WO2016093056A1 - 内燃機関の燃料制御装置 - Google Patents

内燃機関の燃料制御装置 Download PDF

Info

Publication number
WO2016093056A1
WO2016093056A1 PCT/JP2015/082971 JP2015082971W WO2016093056A1 WO 2016093056 A1 WO2016093056 A1 WO 2016093056A1 JP 2015082971 W JP2015082971 W JP 2015082971W WO 2016093056 A1 WO2016093056 A1 WO 2016093056A1
Authority
WO
WIPO (PCT)
Prior art keywords
boost
voltage
voltage value
boosted voltage
switching element
Prior art date
Application number
PCT/JP2015/082971
Other languages
English (en)
French (fr)
Inventor
和樹 木内
Original Assignee
日立オートモティブシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立オートモティブシステムズ株式会社 filed Critical 日立オートモティブシステムズ株式会社
Priority to EP15868540.4A priority Critical patent/EP3232038B1/en
Priority to JP2016563600A priority patent/JP6309653B2/ja
Priority to CN201580066078.6A priority patent/CN107002583B/zh
Priority to US15/532,589 priority patent/US10428759B2/en
Publication of WO2016093056A1 publication Critical patent/WO2016093056A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/40Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
    • F02D41/401Controlling injection timing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/2003Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening
    • F02D2041/2006Output circuits, e.g. for controlling currents in command coils using means for creating a boost voltage, i.e. generation or use of a voltage higher than the battery voltage, e.g. to speed up injector opening by using a boost capacitor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/20Output circuits, e.g. for controlling currents in command coils
    • F02D2041/202Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit
    • F02D2041/2051Output circuits, e.g. for controlling currents in command coils characterised by the control of the circuit using voltage control
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D2041/389Controlling fuel injection of the high pressure type for injecting directly into the cylinder
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/021Engine temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2200/00Input parameters for engine control
    • F02D2200/02Input parameters for engine control the parameters being related to the engine
    • F02D2200/08Exhaust gas treatment apparatus parameters
    • F02D2200/0802Temperature of the exhaust gas treatment apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D2250/00Engine control related to specific problems or objectives
    • F02D2250/14Timing of measurement, e.g. synchronisation of measurements to the engine cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D35/00Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for
    • F02D35/02Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions
    • F02D35/023Controlling engines, dependent on conditions exterior or interior to engines, not otherwise provided for on interior conditions by determining the cylinder pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting
    • F02D41/064Introducing corrections for particular operating conditions for engine starting or warming up for starting at cold start
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/18Circuit arrangements for obtaining desired operating characteristics, e.g. for slow operation, for sequential energisation of windings, for high-speed energisation of windings
    • H01F7/1805Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current
    • H01F7/1816Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current making use of an energy accumulator
    • H01F2007/1822Circuit arrangements for holding the operation of electromagnets or for holding the armature in attracted position with reduced energising current making use of an energy accumulator using a capacitor to produce a boost voltage

