WO2016092632A1 - Actuator - Google Patents

Actuator Download PDF

Info

Publication number
WO2016092632A1
WO2016092632A1 PCT/JP2014/082542 JP2014082542W WO2016092632A1 WO 2016092632 A1 WO2016092632 A1 WO 2016092632A1 JP 2014082542 W JP2014082542 W JP 2014082542W WO 2016092632 A1 WO2016092632 A1 WO 2016092632A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
shaft
actuator
plate
motor
Prior art date
Application number
PCT/JP2014/082542
Other languages
French (fr)
Japanese (ja)
Inventor
後藤 隆
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016563324A priority Critical patent/JP6351755B2/en
Priority to PCT/JP2014/082542 priority patent/WO2016092632A1/en
Publication of WO2016092632A1 publication Critical patent/WO2016092632A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K11/00Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection
    • H02K11/02Structural association of dynamo-electric machines with electric components or with devices for shielding, monitoring or protection for suppression of electromagnetic interference

Definitions

  • the present invention relates to an actuator that linearly moves or rotates a shaft by a driving force of a motor with a brush.
  • actuators are increasingly used for control drive parts of automobiles as automobiles become more electrified.
  • an actuator using a motor with a brush that has a simple structure and is inexpensive is employed as an actuator for an automobile.
  • a typical brush motor has a stator composed of a cylindrical stator yoke and a magnet provided on the inner periphery of the stator yoke.
  • a rotor is constituted by a core inserted through the stator yoke and a winding wound around the core.
  • the driving system of the actuator for automobiles is classified into a direct acting type and a rotating type.
  • the direct-acting actuator converts the rotary motion of the rotor into a linear motion by a screw mechanism or the like, and moves the shaft along the axial direction.
  • the rotary actuator rotates the shaft by the rotational movement of the rotor.
  • An automobile manufacturer selects an actuator of any drive system according to the mountability when the actuator is mounted on a car.
  • actuators have been developed that increase the accuracy of shaft position control by providing a sensor that detects the position of the shaft in the linear motion direction in a linear motion actuator.
  • a sensor for detecting the rotation angle of the shaft is provided to improve the accuracy of shaft rotation control.
  • these sensors for example, magnetic sensors provided on a substrate in an actuator are used.
  • Actuators used in automobile engine rooms are required to have high performance such as high heat resistance and long life.
  • an actuator used for a purpose of holding the valve opening at a constant opening or a purpose of holding the shaft at a predetermined position must always supply power to the rotor windings to maintain the thrust of the actuator. For this reason, especially when the operation frequency is high, there is a concern about the influence of the self-heating of the rotor.
  • Patent Document 1 dissipates heat generated inside the motor to the outside of the motor by attaching a heat radiation fin to the housing of the motor.
  • the electric motor of Patent Document 1 dissipates heat generated inside the motor to the outside of the motor by attaching a heat radiation fin to the motor casing.
  • a heat radiation fin to the motor casing.
  • the air flow is inhibited by the radiating fins, so that there is a problem that the degree of freedom of the mounting portion is lowered.
  • the heat dissipating fins are simply provided, there is a problem that the influence of the spark noise generated between the commutator and the brush cannot be reduced.
  • the electric motor of Patent Document 2 reduces the influence of noise by arranging circuit elements such as capacitors, varistors, and choke coils on a substrate inside the motor.
  • circuit elements such as capacitors, varistors, and choke coils
  • the number of parts increases due to these circuit elements, and the cost of the entire electric motor increases.
  • the influence of the heat generated by the rotor on the sensor or the like cannot be reduced.
  • the present invention has been made to solve the above-described problems, and reduces the influence of the heat generated by the rotor and the spark noise generated between the commutator and the brush on the sensor while suppressing an increase in the number of components.
  • An object of the present invention is to provide an actuator using a brushed motor.
  • the actuator of the present invention is an actuator that linearly rotates or rotates the shaft by the driving force of the brushed motor, communicates with the motor with the brush and the hollow motor chamber and the motor chamber, and moves the shaft. It comprises a plate arranged between a hollow sensor chamber containing a sensor used for control.
  • the plate is provided between the motor chamber and the sensor chamber, it is possible to shield the heat generated by the rotor and the spark noise generated between the commutator and the brush, thereby reducing the influence on the sensor. Moreover, since both heat generation and noise can be cut off simply by adding a plate, an increase in the number of parts can be suppressed.
  • FIG.5 (b) is explanatory drawing which shows the inclination angle of the sensor shaft in the actuator of Embodiment 1 of this invention. It is sectional drawing of the cover of Embodiment 1 of this invention. It is sectional drawing of the other cover of Embodiment 1 of this invention. It is sectional drawing of the actuator of Embodiment 2 of this invention. It is explanatory drawing which shows the example of the heat
  • FIG. 1 shows a cross-sectional view of the actuator of the first embodiment.
  • the actuator 100 according to the first embodiment will be described with reference to FIG.
  • the core 1 is made of, for example, a laminated steel plate.
  • the core 1 has a cylindrical yoke and a plurality of teeth protruding from the outer periphery of the yoke.
  • the bobbin is integrally formed, and the winding 2 is wound around the bobbin.
  • a rotor 3 is constituted by the core 1 and the winding 2.
  • the pipe 4 is fixed to the hollow portion of the core 1 and is rotated integrally with the core 1.
  • a shaft 7 is inserted along the axis of the pipe 4.
  • a screw mechanism 8 is provided between the inner periphery of the pipe 4 and the outer periphery of the shaft 7, and the shaft 7 moves linearly along the axial direction in accordance with the rotation of the rotor 3. Yes.
  • a convex stopper 9 that restricts the linear movement of the shaft 7 by contacting the screw mechanism 8 and the housing 11 is formed on the outer peripheral portion in the vicinity of the one end portion 71 of the shaft 7.
  • a commutator 10 is fixed to the other end of the pipe 4.
  • the commutator 10 includes a cylindrical insulator and a plurality of commutator pieces installed on the side peripheral surface of the insulator. Each commutator piece is electrically connected to at least one winding 2.
  • the rotor 3 is accommodated in a bottomed cylindrical housing 11.
  • a hole 111 is formed in the center of the bottom of the housing 11, and one end 71 of the shaft 7 passes therethrough.
  • a bearing 12 is interposed between the inner periphery of the housing 11 and one end of the pipe 4, and a bearing 13 is interposed between the inner periphery of the housing 11 and the other end of the rotor 3. .
  • the rotor 3 and the pipe 4 are rotatably supported with respect to the housing 11 by the bearings 12 and 13.
  • a magnet 14 facing the rotor 3 is fixed to the inner periphery of the housing 11.
  • a ring 15 is provided between the magnet 14 and the bearing 12.
  • the opening of the housing 11 is covered with a cover 16.
  • the cover 16 has a bottomed cylindrical main body 161 and a flange 162 formed in the opening of the main body 161, and the flange 162 is fixed to the opening of the housing 11.
  • a plurality of brushes 17 facing the commutator 10 are provided on the collar portion 162 of the cover 16. Each brush 17 is pressed against the commutator 10 by a spring 18. The commutator 10 is rotated in accordance with the rotation of the rotor 3, and the commutator pieces in contact with the brushes 17 are switched.
  • a substrate 19 is provided on the bottom of the main body 161 of the cover 16.
  • a sensor 20 is provided on the substrate 19.
  • the sensor 20 is constituted by a magnetic sensor, for example.
  • Connector terminals 21 are formed on the outer peripheral portion of the main body 161 of the cover 16.
  • the connector terminal 21 is provided with a conductor 22 electrically connected to the brush 17 and the substrate 19.
  • a cylindrical first holding portion 23 is formed at the center of the bottom portion of the main body portion 161 of the cover 16.
  • a sensor shaft 24 is inserted through the first holding part 23.
  • the sensor shaft 24 is pressed against the shaft 7 by a spring 25, and moves linearly integrally with the shaft 7 in a state where the tip end portion of the sensor shaft 24 is in contact with the other end portion 72 of the shaft 7. .
  • a sensor magnet 26 is provided on the sensor shaft 24 so as to move directly with the sensor shaft 24.
  • the sensor magnet 26 is a target of detection by the sensor 20, and the sensor 20 detects the magnetic flux density formed by the sensor magnet 26 and the direction of the magnetic flux.
  • the hollow portions formed by the housing 11 and the cover 16 the hollow portions accommodating the main components of the brushed motor 200 such as the rotor 3, the commutator 10 and the brush 17 and the shaft 7 are referred to as “motor chamber”.
  • a hollow portion that accommodates the substrate 19, the sensor 20, and the sensor shaft 24 is referred to as a “sensor chamber”. That is, the motor chamber 32 and the sensor chamber 33 are constituted by an integral hollow portion, and communicate with each other in a state where a plate 27 described later is not provided.
  • a plate 27 is provided between the commutator 10 and the sensor 20.
  • the plate 27 is made of, for example, a magnetic material.
  • the plate 27 has a circular shape whose diameter is larger than the inner diameter of the main body portion 161 of the cover 16, and the peripheral end portion of the plate 27 is integrated with the side wall portion of the main body portion 161 by insert molding. That is, in the example of FIG. 1, the plate 27 is provided so as to divide the integral hollow portion into the motor chamber 32 and the sensor chamber 33, and separates the motor chamber 32 and the sensor chamber 33 without a gap.
  • a hole 271 is formed in the center of the plate 27, and the sensor shaft 24 penetrates from the sensor chamber 33 side to the motor chamber 32 side.
  • the edge portion of the hole 271 has a shape protruding in a cylindrical shape, thereby forming a second holding portion 28 that holds the sensor shaft 24.
  • the rotor 3, pipe 4, commutator 10, housing 11, bearings 12 and 13, magnet 14, ring 15, cover 16, brush 17, spring 18, connector terminal 21, and conductor 22 constitute a brushed motor 200.
  • the actuator 100 includes the motor 200 with brush, the shaft 7, the screw mechanism portion 8, the substrate 19, the sensor 20, the first holding portion 23, the sensor shaft 24, the spring 25, the sensor magnet 26, the plate 27, and the second holding portion 28. Has been.
  • a power supply unit (not shown) applies a voltage to the conductor 22 of the connector terminal 21, a current flows from the conductor 22 to the commutator piece of the commutator 10 via the brush 17, and the winding 2 is energized.
  • the winding 2 is energized, a magnetic field is generated around the winding 2, and the core 1 is excited to form a magnetic pole.
  • the excited core 1 is attracted to the magnet 14 disposed on the inner periphery of the housing 11, and the rotor 3 rotates. Thereafter, the commutator 10 also rotates in conjunction with the rotation of the rotor 3, so that the direction of the current flowing through the individual windings 2 is switched, the magnetic poles of the core 1 are switched, and the rotor 3 continues to rotate.
  • the senor 20 detects the magnetic flux density formed by the sensor magnet 26 and the direction of the magnetic flux.
  • a control unit (not shown) detects the position of the shaft 7 in the axial direction using the magnetic flux density detected by the sensor 20 and the direction of the magnetic flux.
  • the control unit controls the movement of the shaft 7 by controlling the current supplied from the brush 17 to the rotor 3, and controls the amount of projection of the shaft 7 from the housing 11.
