WO2016086344A1 - Method and apparatus for generating machining codes of workpieces from a paper engineering drawing - Google Patents

Method and apparatus for generating machining codes of workpieces from a paper engineering drawing Download PDF

Info

Publication number
WO2016086344A1
WO2016086344A1 PCT/CN2014/092709 CN2014092709W WO2016086344A1 WO 2016086344 A1 WO2016086344 A1 WO 2016086344A1 CN 2014092709 W CN2014092709 W CN 2014092709W WO 2016086344 A1 WO2016086344 A1 WO 2016086344A1
Authority
WO
WIPO (PCT)
Prior art keywords
workpieces
features
dimension
binary image
unit
Prior art date
Application number
PCT/CN2014/092709
Other languages
French (fr)
Inventor
Qian Wang
Shunjie Fan
Ming JIE
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to PCT/CN2014/092709 priority Critical patent/WO2016086344A1/en
Priority to CN201480083167.7A priority patent/CN107077516A/en
Priority to US15/527,048 priority patent/US10379528B2/en
Publication of WO2016086344A1 publication Critical patent/WO2016086344A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/42Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine
    • G05B19/4202Recording and playback systems, i.e. in which the programme is recorded from a cycle of operations, e.g. the cycle of operations being manually controlled, after which this record is played back on the same machine preparation of the programme medium using a drawing, a model
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4093Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by part programming, e.g. entry of geometrical information as taken from a technical drawing, combining this with machining and material information to obtain control information, named part programme, for the NC machine
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/18Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
    • G05B19/4097Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by using design data to control NC machines, e.g. CAD/CAM
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/35Nc in input of data, input till input file format
    • G05B2219/35216Program, generate nc program, code from cad data
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37572Camera, tv, vision
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]

