WO2016095583A1 - Aqueous coating composition and process of making the same - Google Patents
Aqueous coating composition and process of making the same Download PDFInfo
- Publication number
- WO2016095583A1 WO2016095583A1 PCT/CN2015/090902 CN2015090902W WO2016095583A1 WO 2016095583 A1 WO2016095583 A1 WO 2016095583A1 CN 2015090902 W CN2015090902 W CN 2015090902W WO 2016095583 A1 WO2016095583 A1 WO 2016095583A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- weight
- oligomer
- meth
- coating composition
- emulsion polymer
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/65—Additives macromolecular
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F265/00—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
- C08F265/04—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
- C08F265/06—Polymerisation of acrylate or methacrylate esters on to polymers thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/12—Polymerisation in non-solvents
- C08F2/16—Aqueous medium
- C08F2/22—Emulsion polymerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/04—Acids; Metal salts or ammonium salts thereof
- C08F220/06—Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/14—Methyl esters, e.g. methyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1802—C2-(meth)acrylate, e.g. ethyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F230/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal
- C08F230/02—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing phosphorus, selenium, tellurium or a metal containing phosphorus
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/02—Homopolymers or copolymers of acids; Metal or ammonium salts thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/24—Homopolymers or copolymers of amides or imides
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
- C09D133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C09D133/08—Homopolymers or copolymers of acrylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D151/00—Coating compositions based on graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Coating compositions based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D4/00—Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
- C09D4/06—Organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond in combination with a macromolecular compound other than an unsaturated polymer of groups C09D159/00 - C09D187/00
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/02—Emulsion paints including aerosols
- C09D5/024—Emulsion paints including aerosols characterised by the additives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/02—Emulsion paints including aerosols
- C09D5/024—Emulsion paints including aerosols characterised by the additives
- C09D5/027—Dispersing agents
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F220/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
- C08F220/02—Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
- C08F220/10—Esters
- C08F220/12—Esters of monohydric alcohols or phenols
- C08F220/16—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms
- C08F220/18—Esters of monohydric alcohols or phenols of phenols or of alcohols containing two or more carbon atoms with acrylic or methacrylic acids
- C08F220/1808—C8-(meth)acrylate, e.g. isooctyl (meth)acrylate or 2-ethylhexyl (meth)acrylate
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L2201/00—Properties
- C08L2201/54—Aqueous solutions or dispersions
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/062—Copolymers with monomers not covered by C08L33/06
- C08L33/064—Copolymers with monomers not covered by C08L33/06 containing anhydride, COOH or COOM groups, with M being metal or onium-cation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/08—Homopolymers or copolymers of acrylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
- C08L33/10—Homopolymers or copolymers of methacrylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L33/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
- C08L33/04—Homopolymers or copolymers of esters
- C08L33/14—Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
Definitions
- the present invention relates to an aqueous coating composition and a process of making the same.
- Water based trim enamel using waterborne acrylic polymers is a popular do-it-yourself (DIY) segment in Australia, New Zealand, Europe and North America, which has successfully replaced most of solvent based alkyd products and applied onto doors, windows and some furniture.
- DIY do-it-yourself
- one of drawbacks for waterborne acrylic paints is short open time.
- coating compositions comprising waterborne acrylic polymers usually have a wet edge time less than 1 minute and a repair time less than 3 minutes. Open time is important in aqueous coatings, such as latex paints, to permit rebrushing over a freshly coated wet surface without causing defects such as brush marks or lap lines in the final dried coating.
- glycols have been used in coating compositions to increase open time, but most of glycols are volatile organic compounds (VOCs) , which are less environmentally friendly and less desirable than aqueous systems.
- VOCs volatile organic compounds
- OTEs open time extenders
- introducing conventional open time extenders (OTEs) into aqueous acrylic polymer binders can also extend open time of the obtained coating compositions.
- OTEs usually have surfactant nature
- addition of OTEs may increase water sensitivity of coating films, decrease stain and scrub resistance, and compromise block resistance and wet adhesion to aged alkyd coatings.
- water based enamel paints are required to have sufficient water resistance and chemical resistance to meet industry requirements.
- the present invention provides an aqueous coating composition that is a novel combination of an oligomer with an emulsion polymer.
- the aqueous coating composition of the present invention has an extended open time, for example, a wet edge time of 2 minutes or more and a repair time of 7 minutes of more (at 23°C and 50%relative humidity, wet film thickness: 150 ⁇ 5 ⁇ m) .
- the coating composition of the present invention provides coating films (dry film thickness: 50-60 microns) with a liquid stain resistance level of at least 3.
- the coating films also show one or more of the following properties: a water resistance (24 hours) level of at least 5, a block resistance (7 days) level of 7 or higher, and an ethanol resistance level ⁇ 100 cycles.
- the open time, water resistance, block resistance and ethanol resistance are measured according to the test methods described in the Examples section.
- the present invention is an aqueous coating composition, comprising:
- the oligomer has a weight average molecular weight of from 6,000 to 30,000; and the oligomer is present in an amount of from 1%to 7.5%by weight, based on the dry weight of the emulsion polymer;
- the present invention is a process of preparing the aqueous coating composition of the first aspect.
- the process comprises:
- the present invention is a method of extending open time of an aqueous coating composition comprising an emulsion polymer and a polyfunctional carboxylic hydrazide containing at least two hydrazide groups per molecule.
- the method comprises:
- the emulsion polymer has a weight average molecular weight more than 80,000, and the oligomer comprises as polymerized units, based on the weight of the oligomer,
- the oligomer has a weight average molecular weight of from 6,000 to 30,000; and the oligomer is present in an amount of from 1%to 7.5%by weight, based on the dry weight of the emulsion polymer.
- Open time in the present invention is the time period after coating application, during which the particle mobility is sufficiently high to allow correction on the film without that coating defects like the stroke of the brush, lapping lines from lap lines from overlapping film layers, or edge effects are visible in the final dry coating. Open time can be determined by both wet edge time and repair time.
- “Hydrophilic” monomer in the present invention refers to a monomer that has a Hansch value ⁇ 2.20. Hansch values may be determined by the method described by A.J. Leo in Chem. Rev., Volume 93, Issue No. 4, page 1281 (1993) .
- “Acrylic” in the present invention includes (meth) acrylic acid, (meth) alkyl acrylate, (meth) acrylamide, (meth) acrylonitrile and their modified forms such as (meth) hydroxyalkyl acrylate.
- the word fragment “ (meth) acryl” refers to both “methacryl” and “acryl” .
- (meth) acrylic acid refers to both methacrylic acid and acrylic acid
- methyl (meth) acrylate refers to both methyl methacrylate and methyl acrylate.
- Glass transition temperature (T g ) values in the present invention are those calculated by using the Fox equation (T.G. Fox, Bull. Am. Physics Soc., Volume 1, Issue No. 3, page 123 (1956) ) .
- T g Glass transition temperature
- T g (calc. ) is the glass transition temperature calculated for the copolymer
- w (M 1 ) is the weight fraction of monomer M 1 in the copolymer
- w (M 2 ) is the weight fraction of monomer M 2 in the copolymer
- T g (M 1 ) is the glass transition temperature of the homopolymer of M 1
- T g (M 2 ) is the glass transition temperature of the homopolymer of M 2 , all temperatures being in K.
- the glass transition temperatures of monomers may be found, for example, in “Polymer Handbook” , edited by J. Brandrup and E.H. Immergut, Interscience Publishers.
- the aqueous coating composition of the present invention comprises one or more oligomers.
- the oligomer useful in the present invention may comprise as polymerized units, monomer (a1) , one or more hydrophilic (meth) acrylic acid alkyl esters.
- the hydrophilic (meth) acrylic acid alkyl ester may be a (meth) acrylic acid alkyl ester having a C 1 to C 2 alkyl group.
- suitable hydrophilic (meth) acrylic acid alkyl esters include methyl (meth) acrylate, ethyl (meth) acrylate, or mixtures thereof.
- Preferred hydrophilic (meth) acrylic acid alkyl esters are methyl methacrylate, ethyl acrylate, or mixtures thereof.
- the oligomer may comprise, based on the weight of the oligomer, 75%by weight or more of the copolymerized hydrophilic (meth) acrylic acid alkyl ester, 80%by weight or more, or even 86%by weight or more, and at the same time, 92%by weight or less, or even 90%by weight or less.
- Weight of the oligomer in the present invention refers to dry weight or solids weight of the oligomer.
- the oligomer useful in the present invention may also comprise as polymerized units, monomer (a2) , diacetone (meth) acrylamide, and preferably diacetone acrylamide (DAAM) .
- the diacetone (meth) acrylamide may be used as a self-crosslinking agent.
- the oligomer may comprise, based on the weight of the oligomer, 2.1%by weight or more of the copolymerized diacetone (meth) acrylamide, 3%by weight or more, or even 4%by weight or more, and at the same time, 10%by weight or less, 8%by weight or less, or even 6%by weight or less.
