导与离子电导的分离,且温湿度控制准确、重现性好,同时简化了测试流程,提高了测量效率。
本发明采用以下具体方案来实现:
一种离子电导率测试装置,包括一电压/电流测试装置和一测试电极;所述测试电极包括一块体基底,于所述块体基底上设有线性排列的四个通孔,四根铂丝分别插入四个通孔内,铂丝的上端处于块体基底外部,铂丝的下端处于块体基底内部,所述线性排列是指四根铂丝的轴线处于同一平面上,四根铂丝相互平行;所述铂丝下端端面与块体基底下表面的距离为0.1-2mm之间,于所述铂丝下端端
面与块体基底下表面之间的通孔内部填充有离子导体聚合物。
所述电压/电流测试装置为恒电位仪、欧姆表、电流表和恒压电源、恒电流仪中的一种。
所述相邻铂丝之间的距离相等,所述铂丝直径相等。
所述块体基底材料为聚四氟乙烯、聚醚醚酮、聚乙烯中的一种;
所述离子导体聚合物为全氟磺酸聚合物、磺化聚醚醚酮、季铵化聚砜、聚苯丙咪唑中的一种。此类聚合物通常具有一定的离子导电性或者在一定条件下能够进行离子的传输迁移;
所述测试装置可检测的离子电导率的范围为0.01-1000Ω·cm;所述测试装置可检测的离子电导率的范围较优为0.05-100Ω·cm;
所述离子电导率测试装置还包括湿度可控的微型测试箱,所述微型测试箱包括干气腔、湿气腔和测试腔三个密闭的腔室;采用分离的干湿测试腔可在无湿度检测传感器的情况下有效的控制测试腔的湿度,并简化测试装置;
所述电压/电流测试装置和测试电极均置于所述微型测试箱的测试腔内;
于所述干气腔上设置有气体进口A和干气出口,其内部填充有干燥材料;于所述湿气腔上设置有气体进口B和湿气出口,其内部盛装有去离子水;所述干气出口与湿气出口通过管路与测试腔相连通;所述气体进口A和气体进口B通过气体流量计与一供气气源连通。
所述干气出口与湿气出口通过三通阀与测试腔管路连接,即三通阀的三个接口分别与测试腔、干气出口与湿气出口相连;所述气体流量计为转子流量计、电磁流量计、压差流量计中的一种。
所述测试腔底部设置有排水口,所述排水口上设阀门,所述排水口可处于打开和关闭两种状态,所述排水口打开时可排出测试腔中的液态水。
所述测试腔内部设置有样品测试台,所述样品测试台台面上设置有通孔,所述通孔可将液态水排出至测试腔底部。所述测试腔中上部设有样品取放口,样品取放口处设有可开启和关闭的密封门。
于所述湿度可控的微型测试箱的外部设置有温度可控的保温装置,干气腔、湿气腔和测试腔置于保温装置中。
所述温度可控的保温装置为恒温水浴槽、电加热夹套中的一种。
所述干气腔、湿气腔、测试腔均采用耐湿耐温材料制成;所述耐湿耐温材料为有机玻璃、聚四氟乙烯、不锈钢中的一种。
所述测试装置检测离子电导率的方法,其特征在于:包括以下步骤,
(1)离子电导的测量:将待测样品制备成薄片状后紧密压合于所述测试电极中的铂丝端面上;所述测试电极中从左至右的第2、3根铂丝与电压测试端连接,所述测试电极中从左至右的第1、4根铂丝分别与电流测试端连接;于所述电压测试端上施加电压,记录电流测试端的响应电流,重复施加不同的电压2次以上,记录电流测试端的响应电流;
(2)数据处理:将上述的测得的电流作为横坐标,电压作为纵坐标作图,得电流-电压曲线,在零电位附近线性较好的一段进行线性拟合,所得拟合曲线斜率d为待测样品的离子电阻;
测试样品的离子电阻率ρ可经过ρ=Cd进行计算,式中C为修正系数,且
C=2π/[1/S1+1/S2-1/(S1+S2)-1/(S2+S3)]
其中,S1、S2、S3分别为从左至右起的第1根铂丝与第2根铂丝、第2根铂丝与第3根铂丝、第3根铂丝与第4根铂丝间的距离;待测样品的电导率值即为1/ρ。
步骤(1)所述施加电压的电压范围为-1V至1V。
当测试样品于铂丝所在直线上的长度大于铂丝间距的10倍以上时,合乎半无限边界条件,电导率值可由上式直接计算得出。
当待测样品的厚度与铂丝间距离的比小于0.5时,需进行系列样品测试,通过曲线拟合进行样品厚度与测量位置的修正。
所述离子电导率测试方法可用于测量样品碳纸、碳粉、碳纤维、半导体、金属、聚合物中任一一种的离子电导率。
于气体进口A和气体进口B同时通入气体,二者的流量比QA:QB等于X:(1-X),其中X为预设湿度,0≤X≤100%;
所述气体为氮气、氩气、空气、氧气中的一种。
本发明原创性的解决了现有技术中电子导体中离子电导率难以测量的问题,采用本发明所述测试装置和方法测试电子导体中的离子电导率测量方法准确,可反应材料中离子的电导特性。同时具有测试准确,可实现电子电导与离子电导的分离,且温湿度控制准确、重现性好等优点,本发明简化了测试流程,提高了测量效率。
图1:本发明所示离子电导率测试装置示意图;图中,
1.绝缘块体;2.铂丝;3.离子导电聚合物;4.测试样品;5.电压施加端;6.电流响应端;
图2:实施例1与实施例2测试结果;