Definitions

  • the present invention relates to computer numerical control (CNC) field, and in particular to a method and apparatus for generating machining codes of workpieces from a paper engineering drawing.
  • CNC computer numerical control
  • a paper engineering drawing is widely used by manufacturers who machines workpieces by means of computer numerical control.
  • a mechanist determines machining codes of the workpieces based on the paper engineer drawing. Then, the mechanist inputs the machining codes into a CNC machine, which automatically machines workpieces conforming to dimension and shape of the workpieces shown in the paper engineer drawing.
  • An aim of an embodiment of the present invention is to provide a technology for generating machining codes of workpieces from a paper engineering drawing directly without manual intervening.
  • An embodiment of an aspect of the present invention provides a method for generating machining codes of workpieces from a paper engineering drawing, the machining codes indicating the dimension and shape of the workpieces, the method comprising: processing the paper engineering drawing to be a binary image; extracting dimension features and shape features of the workpieces from the binary image; and generating the machining codes of the workpieces based on the extracted dimension features and shape features of the workpieces.
  • the step of processing the paper engineering drawing to be a binary image comprises: obtaining an RGB image of the paper engineering drawing; converting the RGB image to a gray level image; converting the gray level image to the binary image by comparing gray levels of pixels in the gray level image with a gray level threshold, and converting pixels with gray levels above the gray level threshold to pure black pixels while converting pixels with gray levels below the gray level threshold to pure white pixels.
  • the step of extracting dimension features and shape features of the workpieces from the binary image comprises: recognizing dimension features of the workpieces from the binary image; removing the recognized dimension features from the binary image; recognizing shape features of the workpieces from the remaining binary image with the recognized dimension features removed.
  • the step of extracting dimension features and shape features of the workpieces from the binary image further comprises: shrinking widths of lines in the remaining binary image with the recognized dimension features removed to a pixel width.
  • the shape features of the workpieces comprise line functions and endpoints of segments, wherein outline of a workpiece is divided into segments, and a line function of a segment is different from that of another segment next thereto.
  • the step of generating the machining codes of the workpieces based on the extracted dimension features and shape features of the workpieces comprises: interpreting the extracted dimension features and shape features of the workpieces; generating the machining codes of workpieces based on interpretation of the extracted dimension feature and shape features of the workpieces.
  • An embodiment of another aspect of the present invention provides an apparatus for generating machining codes of workpieces from a paper engineering drawing, the machining codes indicating the dimension and shape of the workpieces, the apparatus comprising: a processing unit configured to process the paper engineering drawing to be a binary image; an extracting unit configured to extract dimension features and shape features of the workpieces from the binary image; and a generating unit configured to generate the machining codes of the workpieces based on the extracted dimension features and shape features of the workpieces.
  • the processing unit comprises: an obtaining sub-unit configured to obtain an RGB image of the paper engineering drawing; a first converting sub-unit configured to convert the RGB image to a gray level image; a second converting sub-unit configured to convert the gray level image to the binary image by comparing gray levels of pixels in the gray level image with a gray level threshold, and converting pixels with gray levels above the gray level threshold to pure black pixels while converting pixels with gray levels below the gray level threshold to pure white pixels.
  • the extracting unit comprises: a first recognizing sub-unit configured to recognize dimension features of the workpieces from the binary image; a removing sub-unit configured to remove the recognized dimension features from the binary image; a second recognizing sub-unit configured to recognize shape features of the workpieces from the remaining binary image with the recognized dimension features removed.
  • the extracting unit further comprises: a shrinking sub-unit 223 configured to shrink widths of lines in the remaining binary image with the recognized dimension features removed to a pixel width.
  • the shape features of the workpieces comprise line functions and endpoints of segments, wherein outline of a workpiece is divided into segments, and a line function of a segment is different from that of another segment next thereto.
  • the generating unit comprises: an interpreting sub-unit configured to interpret the extracted dimension features and shape features of the workpieces; a generating sub-unit configured to generate the machining codes of workpieces based on interpretation of the extracted dimension feature and shape features of the workpieces.
  • An embodiment of another aspect of the present invention provides a device for generating machining codes of workpieces from a paper engineering drawing, comprising: a storage for storing executable instructions; a processor for performing operations in the above mentioned method for generating machining codes of workpieces from a paper engineering drawing according to the executable instructions stored in the storage.
  • An embodiment of another aspect of the present invention provides a machine readable medium with executable instructions stored thereon which, when executed, enables a machine to perform operations in the above mentioned method for generating machining codes of workpieces from a paper engineering drawing.
  • the paper engineering drawing is processed to be a binary image , and then the dimension features and shape features of the workpieces can be extracted from the binary image.
  • the machining codes of workpieces can be automatically generated from the paper engineering drawing.
  • efficiency of generating machining codes of workpieces from a paper engineering drawing is improved.
  • the paper engineering drawing is processed to be a binary image, thus solving the problem that a colorful image is hard to process during later procedures.
  • Fig. 1 illustrates a computer numerical control (CNC) system according to an embodiment of the present invention.
  • Fig. 2 is a flow chart of a method for generating machining codes of workpieces from a paper engineering drawing according to an embodiment of the present invention.
  • Fig. 3 is a detailed flow chart of the step of processing the paper engineering drawing to be a binary image according to an embodiment of the present invention.
  • Fig. 4 is a detailed flow chart of the step of extracting dimension features and shape features of the workpieces from the binary image according to an embodiment of the present invention.
  • Fig. 5 is a detailed flow chart of the step of extracting dimension features and shape features of the workpieces from the binary image according to another embodiment of the present invention.
  • Fig. 6 is a detailed flow chart of the step of generating the machining codes of the workpieces based on the extracted dimension features and shape features of the workpieces according to an embodiment of the present invention.
  • Fig. 7 is a block figure of an apparatus for generating machining codes of workpieces from a paper engineering drawing according to an embodiment of the present invention.
  • Fig. 8 is a detailed block figure of the pre-pressing unit according to an embodiment of the present invention.
  • Fig. 9 is a detailed block figure of the extracting unit according to an embodiment of the present invention.
  • Fig. 10 is a detailed block figure of the extracting unit according to another embodiment of the present invention.
  • Fig. 11 is a detailed block figure of the generating unit according to another embodiment of the present invention.
  • Fig. 12 is a structure figure of a device for generating machining codes of workpieces from a paper engineering drawing according to an embodiment of the present invention.
  • an embodiment of the present invention provides a method 1 for generating machining codes of workpieces from a paper engineering drawing.
  • the paper engineering drawing may be a paper drawing illustrating dimension, shape of workpieces and mutual relationship among the workpieces in a product or device, which is used for manufacture of the product or device.
  • Workpieces may be components in the product or device.
  • Machining codes refer to codes which represent the dimension and shape of workpieces, and upon being input to a CNC machine, cause the CNC machine to manufacture workpieces with such dimension and shape.
  • Fig. 1 illustrates a computer numerical control (CNC) system according to an embodiment of the present invention, which comprises a CNC machine 12 and a camera terminal 11 connected thereto.
  • CNC computer numerical control
  • the method 1 for generating machining codes of workpieces from a paper engineering drawing may be performed in the CNC machine 12.
  • the camera terminal 11 only takes a photo of the paper engineering drawing for use by the CNC machine 12 in performing the method 1 for generating machining codes of workpieces from a paper engineering drawing according to an embodiment of this invention.
  • the method 1 for generating machining codes of workpieces from a paper engineering drawing may be performed in camera terminal 11, which may be a cell phone or a computer with a camera, etc.
  • the camera terminal 11 takes a photo of the paper engineering drawing and performs the method 1 for generating machining codes of workpieces from a paper engineering drawing according to an embodiment of this invention.
  • the generated machining codes of workpieces are input to the CNC machine 12 for manufacturing the workpieces according to the machining codes.
  • step S1 the paper engineering drawing is processed to be a binary image.
  • Fig. 3 is a detailed flow chart of step 1 according to an embodiment of the present invention.