Definitions

  • the present invention relates to a fuel control device for an internal combustion engine, and more particularly to a fuel control device for an internal combustion engine used in an internal combustion engine that directly injects fuel from a fuel injection valve into a cylinder. Related.
  • An in-cylinder internal combustion engine directly injects fuel into a combustion chamber of a cylinder by a fuel injection valve, and burns the injected fuel by reducing the particle size of fuel injected from the fuel injection valve. To reduce harmful exhaust gas substances and improve the output of internal combustion engines.
  • the fuel control device for a direct injection internal combustion engine has a booster circuit and uses the generated boosted voltage to produce a fuel injection valve. A large current is passed through.
  • the boosted voltage detection unit observes the boosted voltage, stops the boosting operation when the boosted voltage reaches a specified value, and the boosted voltage is a voltage higher than the specified value from the specified value. When there is a decrease, control is performed so that the boosting operation is started again.
  • the boosting operation of the booster circuit stops when the voltage value observed by the boosted voltage detector reaches the specified voltage value.
  • a current flows through the boost capacitor when the boosting switching element provided in the booster circuit is turned off.
  • a voltage different from the normal boosted voltage may be added and detected.
  • the boosted voltage detection unit may observe the added boosted voltage and erroneously detect that the boosted voltage value has reached a specified value. This phenomenon is particularly noticeable at low temperatures where the ambient temperature is low.
  • the ESR component (equivalent series resistance) of the boost capacitor composed of the electrolytic capacitor that constitutes the boost circuit increases, and when this switching component is turned off due to the increase in the resistance component, an extra voltage is generated due to the current flowing into the boost capacitor. Generated.
  • a configuration in which a current flows through the boost capacitor when the switching element is turned on At this time, when the detection timing for detecting the boosted voltage arrives, an excess voltage generated by the ESR component and the voltage of the normal boosting capacitor are added to detect an incorrect voltage.
  • the boost operation is stopped before reaching the originally specified normal boost voltage value. Will be controlled by the value.
  • the time required to open the fuel injection valve becomes longer. As described above, the time required for opening the fuel injection valve varies depending on the temperature condition, and there is a problem that the fuel injection amount is not stabilized and the fuel consumption is deteriorated.
  • An object of the present invention is to provide a fuel control apparatus for an internal combustion engine that can detect a correct boosted voltage regardless of temperature conditions, stabilize the boosted voltage value, and inject an accurate fuel injection amount from a fuel injection valve. There is to do.
  • a feature of the present invention is that a boosted voltage value detected when at least a boost operation is being performed and no current flows into the boost capacitor is a normal boosted voltage value, and the normal boosted voltage value is compared with a specified value of the boosted voltage. And the step-up operation is controlled.
  • the boosted voltage can be stabilized at a regular boosted voltage value regardless of the temperature condition, and an accurate fuel injection amount can be injected from the fuel injection valve, so that fuel consumption can be improved.
  • FIG. 1 It is the schematic which shows an example of the fuel control system of a cylinder injection type internal combustion engine. It is a block diagram which shows the structure of the fuel control apparatus used for the internal combustion engine of a cylinder injection type. It is a time chart figure of each signal concerning drive of a fuel injection valve, and pressure-up operation. It is a wave form diagram which shows the expansion waveform of the step-up current at the time of step-up operation. It is the circuit diagram which displayed the ESR component on the booster circuit. It is explanatory drawing which showed the input signal and step-up voltage to the switching element for the step-up at the time of the conventional low temperature, and the detection timing.
  • FIG. 1 shows an example of the fuel control system of a cylinder injection type internal combustion engine. It is a block diagram which shows the structure of the fuel control apparatus used for the internal combustion engine of a cylinder injection type. It is a time chart figure of each signal concerning drive of a fuel injection valve, and pressure-up operation. It is a wave form diagram which shows the expansion wave
  • FIG. 3 is an explanatory diagram showing an input signal, a boost voltage, and detection timing to a switching element for boosting at a low temperature according to the first embodiment of the present invention.
  • FIG. 3 is a control flowchart for detecting a boosted voltage according to the first embodiment of the present invention. It is a control flowchart figure which shows the detail of the intermittent measurement mode shown in FIG. It is a control flowchart figure for detecting the boost voltage which becomes the 2nd Embodiment of this invention. It is a control flowchart figure for detecting the boost voltage which becomes the 3rd Embodiment of this invention.
  • FIG. 1 is a schematic diagram showing an example of a fuel control system for an in-cylinder internal combustion engine that injects fuel directly into a cylinder.
  • the intake air passes through the air flow sensor 1 and is introduced into the combustion chamber 4 through the intake pipe 3 via the throttle valve 2 that controls the intake air flow rate.
  • the fuel in the fuel tank 5 is pressurized to a high pressure by the high pressure pump 6 and injected from the fuel injection valve 106 into the combustion chamber 4.
  • the fuel injected into the combustion chamber 4 generates an air-fuel mixture with intake air, is ignited by the ignition 7, and burns in the combustion chamber 4.
  • the exhaust gas after combustion in the combustion chamber 4 is discharged to the exhaust pipe 8, and an EGR valve 9 is formed in the middle of the exhaust pipe 8.
  • Part of the exhaust gas (EGR gas) flowing through the exhaust pipe 8 is recirculated into the intake pipe 3 from the EGR valve 9 through the EGR pipe 10.
  • the EGR gas flow rate is adjusted by the EGR valve 9.
  • the exhaust gas discharged to the exhaust pipe 8 is discharged into the atmosphere after the harmful exhaust components are purified by the three-way catalyst 11.
  • a fuel control system for an in-cylinder internal combustion engine includes known sensors such as a crank angle sensor 12, a cam phase sensor 13, an O2 sensor 14, a water temperature sensor 15, and a knock sensor 16.
  • sensors such as a crank angle sensor 12, a cam phase sensor 13, an O2 sensor 14, a water temperature sensor 15, and a knock sensor 16.
  • FIG. 2 shows a fuel control device for an in-cylinder injection internal combustion engine.
  • the internal combustion engine fuel control apparatus includes a control unit 101, a booster circuit 104, and a fuel injection valve drive circuit 105.
  • the control unit 101 is a control unit that controls a later-described boost control unit 207 of the booster circuit 104 and a later-described fuel injection valve control unit 209 of the fuel injection valve drive circuit 105 based on the input signals from the respective sensors described above.
  • peripheral circuits such as a CPU, ROM, and RAM (not shown).
  • the ROM stores a control program, coefficients used for calculation, constants, and the like, and the CPU executes various control functions according to the control program.
  • the booster circuit 104 is a circuit that generates a high voltage necessary for opening the fuel injection valve 106 from an in-vehicle DC voltage source, and includes a booster coil 201, a booster switching element 202, a current detection resistor 203, and a booster capacitor 204. , A backflow prevention diode 208 and a boost control circuit 102.
  • the in-vehicle DC voltage source is, for example, an in-vehicle battery.
  • the voltage of the in-vehicle DC voltage source is referred to as battery power supply voltage VB.
  • Switching element 202 is, for example, an Nch FET.
  • the boosting coil 201 is a coil for generating a high voltage necessary for opening the fuel injection valve 106 from the battery power supply voltage VB.
  • the switching element 202 is an element that performs a switching operation for generating a boost voltage, which is a high voltage necessary for opening the fuel injection valve 106, from the battery power supply VB by the boost coil 201, and is an Nch FET, for example.
  • the current detection resistor 203 is a shunt resistor for detecting a boost current flowing through the boost coil 201.
  • the boost capacitor 204 is an electrolytic capacitor that accumulates the boosted voltage boosted by the boost coil 201.
  • the backflow prevention diode 208 is a diode that prevents backflow of the boost voltage VH accumulated in the boost capacitor 204 to the boost coil 201 side.
  • the boost control circuit 102 is a circuit that controls the boost operation, and includes a boost control unit 207, a boost voltage detection unit 206 (shown as a voltage detection unit in the drawing), and a current detection unit 205.
  • the step-up control unit 207 is a control unit that controls driving of the switching element 202 and includes peripheral circuits such as a CPU, a ROM, and a RAM (not shown).
  • the boost control unit 207 controls the boost voltage detection unit 206, and the boost voltage detection unit 206 is a detection unit that detects the charging voltage stored in the boost capacitor 204, that is, the boost voltage VH.
  • the current detection unit 205 is a detection unit that detects a current flowing through the current detection resistor 203, that is, a current flowing through the booster coil 201.
  • the boosting operation in the boosting control circuit 102 will be described in detail later.
  • the fuel injection valve drive circuit 105 includes a peak current MOSFET 211, a holding current MOSFET 212, a downstream side MOSFET 213, a regenerative diode 214, and a fuel injection valve control unit 209.
  • the peak current MOSFET 211 is a switching element for causing a peak current necessary for opening the fuel injection valve 106 by the boost voltage VH stored in the boost capacitor 204, and the boost voltage VH stored in the boost capacitor 204. Is applied.
  • the holding current MOSFET 212 is a switching element for supplying a holding current necessary for holding the opened state of the fuel injection valve 106, and is applied with the battery power supply voltage VB.
  • the downstream-side MOSFET 213 is an element for causing the booster circuit 104 to regenerate energy stored in the coil of the fuel injection valve 106 via the regenerative diode 214 so as to decrease the current flowing through the fuel injection valve 106 in a short time.
  • the fuel injection valve 106 and the ground are provided.
  • the regenerative diode 214 is a diode for causing the booster circuit 104 to regenerate energy stored in the coil of the fuel injection valve 106 as described above.
  • the fuel injection valve control unit 209 is a control unit that controls each of the MOSFETs 211 to 213 of the fuel injection valve drive circuit 105, and includes peripheral circuits such as a CPU, ROM, and RAM (not shown). The control of the fuel injection valve 106 by the fuel injection valve drive circuit 105 will be described below together with the boosting operation in the boost control circuit 102.
  • FIG. 3 is a time chart of signals related to driving and boosting operation of the fuel injection valve 106.
  • A is a time chart of the fuel injection valve drive signal output from the control unit 101 to the fuel injection valve control unit 209.
  • B is a time chart of the current waveform of the current flowing through the fuel injection valve 106.
  • C is a time chart showing the boost voltage VH, that is, the voltage change of the boost capacitor 204.
  • D is a time chart of a boost control signal for switching on / off of the switching element 202 output from the boost control unit 207.
  • E is a time chart of the boost current flowing through the boost coil 201.
  • (F) is a time chart of a VH drive signal for switching on / off of the peak current MOSFET 211 output from the fuel injection valve control unit 209.
  • (G) is a time chart of an INJ drive signal for switching on / off of the holding current MOSFET 212 output from the fuel injection valve control unit 209.
  • the control part 101 outputs the Hi signal of a fuel injection valve drive signal to the fuel injection valve control part 209 during the period 300.
  • FIG. When the Hi signal of the fuel injection valve drive signal from the control unit 101 is input to the fuel injection valve control unit 209, the fuel injection valve control unit 209 outputs the Hi signal of the fuel injection valve drive signal in the period 300.
  • the fuel injection valve drive circuit 105 is controlled so that the fuel injection valve 106 is energized.
  • the fuel injection valve control unit 209 ends the energization of the fuel injection valve 106.
  • the drive circuit 105 is controlled.
  • the fuel injection valve control unit 209 first converts the Hi signal of the VH drive signal into the peak current MOSFET 211 as shown in (f). Output to.
  • the high voltage of the boost capacitor 204 is applied to the fuel injection valve 106 via the peak current MOSFET 211, and a large drive current of the fuel injection valve flows as in the waveform in the period 301 shown in FIG. .
  • the fuel injection valve 106 is rapidly opened by the drive current of the large fuel injection valve.
  • the fuel injection valve control unit 209 outputs the Hi signal of the VH drive signal to the peak current MOSFET 211 during a period sufficient for the fuel injection valve 106 to open, that is, the period 301, and then outputs the Lo of the VH drive signal.
  • the signal is output to the peak current MOSFET 211.
  • the high voltage of the step-up capacitor 204 applied via the peak current MOSFET 211 is cut off.
  • the fuel injection valve controller 209 repeatedly outputs the Hi signal and Lo signal of the INJ drive signal to the holding current MOSFET 212 until the period 300 ends, that is, during the period 302 of (b).
  • the battery power supply voltage VB is applied to the fuel injector 106 via the holding current MOSFET 212, and the fuel injector current necessary for maintaining the opened state of the fuel injector 106 as shown by the waveform in the period 302. Flows. With this fuel injection valve current, the opened state of the fuel injection valve 106 is maintained.
  • the fuel injection valve control unit 209 outputs the Lo signal of the INJ drive signal to the holding current MOSFET 212. Thereby, the battery power supply voltage VB applied via the holding current MOSFET 212 is cut off.
  • the period 302 is determined by the magnetic circuit characteristics of the fuel injector 106, the pressure of the fuel supplied to the fuel injector 106, and the current conduction period of the fuel injector according to the amount of fuel required by the engine.
  • boost control will be described.