  • FIG. 2 shows an example of the magnetic field I generated by exciting the core 1.
  • the plate 27 blocks the magnetic field I generated in the motor chamber 32, it is possible to prevent the magnetic field I from affecting the operation of the sensor 20 in the sensor chamber 33.
  • FIG. 3 shows an example of the spark II generated when the commutator piece in contact with the brush 17 is switched and the radiation noise III generated by the spark II. As shown in FIG. 3, since the radiation noise III generated in the motor chamber 32 is blocked by the plate 27, the radiation noise III can be prevented from affecting the operation of the sensor 20 in the sensor chamber 33.
  • FIG. 4 shows an example of heat IV generated in the motor chamber 32.
  • the heat IV includes, for example, heat generated by a spark between the brush 17 and the commutator piece, heat generated by energizing the winding 2, heat generated by mechanical loss of the bearing 13, and magnetic loss of the core 1. And heat generated by.
  • the movement of the heat IV from the motor chamber 32 to the sensor chamber 33 is blocked by the plate 27 absorbing the heat IV generated in the motor chamber 32. Thereby, the temperature rise of the sensor 20 can be suppressed and deterioration of sensing sensitivity due to the temperature rise can be suppressed.
  • FIG. 5B shows the maximum value ⁇ 2 of the tilt angle of the sensor shaft 24 in the actuator 100 of the first embodiment.
  • FIG. 5A shows the maximum value ⁇ 1 of the tilt angle of the sensor shaft 24 in the actuator that does not have the second holding portion 28 as a comparison object of FIG.
  • the actuator not having the second holding portion 28 holds the sensor shaft 24 only by the first holding portion 23 provided on the cover 16.
  • the actuator 100 according to the first embodiment holds the sensor shaft 24 at two locations, the first holding portion 23 provided on the cover 16 and the second holding portion 28 provided on the plate 27.
  • the actuator 100 of the first embodiment has the maximum inclination angle ⁇ 2 of the sensor shaft 24 with respect to the linear movement direction of the shaft 7 smaller than the maximum inclination angle ⁇ 1 of the actuator that does not have the second holding portion 28. can do.
  • the fluctuation range of the magnetic pole direction of the sensor magnet 26 with respect to the sensor 20 can be reduced, and the detection accuracy and linearity of the position of the shaft 7 in the linear motion direction using the sensor 20 can be improved.
  • the shape and structure of the main components of the brushed motor 200 such as the rotor 3, the commutator 10, and the brush 17 are not limited to the shape and structure shown in FIG. Any member having any shape and structure may be used as long as it is a member constituting a general brush motor.
  • the magnet 14 is not limited to a permanent magnet, but may be an electromagnet using a coil or the like.
  • the shapes of the housing 11 and the cover 16 are not limited to the shapes shown in FIG. Any shape may be used as long as it has an integral hollow portion that constitutes a motor chamber containing a rotor, a commutator, a brush, and the like of a motor with a brush and a sensor chamber containing a sensor.
  • the shape of the plate 27 is not limited to the shape shown in FIG. As shown in FIG. 1, when the plate 27 has a circular shape whose diameter is larger than the inner diameter of the main body portion 161 of the cover 16 and the peripheral end portion of the plate 27 is integrated with the side wall portion of the main body portion 161, The motor chamber 32 and the sensor chamber 33 are separated from each other without a gap. Further, the hole 271 provided at the center of the plate 27 is closed by the sensor shaft 24. Thereby, the shielding effect of the magnetic field I, the radiation noise III, and the heat IV can be maximized.
  • a through hole different from the hole 271 is further drilled in the plate 27, or the plate 27 has a non-circular shape such as an ellipse or a polygon, and a gap is provided between the peripheral end portion and the side wall portion of the main body portion 161.
  • the weight of the actuator 100 it is possible to reduce the weight of the actuator 100 by reducing the weight of the plate 27 while having a certain blocking effect.
  • the actuator 100 may be a rotary actuator in which the shaft 7 is fixed to the pipe 4 without the screw mechanism portion 8 and the shaft 7 and the sensor shaft 24 are rotated according to the rotation of the rotor 3.
  • the sensor 20 may detect the rotation angle of the sensor shaft 24, and the control unit may calculate the rotation speed of the shaft 7 using this rotation angle and control the movement of the shaft 7.
  • the material of the plate 27 is not limited to a magnetic material. Even the plate 27 made of a non-magnetic metal such as copper or aluminum can block radiation noise III and heat IV. However, since the magnetic field I can be cut off by configuring the plate 27 with a magnetic material, it is more preferable to configure the plate 27 with a magnetic material.
  • the cover 16 may be a combination of the first cover member A and the second cover member B as shown in FIG.
  • the substrate 19 and the sensor 20 are mounted on the first cover member A in which the conductor 22 is insert-molded.
  • the second cover member B in which the plate 27 is insert-molded is manufactured separately from the first cover member A.
  • the conductor 22 protruding from the first cover member A is inserted into the hole 163 formed in the second cover member B, and the first cover member A and the second cover member B are combined.
  • the cover 16 provided with the substrate 19, the sensor 20, the conductor 22, and the plate 27 is manufactured by bonding the joint portion between the first cover member A and the second cover member B.
  • the plate 27 may be inserted into the cover 16 from the opening of the cover 16.
  • a ring-shaped fitting member 29 having a recess into which the peripheral end portion of the plate 27 is fitted may be insert-molded on the side wall portion of the main body portion 161 of the cover 16.
  • the fitting member 29 is also preferably made of a magnetic material similar to the plate 27.
  • the actuator 100 communicates with the motor chamber 32 and the hollow motor chamber 32 that houses the rotor 3, the commutator 10, and the brush 17 of the brushed motor 200.
  • a plate 27 is provided between the sensor chamber 33 and the hollow sensor chamber 33 that houses the sensor 20 used for control.
  • the actuator 100 is housed in the sensor chamber 33, and is provided on the sensor shaft 24 and the sensor shaft 24 that abuts on the other end 72 of the shaft 7 housed in the motor chamber 32 and moves linearly or integrally. And a sensor magnet 26 serving as a target detected by the sensor 20.
  • the plate 27 has a hole 271 that allows the sensor shaft 24 to pass from the sensor chamber 33 side to the motor chamber 32 side, and a second holding portion 28 that holds the sensor shaft 24 in a shape in which an edge portion of the hole 271 protrudes in a cylindrical shape. And have.
  • the maximum value ⁇ 2 of the inclination angle of the sensor shaft 24 with respect to the axial direction of the shaft 7 is small.
  • the change in the direction of the magnetic flux of the sensor magnet 26 due to the inclination of the sensor shaft 24 can be suppressed.
  • the detection accuracy of the sensor 20 can be further improved.
  • the plate 27 has a shape that separates the motor chamber 32 and the sensor chamber 33 without any gap. Thereby, the interruption
  • the plate 27 is made of a magnetic material. Thereby, in addition to the radiation noise III and the heat IV, it is possible to prevent the magnetic field I generated by exciting the rotor 3 from affecting the operation of the sensor 20.
  • FIG. FIG. 8 shows a cross-sectional view of the actuator of the second embodiment.
  • the actuator 101 in which the heat radiating portion 30 is formed by the end portion of the plate 27 will be described.
  • the end of the plate 27 penetrates the cover 16 and protrudes to the outside of the actuator 101 to form a heat radiating part 30.
  • the plate 27 having the heat radiating portion 30 is insert-molded on the side wall portion of the main body portion 161 of the cover 16.
  • the size of the heat radiating portion 30 is not limited, it is more preferable that the length L1 between the center portion of the plate 27 and the tip end portion of the heat radiating portion 30 is longer than the radius L2 of the outer diameter of the housing 11.
  • FIG. 9 shows an example of heat IV generated in the motor chamber 32.
  • the heat IV includes, for example, heat generated by a spark between the brush 17 and the commutator piece of the commutator 10, heat generated by energizing the winding 2, and heat generated by mechanical loss of the bearing 13.
  • the heat generated by the magnetic loss of the core 1 is included.
  • the plate IV absorbs heat IV generated in the motor chamber 32, and the absorbed heat is radiated from the heat radiating unit 30 to the outside of the actuator 101. Thereby, the temperature rise of the sensor 20 can be further suppressed, and the deterioration of the sensing sensitivity due to the temperature rise can be further suppressed.
  • the length L1 of the heat radiating portion 30 is made longer than the radius L2 of the housing, thereby blocking the propagation of the magnetic field generated in the motor chamber 32 around the outside of the housing 11 to the motor chamber 32. Can do. As a result, this sneak magnetic field can be prevented from affecting the operation of the sensor 20, and the detection accuracy of the sensor 20 can be further improved.
  • the actuator 101 forms the heat radiating portion 30 by projecting the end portion of the plate 27 to the outside of the actuator 101.
  • the temperature rise of the sensor 20 can be further suppressed, and the detection accuracy of the sensor 20 can be further improved.
  • the shape of the heat radiating part 30 is not limited to the shape shown in FIG. Any shape that penetrates the cover 16 and protrudes to the outside of the actuator 101 may be used.
  • FIG. 10 shows a cross-sectional view of the actuator of the third embodiment.
  • the actuator 102 in which the electromagnetic shield portion 31 is provided on the plate 27 will be described.
  • FIG. 10 the same components as those of the actuator 100 according to the first embodiment shown in FIG.
  • a cylindrical electromagnetic shield portion 31 along the side wall portion of the main body portion 161 of the cover 16 is formed on the peripheral end portion of the plate 27. That is, the electromagnetic shield portion 31 has a shape along the wall portion of the sensor chamber 33 that houses the sensor 20.
  • the actuator 102 When the actuator 102 is installed in an engine room of an automobile, the electric wire C is provided next to the outside of the actuator 102, and a high-frequency current may flow through the electric wire C.
  • the actuator 102 according to the third embodiment blocks the high-frequency noise V radiated from the electric wire C by the electromagnetic shield unit 31, so that the external high-frequency noise V affects the operation of the sensor 20 in the sensor chamber 33. Can be prevented.
  • the plate 27 has the electromagnetic shield portion 31 having a shape along the wall portion of the sensor chamber 33. Since the electromagnetic shield unit 31 blocks the external high-frequency noise V, it is possible to prevent the high-frequency noise V from affecting the operation of the sensor 20. As a result, the detection accuracy of the sensor 20 can be further improved.
  • the electromagnetic shield part 31 may be provided along the inner peripheral part of the side wall part of the body part 161 of the cover 16 as shown in FIG. 11, or embedded in the side wall part as shown in FIG. It may be what was done.
  • the electromagnetic shield part 31 is formed as a separate member from the plate 27, and then the claw part 272 of the plate 27 and the claw part 311 of the electromagnetic shield part 31 are welded. And may be integrated with the plate 27.
  • the plate is provided between the motor chamber and the sensor chamber, it is possible to reduce the influence of the heat generated by the rotor and the spark noise generated between the commutator and the brush on the sensor while suppressing an increase in the number of components. It is suitable for an actuator for automobiles used for supercharging pressure control of an engine or opening degree control of a valve.
  • Electromagnetic shield part 32 motor room, 33 sensor room, 71 one end part, 72 other end part, 100, 101, 102 actuator, 111 hole, 161 body part, 162 collar part, 163 hole, 200 brush motor, 271 hole, 272 nails, 311 nails.