  • the RGB image (i.e. a photo) of the paper engineering drawing is obtained by a camera in the camera terminal 11.
  • the RGB image of the paper engineering drawing is obtained by an interface in the CNC machine 12 which interfaces with the camera terminal 11.
  • the RGB image is converted to a gray level image.
  • each pixel has an R color value, a G color value, and a B color value, and the pixel value thereof is indicated by (R, G, B) .
  • the gray level image is converted to the binary image by comparing gray levels of pixels in the gray level image with a gray level threshold, and converting pixels with gray levels above the gray level threshold to pure black pixels while converting pixels with gray levels below the gray level threshold to pure white pixels.
  • the gray level threshold can be generated by different threshold generation algorithms, e.g. the balanced histogram thresholding. Please refer to http: //en. wikipedia. org/wiki/Balanced_histogram_thresholding for the balanced histogram thresholding.
  • step S2 can be performed by ways other than that in Fig. 3. For example, it can be ruled that, if any of R color value, G color value and B color value of a pixel exceeds a certain threshold, the pixel is assumed as a pure black pixel, otherwise a pure white pixel.
  • the method in Fig. 3 can improve accuracy of generating machining codes of workpieces from a paper engineering drawing.
  • step S2 the dimension features and shape features of the workpieces are extracted from the binary image.
  • the shape features of the workpieces may be features about shape of each segment in the outline of a workpiece.
  • a line function of a segment in a pre-determined planar co-ordinate system is different from that of another segment next thereto in the pre-determined planar co-ordinate system.
  • aworkpiece comprises a long pole and a half-circle head connected to the long pole.
  • the outline of the long pole is a long rectangle which has 4 straight-line edges each of which can be expressed as a unique linear function expression.
  • the arc of the half-circle head can be expressed as a unique function expression.
  • the bottom of the half-circle head i.e. the diameter, can be expressed as a unique linear function expression. So, in this example, the segments comprise 4 edges of the long rectangle, the arc of the half-circle head, and the bottom of the half-circle head.
  • the line function of each segment is function expression of that segment in a pre-determined planar coordinate system.
  • the dimension features of a workpiece comprise dimension characters and dimension lines.
  • a dimension character may be a character indicating dimension of a segment in the workpiece, e.g. 0.6cm.
  • a dimension line may be an arrow line beside the dimension character, indicating which segment of the outline of the workpiece has the dimension indicated by the dimension character.
  • Fig. 4 is a detailed flow chart of step S2 according to an embodiment of the present invention.
  • OCR optical character recognition
  • US7454063 B1 discloses a method for automatically recognizing dimension characters from the electrical engineering drawing by means of a computer. Dimension lines can be recognized by means of OCR as well.
  • sub-step S22 the recognized dimension features are removed from the binary image.
  • the dimension characters and dimension lines are removed from the binary image together.
  • the dimension characters are removed from the binary image, and after the shape features of the workpieces are recognized in later step S34, the dimension lines are removed from the binary image.
  • step S24 shape features of the workpieces are recognized from the remaining binary image with the recognized dimension features removed.
  • the shape features of the workpieces comprise line functions and endpoints of segments. Endpoints of a segment are two points at the both ends of the segment, usually expressed as coordinates in that pre-determined planar coordinate system.
  • the method of recognizing a line function of a segment in a binary image includes e.g. Hough Transform. Refer to http: //en. wikipedia. org/wiki/Hough_transform.
  • the method of recognizing endpoints of a segment in a binary image includes e.g. a Corner Detection algorithm. Refer to http: //en. wikipedia. org/wiki/Corner_detection.
  • a line function and endpoints of a segment are used to define the segment, but in other embodiments, other features can be used to define the segment. For example, if the outline of a workpiece is composed of only straight lines, only the endpoints of the straight lines can be used to define the shape features of the workpiece, so the shape features of the workpiece only comprise endpoints of the segments.
  • the outline of a workpiece is composed of straight lines and curves with fixed radius of curvature
  • endpoints of the straight lines and curves and the radii of curvature of the curves are used to define the shape features of the workpiece, so the shape features of the workpieces comprise endpoints of the straight lines and curves and the radii of curvature of the curves.
  • a line function and endpoints of a segment is more general, and can improve accuracy of processing by accurately expressing local shapes of the outline of the workpiece.
  • Fig. 5 is a detailed flow chart of step S2 according to another embodiment of the present invention.
  • sub-step S23 of shrinking widths of lines in the remaining binary image with the recognized dimension features removed to a pixel width is added in Fig. 5.
  • Fig. 5 Please refer to Digital Image Processing, Third Edition, by Rafael C. Gonzalez and Richard E. Woods.
  • the benefit thereof is to improve accuracy of recognizing the shape features of a workpiece. Because all the widths of lines are shrinked to a pixel width, the line function of segments can be determined accurately.
  • step S3 the machining codes of the workpieces are generated based on the extracted dimension features and shape features of the workpieces.
  • Fig. 6 is a detailed block figure of step S3 according to an embodiment of the present invention.
  • sub-step S31 the extracted dimension features and shape features of the workpieces are interpreted.
  • the extracted dimension features and shape features of the workpieces are interpreted according to general rules for engineering drawings. For example, when two arcs each with an arrow outward and sandwiching a value are extracted, the value sandwiched by the two arcs is interpreted as an angle.
  • sub-step S32 the machining codes of workpieces are generated based on interpretation of the extracted dimension feature and shape features of the workpieces. This is a general function of a computer aid manufacture (CAM) software.
  • CAM computer aid manufacture
  • an apparatus 2 for generating machining codes of workpieces from a paper engineering drawing, the machining codes indicating dimension and shape of workpieces comprising a processing unit 21, an extracting unit 22 and a generating unit 23.
  • the processing unit 21 is configured to processthe paper engineering drawing to be a binary image.
  • the extracting unit 22 is configured to extract dimension features and shape features of the workpieces from the binary image.
  • the generating unit 23 is configured to generate the machining codes of the workpieces based on the extracted dimension features and shape features of the workpieces.
  • Each unit in the apparatus 2 can be realized by software, hardward (e.g. integrated circuit, FPGA, etc. ) or combination thereof.
  • the processing unit 21 comprises an obtaining sub-unit 211 configured to obtain an RGB image of the paper engineering drawing, a first converting sub-unit 212 configured to convert the RGB image to a gray level image, and a second converting sub-unit 213 configured to convert the gray level image to the binary image by comparing gray levels of pixels in the gray level image with a gray level threshold, and converting pixels with gray levels above the gray level threshold to pure black pixels while converting pixels with gray levels below the gray level threshold to pure white pixels.
  • the extracting unit 22 comprises a first recognizing sub-unit 221 configured to recognize dimension features of the workpieces from the binary image, a removing sub-unit 222 configured to remove the recognized dimension features from the binary image, and a second recognizing sub-unit 224 configured to recognize shape features of the workpieces from the remaining binary image with the recognized dimension features removed.
  • the extracting unit 22 further comprises a shrinking sub-unit 223 configured to shrink widths of lines in the remaining binary image with the recognized dimension features removed to a pixel width.
  • the shape features of the workpieces comprise line functions and endpoints of segments, wherein outline of a workpiece is divided into segments, and a line function of a segment is different from that of another segment next thereto.
  • the generating unit 23 comprises an interpreting sub-unit 231 configured to interpret the extracted dimension features and shape features of the workpieces, a generating sub-unit 232 configured to generate the machining codes of workpieces based on interpretation of the extracted dimension feature and shape features of the workpieces.
  • Fig. 12 illustrates a device 3 for generating machining codes of workpieces from a paper engineering drawing according to an embodiment of the present invention.
  • the device 3 for generating machining codes of workpieces from a paper engineering drawing is the camera terminal 11.
  • the device 3 for generating machining codes of workpieces from a paper engineering drawing is the CNC machine 12.
  • the device 3 for generating machining codes of workpieces from a paper engineering drawing may include a storage 31 for storing executable instructions, and a processor 32 for performing operations in the above method 1 for generating machining codes of workpieces from a paper engineering drawing according to the executable instructions stored in the storage 31.
  • an embodiment of the present invention provides a machine readable medium with executable instructions stored thereon which, when executed, enables a machine to perform operations in the above method 1 for generating machining codes of workpieces from a paper engineering drawing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Manufacturing & Machinery (AREA)
  • Human Computer Interaction (AREA)
  • Geometry (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Image Processing (AREA)
  • Architecture (AREA)
  • Software Systems (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Image Analysis (AREA)