  • the boost voltage VH of the boost capacitor 204 is applied to the fuel injection valve 106 via the peak current MOSFET 211 in a state where the boost voltage VH of the boost capacitor 204 has reached the voltage indicated by reference numeral 303 in FIG. As shown in (c), the boosted voltage VH starts to decrease.
  • the voltage value indicated by reference numeral 303 is referred to as a boost stop voltage value.
  • the boost control unit 207 When the boost voltage VH of the boost capacitor 204 detected by the boost voltage detection unit 206 is reduced by energization of the fuel injection valve 106 and the differential voltage value from the boost stop voltage value 303 becomes equal to or higher than a predetermined differential voltage value 304D
  • the boost control unit 207 determines, the boost control unit 207 starts a boost operation described below. That is, the boost control unit 207 outputs, to the switching element 202, a boost control signal that controls switching of the switching element 202 between on and off, as shown in (d).
  • a voltage value 304 that is lower than the boost stop voltage value 303 by a predetermined differential voltage value 304D is referred to as a boost start voltage value.
  • the switching element 202 When the ON signal of the boost control signal is output from the boost control unit 207, the switching element 202 is turned ON, a current flows through the boost coil 201, and the boost current rises as shown in (e).
  • the boost control unit 207 When the boost current detected by the current detection unit 205 reaches the upper limit threshold 305, the boost control unit 207 outputs an off signal of the boost control signal to the switching element 202. As a result, the switching element 202 is turned off.
  • the energy stored in the boost coil 201 during the period when the switching element 202 is off flows into the boost capacitor 204 as a current and is stored, and the boost voltage VH slightly increases.
  • boost controller 207 outputs the ON signal of the boost control signal to switching element 202 again.
  • energy is stored in the boost capacitor 204 and the boost voltage VH is increased.
  • the average value of the upper limit threshold value 305 and the lower limit threshold value 306 of the boost current is referred to as an average boost current value 307, and the boosted voltage reduced by energizing the fuel injection valve 106 is restored to the boost stop voltage value 303 that is the original voltage value.
  • the time 308 required for this will be referred to as a boost recovery time.
  • the boost control unit 207 determines that the voltage of the boost capacitor 204 detected by the boost voltage detection unit 206 has become equal to or higher than the boost stop voltage value 303, the boost control unit 207 ends the boost operation.
  • FIG. 4 shows an enlarged waveform of the boost current during the boost operation.
  • the boost current 403 flowing through the boost coil 201 rises.
  • the switching element 202 is turned off as described above, and the boosted current 402 decreases in the off period 401 until the boosted current reaches the lower limit threshold 306.
  • the ON period 400 is shortened if the battery power supply voltage VB is large, and the boosting recovery time 308 is also shortened.
  • the ON period 400 becomes long, and the boost recovery time 308 also becomes long.
  • the boosted voltage VH that has decreased due to the energization of the fuel injection valve 106 is recovered to the boost stop voltage value 303 before the next fuel injection at the fuel injection valve 106 starts. There is a need.
  • the boosted voltage detection unit 206 when performing a boosting operation, the boosted voltage detection unit 206 always detects the voltage value of the boosted voltage VH at a predetermined detection timing, and the detected boosted voltage value is a preset reference value, for example, as described above.
  • the boost voltage VH rises to the boost stop voltage value 303, the boost operation is stopped. Then, when the detected voltage value of the boosted voltage VH decreases from the boost stop voltage value 303 to a predetermined voltage value 304D or more, the boosting operation is started again.
  • a current flows through the boost capacitor 204 when the switching element 202 provided in the boost circuit 104 is turned off.
  • a voltage different from the boosted voltage VH may be added and detected.
  • the ESR component equivalent series resistance
  • the boost capacitor composed of the electrolytic capacitor constituting the boost circuit increases, and when the switching element is turned off due to the increase in the resistance component, an extra voltage is generated by the current flowing through the boost capacitor. Generated.
  • the detection timing for detecting the boost voltage VH arrives, an extra voltage generated by the ESR component and the boost voltage VH of the normal boost capacitor are added to detect an incorrect voltage.
  • Fig. 5 shows a booster circuit in a low temperature state. Since the ESR component of the boost capacitor 204 increases in a low temperature state, a resistor 204a based on the ESR component of the boost capacitor 204 is equivalently added.
  • FIG. 6 shows the behavior of the input signal and the boost voltage to the switching element 202 during the boost operation.
  • Toff when the input signal to the switching element 202 is off, a current flows into the boost capacitor 204. Therefore, an extra error voltage Ve due to the resistor 204a based on the ESR component of the boost capacitor 204 as described above is generated, and the boost voltage VH Is added to the voltage value VHa.
  • Ton when the input signal to the switching element 202 is on, no current flows into the boost capacitor 204, so that the error voltage Ve due to the resistor 204a based on the ESR component of the boost capacitor 204 does not occur, so the normal boost voltage value VHa It becomes.
  • the normal boosted voltage VHa can be detected at the detection timing Spt indicated by the solid arrow, but the erroneous boost voltage value VHc determined by VHa + Ve is detected at the detection timing Spt indicated by the dashed arrow because there is an error voltage value Ve. Will do.
  • the detection timing is set only during the period Ton when the input signal to the switching element 202 is on, and the boosted voltage VH is generated by the boosted voltage detector 206. It is configured to detect.
  • Ton when the input signal to the switching element 202 is on, no current flows into the boost capacitor 204. Therefore, the error voltage value Ve generated due to the influence of the resistor 204a based on the ESR component of the boost capacitor is not taken into consideration, and the boost capacitor It is possible to detect the regular boosted voltage value VHa of 204.
  • the boosted voltage detection unit 206 when the boosting operation is not executed, the boosted voltage detection unit 206 always detects the boosted voltage at a predetermined continuous detection timing Spt. For example, when the boost voltage detecting unit 206 detects that the fuel injection valve is driven and the boost voltage has decreased to a reference value or less and the boost operation is started, the boost voltage detection method is changed. When the boosting operation is performed, the boosted voltage detection unit 206 detects the normal boosted voltage value VHa based on the boosted voltage detection timing signal from the boosting operation control unit 207 only during the period Ton when the input signal to the switching element 202 is on. I do.
  • the boost voltage detection unit 206 ignores the boost voltage detection timing signal from the boost operation control unit 207, or the boost operation control unit 207 stops the detection timing signal. Therefore, the boosted voltage VHc including the error voltage value Ve is not detected.
  • the booster circuit 104 performs a boosting operation when the fuel injection valve 106 is driven, but the voltage stored in the boosting capacitor 204 is reduced by the discharge even when the fuel injection valve 106 is not driven. Sometimes. For this reason, since the booster circuit 104 is configured to start the boosting operation when the boosted voltage VH of the boosting capacitor 204 drops to a predetermined value 304D or more, the detection timing of the boosted voltage VH at this time is also described above. The same operation as that performed is performed.
  • control flow is a control function executed mainly by the boost control unit 207 and the boost voltage detection unit 206.
  • Step S10 the control state of the fuel control device is detected.
  • This detection of the control state detects the current drive and control state of the fuel injection valve drive circuit 209, the booster circuit 104, and the like.
  • a temperature detection means such as a thermistor is provided in a control box in which the fuel injection valve drive circuit 209, the booster circuit 104, etc. are housed, whereby the fuel injection valve drive circuit 209, the booster circuit 104, etc.
  • the ambient temperature is detected.
  • the temperature detection means is not provided in the control box, it can be replaced by a temperature detection means such as a water temperature sensor provided in the internal combustion engine.
  • the operation information of the internal combustion engine is also detected in addition to this, and typically key switch information, rotation speed information, temperature information, air flow information, load information, and the like are detected. Further, other information may be detected as necessary. And if these state information is detected, it will transfer to step S11.
  • Step S11 the current driving and controlling state of the booster circuit 104 is determined, and it is determined whether or not the boosting operation is being performed. This determination is performed by checking the boost operation drive flag, which is controlled by the control unit 101. Since the control unit 101 monitors the boosted voltage VH of the boost capacitor 204, the control unit 101 determines that boosting is required to lower the boosted voltage VH below a predetermined voltage value, and controls the boosting operation drive flag to “1”. is there. Therefore, in step S11, if it is determined that the boosting operation drive flag is “1”, the process proceeds to step S12. If it is determined that the boosting operation drive flag is not “1”, the process goes to the end, and the processing of this control flow is finished. Then, the next start timing is waited.
  • step S11 can be omitted when the control steps described below are executed other than during the step-up operation.
  • Step S12 it is determined whether the current temperature of the control box is equal to or higher than a predetermined value. Actually, it is preferable to measure the temperature of the boost capacitor 204 itself, but in this embodiment, the temperature of the control box is detected. This determination determines whether or not a resistance due to the ESR component is generated in the boost capacitor 204. If it is determined that the temperature is equal to or lower than the predetermined value, the process proceeds to step S13, and if it is determined that the temperature is equal to or higher than the predetermined value, the process proceeds to step S14. Accordingly, when the temperature of the control box is equal to or lower than the predetermined value, the process proceeds to step S13, and when the temperature rises, the process proceeds to step S14.
  • step S12 may determine whether or not the ESR component due to the temperature is generated in the boost capacitor 204, and the temperature detection position and detection means are arbitrary.
  • Step S13 If it is determined in step S12 that the temperature is equal to or lower than the predetermined value, the intermittent measurement mode is executed in step S13.
  • the boost voltage detection unit 206 detects the boost voltage by setting the detection timing only during the period Ton when the input signal to the switching element 202 is on. For this reason, in the period Ton when the input signal to the switching element 202 is on, no current flows into the boost capacitor 204. Therefore, the error voltage Ve generated due to the influence of the resistor 204a based on the ESR component of the boost capacitor is not taken into consideration. It becomes possible to detect the normal boosted voltage value VHa of the boost capacitor 204. Details of the intermittent measurement mode will be described with reference to FIG.
  • Step S14 If it is determined in step S12 that the temperature is equal to or higher than the predetermined value, the constant measurement mode is executed in step S14.
  • the constant measurement mode the boosted voltage VH of the boost capacitor 204 is always detected at a continuous detection timing regardless of whether the input signal to the switching element 202 is on or off, as in the detection timing shown in FIG. If the temperature is equal to or higher than a predetermined value, the resistance based on the ESR component is not generated, or even if generated, the error voltage Ve is small. For this reason, even if the boosted voltage VH is always detected, there is no problem due to the ESR component as at low temperatures. Since the constant measurement mode in step S14 is a measurement mode conventionally performed, further description is omitted.
  • step S13 the intermittent measurement mode in step S13 will be described in detail with reference to FIG.
  • Step S20 If it is determined in step S12 that the temperature is equal to or lower than the predetermined value, it is determined that resistance due to the ESR component is generated in the boost capacitor 204, and the control flow after step S20 is executed. In step S20, as shown in FIG. 7, it is determined whether or not the detection timing Spt has arrived during the boosting operation. If the detection timing Spt does not arrive during the boost operation, the control flow ends and the control flow ends. On the other hand, if it is determined that the detection timing Spt has arrived, the process proceeds to step S21.
  • Step S21 it is determined whether the booster circuit 105 is driven and the boosting operation is being performed. If it is determined in step S21 that the boosting operation is not being performed, the process proceeds to step S22. If it is determined that the boosting operation is being performed, the process proceeds to step S23. Note that the determination of the step-up operation in step S21 can be performed by various methods.
  • this determination can be made based on whether or not the fuel injection valve 106 is driven. If it is determined that the fuel injection valve 106 is not opened and the booster circuit 104 is not driven, the process proceeds to step S22, and if it is determined that the fuel injection valve 106 is opened and the booster circuit 104 is driven. The process proceeds to step S23.
  • a high voltage is applied to the fuel injection valve 106 from the boost capacitor 204, so that the boost voltage of the boost capacitor 204 decreases with time. For this reason, it is detected from the driving state of the fuel injection valve 106 that the boost voltage of the boost capacitor 204 is lowered to a reference value or less, and it is detected that the boost operation is started. It is also possible to make the above determination by monitoring the boosting operation not from the driving state of the fuel injection valve 106 but from the change state of the boosting voltage VH of the boosting capacitor 204.
  • the booster circuit 104 is configured to start the boosting operation when the boosted voltage of the boosting capacitor 204 falls below the reference value. Therefore, the above determination can be made by detecting that the booster circuit 104 is driven. Therefore, this step S21 is only required to determine whether or not the boost drive circuit 104 is currently performing a boost operation.