- the oligomer is substantially free of, as polymerized units, an acetoacetoxyethyl (meth) acrylate. “Substantially free” means that the oligomer comprises, as polymerized units, from 0 to less than 0.2%by weight of the acetoacetoxyethyl (meth) acrylate, less than 0.1%by weight, or even less than 0.01%by weight, based on the weight of the oligomer.
- the oligomer useful in the present invention may further comprise as polymerized units, monomer (a3) , acid monomers comprising one or more ⁇ , ⁇ -ethylenically unsaturated carboxylic acids and phosphorous-containing acid monomers.
- the combined concentration of the copolymerized acid monomers in the oligomer may be, based on the weight of the oligomer, 5%by weight or more, 7%by weight or more, or even 9%by weight or more, and at the same time, 15%by weight or less, 13%by weight or less, or even 11%by weight or less.
- Suitable ⁇ , ⁇ -ethylenically unsaturated carboxylic acids include an acid-bearing monomer such as (meth) acrylic acid, itaconic acid, or fumaric acid; or a monomer bearing an acid-forming group which yields or is subsequently convertible to, such an acid group (such as anhydride, (meth) acrylic anhydride, or maleic anhydride) ; or mixtures thereof.
- an acid-bearing monomer such as (meth) acrylic acid, itaconic acid, or fumaric acid
- the oligomer may comprise, based on the weight of the oligomer, 4%by weight or more of the copolymerized ⁇ , ⁇ -ethylenically unsaturated carboxylic acids, 5%by weight or more, or even 6.8%by weight or more, and at the same time 14%by weight or less, 10%by weight or less, or even 8%by weight or less.
- Preferred phosphorus-containing acid monomers are dihydrogen phosphate monomers, which include 2-phosphoethyl (meth) acrylate, 2-phosphopropyl (meth) acrylate, 3-phosphopropyl (meth) acrylate, 3-phospho-2-hydroxypropyl (meth) acrylate, SIPOMER PAM-100, SIPOMER PAM-200, SIPOMER PAM-300, or mixtures thereof.
- the oligomer may comprise, based on the weight of the oligomer, 1%by weight or more of the copolymerized phosphorous-containing acid monomers, or 3%by weight or more, and at the same time, 9%by weight or less, 6%by weight or less, or even 4%by weight or less.
- the oligomer useful in the present invention comprises as polymerized units, based on the weight of the oligomer,
- hydrophilic (meth) acrylic acid alkyl ester such as methyl (meth) acrylate, ethyl (meth) acrylate, or mixtures thereof.
- the acid monomers comprise from 5%to 10%by weight of the ⁇ , ⁇ -ethylenically unsaturated carboxylic acid such as (meth) acrylic acid, itacolic acid, fumaric acid, or mixtures thereof; and from 3%to 6%by weight of the phosphorous-containing acid monomer such as phosphoethyl (meth) acrylate, SIPOMER PAM-100, SIPOMER PAM-200, SIPOMER PAM-300, or mixtures thereof.
- carboxylic acid such as (meth) acrylic acid, itacolic acid, fumaric acid, or mixtures thereof
- the phosphorous-containing acid monomer such as phosphoethyl (meth) acrylate, SIPOMER PAM-100, SIPOMER PAM-200, SIPOMER PAM-300, or mixtures thereof.
- the types and levels of the monomers described above may be chosen to provide the oligomer with a T g suitable for different applications.
- the oligomer useful in the present invention may have a T g of from 50°C to 110°C, from 60°C to 110°C, or from 70°C to 110°C.
- the oligomer useful in the present invention may have a weight average molecular weight (M w ) of 6,000 or more, 7,000 or more, 8,000 or more, 9,000 or more, 10,000 or more, or even 11,000 or more, and at the same time, 30,000 or less, 28,000 or less, 27,000 or less, 26,000 or less, 25,000 or less, 24,000 or less, 22,000 or less, or even 20,000 or less.
- M w may be determined by Size Exclusion Chromatography (SEC) analysis using a polystyrene standard.
- the oligomer in the aqueous coating composition of the present invention may be present, by weight based on the dry weight of the emulsion polymer described below, in an amount of 1.0%or more, 1.3%or more, 2%or more, 3%or more, 3.5%or more, or even 4%or more, and at the same time, 7.5%or less, 7%or less, 6.5%or less, 5.5%or less, or even 5%or less.
- the weight percentage of the oligomer in the present invention, based on the dry weight (or solids weight) of the emulsion polymer refers to the percentage by dry weight (or solids weight) of the oligomer.
- the aqueous coating composition comprises, based on the dry weight of the emulsion polymer described below, from 1.3%to 7%by weight, and preferably from 2%to 6%by weight of the oligomer having a M w of from 6,000 to 17,000. Also preferably, the aqueous coating composition comprises, based on the dry weight of the emulsion polymer, from 4%to 7%by weight, and preferably from 5%to 7%by weight of the oligomer having a M w of bigger than 17,000 and up to 28,000.
- the aqueous coating composition of the present invention also comprises one or more emulsion polymers.
- “Emulsion polymers” in the present invention refer to polymers having a M w of 80,000 or more, 100,000 or more, or even 200,000 or more. M w may be determined by SEC analysis using a polystyrene standard.
- the emulsion polymer may be selected from an acrylic polymer, a styrene-acrylic copolymer, a blend of polyurethane and an acrylic polymer or copolymer, a polyurethane-acrylic hybrid polymer, or mixtures thereof.
- the emulsion polymer is preferably an acrylic emulsion polymer.
- the emulsion polymer comprises, as polymerized units, diacetone (meth) acrylamide such as DAAM.
- the emulsion polymer may comprise, based on the dry weight of the emulsion polymer, from 0 to 10%by weight of the copolymerized diacetone (meth) acrylamide, for example, 0.3%by weight or more or 1.0%by weight or more, and at the same time, 10%by weight or less, 7%by weight or less, or even 5%by weight or less.
- the emulsion polymer useful in the present invention may further comprise, as polymerized units, one or more nonionic monoethylenically unsaturated monomers.
- nonionic monoethylenically unsaturated monomers include (meth) alkyl or alkenyl esters of (meth) acrylic acid, such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, benzyl (meth) acrylate, lauryl (meth) acrylate, oleyl (meth) acrylate, palmityl (meth) acrylate, stearyl (meth) acrylate, nonyl (meth) acrylate, decyl (meth) acrylate and the like; (meth) acrylonitrile; acrylamide; or mixtures thereof.
- acrylic acid such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (
- Preferred nonionic monoethylenically unsaturated monomers are butyl acrylate, methyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, or mixtures thereof.
- Other suitable nonionic monoethylenically unsaturated monomers may be further added, for example, styrene and substituted styrene such as . alpha.
- the emulsion polymer may comprise as polymerized units, based on the dry weight of the emulsion polymer, from 75%to 90%by weight or from 80%to 85%by weight of the nonionic monoethylenically unsaturated monomer.
- the emulsion polymer useful in the present invention may further comprise, as polymerized units, one or more acid monomers selected from ⁇ , ⁇ -ethylenically unsaturated carboxylic acids, phosphorous-containing acid monomers, or mixtures thereof.
- Suitable acid monomers for making the emulsion polymer include those described above for use in the preparation of the oligomer.
- the emulsion polymer comprises, as polymerized units, one or more ⁇ , ⁇ -ethylenically unsaturated carboxylic acids, such as methacrylic acid (MAA) and itaconic acid.
- MAA methacrylic acid
- the emulsion polymer may comprise as polymerized units, based on the dry weight of the emulsion polymer, from 0 to 10%by weight of the acid monomers, for example, 0.5%by weight or more, 1.0%by weight or more, or even 2.0%by weight or more, and at the same time, 8%by weight or less or 6%by weight or less.
- the emulsion polymer useful in the present invention may further comprise one or more multiethylenically unsaturated monomers.
- suitable multiethylenically unsaturated monomers include butadiene, allyl (meth) acrylate, divinyl benzene, or mixtures thereof.
- the emulsion polymer may comprise as polymerized units, based on the dry weight of the emulsion polymer, from 0 to 5%by weight of the multiethylenically unsaturated monomer, from 0.1%to 3%by weight, or from 0.5%to 1.5%by weight.
- the emulsion polymer useful in the present invention may have a T g of from 0°C to 60°C or from 10°C to 50°C.
- the emulsion polymer particles may have a particle size of from 50 nanometers (nm) to 500 nm, from 70 nm to 300 nm, or from 70 nm to 250 nm.
- the process of preparing the oligomer or the emulsion polymer useful in the present invention may be conducted by free-radical polymerization, such as suspension polymerization or emulsion polymerization, of the monomers described above. Emulsion polymerization is a preferred process. Total weight concentration of monomers for preparing the oligomer and the emulsion polymer, respectively, is equal to 100%. A mixture of monomers for preparing the oligomer or the emulsion polymer, respectively, may be added neat or as an emulsion in water; or added in one or more additions or continuously, linearly or nonlinearly, over the reaction period of preparing the oligomer or the emulsion polymer, or combinations thereof.
- Temperature suitable for emulsion polymerization processes may be lower than 100°C, in the range of from 30 to 95°C, or in the range of from 50 to 90°C.