Abstract

A method and apparatus for generating machining code of workpieces from a paper engineering drawing are provided. The method comprises: processing the paper engineering drawing to be a binary image (S1); extracting dimension features and shape features of the workpieces from the binary image (S2); and generating the machining codes of the workpieces based on the extracted dimension features and shape features of the workpieces (S3). The machining codes indicate the dimension and shape of the workpieces. Machining codes of workpieces are generated from a paper engineering drawing directly without manual involvement.

Description

Method and Apparatus for Generating Machining Codes of Workpieces from a Paper Engineering Drawing FIELD OF THE INVENTION
The present invention relates to computer numerical control (CNC) field, and in particular to a method and apparatus for generating machining codes of workpieces from a paper engineering drawing.
BACKGROUND OF THE INVENTION
A paper engineering drawing is widely used by manufacturers who machines workpieces by means of computer numerical control. Generally, a mechanist determines machining codes of the workpieces based on the paper engineer drawing. Then, the mechanist inputs the machining codes into a CNC machine, which automatically machines workpieces conforming to dimension and shape of the workpieces shown in the paper engineer drawing.
SUMMARY OF THE INVENTION
An aim of an embodiment of the present invention is to provide a technology for generating machining codes of workpieces from a paper engineering drawing directly without manual intervening.
An embodiment of an aspect of the present invention provides a method for generating machining codes of workpieces from a paper engineering drawing, the machining codes indicating the dimension and shape of the workpieces, the method comprising: processing the paper engineering drawing to be a binary image; extracting dimension features and shape features of the workpieces from the binary image; and generating the machining codes of the workpieces based on the extracted dimension features and shape features of the workpieces.
Optionally, the step of processing the paper engineering drawing to be a binary image comprises: obtaining an RGB image of the paper engineering drawing; converting the RGB image to a gray level image; converting the gray level image to the binary image by comparing gray levels of pixels in the gray level image with a gray level threshold, and converting pixels with gray levels above the gray level threshold to pure black pixels while converting pixels with gray levels below the gray level threshold to pure white pixels.
Optionally, the step of extracting dimension features and shape features of the workpieces from the binary image comprises: recognizing dimension features of the workpieces from the binary image; removing the recognized dimension features from the binary image; recognizing shape features of the workpieces from the remaining binary image with the recognized dimension features removed.
Optionally, the step of extracting dimension features and shape features of the workpieces from the binary image further comprises: shrinking widths of lines in the remaining binary image with the recognized dimension features removed to a pixel width.
Optionally, the shape features of the workpieces comprise line functions and endpoints of segments, wherein outline of a workpiece is divided into segments, and a line function of a segment is different from that of another segment next thereto.
Optionally, the step of generating the machining codes of the workpieces based on the extracted dimension features and shape features of the workpieces comprises: interpreting the extracted dimension features and shape features of the workpieces; generating the machining codes of workpieces based on  interpretation of the extracted dimension feature and shape features of the workpieces.
An embodiment of another aspect of the present invention provides an apparatus for generating machining codes of workpieces from a paper engineering drawing, the machining codes indicating the dimension and shape of the workpieces, the apparatus comprising: a processing unit configured to process the paper engineering drawing to be a binary image; an extracting unit configured to extract dimension features and shape features of the workpieces from the binary image; and a generating unit configured to generate the machining codes of the workpieces based on the extracted dimension features and shape features of the workpieces.
Optionally, the processing unit comprises: an obtaining sub-unit configured to obtain an RGB image of the paper engineering drawing; a first converting sub-unit configured to convert the RGB image to a gray level image; a second converting sub-unit configured to convert the gray level image to the binary image by comparing gray levels of pixels in the gray level image with a gray level threshold, and converting pixels with gray levels above the gray level threshold to pure black pixels while converting pixels with gray levels below the gray level threshold to pure white pixels.
Optionally, the extracting unit comprises: a first recognizing sub-unit configured to recognize dimension features of the workpieces from the binary image; a removing sub-unit configured to remove the recognized dimension features from the binary image; a second recognizing sub-unit configured to recognize shape features of the workpieces from the remaining binary image with the recognized dimension features removed.
Optionally, the extracting unit further comprises: a shrinking sub-unit 223 configured to shrink widths of lines in the remaining binary image with the recognized dimension features removed to a pixel width.
Optionally, the shape features of the workpieces comprise line functions and endpoints of segments, wherein outline of a workpiece is divided into segments, and a line function of a segment is different from that of another segment next thereto.
Optionally, the generating unit comprises: an interpreting sub-unit configured to interpret the extracted dimension features and shape features of the workpieces; a generating sub-unit configured to generate the machining codes of workpieces based on interpretation of the extracted dimension feature and shape features of the workpieces.
An embodiment of another aspect of the present invention provides a device for generating machining codes of workpieces from a paper engineering drawing, comprising: a storage for storing executable instructions; a processor for performing operations in the above mentioned method for generating machining codes of workpieces from a paper engineering drawing according to the executable instructions stored in the storage.
An embodiment of another aspect of the present invention provides a machine readable medium with executable instructions stored thereon which, when executed, enables a machine to perform operations in the above mentioned method for generating machining codes of workpieces from a paper engineering drawing.
In the embodiment of the present invention, the paper engineering  drawing is processed to be a binary image , and then the dimension features and shape features of the workpieces can be extracted from the binary image. By this means, the machining codes of workpieces can be automatically generated from the paper engineering drawing. As a result, it is not necessary for a mechanist to bear in mind all possible correspondences between the machining codes and the dimension features and shape features of the workpieces. Thus, efficiency of generating machining codes of workpieces from a paper engineering drawing is improved.
Further, in the embodiment of the present invention, the paper engineering drawing is processed to be a binary image, thus solving the problem that a colorful image is hard to process during later procedures.
BRIEF DESCRIPTION OF THE DRAWINGS
Other objectives, characteristics and advantages of the present invention are made more evident according to perusal of the following detailed description of exemplary embodiment (s) in conjunction with accompanying drawings, in which same or similar reference signs in accompanying drawings denote same or similar elements:
Fig. 1 illustrates a computer numerical control (CNC) system according to an embodiment of the present invention.
Fig. 2 is a flow chart of a method for generating machining codes of workpieces from a paper engineering drawing according to an embodiment of the present invention.
Fig. 3 is a detailed flow chart of the step of processing the paper engineering drawing to be a binary image according to an embodiment of the  present invention.
Fig. 4 is a detailed flow chart of the step of extracting dimension features and shape features of the workpieces from the binary image according to an embodiment of the present invention.
Fig. 5 is a detailed flow chart of the step of extracting dimension features and shape features of the workpieces from the binary image according to another embodiment of the present invention.
Fig. 6 is a detailed flow chart of the step of generating the machining codes of the workpieces based on the extracted dimension features and shape features of the workpieces according to an embodiment of the present invention.