图3:实施例3与实施例4测试结果;
图4:湿度可控的微型测试箱示意图;
图5(a)采用未修饰的四探针方法(对比例1与对比例2)所得不同材料的电导率测试信号;(b)采用修饰的四探针方法(实施例1与实施例2)所得不同材料的电导率测试信号;(c)实施例1和2以及对比例1和2的电导率测试结果。
实施例1
测试装置示意图如图1和4所示,将直径为2cm的圆柱形聚四氟乙烯块体上,沿中轴线加工出4个线性排列的贯穿圆孔,直径均为1mm,原点间距均为3mm。将四根直径与圆孔孔径相同的铂丝固定于孔中,铂丝端面距离聚四氟乙烯块体端面为1mm。将5%Nafion聚离子溶液滴涂于铂丝端面上,待干燥后反复涂覆,直至Nafion聚合物固体完全覆盖铂丝端面。
测试电路为中间两根铂丝外接恒电位仪的电压测试端(参比电极1与2),外侧两根铂丝外接电流测试端(工作电极与对电极)。
a.样品离子电导的测量:
将干燥的尺寸大小为5×5cm2的Nafion 115膜与上述测试电极具有Nafion聚合物的一端与待测样品表面紧密压合。用恒电位仪在电压测试端施加线性电位信号,电压范围为-1至1V,记录电流测试端的电流响应信号。
b.数据处理:
将上述的测得的电流信号作为横坐标,电压作为纵坐标作图,可得一条近似线型的曲线,如图2所示。在零电位附近线性较好的一段进行线性拟合,所得拟合曲线斜率d即为待测样品的测试离子电阻。
材料的离子电阻率需经ρ=Cd进行修正,C为修正系数,当探针间间距S相等时:
C=2πS
所测得未增湿的Nafion 115膜离子电导率约为0.026±0.004S cm-1。
对比例1
采用未进行修饰的四探针测试装置经行电导率的测试。其装置为将直径为2cm的圆柱形聚四氟乙烯块体上,沿中轴线加工出4个线性排列的贯穿圆孔,直径均为1mm,原点间距均为3mm。将四根直径与圆孔孔径相同的铂丝固定于孔中,铂丝端面伸出聚四氟乙烯块体端面为0.5mm。
测试电路为中间两根铂丝外接恒电位仪的电压测试端(参比电极1与2),外侧两根铂丝外接电流测试端(工作电极与对电极)。
a.样品离子电导的测量:
将干燥的尺寸大小为5×5cm2的Nafion 115膜与上述测试电极具有Nafion聚合物的一端与待测样品表面紧密压合。用恒电位仪在电压测试端施加线性电位信号,电压范围为-1至1V,记录电流测试端的电流响应信号。
b.数据处理:
将上述的测得的电流信号作为横坐标,电压作为纵坐标作图,可得一条近似线型的曲线。在零电位附近线性较好的一段进行线性拟合,所得拟合曲线斜率d即为待测样品的测试离子电阻。
材料的离子电阻率需经ρ=Cd进行修正,C为修正系数,当探针间间距S相等时:
C=2πS
所测得未增湿的Nafion 115膜离子电导率约为0.030±0.003S cm-1。与实施例1所测得结果类似,表明实施例对离子电导率的检测是有效可信的。
实施例2
测试装置示意图如图1和4所示,将直径为2cm的圆柱形聚四氟乙烯块体上,沿中轴线加工出4个线性排列的贯穿圆孔,直径均为1mm,原点间距均为3mm。将四根直径与圆孔孔径相同的铂丝固定于孔中,铂丝端面距离聚四氟乙烯块体端面为1mm。将5%Nafion聚离子溶液滴涂于铂丝端面上,待干燥后反复涂覆,直至Nafion聚合物固体完全覆盖铂丝端面。
测试电路为中间两根铂丝外接恒电位仪的电压测试端(参比电极1与2),外侧两根铂丝外接电流测试端(工作电极与对电极)。
a.样品离子电导的测量:
将干燥的尺寸大小为5×5cm2的铜箔(Cu foil)、铝箔(Al foil)、碳纸(carbon paper)、气体扩散层(GDL)、多孔聚四氟乙烯(porous PTFE)、浸渍Nafion聚离子的多孔聚四氟乙烯(porous PTFE/Nfn)与上述测试电极具有Nafion聚合物的一端与待测样品表面紧密压合。用恒电位仪在电压测试端施加线性电位信号,电压范围为-0.1至0.1V,记录电流测试端的电流响应信号。
b.数据处理:
将上述的测得的电流信号作为横坐标,电压作为纵坐标作图,可得一条近似线型的曲线,如图5a所示。在零电位附近线性较好的一段进行线性拟合,所得拟合曲线斜率d即为待测样品的测试离子电阻。
材料的离子电阻率需经ρ=Cd进行修正,C为修正系数,当探针间间距S相等时:
C=2πS
所测得系列材料的电导率如图5c所示。
对比例2
采用未进行修饰的四探针测试装置经行电导率的测试。其装置为将直径为2cm的圆柱形聚四氟乙烯块体上,沿中轴线加工出4个线性排列的贯穿圆孔,直径均为1mm,原点间距均为3mm。将四根直径与圆孔孔径相同的铂丝固定于孔中,铂丝端面伸出聚四氟乙烯块体端面为0.5mm。
测试电路为中间两根铂丝外接恒电位仪的电压测试端(参比电极1与2),外侧两根铂丝外接电流测试端(工作电极与对电极)。
a.样品离子电导的测量:
将干燥的尺寸大小为5×5cm2的铜箔(Cu foil)、铝箔(Al foil)、碳纸(carbon paper)、气体扩散层(GDL)、多孔聚四氟乙烯(porous PTFE)、浸渍Nafion聚离子的多孔聚四氟乙烯(porous PTFE/Nfn)与上述测试电极具有Nafion聚合物的一端与待测样品表面紧密压合。用恒电位仪在电压测试端施加线性电位信号,电压范围为-0.1至0.1V,记录电流测试端的电流响应信号。
b.数据处理:
将上述的测得的电流信号作为横坐标,电压作为纵坐标作图,可得一条近似线型的曲线,如图5b所示。在零电位附近线性较好的一段进行线性拟合,所得拟合曲线斜率d即为待测样品的测试离子电阻。
材料的离子电阻率需经ρ=Cd进行修正,C为修正系数,当探针间间距S相等时:
C=2πS
所测得系列材料的电导率如图5c所示。由图可见,采用本专利所涉及的测试装置有效地阻断了材料的电子传导,但同时保留了离子电导率的测试信号,有效地实现了离子电导率的分离。
实施例3
测试装置与实施例1中的测试装置相同。
a.样品离子电导的测量:
将湿润的尺寸大小为5×5cm2的Nafion 115膜与上述测试电极具有Nafion聚合物的一端与待测样品表面紧密压合。用恒电位仪在电压测试端施加线性电位信号,电压范围为-1至1V,记录电流测试端的电流响应信号。
b.数据处理:
将上述的测得的电流信号作为横坐标,电压作为纵坐标作图,可得一条近似线型的曲线,如图2所示。在零电位附近线性较好的一段进行线性拟合,所得拟合曲线斜率d即为待测样品的测试离子电阻。
根据测试所用探针电极的几何结构与待测样品的尺寸差异,材料的离子电阻率经过一定条件的ρ=Cd进行修正,C为修正系数,当探针间间距S相等时:
C=2πS
所测得未增湿的Nafion 115膜离子电导率约为0.128±0.012S cm-1。
实施例4
测试装置与实施例1中的测试装置相同。
a.样品离子电导的测量:
将尺寸大小为5×5cm2的碳纸与上述测试电极具有Nafion聚合物的一端与待测样品表面紧密压合。用恒电位仪在电压测试端施加线性电位信号,电压范围为-1至1V,记录电流测试端的电流响应信号。
b.数据处理:
将上述的测得的电流信号作为横坐标,电压作为纵坐标作图,可得一条近似线型的曲线,如图2所示。在零电位附近线性较好的一段进行线性拟合,所得拟合曲线斜率d即为待测样品的测试离子电阻。
根据测试所用探针电极的几何结构与待测样品的尺寸差异,材料的离子电阻率经ρ=Cd进行修正,C为修正系数,当探针间间距S相等时:
C=2πS
所测得碳纸离子电导率约为4.17±0.09mS cm-1。表明测试装置所得结果基本分离了电子电导率的影响。
实施例5
测试装置与实施例1中的测试装置相同。
a.样品离子电导的测量:
将尺寸大小为5×5cm2的浸渍有5%Nafion溶液的碳纸与上述测试电极具有Nafion聚合物的一端与待测样品表面紧密压合。用恒电位仪在电压测试端施加线性电位信号,电压范围为-1至1V,记录电流测试端的电流响应信号。
b.数据处理:
将上述的测得的电流信号作为横坐标,电压作为纵坐标作图,可得一条近似线型的曲线,如图2所示。在零电位附近线性较好的一段进行线性拟合,所得拟合曲线斜率d即为待测样品的测试离子电阻。
根据测试所用探针电极的几何结构与待测样品的尺寸差异,材料的离子电阻率需经ρ=Cd进行修正,C为修正系数,当探针间间距S相等时:
C=2πS
所测得碳纸离子电导率约为20.83±0.56mS cm-1。表明测试装置所得电导率结果基本上反映了材料的离子电导特性而分离了电子电导特性。
Claims (19)
- 一种离子电导率测试装置,其特征在于:包括一电压/电流测试装置和一测试电极;所述测试电极包括一块体基底,于所述块体基底上设有线性排列的四个通孔,四根铂丝分别插入四个通孔内,铂丝的上端处于块体基底外部,铂丝的下端处于块体基底内部,所述线性排列是指四个通孔的轴线处于同一平面上,使插入其中的四根铂丝的轴线也处于同一平面上,四根铂丝相互平行;所述铂丝下端端面与块体基底下表面的距离为0.1-2mm之间,于所述铂丝下端端面与块体基底下表面之间的通孔内部填充有离子导体聚合物。
- 如权利要求1所述离子电导率测试装置,其特征在于:所述电压/电流测试装置为恒电位仪、欧姆表、电流表和恒压电源、恒电流仪中的一种。
- 如权利要求1所述离子电导率测试装置,其特征在于:所述相邻铂丝之间的距离相等,所述铂丝直径相等。
- 如权利要求1所述离子电导率测试装置,其特征在于:所述块体基底材料为聚四氟乙烯、聚醚醚酮、聚乙烯中的一种。
- 如权利要求1所述离子电导率测试装置,其特征在于:所述离子导体聚合物为全氟磺酸聚合物、磺化聚醚醚酮、季铵化聚砜、聚苯丙咪唑中的一种。
