WO2016085554A2 - Spoofing detection and anti-jam mitigation for gps antennas - Google Patents

Spoofing detection and anti-jam mitigation for gps antennas Download PDF

Info

Publication number
WO2016085554A2
WO2016085554A2 PCT/US2015/048708 US2015048708W WO2016085554A2 WO 2016085554 A2 WO2016085554 A2 WO 2016085554A2 US 2015048708 W US2015048708 W US 2015048708W WO 2016085554 A2 WO2016085554 A2 WO 2016085554A2
Authority
WO
WIPO (PCT)
Prior art keywords
hybrid
output
combiner
input
signal
Prior art date
Application number
PCT/US2015/048708
Other languages
French (fr)
Other versions
WO2016085554A3 (en
Inventor
Emily McMilin
David S. De Lorenzo
Per K. Enge
Dennis M. AKOS
Original Assignee
The Board Of Trustees Of The Leland Stanford Junior University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by The Board Of Trustees Of The Leland Stanford Junior University filed Critical The Board Of Trustees Of The Leland Stanford Junior University
Priority to US15/507,860 priority Critical patent/US10690776B2/en
Publication of WO2016085554A2 publication Critical patent/WO2016085554A2/en
Publication of WO2016085554A3 publication Critical patent/WO2016085554A3/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/21Interference related issues ; Issues related to cross-correlation, spoofing or other methods of denial of service
    • G01S19/215Interference related issues ; Issues related to cross-correlation, spoofing or other methods of denial of service issues related to spoofing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/21Interference related issues ; Issues related to cross-correlation, spoofing or other methods of denial of service
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/01Satellite radio beacon positioning systems transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/13Receivers
    • G01S19/35Constructional details or hardware or software details of the signal processing chain
    • G01S19/36Constructional details or hardware or software details of the signal processing chain relating to the receiver frond end
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/20Countermeasures against jamming
    • H04K3/28Countermeasures against jamming with jamming and anti-jamming mechanisms both included in a same device or system, e.g. wherein anti-jamming includes prevention of undesired self-jamming resulting from jamming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/80Jamming or countermeasure characterized by its function
    • H04K3/90Jamming or countermeasure characterized by its function related to allowing or preventing navigation or positioning, e.g. GPS
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K2203/00Jamming of communication; Countermeasures
    • H04K2203/10Jamming or countermeasure used for a particular application
    • H04K2203/22Jamming or countermeasure used for a particular application for communication related to vehicles
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K2203/00Jamming of communication; Countermeasures
    • H04K2203/30Jamming or countermeasure characterized by the infrastructure components
    • H04K2203/32Jamming or countermeasure characterized by the infrastructure components including a particular configuration of antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04KSECRET COMMUNICATION; JAMMING OF COMMUNICATION
    • H04K3/00Jamming of communication; Counter-measures
    • H04K3/20Countermeasures against jamming
    • H04K3/22Countermeasures against jamming including jamming detection and monitoring
    • H04K3/224Countermeasures against jamming including jamming detection and monitoring with countermeasures at transmission and/or reception of the jammed signal, e.g. stopping operation of transmitter or receiver, nulling or enhancing transmitted power in direction of or at frequency of jammer
    • H04K3/228Elimination in the received signal of jamming or of data corrupted by jamming