Fig. 7 is a block figure of an apparatus for generating machining codes of workpieces from a paper engineering drawing according to an embodiment of the present invention.
Fig. 8 is a detailed block figure of the pre-pressing unit according to an embodiment of the present invention.
Fig. 9 is a detailed block figure of the extracting unit according to an embodiment of the present invention.
Fig. 10 is a detailed block figure of the extracting unit according to another embodiment of the present invention.
Fig. 11 is a detailed block figure of the generating unit according to another embodiment of the present invention.
Fig. 12 is a structure figure of a device for generating machining codes of workpieces from a paper engineering drawing according to an embodiment of the present invention.
The same or similar reference signs in accompanying drawings denote same or similar elements.
DETAILED DESCRIPTION OF THE INVENTION
In order to make the objects, technical solutions and advantages of the present invention more evident, detailed description of exemplary embodiment (s) in conjunction with accompanying drawings is provided here below.
Embodiments of the present invention are described in detail here below, wherein examples of the embodiments are illustrated in the drawings, in which same or similar reference signs throughout denote same or similar elements or elements have same or similar functions. It should be appreciated that the embodiments described below in conjunction with the drawings are illustrative and are provided for explaining the present invention only, thus shall not be interpreted as limits to the present invention.
Various embodiments or examples are provided here below to implement different structures of the present invention. To simplify disclosure of the present invention, descriptions of components and arrangements of specific examples are given below. Of course, they are illustrative only and are not intended to limit the present invention. Moreover, in the present invention, reference numbers and/or letters may be repeated in different embodiments. Such repetition is for purposes of simplicity and clarity, yet does not denote any relationship between respective embodiments and/or arrangements under discussion. Furthermore, the present  invention provides various examples for various processes and materials. However, it is obvious for a person of ordinary skill in the art that other processes and/or materials may be utilized alternatively. In addition, the following structure in which a first feature is “on/above” a second feature may include an embodiment in which the first feature and the second feature are formed to be in direct contact with each other, and may also include an embodiment in which another feature is formed between the first feature and the second feature such that the first and second features might not be in direct contact with each other. It is noteworthy that the components shown in the drawings are not necessarily drawn to scale. Description of conventional components, processing technologies and crafts are omitted herein in order not to limit the present invention unnecessarily.
As shown in Fig. 2, an embodiment of the present invention provides a method 1 for generating machining codes of workpieces from a paper engineering drawing.
The paper engineering drawing may be a paper drawing illustrating dimension, shape of workpieces and mutual relationship among the workpieces in a product or device, which is used for manufacture of the product or device. Workpieces may be components in the product or device. Machining codes refer to codes which represent the dimension and shape of workpieces, and upon being input to a CNC machine, cause the CNC machine to manufacture workpieces with such dimension and shape.
Fig. 1 illustrates a computer numerical control (CNC) system according to an embodiment of the present invention, which comprises a CNC machine 12 and a camera terminal 11 connected thereto.
The method 1 for generating machining codes of workpieces from a paper engineering drawing may be performed in the CNC machine 12. In such a case, the camera terminal 11 only takes a photo of the paper engineering drawing for use by the CNC machine 12 in performing the method 1 for generating machining codes of workpieces from a paper engineering drawing according to an embodiment of this invention.
Alternatively, the method 1 for generating machining codes of workpieces from a paper engineering drawing may be performed in camera terminal 11, which may be a cell phone or a computer with a camera, etc. The camera terminal 11 takes a photo of the paper engineering drawing and performs the method 1 for generating machining codes of workpieces from a paper engineering drawing according to an embodiment of this invention. The generated machining codes of workpieces are input to the CNC machine 12 for manufacturing the workpieces according to the machining codes.
In step S1, the paper engineering drawing is processed to be a binary image.
The binary image may be an image each pixel of which is a pure black pixel (R=G=B=maximum) or a pure white pixel (R=G=B=0) .
Fig. 3 is a detailed flow chart of step 1 according to an embodiment of the present invention.
In sub-step S11, an RGB image of the paper engineering drawing is obtained.
In case that the method 1 for generating machining codes of workpieces  from a paper engineering drawing is performed in the camera terminal 11, the RGB image (i.e. a photo) of the paper engineering drawing is obtained by a camera in the camera terminal 11. In case that the method 1 for generating machining codes of workpieces from a paper engineering drawing is performed in the CNC machine 12, the RGB image of the paper engineering drawing is obtained by an interface in the CNC machine 12 which interfaces with the camera terminal 11.
In sub-step S12, the RGB image is converted to a gray level image.
In the RGB image, each pixel has an R color value, a G color value, and a B color value, and the pixel value thereof is indicated by (R, G, B) . In the gray level image, each pixel thereof is indicated by (R’ , G’ , B’ ) , wherein R’ =G’ =B’ = (R+G+B) /3=0.333R+0.333G+0.333B. By this way, the RGB image can be converted to a gray level image.
In the sub-step S13, the gray level image is converted to the binary image by comparing gray levels of pixels in the gray level image with a gray level threshold, and converting pixels with gray levels above the gray level threshold to pure black pixels while converting pixels with gray levels below the gray level threshold to pure white pixels.
The gray level threshold can be generated by different threshold generation algorithms, e.g. the balanced histogram thresholding. Please refer to http: //en. wikipedia. org/wiki/Balanced_histogram_thresholding for the balanced histogram thresholding.
As the RGB image of the paper engineering drawing has been converted to the binary image, interference caused by colors of pixels are removed, and thus  the dimension features and shape features of the workpieces can be extracted well.
It is appreciated that, step S2 can be performed by ways other than that in Fig. 3. For example, it can be ruled that, if any of R color value, G color value and B color value of a pixel exceeds a certain threshold, the pixel is assumed as a pure black pixel, otherwise a pure white pixel. However, the method in Fig. 3 can improve accuracy of generating machining codes of workpieces from a paper engineering drawing.
In step S2, the dimension features and shape features of the workpieces are extracted from the binary image.
The shape features of the workpieces may be features about shape of each segment in the outline of a workpiece. A line function of a segment in a pre-determined planar co-ordinate system is different from that of another segment next thereto in the pre-determined planar co-ordinate system. For example, aworkpiece comprises a long pole and a half-circle head connected to the long pole. The outline of the long pole is a long rectangle which has 4 straight-line edges each of which can be expressed as a unique linear function expression. The arc of the half-circle head can be expressed as a unique function expression. The bottom of the half-circle head, i.e. the diameter, can be expressed as a unique linear function expression. So, in this example, the segments comprise 4 edges of the long rectangle, the arc of the half-circle head, and the bottom of the half-circle head. The line function of each segment is function expression of that segment in a pre-determined planar coordinate system.
The dimension features of a workpiece comprise dimension characters and dimension lines. A dimension character may be a character indicating  dimension of a segment in the workpiece, e.g. 0.6cm. A dimension line may be an arrow line beside the dimension character, indicating which segment of the outline of the workpiece has the dimension indicated by the dimension character.
Fig. 4 is a detailed flow chart of step S2 according to an embodiment of the present invention.
In sub-step S21, dimension features of the workpieces are recognized from the binary image.
For example, optical character recognition (OCR) is used to recognize the dimension characters in the binary image. For example, US7454063 B1 discloses a method for automatically recognizing dimension characters from the electrical engineering drawing by means of a computer. Dimension lines can be recognized by means of OCR as well.
