WO2016091024A1 - 缩醛取代的葡萄糖酰胺及制备方法及制备超分子凝胶的方法 - Google Patents

缩醛取代的葡萄糖酰胺及制备方法及制备超分子凝胶的方法 Download PDF

Info

Publication number
WO2016091024A1
WO2016091024A1 PCT/CN2015/093104 CN2015093104W WO2016091024A1 WO 2016091024 A1 WO2016091024 A1 WO 2016091024A1 CN 2015093104 W CN2015093104 W CN 2015093104W WO 2016091024 A1 WO2016091024 A1 WO 2016091024A1
Authority
WO
WIPO (PCT)
Prior art keywords
acetal
gel
substituted
glucose amide
preparation
Prior art date
Application number
PCT/CN2015/093104
Other languages
English (en)
French (fr)
Inventor
宋健
管西栋
冯荣秀
申花花
Original Assignee
天津大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天津大学 filed Critical 天津大学
Publication of WO2016091024A1 publication Critical patent/WO2016091024A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/041,3-Dioxanes; Hydrogenated 1,3-dioxanes
    • C07D319/061,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J13/00Colloid chemistry, e.g. the production of colloidal materials or their solutions, not otherwise provided for; Making microcapsules or microballoons
    • B01J13/0052Preparation of gels
    • B01J13/0065Preparation of gels containing an organic phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28047Gels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/40Devices for separating or removing fatty or oily substances or similar floating material