- 如权利要求1所述离子电导率测试装置,其特征在于:所述测试装置可检测的离子电导率的范围为0.01-1000Ω·cm;所述测试装置可检测的离子电导率的范围较优为0.05-100Ω·cm。
- 如权利要求1所述离子电导率测试装置,其特征在于:所述离子电导率测试装置还包括湿度可控的微型测试箱,所述微型测试箱包括干气腔、湿气腔和测试腔三个密闭的腔室;所述电压/电流测试装置和测试电极均置于所述微型测试箱的测试腔内;于所述干气腔上设置有气体进口A和干气出口,其内部填充有干燥材料;于所述湿气腔上设置有气体进口B和湿气出口,其内部盛装有去离子水;所述干气出口与湿气出口通过管路与测试腔相连通;所述气体进口A和气体进口B通过气体流量计与一供气气源连通。
- 如权利要求7所述离子电导率测试装置,其特征在于:所述干气出口与湿气出口通过三通阀与测试腔管路连接,即三通阀的三个接口分别与测试腔、干气出口与湿气出口相连;所述气体流量计为转子流量计、电磁流量计、压差流量计中的一种。
- 如权利要求7所述离子电导率测试装置,其特征在于:所述测试腔底部设置有排水口,所述排水口上设阀门,所述排水口可处于打开和关闭两种状态,所述排水口打开时可排出测试腔中的液态水。
- 如权利要求7所述离子电导率测试装置,其特征在于:所述测试腔内部设置有样品测试台,所述样品测试台台面上设置有通孔,所述通孔可将液态水排出至测试腔底部。
- 如权利要求7所述离子电导率测试装置,其特征在于:于所述湿度可控的微型测试箱的外部设置有温度可控的保温装置,干气腔、湿气腔和测试腔置于保温装置中。
- 如权利要求11所述离子电导率测试装置,其特征在于:所述温度可控的保温装置为恒温水浴槽、电加热夹套中的一种。
- 如权利要求7所述湿度可控的微型测试箱,其特征在于:所述干气腔、湿 气腔、测试腔均采用耐湿耐温材料制成;所述耐湿耐温材料为有机玻璃、聚四氟乙烯、不锈钢中的一种。
- 一种采用权利要求1-13任一所述测试装置检测离子电导率的方法,其特征在于:包括以下步骤,(1)离子电导的测量:将待测样品制备成薄片状后紧密压合于所述测试电极中的块体基底下表面上;所述测试电极中从左至右的第2、3根铂丝与电压测试端连接,所述测试电极中从左至右的第1、4根铂丝分别与电流测试端连接;于所述电压测试端上施加电压,记录电流测试端的响应电流,重复施加不同的电压2次以上,记录电流测试端的响应电流;(2)数据处理:将上述的测得的电流作为横坐标,电压作为纵坐标作图,得电流-电压曲线,进行线性拟合,所得拟合曲线斜率d为待测样品的离子电阻;测试样品的离子电阻率ρ可经过ρ=Cd进行计算,式中C为修正系数,且C=2π/[1/S1+1/S2-1/(S1+S2)-1/(S2+S3)]其中,S1、S2、S3分别为从左至右起的第1根铂丝与第2根铂丝、第2根铂丝与第3根铂丝、第3根铂丝与第4根铂丝间的距离;待测样品的电导率值即为1/ρ。
- 如权利要求14所述检测离子电导率的方法,其特征在于:步骤(1)所述施加电压的电压范围为-1V至1V。
- 如权利要求14所述检测离子电导率的方法,其特征在于:当测试样品于四个通孔的轴线于块体基底下表面的交点的连线上的长度大于铂丝间距的10倍以上时,合乎半无限边界条件,电导率值可由上式直接计算得出。
- 如权利要求14所述检测离子电导率的方法,其特征在于:当待测样品的厚度与铂丝间距离的比小于0.5时,需进行系列样品测试,通过曲线拟合进行样品厚度与测量位置的修正。
- 如权利要求14所述检测离子电导率的方法,其特征在于:所述离子电导率测试方法可用于测量样品碳纸、碳粉、碳纤维、半导体、金属、聚合物中任一一种的离子电导率。
- 如权利要求14所述检测离子电导率的方法,其特征在于:于气体进口A和气体进口B同时通入气体,二者的流量比QA:QB等于X:(1-X),其中X为预设湿度,0≤X≤100%;所述气体为氮气、氩气、空气、氧气中的一种。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15869276.4A EP3236248B1 (en) | 2014-12-19 | 2015-12-14 | Ionic conductivity test device, and test method using same |
US15/322,138 US10054561B2 (en) | 2014-12-19 | 2015-12-14 | Device for detection of ionic conductivity and its applied measurement |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201410811333.2 | 2014-12-19 | ||