- Multistage free-radical polymerization using the monomers described above can be used, which at least two stages are formed sequentially, and usually results in the formation of the multistage polymer comprising at least two polymer compositions.
- the emulsion polymer useful in the present invention is preferably prepared by multistage emulsion polymerization.
- free radical initiators may be used in the polymerization process of preparing the oligomer or the emulsion polymer.
- the polymerization process may be thermally initiated or redox initiated emulsion polymerization.
- suitable free radical initiators include hydrogen peroxide, t-butyl hydroperoxide, cumene hydroperoxide, ammonium and/or alkali metal persulfates, sodium perborate, perphosphoric acid, and salts thereof; potassium permanganate, and ammonium or alkali metal salts of peroxydisulfuric acid.
- the free radical initiators may be used typically at a level of 0.01 to 3.0%by weight, based on the total weight of monomers.
- Redox systems comprising the above described initiators coupled with a suitable reductant may be used in the polymerization process.
- suitable reductants include sodium sulfoxylate formaldehyde, ascorbic acid, isoascorbic acid, alkali metal and ammonium salts of sulfur-containing acids, such as sodium sulfite, bisulfite, thiosulfate, hydrosulfite, sulfide, hydrosulfide or dithionite, formadinesulfinic acid, acetone bisulfite, glycolic acid, hydroxymethanesulfonic acid, glyoxylic acid hydrate, lactic acid, glyceric acid, malic acid, tartaric acid and salts of the preceding acids.
- Metal salts of iron, copper, manganese, silver, platinum, vanadium, nickel, chromium, palladium, or cobalt may be used to catalyze the redox reaction. Chelating agents for the metals may optionally be used.
- a surfactant may be used.
- the surfactant may be added prior to or during the polymerization of the monomers, or combinations thereof. A portion of the surfactant can also be added after the polymerization.
- These surfactants may include anionic and/or nonionic emulsifiers.
- Suitable surfactants include alkali metal or ammonium salts of alkyl, aryl, or alkylaryl sulfates, sulfonates or phosphates; alkyl sulfonic acids; sulfosuccinate salts; fatty acids; ethylenically unsaturated surfactant monomers; and ethoxylated alcohols or phenols.
- the alkali metal or ammonium salts of alkyl, aryl, or alkylaryl sulfates surfactant are used.
- the surfactant used is usually from 0.1%to 6%by weight, preferably from 0.3%to 1.5%by weight, based on the weight of total monomers used for preparing the oligomer or the emulsion polymer, respectively.
- a train transfer agent may be used.
- suitable chain transfer agents include 3-mercaptopropionic acid, dodecyl mercaptan, methyl 3-mercaptopropionate, butyl 3- mercaptopropionate, benzenethiol, azelaic alkyl mercaptan, or mixtures thereof.
- the chain transfer agent may be used in an effective amount to control the molecular weight of the oligomer or the emulsion polymer.
- the chain transfer agent may be used in preparing the oligomer in an amount of from 0.3%to 3%by weight based on the total weight of monomers used for preparing the oligomer.
- the chain transfer agent may be used in an amount of from 0.01%to 0.5%by weight, based on the total weight of monomers used for preparing the emulsion polymer.
- the obtained oligomer or emulsion polymer may be neutralized by one or more bases as neutralizers to a pH value, for example, at least 6, from 6 to 10, or from 7 to 9.
- the bases may lead to partial or complete neutralization of the ionic or latently ionic groups of the oligomer or the emulsion polymer.
- suitable bases include ammonia; alkali metal or alkaline earth metal compounds such as sodium hydroxide, potassium hydroxide, calcium hydroxide, zinc oxide, magnesium oxide, sodium carbonate; primary, secondary, and tertiary amines, such as triethyl amine, ethylamine, propylamine, monoisopropylamine, monobutylamine, hexylamine, ethanolamine, diethyl amine, dimethyl amine, di-npropylamine, tributylamine, triethanolamine, dimethoxyethylamine, 2-ethoxyethylamine, 3-ethoxypropylamine, dimethylethanolamine, diisopropanolamine, morpholine, ethylenediamine, 2-diethylaminoethylamine, 2, 3-diaminopropane, 1, 2-propylenediamine, neopentanediamine, dimethylaminopropylamine, hexamethylenediamine, 4,
- the aqueous coating composition of the present invention may further comprise a polyfunctional carboxylic hydrazide containing at least two hydrazide groups per molecule.
- the polyfunctional carboxylic hydrazides may act as a crosslinker and may be selected from adipic dihydrazide, oxalic dihydrazide, isophthalic dihydrazide, polyacrylic polyhydrazide, or mixtures thereof.
- the concentration of the polyfunctional carboxylic hydrazide may be from 0.5%to 10%by weight, from 1%to 8%by weight, or from 1.5%to 6%by weight, based on the weight of the oligomer.
- the aqueous coating composition of the present invention may also comprise pigments and/or extenders.
- Pigments herein refer to materials that can provide whiteness and color including inorganic pigments and organic pigments.
- Inorganic pigments typically include metal oxides. Examples of suitable metal oxides include titanium dioxide (TiO 2 ) , zinc oxide, iron oxide, zinc sulfide, barium sulfate, barium carbonate, or mixture thereof.
- pigment used in the present invention is TiO 2 . TiO 2 typically exists in two crystal forms, anastase and rutile.
- Suitable commercially available TiO 2 include, for example, KRONOS TM 2310 available from Kronos Worldwide, Inc., Ti-Pure TM R-706 available from DuPont (Wilmington, Del. ) , TiONA TM AT1 available from Millenium Inorganic Chemicals, or mixtures thereof. TiO 2 may be also available in concentrated dispersion form.
- Organic pigments typically refer to opaque polymers such as ROPAQUE TM Ultra E available from The Dow Chemical Company (ROPAQUE is a trademark of The Dow Chemical Company) . “Extenders” herein refer to white transparent or semi-transparent components, whose purpose is to reduce the cost of the coating by increasing the area covered by a given weight of pigment.
- Suitable extenders include calcium carbonate, clay, calcium sulfate, aluminosilicates, silicates, zeolites, mica, diatomaceous earth, solid or hollow glass, ceramic beads, nepheline syenite, feldspar, diatomaceous earth, calcined diatomaceous earth, talc (hydrated magnesium silicate) , silica, alumina, kaolin, pyrophyllite, perlite, baryte, wollastonite, or mixtures thereof.
- the concentration of the pigments and/or extenders may be, based on the total weight of the coating composition, from 0 to 60%by weight, from 5%to 35%by weight, or from 10%to 30%by weight.
- the aqueous coating composition of the present invention may further comprise one or more matting agents.
- matting agents herein refer to any inorganic or organic particles that provide matt effect. Matting agents usually have an average particle size of 5.5 microns or more according to the ASTM E2651-10 method.
- the matting agents may be selected from silica matting agents, polyurea matting agents, polyacrylate, polyethylene, polytetrafluoroethene, or mixtures thereof.
- Suitable commercially available matting agents include, for example, ACEMATT TM TS-100 and ACEMATT OK520 silica matting agents both available from Evonik, DEUTERON TM MK polyurea matting agent available from Deuteron, SYLOID TM Silica 7000 matting agent available from Grace Davison, PARALOID TM PRD 137B emulsion based on polyacrylate available from The Dow Chemical Company; ULTRALUBE TM D277 emulsion based on HDPE/plastic, ULTRALUBE D818 emulsion based on montan/PE/plastic, and ULTRALUBE D860 emulsion based on PE/ester matting agents all available from Keim-Additec; or mixtures thereof.
- the concentration of the matting agent may be, based on the total weight of the coating composition, from 0 to 5%by dry weight, from 0.1%to 4%by dry weight, or from 0.5%to 3.5%by dry weight.
- the aqueous coating composition of the present invention may further comprise one or more defoamers.
- “Defoamers” herein refer to chemical additives that reduce and hinder the formation of foam. Defoamers may be silicone-based defoamers, mineral oil-based defoamers, ethylene oxide/propylene oxide-based defoamers, alkyl polyacrylates, or mixtures thereof. Suitable commercially available defoamers include, for example, TEGO TM Airex 902 W and TEGO Foamex 1488 polyether siloxane copolymer emulsions both available from TEGO, BYK TM -024 silicone deformer available from BYK, or mixtures thereof. The concentration of the defoamer may be, based on the total weight of the coating composition, generally from 0 to 1%by weight, from 0.01%to 0.8%by weight, or from 0.05%to 0.5%by weight.
- the aqueous coating composition of the present invention may further comprise one or more thickeners, also known as “rheology modifiers” .
- the thickeners may include polyvinyl alcohol (PVA) , clay materials, acid derivatives, acid copolymers, urethane associate thickeners (UAT) , polyether urea polyurethanes (PEUPU) , polyether polyurethanes (PEPU) , or mixtures thereof.