Abstract

An actuator 100 is provided with a plate 27 that is disposed between a hollow motor chamber 32 that accommodates both a brushed motor 200 and a shaft 7 and a hollow sensor chamber 33 that communicates with the motor chamber 32 and accommodates a sensor 20 used to control the movement of the shaft 7. Blocking heat, noise, and the like, generated within the motor chamber 32 using the plate 27 makes it possible to enhance the detection accuracy of the sensor 20. Further, because merely adding the plate 27 makes it possible to block both heat and noise, an increase in the number of parts can be suppressed.

Description

アクチュエータActuator
 本発明は、ブラシ付モータの駆動力でシャフトを直動又は回動させるアクチュエータに関するものである。 The present invention relates to an actuator that linearly moves or rotates a shaft by a driving force of a motor with a brush.
 近年、自動車の電動化が進むにつれて、自動車の制御駆動部にアクチュエータが用いられることが多くなっている。自動車用のアクチュエータは、一般に、構造が簡単で安価なブラシ付モータを用いたアクチュエータが採用されている。 In recent years, actuators are increasingly used for control drive parts of automobiles as automobiles become more electrified. In general, an actuator using a motor with a brush that has a simple structure and is inexpensive is employed as an actuator for an automobile.
 一般的なブラシ付モータは、筒状のステータヨークと、ステータヨークの内周部に設けたマグネットとにより固定子が構成されている。また、ステータヨークに挿通したコアと、コアに巻回した巻線とによりロータが構成されている。給電用のブラシから、コアと一体に回転する整流子を介して巻線に通電し、整流子の回転に応じて各々の巻線に流れる電流の向きが交互に切替わることで、固定子に対してロータが回転する。 A typical brush motor has a stator composed of a cylindrical stator yoke and a magnet provided on the inner periphery of the stator yoke. A rotor is constituted by a core inserted through the stator yoke and a winding wound around the core. By energizing the windings from the power supply brush through the commutator that rotates integrally with the core, the direction of the current flowing in each winding is switched alternately according to the rotation of the commutator, so that the stator In contrast, the rotor rotates.
 自動車用のアクチュエータの駆動方式は、直動式と回動式とに分類される。直動式のアクチュエータは、ロータの回転運動をネジ機構などにより直動運動に変換して、シャフトを軸方向に沿って動かしている。回動式のアクチュエータは、ロータの回転運動でシャフトを回転させている。自動車メーカは、アクチュエータを自動車に搭載する際の搭載性などに応じて、いずれかの駆動方式のアクチュエータを選択している。 The driving system of the actuator for automobiles is classified into a direct acting type and a rotating type. The direct-acting actuator converts the rotary motion of the rotor into a linear motion by a screw mechanism or the like, and moves the shaft along the axial direction. The rotary actuator rotates the shaft by the rotational movement of the rotor. An automobile manufacturer selects an actuator of any drive system according to the mountability when the actuator is mounted on a car.
 また、直動式のアクチュエータにおいて、シャフトの直動方向の位置を検知するセンサを設けることで、シャフトの位置制御の精度を高くしたアクチュエータも開発されている。同様に、回動式のアクチュエータにおいて、シャフトの回転角度を検知するセンサを設けることで、シャフトの回転制御の精度を高くしたアクチュエータも開発されている。これらのセンサは、例えば、アクチュエータ内の基板に設けた磁気センサが用いられている。 In addition, actuators have been developed that increase the accuracy of shaft position control by providing a sensor that detects the position of the shaft in the linear motion direction in a linear motion actuator. Similarly, in a rotary actuator, an actuator has been developed in which a sensor for detecting the rotation angle of the shaft is provided to improve the accuracy of shaft rotation control. As these sensors, for example, magnetic sensors provided on a substrate in an actuator are used.
 自動車のエンジンルームで用いられるアクチュエータは、高耐熱及び高寿命などの高い性能が要求される。例えば、バルブの開度を一定開度に保持する用途、又はシャフトを所定位置で保持する用途で用いるアクチュエータは、ロータの巻線に常に給電し、アクチュエータの推力を保たなければならない。このため、特に動作頻度が高い場合、ロータの自己発熱による影響が懸念される。 Actuators used in automobile engine rooms are required to have high performance such as high heat resistance and long life. For example, an actuator used for a purpose of holding the valve opening at a constant opening or a purpose of holding the shaft at a predetermined position must always supply power to the rotor windings to maintain the thrust of the actuator. For this reason, especially when the operation frequency is high, there is a concern about the influence of the self-heating of the rotor.
 ロータの自己発熱の影響はモータにとって重大であり、推力の低下及び寿命の低下などの性能低下を引き起こす要因となる。最も懸念される問題は、モータ内部に設けられたセンサなどの電子部品が破損して、モータの駆動又は制御ができなくなることである。これに対し、特許文献1の電動モータは、モータの筐体に放熱フィンを取り付けることで、モータ内部で発生した熱をモータ外部に放熱している。 The influence of the self-heating of the rotor is serious for the motor, and causes a decrease in performance such as a decrease in thrust and a decrease in life. The most concerned problem is that electronic parts such as sensors provided in the motor are damaged and the motor cannot be driven or controlled. On the other hand, the electric motor of Patent Document 1 dissipates heat generated inside the motor to the outside of the motor by attaching a heat radiation fin to the housing of the motor.
 また、ブラシ付モータに特有の問題として、ブラシから通電される整流子片が切替わる際に発生する放射ノイズ(いわゆる「スパークノイズ」)によって、モータ内部に設けられたセンサが誤作動する問題がある。これに対し、特許文献2の電動モータは、モータ内部の基板にコンデンサ、バリスタ及びチョークコイルなどの回路素子を配置することで、ノイズのセンサへの影響を低減している。 In addition, as a problem peculiar to a motor with a brush, there is a problem that a sensor provided in the motor malfunctions due to radiation noise (so-called “spark noise”) generated when a commutator piece energized from a brush is switched. is there. On the other hand, the electric motor of Patent Document 2 reduces the influence of noise on the sensor by arranging circuit elements such as capacitors, varistors, and choke coils on a substrate inside the motor.
特開2009-171734号公報JP 2009-171734 A 特開2008-35626号公報JP 2008-35626 A
 特許文献1の電動モータは、モータの筐体に放熱フィンを取り付けることで、モータ内部で発生した熱をモータ外部に放熱している。しかしながら、車両内部で空気の流れが発生する部位に搭載すると放熱フィンで空気の流れが阻害されるため、搭載部位の自由度が低くなる課題があった。また、単に放熱フィンを設けた構成では、整流子とブラシ間で生じたスパークノイズの影響を低減することができない課題があった。 The electric motor of Patent Document 1 dissipates heat generated inside the motor to the outside of the motor by attaching a heat radiation fin to the motor casing. However, when mounted on a portion where air flow is generated inside the vehicle, the air flow is inhibited by the radiating fins, so that there is a problem that the degree of freedom of the mounting portion is lowered. Further, in the configuration in which the heat dissipating fins are simply provided, there is a problem that the influence of the spark noise generated between the commutator and the brush cannot be reduced.
 特許文献2の電動モータは、モータ内部の基板にコンデンサ、バリスタ及びチョークコイルなどの回路素子を配置することでノイズの影響を低減している。しかしながら、これらの回路素子により部品点数が増加して、電動モータ全体のコストが高くなる課題があった。また、単に回路素子を追加した構成では、ロータの発熱がセンサ等に与える影響を低減することができない課題があった。 The electric motor of Patent Document 2 reduces the influence of noise by arranging circuit elements such as capacitors, varistors, and choke coils on a substrate inside the motor. However, there is a problem that the number of parts increases due to these circuit elements, and the cost of the entire electric motor increases. Further, in the configuration in which circuit elements are simply added, there is a problem that the influence of the heat generated by the rotor on the sensor or the like cannot be reduced.
 本発明は、上記のような課題を解決するためになされたものであり、部品点数の増加を抑えつつ、ロータの発熱及び整流子とブラシ間で生じたスパークノイズがセンサに与える影響を低減することができるブラシ付モータを用いたアクチュエータを提供することを目的とする。 The present invention has been made to solve the above-described problems, and reduces the influence of the heat generated by the rotor and the spark noise generated between the commutator and the brush on the sensor while suppressing an increase in the number of components. An object of the present invention is to provide an actuator using a brushed motor.
 本発明のアクチュエータは、ブラシ付モータの駆動力でシャフトを直動又は回動させるアクチュエータであって、ブラシ付モータ及びシャフトを収容した中空のモータ室と、モータ室に連通し、シャフトの動きの制御に用いるセンサを収容した中空のセンサ室との間に配置されたプレートを備えるものである。 The actuator of the present invention is an actuator that linearly rotates or rotates the shaft by the driving force of the brushed motor, communicates with the motor with the brush and the hollow motor chamber and the motor chamber, and moves the shaft. It comprises a plate arranged between a hollow sensor chamber containing a sensor used for control.
 本発明のアクチュエータは、モータ室とセンサ室間にプレートを設けたので、ロータの発熱及び整流子とブラシ間で生じたスパークノイズを遮蔽して、センサへの影響を低減することができる。また、プレートを追加するだけで発熱とノイズの両方を遮断することができるので、部品点数の増加を抑制することができる。 In the actuator of the present invention, since the plate is provided between the motor chamber and the sensor chamber, it is possible to shield the heat generated by the rotor and the spark noise generated between the commutator and the brush, thereby reducing the influence on the sensor. Moreover, since both heat generation and noise can be cut off simply by adding a plate, an increase in the number of parts can be suppressed.
本発明の実施の形態1のアクチュエータの断面図である。It is sectional drawing of the actuator of Embodiment 1 of this invention. 本発明の実施の形態1のアクチュエータのモータ室内で発生した磁界の例を示す説明図である。It is explanatory drawing which shows the example of the magnetic field which generate | occur | produced in the motor chamber of the actuator of Embodiment 1 of this invention. 本発明の実施の形態1のアクチュエータのモータ室内で発生したスパーク及び放射ノイズの例を示す説明図である。It is explanatory drawing which shows the example of the spark and radiation noise which generate | occur | produced in the motor chamber of the actuator of Embodiment 1 of this invention. 本発明の実施の形態1のアクチュエータのモータ室内で発生した熱の例を示す説明図である。It is explanatory drawing which shows the example of the heat | fever which generate | occur | produced in the motor chamber of the actuator of Embodiment 1 of this invention. 図5(a)は、プレート及び第2保持部を有しないアクチュエータにおけるセンサシャフトの傾き角を示す説明図である。図5(b)は、本発明の実施の形態1のアクチュエータにおけるセンサシャフトの傾き角を示す説明図である。Fig.5 (a) is explanatory drawing which shows the inclination angle of the sensor shaft in the actuator which does not have a plate and a 2nd holding | maintenance part. FIG.5 (b) is explanatory drawing which shows the inclination angle of the sensor shaft in the actuator of Embodiment 1 of this invention. 本発明の実施の形態1のカバーの断面図である。It is sectional drawing of the cover of Embodiment 1 of this invention. 本発明の実施の形態1の他のカバーの断面図である。It is sectional drawing of the other cover of Embodiment 1 of this invention. 本発明の実施の形態2のアクチュエータの断面図である。It is sectional drawing of the actuator of Embodiment 2 of this invention. 本発明の実施の形態2のアクチュエータのモータ室内で発生した熱の例を示す説明図である。It is explanatory drawing which shows the example of the heat | fever which generate | occur | produced in the motor chamber of the actuator of Embodiment 2 of this invention. 本発明の実施の形態3のアクチュエータの断面図である。It is sectional drawing of the actuator of Embodiment 3 of this invention. 本発明の実施の形態3のアクチュエータに隣設された電線が発生した高周波ノイズの例を示す説明図である。It is explanatory drawing which shows the example of the high frequency noise which the electric wire adjacently installed in the actuator of Embodiment 3 of this invention generate | occur | produced. 本発明の実施の形態3の他のアクチュエータの断面図である。It is sectional drawing of the other actuator of Embodiment 3 of this invention. 本発明の実施の形態3の他のプレート、第2保持部及び電磁シールド部の斜視図である。It is a perspective view of the other plate, the 2nd holding | maintenance part, and electromagnetic shielding part of Embodiment 3 of this invention.