  • Step S22 If it is determined in step S21 that the booster circuit 104 is not performing a boost operation, this step S22 is executed.
  • step S22 the boost voltage of the boost capacitor 204 is detected at the normal detection timing Spt. This detection timing is the same as the detection timing in the constant measurement mode. In this case, since no current flows through the boost capacitor 204, the regular boost voltage value VHa can be detected. When the detection of the boosted voltage VH ends, the control flow ends after exiting to the end. Then, the next start timing is awaited again.
  • Step S23 When the detection timing Spt has arrived in step S20 and it is determined in step S21 that the boosting operation is being performed, it is determined in step S23 whether an on flag described later is “1”. This on flag is set to “1” when the switching element 202 (shown as SW 202 in FIG. 8) is turned on in step S26 described later, and when the on flag continues to be “1”, the switching element 202 is turned on. Is turned on and no current is supplied to the boost capacitor 204, and if the ON flag continues to be "0", it indicates that the switching element 202 is turned off and current is supplied to the boost capacitor 204. If it is determined in step S23 that the on flag is not "1”, the process proceeds to step S24, and if it is determined that the on flag is "1”, the process proceeds to step S28.
  • Step S24 If it is determined in step S23 that the ON flag is not “1”, it indicates that the switching element 202 is in the OFF state. Therefore, in this step S24, it is determined whether or not the switching element 202 is switched from the off state to the on state. If the switching element 202 is not turned on in this step S24, the off state is maintained. In this case, a current is flowing through the boost capacitor 204. On the other hand, when the switching element 202 is turned on in step S24, the state is switched to a state where no current flows through the boost capacitor 204. This state is a state in which the input signal of the switching element 202 in FIG. 7 is switched from OFF to ON.
  • Step S25 If it is determined in step S24 that the switching element 202 is not turned on but is in an off state, detection of the boost voltage VH of the boost capacitor 204 is stopped in step S25. That is, the detection of the boosted voltage is not executed even when the detection timing Spt comes. This corresponds to the off period Toff of the switching element 202 in FIG. 7, and the detection of the boosted voltage VH at the detection timing Spt is not performed. Therefore, the boosted voltage value VHc including the error voltage value Ve is not detected.
  • the control flow ends after exiting to the end. Then, the next start timing is awaited again.
  • Step S26 If it is determined in step S24 that the switching element 202 is turned on, an on flag is set to “1” in step S26. This indicates that the switching element 202 is turned on at the present time and no current flows through the boost capacitor 204. The information of the on flag is used in step S23 so that the state of the switching element 202 can be determined.
  • Step S27 When the setting of the on flag is completed in step S26, no current flows through the boost capacitor 204 in this state, so that the error voltage Ve due to the ESR component is not generated. This corresponds to the ON period Ton of the switching element 202 in FIG. 7, and the detection of the boosted voltage value VHa is executed at the detection timing Spt. Therefore, the normal boosted voltage value VHa that does not include the error voltage value Ve can be detected.
  • the process in step S27 is completed, the process ends and this control flow ends. Then, the next start timing is awaited again.
  • Step S28 if the ON flag is determined to be “1” in step S23, the process proceeds to step S28. In this step, since the ON flag is “1”, no current flows through the boost capacitor 204.
  • step S28 it is determined whether or not the switching element 202 has been switched from the on state to the off state. If the switching element 202 is not turned off in step S28, the on state is maintained. In this case, no current flows through the boost capacitor 204. On the other hand, when the switching element 202 is turned on in step S28, the state is switched to a state in which a current flows through the boost capacitor 204. This state is a state in which the input signal of the switching element 202 in FIG. 7 is switched from on to off. If it is determined in step S28 that the switching element 202 is not turned off, the process proceeds to step S27. If it is determined that the switching element 202 is turned on, the process proceeds to step S29.
  • step S28 If it is determined in step S28 that the switching element 202 is not turned off, that is, it is in the on state, the process returns to step 27 and the detection of the boost voltage VH of the boost capacitor 204 is continued. This corresponds to the ON period Ton of the switching element 202 in FIG. 7, and the detection of the boosted voltage value VHa is executed at the detection timing Spt. Therefore, the normal boosted voltage value VHa that does not include the error voltage value Ve can be detected.
  • step S27 the process ends and this control flow ends. Then, the next start timing is awaited again.
  • Step S29 If it is determined in step S28 that the switching element 202 has been turned off, the on flag is set to "0" in step S29. This indicates that the switching element 202 is turned off at the present time and a current flows through the boost capacitor 204. This on flag information is used again in step S23. In this case, since the on flag is "0", the process proceeds to step S24 and the same operation is continued.
  • Step S30 When the setting of the ON flag is completed in step S29, the detection of the boost voltage of the boost capacitor 204 is stopped in step S30. In this state, since a current flows through the boost capacitor 204, an error voltage Ve due to the ESR component is generated. If it is determined in step S28 that the switching element 202 is turned off, detection of the boost voltage VH of the boost capacitor 204 is stopped in step S30. That is, the detection of the boosted voltage is not executed even when the detection timing Spt comes. This corresponds to the off period Toff of the switching element 202 in FIG. 7, and the detection of the boosted voltage VH at the detection timing Spt is not performed. Therefore, the boosted voltage value VHc including the error voltage value Ve is not detected. When the process in step S30 ends, the process ends and the control flow ends. Then, the next start timing is awaited again.
  • the boost voltage detection unit 206 detects that the boost voltage VH has risen to the reference value during the period when the switching element 202 is driven, the boost operation is stopped and the boost voltage is always increased.
  • the mode is switched to the constant measurement mode for detecting the voltage.
  • the switching element 202 is set as an Nch FET.
  • the switching element 202 may be a Pch FET, and the boosted voltage detection unit 206 may detect the boosted voltage when the switching element 202 is off. .
  • the voltage of the switching input signal of the switching element 202 does not change instantaneously during on-off switching, but tends to change with a certain slope. For this reason, it is desirable to detect the boost voltage VH after the voltage of the switching input signal is completely switched after the input signal to the switching element 202 is turned on. Therefore, it is preferable to detect the boosted voltage VH after the input signal is turned on and a certain waiting time elapses.
  • time lapse determination processing logic is provided after step S24, and when it is determined that a predetermined time has elapsed after the switching element 202 is turned on, the process can be performed by moving to step S27.
  • the intermittent measurement mode or the constant measurement mode is selected depending on the temperature condition.
  • the intermittent measurement mode may be executed. In this case, step S12 and step S14 in FIG. 8 are omitted, and step S13 is executed after step S11.
  • the first embodiment is characterized in that the detection timing is not set during the period in which the current flows into the boost capacitor 204.
  • the detection timing is a normal continuous detection timing.
  • the boosted voltage value detected during the period when no current flows into the boost capacitor 204 is made valid without using the boosted voltage value detected during the period when the current flows into 204.
  • Step S20 Since it is the same as Example 1, description is abbreviate
  • Step S21 Since it is the same as Example 1, description is abbreviate
  • Step S22 Since it is the same as Example 1, description is abbreviate
  • Step S31 When the detection timing Spt arrives in step S20 and it is determined in step S21 that the boosting operation is being performed, the boosted voltage VH of the boost capacitor 204 is detected in step S31. Unlike the first embodiment, the detection of the boosted voltage VH is performed every time the detection timing arrives. Therefore, both the normal boosted voltage value VHa and the apparent boosted voltage value VHc obtained by adding the error voltage value Ve are detected together.
  • Step S23 Since it is the same as Example 1, description is abbreviate
  • Step S24 Since it is the same as Example 1, description is abbreviate
  • Step S32 If it is determined in step S24 that the switching element 202 is not turned on but is in the off state, in step S32, the boosted voltage value VH detected in step S31 is regarded as the boosted voltage value VHc added with the error voltage value Ve. Then, it is discarded without being handled or treated as a normal boosted voltage value. This corresponds to the off period Toff of the switching element 202 in FIG. 7, and even if detection of the boost voltage VH is executed at the detection timing Spt, it is not reflected in the control as an effective voltage value. When the process in step S32 ends, the control flow ends by exiting to the end. Then, the next start timing is awaited again.
  • Step S26 Since it is the same as Example 1, description is abbreviate
  • Step S33 When the setting of the on flag is completed in step S26, it is determined that the switching element 202 is turned on in step S24. Therefore, in step S33, the boosted voltage value VH detected in step S31 is regarded as the normal boosted voltage value VHa. Thus, it is handled as an effective boosted voltage value. This corresponds to the ON period Ton of the switching element 202 in FIG. 7, and is reflected in the control as an effective boosted voltage value VHa. When the process in step S32 ends, the control flow ends by exiting to the end. Then, the next start timing is awaited again.
  • Step S28 Since it is the same as Example 1, description is abbreviate
  • Step S29 Since it is the same as Example 1, description is abbreviate
  • Step S34 When the setting of the on flag is completed in step S29, it is determined in step S28 that the switching element 202 has been turned off.
  • step S34 the boost voltage value VH detected in step S31 is added to the error voltage value Ve.
  • the voltage value VHc is regarded as being discarded, or invalidated without executing the treatment as a normal boosted voltage value. This corresponds to the off period Toff of the switching element 202 in FIG. 7, and even if detection of the boost voltage VH is executed at the detection timing Spt, it is not reflected in the control as an effective voltage value.
  • the control flow ends by exiting to the end. Then, the next start timing is awaited again.
  • the first embodiment is characterized in that the detection timing is not set during the period in which the current flows into the boost capacitor 204, and the second embodiment does not use the boost voltage value detected during the period in which the current flows into the boost capacitor 204.
  • a predetermined detection period is set, and the minimum value of the boost voltage VH detected at the detection timing within this detection period is regarded as the normal boost voltage value VHa. It is characterized by that.
  • Step S20 Since it is the same as Example 1, description is abbreviate
  • Step S21 Since it is the same as Example 1, description is abbreviate
  • Step S22 Since it is the same as Example 1, description is abbreviate
  • Step S35 If it is determined in step 21 that the booster circuit is being driven, a step for detecting the boosted voltage is set in step S35. Although this detection period is arbitrary, it is set to a period including at least an on period in which the switching element 202 is on and an off period in which the switching element 202 is off in the step-up operation of FIG.
  • Step S36 When the detection period is set in step 35, the boosted voltage VH of the boost capacitor 204 is detected in step S36.
  • the detection of the boosted voltage VH is executed every time the detection timing arrives. Therefore, both the normal boosted voltage value VHa and the apparent boosted voltage value VHc obtained by adding the error voltage value Ve are detected together.
  • Step S37 The boosted voltage VH detected in step 36 is stored in the RAM area of the microcomputer that calibrates the booster circuit 102.
  • the RAM area is configured to store the boost voltage VH in time series, and the boost voltage VH is stored every time the detection timing Spt arrives.
  • Step S38 When the boosted voltage VH detected in step S37 is stored, it is determined in step S38 whether the previously set detection period has elapsed. If the boosted voltage VH has not been detected over this detection period, the process returns to step S36 to continue the detection of the boosted voltage VH. If it is determined that the detection period has elapsed, the process proceeds to step S39.
  • Step S39 If it is determined in step S38 that the detection period has elapsed, in step S39, the boosted voltage VH stored in the detection period is selected.
  • the boosted voltage VH is stored in time series in the RAM area of the microcomputer as described above.
  • the minimum boosted voltage value is normalized from the N boosted voltages VH detected at each detection timing.
  • the boosted voltage value VHa is selected and selected.
  • the boosted voltage VH detected during the boosting operation detects both the normal boosted voltage value VHa and the apparent boosted voltage value VHc obtained by adding the error voltage value Ve, but at least the minimum boosted voltage value. This is because it can be considered that the error voltage value Ve is not added.
  • the control flow ends after exiting to the end. Then, the next start timing is awaited again.
  • step S21 can be omitted and the control steps after step S35 can be executed regardless of whether the booster circuit 104 is driven.
  • the number of control steps can be reduced, so that the control can be easily performed.
  • the boosted voltage value detected at least when the current is not flowing into the boosting capacitor during the boosting operation is set as the normal boosted voltage value. According to this, it becomes possible to stabilize the boosted voltage to a regular boosted voltage value regardless of temperature conditions, and to inject an accurate fuel injection amount from the fuel injection valve, thereby improving fuel efficiency. it can.
  • this invention is not limited to the above-mentioned Example, Various modifications are included.
  • the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