- PVA polyvinyl alcohol
- UAT urethane associate thickeners
- PEUPU polyether urea polyurethanes
- PEPU polyether polyurethanes
- suitable thickeners include alkali swellable emulsions (ASE) such as sodium or ammonium neutralized acrylic acid polymers; hydrophobically modified alkali swellable emulsions (HASE) such as hydrophobically modified acrylic acid copolymers; associative thickeners such as hydrophobically modified ethoxylated urethanes (HEUR) ; and cellulosic thickeners such as methyl cellulose ethers, hydroxymethyl cellulose (HMC) , hydroxyethyl cellulose (HEC) , hydrophobically-modified hydroxy ethyl cellulose (HMHEC) , sodium carboxymethyl cellulose (SCMC) , sodium carboxymethyl 2-hydroxyethyl cellulose, 2-hydroxypropyl methyl cellulose, 2-hydroxyethyl methyl cellulose, 2-hydroxybutyl methyl cellulose, 2-hydroxyethyl ethyl cellulose, and 2-hydoxypropyl cellulose.
- ASE alkal
- the thickener is based on HEUR.
- the concentration of the thickener may be, based on the total weight of the aqueous coating composition, generally from 0 to 5%by weight, from 0.05%to 2%by weight, or from 0.1%to 1%by weight.
- the aqueous coating composition of the present invention may further comprise one or more wetting agents.
- Wetting agents herein refer to chemical additives that reduce the surface tension of a coating composition, causing the coating composition to more easily spread across or penetrate the surface of a substrate.
- Wetting agents may be polycarboxylates, anionic, zwitterionic, or non-ionic.
- Suitable commercially available wetting agents include, for example, SURFYNOL TM 104 nonionic wetting agent based on an actacetylenic diol available from Air Products, BYK-346 and BYK-349 polyether-modified siloxanes both available from BYK, or mixtures thereof.
- the concentration of the wetting agent may be, based on the total weight of the coating composition, from 0 to 5%by weight, 0.01%to 2%by weight, or from 0.2%to 1%by weight.
- the aqueous coating composition of the present invention may further comprise one or more coalescents.
- coalescents herein refer to slow-evaporating solvents that fuse polymer particles into a continuous film under ambient condition.
- suitable coalescents include 2-n-butoxyethanol, dipropylene glycol n-butyl ether, propylene glycol n-butyl ether, dipropylene glycol methyl ether, propylene glycol methyl ether, propylene glycol n-propyl ether, diethylene glycol monobutyl ether, ethylene glycol monobutyl ether, ethylene glycol monohexyl ether, triethylene glycol monobutyl ether, dipropylene glycol n-propyl ether, n-butyl ether, or mixtures thereof.
- Preferred coalescents include dipropylene glycol n-butyl ether, ethylene glycol monobutyl ether, diethylene glycol monobutyl ether, n-butyl ether, or mixtures thereof.
- the concentration of the coalescents may be, based on the total weight of the coating composition, from 0 to 10%by weight, from 0.01%to 9%by weight, or from 1%to 8%by weight.
- the aqueous coating composition of the present invention may further comprise water.
- the concentration of water may be, by weight based on the total weight of the aqueous coating composition, from 30%to 90%, from 40%to 80%, or from 50%to 70%.
- the aqueous coating composition of the present invention may further comprise any one or combination of the following additives: buffers, neutralizers, dispersants, humectants, mildewcides, biocides, anti-skinning agents, colorants, flowing agents, anti-oxidants, plasticizers, leveling agents, thixotropic agents, adhesion promoters, and grind vehicles.
- these additives may be present in a combined amount of from 0.001%to 10%by weight, or from 0.01%to 2%by weight, based on the total weight of the coating composition.
- the aqueous coating composition of the present invention may be prepared by admixing the oligomer, the emulsion polymer, and the polyfunctional carboxylic hydrazide with other optional components, e.g., pigments and/or extenders as described above.
- Components in the aqueous coating composition may be mixed in any order to provide the aqueous coating composition of the present invention. Any of the above-mentioned optional components may also be added to the composition during or prior to the mixing to form the aqueous coating composition.
- the oligomer useful in the present invention can be used in a millbase as a dispersant for pigment and/or extender, or be used at letdown stage.
- the pigments and/or extenders are preferably mixed with the oligomer to form a slurry of pigments and/or extender in the absence of a conventional dispersant.
- the addition of the oligomer will not decrease the viscosity of the coating composition like conventional open time extenders.
- the aqueous coating composition of the present invention preferably has an extended open time.
- extended open time means the open time of the coating composition comprising the oligomer is longer than the same composition absent an oligomer as measured in the same way under the same conditions.
- the coating composition of the present invention when applied to a substrate with a wet film thickness of 150 ⁇ 5 ⁇ m, has a wet edge time of 2 minutes or more and a repair time of at least 7 minutes, or at least 8 minutes at 23°C and 50%relative humidity.
- the aqueous coating composition of the present invention also provides coatings (dry film thickness: 50-60 ⁇ m) with a liquid stain resistance (e.g., wine, coffee, blur food dye and green tea) level of at least 3.
- the coatings also show one or more of the following properties: a water resistance (24 hours) level of at least 5, a block resistance (7 days) level of 7 or higher, and an ethanol resistance level ⁇ 100 cycles and preferably ⁇ 150 cycles.
- the open time, water resistance, block resistance and ethanol resistance are measured according to the test methods described in the Examples section.
- the present invention also provides a method of preparing the coatings.
- the method may comprise: forming the aqueous coating composition of the present invention, applying the aqueous coating composition to a substrate, and drying, or allowing to dry, the applied coating composition to form the coating.
- the present invention also provides a method of extending open time of an aqueous coating composition comprising the emulsion polymer and the polyfunctional carboxylic hydrazide described above.
- This method comprises: admixing the oligomer with the emulsion polymer and the polyfunctional carboxylic hydrazide described above.
- “Extending open time” means the coating composition has an extended open time as described above, that is, the open time of the coating composition with the addition of the oligomer is longer than the same coating composition in the absence of the oligomer as measured in the same way under the same conditions.
- the coating composition of the present invention has a longer wet edge time and repair time, for example, when applied to a substrate with a wet film thickness of 150 ⁇ 5 ⁇ m, has a wet edge time being 2 minutes or more and the repair time being 7 minutes or more at 23°C and 50%relative humidity.
- a process of using the aqueous coating composition of the present invention may comprise the following: applying the coating composition to a substrate, and drying, or allowing to dry, the applied coating composition.
- the aqueous coating composition of the present invention can be applied to a substrate by incumbent means including brushing, dipping, rolling and spraying.
- the coating composition is preferably applied by spraying.
- the standard spray techniques and equipment for spraying such as air-atomized spray, air spray, airless spray, high volume low pressure spray, and electrostatic spray such as electrostatic bell application, and either manual or automatic methods can be used.
- the coating composition of the present invention After the coating composition of the present invention has been applied to a substrate, the coating composition can dry, or allow to dry, to form a film (this is, coating) at room temperature (20-25°C) , or at an elevated temperature, for example, from 35°C to 60°C.
- the aqueous coating composition of the present invention can be applied to, and adhered to, various substrates.
- suitable substrates include wood, metals, plastics, foams, stones, elastomeric substrates, glass, fabrics, concrete, or cementious substrates.
- the coating composition is suitable for various coating applications, such as marine and protective coatings, automotive coatings, wood coatings, coil coatings, plastic coatings, powder coatings, can coatings, and civil engineering coatings.
- the aqueous coating composition is particularly suitable for wood coatings.
- the aqueous coating composition can be used alone, or in combination with other coatings to form multi-layer coatings.
- Methacrylic acid ( “MAA” ) , itaconic acid ( “IA” ) , methyl methacrylate ( “MMA” ) , n-butyl acrylate ( “BA” ) , ureido methacrylate ( “UMA” ) , benzophonone ( “BP” ) , and methyl 3-mercaptopropanoate ( “MMP” ) , allyl methacrylate ( “ALMA” ) are all available from Sinoreagent Group.
- Diacetone acrylamide ( “DAAM” ) and adipic dihydrazide ( “ADH” ) are both available from Kyowa Hakko Chemical Co., Ltd.
- Phosphoethyl methacrylate ( “PEM” ) is available from The Dow Chemical Company.
- Acetoacetoxyethyl methacrylate ( “AAEM” ) is available from Eastman Chemical Company.
- Ammonium persulphate ( “APS” ) is available from Sinoreagent Group.
- RHODAFAC TM RS-610-A25 available from Solvay, is a phosphate containing surfactant.
- POLYSTEP TM B-11 available from Stepan, is an alcohol ethoxy sulfate.
- DISPONIL Fes-32 available from BASF, is a fatty alcohol ether sulphate, sodium salt.
- PRIMAL TM HG-3361 available from The Dow Chemical Company, is an ambient curing pure acrylic emulsion (PRIMAL is a trademark of The Dow Chemical Company) .
- OROTAN TM 731A available from The Dow Chemical Company, is a sodium salt of a hydrophobic acrylic copolymer and used as a dispersant (OROTAN is a trademark of The Dow Chemical Company) .
- TERGITOL TM 15-S-9 available from The Dow Chemical Company, is a secondary alcohol ethoxylate, nonionic surfactant (TERGITOL is a trademark of The Dow Chemical Company) .
- BYK-022 available from BYK, is a VOC-free silicone-containing defoamer.