 以下、この発明をより詳細に説明するために、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
 図1は、実施の形態1のアクチュエータの断面図を示している。図1を参照して、実施の形態1のアクチュエータ100について説明する。
Hereinafter, in order to explain the present invention in more detail, modes for carrying out the present invention will be described with reference to the accompanying drawings.
Embodiment 1 FIG.
FIG. 1 shows a cross-sectional view of the actuator of the first embodiment. The actuator 100 according to the first embodiment will be described with reference to FIG.
 コア1は、例えば積層鋼板により構成されている。コア1は、筒状のヨークと、このヨークの外周部に凸設された複数個のティースとを有している。図示例では積層鋼板を樹脂モールドする際にボビンが一体的に成形されており、ボビンに巻線2がそれぞれ巻回されている。コア1及び巻線2により、ロータ3が構成されている。 The core 1 is made of, for example, a laminated steel plate. The core 1 has a cylindrical yoke and a plurality of teeth protruding from the outer periphery of the yoke. In the illustrated example, when the laminated steel plate is resin-molded, the bobbin is integrally formed, and the winding 2 is wound around the bobbin. A rotor 3 is constituted by the core 1 and the winding 2.
 コア1の中空部にパイプ4が固定されており、コア1と一体に回動するようになっている。また、パイプ4の軸心に沿ってシャフト7が挿通されている。パイプ4の内周部とシャフト7の外周部との間にはネジ機構部8が設けられており、ロータ3の回動に応じてシャフト7が軸方向に沿って直動するようになっている。 The pipe 4 is fixed to the hollow portion of the core 1 and is rotated integrally with the core 1. A shaft 7 is inserted along the axis of the pipe 4. A screw mechanism 8 is provided between the inner periphery of the pipe 4 and the outer periphery of the shaft 7, and the shaft 7 moves linearly along the axial direction in accordance with the rotation of the rotor 3. Yes.
 シャフト7の一端部71はパイプ4の一端部から突出している。シャフト7の一端部71の近傍の外周部には、ネジ機構部8及びハウジング11に当接することでシャフト7の直動を規制する凸状のストッパ9が形成されている。 One end 71 of the shaft 7 protrudes from one end of the pipe 4. A convex stopper 9 that restricts the linear movement of the shaft 7 by contacting the screw mechanism 8 and the housing 11 is formed on the outer peripheral portion in the vicinity of the one end portion 71 of the shaft 7.
 パイプ4の他端部には整流子10が固定されている。整流子10は、円筒状の絶縁体と、この絶縁体の側周面に設置された複数枚の整流子片とにより構成されている。各々の整流子片は、少なくとも1つの巻線2とそれぞれ電気的に接続されている。 A commutator 10 is fixed to the other end of the pipe 4. The commutator 10 includes a cylindrical insulator and a plurality of commutator pieces installed on the side peripheral surface of the insulator. Each commutator piece is electrically connected to at least one winding 2.
 ロータ3は、有底筒状のハウジング11に収容されている。ハウジング11の底部の中心部には孔111が穿たれており、シャフト7の一端部71が貫通している。ハウジング11の内周部とパイプ4の一端部との間には軸受12が介在しており、ハウジング11の内周部とロータ3の他端部との間には軸受13が介在している。軸受12,13により、ロータ3及びパイプ4はハウジング11に対して回動自在に支持されている。 The rotor 3 is accommodated in a bottomed cylindrical housing 11. A hole 111 is formed in the center of the bottom of the housing 11, and one end 71 of the shaft 7 passes therethrough. A bearing 12 is interposed between the inner periphery of the housing 11 and one end of the pipe 4, and a bearing 13 is interposed between the inner periphery of the housing 11 and the other end of the rotor 3. . The rotor 3 and the pipe 4 are rotatably supported with respect to the housing 11 by the bearings 12 and 13.
 ハウジング11の内周部には、ロータ3に対向したマグネット14が固定されている。マグネット14と軸受12間にはリング15が設けられている。 A magnet 14 facing the rotor 3 is fixed to the inner periphery of the housing 11. A ring 15 is provided between the magnet 14 and the bearing 12.
 ハウジング11の開口部は、カバー16により覆われている。カバー16は、有底筒状の本体部161と、本体部161の開口部に形成された鍔部162とを有しており、この鍔部162がハウジング11の開口部に固定されている。 The opening of the housing 11 is covered with a cover 16. The cover 16 has a bottomed cylindrical main body 161 and a flange 162 formed in the opening of the main body 161, and the flange 162 is fixed to the opening of the housing 11.
 カバー16の鍔部162に、整流子10に対向した複数個のブラシ17が設けられている。各々のブラシ17は、スプリング18により整流子10に対して押圧されている。ロータ3の回動に応じて整流子10が回動し、各々のブラシ17に当接する整流子片が切替わるようになっている。 A plurality of brushes 17 facing the commutator 10 are provided on the collar portion 162 of the cover 16. Each brush 17 is pressed against the commutator 10 by a spring 18. The commutator 10 is rotated in accordance with the rotation of the rotor 3, and the commutator pieces in contact with the brushes 17 are switched.
 カバー16の本体部161の底部に、基板19が設けられている。基板19には、センサ20が設けられている。センサ20は、例えば磁気センサにより構成されている。カバー16の本体部161の外周部に、コネクタ端子21が形成されている。コネクタ端子21には、ブラシ17及び基板19と電気的に接続された導体22が設けられている。 A substrate 19 is provided on the bottom of the main body 161 of the cover 16. A sensor 20 is provided on the substrate 19. The sensor 20 is constituted by a magnetic sensor, for example. Connector terminals 21 are formed on the outer peripheral portion of the main body 161 of the cover 16. The connector terminal 21 is provided with a conductor 22 electrically connected to the brush 17 and the substrate 19.
 カバー16の本体部161の底部の中心部には、円筒状の第1保持部23が形成されている。第1保持部23には、センサシャフト24が挿通されている。センサシャフト24はスプリング25によりシャフト7に対して押圧されており、センサシャフト24の先端部がシャフト7の他端部72に当接した状態でシャフト7と一体に直動するようになっている。 A cylindrical first holding portion 23 is formed at the center of the bottom portion of the main body portion 161 of the cover 16. A sensor shaft 24 is inserted through the first holding part 23. The sensor shaft 24 is pressed against the shaft 7 by a spring 25, and moves linearly integrally with the shaft 7 in a state where the tip end portion of the sensor shaft 24 is in contact with the other end portion 72 of the shaft 7. .
 センサシャフト24にはセンサマグネット26が設けられており、センサシャフト24と一体に直動するようになっている。センサマグネット26はセンサ20による検知のターゲットであり、センサ20はセンサマグネット26が形成する磁束密度及び磁束の方向を検知するようになっている。 A sensor magnet 26 is provided on the sensor shaft 24 so as to move directly with the sensor shaft 24. The sensor magnet 26 is a target of detection by the sensor 20, and the sensor 20 detects the magnetic flux density formed by the sensor magnet 26 and the direction of the magnetic flux.
 以下、本願において、ハウジング11及びカバー16により形成された中空部のうち、ロータ3、整流子10及びブラシ17などのブラシ付モータ200の主要構成部材及びシャフト7を収容した中空部を「モータ室」という。また、基板19、センサ20及びセンサシャフト24を収容した中空部を「センサ室」という。すなわち、モータ室32とセンサ室33とは一体の中空部により構成されており、後述するプレート27が設けられていない状態では互いに連通している。 Hereinafter, in the present application, among the hollow portions formed by the housing 11 and the cover 16, the hollow portions accommodating the main components of the brushed motor 200 such as the rotor 3, the commutator 10 and the brush 17 and the shaft 7 are referred to as “motor chamber”. " In addition, a hollow portion that accommodates the substrate 19, the sensor 20, and the sensor shaft 24 is referred to as a “sensor chamber”. That is, the motor chamber 32 and the sensor chamber 33 are constituted by an integral hollow portion, and communicate with each other in a state where a plate 27 described later is not provided.
 整流子10とセンサ20間に、プレート27が設けられている。プレート27は、例えば磁性体により構成されている。プレート27はカバー16の本体部161の内径よりも直径が大きい円形状であり、プレート27の周端部はインサート成形により本体部161の側壁部に一体化されている。すなわち、図1の例では、プレート27は一体の中空部をモータ室32とセンサ室33とに区切るように設けられており、モータ室32とセンサ室33とを隙間なく隔てている。 A plate 27 is provided between the commutator 10 and the sensor 20. The plate 27 is made of, for example, a magnetic material. The plate 27 has a circular shape whose diameter is larger than the inner diameter of the main body portion 161 of the cover 16, and the peripheral end portion of the plate 27 is integrated with the side wall portion of the main body portion 161 by insert molding. That is, in the example of FIG. 1, the plate 27 is provided so as to divide the integral hollow portion into the motor chamber 32 and the sensor chamber 33, and separates the motor chamber 32 and the sensor chamber 33 without a gap.
 プレート27の中心部には孔271が穿たれており、センサシャフト24がセンサ室33側からモータ室32側に貫通している。孔271の縁部は筒状に突出した形状になっており、これによりセンサシャフト24を保持する第2保持部28が形成されている。 A hole 271 is formed in the center of the plate 27, and the sensor shaft 24 penetrates from the sensor chamber 33 side to the motor chamber 32 side. The edge portion of the hole 271 has a shape protruding in a cylindrical shape, thereby forming a second holding portion 28 that holds the sensor shaft 24.
 ロータ3、パイプ4、整流子10、ハウジング11、軸受12,13、マグネット14、リング15、カバー16、ブラシ17、スプリング18、コネクタ端子21及び導体22により、ブラシ付モータ200が構成されている。ブラシ付モータ200、シャフト7、ネジ機構部8、基板19、センサ20、第1保持部23、センサシャフト24、スプリング25、センサマグネット26、プレート27及び第2保持部28により、アクチュエータ100が構成されている。 The rotor 3, pipe 4, commutator 10, housing 11, bearings 12 and 13, magnet 14, ring 15, cover 16, brush 17, spring 18, connector terminal 21, and conductor 22 constitute a brushed motor 200. . The actuator 100 includes the motor 200 with brush, the shaft 7, the screw mechanism portion 8, the substrate 19, the sensor 20, the first holding portion 23, the sensor shaft 24, the spring 25, the sensor magnet 26, the plate 27, and the second holding portion 28. Has been.
 次に、アクチュエータ100の動作について説明する。
 図示しない電源部がコネクタ端子21の導体22に電圧を印加することで、導体22からブラシ17を介して整流子10の整流子片に電流が流れ、巻線2に通電する。巻線2が通電することで、巻線2の周囲に磁界が発生し、コア1が励磁されて磁極を形成する。
Next, the operation of the actuator 100 will be described.
When a power supply unit (not shown) applies a voltage to the conductor 22 of the connector terminal 21, a current flows from the conductor 22 to the commutator piece of the commutator 10 via the brush 17, and the winding 2 is energized. When the winding 2 is energized, a magnetic field is generated around the winding 2, and the core 1 is excited to form a magnetic pole.
 励磁されたコア1がハウジング11の内周部に配置されたマグネット14に引き付けられて、ロータ3が回転する。以下、ロータ3の回転に連動して整流子10も回転することで、個々の巻線2に流れる電流の向きが切替わり、コア1の磁極が切替わり、ロータ3が回転し続ける。 The excited core 1 is attracted to the magnet 14 disposed on the inner periphery of the housing 11, and the rotor 3 rotates. Thereafter, the commutator 10 also rotates in conjunction with the rotation of the rotor 3, so that the direction of the current flowing through the individual windings 2 is switched, the magnetic poles of the core 1 are switched, and the rotor 3 continues to rotate.
 このとき、ネジ機構部8により、ロータ3の回転に応じてシャフト7の一端部71がハウジング11から押し出される。一方、ブラシ17から整流子10に供給する電流の向きを逆にすることで、ロータ3の回転の向きが逆向きになり、シャフト7の一端部71がハウジング11に引き込まれる。このように、ロータ3の回動に応じてシャフト7が直動する。 At this time, one end portion 71 of the shaft 7 is pushed out of the housing 11 by the screw mechanism portion 8 according to the rotation of the rotor 3. On the other hand, by reversing the direction of the current supplied from the brush 17 to the commutator 10, the rotation direction of the rotor 3 is reversed, and the one end portion 71 of the shaft 7 is drawn into the housing 11. Thus, the shaft 7 moves linearly according to the rotation of the rotor 3.
 また、センサ20は、センサマグネット26が形成する磁束密度及び磁束の方向を検知する。図示しない制御部は、センサ20で検知した磁束密度及び磁束の方向を用いて、シャフト7の軸方向の位置を検知する。制御部は、ブラシ17からロータ3に供給される電流を制御することでシャフト7の動きを制御し、ハウジング11からのシャフト7の飛び出し量を制御する。 Also, the sensor 20 detects the magnetic flux density formed by the sensor magnet 26 and the direction of the magnetic flux. A control unit (not shown) detects the position of the shaft 7 in the axial direction using the magnetic flux density detected by the sensor 20 and the direction of the magnetic flux. The control unit controls the movement of the shaft 7 by controlling the current supplied from the brush 17 to the rotor 3, and controls the amount of projection of the shaft 7 from the housing 11.