Definitions

  • the invention belongs to the technical field of fine chemicals, and particularly relates to an acetal substituted glucose amide, a preparation method thereof and a method for forming a gel.
  • the small molecule gel factor can gel the solvent molecules under certain conditions through hydrogen bonding, ⁇ - ⁇ stacking, van der Waals force and other non-covalent interactions. Under the stimulation of external conditions, it can be reversibly transformed between the sol state and the gel state.
  • Some organic small molecule gels have thixotropic properties in addition to thermoreversibility: when a certain external force is applied, the gel becomes a liquid, and when the external force is removed, the system can return to the gel state.
  • the study of thixotropic organic small molecule gel factors is a relatively new field of research, and there are currently fewer classes of thixotropic gel factors.
  • Van Esch et al. found that the urea derivatives of cyclohexanediamine have thixotropic gel properties (Chem. Eur. J., 1999, 5, 937.).
  • N-3-hydroxypropyl dodecylamide gels a mixed solution of toluene or pentanol with dodecane, and the gel formed also has thixotropic behavior (Langmuir, 2004, 20, 3032. ).
  • Percec et al. found that gels formed from succinimide derivatives in dichloromethane exhibit thixotropic behavior (Chem. Eur. J. 2008, 14, 909.).
  • the new thixotropic gel factor structure design provides broad prospects for thixotropic gel performance research and application field development.
  • the thixotropic gel factor can regulate the optimal control range of rheological indexes such as yield stress of organic solvent, maximum viscosity value corresponding to yield stress and thixotropic recovery time, and has wide applications in coatings, inks and lubricants.
  • a second object of the present invention is to provide a process for the preparation of an acetal substituted glucose amide.
  • a third object of the present invention is to provide a process for preparing a supramolecular gel from an acetal substituted glucose amide.
  • a fourth object of the present invention is to provide a use of a dry gel of an acetal substituted glucose amide to adsorb a dye in an aqueous dye solution.
  • a fifth object of the present invention is to provide an acetal substituted glucose amide for use in oil-water separation.
  • a sixth object of the present invention is to provide an acetal substituted glucose amide for the preparation of a supramolecular gel for the preparation of coatings, inks and lubricants.
  • n 1-10, 12, 14, 16 or 18.
  • the preparation method of the above acetal substituted glucose amide comprises the following steps:
  • n 1-10, 12, 14, 16 or 18, the corresponding compound is labeled B n
  • a method for preparing a supramolecular gel from an acetal-substituted glucosamide comprises the steps of: adding an acetal-substituted glucosamine to a solvent to a content of 0.1-30 mg/mL, heating to dissolve the acetal-substituted glucoamide, and cooling to At room temperature, a gel was obtained.
  • the solvent is preferably: n-octanol, isooctanol, o-dichlorobenzene, nitrobenzene, n-propanol, butyl acetate, acetonitrile, tetrahydrofuran, toluene, o-xylene, chloroform, pump oil, hexadecane, Liquid paraffin, n-hexane, an aqueous solution of ethylene glycol having a volume concentration of 80% or an aqueous solution of N-methylpyrrolidone having a volume concentration of 50%.
  • the supramolecular gel formed by the acetal-substituted glucose amide of the present invention has thixotropic properties, high recovery rate, and controllability.
  • This type of gel factor has the ability to separate oil and water, dye wastewater purification and the like.
  • Supramolecular gels can be used to prepare coatings, inks and lubricants.
  • Figure 1 Gel picture of compound, isooctyl alcohol gel of B 8 (panel A), o-dichlorobenzene gel of B 8 (panel B).
  • Figure 2 Picture of the room temperature gel and gel of the compound as a function of mechanical force.
  • FIG 3 FIG thixotropic compound data, butyl acetate gel (FIG. A) B 8, the pump oil gels (FIG. B) B 8 a.
  • FIG. A isooctanol xerogel
  • FIG. B o-dichlorobenzene xerogel
  • Figure 5 Application picture of compound, picture of liquid paraffin water separation of B 8 ( Figure A), dye adsorption picture of dry gel of B 8 ( Figure B).
  • the starting material 2,4-(3,4-dichlorobenzylidene)-D-gluconoic acid methyl ester used in the present invention was produced by the following method:
  • the preparation method of the acetal substituted glucose amide comprises the following steps:
  • n 1-10, 12, 14, 16, 18; the corresponding compound is abbreviated as B n .
  • Example 3 The methylamine in Example 3 was replaced by ethylamine to obtain N-ethyl-2,4-(3,4-dichlorobenzylidene)-D-glucosamide (Compound B 2 ) in a yield of 70.1%.
  • the melting point is 249.8-250.5 °C.
  • Example 3 The methylamine in Example 3 was replaced with propylamine to prepare N-propyl-2,4-(3,4-dichlorobenzylidene-D-glucosamide) (Compound B 3 ) in a yield of 75.3%.
  • the melting point is 222.4-223.6 ° C.
  • Example 3 The methylamine in Example 3 was replaced with butylamine to prepare N-butyl-2,4-(3,4-dichlorobenzylidene)-D-glucosamide (Compound B 4 ) in a yield of 82.5%.
  • the melting point is 217.2-217.6 ° C.
  • Example 3 The methylamine in Example 3 was replaced with pentylamine to prepare N-pentyl-2,4-(3,4-dichlorobenzylidene)-D-glucosamide (Compound B 5 ) in a yield of 52.3%.
  • the melting point is 207.2-207.6 ° C.
  • Example 3 The methylamine in Example 3 was replaced with hexylamine to prepare N-hexyl-2,4-(3,4-dichlorobenzylidene)-D-glucosamide (Compound B 6 ) in a yield of 47.0%. It is 199.9-200.4 °C.
  • the hydroxyl group and the amide group in the molecule of the compound prepared in each of the above examples easily form a hydrogen bond and can be gelled to a solvent.
  • such compounds can form different nano-micron structures in a solvent.
  • the method for forming a gel of the acetal substituted glucose amide compound of the present invention is:
  • a certain volume ratio of the mixed solvent is added to the acetal-substituted glucose amide, and heated to a dissolved state to cool to room temperature to form a gel.
  • Some gels have thixotropic properties: the gel formed by the acetal-substituted glucose amide oscillates at room temperature, is stirred by a glass rod or other mechanical force, and the gel is broken into a solution, which is partially or completely left after a period of time. Revert to gel.
  • the introduction of the gluconic acetal derivative of the present invention as a novel gelling factor into a gel system can control the optimal control range of the rheological index such as the yield stress of the organic solvent, the maximum viscosity value corresponding to the yield stress, and the thixotropic recovery time. It is expected to be applied in the fields of coatings and inks.
  • Compound B 8 has good gel properties and is capable of gelling a variety of solvents including: a single solvent and a mixed solvent.
  • Compound B 8 can form a gel in a plurality of solvents, which gel has a thermoreversible property, that is, becomes a sol after heating, and forms a gel again after cooling, and the process can be repeated a plurality of times.
  • a sealed vial containing 10mg of Compound B 8 1mL was added o-dichlorobenzene, was heated to complete dissolution and then cooled to room temperature may be a clear gel formed (see FIG. IB), using o-dichlorobenzene-octanol Alternatively, heating It is completely dissolved and then cooled to room temperature to form an opaque gel (see Figure 1A).
  • Compound B 8 can form a gel under ultrasonic conditions in various solvents. For example, in a sealed vial containing 10 mg of B 8 , 1 mL of tetrahydrofuran was added, and at 20 ° C, ultrasonic power of 80 W, an opaque white gel was formed by sonication for 10 min. The gel became a solution after heating to 70 ° C and cooled to room temperature to form an opaque white gel.
  • Compound B 8 can be gelled at room temperature without heating in a variety of solvents. For example, in a sealed vial containing 10 mg of B 8 , 1 mL of chloroform is added, insoluble, and shaken at room temperature for 5-10 s to form an opaque white gel (see Fig. 2). The gel became a solution after heating to 90 ° C, and cooled to room temperature to form an opaque white gel.
  • Compound B 8 is dissolved in a solvent, and after adding another solvent, a gel can be formed at room temperature.
  • a gel can be formed at room temperature.
  • added in a sealed vial containing 10mg B 8 in 0.5mLN- methylpyrrolidone the sample is completely dissolved, then added 0.5mL of water, can immediately form an opaque white gel.
  • the gel became a solution after heating to 95 ° C and cooled to room temperature to form an opaque white gel.
  • Compound B 8 forms an opaque white gel in a proportion of a mixed solvent, the gel having thermoreversible properties. For example, 0.8 mL of ethylene glycol is added to a sealed vial containing 10 mg of B 8 , and 0.2 mL of water is added thereto, which is completely dissolved by heating, and then cooled to room temperature to form a gel.
  • the compound B 8 is a gel factor
  • gels prepared in different solvents have different thixotropic properties.
  • the elastic modulus values produced in different solvents, the instantaneous recovery rate after the thixotropic change, and the recovery time are different.
  • the thixotropic properties of the gel were determined by a simple strain test at 20 °C using an Anton Paar rheometer Physica MCR 51.
  • the stress test is divided into three steps: the first step is to give the gel a stable shear strain of 0.1%; the second step is to change the shear strain from 0.1% to 25%, and keep the gel completely destroyed for a few minutes; The shear strain was changed from 25% to 0.1% in three steps and remained unchanged to observe the recovery process of the thixotropic gel.
  • the angular velocity is maintained at 10 rad s - 1 throughout the process.
  • Compound B was measured, for example, the rheological properties of the gel 8 Butyl acetate (concentration 1.0%) (see FIG. 3A), an oil pump gel Compound B (1.0% concentration) of the rheological properties of 8 (see FIG. 3B ).
  • the measurement conditions were as follows: firstly, the elastic modulus value G' was measured at a shear strain of 0.1%, an angular velocity of 10 rad s -1 , and a temperature of 20 ° C; after being destroyed by 25% shear strain for 3 min, the shear strain was changed to 0.1.
  • the elastic modulus was measured after 10 seconds (the elastic modulus value was defined as: G instantaneous ); the shear strain was maintained at 0.1%, and the time required to return to the initial gel (defined as: recovery time) was measured.
  • the ratio of the measured G instant to the value of G' is defined as: instantaneous recovery rate.
  • the rate of recovery can be adjusted to further produce different applications.
  • the specific values of the thixotropic properties of Compound B 8 in different solutions are shown in the table below.
  • the compound B 8 has thixotropic properties in an aqueous solution of N-methylpyrrolidone or an aqueous solution of ethylene glycol, it cannot completely return to the initial elastic modulus of the gel.
  • the compound B 8 can form a thixotropic gel.
  • This gelling factor has certain potential applications.
  • Compound B 8 has good thixotropic properties in different solvents and can be used in the fields of coatings, inks, lubricants and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Dispersion Chemistry (AREA)
  • Saccharide Compounds (AREA)