In sub-step S22, the recognized dimension features are removed from the binary image.
In an embodiment, upon recognizing the dimension features, the dimension characters and dimension lines are removed from the binary image together. In another embodiment, after the dimension features are recognized, the dimension characters are removed from the binary image, and after the shape features of the workpieces are recognized in later step S34, the dimension lines are removed from the binary image.
In step S24, shape features of the workpieces are recognized from the remaining binary image with the recognized dimension features removed.
In an embodiment, the shape features of the workpieces comprise line functions and endpoints of segments. Endpoints of a segment are two points at the both ends of the segment, usually expressed as coordinates in that pre-determined planar coordinate system.
The method of recognizing a line function of a segment in a binary image includes e.g. Hough Transform. Refer to http: //en. wikipedia. org/wiki/Hough_transform.
The method of recognizing endpoints of a segment in a binary image includes e.g. a Corner Detection algorithm. Refer to http: //en. wikipedia. org/wiki/Corner_detection.
In the above embodiment, a line function and endpoints of a segment are used to define the segment, but in other embodiments, other features can be used to define the segment. For example, if the outline of a workpiece is composed of only straight lines, only the endpoints of the straight lines can be used to define the shape features of the workpiece, so the shape features of the workpiece only comprise endpoints of the segments. And, if the outline of a workpiece is composed of straight lines and curves with fixed radius of curvature, endpoints of the straight lines and curves and the radii of curvature of the curves are used to define the shape features of the workpiece, so the shape features of the workpieces comprise endpoints of the straight lines and curves and the radii of curvature of the curves. However, a line function and endpoints of a segment is more general, and can improve accuracy of processing by accurately expressing local shapes of the outline of the workpiece.
Fig. 5 is a detailed flow chart of step S2 according to another embodiment of the present invention.
As compared to Fig. 4, sub-step S23 of shrinking widths of lines in the remaining binary image with the recognized dimension features removed to a pixel width is added in Fig. 5. Please refer to Digital Image Processing, Third Edition, by Rafael C. Gonzalez and Richard E. Woods.
The benefit thereof is to improve accuracy of recognizing the shape features of a workpiece. Because all the widths of lines are shrinked to a pixel width, the line function of segments can be determined accurately.
In step S3, the machining codes of the workpieces are generated based on the extracted dimension features and shape features of the workpieces.
Fig. 6 is a detailed block figure of step S3 according to an embodiment of the present invention.
In sub-step S31, the extracted dimension features and shape features of the workpieces are interpreted.
The extracted dimension features and shape features of the workpieces are interpreted according to general rules for engineering drawings. For example, when two arcs each with an arrow outward and sandwiching a value are extracted, the value sandwiched by the two arcs is interpreted as an angle.
In sub-step S32, the machining codes of workpieces are generated based on interpretation of the extracted dimension feature and shape features of the workpieces. This is a general function of a computer aid manufacture (CAM) software.
As shown in Fig. 7, according to an embodiment of the present invention, there is provided an apparatus 2 for generating machining codes of workpieces from a paper engineering drawing, the machining codes indicating dimension and shape of workpieces, the apparatus 2 comprising a processing unit 21, an extracting unit 22 and a generating unit 23. The processing unit 21 is configured to processthe paper engineering drawing to be a binary image. The extracting unit 22 is configured to extract dimension features and shape features of the workpieces from the binary image. The generating unit 23 is configured to generate the machining codes of the workpieces based on the extracted dimension features and shape features of the workpieces. Each unit in the apparatus 2 can be realized by software, hardward (e.g. integrated circuit, FPGA, etc. ) or combination thereof.
Optionally, as shown in Fig. 8, the processing unit 21 comprises an obtaining sub-unit 211 configured to obtain an RGB image of the paper engineering drawing, a first converting sub-unit 212 configured to convert the RGB image to a gray level image, and a second converting sub-unit 213 configured to convert the gray level image to the binary image by comparing gray levels of pixels in the gray level image with a gray level threshold, and converting pixels with gray levels above the gray level threshold to pure black pixels while converting pixels with gray levels below the gray level threshold to pure white pixels.
Optionally, as shown in Fig. 9, the extracting unit 22 comprises a first recognizing sub-unit 221 configured to recognize dimension features of the workpieces from the binary image, a removing sub-unit 222 configured to remove the recognized dimension features from the binary image, and a second recognizing sub-unit 224 configured to recognize shape features of the workpieces from the remaining binary image with the recognized dimension  features removed.
Optionally, as shown in Fig. 10, the extracting unit 22 further comprises a shrinking sub-unit 223 configured to shrink widths of lines in the remaining binary image with the recognized dimension features removed to a pixel width.
Optionally, the shape features of the workpieces comprise line functions and endpoints of segments, wherein outline of a workpiece is divided into segments, and a line function of a segment is different from that of another segment next thereto.
Optionally, as shown in Fig. 11, the generating unit 23 comprises an interpreting sub-unit 231 configured to interpret the extracted dimension features and shape features of the workpieces, a generating sub-unit 232 configured to generate the machining codes of workpieces based on interpretation of the extracted dimension feature and shape features of the workpieces.
Fig. 12 illustrates a device 3 for generating machining codes of workpieces from a paper engineering drawing according to an embodiment of the present invention. In case that the method 1 for generating machining codes of workpieces from a paper engineering drawing is performed in the camera terminal 11, the device 3 for generating machining codes of workpieces from a paper engineering drawing is the camera terminal 11. In case that the method 1 for generating machining codes of workpieces from a paper engineering drawing is performed in the CNC machine 12, the device 3 for generating machining codes of workpieces from a paper engineering drawing is the CNC machine 12.
The device 3 for generating machining codes of workpieces from a paper engineering drawing may include a storage 31 for storing executable instructions,  and a processor 32 for performing operations in the above method 1 for generating machining codes of workpieces from a paper engineering drawing according to the executable instructions stored in the storage 31.
Further, an embodiment of the present invention provides a machine readable medium with executable instructions stored thereon which, when executed, enables a machine to perform operations in the above method 1 for generating machining codes of workpieces from a paper engineering drawing.
Although the exemplary embodiments and their advantages have been described at length herein, it should be understood that various alternations, substitutions and modifications may be made to the embodiments without departing from the spirit of the present invention and the scope as defined by the appended claims. As for other examples, it may be easily appreciated by a person of ordinary skill in the art that the order of the process steps may be changed without departing from the scope of the present invention.
In addition, the scope, to which the present invention is applied, is not limited to the process, mechanism, manufacture, material composition, means, methods and steps described in the specific embodiments in the specification. According to the disclosure of the present invention, a person of ordinary skill in the art should readily appreciate from the disclosure of the present invention that the process, mechanism, manufacture, material composition, means, methods and steps currently existing or to be developed in future, which perform substantially the same functions or achieve substantially the same as that in the corresponding embodiments described in the present invention, may be applied according to the present invention. Therefore, it is intended that the scope of the appended claims of the present invention includes these process, mechanism, manufacture, material composition, means, methods or steps.