 次に、図2~図5を参照して、プレート27及び第2保持部28の効果について説明する。
 図2は、コア1が励磁されることで発生する磁界Iの例を示している。図2に示す如く、モータ室32内で発生した磁界Iをプレート27が遮断するため、磁界Iがセンサ室33内のセンサ20の動作に影響を与えるのを防ぐことができる。
Next, the effects of the plate 27 and the second holding portion 28 will be described with reference to FIGS.
FIG. 2 shows an example of the magnetic field I generated by exciting the core 1. As shown in FIG. 2, since the plate 27 blocks the magnetic field I generated in the motor chamber 32, it is possible to prevent the magnetic field I from affecting the operation of the sensor 20 in the sensor chamber 33.
 図3は、ブラシ17に当接する整流子片が切替わる際に発生するスパークIIと、スパークIIにより生じる放射ノイズIIIの例を示している。図3に示す如く、モータ室32内で発生した放射ノイズIIIをプレート27が遮断するため、放射ノイズIIIがセンサ室33内のセンサ20の動作に影響を与えるのを防ぐことができる。 FIG. 3 shows an example of the spark II generated when the commutator piece in contact with the brush 17 is switched and the radiation noise III generated by the spark II. As shown in FIG. 3, since the radiation noise III generated in the motor chamber 32 is blocked by the plate 27, the radiation noise III can be prevented from affecting the operation of the sensor 20 in the sensor chamber 33.
 図4は、モータ室32内で発生した熱IVの例を示している。熱IVには、例えば、ブラシ17と整流子片間のスパークにより発生した熱と、巻線2への通電により発生した熱と、軸受13の機械損失により発生した熱と、コア1の磁気損失により発生した熱とが含まれている。図4に示す如く、モータ室32内で発生した熱IVをプレート27が吸収することで、モータ室32からセンサ室33への熱IVの移動が遮断される。これにより、センサ20の温度上昇を抑制して、温度上昇によるセンシング感度の悪化を抑制することができる。 FIG. 4 shows an example of heat IV generated in the motor chamber 32. The heat IV includes, for example, heat generated by a spark between the brush 17 and the commutator piece, heat generated by energizing the winding 2, heat generated by mechanical loss of the bearing 13, and magnetic loss of the core 1. And heat generated by. As shown in FIG. 4, the movement of the heat IV from the motor chamber 32 to the sensor chamber 33 is blocked by the plate 27 absorbing the heat IV generated in the motor chamber 32. Thereby, the temperature rise of the sensor 20 can be suppressed and deterioration of sensing sensitivity due to the temperature rise can be suppressed.
 図5(b)は、実施の形態1のアクチュエータ100における、センサシャフト24の傾き角の最大値θ2を示している。図5(a)は、図5(b)の比較対象として、第2保持部28を有しないアクチュエータにおけるセンサシャフト24の傾き角の最大値θ1を示している。 FIG. 5B shows the maximum value θ2 of the tilt angle of the sensor shaft 24 in the actuator 100 of the first embodiment. FIG. 5A shows the maximum value θ1 of the tilt angle of the sensor shaft 24 in the actuator that does not have the second holding portion 28 as a comparison object of FIG.
 第2保持部28を有しないアクチュエータは、カバー16に設けた第1保持部23のみでセンサシャフト24を保持している。これに対し、実施の形態1のアクチュエータ100は、カバー16に設けた第1保持部23と、プレート27に設けた第2保持部28との2箇所でセンサシャフト24を保持している。これにより、実施の形態1のアクチュエータ100は、シャフト7の直動方向に対するセンサシャフト24の傾き角の最大値θ2を、第2保持部28を有しないアクチュエータにおける傾き角の最大値θ1よりも小さくすることができる。この結果、センサ20に対するセンサマグネット26の磁極の向きの変動幅を小さくして、センサ20を用いたシャフト7の直動方向の位置の検知精度及び直線性を向上することができる。 The actuator not having the second holding portion 28 holds the sensor shaft 24 only by the first holding portion 23 provided on the cover 16. On the other hand, the actuator 100 according to the first embodiment holds the sensor shaft 24 at two locations, the first holding portion 23 provided on the cover 16 and the second holding portion 28 provided on the plate 27. As a result, the actuator 100 of the first embodiment has the maximum inclination angle θ2 of the sensor shaft 24 with respect to the linear movement direction of the shaft 7 smaller than the maximum inclination angle θ1 of the actuator that does not have the second holding portion 28. can do. As a result, the fluctuation range of the magnetic pole direction of the sensor magnet 26 with respect to the sensor 20 can be reduced, and the detection accuracy and linearity of the position of the shaft 7 in the linear motion direction using the sensor 20 can be improved.
 なお、ロータ3、整流子10及びブラシ17などのブラシ付モータ200の主要構成部材のの形状及び構造は、図1に示す形状及び構造に限定されるものではない。一般的なブラシ付モータを構成する部材であれば、如何なる形状及び構造のものであっても良い。また、マグネット14は、永久磁石に限定されるものではなく、コイルなどを用いた電磁石であっても良い。 In addition, the shape and structure of the main components of the brushed motor 200 such as the rotor 3, the commutator 10, and the brush 17 are not limited to the shape and structure shown in FIG. Any member having any shape and structure may be used as long as it is a member constituting a general brush motor. Further, the magnet 14 is not limited to a permanent magnet, but may be an electromagnet using a coil or the like.
 また、ハウジング11及びカバー16の形状は、図1に示す形状に限定されるものではない。ブラシ付モータのロータ、整流子及びブラシなどを収容したモータ室と、センサなどを収容したセンサ室とを構成する一体の中空部を有するものであれば、如何なる形状のものであっても良い。 Further, the shapes of the housing 11 and the cover 16 are not limited to the shapes shown in FIG. Any shape may be used as long as it has an integral hollow portion that constitutes a motor chamber containing a rotor, a commutator, a brush, and the like of a motor with a brush and a sensor chamber containing a sensor.
 また、プレート27の形状は、図1に示す形状に限定されるものではない。
 図1に示すように、プレート27をカバー16の本体部161の内径よりも直径が大きい円形状にして、プレート27の周端部を本体部161の側壁部に一体化した場合、プレート27の全面でモータ室32とセンサ室33とが隙間なく隔てられる。また、プレート27の中心部に設けた孔271はセンサシャフト24により塞がれる。これにより、磁界I、放射ノイズIII及び熱IVの遮断効果を最大限に高めることができる。
 一方、プレート27に孔271と異なる貫通孔をさらに穿つか、又はプレート27の形状を楕円形若しくは多角形などの非円形にして周端部と本体部161の側壁部との間に間隙を設けた場合、ある程度の遮断効果を有しつつ、プレート27を軽量化してアクチュエータ100を軽量化することができる。
Further, the shape of the plate 27 is not limited to the shape shown in FIG.
As shown in FIG. 1, when the plate 27 has a circular shape whose diameter is larger than the inner diameter of the main body portion 161 of the cover 16 and the peripheral end portion of the plate 27 is integrated with the side wall portion of the main body portion 161, The motor chamber 32 and the sensor chamber 33 are separated from each other without a gap. Further, the hole 271 provided at the center of the plate 27 is closed by the sensor shaft 24. Thereby, the shielding effect of the magnetic field I, the radiation noise III, and the heat IV can be maximized.
On the other hand, a through hole different from the hole 271 is further drilled in the plate 27, or the plate 27 has a non-circular shape such as an ellipse or a polygon, and a gap is provided between the peripheral end portion and the side wall portion of the main body portion 161. In this case, it is possible to reduce the weight of the actuator 100 by reducing the weight of the plate 27 while having a certain blocking effect.
 また、アクチュエータ100は、ネジ機構部8を不要としてシャフト7をパイプ4に固定し、ロータ3の回動に応じてシャフト7及びセンサシャフト24が回動する回動式のアクチュエータとしても良い。この場合、センサ20は、センサシャフト24の回転角度を検知するものとし、制御部はこの回転角度を用いてシャフト7の回転速度を演算し、シャフト7の動きを制御するものとしても良い。 The actuator 100 may be a rotary actuator in which the shaft 7 is fixed to the pipe 4 without the screw mechanism portion 8 and the shaft 7 and the sensor shaft 24 are rotated according to the rotation of the rotor 3. In this case, the sensor 20 may detect the rotation angle of the sensor shaft 24, and the control unit may calculate the rotation speed of the shaft 7 using this rotation angle and control the movement of the shaft 7.
 また、プレート27の材料は磁性体に限定されるものではない。銅又はアルミニウムなどの非磁性の金属で構成されたプレート27であっても、放射ノイズIII及び熱IVを遮断することができる。しかしながら、プレート27を磁性体で構成することで磁界Iも遮断することができるため、プレート27は磁性体で構成するのがより好適である。 Further, the material of the plate 27 is not limited to a magnetic material. Even the plate 27 made of a non-magnetic metal such as copper or aluminum can block radiation noise III and heat IV. However, since the magnetic field I can be cut off by configuring the plate 27 with a magnetic material, it is more preferable to configure the plate 27 with a magnetic material.
 また、カバー16は、図6に示すように第1カバー部材Aと第2カバー部材Bとを組み合わせたものであっても良い。この場合、まず、導体22をインサート成形した第1カバー部材Aに、基板19及びセンサ20を搭載する。また、プレート27をインサート成形した第2カバー部材Bを、第1カバー部材Aとは別個に製造する。次いで、第1カバー部材Aから突出した導体22を第2カバー部材Bに形成した孔163に挿通し、第1カバー部材Aと第2カバー部材Bとを組み合わせる。最後に、第1カバー部材Aと第2カバー部材Bとの接合部を接着することで、基板19、センサ20、導体22及びプレート27を設けたカバー16が製造される。 Further, the cover 16 may be a combination of the first cover member A and the second cover member B as shown in FIG. In this case, first, the substrate 19 and the sensor 20 are mounted on the first cover member A in which the conductor 22 is insert-molded. Further, the second cover member B in which the plate 27 is insert-molded is manufactured separately from the first cover member A. Next, the conductor 22 protruding from the first cover member A is inserted into the hole 163 formed in the second cover member B, and the first cover member A and the second cover member B are combined. Finally, the cover 16 provided with the substrate 19, the sensor 20, the conductor 22, and the plate 27 is manufactured by bonding the joint portion between the first cover member A and the second cover member B.
 あるいは、導体22をインサート成形したカバー16に基板19及びセンサ20を搭載した後、プレート27をカバー16の開口部からカバー16内に挿入したものとしても良い。この場合、図7に示す如く、カバー16の本体部161の側壁部に、プレート27の周端部が嵌合する凹部を有するリング状の嵌合部材29をインサート成形したものとしても良い。この嵌合部材29も、プレート27と同様の磁性体などで構成されているのが好ましい。 Alternatively, after the substrate 19 and the sensor 20 are mounted on the cover 16 in which the conductor 22 is insert-molded, the plate 27 may be inserted into the cover 16 from the opening of the cover 16. In this case, as shown in FIG. 7, a ring-shaped fitting member 29 having a recess into which the peripheral end portion of the plate 27 is fitted may be insert-molded on the side wall portion of the main body portion 161 of the cover 16. The fitting member 29 is also preferably made of a magnetic material similar to the plate 27.
 以上のように、実施の形態1のアクチュエータ100は、ブラシ付モータ200のロータ3、整流子10及びブラシ17を収容した中空のモータ室32と、モータ室32に連通し、シャフト7の動きの制御に用いるセンサ20を収容した中空のセンサ室33との間に配置されたプレート27を備える。
 モータ室32とセンサ室33間にプレート27を設けることで、ブラシ17と整流子10の整流子片との間のスパークIIにより発生した放射ノイズIIIがセンサ20の動作に影響を与えるのを防ぐことができる。また、モータ室32内で発生した熱IVがセンサ20の動作に影響を与えるのを防ぐことができる。この結果、センサ20の検知精度を向上させることができる。
 さらに、アクチュエータにプレート27を追加するだけで放射ノイズIII及び熱IVの両方を遮断することができるため、部品点数の増加を抑制することができる。
As described above, the actuator 100 according to the first embodiment communicates with the motor chamber 32 and the hollow motor chamber 32 that houses the rotor 3, the commutator 10, and the brush 17 of the brushed motor 200. A plate 27 is provided between the sensor chamber 33 and the hollow sensor chamber 33 that houses the sensor 20 used for control.
By providing the plate 27 between the motor chamber 32 and the sensor chamber 33, the radiation noise III generated by the spark II between the brush 17 and the commutator piece of the commutator 10 is prevented from affecting the operation of the sensor 20. be able to. Further, it is possible to prevent the heat IV generated in the motor chamber 32 from affecting the operation of the sensor 20. As a result, the detection accuracy of the sensor 20 can be improved.
Furthermore, since both the radiation noise III and the heat IV can be blocked only by adding the plate 27 to the actuator, an increase in the number of parts can be suppressed.