温度条件に関わらず正しい昇圧電圧を検出して昇圧電圧値を安定化し、燃料噴射弁から正確な燃料噴射量を噴射することができる新規な内燃機関の燃料制御装置を提供することにある。 少なくとも昇圧動作中で前記昇圧コンデンサに電流が流れ込んでいない時に検出された昇圧電圧値を正規の昇圧電圧値とし、この正規の昇圧電圧値と昇圧電圧の規定値を比較して昇圧動作を制御する。これによれば、温度条件に関わらず昇圧電圧を正規の昇圧電圧値に安定化することが可能となり、燃料噴射弁から正確な燃料噴射量を噴射することができ、燃費の改善を図ることができる。

Description

内燃機関の燃料制御装置
 本発明は内燃機関の燃料制御装置に係り、特に燃料噴射弁からの燃料を気筒内に直接的に噴射する内燃機関に使用される内燃機関の燃料制御装置に関するものである。
関する。
 現在の自動車は、環境保全の観点から自動車の排出ガスに含まれる一酸化炭素(CO)、炭化水素(HC)、窒素酸化物(NOx)等の有害排出ガス物質の削減が求められており、これらの削減を目的として、内燃機関の燃焼室に直接的に燃料を噴射する筒内噴射式の内燃機関の開発が行われている。
 筒内噴射式の内燃機関は、燃料噴射弁による燃料の噴射を気筒の燃焼室内に直接的に行うものであり、燃料噴射弁から噴射される燃料の粒径を小さくさせることによって噴射燃料の燃焼を促進し、有害排出ガス物質の削減及び内燃機関の出力の向上等を図っている。
 そして、筒内噴射式の内燃機関では燃料噴射弁で高圧燃料を気筒内に噴射するため、燃料噴射弁を開弁する際には大電流を通電する。このため、例えば、特開2013-39398号公報(特許文献1)にあるように、筒内噴射式の内燃機関の燃料制御装置は昇圧回路を有し、生成した昇圧電圧を用いて燃料噴射弁に大電流を流すようにしている。また、昇圧回路で適正な昇圧電圧を生成するため、昇圧電圧検出部で昇圧電圧を観測し、昇圧電圧が規定値に到達すると昇圧動作を停止し、昇圧電圧が規定値から所定値以上の電圧低下があると、再び昇圧動作を開始するような制御を実施している。
特開2013-036398号公報
 ところで、昇圧回路の昇圧動作は、昇圧電圧検出部で昇圧電圧を観測した電圧値が規定電圧値に到達すると停止している。しかしながら、昇圧回路に設けられた昇圧用のスイッチング素子がオフされた時に昇圧コンデンサに電流が流れるが、この時に正規の昇圧電圧とは異なる電圧が加算されて検出されることがある。このため、昇圧電圧検出部がこの加算された昇圧電圧を観測し、昇圧電圧値が規定値に到達したと誤検知してしまうことがある。この現象は特に周囲温度が低い低温状態で顕著にみられる。
 低温状態では昇圧回路を構成する電解コンデンサよりなる昇圧コンデンサのESR成分(等価直列抵抗)が増大し、この抵抗成分の増加によって、スイッチング素子がオフした時に、昇圧コンデンサに流れ込む電流によって余分な電圧が生成される。尚、スイッチング素子がオンした時に昇圧コンデンサに電流を流す構成の場合も同様である。この時に昇圧電圧を検出する検出タイミングが到来すると、ESR成分によって生じた余分な電圧と正規の昇圧コンデンサの電圧が加算されて正しくない電圧が検出されることになる。
 このように、昇圧電圧検出部で昇圧電圧の誤検出が発生すると、本来規定された正規の昇圧電圧値に到達する前に、昇圧動作を停止してしまうため、正規の昇圧電圧値より低い電圧値に制御されることになる。その結果、正規の昇圧電圧値より低い電圧値で燃料噴射弁の開弁を行うため、燃料噴射弁を開弁させるのに要する時間が長くなる。このように温度条件によって、燃料噴射弁の開弁に要する時間がばらつき、燃料噴射量が安定せずに燃費を悪化させる課題があった。
 本発明の目的は、温度条件に関わらず正しい昇圧電圧を検出して昇圧電圧値を安定化し、燃料噴射弁から正確な燃料噴射量を噴射することができる新規な内燃機関の燃料制御装置を提供することにある。
 本発明の特徴は、少なくとも昇圧動作中で前記昇圧コンデンサに電流が流れ込んでいない時に検出された昇圧電圧値を正規の昇圧電圧値とし、この正規の昇圧電圧値と昇圧電圧の規定値を比較して昇圧動作を制御することを特徴とする、ところにある。
 本発明により、温度条件に関わらず昇圧電圧を正規の昇圧電圧値に安定化することが可能となり、燃料噴射弁から正確な燃料噴射量を噴射することができ、燃費の改善を図ることができる。
筒内噴射式の内燃機関の燃料制御システムの一例を示す概略図である。 筒内噴射式の内燃機関に使用される燃料制御装置の構成を示す構成図である。 燃料噴射弁の駆動、及び昇圧動作に係る各信号のタイムチャート図である。 昇圧動作時の昇圧電流の拡大波形を示す波形図である。 昇圧回路にESR成分を表示した回路図である。 従来の低温時の昇圧用のスイッチング素子への入力信号と昇圧電圧、及び検出タイミングを示した説明図である。 本発明の第1の実施形態になる低温時の昇圧用のスイッチング素子への入力信号と昇圧電圧、及び検出タイミングを示した説明図である。 本発明の第1の実施形態になる昇圧電圧を検出するための制御フローチャート図である。 図8に示す間欠測定モードの詳細を示す制御フローチャート図である。 本発明の第2の実施形態になる昇圧電圧を検出するための制御フローチャート図である。 本発明の第3の実施形態になる昇圧電圧を検出するための制御フローチャート図である。
 本発明の実施形態について図面を用いて詳細に説明するが、本発明は以下の実施形態に限定されることなく、本発明の技術的な概念の中で種々の変形例や応用例をもその範囲に含むものである。
 本発明の実施形態を説明する前に、本発明が適用される筒内噴射式の内燃機関の燃料制御システムとその燃料制御装置の構成を説明する。
 図1は、気筒内に直接的に燃料を噴射する筒内噴射式の内燃機関の燃料制御システムの一例を示す概略図である。吸入空気はエアフローセンサ1を通り、吸入空気流量を制御するスロットルバルブ2を介して吸気管3を通り燃焼室4に導入される。
 燃料タンク5の燃料は、高圧ポンプ6で高い圧力に加圧され、燃料噴射弁106から燃焼室4に噴射される。燃焼室4に噴射された燃料は、吸入空気との混合気を生成し、イグニッション7で着火され、燃焼室4内で燃焼する。
 燃焼室4にて燃焼後の排気ガスは排気管8へ排出され、排気管8の途中には、EGRバルブ9が形成されている。排気管8を流れる排気ガスの一部(EGRガス)は、EGRバルブ9よりEGR管10を通って吸気管3内に還流する。EGRガス流量はEGRバルブ9によって調節される。排気管8に排出された排気ガスは、三元触媒11にて有害な排気成分を浄化された後に大気に放出される。
 筒内噴射式の内燃機関の燃料制御システムは、上述したエアフローセンサ1の他にも、クランク角センサ12や、カムフェーズセンサ13、O2センサ14、水温センサ15、ノックセンサ16等の公知のセンサを有する。
 図2に、筒内噴射式の内燃機関の燃料制御装置を示している。図2に示すように内燃機関の燃料制御装置は、制御部101と、昇圧回路104と、燃料噴射弁駆動回路105とを備えている。
 制御部101は、上述した各センサからの入力信号に基づいて、昇圧回路104の後述する昇圧制御部207や、燃料噴射弁駆動回路105の後述する燃料噴射弁制御部209を制御する制御部であり、図示しないCPUやROM、RAM等の周辺回路を備えている。ROMには制御プラグラムや演算に使用する係数や定数等が記憶されており、CPUは制御プログラムにしたがって種々の制御機能を実行している。
 昇圧回路104は、車載の直流電圧源から燃料噴射弁106の開弁に必要な高電圧を生成する回路であり、昇圧コイル201、昇圧用のスイッチング素子202、電流検出用抵抗203、昇圧コンデンサ204、逆流防止ダイオード208、昇圧制御回路102を有する。車載の直流電圧源は、たとえば車載のバッテリである。以下、車載の直流電圧源の電圧をバッテリ電源電圧VBと称する。スイッチング素子202は、たとえばNch FETである。
 昇圧コイル201は、バッテリ電源電圧VBから燃料噴射弁106の開弁に必要な高電圧を生成するためのコイルである。スイッチング素子202は、バッテリ電源VBから燃料噴射弁106の開弁に必要な高電圧である昇圧電圧を昇圧コイル201で生成するためのスイッチング動作を行う素子であり、例えばNch FETである。電流検出用抵抗203は、昇圧コイル201を流れる昇圧電流を検出するためのシャント抵抗である。
 昇圧コンデンサ204は、昇圧コイル201で昇圧された昇圧電圧を蓄積する電解コンデンサである。逆流防止ダイオード208は、昇圧コンデンサ204に蓄積された昇圧電圧VHの昇圧コイル201側への逆流を防止するダイオードである。
 昇圧制御回路102は、昇圧動作の制御を行う回路であり、昇圧制御部207と、昇圧電圧検出部206(図面では電圧検出部として表記している)と、電流検出部205とを有する。昇圧制御部207は、スイッチング素子202の駆動を制御する制御部であり、図示しないCPUやROM、RAM等の周辺回路を備えている。昇圧制御部207は昇圧電圧検出部206を制御し、昇圧電圧検出部206は、昇圧コンデンサ204に蓄積された充電電圧、すなわち昇圧電圧VHを検出する検出部である。電流検出部205は、電流検出用抵抗203を流れる電流、すなわち昇圧コイル201を流れる電流を検出する検出部である。昇圧制御回路102における昇圧動作については後に詳述する。
 燃料噴射弁駆動回路105は、ピーク電流用MOSFET211と、保持電流用MOSFET212と、下流側用MOSFET213と、回生ダイオード214と、燃料噴射弁制御部209とを備えている。ピーク電流用MOSFET211は、昇圧コンデンサ204に蓄積された昇圧電圧VHによって燃料噴射弁106を開弁するために必要なピーク電流を流すためのスイッチング素子であり、昇圧コンデンサ204に蓄積された昇圧電圧VHが印加される。
 保持電流用MOSFET212は、燃料噴射弁106の開弁状態を保持するために必要な保持電流を流すためのスイッチング素子であり、バッテリ電源電圧VBが印加される。下流側用MOSFET213は、回生ダイオード214を介して燃料噴射弁106のコイルに蓄えられたエネルギーを昇圧回路104に回生させて、燃料噴射弁106に流れる電流を短時間に下降させるための素子であり、燃料噴射弁106とグラウンドとの間に設けられている。回生ダイオード214は、上述したように燃料噴射弁106のコイルに蓄えられたエネルギーを昇圧回路104に回生させるためのダイオードである。
 燃料噴射弁制御部209は、燃料噴射弁駆動回路105の各MOSFET211~213を制御する制御部であり、図示しないCPUやROM、RAM等の周辺回路を備えている。燃料噴射弁駆動回路105による燃料噴射弁106の制御については、昇圧制御回路102における昇圧動作と共に以下に説明する。
 図3は、燃料噴射弁106の駆動、及び昇圧動作に係る各信号等のタイムチャートである。(a)は、制御部101から燃料噴射弁制御部209へ出力される燃料噴射弁駆動信号のタイムチャートである。(b)は、燃料噴射弁106に流れる電流の電流波形のタイムチャートである。(c)は、昇圧電圧VH、即ち昇圧コンデンサ204の電圧変化を示すタイムチャートである。(d)は、昇圧制御部207から出力されるスイッチング素子202のオン・オフを切り替え制御する昇圧制御信号のタイムチャートである。(e)は、昇圧コイル201を流れる昇圧電流のタイムチャートである。(f)は、燃料噴射弁制御部209から出力されるピーク電流用MOSFET211のオン・オフを切り替え制御するVH駆動信号のタイムチャートである。(g)は、燃料噴射弁制御部209から出力される保持電流用MOSFET212のオン・オフを切り替え制御するINJ駆動信号のタイムチャートである。
 次に燃料噴射弁106の駆動制御について説明する。(a)に示すように、制御部101は期間300の間、燃料噴射弁駆動信号のHi信号を燃料噴射弁制御部209へ出力する。制御部101からの燃料噴射弁駆動信号のHi信号が燃料噴射弁制御部209へ入力されると、燃料噴射弁制御部209は、燃料噴射弁駆動信号のHi信号が出力されている期間300の間、燃料噴射弁106に通電するよう燃料噴射弁駆動回路105を制御する。そして、制御部101からの燃料噴射弁駆動信号のLo信号が燃料噴射弁制御部209へ入力されると、燃料噴射弁制御部209は、燃料噴射弁106への通電を終了するよう燃料噴射弁駆動回路105を制御する。
 すなわち、燃料噴射弁制御部209は、制御部101からの燃料噴射弁駆動信号のHi信号が入力されると、初めに、(f)に示すようにVH駆動信号のHi信号をピーク電流用MOSFET211に出力する。これにより、ピーク電流用MOSFET211を介して昇圧コンデンサ204の高電圧が燃料噴射弁106に印加され、(b)に示されている期間301における波形のように、大きな燃料噴射弁の駆動電流が流れる。この大きな燃料噴射弁の駆動電流によって、燃料噴射弁106が急速に開弁する。
 燃料噴射弁制御部209は、燃料噴射弁106が開弁するのに十分な期間、すなわち、期間301の間、VH駆動信号のHi信号をピーク電流用MOSFET211に出力した後、VH駆動信号のLo信号をピーク電流用MOSFET211に出力する。これにより、ピーク電流用MOSFET211を介して印加されていた昇圧コンデンサ204の高電圧が遮断される。
 その後、燃料噴射弁制御部209は、期間300が終了するまで、すなわち(b)の期間302の間、INJ駆動信号のHi信号とLo信号を保持電流用MOSFET212に繰り返し出力する。これにより、保持電流用MOSFET212を介してバッテリ電源電圧VBが燃料噴射弁106に印加され、期間302における波形のように、燃料噴射弁106の開弁状態を保持するのに必要な燃料噴射弁電流が流れる。この燃料噴射弁電流によって、燃料噴射弁106の開弁状態が保持される。
 その後、燃料噴射弁制御部209は期間300が終了すると、すなわち期間302が終了すると、INJ駆動信号のLo信号を保持電流用MOSFET212に出力する。これにより、保持電流用MOSFET212を介して印加されていたバッテリ電源電圧VBが遮断される。尚、期間302は、燃料噴射弁106の磁気回路特性、燃料噴射弁106に供給される燃料の圧力、エンジンが要求する燃料量に応じた燃料噴射弁の電流通電期間によって決定される。
 次に昇圧制御について説明する。昇圧コンデンサ204の昇圧電圧VHが、(c)の符号303で示す電圧に達している状態で、昇圧コンデンサ204の昇圧電圧VHがピーク電流用MOSFET211を介して燃料噴射弁106に印加されると、(c)に示すように昇圧電圧VHが低下し始める。以下の説明では、符号303で示す電圧値を昇圧停止電圧値と称する。
 燃料噴射弁106への通電によって昇圧電圧検出部206で検出する昇圧コンデンサ204の昇圧電圧VHが低下して、昇圧停止電圧値303からの差分電圧値が所定の差分電圧値304D以上になったと昇圧制御部207が判断すると、昇圧制御部207は次に述べる昇圧動作を開始する。すなわち、昇圧制御部207は(d)に示すように、スイッチング素子202のオンとオフの切り替えを制御する昇圧制御信号をスイッチング素子202に出力する。以下の説明では、昇圧停止電圧値303から所定の差分電圧値304Dだけ下がった電圧値304を昇圧開始電圧値と呼ぶことにする。
 昇圧制御部207から昇圧制御信号のオン信号が出力されると、スイッチング素子202がオンして昇圧コイル201に電流が流れ、(e)に示すように、昇圧電流が立ち上がる。電流検出部205で検出する昇圧電流が上限閾値305に到達すると、昇圧制御部207は、昇圧制御信号のオフ信号をスイッチング素子202に出力する。これによりスイッチング素子202がオフする。このスイッチング素子202がオフの期間に昇圧コイル201に蓄えられたエネルギーは電流として昇圧コンデンサ204に流入して蓄積され、昇圧電圧VHが若干上昇する。