Claims (14)

  1. A method (1) for generating machining codes of workpieces from a paper engineering drawing, the machining codes indicating the dimension and shape of the workpieces, the method (1) comprising:
    processing (S1) the paper engineering drawing to be a binary image;
    extracting (S2) the dimension features and shape features of the workpieces from the binary image; and
    generating (S3) the machining codes of the workpieces based on the extracted dimension features and shape features of the workpieces.
  2. The method of claim 1, wherein the step of processing (S1) the paper engineering drawing to be a binary image comprises:
    obtaining (S11) an RGB image of the paper engineering drawing;
    converting (S12) the RGB image to a gray level image;
    converting (S13) the gray level image to the binary image by comparing gray levels of pixels in the gray level image with a gray level threshold, and converting pixels with gray levels above the gray level threshold to pure black pixels while converting pixels with gray levels below the gray level threshold to pure white pixels.
  3. The method of claim 1, wherein the step of extracting (S2) dimension features and shape features of the workpieces from the binary image comprises:
    recognizing (S21) dimension features of the workpieces from the binary image;
    removing (S22) the recognized dimension features from the binary image;
    recognizing (S24) shape features of the workpieces from the remaining binary image with the recognized dimension features removed.
  4. The method of claim 3, wherein the step of extracting (S2) dimension features  and shape features of the workpieces from the binary image further comprises:
    shrinking (S23) widths of lines in the remaining binary image with the recognized dimension features removed to a pixel width.
  5. The method of claim 1, wherein the shape features of the workpieces comprise line functions and endpoints of segments, wherein outline of a workpiece is divided into segments, and a line function of a segment is different from that of another segment next thereto.
  6. The method of claim 1, wherein the step of generating (S3) the machining codes of the workpieces based on the extracted dimension features and shape features of the workpieces comprises:
    interpreting (S31) the extracted dimension features and shape features of the workpieces;
    generating (S32) the machining codes of workpieces based on interpretation of the extracted dimension feature and shape features of the workpieces.
  7. An apparatus (2) for generating machining codes of workpieces from a paper engineering drawing, the machining codes indicating the dimension and shape of the workpieces, the apparatus (2) comprising:
    a processing unit (21) configured to process the paper engineering drawing to be a binary image;
    an extracting unit (22) configured to extract the dimension features and shape features of the workpieces from the binary image; and
    a generating unit (23) configured to generate the machining codes of the workpieces based on the extracted dimension features and shape features of the workpieces.
  8. The apparatus of claim 7, wherein the processing unit (21) comprises:
    an obtaining sub-unit (211) configured to obtain an RGB image of the paper engineering drawing;
    a first converting sub-unit (212) configured to convert the RGB image to a gray level image;
    a second converting sub-unit (213) configured to convert the gray level image to the binary image by comparing gray levels of pixels in the gray level image with a gray level threshold, and converting pixels with gray levels above the gray level threshold to pure black pixels while converting pixels with gray levels below the gray level threshold to pure white pixels.
  9. The apparatus of claim 7, wherein the extracting unit (22) comprises:
    a first recognizing sub-unit (221) configured to recognize dimension features of the workpieces from the binary image;
    a removing sub-unit (222) configured to remove the recognized dimension features from the binary image;
    a second recognizing sub-unit (224) configured to recognize shape features of the workpieces from the remaining binary image with the recognized dimension features removed.
  10. The apparatus of claim 9, wherein the extracting unit (22) further comprises:
    a shrinking sub-unit (223) configured to shrink widths of lines in the remaining binary image with the recognized dimension features removed to a pixel width.
  11. The apparatus of claim 7, wherein the shape features of the workpieces comprise line functions and endpoints of segments, wherein outline of a workpiece is divided into segments, and a line function of a segment is different from that of another segment next thereto.
  12. The apparatus of claim 7, wherein the generating unit (23) comprises:
    an interpreting sub-unit (231) configured to interpret the extracted dimension features and shape features of the workpieces;
    a generating sub-unit (232) configured to generate the machining codes of workpieces based on interpretation of the extracted dimension feature and shape features of the workpieces.
  13. A device (3) for generating machining codes of workpieces from a paper engineering drawing, comprising:
    a storage (31) for storing executable instructions;
    a processor (32) for performing operations in any of claims 1-6 according to the executable instructions stored in the storage (31) .
  14. A machine readable medium with executable instructions stored thereon which, when executed, enables a machine to perform operations in any of claims 1-6.
PCT/CN2014/092709 2014-12-01 2014-12-01 Method and apparatus for generating machining codes of workpieces from a paper engineering drawing WO2016086344A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2014/092709 WO2016086344A1 (en) 2014-12-01 2014-12-01 Method and apparatus for generating machining codes of workpieces from a paper engineering drawing
CN201480083167.7A CN107077516A (en) 2014-12-01 2014-12-01 The method and apparatus that work pieces process code is produced from papery Graphing of Engineering
US15/527,048 US10379528B2 (en) 2014-12-01 2014-12-01 Method and apparatus for generating machining codes of workpieces from a paper engineering drawing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2014/092709 WO2016086344A1 (en) 2014-12-01 2014-12-01 Method and apparatus for generating machining codes of workpieces from a paper engineering drawing

Publications (1)

Publication Number Publication Date
WO2016086344A1 true WO2016086344A1 (en) 2016-06-09

Family

ID=56090798

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/092709 WO2016086344A1 (en) 2014-12-01 2014-12-01 Method and apparatus for generating machining codes of workpieces from a paper engineering drawing

Country Status (3)

Country Link
US (1) US10379528B2 (en)
CN (1) CN107077516A (en)
WO (1) WO2016086344A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106182308A (en) * 2016-08-20 2016-12-07 合肥志邦家居有限公司 A kind of big sleeve-board of kitchen cabinet cuts out device and processing method thereof
EP4105745A1 (en) 2021-06-14 2022-12-21 Siemens Aktiengesellschaft Generation and processing of encrypted program instructions using a numerical control device
EP4160457A1 (en) 2021-09-30 2023-04-05 Siemens Aktiengesellschaft Encoding of program instructions on a numerical control device

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10379528B2 (en) * 2014-12-01 2019-08-13 Siemens Aktiengesellschaft Method and apparatus for generating machining codes of workpieces from a paper engineering drawing
CN112748700A (en) * 2020-12-18 2021-05-04 深圳市显控科技股份有限公司 Numerical control code generation method and device, electronic equipment and storage medium
CN116068964B (en) * 2023-03-28 2023-06-06 中科航迈数控软件(深圳)有限公司 Automatic generation method of control instruction of numerical control machine tool and related equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1097878A (en) * 1994-05-24 1995-01-25 张乐益 Profile automatic programming method for electric spark line cutting machine and system thereof
CN1624688A (en) * 2003-12-05 2005-06-08 鸿富锦精密工业(深圳)有限公司 Processing code generating system and method
CN1862432A (en) * 2006-06-07 2006-11-15 东南大学 Control method of carbon fiber high-precise numerically controlled milling machine
CN102495584A (en) * 2011-11-24 2012-06-13 重庆大学 Method for directly generating numerical control machining code by using industrial CT (Computed Tomography) sequence image
CN103434136A (en) * 2013-08-22 2013-12-11 陈露霖 Method for copying inscription rubbing template by utilizing 3D printing