CN201410811333.2A CN105759123B (zh) | 2014-12-19 | 2014-12-19 | 一种离子电导率测试装置及采用其的测试方法 |
CN201510902821.9 | 2015-12-09 | ||
CN201510902821.9A CN106855529A (zh) | 2015-12-09 | 2015-12-09 | 一种湿度可控的微型测试箱及其应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016095769A1 true WO2016095769A1 (zh) | 2016-06-23 |
Family
ID=56125923
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2015/097224 WO2016095769A1 (zh) | 2014-12-19 | 2015-12-14 | 一种离子电导率测试装置及采用其的测试方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US10054561B2 (zh) |
EP (1) | EP3236248B1 (zh) |
WO (1) | WO2016095769A1 (zh) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109240371A (zh) * | 2018-09-30 | 2019-01-18 | 镇江华智睿安物联科技有限公司 | 一种应用于离子迁移谱的快速控温系统及其方法 |
CN110879239A (zh) * | 2019-10-29 | 2020-03-13 | 昆明理工大学 | 一种离子电导率的待测电极、测试装置及其测试方法 |
CN112595758A (zh) * | 2020-11-09 | 2021-04-02 | 中核四0四有限公司 | 一种适用于无水氟化氢中水分含量的测量装置 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109030552B (zh) * | 2018-07-10 | 2024-03-08 | 西南交通大学 | 热电参数测试装置以及系统 |
CN111595919A (zh) * | 2020-07-07 | 2020-08-28 | 长沙理工大学 | 一种测试质子交换膜质子电导率的装置和方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4015199A (en) * | 1974-11-14 | 1977-03-29 | Zellweger, Ltd. | Cell for measurement of the electrical conductivity of liquids |
CN101101271A (zh) * | 2007-05-24 | 2008-01-09 | 上海大学 | 一种氧离子-电子混合导体离子电导率的测量方法 |
CN101413972A (zh) * | 2008-11-27 | 2009-04-22 | 天津大学 | 薄膜温差电材料电阻率测试系统及方法 |
CN202512173U (zh) * | 2012-01-06 | 2012-10-31 | 北京科技大学 | 一种四电极法测量熔盐电导率的装置 |
CN203011879U (zh) * | 2012-12-12 | 2013-06-19 | 上海电气钠硫储能技术有限公司 | 一种用于固体电解质离子电导率的测量装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996042014A1 (en) * | 1995-06-08 | 1996-12-27 | Instituut Voor Milieu- En Agritechniek | Method for determining the degree of hardening of a material |
US6819309B1 (en) * | 1999-07-07 | 2004-11-16 | Canon Kabushiki Kaisha | Double-face display device |
JP2007317672A (ja) * | 2007-07-20 | 2007-12-06 | Toyota Motor Corp | 電解質膜評価装置および評価方法 |