 また、アクチュエータ100は、センサ室33に収容され、モータ室32に収容されたシャフト7の他端部72に当接して一体に直動又は回動するセンサシャフト24と、センサシャフト24に設けられ、センサ20で検知するターゲットとなるセンサマグネット26とを備える。プレート27は、センサ室33側からモータ室32側へセンサシャフト24を貫通させる孔271と、孔271の縁部が筒状に突出した形状であってセンサシャフト24を保持する第2保持部28とを有する。
 カバー16の第1保持部23と、プレート27の第2保持部28との2箇所でセンサシャフト24を保持することで、シャフト7の軸方向に対するセンサシャフト24の傾き角の最大値θ2が小さくなり、センサシャフト24の傾きによるセンサマグネット26の磁束の向きの変化を抑制することができる。この結果、センサ20の検知精度をさらに向上させることができる。
The actuator 100 is housed in the sensor chamber 33, and is provided on the sensor shaft 24 and the sensor shaft 24 that abuts on the other end 72 of the shaft 7 housed in the motor chamber 32 and moves linearly or integrally. And a sensor magnet 26 serving as a target detected by the sensor 20. The plate 27 has a hole 271 that allows the sensor shaft 24 to pass from the sensor chamber 33 side to the motor chamber 32 side, and a second holding portion 28 that holds the sensor shaft 24 in a shape in which an edge portion of the hole 271 protrudes in a cylindrical shape. And have.
By holding the sensor shaft 24 at two locations of the first holding portion 23 of the cover 16 and the second holding portion 28 of the plate 27, the maximum value θ2 of the inclination angle of the sensor shaft 24 with respect to the axial direction of the shaft 7 is small. Thus, the change in the direction of the magnetic flux of the sensor magnet 26 due to the inclination of the sensor shaft 24 can be suppressed. As a result, the detection accuracy of the sensor 20 can be further improved.
 また、プレート27は、モータ室32とセンサ室33とを隙間なく隔てる形状である。これにより、プレート27による遮断効果を最大限に高めることができる。 The plate 27 has a shape that separates the motor chamber 32 and the sensor chamber 33 without any gap. Thereby, the interruption | blocking effect by the plate 27 can be heightened to the maximum.
 また、プレート27は磁性体により構成されている。これにより、放射ノイズIII及び熱IVに加えて、ロータ3が励磁されることで発生した磁界Iがセンサ20の動作に影響を与えるのを防ぐことができる。 The plate 27 is made of a magnetic material. Thereby, in addition to the radiation noise III and the heat IV, it is possible to prevent the magnetic field I generated by exciting the rotor 3 from affecting the operation of the sensor 20.
実施の形態2.
 図8は、実施の形態2のアクチュエータの断面図を示している。図8を参照して、プレート27の端部により放熱部30を形成したアクチュエータ101について説明する。なお、図8において、図1に示す実施の形態1のアクチュエータ100と同様の構成部材には同一符号を付して説明を省略する。
Embodiment 2. FIG.
FIG. 8 shows a cross-sectional view of the actuator of the second embodiment. With reference to FIG. 8, the actuator 101 in which the heat radiating portion 30 is formed by the end portion of the plate 27 will be described. In FIG. 8, the same components as those of the actuator 100 of the first embodiment shown in FIG.
 プレート27の端部は、カバー16を貫通してアクチュエータ101の外部に突出して、放熱部30になっている。放熱部30を備えたプレート27は、カバー16の本体部161の側壁部にインサート成形されている。放熱部30の大きさは問わないが、プレート27の中心部と放熱部30の先端部間の長さL1は、ハウジング11の外径の半径L2よりも長くするのがより好適である。 The end of the plate 27 penetrates the cover 16 and protrudes to the outside of the actuator 101 to form a heat radiating part 30. The plate 27 having the heat radiating portion 30 is insert-molded on the side wall portion of the main body portion 161 of the cover 16. Although the size of the heat radiating portion 30 is not limited, it is more preferable that the length L1 between the center portion of the plate 27 and the tip end portion of the heat radiating portion 30 is longer than the radius L2 of the outer diameter of the housing 11.
 次に、図9を参照して、放熱部30の効果について説明する。
 図9は、モータ室32内で発生した熱IVの例を示している。熱IVには、例えば、ブラシ17と整流子10の整流子片との間のスパークにより発生した熱と、巻線2への通電により発生した熱と、軸受13の機械損失により発生した熱と、コア1の磁気損失により発生した熱とが含まれている。図9に示す如く、モータ室32内で発生した熱IVをプレート27が吸収するとともに、吸収した熱が放熱部30からアクチュエータ101の外部に放熱される。これにより、センサ20の温度上昇をさらに抑制して、温度上昇によるセンシング感度の悪化をさらに抑制することができる。
Next, the effect of the heat dissipation part 30 will be described with reference to FIG.
FIG. 9 shows an example of heat IV generated in the motor chamber 32. The heat IV includes, for example, heat generated by a spark between the brush 17 and the commutator piece of the commutator 10, heat generated by energizing the winding 2, and heat generated by mechanical loss of the bearing 13. The heat generated by the magnetic loss of the core 1 is included. As shown in FIG. 9, the plate IV absorbs heat IV generated in the motor chamber 32, and the absorbed heat is radiated from the heat radiating unit 30 to the outside of the actuator 101. Thereby, the temperature rise of the sensor 20 can be further suppressed, and the deterioration of the sensing sensitivity due to the temperature rise can be further suppressed.
 このとき、放熱部30の長さL1をハウジングの半径L2よりも長くすることで、モータ室32内で発生した磁界がハウジング11の外部を回り込んでモータ室32に伝搬するのを遮断することができる。これにより、この回り込み磁界がセンサ20の動作に影響を与えるのを防いで、センサ20の検知精度をさらに向上することができる。 At this time, the length L1 of the heat radiating portion 30 is made longer than the radius L2 of the housing, thereby blocking the propagation of the magnetic field generated in the motor chamber 32 around the outside of the housing 11 to the motor chamber 32. Can do. As a result, this sneak magnetic field can be prevented from affecting the operation of the sensor 20, and the detection accuracy of the sensor 20 can be further improved.
 以上のように、実施の形態2のアクチュエータ101は、プレート27の端部がアクチュエータ101の外部に突出することで放熱部30を形成している。プレート27が吸収した熱IVを放熱部30からアクチュエータ101の外部に放熱することで、センサ20の温度上昇をさらに抑制して、センサ20の検知精度をさらに向上させることができる。 As described above, the actuator 101 according to the second embodiment forms the heat radiating portion 30 by projecting the end portion of the plate 27 to the outside of the actuator 101. By radiating the heat IV absorbed by the plate 27 from the heat radiating unit 30 to the outside of the actuator 101, the temperature rise of the sensor 20 can be further suppressed, and the detection accuracy of the sensor 20 can be further improved.
 なお、放熱部30の形状は、図8に示す形状に限定されるものではない。カバー16を貫通してアクチュエータ101の外部に突出したものであれば、如何なる形状であっても良い。 In addition, the shape of the heat radiating part 30 is not limited to the shape shown in FIG. Any shape that penetrates the cover 16 and protrudes to the outside of the actuator 101 may be used.
実施の形態3.
 図10は、実施の形態3のアクチュエータの断面図を示している。図10を参照して、プレート27に電磁シールド部31を設けたアクチュエータ102について説明する。なお、図10において、図1に示す実施の形態1のアクチュエータ100と同様の構成部材には同一符号を付して説明を省略する。
Embodiment 3 FIG.
FIG. 10 shows a cross-sectional view of the actuator of the third embodiment. With reference to FIG. 10, the actuator 102 in which the electromagnetic shield portion 31 is provided on the plate 27 will be described. In FIG. 10, the same components as those of the actuator 100 according to the first embodiment shown in FIG.
 プレート27の周端部に、カバー16の本体部161の側壁部に沿う円筒状の電磁シールド部31が形成されている。すなわち、電磁シールド部31は、センサ20を収容したセンサ室33の壁部に沿う形状である。 A cylindrical electromagnetic shield portion 31 along the side wall portion of the main body portion 161 of the cover 16 is formed on the peripheral end portion of the plate 27. That is, the electromagnetic shield portion 31 has a shape along the wall portion of the sensor chamber 33 that houses the sensor 20.
 次に、図11を参照して、電磁シールド部31の効果について説明する。
 アクチュエータ102を自動車のエンジンルームなどに設置した場合、アクチュエータ102の外部に電線Cが隣設され、この電線Cに高周波電流が流れることがある。実施の形態3のアクチュエータ102は、電線Cから放射された高周波ノイズVを電磁シールド部31により遮断することで、外来の高周波ノイズVがセンサ室33内のセンサ20の動作に影響を与えるのを防ぐことができる。
Next, the effect of the electromagnetic shield part 31 will be described with reference to FIG.
When the actuator 102 is installed in an engine room of an automobile, the electric wire C is provided next to the outside of the actuator 102, and a high-frequency current may flow through the electric wire C. The actuator 102 according to the third embodiment blocks the high-frequency noise V radiated from the electric wire C by the electromagnetic shield unit 31, so that the external high-frequency noise V affects the operation of the sensor 20 in the sensor chamber 33. Can be prevented.
 以上のように、実施の形態3のアクチュエータ102は、プレート27が、センサ室33の壁部に沿う形状の電磁シールド部31を有している。電磁シールド部31が外来の高周波ノイズVを遮断することで、高周波ノイズVがセンサ20の動作に影響を与えるのを防ぐことができる。この結果、センサ20の検知精度をさらに向上させることができる。 As described above, in the actuator 102 according to the third embodiment, the plate 27 has the electromagnetic shield portion 31 having a shape along the wall portion of the sensor chamber 33. Since the electromagnetic shield unit 31 blocks the external high-frequency noise V, it is possible to prevent the high-frequency noise V from affecting the operation of the sensor 20. As a result, the detection accuracy of the sensor 20 can be further improved.
 なお、電磁シールド部31は、図11に示すようにカバー16の本体部161の側壁部の内周部に沿って設けられたものでも良く、あるいは図12に示すように側壁部の内部に埋設されたものであっても良い。 The electromagnetic shield part 31 may be provided along the inner peripheral part of the side wall part of the body part 161 of the cover 16 as shown in FIG. 11, or embedded in the side wall part as shown in FIG. It may be what was done.
 また、電磁シールド部31は、図13の斜視図に示す如く、プレート27とは別体の部材として形成した後に、プレート27の爪部272と電磁シールド部31の爪部311とを溶接することでプレート27と一体化したものであっても良い。 Further, as shown in the perspective view of FIG. 13, the electromagnetic shield part 31 is formed as a separate member from the plate 27, and then the claw part 272 of the plate 27 and the claw part 311 of the electromagnetic shield part 31 are welded. And may be integrated with the plate 27.
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。 In the present invention, within the scope of the invention, free combinations of the respective embodiments, modifications of arbitrary components of the respective embodiments, or omission of arbitrary components of the respective embodiments are possible. .
 本発明のアクチュエータは、モータ室とセンサ室間にプレートを設けたので、部品点数の増加を抑えつつ、ロータの発熱及び整流子とブラシ間で生じたスパークノイズがセンサに与える影響を低減することができ、エンジンの過給圧制御又はバルブの開度制御などに用いる自動車用のアクチュエータに適している。 In the actuator of the present invention, since the plate is provided between the motor chamber and the sensor chamber, it is possible to reduce the influence of the heat generated by the rotor and the spark noise generated between the commutator and the brush on the sensor while suppressing an increase in the number of components. It is suitable for an actuator for automobiles used for supercharging pressure control of an engine or opening degree control of a valve.
 1 コア、2 巻線、3 ロータ、4 パイプ、7 シャフト、8 ネジ機構部、9 ストッパ、10 整流子、11 ハウジング、12,13 軸受、14 マグネット、15 リング、16 カバー、17 ブラシ、18 スプリング、19 基板、20 センサ、21 コネクタ端子、22 導体、23 第1保持部、24 センサシャフト、25 スプリング、26 センサマグネット、27 プレート、28 第2保持部、29 嵌合部材、30 放熱部、31 電磁シールド部、32 モータ室、33 センサ室、71 一端部、72 他端部、100,101,102 アクチュエータ、111 孔、161 本体部、162 鍔部、163 孔、200 ブラシ付モータ、271 孔、272 爪部、311 爪部。 1 core, 2 winding, 3 rotor, 4 pipe, 7 shaft, 8 screw mechanism, 9 stopper, 10 commutator, 11 housing, 12, 13 bearing, 14 magnet, 15 ring, 16 cover, 17 brush, 18 spring , 19 substrate, 20 sensor, 21 connector terminal, 22 conductor, 23 first holding part, 24 sensor shaft, 25 spring, 26 sensor magnet, 27 plate, 28 second holding part, 29 fitting member, 30 heat dissipation part, 31 Electromagnetic shield part, 32 motor room, 33 sensor room, 71 one end part, 72 other end part, 100, 101, 102 actuator, 111 hole, 161 body part, 162 collar part, 163 hole, 200 brush motor, 271 hole, 272 nails, 311 nails.