- AMP TM -95 available from The Dow Chemical Company, is 2-amino-2-methyl-1-propanol and used as a neutralizer (AMP is a trademark of The Dow Chemical Company) .
- Ti-Pure R-706 available from DuPont, is titanium dioxide and used as a pigment.
- ACTICIDE TM EPW available from Thor, is used as a biocide.
- Triethylene glycol monoethyl ether available from The Dow Chemical Company, is used as a solvent.
- TEXANOL TM ester alcohol available from Eastman Chemical Company, is 2, 2, 4-trimethyl-1, 3-pentanediol monoisobutyrate and used as a co-solvent.
- BYK-024, available from BYK, is a silicone defoamer.
- ACRYSOL RM-5000 available from The Dow Chemical Company, is a non-ionic urethane rheology modifier.
- ACRYSOL RM-8W rheology modifier ( “RM-8W” ) , available from The Dow Chemical Company, is a nonionic urethane rheology modifier.
- RHODAFAC TM RS-410 available from Solvay, is a phosphate ester surfactant.
- GLUCOPON TM 425 N/HH available from BASF, is an alkyl polyglycoside based on natural fatty alcohol C8-C14 and has a solids content of 50%.
- Brookfield (BF) viscosity of a coating composition is measured at 25°C using a Brookfield RV or RVT (5 rpm, #3 spindle) .
- Low-shear or BF viscosity is measured according to the ASTM D1824 method ( “Test Method for Apparent Viscosity of Plastisols and Organosols at Low Shear Rates by Brookfield Viscometer” ) .
- Stormer viscosity relates to the in-can appearance and is typically measured in Krebs units (KU) using a Stormer viscometer. Mid-shear or Stormer viscosity ( “KU viscosity” ) is measured according to the ASTM D562-01 method ( “Standard Test Method Consistency of Paints Measuring Krebs Unit (KU) Viscosity Using a Stormer-Type Viscometer” ) .
- ICI viscosity represents the viscosity of a coating composition during typical brush and roller application conditions.
- the ICI viscosity is measured at 10,000 sec -1 according to the ASTM D4287-00 method ( “Standard Test Method for High-Shear Viscosity Using a Cone/Plate Viscometer” ) .
- the gloss of coating films is measured according to the ASTM D523 method using a BYK Micro-Tri-Gloss meter.
- Coating compositions to be tested are casted on scrub vinyl charts using a 6 Mil Bird applicator.
- the obtained panels then dry in a controlled temperature room (CTR) (25°C and 50% relative humidity (RH) ) for 1 day and 7 days, respectively.
- CTR controlled temperature room
- RH 50% relative humidity
- Four 1-1/2 "x 1-1/2" specimens are cut out from white area of each cured panel. Every two specimens are then stacked together with coated surfaces face to face and then placed the specimen in a 50°C oven on a flat metal plate.
- a heated solid rubber stopper is placed on top of the stacked specimens and a heated 1000 g weight is placed on the stopper. After 30 minutes, the stopper and weight are removed and the specimens are then removed from the oven. The specimens are allowed to cool at room temperature for 30 minutes.
- the two stacked specimens are then separated from each other with slow and steady force by pulling apart at an angle of approximately 180°.
- the block resistance is reported on a numerical scale of 0 to 10, which corresponds to a subjective tack and seal rating determined by the operator:
- Block resistance level being 7 or higher is acceptable. The higher the value, the better the block resistance.
- Coating compositions to be tested are casted on scrub vinyl charts using a 6 Mil Bird applicator.
- the obtained panels dry in a CTR (25°C and 50%RH) for 7 days to form dry coating films with thickness of 50-60 ⁇ m.
- the panels are merged in tap water for 4 hours and 24 hours, respectively.
- blistering and swell of the coating films are inspected visually.
- Water resistance for 4 hours and 24 hours, respectively, is rated as 1-5 according to the number of blisters as follows,
- Coating compositions to be tested are casted on scrub vinyl charts using a 6 Mil Bird applicator.
- the obtained panels then dry in a CTR (25°C; 50%RH) for 7 days to form dry coating films with thickness of 50-60 ⁇ m.
- a cotton applicator dipped with 95%ethanol solution is used to do double rub over the coating films. Cycles to totally remove the coating films are recorded. Cycles being ⁇ 100 is acceptable. The more the cycles, the better the ethanol resistance.
- SEC analysis is performed generally by an Agilent 1200. A sample is dissolved in tetrahydrofuran (THF) /formic acid (FA) (5%) with a concentration of 2 mg/mL and then filtered through 0.45 ⁇ m polytetrafluoroethylene (PTFE) filter prior to SEC analysis.
- THF tetrahydrofuran
- FA formic acid
- PTFE polytetrafluoroethylene
- Scrub vinyl Leneta charts are secured to an Aluminum Drawdown Plate in a CTR (23°C and 50%RH) .
- Coating compositions to be tested are drawn down lengthwise on the charts using a 6 mil drawdown bar with wet thickness 150 ⁇ 5 microns.
- 12 crosses in the shape of an “X” are made by cutting through the freshly coated wet film using the tip of a brush handle.
- 1/4 of the brush is dipped into the coating composition, and then 12 brush strokes are applied over the first X, followed by brushing other “X” at an interval time of 1 minute between brushing each “X” using the same number of brush strokes for each time.
- the starting time is recorded as the time when brushing the first “X.
- the coating composition is allowed to dry for 24 hours in the CTR.
- Wet edge time is recorded as the latest time when the edge of the drawdown coating film is visible to the naked eye.
- Repair time is recorded as the latest time when the “X” is no longer visible to the naked eye.
- the wet edge time being 2 minutes or more and the repair time being 7 minutes or more are acceptable.
- Coating compositions to be tested are drawn down on vinyl charts with 150 ⁇ m wet thickness.
- the obtained panels then dry in a CTR (23°C and 50%RH) for 7 days to form dry coating films with thickness of 50-60 ⁇ m.
- liquid stains including wine, coffee, blur food dye, and green tea, respectively, are placed on the dried coating films and kept for 30 minutes.
- the obtained panels are then rinsed with flowing tap water.
- a cork wrapped with gauze saturated with detergents is fitted on a scrub machine and used to remove stains. Ten cycles are used for liquid stains.
- the panels are rinsed again and dry in the CTR.
- the stain resistance is evaluated by stain removal and reported on a numerical scale of 1 to 5:
- Stain resistance level being at least 3 is acceptable. 5 means the best stain resistance and 1 means the worst stain resistance.
- DISPONIL Fes-32 surfactant 11.61 grams (g) , 31%active
- deionized water 414.20 g
- MMA, MAA, PEM, DAAM, and MMP based on dosages described in Table 1, were slowly added into the resulting surfactant solution to obtain the monomer emulsion.
- a solution containing DISPONIL Fes-32 surfactant (3.87 g, 31%active) and deionized water (1667.4 g) was added into a 4-neck, 5-liter round bottom flask equipped with a thermocouple, a cooling condenser and an agitator, and was heated to 85°C under a nitrogen atmosphere.
- An aqueous APS initiator solution (0.88 g APS in 56.48 g deionized water) and 5.0%by weight of the monomer emulsion obtained above were then added into the flask. Within about 5 minutes, initiation of polymerization was confirmed by a temperature increase by 3°C and a change of the external appearance of the reaction mixture.
- the oligomers O2-O5 were prepared according to the same procedure as described above for preparing the oligomer O1, based on formulations described in Table 1.
- the oligomers O3-O5 were prepared as comparative oligomers. Properties of the obtained oligomers O2-O5 are summarized in Table 1.
- Monomer Emulsion 1 RHODAFAC RS-610-A25 surfactant (13.4g, 25%active) was dissolved in deionized water (58.9g) , with stirring. Monomer Emulsion 1 was prepared by adding the following monomers slowly to the agitated surfactant solution: 139.8 g BA, 1.7 g ALMA, 167.7 g MMA, and 1.6 g MAA.
- Monomer Emulsion 2 RHODAFAC RS-610-A25 surfactant (39.9 g, 25%active) was dissolved in deionized water (124.3 g) , with stirring. Monomer Emulsion 2 was prepared by adding the following monomers slowly to the agitated surfactant solution: 276 g MMA, 163 g BA, 7.9 g DAAM, 4.6 g BP and 15.8 g UMA (50%active) .
- An aqueous sodium persulfate (SPS) initiator solution (1.6 g SPS in 8.6 g deionized water)
- 43 g of Monomer Emulsion 1 were added to the flask.
- initiation of polymerization was confirmed by the increase of temperature by 3°C and a change of the external appearance of the reaction mixture.
- the remainder of the Monomer Emulsion 1 was added gradually to the flask over a period of 105 minutes, with stirring. Polymerization reaction temperature was maintained at 84 to 86°C. After completing the addition, the vessel that containing the Monomer Emulsion 1 and the feeding pipes leading into the flask were rinsed with 17.2 g deionized water, and the rinse was added back to the flask.
- Coating compositions of Exs 1-2 and Comp Exs A-C comprising the oligomer and MP emulsion polymer obtained above were prepared based on formulations described in Table 2. Ingredients of the grind were mixed using a conventional lab mixer. The binder was added into the grind. Then other ingredients of the let down were added into the resultant mixture. Properties of the coating compositions and dry coating films made therefrom were measured according to the test methods described above and results are listed in Table 3.