US20100109651A1 (en) * | 2008-07-11 | 2010-05-06 | Tolmachev Yuriy V | Device for conductivity measurement in a controlled environment and method thereof |
JP4625545B2 (ja) * | 2008-08-26 | 2011-02-02 | パナソニック株式会社 | 導電性高分子アクチュエータデバイス、導電性高分子アクチュエータの制御装置及び制御方法 |
JP2010271291A (ja) * | 2009-05-25 | 2010-12-02 | Nissan Motor Co Ltd | イオン伝導度の測定装置、およびイオン伝導度の測定方法 |
CN201600599U (zh) * | 2009-12-04 | 2010-10-06 | 河南科技大学 | 一种密闭腔用环境湿度控制装置 |
JP2012238444A (ja) * | 2011-05-11 | 2012-12-06 | Seiko Epson Corp | 高分子固体電解質及びその製造方法、リチウムイオン二次電池 |
JP6362143B2 (ja) * | 2013-04-12 | 2018-07-25 | 株式会社セルモエンターティメントジャパン | 光電変換素子、蓄放電機能を有する光電変換素子および二次電池 |
-
2015
- 2015-12-14 EP EP15869276.4A patent/EP3236248B1/en active Active
- 2015-12-14 WO PCT/CN2015/097224 patent/WO2016095769A1/zh active IP Right Grant
- 2015-12-14 US US15/322,138 patent/US10054561B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4015199A (en) * | 1974-11-14 | 1977-03-29 | Zellweger, Ltd. | Cell for measurement of the electrical conductivity of liquids |
CN101101271A (zh) * | 2007-05-24 | 2008-01-09 | 上海大学 | 一种氧离子-电子混合导体离子电导率的测量方法 |
CN101413972A (zh) * | 2008-11-27 | 2009-04-22 | 天津大学 | 薄膜温差电材料电阻率测试系统及方法 |
CN202512173U (zh) * | 2012-01-06 | 2012-10-31 | 北京科技大学 | 一种四电极法测量熔盐电导率的装置 |
CN203011879U (zh) * | 2012-12-12 | 2013-06-19 | 上海电气钠硫储能技术有限公司 | 一种用于固体电解质离子电导率的测量装置 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3236248A4 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109240371A (zh) * | 2018-09-30 | 2019-01-18 | 镇江华智睿安物联科技有限公司 | 一种应用于离子迁移谱的快速控温系统及其方法 |
CN110879239A (zh) * | 2019-10-29 | 2020-03-13 | 昆明理工大学 | 一种离子电导率的待测电极、测试装置及其测试方法 |
CN112595758A (zh) * | 2020-11-09 | 2021-04-02 | 中核四0四有限公司 | 一种适用于无水氟化氢中水分含量的测量装置 |
Also Published As
Publication number | Publication date |
---|---|
EP3236248A1 (en) | 2017-10-25 |
US10054561B2 (en) | 2018-08-21 |
EP3236248C0 (en) | 2025-04-23 |
EP3236248B1 (en) | 2025-04-23 |
EP3236248A4 (en) | 2018-12-26 |
US20170153196A1 (en) | 2017-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2016095769A1 (zh) | 一种离子电导率测试装置及采用其的测试方法 | |