 スイッチング素子202がオフの期間中、昇圧電流は低下する。そして、電流検出部205で検出する昇圧電流が下限閾値306に到達すると、昇圧制御部207は、昇圧制御信号のオン信号を再びスイッチング素子202に出力する。これらの繰り返しによって昇圧コンデンサ204にエネルギーが蓄積され昇圧電圧VHが高くなる。尚、昇圧電流の上限閾値305と下限閾値306の平均値を平均昇圧電流値307と呼び、燃料噴射弁106への通電により低下した昇圧電圧を元の電圧値である昇圧停止電圧値303まで復帰させるために要する時間308を昇圧復帰時間と呼ぶことにする。
 上述したスイッチング素子202の一連のスイッチング動作が繰り返されることにより、(c)に示すように、昇圧電圧VHが徐々に昇圧停止電圧値303まで回復する。昇圧電圧検出部206で検出する昇圧コンデンサ204の電圧が昇圧停止電圧値303以上になったと昇圧制御部207が判断すると、昇圧制御部207は、昇圧動作を終了する。
 図4は、昇圧動作時の昇圧電流の拡大波形を示すものである。スイッチング素子202がオンしているオン期間400において、昇圧コイル201に流れる昇圧電流403は上昇する。昇圧電流が上限閾値305に到達すると、上述したようにスイッチング素子202がオフされて、昇圧電流が下限閾値306に到達するまでのオフ期間401において、昇圧電流402が低下する。
 昇圧コイル201のインダクタンスをL、バッテリ電源電圧VBの電圧値をVとすると、昇圧電流を上限閾値305まで上昇させるオン期間400の昇圧電流の傾きはV/Lに比例する。そのため、オン期間400はバッテリ電源電圧VBが大きければ短くなり、昇圧復帰時間308も短くなる。一方、バッテリ電源電圧VBが小さければオン期間400は長くなり、昇圧復帰時間308も長くなる。したがって、筒内噴射式の内燃機関の燃料制御システムでは、燃料噴射弁106への通電によって低下した昇圧電圧VHを燃料噴射弁106での次の燃料噴射開始までに昇圧停止電圧値303まで回復させる必要がある。
 従来、昇圧動作を行う際は、昇圧電圧検出部206で常時、所定の検出タイミングで昇圧電圧VHの電圧値を検出し、検出された昇圧電圧値が予め設定された基準値、例えば、上述した昇圧停止電圧値303まで昇圧電圧VHが上昇すると、昇圧動作を停止するように構成していた。そして、検出された昇圧電圧VHの電圧値が昇圧停止電圧値303から所定の電圧値304D以上に低下すると、再び昇圧動作を開始するように構成していた。
 しかしながら、上述したように常に所定の連続した検出タイミングで昇圧電圧VHを検出する方法では、昇圧回路104に設けられたスイッチング素子202がオフされた時に昇圧コンデンサ204に電流が流れるが、この時に正規の昇圧電圧VHとは異なる電圧が加算されて検出されることがある。低温状態では昇圧回路を構成する電解コンデンサよりなる昇圧コンデンサのESR成分(等価直列抵抗)が増大し、この抵抗成分の増加によって、スイッチング素子がオフした時に、昇圧コンデンサに流れる電流によって余分な電圧が生成される。この時に昇圧電圧VHを検出する検出タイミングが到来すると、ESR成分によって生じた余分な電圧と正規の昇圧コンデンサの昇圧電圧VHが加算されて正しくない電圧が検出されることになる。
 図5に低温状態での昇圧回路を示している。低温状態では昇圧コンデンサ204のESR成分が増大するため、等価的に昇圧コンデンサ204のESR成分に基づく抵抗204aを追加している。昇圧動作時、スイッチング素子202がオフの期間では昇圧コンデンサ204に電流が流れ込み、昇圧電圧検出部206で検出される見掛け上の昇圧電圧値VHcは、昇圧コンデンサ204の正規の電圧値VHaに、ESR成分に基づく抵抗204aの抵抗値Rcと昇圧コンデンサ204に流れ込む電流値Icを乗算して求めた余分な誤差電圧値を加算したものとなる。つまり、VHc=VHa+Rc・Icとなり、Rc・Icで求まる電圧値が誤差となる。
 図6に昇圧動作中のスイッチング素子202への入力信号と昇圧電圧の挙動を示している。スイッチング素子202への入力信号がオフの期間Toffでは、昇圧コンデンサ204に電流が流れ込むため、上述したような昇圧コンデンサ204のESR成分に基づく抵抗204aによる余分な誤差電圧Veが発生して昇圧電圧VHの電圧値VHaに加算される。一方スイッチング素子202への入力信号がオンの期間Tonでは、昇圧コンデンサ204に電流が流れ込まないため、昇圧コンデンサ204のESR成分に基づく抵抗204aによる誤差電圧Veが発生しないので、正規の昇圧電圧値VHaとなる。
 このため、実線の矢印で示す検出タイミングSptでは正規の昇圧電圧VHaを検出できるが、破線の矢印で示す検出タイミングSptでは誤差電圧値Veがあるため、VHa+Veで決まる誤った昇圧電圧値VHcを検出することになる。
 次に本発明の第1の実施形態について説明する。上述したように、スイッチング素子202への入力信号がオフの期間Toffでは、昇圧コンデンサ204に電流が流れ込むため、昇圧コンデンサ204のESR成分に基づく抵抗204aによる余分な誤差電圧Veが発生して昇圧電圧VHの電圧値VHaに加算される。このため期間Toffで検出タイミングSptが到来すると、VHa+Veで決まる誤った昇圧電圧値VHcを検出することになる。
 そこで、本実施例では、少なくとも昇圧動作中は図7に示しているように、スイッチング素子202への入力信号がオンの期間Tonだけ検出タイミングを設定して昇圧電圧検出部206で昇圧電圧VHを検出する構成としている。スイッチング素子202への入力信号がオンの期間Tonでは、昇圧コンデンサ204には電流が流れ込まないため、昇圧コンデンサのESR成分に基づく抵抗204aの影響により発生する誤差電圧値Veを考慮せず、昇圧コンデンサ204の正規の昇圧電圧値VHaを検出することが可能となるものである。
 本実施例の基本的な考え方は次の通りである。本実施例では昇圧動作を実行していない状態では、常に所定の連続した検出タイミングSptで昇圧電圧検出部206によって昇圧電圧の検出を行っている。そして、例えば燃料噴射弁が駆動されて昇圧電圧が基準値以下まで低下したことを昇圧電圧検出部206で検出して昇圧動作が開始されると、昇圧電圧の検出方法を変更する。昇圧動作の実行時は、スイッチング素子202への入力信号がオンの期間Tonのみ、昇圧電圧検出部206が昇圧動作制御部207からの昇圧電圧検出タイミング信号に基づいて正規の昇圧電圧値VHaの検出を行う。一方、スイッチング素子202への入力信号がオフの期間Toffでは、昇圧電圧検出部206が昇圧動作制御部207からの昇圧電圧検出タイミング信号を無視する、或いは昇圧動作制御部207が検出タイミング信号を停止するので、誤差電圧値Veを含んだ昇圧電圧VHcの検出を行うことがないものである。
 尚、一般的には燃料噴射弁106が駆動された時に昇圧回路104は昇圧動作を行うが、燃料噴射弁106が駆動されていない時にも昇圧コンデンサ204に蓄えられている電圧は放電により低下することがある。このため、昇圧コンデンサ204の昇圧電圧VHが所定値304D以上に低下した場合には、昇圧回路104は昇圧動作を開始するように構成されているので、この時の昇圧電圧VHの検出タイミングも上述した場合と同様の動作を行うことになる。
 以下、本実施例の具体的な制御フローについて説明する。まず、図8において全体的な制御フローを説明するが、以下の制御フローは昇圧制御部207及び昇圧電圧検出部206を主体に実行される制御機能である。
 ≪ステップS10≫
ステップS10においては、燃料制御装置の制御状態を検出している。この制御状態の検出は燃料噴射弁駆動回路209、昇圧回路104等の現在の駆動、制御状態を検出するものである。また、本実施例では燃料噴射弁駆動回路209、昇圧回路104等が収納された制御箱にサーミスタ等の温度検出手段が設けられており、これによって、燃料噴射弁駆動回路209、昇圧回路104等の周囲温度を検出している。尚、制御箱に温度検出手段を設けない場合は内燃機関に設けた水温センサ等の温度検出手段によって代用することもできる。
 尚、図示していないが、この他に内燃機関の運転情報も検出しており、代表的にはキースイッチ情報、回転数情報、温度情報、空気流量情報、負荷情報等を検出している。更に、これ以外の情報を必要に応じて検出することは差し支えないものである。そして、これらの状態情報を検出するとステップS11に移行する。
 ≪ステップS11≫
次に、ステップS11では現在の昇圧回路104の駆動、制御状態を判断しており、昇圧動作が行われる状態にあるかどうかを判断している。この判断は昇圧動作駆動フラグをチェックしており、昇圧動作駆動フラグは制御部101によって制御されている。制御部101は、昇圧コンデンサ204の昇圧電圧VHを監視しているので、昇圧電圧VHが所定電圧値以下に低下する昇圧が必要と判断して昇圧動作駆動フラグを「1」に制御するものである。したがって、このステップS11は、昇圧動作駆動フラグが「1」であると判断するとステップS12に移行し、昇圧動作駆動フラグが「1」でないと判断するとエンドに抜けて、この制御フローの処理を終了し、次の起動タイミングを待つことになる。
 尚、昇圧動作中以外にも以下に述べる制御ステップを実行する場合は、本ステップS11を省略することも可能である。
 ≪ステップS12≫
ステップS12では現在の制御箱の温度が所定値以上かどうかを判断している。実際は昇圧コンデンサ204自体の温度を測定するのが良いが、本実施例では制御箱の温度を検出している。この判断は、昇圧コンデンサ204にESR成分による抵抗が生じているかどうかを判断している。温度が所定値以下であると判断するとステップS13に進み、温度が所定値以上であると判断するとステップS14に移行する。したがって、制御箱の温度が所定値以下である状態ではステップS13に移行し、温度が上昇してくるとステップS14に切り替わるものである。尚、内燃機関の水温情報から昇圧回路104の温度を推定することも可能であり、この水温情報を用いてステップS12の判断を行うことになる。このように、本ステップS12は昇圧コンデンサ204に温度によるESR成分が生成されているかを判断すれば良く、温度の検出位置、検出手段は任意である。
 ≪ステップS13≫
ステップS12で温度が所定値以下と判断されると、ステップS13で間欠測定モードが実行される。この間欠測定モードは図7に示した検出タイミングのように、スイッチング素子202への入力信号がオンの期間Tonだけ検出タイミングを設定して昇圧電圧検出部206で昇圧電圧を検出するものである。このため、スイッチング素子202への入力信号がオンの期間Tonでは、昇圧コンデンサ204には電流が流れ込まないため、昇圧コンデンサのESR成分に基づく抵抗204aの影響により発生する誤差電圧Veを考慮せず、昇圧コンデンサ204の正規の昇圧電圧値VHaを検出することが可能となる。この間欠測定モードの詳細は図9に基づき説明する。
 ≪ステップS14≫
ステップS12で温度が所定値以上と判断されると、ステップS14で常時測定モードが実行される。この常時測定モードは図6に示した検出タイミングのように、スイッチング素子202への入力信号のオン・オフに拘わらず常に連続した検出タイミングで昇圧コンデンサ204の昇圧電圧VHを検出するものである。温度が所定値以上であると、ESR成分に基づく抵抗が生成されないため、或いは生成されてもごく僅かであるため誤差電圧Veの値が小さい。このため、常に昇圧電圧VHを検出しても低温時のようなESR成分による課題を生じないものである。このステップS14の常時測定モードは従来から行われている測定モードなので、これ以上の説明は省略する。
 次に,ステップS13の間欠測定モードについて図9を用いて詳細に説明する。
 ≪ステップS20≫
ステップS12で温度が所定値以下と判断されると、昇圧コンデンサ204にESR成分による抵抗が生成されていると判断され、ステップS20以降の制御フローが実行される。このステップS20では、図7に示すように昇圧動作中に検出タイミングSptが到来したかどうかが判断される。昇圧動作中に検出タイミングSptが到来しないとエンドに抜けてこの制御フローは終了する。一方、検出タイミングSptが到来したと判断するとステップS21に移行する。
 ≪ステップS21≫
ステップS21では昇圧回路105が駆動されて昇圧動作が実行されているかどうかが判断される。このステップS21で昇圧動作が実行されていないと判断するとステップS22に移行し、昇圧動作が実行されていると判断するとステップS23に移行する。尚、このステップS21での昇圧動作の判断は種々の方法で行うことができる。
 例えば、燃料噴射弁106が駆動されているかどうかによってこの判断が可能である。燃料噴射弁106が開弁されず昇圧回路104が駆動されていないと判断されるとステップS22に移行し、燃料噴射弁106が開弁されて昇圧回路104が駆動されていると判断されるとステップS23に移行することになる。燃料噴射弁106が駆動されると昇圧コンデンサ204から高電圧が燃料噴射弁106に印加されるので、昇圧コンデンサ204の昇圧電圧が時間と共に低下する。このため、昇圧コンデンサ204の昇圧電圧が基準値以下まで低下することを燃料噴射弁106の駆動状況から判断して昇圧動作が開始されることを検出している。尚、燃料噴射弁106の駆動状態ではなく、昇圧コンデンサ204の昇圧電圧VHの変化状態から昇圧動作を監視して上述の判断を行うことも可能である。
 また、燃料噴射弁106が駆動されていない時にも昇圧コンデンサ204に蓄えられている電圧は放電により低下することがある。このため、昇圧回路104は昇圧コンデンサ204の昇圧電圧が基準値以下まで低下すると昇圧動作を開始するように構成されている。したがって、昇圧回路104が駆動されていることを検出することによって上述の判断を行うことができる。したがって、本ステップS21は、要は現時点で昇圧駆動回路104が昇圧動作を行っているかどうかを判断できれば良いものである。
 ≪ステップS22≫
ステップS21で昇圧回路104が昇圧動作を行っていないと判断されると本ステップS22を実行する。このステップS22では昇圧コンデンサ204の昇圧電圧を通常の検出タイミングSptで検出する。この検出タイミングは常時測定モードの検出タイミングと同じものであり、この場合は、昇圧コンデンサ204に電流が流れないので正規の昇圧電圧値VHaを検出することができる。昇圧電圧VHの検出が終了するとエンドに抜けてこの制御フローは終了する。そして再び次の起動タイミングの到来を待つことになる。
 ≪ステップS23≫
ステップS20で検出タイミングSptが到来し、ステップS21で昇圧動作中と判断されると、ステップS23では後述するオンフラグが「1」かどうかが判断される。このオンフラグは、後述するステップS26でスイッチング素子202(図8では、SW202と表記している)がオンすると「1」を立てるものであり、オンフラグが「1」の状態が続くと、スイッチング素子202がオンして昇圧コンデンサ204に電流を供給せず、オンフラグが「0」の状態が続くと、スイッチング素子202がオフして昇圧コンデンサ204に電流を供給していることを表している。このステップS23でオンフラグが「1」でないと判断するとステップS24に移行し、オンフラグが「1」であると判断するとステップS28に移行することになる。