- Coating compositions of Exs 3-5 and Comp Exs D-J were prepared according to the same procedure and substantially the same formulation as described above in Ex 1, except that different open time additive (OTA) and/or different dosage of OTA were used based on formulations described in Tables 4-5.
- the obtained coating compositions were evaluated according to the test methods described above. Properties of the coating compositions and dry coating films made therefrom are listed in Tables 4-5.
- All the coating compositions obtained above had a volume solid content of 37.05%and a pigment volume concentration (PVC) of about 19.23%.
- the gloss level of dry coating films made from these coating compositions was about 70-85 at 60°.
- the coating composition of Comp Ex A containing no OTA showed short open time (e.g., wet edge time: 1 minute, repair time: 4 minutes) .
- the coating composition of Comp Ex B showed improved open time.
- the viscosity (KU /ICI /BF) of the coating composition of Comp Ex B was significantly decreased.
- Dry coating films made from Comp Ex B also showed poor stain resistance.
- the coating composition of Comp Ex C comprising 2.37% (by solids weight based on the solids weight of the MP emulsion polymer) oligomer O5 that contained no polymerized unit of PEM demonstrated poor open time.
- the coating composition of Ex 1 showed improved open time and significantly increased viscosity (KU /ICI /BF) while maintaining properties of dry coating films obtained therefrom, e.g., stain resistance.
- oligomer O1 instead of OROTAN 731 A in the grind stage acted as a dispersant and dispersed the pigment well, and also significantly increased the viscosity (KU /ICI /BF) and extended the open time of the coating composition, while maintaining properties of dry coating films such as gloss and stain resistance.
- the coating compositions of Exs 3 and 4 comprising 3%and 5%oligomer O1, respectively showed increased open time and provided dry coating films with good properties such as stain resistance, water resistance, block resistance and ethanol resistance.
- the coating compositions of Comp Exs F and G comprising oligomer O3 (M w : about 34, 930) as OTAs at a dosage of 3%and 5%, respectively, showed poor open time.
- the coating composition of Ex 5 comprising 5%oligomer O2 (M w : 24, 429) as OTA showed extended open time while providing dry coating film with good properties.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Dispersion Chemistry (AREA)
- Paints Or Removers (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
Claims (14)
- An aqueous coating composition, comprising:(i) an emulsion polymer having a weight average molecular weight more than 80,000;(ii) an oligomer comprising as polymerized units, based on the weight of the oligomer,(a1) from 75% to 92% by weight of a hydrophilic (meth) acrylic acid alkyl ester;(a2) from 2.1% to 10% by weight of diacetone (meth) acrylamide; and(a3) from 5% to 15% by weight of acid monomers comprising from 4% to 14% by weight of an α, β-ethylenically unsaturated carboxylic acid and from 1% to 9% by weight of a phosphorous-containing acid monomer;wherein the oligomer has a weight average molecular weight of from 6,000 to 30,000; and the oligomer is present in an amount of from 1% to 7.5% by weight, based on the dry weight of the emulsion polymer; and(iii) a polyfunctional carboxylic hydrazide containing at least two hydrazide groups per molecule.
- The coating composition of claim 1, wherein the oligomer is present in an amount of from 1.3% to 6% by weight, based on the dry weight of the emulsion polymer.
- The coating composition of claim 1, wherein the oligomer has a weight average molecular weight of from 6,000 to 28,000.
- The coating composition of claim 1, wherein the phosphorous-containing acid monomer is selected from phosphoethyl (meth) acrylate, phosphopropyl (meth) acrylate, phosphobutyl (meth) acrylate, or mixtures thereof.
- The coating composition of claim 1, wherein the hydrophilic (meth) acrylic acid alkyl ester is selected from methyl (meth) acrylate, ethyl (meth) acrylate, or mixtures thereof.
- The coating composition of claim 1, wherein the oligomer comprises as polymerized units, based on the weight of the oligomer,(a1) from 80% to 90% by weight of the hydrophilic (meth) acrylic acid alkyl ester;(a2) from 3% to 6% by weight of diacetone (meth) acrylamide; and(a3) from 7% to 13% by weight of the acid monomers comprising from 5% to 10% by weight of the α, β-ethylenically unsaturated carboxylic acid and from 3% to 6% by weight of the phosphorous-containing acid monomer.
- The coating composition of claim 1, wherein the polyfunctional carboxylic hydrazide is selected from adipic dihydrazide, oxalic dihydrazide, isophthalic dihydrazide, polyacrylic polyhydrazide, or mixtures thereof.
- The coating composition of claim 1, wherein the emulsion polymer is selected from an acrylic polymer, a styrene-acrylic copolymer, a blend of polyurethane and an acrylic polymer or copolymer, a polyurethane-acrylic hybrid polymer, or mixtures thereof.
- The coating composition of claim 1, wherein the emulsion polymer comprises, as polymerized units, diacetone (meth) acrylamide.
- The coating composition of claim 1, further comprising (iv) pigments and/or extenders.
- A process of preparing an aqueous coating composition of any one of claims 1-10, comprising: admixing (i) an emulsion polymer, (ii) an oligomer, and (iii) a polyfunctional carboxylic hydrazide containing at least two hydrazide groups per molecule;wherein the emulsion polymer has a weight average molecular weight more than 80,000, and the oligomer comprises as polymerized units, based on the weight of the oligomer,(a1) from 75% to 92% by weight of a hydrophilic (meth) acrylic acid alkyl ester;(a2) from 2.1% to 10% by weight of diacetone (meth) acrylamide; and(a3) from 5% to 15% by weight of acid monomers comprising from 4% to 14% by weight of an α, β-ethylenically unsaturated carboxylic acid and from 1% to 9% by weight of a phosphorous-containing acid monomer;wherein the oligomer has a weight average molecular weight of from 6,000 to 30,000; and the oligomer is present in an amount of from 1% to 7.5% by weight, based on the dry weight of the emulsion polymer.
- The process of claim 11, wherein the coating composition further comprises pigments and/or extenders.
- The process of claim 12, wherein the pigments and/or extenders are first mixed with the oligomer in the absence of a dispersant prior to adding to the coating composition.
- A method of extending open time of an aqueous coating composition comprising an emulsion polymer and a polyfunctional carboxylic hydrazide containing at least two hydrazide groups per molecule, comprising:admixing the emulsion polymer and the polyfunctional carboxylic hydrazide with an oligomer,wherein the emulsion polymer has a weight average molecular weight more than 80,000, and the oligomer comprises as polymerized units, based on the weight of the oligomer,(a1) from 75% to 92% by weight of a hydrophilic (meth) acrylic acid alkyl ester;(a2) from 2.1% to 10% by weight of diacetone (meth) acrylamide; and(a3) from 5% to 15% by weight of acid monomers comprising from 4% to 14% by weight of an α, β-ethylenically unsaturated carboxylic acid and from 1% to 9% by weight of a phosphorous-containing acid monomer;wherein the oligomer has a weight average molecular weight of from 6,000 to 30,000; and the oligomer is present in an amount of from 1% to 7.5% by weight, based on the dry weight of the emulsion polymer.