Claims (6)

  1.  ブラシ付モータの駆動力でシャフトを直動又は回動させるアクチュエータにおいて、
     前記ブラシ付モータ及び前記シャフトを収容した中空のモータ室と、前記モータ室に連通し、前記シャフトの動きの制御に用いるセンサを収容した中空のセンサ室との間に配置されたプレートを備える
     ことを特徴とするアクチュエータ。
    In an actuator that moves or rotates the shaft directly with the driving force of a motor with a brush,
    A plate disposed between the motor with brush and a hollow motor chamber accommodating the shaft, and a hollow sensor chamber communicating with the motor chamber and accommodating a sensor used for controlling the movement of the shaft. An actuator characterized by.
  2.  前記センサ室に収容され、前記シャフトの一端部に当接して一体に直動又は回動するセンサシャフトと、
     前記センサシャフトに設けられ、前記センサで検知するターゲットとなるセンサマグネットと、を備え、
     前記プレートは、前記センサ室側から前記モータ室側へ前記センサシャフトを貫通させる孔と、前記孔の縁部が筒状に突出した形状であって前記センサシャフトを保持する保持部とを有する
     ことを特徴とする請求項1記載のアクチュエータ。
    A sensor shaft that is housed in the sensor chamber and abuts on one end of the shaft and linearly moves or rotates integrally;
    A sensor magnet provided on the sensor shaft and serving as a target to be detected by the sensor;
    The plate has a hole through which the sensor shaft passes from the sensor chamber side to the motor chamber side, and a holding portion that holds the sensor shaft in a shape in which an edge of the hole protrudes in a cylindrical shape. The actuator according to claim 1.
  3.  前記プレートは、前記モータ室と前記センサ室とを隙間なく隔てる形状であることを特徴とする請求項1記載のアクチュエータ。 2. The actuator according to claim 1, wherein the plate has a shape separating the motor chamber and the sensor chamber without a gap.
  4.  前記プレートは磁性体により構成されていることを特徴とする請求項1記載のアクチュエータ。 2. The actuator according to claim 1, wherein the plate is made of a magnetic material.
  5.  前記プレートの端部が当該アクチュエータの外部に突出することで放熱部を形成していることを特徴とする請求項1記載のアクチュエータ。 The actuator according to claim 1, wherein an end portion of the plate protrudes outside the actuator to form a heat radiating portion.
  6.  前記プレートは、前記センサ室の壁部に沿う形状の電磁シールド部を有することを特徴とする請求項1記載のアクチュエータ。 2. The actuator according to claim 1, wherein the plate has an electromagnetic shield part shaped along the wall part of the sensor chamber.
PCT/JP2014/082542 2014-12-09 2014-12-09 Actuator WO2016092632A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016563324A JP6351755B2 (en) 2014-12-09 2014-12-09 Actuator
PCT/JP2014/082542 WO2016092632A1 (en) 2014-12-09 2014-12-09 Actuator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/082542 WO2016092632A1 (en) 2014-12-09 2014-12-09 Actuator