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4121284A (en) * 1972-09-11 1978-10-17 Hyatt Gilbert P Computerized system for operator interaction
US4181954A (en) * 1971-05-19 1980-01-01 Chevron Research Company Computer-aided graphics system including a computerized material control system and method of using same
US5832119C1 (en) * 1993-11-18 2002-03-05 Digimarc Corp Methods for controlling systems using control signals embedded in empirical data
US5932119A (en) * 1996-01-05 1999-08-03 Lazare Kaplan International, Inc. Laser marking system
US6311100B1 (en) * 1998-09-14 2001-10-30 Mass. Institute Of Technology Tool path generator for computer aided manufacturing
JP2001075624A (en) 1999-07-01 2001-03-23 Mori Seiki Co Ltd Tool path data generating device for nc machine tool and numerical controller equipped with the same device
AU2003234699A1 (en) * 2002-04-09 2003-10-27 The Escher Group, Ltd. System and method for authentication of a workpiece using three dimensional shape recovery
JP3689740B2 (en) * 2002-05-27 2005-08-31 国立大学法人広島大学 Image division processing method, image division processing device, real-time image processing method, real-time image processing device, and image processing integrated circuit
US7272608B2 (en) * 2002-11-27 2007-09-18 Zyvex Labs, Llc Isosurface extraction into splat hierarchy
US8319145B2 (en) * 2006-07-10 2012-11-27 Lazare Kaplan International, Inc. System and method for gemstone micro-inscription
DE102007016370A1 (en) * 2007-04-03 2008-10-09 Carl Zeiss Industrielle Messtechnik Gmbh Method and a measuring arrangement for generating three-dimensional images of test objects by means of invasive radiation
US8010328B2 (en) * 2009-05-19 2011-08-30 Mitsubishi Electric Research Laboratories, Inc. Method for simulating numerically controlled milling using adaptively sampled distance fields
US8265909B2 (en) * 2009-05-19 2012-09-11 Mitsubishi Electric Research Laboratories, Inc. Method for reconstructing a distance field of a swept volume at a sample point
US8935138B2 (en) * 2012-03-28 2015-01-13 Mitsubishi Electric Research Laboratories, Inc. Analyzing volume removed during machining simulation
EP2862030B1 (en) 2012-06-19 2022-04-27 Hexagon Technology Center GmbH Computer aided manufacturing (cam) integrated computer numerically controlled (cnc) control of machines
CN103761331B (en) * 2014-01-27 2017-01-18 刘玉芳 Processing system for drawing data and processing method thereof
CN103878421B (en) * 2014-03-03 2017-02-08 深圳众为兴技术股份有限公司 Numerical control system of bilateral internal tooth blade key and processing method of key
US10379528B2 (en) * 2014-12-01 2019-08-13 Siemens Aktiengesellschaft Method and apparatus for generating machining codes of workpieces from a paper engineering drawing

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1097878A (en) * 1994-05-24 1995-01-25 张乐益 Profile automatic programming method for electric spark line cutting machine and system thereof
CN1624688A (en) * 2003-12-05 2005-06-08 鸿富锦精密工业(深圳)有限公司 Processing code generating system and method
CN1862432A (en) * 2006-06-07 2006-11-15 东南大学 Control method of carbon fiber high-precise numerically controlled milling machine
CN102495584A (en) * 2011-11-24 2012-06-13 重庆大学 Method for directly generating numerical control machining code by using industrial CT (Computed Tomography) sequence image
CN103434136A (en) * 2013-08-22 2013-12-11 陈露霖 Method for copying inscription rubbing template by utilizing 3D printing

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106182308A (en) * 2016-08-20 2016-12-07 合肥志邦家居有限公司 A kind of big sleeve-board of kitchen cabinet cuts out device and processing method thereof
EP4105745A1 (en) 2021-06-14 2022-12-21 Siemens Aktiengesellschaft Generation and processing of encrypted program instructions using a numerical control device
WO2022263116A1 (en) 2021-06-14 2022-12-22 Siemens Aktiengesellschaft Generating and executing encrypted program instructions by means of a digital control device
EP4160457A1 (en) 2021-09-30 2023-04-05 Siemens Aktiengesellschaft Encoding of program instructions on a numerical control device
WO2023051980A1 (en) 2021-09-30 2023-04-06 Siemens Aktiengesellschaft Encryption of program instructions in a numerical control device

Also Published As

Publication number Publication date
US20170343997A1 (en) 2017-11-30
US10379528B2 (en) 2019-08-13
CN107077516A (en) 2017-08-18

Similar Documents

Publication Publication Date Title
WO2016086344A1 (en) Method and apparatus for generating machining codes of workpieces from a paper engineering drawing
US9811749B2 (en) Detecting a label from an image
CN111160352B (en) Workpiece metal surface character recognition method and system based on image segmentation
KR102208683B1 (en) Character recognition method and apparatus thereof
US20150371399A1 (en) Character Detection Apparatus and Method
CN105740872B (en) Image feature extraction method and device
US9384557B2 (en) Information processing device, image modification method, and computer program product
US9025853B2 (en) Method for determining markings in relief on the outer surface of the sidewall of a tyre
US20170372156A1 (en) Table data recovering in case of image distortion
WO2022134771A1 (en) Table processing method and apparatus, and electronic device and storage medium
US20190206088A1 (en) Method, apparatus, and computer readable medium for processing image
CN106504225A (en) A kind of recognition methodss of regular polygon and device
CN112801232A (en) Scanning identification method and system applied to prescription entry
US9704015B2 (en) Fingerprint image processing method and device
JP6609267B2 (en) Pattern recognition system and method using Gabor function
CN103530625A (en) Optical character recognition method based on digital image processing
CN107748897B (en) Large-size curved part profile quality detection method based on pattern recognition
CN111445402B (en) Image denoising method and device
CN108205641B (en) Gesture image processing method and device
JP2016038821A (en) Image processing apparatus
KR101048399B1 (en) Character detection method and apparatus
US10572751B2 (en) Conversion of mechanical markings on a hardcopy document into machine-encoded annotations
WO2015098810A1 (en) Image processing device and specific graphic detection method
CN107909563B (en) Template-based rapid Hough transformation straight line detection method
KR101853468B1 (en) Complexity Reduction Method of SURF algorithm based on Frame Difference in the Mobile GPU environment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907202

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15527048

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907202

Country of ref document: EP

Kind code of ref document: A1