Abstract

本发明公开了一种缩醛取代的葡萄糖酰胺及制备方法及制备超分子凝胶的方法,缩醛取代的葡萄糖酰胺,是以式I所示:其中n=1-10之一,12,14,16或18;本发明的缩醛取代的葡萄糖酰胺在溶液中形成的超分子凝胶具有触变性,回复率高,并且具有可调控性。该类凝胶因子具有油水分离、染料废水净化等能力。超分子凝胶可以制备涂料、墨水和润滑剂。

Description

缩醛取代的葡萄糖酰胺及制备方法及制备超分子凝胶的方法 技术领域
本发明属于精细化工技术领域,具体涉及一种缩醛取代的葡萄糖酰胺及其制备方法与形成凝胶的方法。
背景技术
小分子凝胶因子通过氢键、π-π堆积、范德华力以及其它非共价键相互作用,在一定条件下可以使溶剂分子凝胶化。在外界条件刺激下,可在溶胶态和凝胶态之间可逆转变。有些有机小分子凝胶除具有热可逆性外,还具有触变性:当施加一定的外力的情况下凝胶就会变成液体,当撤去外力后体系能恢复到凝胶状态。具有触变性的有机小分子凝胶因子的研究属于较新研究领域,目前所发现的触变性凝胶因子类别较少。
Van Esch等发现环己二胺的脲类衍生物具有触变凝胶性能(Chem.Eur.J.,1999,5,937.)。另外,N-3-羟基丙基十二烷基酰胺能使甲苯或戊醇与十二烷的混合溶液凝胶化,且形成的凝胶也具有触变行为(Langmuir,2004,20,3032.)。Percec等发现琥珀酸亚胺衍生物在二氯甲烷中形成的凝胶表现出触变行为(Chem.Eur.J.2008,14,909.)。某些卟啉的金属配合物在萘烷中形成的凝胶具有触变性(J.Am.Chem.Soc.,2005,127,4164.)。Weiss等发现某些甾族化合物在烷烃中形成的凝胶具有触变性(J.Am.Chem.Soc.,2006,128,15341)。
新的触变性凝胶因子结构设计,可对触变性凝胶性能研究及应用领域拓展提供广阔前景。触变性凝胶因子可以调控有机溶剂的屈服应力、屈服应力对应的最大黏度值以及触变回复时间等流变学指标的最佳控制范围,在涂料、油墨、润滑剂等领域有着广泛的应用。
发明内容
本发明的目的在于提供一种缩醛取代的葡萄糖酰胺。
本发明的第二个目的是提供一种缩醛取代的葡萄糖酰胺的制备方法。
本发明的第三个目的是提供一种缩醛取代的葡萄糖酰胺制备超分子凝胶的方法。
本发明的第四个目的是提供一种缩醛取代的葡萄糖酰胺的干凝胶吸附染料水溶液中的染料的用途。
本发明的第五个目的是提供一种缩醛取代的葡萄糖酰胺用于油水分离的用途。
本发明的第六个目的是提供一种缩醛取代的葡萄糖酰胺制备超分子凝胶制备涂料、墨水和润滑剂的用途。
本发明的技术方案概述如下:
一种缩醛取代的葡萄糖酰胺,是以式I所示:
Figure PCTCN2015093104-appb-000001
其中n=1-10之一,12,14,16或18。
上述一种缩醛取代的葡萄糖酰胺的制备方法,包括如下步骤:
缩醛取代的葡萄糖酸甲酯(II)与CnH2n+1NH2反应,得到缩醛取代的葡萄糖酰胺,反应式如下:
Figure PCTCN2015093104-appb-000002
所述n=1-10,12,14,16或18,对应的化合物标记为Bn
缩醛取代的葡萄糖酰胺制备超分子凝胶的方法,包括如下步骤:将缩醛取代的葡萄糖酰胺加入溶剂中,使含量为0.1-30mg/mL,加热使缩醛取代的葡萄糖酰胺溶解,冷却至室温,得到凝胶。
所述溶剂优选为:正辛醇、异辛醇、邻二氯苯、硝基苯、正丙醇、乙酸丁酯、乙腈、四氢呋喃、甲苯、邻二甲苯、氯仿、泵油、十六烷、液体石蜡、正己烷、体积浓度为80%的乙二醇水溶液或体积浓度为50%的N-甲基吡咯烷酮水溶液。
上述缩醛取代的葡萄糖酰胺的干凝胶吸附染料水溶液中的染料的用途。
上述缩醛取代的葡萄糖酰胺用于油水分离的用途。
上述缩醛取代的葡萄糖酰胺制备超分子凝胶制备涂料、墨水和润滑剂的用途。
本发明的缩醛取代的葡萄糖酰胺在溶液中形成的超分子凝胶具有触变性,回复率高,并且具有可调控性。该类凝胶因子具有油水分离、染料废水净化等能力。超分子凝胶可以制备涂料、墨水和润滑剂。
附图说明
图1:化合物的凝胶图片,B8的异辛醇凝胶(图A),B8的邻二氯苯凝胶(图B)。
图2:化合物的室温凝胶与凝胶随机械力变化的图片。
图3:化合物的触变性数据图,B8的乙酸丁酯凝胶(图A),B8的泵油凝胶(图B)。
图4:化合物的微观形貌图,B8的异辛醇干凝胶(图A),B8的邻二氯苯干凝胶(图B)。
图5:化合物的应用图片,B8的液体石蜡水分离图片(图A),B8的干凝胶的染料吸附图片(图B)。
具体实施方式
下面结合具体实施例对本发明作进一步的说明。
实施例1
本发明所用原料2,4-(3,4-二氯苄叉)-D-葡萄糖酸甲酯用下述方法制成:
Figure PCTCN2015093104-appb-000003
在室温下向装有机械搅拌、温度计的1L四口瓶中加入50wt%D-葡萄糖酸水溶液215.8g(D-葡萄糖酸0.55mol),甲醇100mL,浓盐酸200mL,以200转/分钟转速搅拌。加入3,4-二氯苯甲醛的甲醇溶液(将87.5g(0.50mol)的3,4-二氯苯甲醛溶于300mL甲醇中),反应4h后体系开始变粘稠,继续以200转/分钟转速搅拌反应20h,反应完毕后向体系中加入100mL水,搅拌2h后抽滤,滤饼用大量水洗涤至pH 6-7,然后用热的二氯甲烷200mL洗涤两次,抽干得到产品II,烘干得140g。产率为76%,熔点为188.6-189.2℃。1H NMR(400MHz,DMSO-d6):δ7.79-7.86(d,1H,Ar-H),7.65-7.72(d,1H,Ar-H),7.46-7.51(m,1H,Ar-H),5.66(s,1H,OCHO),5.06(d,1H,OH),4.79(d,1H,OH),4.73(d,1H,CH2),4.47(t,1H,OH),4.00(d,1H,CH),3.80(d,1H,CH2),3.69(s,3H,CH3),3.65(m,1H,CH),3.45(m,1H,CH),3.43(m,1H,CH)。
实施例2
缩醛取代的葡萄糖酰胺的制备方法,包括如下步骤:
以4-二甲氨基吡啶(DMAP)为催化剂,2,4-(3,4-二氯苄叉)-D-葡萄糖酸甲酯和脂肪族一元胺为原料,吡啶为溶剂(溶剂也可以选甲醇)的条件下合成了缩醛取代的葡萄糖酰胺化合物,反应方程式如下所示。其中:n=1-10,12,14,16,18;对应的化合物简称为Bn
Figure PCTCN2015093104-appb-000004
实施例3