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP15869094.1A EP3234027B1 (en) | 2014-12-19 | 2015-09-28 | Aqueous coating composition and process of making the same |
BR112017012902-7A BR112017012902B1 (en) | 2014-12-19 | 2015-09-28 | Aqueous coating composition, a process for preparing an aqueous coating composition, and a method of prolonging the open time of an aqueous coating composition |
KR1020177018280A KR102404413B1 (en) | 2014-12-19 | 2015-09-28 | Aqueous coating composition and process of making the same |
AU2015366910A AU2015366910B2 (en) | 2014-12-19 | 2015-09-28 | Aqueous coating composition and process of making the same |
SG11201704626TA SG11201704626TA (en) | 2014-12-19 | 2015-09-28 | Aqueous coating composition and process of making the same |
US15/531,485 US9951169B2 (en) | 2014-12-19 | 2015-09-28 | Aqueous coating composition and process of making the same |
CN201580067563.5A CN107429084B (en) | 2014-12-19 | 2015-09-28 | Water-based paint composition and preparation method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2014/094339 WO2016095197A1 (en) | 2014-12-19 | 2014-12-19 | Aqueous polymer dispersion and preparation method thereof |
CNPCT/CN2014/094339 | 2014-12-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2016095583A1 true WO2016095583A1 (en) | 2016-06-23 |
Family
ID=56125657
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/094339 WO2016095197A1 (en) | 2014-12-19 | 2014-12-19 | Aqueous polymer dispersion and preparation method thereof |
PCT/CN2015/090902 WO2016095583A1 (en) | 2014-12-19 | 2015-09-28 | Aqueous coating composition and process of making the same |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2014/094339 WO2016095197A1 (en) | 2014-12-19 | 2014-12-19 | Aqueous polymer dispersion and preparation method thereof |
Country Status (9)
Country | Link |
---|---|
US (2) | US10487166B2 (en) |
EP (2) | EP3234014B1 (en) |
KR (1) | KR102404413B1 (en) |
CN (2) | CN107087413B (en) |
AU (1) | AU2015366910B2 (en) |
BR (2) | BR112017012880B1 (en) |
MX (1) | MX2017007627A (en) |
SG (1) | SG11201704626TA (en) |
WO (2) | WO2016095197A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020113366A1 (en) | 2018-12-03 | 2020-06-11 | Dow Global Technologies Llc | Dispersant and waterborne epoxy coating composition |
EP3692094A4 (en) * | 2017-09-25 | 2021-06-23 | Dow Global Technologies LLC | Aqueous polymer composition |
WO2024057235A1 (en) * | 2022-09-16 | 2024-03-21 | Consorcio Comex, S.A. De C.V. | Multi-surface coating composition |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BR112017024689B1 (en) | 2015-06-17 | 2022-04-12 | Clariant International Ltd | Water-soluble or water-swellable polymers, their production process, their use, process of cementing deep drilling using a cement slurry and polymeric mixture |
MX2016016046A (en) * | 2015-12-18 | 2017-06-19 | Rohm & Haas | Aqueous multi-stage emulsion copolymer compositions for use in joinery applications. |
US11142601B2 (en) * | 2016-06-16 | 2021-10-12 | Dow Global Technologies Llc | Aqueous polymer dispersion and aqueous coating composition comprising the same |
AU2017204813B2 (en) * | 2016-08-08 | 2021-09-09 | Rohm And Haas Company | Paint composition |
JP7032402B2 (en) | 2016-12-12 | 2022-03-08 | クラリアント・インターナシヨナル・リミテツド | Polymers containing certain levels of biobase carbon |
EP3551163B1 (en) | 2016-12-12 | 2021-02-17 | Clariant International Ltd | Use of bio-based polymer in a cosmetic, dermatological or pharmaceutical composition |
US11401362B2 (en) | 2016-12-15 | 2022-08-02 | Clariant International Ltd | Water-soluble and/or water-swellable hybrid polymer |
WO2018108667A1 (en) | 2016-12-15 | 2018-06-21 | Clariant International Ltd | Water-soluble and/or water-swellable hybrid polymer |
US11542343B2 (en) | 2016-12-15 | 2023-01-03 | Clariant International Ltd | Water-soluble and/or water-swellable hybrid polymer |
EP3554643A1 (en) | 2016-12-15 | 2019-10-23 | Clariant International Ltd | Water-soluble and/or water-swellable hybrid polymer |
MX2019007744A (en) * | 2016-12-28 | 2019-09-05 | Dow Global Technologies Llc | Aqueous polymer dispersion and process of making the same. |
MX2019009492A (en) * | 2017-02-08 | 2019-09-27 | Swimc Llc | Environmentally friendly aqueous coating composition. |
AU2018274905B2 (en) * | 2017-12-13 | 2024-03-21 | Dow Global Technologies Llc | Aqueous dispersion of microspheres p-acid functionalized polymer particles |
AU2017444344B2 (en) * | 2017-12-25 | 2024-01-04 | Dow Global Technologies Llc | Aqueous dispersion of multistage polymer |
US10858531B2 (en) * | 2018-04-18 | 2020-12-08 | Dow Global Technologies Llc | Aqueous dispersion of keto- and phosphorus acid monomer-functionalized polymer particles |
WO2019218372A1 (en) | 2018-05-18 | 2019-11-21 | Dow Global Technologies Llc | A polyisocyanate component, a polyurethane foaming system and an article made therefrom |
CA3104925A1 (en) * | 2018-07-10 | 2020-01-16 | Dow Global Technologies Llc | Aqueous dispersion of multi-stage polymeric particles and process of making the same |
MX2020013430A (en) * | 2018-07-12 | 2021-03-09 | Dow Global Technologies Llc | Aqueous polymer dispersion and process of making same. |
US11193039B2 (en) | 2018-07-16 | 2021-12-07 | Ppg Industries Ohio, Inc. | Stain resistant coating compositions |
AU2019204505C1 (en) * | 2018-07-19 | 2023-10-26 | Rohm And Haas Company | Process for preparing an aqueous dispersion of multistage polymer particles |
CN110872366B (en) * | 2018-09-04 | 2023-10-20 | 罗门哈斯公司 | Process for preparing aqueous dispersions of multistage polymer particles |
CN110872367B (en) * | 2018-09-04 | 2023-10-03 | 罗门哈斯公司 | Aqueous dispersions of multistage polymer particles |
US20210347998A1 (en) * | 2018-10-30 | 2021-11-11 | Dow Global Technologies Llc | Sealant composition |
CN113508164B (en) * | 2018-12-19 | 2022-10-04 | 康宁股份有限公司 | Biocidal coatings |
BR112021016368A2 (en) * | 2019-03-19 | 2021-10-19 | Dow Global Technologies Llc | AQUEOUS DISPERSION, PROCESS FOR PREPARING THE AQUEOUS DISPERSION, AND, AQUEOUS COATING COMPOSITION |
US20220204669A1 (en) * | 2019-06-11 | 2022-06-30 | Dow Global Technologies Llc | Aqueous dispersion comprising a multistage polymer and process of making the same |
US11313048B2 (en) | 2019-06-27 | 2022-04-26 | Prc-Desoto International, Inc. | Addition polymer for electrodepositable coating compositions |
US11485874B2 (en) | 2019-06-27 | 2022-11-01 | Prc-Desoto International, Inc. | Addition polymer for electrodepositable coating compositions |
US11274167B2 (en) | 2019-06-27 | 2022-03-15 | Prc-Desoto International, Inc. | Carbamate functional monomers and polymers and use thereof |
WO2021026880A1 (en) * | 2019-08-15 | 2021-02-18 | Dow Global Technologies Llc | Two-component polyurethane composition |
WO2021134164A1 (en) * | 2019-12-30 | 2021-07-08 | Dow Global Technologies Llc | Aqueous composition and method of preparing the same |
ES2924476T3 (en) * | 2020-01-08 | 2022-10-07 | Evonik Operations Gmbh | Formulation and its use as defoamer |
EP4157954A4 (en) * | 2020-05-25 | 2024-03-06 | Dow Global Technologies LLC | Aqueous coating composition and process for preparing the same |
CN115768840B (en) | 2020-06-28 | 2024-07-30 | 陶氏环球技术有限责任公司 | Aqueous dispersion of multistage polymer particles and method for producing same |
EP3950854B1 (en) * | 2020-08-06 | 2023-06-07 | Heubach Holding Switzerland Ltd | Coated building boards |
US20230287235A1 (en) * | 2020-08-11 | 2023-09-14 | Allnex Netherlands B.V. | Waterborne coating composition |
EP4430095A1 (en) * | 2021-11-08 | 2024-09-18 | Dow Global Technologies LLC | Aqueous coating composition and process for preparing the same |
EP4437010A1 (en) * | 2021-11-23 | 2024-10-02 | Basf Se | Process for preparing an aqueous polymer dispersion |
CN114769943A (en) * | 2022-04-27 | 2022-07-22 | 深圳市福特佳电子有限公司 | Flux paste, solder paste and soldering method |
CN115197612A (en) * | 2022-08-10 | 2022-10-18 | 中冶武汉冶金建筑研究院有限公司 | Environment-friendly anti-mosquito coating for interior wall and preparation method thereof |
WO2024138598A1 (en) * | 2022-12-30 | 2024-07-04 | Dow Global Technologies Llc | Coating composition and method of preparing coating composition |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040039089A1 (en) * | 2000-10-14 | 2004-02-26 | Buckmann Alfred Jean Paul | Aqueous vinyl polymer coating compositions |
US20050107527A1 (en) * | 2003-11-13 | 2005-05-19 | Pavel Holub | Aqueous dispersions containing multi-stage emulsion polymers |
US20060217483A1 (en) * | 2003-03-28 | 2006-09-28 | Ronald Tennebroek | Aqueous pigmented coating composition with improved open time comprising crosslinkable oligomer(s) and dispersed polymer(s) |