US8126666B2 (en) | Fuel cell evaluation method and fuel cell evaluation apparatus | |
TWI427308B (zh) | 多功能固態氧化物燃料電池檢測裝置 | |
CN104459323B (zh) | 一种温湿度可控的电导率测试装置及其操作方法 | |
Chan et al. | Reliability and accuracy of measured overpotential in a three-electrode fuel cell system | |
Pei et al. | Use of galvanostatic charge method as a membrane electrode assembly diagnostic tool in a fuel cell stack | |
Oyarce et al. | Operating conditions affecting the contact resistance of bi-polar plates in proton exchange membrane fuel cells | |
CN103149439A (zh) | 一种粉体材料电导率与膜电极阻抗的测试装置及方法 | |
CN100478699C (zh) | 一种燃料电池质子交换膜横向电导率的测试方法与装置 | |
CN105759123A (zh) | 一种离子电导率测试装置及采用其的测试方法 | |
CN106855529A (zh) | 一种湿度可控的微型测试箱及其应用 | |
US20130076379A1 (en) | Suspension device for a membrane test system | |
CN111060579A (zh) | 一种洗烘一体机氧传感器 | |
Hu et al. | Interfacial studies of solid-state cells based on electrolytes of mixed ionic–electronic conductors | |
US7652479B2 (en) | Electrolyte measurement device and measurement procedure | |
CN109946609A (zh) | 一种电导率测试装置、测试方法和其在燃料电池中的应用 | |
CN104714096B (zh) | 一种测试装置及电子导体中离子电导率的测试方法 | |
CN203164294U (zh) | 一种粉体材料电导率与膜电极阻抗的测试装置 | |
CN110988480A (zh) | 测量质子交换膜膜厚方向电导率装置及方法 | |
Piela et al. | Looking inside polymer electrolyte membrane fuel cell stack using tailored electrochemical methods | |
JP2005326311A (ja) | イオン伝導度測定方法 | |
Hardy et al. | Flexible probe for measuring local conductivity variations in Li-ion electrode films | |
JP2006286397A (ja) | 固体電解質膜構造体とその製造方法、イオン伝導度測定装置 | |
CN111272855A (zh) | 用于燃料电池工作状态下单电极电化学测试的测试装置 | |
JP4899150B2 (ja) | 接合体の製造方法、及び膜厚方向4端子イオン伝導度測定方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15869276 Country of ref document: EP Kind code of ref document: A1 |
|
REEP | Request for entry into the european phase |
Ref document number: 2015869276 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15322138 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWG | Wipo information: grant in national office |
Ref document number: 2015869276 Country of ref document: EP |