缩醛取代的葡萄糖酰胺(B1)的制备方法,包括如下步骤:
在20-25℃下向装有机械搅拌、温度计的250mL四口瓶中加入5g(0.014mol)2,4-(3,4-二氯苄叉)-D-葡萄糖酸甲酯(II),吡啶50mL为溶剂,DMAP 0.01g(0.008mmol)为催化剂,搅拌30min后加入40%(质量百分浓度)的甲胺水溶液3.3g(含甲胺0.042mol)室温搅拌过夜。反应完毕后向体系中加入25mL水,搅拌2h后抽滤,滤饼用水洗涤后,再用甲醇洗涤抽干得到粗品。将粗品在20mL甲醇中回流30min后,冷却至室温,搅拌1h后抽滤,滤饼用甲醇洗涤,烘干得3.9g化合物N-甲基-2,4-(3,4-二氯苄叉)-D-葡萄糖酰胺(B1),产率为76.0%,熔点为261.0-261.2℃。1H NMR(400MHz,DMSO-d6):δ7.90-7.92(s,1H,CONH),7.65-7.80(d,1H,Ar-H),7.54-7.58(d,1H,Ar-H),7.46-7.51(s,1H,Ar-H),5.67(s,1H,OCHO),4.74(t,2H,OH),4.47(t,1H,OH),4.35(s,1H,CH2),4.01(d,1H,CH),3.76(d,1H,CH2),3.65(m,1H,CH2),3.53(m,1H,CH),3.42(m,1H,CH),2.65(m,3H,CH3)。
实施例4
缩醛取代的葡萄糖酰胺(B2)的制备方法:
用乙胺替代实施例3中的甲胺,制备得到N-乙基-2,4-(3,4-二氯苄叉)-D-葡萄糖酰胺(化合物B2),产率为70.1%,熔点为249.8-250.5℃。1H NMR(400MHz,DMSO-d6):δ7.90-7.92(s,1H,CONH),7.65-7.80(d,1H,Ar-H),7.54-7.58(d,1H,Ar-H),7.46-7.51(s,1H,Ar-H),5.67(s,1H,OCHO),4.73(dd,2H,OH),4.47(t,1H,OH),4.35(s,1H,CH2),4.01(d,1H,CH),3.76(d,1H,CH2),3.65(m,1H,CH2),3.53(m,1H,CH),3.42(m,1H,CH),3.11(m,2H,CH2),0.83(t,3H,CH3)。
实施例5
缩醛取代的葡萄糖酰胺(B3)的制备方法:
用丙胺替代实施例3中的甲胺,制备得到N-丙基-2,4-(3,4-二氯苄叉)-D-葡萄糖酰胺)(化合物B3),产率为75.3%,熔点为222.4-223.6℃。1H NMR(400MHz,DMSO-d6):δ7.90-7.92(s,1H,CONH),7.65-7.80(d,1H,Ar-H),7.54-7.58(d,1H,Ar-H),7.46-7.51(s,1H,Ar-H),5.67(s,1H,OCHO),4.73(dd,2H,OH),4.47(t,1H,OH),4.35(s,1H,CH2,),4.00(d,1H,CH),3.76(d,1H,CH2),3.65(m,1H,CH2),3.55(m,1H,CH),3.41(m,1H,CH), 3.11(m,2H,CH2),1.44(m,2H,CH2),0.83(t,3H,CH3)。
实施例6
缩醛取代的葡萄糖酰胺(B4)的制备方法:
用丁胺替代实施例3中的甲胺,制备得到N-丁基-2,4-(3,4-二氯苄叉)-D-葡萄糖酰胺(化合物B4),产率为82.5%,熔点为217.2-217.6℃。1H NMR(400MHz,DMSO-d6):δ7.90-7.92(s,1H,CONH),7.65-7.80(d,1H,Ar-H),7.54-7.58(d,1H,Ar-H),7.46-7.51(s,1H,Ar-H),5.67(s,1H,OCHO),4.73(dd,2H,OH),4.47(t,1H,OH),4.35(s,1H,CH2),4.00(d,1H,CH),3.76(d,1H,CH2),3.64(m,1H,CH2),3.56(m,1H,CH),3.41(m,1H,CH),3.12(m,2H,CH2),1.40(m,2H,CH2),1.27(m,2H,CH2),0.83(t,3H,CH3)。
实施例7
缩醛取代的葡萄糖酰胺(B5)的制备方法:
用戊胺替代实施例3中的甲胺,制备得到N-戊基-2,4-(3,4-二氯苄叉)-D-葡萄糖酰胺(化合物B5),产率为52.3%,熔点为207.2-207.6℃。1H NMR(400MHz,DMSO-d6):δ7.90-7.92(s,1H,CONH),7.65-7.80(d,1H,Ar-H),7.54-7.58(d,1H,Ar-H),7.46-7.51(s,1H,Ar-H),5.67(s,1H,OCHO),4.73(dd,2H,OH),4.47(t,1H,OH),4.35(d,1H,CH2),4.00(d,1H,CH),3.76(d,1H,CH2),3.64(m,1H,CH2),3.56(m,1H,CH),3.41(m,1H,CH),3.12(m,2H,CH2),1.40(m,2H,CH2),1.27(m,4H,CH2),0.83(t,3H,CH3)。
实施例8
缩醛取代的葡萄糖酰胺(B6)的制备方法:
用己胺替代实施例3中的甲胺,制备得到N-己基-2,4-(3,4-二氯苄叉)-D-葡萄糖酰胺(化合物B6),产率为47.0%,熔点为199.9-200.4℃。1H NMR(400MHz,DMSO-d6):δ7.90-7.92(s,1H,CONH),7.65-7.80(d,1H,Ar-H),7.54-7.58(d,1H,Ar-H),7.46-7.51(s,1H,Ar-H),5.66(s,1H,OCHO),4.73(dd,2H,OH),4.47(t,1H,OH),4.36(s,1H,CH2,),4.00(d,1H,CH),3.76(d,1H,CH2),3.64(m,1H,CH2),3.55(m,1H,CH),3.45(m,1H,CH),3.12(m,2H,CH2),1.41(m,2H,CH2),1.23(m,6H,CH2),0.83(t,3H,CH3)。
实施例9
缩醛取代的葡萄糖酰胺(B7)的制备方法:
用庚胺替代实施例3中的甲胺,制备得到N-庚基-2,4-(3,4-二氯苄叉)-D-葡萄糖酰胺(化合物B7),产率为71.2%,熔点为203.4-204.5℃。1H NMR(400MHz,DMSO-d6):δ7.90-7.92(s,1H,CONH),7.65-7.80(d,1H,Ar-H),7.54-7.58(d,1H,Ar-H),7.46-7.51(s,1H,Ar-H),5.67(s,1H,OCHO),4.73(dd,2H,OH),4.47(t,1H,OH),4.36(s,1H,CH2),4.00(d,1H,CH),3.76(d,1H,CH2),3.64(m,1H,CH2),3.55(m,1H,CH),3.42(m,1H,CH),3.11(m,2H,CH2),1.42(m,2H,CH2),1.25(s,8H,CH2),0.86(t,3H,CH3)。
实施例10
缩醛取代的葡萄糖酰胺(B8)的制备方法:
用辛胺替代实施例3中的甲胺,制备得到N-辛基-2,4-(3,4-二氯苄叉)-D-葡萄糖酰胺(化合物B8),产率为62.4%,熔点为195.1-196.1℃。1H NMR(400MHz,DMSO-d6):δ7.90-7.92(s,1H,CONH),7.65-7.80(d,1H,Ar-H),7.54-7.58(d,1H,Ar-H),7.46-7.51(s,1H,Ar-H),5.67(s,1H,OCHO),4.72(dd,2H,OH),4.47(t,1H,OH),4.35(s,1H,CH2),4.00(d,1H,CH),3.76(d,1H,CH2),3.64(m,1H,CH2),3.55(m,1H,CH),3.41(m,1H,CH),3.11(m,2H,CH2),1.42(m,2H,CH2),1.24(s,10H,CH2),0.83(t,3H,CH3)。
实施例11
缩醛取代的葡萄糖酰胺(B9)的制备方法:
用壬胺替代实施例3中的甲胺,制备得到N-壬基-2,4-(3,4-二氯苄叉)-D-葡萄糖酰胺(化合物B9),产率为61.5%,熔点为196.1-196.5℃。1H NMR(400MHz,DMSO-d6):δ7.90-7.92(s,1H,CONH),7.65-7.80(d,1H,Ar-H),7.54-7.58(d,1H,Ar-H),7.46-7.51(s,1H,Ar-H),5.67(s,1H,OCHO),4.73(dd,2H,OH),4.48(t,1H,OH),4.35(s,1H,CH2),4.00(d,1H,CH),3.76(d,1H,CH2),3.64(m,1H,CH2),3.55(m,1H,CH),3.41(m,1H,CH),3.11(m,2H,CH2),1.42(m,2H,CH2),1.24(s,12H,CH2),0.85(t,3H,CH3)。
实施例12
缩醛取代的葡萄糖酰胺(B10)的制备方法:
用癸胺替代实施例3中的甲胺,制备得到N-癸基-2,4-(3,4-二氯苄叉)-D-葡萄糖酰胺(化合物B10),产率为72.0%,熔点为190.6-190.8℃。1H NMR(400MHz,DMSO-d6):δ7.90-7.92(s,1H,CONH),7.65-7.80(d,1H,Ar-H),7.54-7.58(d,1H,Ar-H),7.46-7.51(s,1H,Ar-H),5.67(s,1H,OCHO),4.72(dd,2H,OH),4.47(t,1H,OH),4.35(s,1H,CH2),4.00(d,1H,CH),3.76(d,1H,CH2),3.64(m,1H,CH2),3.55(m,1H,CH),3.41(m,1H,CH),3.11(m,2H,CH2),1.42(m,2H,CH2),1.24(s,14H,CH2),0.83(t,3H,CH3)。
实施例13
缩醛取代的葡萄糖酰胺(B12)的制备方法:
用十二胺替代实施例3中的甲胺,制备得到N-十二烷基-2,4-(3,4-二氯苄叉)-D-葡萄糖酰胺(化合物B12),产率为71.6%,熔点为190.2-191.4℃。1H NMR(400MHz,DMSO-d6):δ7.90-7.92(s,1H,CONH),7.65-7.80(d,1H,Ar-H),7.54-7.58(d,1H,Ar-H),7.46-7.51(s,1H,Ar-H),5.67(s,1H,OCHO),4.72(dd,2H,OH),4.47(t,1H,OH),4.36(s,1H,CH2),4.00(d,1H,CH),3.76(d,1H,CH2),3.64(m,1H,CH2),3.55(m,1H,CH),3.43(m,1H,CH),3.11(m,2H,CH2),1.42(m,2H,CH2),1.24(s,18H,CH2),0.83(t,3H,CH3)。
实施例14
缩醛取代的葡萄糖酰胺(B14)的制备方法:
用十四胺替代实施例3中的甲胺,制备得到N-十四烷基-2,4-(3,4-二氯苄叉)-D-葡萄糖酰胺(化合物B14),产率为66.2%,熔点为196.2-196.6℃。1H NMR(400MHz,DMSO-d6):δ7.90-7.92(s,1H,CONH),7.65-7.80(d,1H,Ar-H),7.54-7.58(d,1H,Ar-H),7.46-7.51(s,1H,Ar-H),5.67(s,1H,OCHO),4.73(dd,2H,OH),4.48(t,1H,OH),4.37(s,1H,CH2), 4.00(d,1H,CH),3.76(d,1H,CH2),3.64(m,1H,CH2),3.55(m,1H,CH),3.43(m,1H,CH),3.10(m,2H,CH2),1.42(m,2H,CH2),1.23(s,22H,CH2),0.83(t,3H,CH3)。
实施例15
缩醛取代的葡萄糖酰胺(B16)的制备方法:
用十六胺替代实施例3中的甲胺,制备得到N-十六烷基-2,4-(3,4-二氯苄叉)-D-葡萄糖酰胺(化合物B16),产率为80.1%,熔点为194.8-195.1℃。1H NMR(400MHz,DMSO-d6):δ7.90-7.92(s,1H,CONH),7.65-7.80(d,1H,Ar-H),7.54-7.58(d,1H,Ar-H),7.46-7.51(s,1H,Ar-H),5.67(s,1H,OCHO),4.73(dd,2H,OH),4.47(t,1H,OH),4.36(s,1H,CH2),4.00(d,1H,CH),3.76(d,1H,CH2),3.64(m,1H,CH2),3.54(m,1H,CH),3.42(m,1H,CH),3.11(m,2H,CH2),1.42(m,2H,CH2),1.23(s,26H,CH2),0.83(t,3H,CH3)。
实施例16
缩醛取代的葡萄糖酰胺(B18)的制备方法:
用十八胺替代实施例3中的甲胺,制备得到N-十八烷基-2,4-(3,4-二氯苄叉)-D-葡萄糖酰胺(化合物B18),产率为82.0%,熔点为184.4-186.4℃。1H NMR(400MHz,DMSO-d6):δ7.90-7.92(s,1H,CONH),7.65-7.80(d,1H,Ar-H),7.54-7.58(d,1H,Ar-H),7.46-7.51(s,1H,Ar-H),5.67(s,1H,OCHO),4.72(dd,2H,OH),4.47(t,1H,OH),4.34(s,1H,CH2),3.99(d,1H,CH),3.76(d,1H,CH2),3.64(m,1H,CH2),3.54(m,1H,CH),3.41(m,1H,CH),3.11(m,2H,CH2),1.41(m,2H,CH2),1.23(s,30H,CH2),0.85(t,3H,CH3)。
上述各实施例制备的化合物分子中的羟基、酰胺基团容易形成氢键,可以对溶剂凝胶。此外,此类化合物在溶剂中可以形成不同的纳微米结构。
本发明的缩醛取代的葡萄糖酰胺化合物形成凝胶的方法为:
1)向缩醛取代的葡萄糖酰胺中加入溶剂,加热至溶解状态冷却至室温可形成凝胶;
2)向缩醛取代的葡萄糖酰胺中加入溶剂,在超声波中进行超声至溶解状态,继续超声可形成凝胶;
3)向缩醛取代的葡萄糖酰胺中加入溶剂,室温下振荡或静置可形成凝胶;
4)向缩醛取代的葡萄糖酰胺中加入溶剂使其溶解,再以一定的比例加入水,室温下即可形成凝胶;
5)向缩醛取代的葡萄糖酰胺中加入一定体积比的混合溶剂,加热至溶解状态冷却至室温可形成凝胶。
某些凝胶具有触变性:缩醛取代的葡萄糖酰胺所形成的凝胶在室温下振荡、用玻璃棒搅拌或其它机械力作用下,将凝胶破坏成溶液,静置一段时间后部分或完全恢复为凝胶。
将本发明的葡萄糖酸缩醛衍生物作为新型凝胶因子引入凝胶体系,可以调控有机溶剂的屈服应力、屈服应力对应的最大黏度值以及触变回复时间等流变学指标的最佳控制范围,有望在涂料、油墨等领域获得应用。
实施例17
以N-辛基-2,4-(3,4-二氯苄叉)-D-葡萄糖酰胺(化合物B8)为代表的效果。
1.凝胶性能
化合物B8具有较好的凝胶性能,能够凝胶多种溶剂,包括:单一溶剂以及混合溶剂。
1)化合物B8在多种溶剂中可以形成凝胶,该凝胶具有热可逆性质,即加热后变成溶胶,冷却后再次形成凝胶,该过程可以多次重复。例如在含有10mg化合物B8的密封小瓶中,加入1mL邻二氯苯,加热使其完全溶解再冷却至室温可形成透明凝胶(见图1B),用异辛醇替代邻二氯苯,加热使其完全溶解再冷却至室温可形成不透明凝胶(见图1A)。
2)化合物B8在多种溶剂中可以在超声的条件下形成凝胶。例如在含有10mg B8的密封小瓶中,加入1mL四氢呋喃,在20℃,超声功率80W情况下,超声10min可形成不透明的白色凝胶。此凝胶加热到70℃后变成溶液,冷却至室温又可形成不透明的白色凝胶。
3)化合物B8在多种溶剂中可以不经过加热,室温下即形成凝胶。例如在含有10mg B8的密封小瓶中,加入1mL氯仿,不溶,室温下振荡5-10s,即可形成不透明的白色凝胶(见图2)。此凝胶加热到90℃后变成溶液,冷却至室温又可形成不透明的白色凝胶。
4)化合物B8溶解在一种溶剂中,加入另一种溶剂后在室温下可形成凝胶。例如,在含有10mg B8的密封小瓶中加入0.5mLN-甲基吡咯烷酮,样品完全溶解,再加入0.5mL的水,立即可以形成不透明的白色凝胶。此凝胶加热到95℃后变成溶液,冷却至室温又可形成不透明的白色凝胶。
5)化合物B8在一定比例的混合溶剂中可形成不透明的白色凝胶,该凝胶具有热可逆性质。例如,在含有10mg B8的密封小瓶中加入0.8mL乙二醇,再加入0.2mL水,加热使其完全溶解,再冷却至室温即可形成凝胶。
化合物B系列化合物在不同种类单一溶剂中的凝胶性能见表1。
表1.缩醛取代的葡萄糖酰胺化合物(凝胶因子)的凝胶性能
Figure PCTCN2015093104-appb-000005
表中:I加热不溶;OG不透明凝胶;TG透明凝胶;S全部溶解,不凝胶;P部分溶解,不凝胶;化合物B8在溶剂中的浓度为10mg/mL。
2.凝胶的触变性能
由化合物B8为凝胶因子,在不同溶剂(极性溶剂、非极性溶剂和混合溶剂)中制备的凝胶具有不同的触变性能。在不同溶剂中所产生的弹性模量值、触变后的瞬时回复率和回复时间各有不同。采用安东帕高级旋转流变仪Physica MCR 51,在20℃条件下通过一个简单的应变试验测定了凝胶的触变性能。此应力试验分为三步:第一步,给予凝胶一个稳定的剪切应变0.1%;第二步将剪切应变从0.1%变为25%,并保持几分钟使凝胶完全破坏;第三步将剪切应变从25%变为0.1%并保持不变,从而观察触变性凝胶的回复过程。整个过程中角速度保持10rad s- 1
例如测定了化合物B8的乙酸丁酯凝胶(浓度为1.0%)的流变性能(见图3A),化合物B8的泵油凝胶(浓度为1.0%)的流变性能(见图3B)。测定条件为:首先在剪切应变0.1%,角速度10rad s-1,温度20℃下,测得弹性模量数值G′;在通过25%剪切应变破坏3min后,将剪切应变变为0.1%,10秒后测定弹性模量(该弹性模量数值定义为:G瞬时);保持剪切应变为0.1%,测定回复到初始凝胶所需要的时间(定义为:回复时间)。测得的G瞬时与G′的数值之比定义为:瞬间回复率。
利用化合物B8在不同溶液中的触变性的不同,可以进行调控回复速率,从而进一步产生不同的应用。化合物B8在不同溶液中的触变性能的具体数值见下表。
表2.化合物B8的触变性能
Figure PCTCN2015093104-appb-000006
化合物B8在N-甲基吡咯烷酮的水溶液、乙二醇的水溶液中虽然具有触变性,但是不能完全回复到凝胶初始的弹性模量。在乙酸丁酯、二甲苯、烷烃等涂料、油墨、润滑剂领域中常用的溶剂中,化合物B8可以形成具有触变性的凝胶。
3.凝胶的微观形貌
为了对化合物的微观形貌进行考察,对化合物B8在异辛醇、邻二氯苯中所成的干凝胶进行了扫描电镜检测(见附图4)。从SEM图可得出,该凝胶化合物为纤维状形貌。
4.凝胶的潜在应用
该凝胶因子具有一定的潜在应用。
1)油水分离。将10mg化合物B8加入到3mL水和1mL液体石蜡中,加热,冷却后有机层凝胶而水层没有影响,可以实现油水相分离。(见图5A)
2)化合物B8的干凝胶可以吸附染料。将20mg化合物B8的干凝胶加入到5mL 0.01mol/L的结晶紫水溶液中,24h后可以吸附完毕。(见图5B)
3)化合物B8在不同的溶剂中具有较好的触变性,可以用于涂料、油墨、润滑剂等领域。