CN103261306A (en) * | 2010-12-17 | 2013-08-21 | 国际人造丝公司 | Aqueous latex coating compositions |
CN103443146A (en) * | 2011-03-25 | 2013-12-11 | 树脂核动力工业有限公司 | Waterborne coating composition |
US20140323608A1 (en) * | 2011-12-15 | 2014-10-30 | Celanese Emulsions Gmbh | Polymer dispersions |
Family Cites Families (26)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3443964A1 (en) * | 1984-12-01 | 1986-06-12 | Basf Ag, 6700 Ludwigshafen | METHOD FOR PRODUCING POLYMER DISPERSIONS THAT MAKE BLOCK-RESISTANT FILMS |
US4876313A (en) | 1986-08-29 | 1989-10-24 | Rohm And Haas Company | Grafted core-shell polymer compositions using polyfunctional compounds |
US5270380A (en) | 1992-10-13 | 1993-12-14 | Rohm And Haas Company | Method for extending the open time of an aqueous coating composition |
GB9408725D0 (en) | 1994-05-03 | 1994-06-22 | Zeneca Resins Bv | Production of aqueous polymer compositions |
US5981642A (en) * | 1994-12-21 | 1999-11-09 | Zeneca Limited | Method of grafting |
AR024696A1 (en) | 1999-07-08 | 2002-10-23 | Armstrong World Ind Inc | COMPOUNDS TO PROVIDE DESIRED PROPERTIES TO THE MATERIALS |
US6872789B2 (en) | 2001-11-07 | 2005-03-29 | Akzo Nobel N.V. | Cross-linkable polymer composition |
GB0207351D0 (en) * | 2002-03-28 | 2002-05-08 | Avecia Bv | Aqueous coating composition |
ES2294725T3 (en) * | 2004-06-11 | 2008-04-01 | Nuplex Resins B.V. | POLYMER IN MULTIPHASIC DISPERSION IN WATER BASED. |
GB0501854D0 (en) | 2005-01-31 | 2005-03-09 | Ici Plc | Improved low VOC coating composition |
RU2411271C2 (en) | 2005-06-01 | 2011-02-10 | Акцо Нобель Коатингс Интернэшнл Б.В. | Aqueous coating composition |
US8444758B2 (en) * | 2006-10-19 | 2013-05-21 | Eastman Chemical Company | Low voc additives for extending the wet edge and open time of aqueous coatings |
US8877852B2 (en) | 2006-12-15 | 2014-11-04 | Rohm And Haas Company | Phosphorous-containing organic polymer and compositions and processes including same |
EP2159235B1 (en) | 2008-08-05 | 2010-12-29 | Rohm and Haas Company | Aqueous polymeric dispersion and method for providing improved adhesion |
ES2545733T3 (en) | 2008-12-01 | 2015-09-15 | Basf Se | Aqueous binder composition containing oligomers |
DE102009001776A1 (en) * | 2009-03-24 | 2010-09-30 | Evonik Röhm Gmbh | Composition comprising as aqueous dispersion preferably benzophenone-containing (meth) acrylate polymers mixed with these different (meth) acrylate polymers and the use of the composition |
EP2445943B1 (en) * | 2009-12-18 | 2013-06-12 | Basf Se | Cold sealed recloseable packaging and composition for the production thereof |
EP2371870B1 (en) | 2010-04-01 | 2012-07-11 | Rohm and Haas Company | Multistage emulsion polymer and coatings formed therefrom |
US20120165428A1 (en) | 2010-12-23 | 2012-06-28 | Columbia Insurance Company | Polymer for Extending the Open Time of Waterborne Architectural Coatings |
US20120252972A1 (en) | 2011-03-30 | 2012-10-04 | Basf Se | Aqueous multistage polymer dispersion, process for its preparation, and use thereof as binder for coating substrates |
CA2829711A1 (en) | 2011-03-30 | 2012-10-04 | Basf Se | Aqueous multistage polymer dispersion, process for its preparation, and use thereof as binder for coating substrates |
JP2015505883A (en) | 2011-12-15 | 2015-02-26 | ビーエーエスエフ ソシエタス・ヨーロピアBasf Se | Use of aqueous polymer dispersions to improve resistance to chemical effects |
WO2013113930A1 (en) | 2012-02-03 | 2013-08-08 | Dsm Ip Assets B.V. | Block copolymer, process and composition |
CN109233528B (en) * | 2012-03-14 | 2021-06-29 | 威士伯采购公司 | Modified crush-resistant latex topcoat compositions for fiber cement substrates |
WO2014190515A1 (en) | 2013-05-30 | 2014-12-04 | Dow Global Technologies Llc | Wood coating composition |
CN106029720A (en) | 2013-12-13 | 2016-10-12 | 巴斯夫欧洲公司 | Multistage polymers and compositions thereof |
-
2014
- 2014-12-19 US US15/535,103 patent/US10487166B2/en active Active
- 2014-12-19 WO PCT/CN2014/094339 patent/WO2016095197A1/en active Application Filing
- 2014-12-19 MX MX2017007627A patent/MX2017007627A/en unknown
- 2014-12-19 EP EP14908232.3A patent/EP3234014B1/en active Active
- 2014-12-19 BR BR112017012880-2A patent/BR112017012880B1/en active IP Right Grant
- 2014-12-19 CN CN201480083943.3A patent/CN107087413B/en active Active
-
2015
- 2015-09-28 BR BR112017012902-7A patent/BR112017012902B1/en active IP Right Grant
- 2015-09-28 US US15/531,485 patent/US9951169B2/en active Active
- 2015-09-28 WO PCT/CN2015/090902 patent/WO2016095583A1/en active Application Filing
- 2015-09-28 EP EP15869094.1A patent/EP3234027B1/en active Active
- 2015-09-28 KR KR1020177018280A patent/KR102404413B1/en active IP Right Grant
- 2015-09-28 CN CN201580067563.5A patent/CN107429084B/en active Active
- 2015-09-28 SG SG11201704626TA patent/SG11201704626TA/en unknown
- 2015-09-28 AU AU2015366910A patent/AU2015366910B2/en not_active Ceased
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040039089A1 (en) * | 2000-10-14 | 2004-02-26 | Buckmann Alfred Jean Paul | Aqueous vinyl polymer coating compositions |
US20060217483A1 (en) * | 2003-03-28 | 2006-09-28 | Ronald Tennebroek | Aqueous pigmented coating composition with improved open time comprising crosslinkable oligomer(s) and dispersed polymer(s) |
US20050107527A1 (en) * | 2003-11-13 | 2005-05-19 | Pavel Holub | Aqueous dispersions containing multi-stage emulsion polymers |
CN103261306A (en) * | 2010-12-17 | 2013-08-21 | 国际人造丝公司 | Aqueous latex coating compositions |
CN103443146A (en) * | 2011-03-25 | 2013-12-11 | 树脂核动力工业有限公司 | Waterborne coating composition |
US20140323608A1 (en) * | 2011-12-15 | 2014-10-30 | Celanese Emulsions Gmbh | Polymer dispersions |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3692094A4 (en) * | 2017-09-25 | 2021-06-23 | Dow Global Technologies LLC | Aqueous polymer composition |
US11124670B2 (en) | 2017-09-25 | 2021-09-21 | Dow Global Technologies Llc | Aqueous polymer composition |
WO2020113366A1 (en) | 2018-12-03 | 2020-06-11 | Dow Global Technologies Llc | Dispersant and waterborne epoxy coating composition |
EP3891233A4 (en) * | 2018-12-03 | 2022-07-20 | Dow Global Technologies LLC | Dispersant and waterborne epoxy coating composition |
WO2024057235A1 (en) * | 2022-09-16 | 2024-03-21 | Consorcio Comex, S.A. De C.V. | Multi-surface coating composition |
Also Published As
Publication number | Publication date |
---|---|
BR112017012880A2 (en) | 2018-01-30 |
EP3234014A1 (en) | 2017-10-25 |
EP3234027B1 (en) | 2019-06-19 |
EP3234014A4 (en) | 2018-10-17 |
US9951169B2 (en) | 2018-04-24 |
BR112017012902A2 (en) | 2018-01-30 |
CN107429084A (en) | 2017-12-01 |
US10487166B2 (en) | 2019-11-26 |
US20170321059A1 (en) | 2017-11-09 |
WO2016095197A1 (en) | 2016-06-23 |
MX2017007627A (en) | 2017-09-18 |
CN107087413B (en) | 2020-08-04 |
US20170275408A1 (en) | 2017-09-28 |
AU2015366910B2 (en) | 2019-05-02 |
SG11201704626TA (en) | 2017-07-28 |
EP3234014B1 (en) | 2021-05-05 |
KR20170095264A (en) | 2017-08-22 |
BR112017012880B1 (en) | 2021-12-21 |
EP3234027A4 (en) | 2018-06-20 |
KR102404413B1 (en) | 2022-06-02 |
CN107429084B (en) | 2019-12-10 |
BR112017012902B1 (en) | 2022-03-03 |
CN107087413A (en) | 2017-08-22 |
EP3234027A1 (en) | 2017-10-25 |
AU2015366910A1 (en) | 2017-07-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9951169B2 (en) | Aqueous coating composition and process of making the same | |
EP3380534B1 (en) | Aqueous polymer dispersion and process of making the same | |
AU2016429113B2 (en) | Aqueous coating composition | |
EP3870663A1 (en) | Aqueous dispersion and aqueous coating composition | |
AU2017425706B2 (en) | Aqueous coating composition | |
EP3918016B1 (en) | Aqueous coating composition | |
AU2016411853B2 (en) | Aqueous polymer dispersion and aqueous coating composition comprising the same | |
AU2016424720B2 (en) | Aqueous polymer composition | |
CN111954698B (en) | Aqueous coating composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 15869094 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 15531485 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 11201704626T Country of ref document: SG |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112017012902 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20177018280 Country of ref document: KR Kind code of ref document: A |
|
REEP | Request for entry into the european phase |
Ref document number: 2015869094 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2015366910 Country of ref document: AU Date of ref document: 20150928 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 112017012902 Country of ref document: BR Kind code of ref document: A2 Effective date: 20170614 |