 ≪ステップS24≫
ステップS23でオンフラグが「1」でないと判断されると、スイッチング素子202がオフ状態であることを示している。そこで、本ステップS24ではスイッチング素子202がオフ状態からオンに切り替わったかどうかを判断しており、このステップS24でスイッチング素子202がオンしないとオフ状態を維持していることになる。この場合は昇圧コンデンサ204に電流が流れている状態となっている。一方、ステップS24でスイッチング素子202がオンすると昇圧コンデンサ204に電流が流れない状態に切り替わるものである。この状態は、図7のスイッチン素子202の入力信号がオフからオンに切り替わる状態である。
 ≪ステップS25≫
ステップS24でスイッチング素子202がオンしないでオフ状態にあると判断されると、ステップS25では昇圧コンデンサ204の昇圧電圧VHを検出するのを停止する。つまり、検出タイミングSptが到来しても昇圧電圧の検出を実行しないものである。これは図7のスイッチング素子202のオフ期間Toffに相当するものであり、検出タイミングSptでの昇圧電圧VHの検出が実行されないものである。したがって、誤差電圧値Veを含む昇圧電圧値VHcを検出することはないものとなる。ステップS25での処理が終了するとエンドに抜けてこの制御フローは終了する。そして再び次の起動タイミングの到来を待つことになる。
 ≪ステップS26≫
ステップS24でスイッチング素子202がオンしたと判断されると、ステップS26ではオンフラグを「1」にセットする。これによって現時点でスイッチング素子202がオンして昇圧コンデンサ204に電流が流れていないことを表している。このオンフラグの情報はステップS23で使用され、スイッチング素子202の状態を判断できるようになっている。
 ≪ステップS27≫
ステップS26でオンフラグのセットが完了すると、この状態は昇圧コンデンサ204に電流が流れていないので、ESR成分による誤差電圧Veは生成されることがなくなる。これは図7のスイッチング素子202のオン期間Tonに相当するものであり、検出タイミングSptで昇圧電圧値VHaの検出が実行されるものである。したがって、誤差電圧値Veを含まない正規の昇圧電圧値VHaを検出することができるものである。ステップS27での処理が終了するとエンドに抜けてこの制御フローは終了する。そして再び次の起動タイミングの到来を待つことになる。
 ≪ステップS28≫
ステップS23に戻って、本ステップS23でオンフラグが「1」と判断されるとステップS28に移行する。このステップではオンフラグが「1」であるので、昇圧コンデンサ204に電流が流れていない状態である。
 そして、このステップS28では、スイッチング素子202がオン状態からオフに切り替わったかどうかを判断しており、このステップS28でスイッチング素子202がオフしないとオン状態を維持していることになる。この場合は昇圧コンデンサ204に電流が流れていない状態となっている。一方、ステップS28でスイッチング素子202がオンすると昇圧コンデンサ204に電流が流れる状態に切り替わるものである。この状態は図7のスイッチン素子202の入力信号がオンからオフに切り替わる状態である。ステップS28でスイッチング素子202がオフしないと判断されるとステップS27に移行し、スイッチング素子202がオンしたと判断されるとステップS29に移行する。
 ステップS28でスイッチング素子202がオフしない、つまりオン状態と判断されると、ステップ27に再び戻って昇圧コンデンサ204の昇圧電圧VHの検出を継続する。これは図7のスイッチング素子202のオン期間Tonに相当するものであり、検出タイミングSptで昇圧電圧値VHaの検出が実行されるものである。したがって、誤差電圧値Veを含まない正規の昇圧電圧値VHaを検出することができるものである。ステップS27での処理が終了するとエンドに抜けてこの制御フローは終了する。そして再び次の起動タイミングの到来を待つことになる。
 ≪ステップS29≫
ステップS28でスイッチング素子202がオフしたと判断されると、ステップS29ではオンフラグを「0」にセットする。これによって現時点でスイッチング素子202がオフして昇圧コンデンサ204に電流が流れていることを表している。このオンフラグの情報はステップS23で再び使用され、この場合はオンフラグが「0」であるのでステップS24に移行して、同様の動作を継続するものである。
 ≪ステップS30≫
ステップS29でオンフラグのセットが完了すると、ステップS30によって昇圧コンデンサ204の昇圧電圧の検出を停止する。この状態は昇圧コンデンサ204に電流が流れているので、ESR成分による誤差電圧Veは生成されることになる。ステップS28でスイッチング素子202がオフしたと判断されると、ステップS30では昇圧コンデンサ204の昇圧電圧VHを検出するのを停止する。つまり、検出タイミングSptが到来しても昇圧電圧の検出を実行しないものである。これは図7のスイッチング素子202のオフ期間Toffに相当するものであり、検出タイミングSptでの昇圧電圧VHの検出が実行されないものである。したがって、誤差電圧値Veを含む昇圧電圧値VHcを検出することはないものとなる。ステップS30での処理が終了するとエンドに抜けてこの制御フローは終了する。そして再び次の起動タイミングの到来を待つことになる。
 尚、この制御フローでは示していないが、スイッチング素子202を駆動している期間で昇圧電圧VHが基準値まで上昇したことを昇圧電圧検出部206が検出すると、昇圧動作を停止すると共に、常に昇圧電圧の検出を行う常時測定モードに切り替えるようにしている。
 また本実施例ではスイッチング素子202をNch FETとして設定していたが、スイッチング素子202をPch FETとして、スイッチング素子202がオフ時に昇圧電圧検出部206で昇圧電圧を検出する構成としても良いものである。
 以上で本実施例の制御フローの説明を終わるが、これ以外にも以下に述べる技術的な改良を実施することができる。
 スイッチング素子202のスイッチング入力信号の電圧は、オン-オフ切り替えの際、瞬時に電圧が変化せず、一定の傾きを持って変化する傾向にある。このため、スイッチング素子202への入力信号をオンとした後、完全にスイッチング入力信号の電圧が切り替わってから昇圧電圧VHを検出することが望ましい。したがって、入力信号がオンとなって一定の待ち時間を経過した後に昇圧電圧VHを検出するようにすると良い。この場合は、ステップS24の後に時間経過判定処理ロジックを設け、スイッチング素子202がオンした後に所定時間を経過したと判断するとステップS27に移行することで実施できるものである。
 また、上記した実施例では、温度条件によって間欠測定モードを実行するか、或いは常時測定モードを実行するか選択していたが、温度条件に拘わらずESR成分の影響がある場合は、常時測定モードでなく間欠測定モードを実行するようにしても良い。この場合は、図8のステップS12、ステップS14が省略され、ステップS11の後にステップS13が実行されることになる。
 以上述べた通り、本実施例によれば温度条件に関わらず昇圧電圧を正規の昇圧電圧値に安定化することが可能となり、燃料噴射弁から正確な燃料噴射量を噴射することができ、燃費の改善を図ることができる。
 次に本発明の第2の実施形態を説明する。実施例1では、昇圧コンデンサ204に電流が流れ込んでいる期間は検出タイミングを設定しないことを特徴としているが、第2の実施形態では、検出タイミングは通常の連続した検出タイミングであるが、昇圧コンデンサ204に電流が流れ込んでいる期間に検出した昇圧電圧値を使用しないで、昇圧コンデンサ204に電流が流れ込んでいない期間に検出した昇圧電圧値を有効とすることを特徴としている。
 以下、本発明の第2の実施形態を図10に基づき説明するが、参照番号が同じ制御ステップは同じ機能、或いは類似の機能であるため、必要な場合以外は説明を省略する。
 ≪ステップS20≫
実施例1と同じであるため、説明を省略する。
≪ステップS21≫
実施例1と同じであるため、説明を省略する。
≪ステップS22≫
実施例1と同じであるため、説明を省略する。
 ≪ステップS31≫
ステップS20で検出タイミングSptが到来し、ステップS21で昇圧動作中と判断すると、ステップS31では昇圧コンデンサ204の昇圧電圧VHを検出する。この昇圧電圧VHの検出は実施例1とは異なり、検出タイミングが到来するたびに実行されるものである。このため、正規の昇圧電圧値VHaと、誤差電圧値Veが加算された見掛け上の昇圧電圧値VHcが共に検出されるものである。
 ≪ステップS23≫
実施例1と同じであるため、説明を省略する。
≪ステップS24≫
実施例1と同じであるため、説明を省略する。
 ≪ステップS32≫
ステップS24でスイッチング素子202がオンしないでオフ状態にあると判断されると、ステップS32ではステップS31で検出された昇圧電圧値VHを、誤差電圧値Veが加算された昇圧電圧値VHcと見做して破棄する、或いは正規の昇圧電圧値としての取り扱いを実行しないで無効化する。これは図7のスイッチング素子202のオフ期間Toffに相当するものであり、検出タイミングSptで昇圧電圧VHの検出を実行しても、有効な電圧値として制御に反映されないものである。ステップS32での処理が終了するとエンドに抜けてこの制御フローは終了する。そして再び次の起動タイミングの到来を待つことになる。
 ≪ステップS26≫
実施例1と同じであるため、説明を省略する。
 ≪ステップS33≫
ステップS26でオンフラグのセットが完了すると、ステップS24でスイッチング素子202がオンしたと判断されているので、ステップS33ではステップS31で検出された昇圧電圧値VHを、正規の昇圧電圧値VHaと見做して有効な昇圧電圧値として取り扱うようにする。これは図7のスイッチング素子202のオン期間Tonに相当するものであり、有効な昇圧電圧値VHaとして制御に反映されるものである。ステップS32での処理が終了するとエンドに抜けてこの制御フローは終了する。そして再び次の起動タイミングの到来を待つことになる。
 ≪ステップS28≫
実施例1と同じであるため、説明を省略する。
≪ステップS29≫
実施例1と同じであるため、説明を省略する。
 ≪ステップS34≫
ステップS29でオンフラグのセットが完了すると、ステップS28でスイッチング素子202がオフしたと判断されているので、ステップS34ではステップS31で検出された昇圧電圧値VHを、誤差電圧値Veが加算された昇圧電圧値VHcと見做して破棄する、或いは正規の昇圧電圧値としての取り扱いを実行しないで無効化する。これは図7のスイッチング素子202のオフ期間Toffに相当するものであり、検出タイミングSptで昇圧電圧VHの検出を実行しても、有効な電圧値として制御に反映されないものである。ステップS32での処理が終了するとエンドに抜けてこの制御フローは終了する。そして再び次の起動タイミングの到来を待つことになる。
 本実施例によれば、温度条件に関わらず昇圧電圧を正規の昇圧電圧値に安定化することが可能となり、燃料噴射弁から正確な燃料噴射量を噴射することができ、燃費の改善を図ることができる。
 次に本発明の第3の実施形態を説明する。実施例1では、検出タイミングを昇圧コンデンサ204に電流が流れ込んでいる期間は設定しないことを特徴とし、実施例2では、昇圧コンデンサ204に電流が流れ込んでいる期間に検出した昇圧電圧値を使用しないことを特徴としているが、第3の実施形態では、所定の検出期間を設定し、この検出期間内の検出タイミングで検出された昇圧電圧VHの最小値を正規の昇圧電圧値VHaと見做すことを特徴としている。
 以下、本発明の第2の実施形態を図11に基づき説明するが、参照番号が同じ制御ステップは同じ機能、或いは類似の機能であるため、必要な場合以外は説明を省略する。
 ≪ステップS20≫
実施例1と同じであるため、説明を省略する。
≪ステップS21≫
実施例1と同じであるため、説明を省略する。
≪ステップS22≫
実施例1と同じであるため、説明を省略する。
 ≪ステップS35≫
ステップ21で昇圧回路の駆動中と判断されると、ステップS35では昇圧電圧の検出期間を設定する。この検出期間は任意であるが、少なくとも図4の昇圧動作時のスイッチング素子202がオンしているオン期間と、スイッチング素子202がオフしているオフ期間を含む期間に設定されている。
 ≪ステップS36≫
ステップ35で検出期間が設定されると、ステップS36では昇圧コンデンサ204の昇圧電圧VHを検出する。この昇圧電圧VHの検出は検出タイミングが到来するたびに実行されるものである。このため、正規の昇圧電圧値VHaと、誤差電圧値Veが加算された見掛け上の昇圧電圧値VHcが共に検出されるものである。
 ≪ステップS37≫
ステップ36で検出された昇圧電圧VHは、昇圧回路102を校正するマイクロコンピュータのRAM領域に記憶される。RAM領域は時系列に昇圧電圧VHを記憶するように構成されており、検出タイミングSptが到来するたびに昇圧電圧VHが記憶されるものである。
 ≪ステップS38≫
ステップS37で検出された昇圧電圧VHが記憶されると、このステップS38では先に設定した検出期間を経過したかどうかが判断される。この検出期間に亘って昇圧電圧VHが検出されていなければステップS36に戻って昇圧電圧VHの検出を継続し、検出期間を経過したと判断されればステップS39に移行することになる。
 ≪ステップS39≫
ステップS38で検出期間を経過したと判断すると、ステップS39では検出期間内の記憶されている昇圧電圧VHの選択を実行する。昇圧電圧VHは上述した通りマイクロコンピュータのRAM領域に時系列で対応付けられて記憶されており、このステップS39では検出タイミング毎に検出したN個の昇圧電圧VHから、最小の昇圧電圧値を正規の昇圧電圧値VHaと見做して選択するようにしている。
 すなわち、昇圧動作中に検出した昇圧電圧VHは、正規の昇圧電圧値VHaと、誤差電圧値Veが加算された見掛け上の昇圧電圧値VHcが共に検出されているが、少なくとも最小の昇圧電圧値は誤差電圧値Veが加算されていないものと見做せるからである。ステップS39での処理が終了するとエンドに抜けてこの制御フローは終了する。そして再び次の起動タイミングの到来を待つことになる。
 尚、実施例3において、ステップS21を省略して昇圧回路104の駆動の如何にかかわらず、ステップS35の以降の制御ステップを実行することも可能である。
 このような本実施例によれば、実施例1、実施例2で述べた作用、効果の他に、制御ステップの数を少なくできるので制御が容易となる効果を奏するようになる。
 以上に述べた通り、本発明によれば、少なくとも昇圧動作中で昇圧コンデンサに電流が流れ込んでいない時に検出された昇圧電圧値を正規の昇圧電圧値とするものである。これによれば、温度条件に関わらず昇圧電圧を正規の昇圧電圧値に安定化することが可能となり、燃料噴射弁から正確な燃料噴射量を噴射することができ、燃費の改善を図ることができる。
 尚、本発明は上記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
 101…制御部、102…昇圧制御回路、104…昇圧回路、105…燃料噴射弁駆動回路、106…燃料噴射弁、201…昇圧コイル、202…スイッチング素子、203…電流検出用抵抗、204…昇圧コンデンサ、206…昇圧電圧検出部、207…昇圧制御部、208…逆流防止ダイオード。