Claims (7)

  1. 一种缩醛取代的葡萄糖酰胺,其特征是以式I所示:
    Figure PCTCN2015093104-appb-100001
    其中n=1-10之一,12,14,16或18。
  2. 权利要求1的一种缩醛取代的葡萄糖酰胺的制备方法,其特征是包括如下步骤:
    缩醛取代的葡萄糖酸甲酯(II)与CnH2n+1NH2反应,得到缩醛取代的葡萄糖酰胺,反应式如下:
    Figure PCTCN2015093104-appb-100002
    所述n=1-10,12,14,16或18。
  3. 权利要求1的缩醛取代的葡萄糖酰胺制备超分子凝胶的方法,其特征是包括如下步骤:将缩醛取代的葡萄糖酰胺加入溶剂中,使含量为0.1-30mg/mL,加热使缩醛取代的葡萄糖酰胺溶解,冷却至室温,得到凝胶。
  4. 根据权利要求3所述的方法,其特征是所述溶剂为:正辛醇、异辛醇、邻二氯苯、硝基苯、正丙醇、乙酸丁酯、乙腈、四氢呋喃、甲苯、邻二甲苯、氯仿、泵油、十六烷、液体石蜡、正己烷、体积浓度为80%的乙二醇水溶液或体积浓度为50%的N-甲基吡咯烷酮水溶液。
  5. 权利要求1的缩醛取代的葡萄糖酰胺的干凝胶吸附染料水溶液中的染料的用途。
  6. 权利要求1的缩醛取代的葡萄糖酰胺用于油水分离的用途。
  7. 权利要求1的缩醛取代的葡萄糖酰胺制备超分子凝胶制备涂料、墨水和润滑剂的用途。
PCT/CN2015/093104 2014-12-10 2015-10-28 缩醛取代的葡萄糖酰胺及制备方法及制备超分子凝胶的方法 WO2016091024A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201410764570.8A CN104478847B (zh) 2014-12-10 2014-12-10 缩醛取代的葡萄糖酰胺及制备方法及制备超分子凝胶的方法
CN201410764570.8 2014-12-10

Publications (1)

Publication Number Publication Date
WO2016091024A1 true WO2016091024A1 (zh) 2016-06-16

Family

ID=52753476

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/093104 WO2016091024A1 (zh) 2014-12-10 2015-10-28 缩醛取代的葡萄糖酰胺及制备方法及制备超分子凝胶的方法

Country Status (2)

Country Link
CN (1) CN104478847B (zh)
WO (1) WO2016091024A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114874832A (zh) * 2022-06-13 2022-08-09 中国科学院兰州化学物理研究所 一种凝胶-类金刚石碳膜复合润滑材料及其制备方法和在机械部件润滑中的应用