Publications (1)

Publication Number Publication Date
WO2016092632A1 true WO2016092632A1 (en) 2016-06-16

Family

ID=56106884

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/082542 WO2016092632A1 (en) 2014-12-09 2014-12-09 Actuator

Country Status (2)

Country Link
JP (1) JP6351755B2 (en)
WO (1) WO2016092632A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019193716A1 (en) * 2018-04-05 2019-10-10 三菱電機株式会社 Motor, valve, actuator, and method for manufacturing motor
JP7325386B2 (en) 2020-07-31 2023-08-14 三菱電機株式会社 direct acting actuator

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171563U (en) * 1988-05-18 1989-12-05
JP2008160909A (en) * 2006-12-21 2008-07-10 Nsk Ltd Detector with built-in motor
JP2009296718A (en) * 2008-06-03 2009-12-17 Honda Motor Co Ltd Motor equipped with resolver

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01171563U (en) * 1988-05-18 1989-12-05
JP2008160909A (en) * 2006-12-21 2008-07-10 Nsk Ltd Detector with built-in motor
JP2009296718A (en) * 2008-06-03 2009-12-17 Honda Motor Co Ltd Motor equipped with resolver

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019193716A1 (en) * 2018-04-05 2019-10-10 三菱電機株式会社 Motor, valve, actuator, and method for manufacturing motor
JPWO2019193716A1 (en) * 2018-04-05 2020-08-20 三菱電機株式会社 Motor and motor manufacturing method
JP7325386B2 (en) 2020-07-31 2023-08-14 三菱電機株式会社 direct acting actuator

Also Published As

Publication number Publication date
JPWO2016092632A1 (en) 2017-04-27
JP6351755B2 (en) 2018-07-04

Similar Documents

Publication Publication Date Title
JP4468033B2 (en) Electric motor for variable valve timing device of vehicle engine
US20070194649A1 (en) Electric camshaft adjuster comprising a pancake motor
JP6372756B2 (en) Motor and electric tool provided with the same
JP2010263728A (en) Motor
KR20120120158A (en) rotary single-phase electromagnetic actuator
JP6796474B2 (en) Brushless motor
WO2015045542A1 (en) Valve timing control device for internal combustion engine
US20200251964A1 (en) Motor and air blowing device
JP6351755B2 (en) Actuator
WO2013136560A1 (en) Electromagnetic clutch
JP2010284007A (en) Brushless motor with sensor with built-in drive circuit
JP2003134717A (en) Electric actuator
JP2016121760A (en) Electromagnetic clutch
JP5306808B2 (en) Motor drive control device for in-vehicle equipment
JP2016013008A (en) Electric motor
US20090309447A1 (en) Polyphase machine comprising a bell-shaped rotor
WO2018128165A1 (en) Rotor and electric motor
US10432054B2 (en) Vehicle brushless AC generator
JP2019075960A (en) Motor device
JP2007097327A (en) Motor
JP6172234B2 (en) Electric motor and blower
JP7078950B2 (en) Motor actuator
JP2005318717A (en) Motor with electromagnetic brake
JP6457921B2 (en) DC motor
JP2014128094A (en) Motor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14908049

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016563324

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14908049

Country of ref document: EP

Kind code of ref document: A1