Claims (6)

  1.  少なくとも、直流電圧源に接続され前記直流電圧源の電圧を昇圧する昇圧コイルと、前記昇圧コイルへ昇圧電流を通電させるスイッチング素子と、前記昇圧コイルで生成されたエネルギーを蓄積する昇圧コンデンサと、前記昇圧コンデンサの昇圧電圧を検出する昇圧電圧検出部と、前記昇圧電圧検出部で検出された昇圧電圧が規定値以下に低下すると、前記昇圧コイルに蓄積されたエネルギーを前記昇圧コンデンサに蓄積する昇圧動作を昇圧電圧が前記規定値に到達するまで前記スイッチング素子のオン-オフを繰り返す制御を行う昇圧制御部よりなる昇圧回路を備えた内燃機関の燃料制御装置において、
     前記昇圧制御部は、少なくとも昇圧動作中で、前記昇圧コンデンサに電流が流れ込んでいない時に検出された昇圧電圧値を正規の昇圧電圧値とする間欠測定モードを実行し、検出された前記正規の昇圧電圧値と前記規定値を比較して昇圧動作を制御することを特徴とする内燃機関の燃料制御装置。
  2.  請求項1に記載の内燃機関の燃料制御装置において、
     前記昇圧制御部で実行される間欠測定モードは、前記昇圧動作中で前記昇圧コンデンサに電流が流れ込まない時に前記昇圧電圧検出部に検出タイミング情報を送り、この検出タイミング情報に基づいて検出された昇圧電圧値を前記正規の昇圧電圧値とすることを特徴とする内燃機関の燃料制御装置。
  3.  請求項2に記載の内燃機関の燃料制御装置において、
     前記昇圧制御部は、前記昇圧電圧検出部で検出された昇圧電圧が規定値以下に低下すると、前記昇圧電流検出部で検出される電流が、設定された上限閾値に到達するまで前記昇圧スイッチング素子をオンし、昇圧電流値が上限閾値に到達後、下限閾値に到達するまで前記昇圧スイッチング素子をオフにして昇圧電流を遮断し、前記昇圧コイルに蓄積されたエネルギーを前記昇圧コンデンサに蓄電する昇圧動作を昇圧電圧が規定値に到達するまで繰り返すよう前記昇圧スイッチング素子の制御を行う昇圧制御部よりなり、
     前記昇圧制御部は、前記スイッチング素子がオンした後の所定の待ち時間を経過した後に前記検出タイミング情報を前記昇圧電圧検出部に送ることを特徴とする内燃機関の燃料制御装置。
  4.  請求項1に記載の内燃機関の燃料制御装置において、
     前記昇圧制御部で実行される間欠測定モードは、前記昇圧動作中に前記昇圧電圧検出部に連続した検出タイミング情報を送り、この検出タイミング情報に基づいて検出された昇圧電圧のうち、前記昇圧コンデンサに電流が流れ込まない時に検出された昇圧電圧値を前記正規の昇圧電圧値とすることを特徴とする内燃機関の燃料制御装置。
  5.  請求項1に記載の内燃機関の燃料制御装置において、
     前記昇圧制御部で実行される間欠測定モードは、前記昇圧電圧検出部に連続した検出タイミング情報を送り、前記昇圧動作中で所定の検出期間内の前記検出タイミング情報に基づいて検出された昇圧電圧を記憶し、前記検出期間内の最小の昇圧電圧値を前記正規の昇圧電圧値とすることを特徴とする内燃機関の燃料制御装置。
  6.  請求項1乃至請求項5のいずれかに記載の内燃機関の燃料制御装置において、
     前記昇圧制御部は、前記昇圧コンデンサの周囲温度が所定値以下の場合に前記間欠測定モードを実行することを特徴とする内燃機関の燃料制御装置。
PCT/JP2015/082971 2014-12-08 2015-11-25 内燃機関の燃料制御装置 WO2016093056A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP15868540.4A EP3232038B1 (en) 2014-12-08 2015-11-25 Fuel control device for internal combustion engine
JP2016563600A JP6309653B2 (ja) 2014-12-08 2015-11-25 内燃機関の燃料制御装置
CN201580066078.6A CN107002583B (zh) 2014-12-08 2015-11-25 内燃机的燃料控制装置
US15/532,589 US10428759B2 (en) 2014-12-08 2015-11-25 Fuel control device for internal combustion engine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014247564 2014-12-08
JP2014-247564 2014-12-08

Publications (1)

Publication Number Publication Date
WO2016093056A1 true WO2016093056A1 (ja) 2016-06-16

Family

ID=56107246

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/082971 WO2016093056A1 (ja) 2014-12-08 2015-11-25 内燃機関の燃料制御装置

Country Status (5)

Country Link
US (1) US10428759B2 (ja)
EP (1) EP3232038B1 (ja)
JP (1) JP6309653B2 (ja)
CN (1) CN107002583B (ja)
WO (1) WO2016093056A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018071449A (ja) * 2016-10-31 2018-05-10 株式会社デンソー 電子制御装置
JP2019060306A (ja) * 2017-09-27 2019-04-18 株式会社デンソー インジェクタ駆動装置
JP2021193286A (ja) * 2020-06-08 2021-12-23 株式会社デンソー 噴射制御装置
WO2023149045A1 (ja) * 2022-02-07 2023-08-10 日立Astemo株式会社 電子制御装置、電子制御装置の制御方法

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6181865B2 (ja) * 2014-05-13 2017-08-16 日立オートモティブシステムズ株式会社 電子制御装置
JP6717176B2 (ja) * 2016-12-07 2020-07-01 株式会社デンソー 噴射制御装置
US10443533B2 (en) * 2017-10-23 2019-10-15 GM Global Technology Operations LLC Mild hybrid powertrain with simplified fuel injector boost
JP6844501B2 (ja) * 2017-10-31 2021-03-17 株式会社デンソー 燃料噴射弁の制御装置、及び燃料噴射弁の制御方法
FR3083932B1 (fr) * 2018-07-10 2020-06-12 Continental Automotive France Procede de controle d'un convertisseur de tension continu-continu
JP6987035B2 (ja) 2018-09-27 2021-12-22 日立Astemo株式会社 電磁弁駆動装置
CN110805733B (zh) * 2019-11-12 2021-12-07 武汉海王新能源工程技术有限公司 一种核电用阀门的驱动装置
JP2022051146A (ja) 2020-09-18 2022-03-31 株式会社デンソー 噴射制御装置
JP7424257B2 (ja) 2020-09-18 2024-01-30 株式会社デンソー 噴射制御装置
JP7435380B2 (ja) 2020-09-18 2024-02-21 株式会社デンソー 噴射制御装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146721A (ja) * 2005-11-25 2007-06-14 Denso Corp 燃料噴射制御装置
JP2013036398A (ja) * 2011-08-09 2013-02-21 Honda Motor Co Ltd 燃料噴射弁用の昇圧制御装置
JP2014214693A (ja) * 2013-04-26 2014-11-17 株式会社デンソー インジェクタ駆動装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4486703A (en) * 1982-09-27 1984-12-04 The Bendix Corporation Boost voltage generator
US4604675A (en) 1985-07-16 1986-08-05 Caterpillar Tractor Co. Fuel injection solenoid driver circuit
US5717562A (en) * 1996-10-15 1998-02-10 Caterpillar Inc. Solenoid injector driver circuit
DE10149982B4 (de) * 2001-10-10 2005-11-03 Siemens Ag Verfahren zur Ermittlung der Temperatur einer elektrischen Spule sowie zugehörige Vorrichtung
ATE353398T1 (de) * 2004-10-08 2007-02-15 Fiat Ricerche Vorrichtung zum steuern der elektroeinspritzventile und elektroventile einer brennkraftmaschine und eine methode dafür
JP5055050B2 (ja) * 2006-10-10 2012-10-24 日立オートモティブシステムズ株式会社 内燃機関制御装置
JP5160822B2 (ja) * 2007-07-06 2013-03-13 ルネサスエレクトロニクス株式会社 昇圧回路
JP4325710B2 (ja) * 2007-07-13 2009-09-02 株式会社デンソー 昇圧電源装置
JP4815502B2 (ja) * 2009-03-26 2011-11-16 日立オートモティブシステムズ株式会社 内燃機関の制御装置
JP4911197B2 (ja) * 2009-06-01 2012-04-04 株式会社デンソー 直動式燃料噴射弁の制御装置
JP2011182482A (ja) * 2010-02-26 2011-09-15 Hitachi Ltd スイッチング昇圧型dc−dcコンバータおよび半導体集積回路装置
JP5160581B2 (ja) * 2010-03-15 2013-03-13 日立オートモティブシステムズ株式会社 インジェクタ駆動装置
JP4960476B2 (ja) * 2010-05-14 2012-06-27 三菱電機株式会社 車載エンジン制御装置
JP5509112B2 (ja) * 2011-01-28 2014-06-04 本田技研工業株式会社 内燃機関の燃料噴射制御装置
JP5542884B2 (ja) * 2012-08-30 2014-07-09 三菱電機株式会社 車載エンジン制御装置
JP6008715B2 (ja) * 2012-11-29 2016-10-19 アルパイン株式会社 バックライトの調光制御装置および調光制御方法
JP6130280B2 (ja) * 2013-09-25 2017-05-17 日立オートモティブシステムズ株式会社 燃料噴射装置の駆動装置
JP6181865B2 (ja) * 2014-05-13 2017-08-16 日立オートモティブシステムズ株式会社 電子制御装置
JP6544937B2 (ja) * 2015-02-13 2019-07-17 株式会社ケーヒン ソレノイド駆動装置
JP6384358B2 (ja) * 2015-02-20 2018-09-05 株式会社デンソー 燃料噴射弁駆動装置
EP3339615B1 (en) * 2015-08-21 2020-11-25 Hitachi Automotive Systems, Ltd. Booster device for driving injector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007146721A (ja) * 2005-11-25 2007-06-14 Denso Corp 燃料噴射制御装置
JP2013036398A (ja) * 2011-08-09 2013-02-21 Honda Motor Co Ltd 燃料噴射弁用の昇圧制御装置
JP2014214693A (ja) * 2013-04-26 2014-11-17 株式会社デンソー インジェクタ駆動装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3232038A4 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018071449A (ja) * 2016-10-31 2018-05-10 株式会社デンソー 電子制御装置
JP2019060306A (ja) * 2017-09-27 2019-04-18 株式会社デンソー インジェクタ駆動装置
JP2021193286A (ja) * 2020-06-08 2021-12-23 株式会社デンソー 噴射制御装置
JP7367616B2 (ja) 2020-06-08 2023-10-24 株式会社デンソー 噴射制御装置
WO2023149045A1 (ja) * 2022-02-07 2023-08-10 日立Astemo株式会社 電子制御装置、電子制御装置の制御方法

Also Published As

Publication number Publication date
US20170335789A1 (en) 2017-11-23
CN107002583A (zh) 2017-08-01
JP6309653B2 (ja) 2018-04-11
US10428759B2 (en) 2019-10-01
CN107002583B (zh) 2020-04-14
EP3232038B1 (en) 2021-02-24
JPWO2016093056A1 (ja) 2017-09-21
EP3232038A4 (en) 2018-07-25
EP3232038A1 (en) 2017-10-18

Similar Documents

Publication Publication Date Title
JP6309653B2 (ja) 内燃機関の燃料制御装置
JP5198496B2 (ja) 内燃機関のエンジンコントロールユニット
JP6314733B2 (ja) 内燃機関の燃料噴射制御装置
JP5838074B2 (ja) 内燃機関の燃料噴射制御装置
JP6121552B2 (ja) 内燃機関の燃料噴射制御装置
JP2010255444A (ja) 内燃機関の燃料噴射制御装置及び方法
JP6413582B2 (ja) 内燃機関の制御装置
JP6420204B2 (ja) 内燃機関の燃料制御装置
CN110612388B (zh) 燃料喷射控制装置
JP2013137028A (ja) 内燃機関の燃料噴射制御装置及び方法
JP5842619B2 (ja) インジェクタ駆動制御装置
US11286873B2 (en) Control device
JP6158026B2 (ja) 昇圧装置
JP2010209799A (ja) ヒータ付センサのヒータ制御装置
JP6431826B2 (ja) 内燃機関の燃料噴射制御装置
KR20200049220A (ko) 디젤 엔진의 후분사 제어 장치 및 그 방법
JP6133627B2 (ja) 昇圧回路
JP2015081592A (ja) 内燃機関制御装置
JP2024111564A (ja) 噴射制御装置
JP2013142347A (ja) インジェクタ駆動制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15868540

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016563600

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2015868540

Country of ref document: EP