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104478847B (zh) * 2014-12-10 2016-08-24 天津大学 缩醛取代的葡萄糖酰胺及制备方法及制备超分子凝胶的方法
CN105175388B (zh) * 2015-10-15 2017-08-25 天津大学 N‑胺烷基取代葡萄糖酰胺及其制备方法与应用
CN105348253A (zh) * 2015-10-19 2016-02-24 江西科技师范大学 一种木糖醇单缩醛的酰胺类衍生物及其制备方法和用途
CN107226768B (zh) * 2017-05-19 2019-02-19 天津大学 作为航空航天燃料的凝胶推进剂及制备方法及用途
CN107188881A (zh) * 2017-06-11 2017-09-22 天津大学 缩醛取代葡萄糖酰胺及制备方法与用途
CN107502407A (zh) * 2017-07-26 2017-12-22 中国科学院兰州化学物理研究所 高温凝胶润滑剂组合物及其制备方法
CN107573319A (zh) * 2017-09-19 2018-01-12 天津大学 缩醛取代的葡萄糖酰油胺及制备方法及用途
CN109179572B (zh) * 2018-09-30 2021-05-18 浙江海洋大学 一种含葡萄糖基相选择性超分子的凝油剂及其制备方法和应用
CN110330476B (zh) * 2019-05-21 2021-12-07 天津大学 缩醛取代的葡萄糖酰肼衍生物及制备方法及用途
CN111672430B (zh) * 2020-06-04 2022-03-22 云南中烟工业有限责任公司 含烃基-酰胺基-糖基-芳亚烃基四段式糖基胶凝剂的可逆相变雾化液凝胶及其制备和应用
CN111659325B (zh) * 2020-06-04 2021-12-21 云南中烟工业有限责任公司 含糖基-芳基-酰胺基-烃基四段式糖基胶凝剂的可逆相变雾化液凝胶及其制备方法和应用
CN111939851A (zh) * 2020-09-09 2020-11-17 江南大学 一种n-烷基葡糖酰胺小分子醇凝胶及其制备方法和应用
CN112138611A (zh) * 2020-09-09 2020-12-29 江南大学 一种n-烷基葡萄糖胺小分子水凝胶及其制备方法和应用
CN113856572B (zh) * 2021-09-29 2022-06-24 河南省科学院化学研究所有限公司 一种超分子离子液体凝胶的制备方法及其在燃料油深度除硫中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1238769A (zh) * 1996-11-28 1999-12-15 新日本理化株式会社 糖化合物、胶凝剂、胶凝剂组合物、制备它们的方法和凝胶组合物
CN1460107A (zh) * 2000-09-01 2003-12-03 美利肯公司 氟化和烷基化糖醇衍生物及含有该物质的聚烯烃制品
CN104478847A (zh) * 2014-12-10 2015-04-01 天津大学 缩醛取代的葡萄糖酰胺及制备方法及制备超分子凝胶的方法
CN104496961A (zh) * 2014-12-10 2015-04-08 天津大学 缩醛取代的葡萄糖酸酯及制备方法及用途

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102073769B1 (ko) * 2012-03-08 2020-02-05 고쿠리쓰다이가쿠호진 규슈다이가쿠 신규 당유도체 겔화제

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1238769A (zh) * 1996-11-28 1999-12-15 新日本理化株式会社 糖化合物、胶凝剂、胶凝剂组合物、制备它们的方法和凝胶组合物
CN1460107A (zh) * 2000-09-01 2003-12-03 美利肯公司 氟化和烷基化糖醇衍生物及含有该物质的聚烯烃制品
CN104478847A (zh) * 2014-12-10 2015-04-01 天津大学 缩醛取代的葡萄糖酰胺及制备方法及制备超分子凝胶的方法
CN104496961A (zh) * 2014-12-10 2015-04-08 天津大学 缩醛取代的葡萄糖酸酯及制备方法及用途

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114874832A (zh) * 2022-06-13 2022-08-09 中国科学院兰州化学物理研究所 一种凝胶-类金刚石碳膜复合润滑材料及其制备方法和在机械部件润滑中的应用
CN114874832B (zh) * 2022-06-13 2023-05-26 中国科学院兰州化学物理研究所 一种凝胶-类金刚石碳膜复合润滑材料及其制备方法和在机械部件润滑中的应用

Also Published As

Publication number Publication date
CN104478847B (zh) 2016-08-24
CN104478847A (zh) 2015-04-01

Similar Documents

Publication Publication Date Title
WO2016091024A1 (zh) 缩醛取代的葡萄糖酰胺及制备方法及制备超分子凝胶的方法
Mondal et al. Phase selective organogel from an imine based gelator for use in oil spill recovery
CN105175388B (zh) N‑胺烷基取代葡萄糖酰胺及其制备方法与应用
Sukul et al. Removal of toxic dyes from aqueous medium using adenine based bicomponent hydrogel
JP5635035B2 (ja) キラルドーパント、それを用いた液晶混合物および液晶ディスプレイ
Jiao et al. Supramolecular gel and nanostructures of bolaform and trigonal cholesteryl derivatives with different aromatic spacers
Xue et al. New dimeric cholesteryl-based A (LS) 2 gelators with remarkable gelling abilities: Organogel formation at room temperature
He et al. Novel C3-symmetrical triphenylbenzene-based organogelators with different linkers between phenyl ring and alkyl chain
CN107188881A (zh) 缩醛取代葡萄糖酰胺及制备方法与用途
CN101851172B (zh) 一种碳纳米管/有机凝胶复合物及其制备方法
CN109336814B (zh) 一类含有4‐(烷基双环己基)取代的萘酰亚胺衍生物,其制备方法及应用
Jiao et al. Spacer effect on nanostructures and self-assembly in organogels via some bolaform cholesteryl imide derivatives with different spacers
CN102775325B (zh) 芘类对称盘状化合物及其制备方法
CN109836512A (zh) 一种新型β-CD双子表面活性剂为稠化剂的清洁压裂液
Feng et al. Poly (benzyl ether) dendrons without conventional gelation motifs as a new kind of effective organogelators
WO2010035427A1 (ja) 尿素化合物、尿素化合物の自己集合体及び自己集合体を含有するオルガノゲル並びにオルガノゲルの製造方法
US9744512B2 (en) Gelator and organogel
CN104496961B (zh) 缩醛取代的葡萄糖酸酯及制备方法及用途
CN101880219B (zh) 一种液晶化合物及其制备方法
CN108129354B (zh) 凝胶剂、凝胶组合物及凝胶制备方法
JP5535578B2 (ja) 不斉炭素原子と酸化還元反応を起こす部位と液晶性置換基とを有する化合物
CN109097028B (zh) 一类含4-苯乙炔基的酯类化合物及其制备方法和应用
WO2017005956A1 (es) Organogel basado en moléculas derivadas de 7,7'-diazaisoindigo
CN105348252A (zh) 一种木糖醇单缩醛的酯类衍生物及其制备方法和用途
Liu et al. Synthesis and gelation behaviors of five new dimeric cholesteryl derivatives

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15867677

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15867677

Country of ref document: EP

Kind code of ref document: A1