Definitions

  • the subject matter described herein relates to navigation systems including global navigation systems and/or the global positioning system.
  • GPS global positioning system
  • the subject matter disclosed herein provides methods and apparatus related to detecting whether a signal at an antenna, such as a GPS antenna and/or the like, is a spoofing signal and/or steering a null to enable mitigating the effects of a jamming or other unwanted signal.
  • an apparatus comprising an antenna configured to receive a signal from a global navigation satellite system, wherein the antenna includes a first feed and a second feed; a hybrid coupler including a first hybrid input, a second hybrid input, a first hybrid output, a second hybrid output, wherein the first hybrid input is coupled to the first feed, the second hybrid input is coupled to the second feed, and wherein the first hybrid output is shifted in phase by 90 degrees relative to the second hybrid output; a variable phase shifter including a shifter input and a shifter output, wherein the shifter input is coupled to the first hybrid output, wherein variable phase shifter is configured to induce an additional phase shift; and a combiner including a first combiner input, a second combiner input, and a combiner output, wherein the first combiner input is coupled to the shifter output, and the second combiner input is coupled to the second hybrid output, and wherein the combiner output represents a combined right hand circularly polarized signal and left hand circularly polarized
  • the antenna comprises a GPS antenna.
  • the hybrid coupler comprises a 90 degree hybrid coupler.
  • the combiner comprises a power combiner, such as a Wilkinson combiner.
  • the controller circuitry is configured to change an operating mode of the apparatus from a normal mode for receiving signals transmitted by a GPS satellite to at least a second mode to detect a spoof signal.
  • the detection circuitry may be configured to detect one or more of the following: a magnitude of the right hand circularly polarized signal, a C/N 0 ripple, a maximum C/N 0 , a minimum C/N 0 , a phase offset of the maximum C/N 0> and/or a phase offset of the minimum C/N 0 .
  • FIG. 1A depicts an example of a GPS antenna system, in accordance with some example embodiments
  • FIG IB depicts an example process for the GPS antenna system, in accordance with some example embodiments.
  • FIG. 2 depicts an example of a GPS patch antenna, in accordance with some example embodiments;
  • FIG. 3 depicts example of antenna patterns, in accordance with some example embodiments;
  • FIG. 4 depicts an example plot of spoof signal, in accordance with some example embodiments.
  • FIG. 5 plots carrier-to-noise density, C/N 0 , for normal mode operation and spoof detection mode operation for a GPS antenna system, in accordance with some example embodiments;
  • FIG. 6 plots carrier-to-noise density, C/N 0 , for normal mode operation and anti-jam mode operation for a GPS antenna system, in accordance with some example embodiments.
  • FIG. 7 plots carrier-to-noise density, C/N 0 , for below the horizon signals, in accordance with some example embodiments.
  • the subject matter disclosed herein relates to a global positioning system (GPS) antenna system configured to enable the detection of a spoofing signal, such as an unwanted signal meant to interfere with (for example, mislead), a GPS receiver coupled to the GPS antenna system, while avoiding detection.
  • GPS global positioning system
  • the subject matter disclosed herein relates to a GPS antenna system configured to enable steering a null to attenuate a signal, such as a jamming signal or other type of unwanted or interfering signal.
  • a signal such as a jamming signal or other type of unwanted or interfering signal.
  • some of the examples disclosed herein refer to GPS, other types of location-based systems including global navigation satellite systems may be used as well.
  • a GPS antenna may receive signals and then provide the received signals to a GPS receiver to enable the GPS receiver to decode and thus generate location information.
  • a vehicle such as an aircraft, an autonomous car, a drone, and/or any other vehicle, may have a GPS antenna mounted at a location that is in view of heavens where GPS satellites are located.
  • the aircraft's GPS antenna may receive the GPS signals emanated from the satellite and provide the received signals to a GPS receiver, which generates location information to enable aircraft navigation, for example.
  • a transmitter may transmit a spoofing signal to intentionally or unintentionally interfere with or jam the GPS receiver. Unlike genuine GPS satellite signals, the spoofing signals may be transmitted by a transmitter located at or below the horizon, such as at ground level.
  • a GPS antenna system that enables at least the detection of a spoofing signal.
  • the GPS antenna system may process the received GPS signals in order to detect whether the received GPS signal is an actual GPS signal received from for example a GPS satellite or a spoof signal received from for example a below-the- horizon, or terrestrial, transmitter.
  • this detection may be performed by detection circuitry is configured detect one or more of the following features in a combined right hand circularly polarized (RHCP) and left hand circularly polarized (LHCP) signal: the RHCP signal magnitude relative to the LHCP signal magnitude, a C/No ripple, minimum and maximum phase offset, maximum and minimum C/N 0 , and/or other measures or statistics obtained from the combined RHCP and LHCP signal.
  • RHCP right hand circularly polarized
  • LHCP left hand circularly polarized
  • there may be provided a GPS antenna system that enables at least the steering of a null towards an unwanted signal (for example a jamming signal or a spoofing signal) to attenuate the unwanted signal.
  • the GPS antenna system in accordance with some example embodiments, may process the received GPS signals and steer a null in the direction of the spoof or jamming signal received from a below-the-horizon, or terrestrial, transmitter.
  • a GPS antenna system may include a normal mode as well as a spoof detection mode and/or an anti-jam mode (in which a null is steered in the direction of a signal, such as the jamming or spoofing signal).
  • the GPS antenna system may be configured such that it provides GPS signals received from a GPS satellite to a GPS receiver.
  • FIG. 1A depicts an example of a GPS antenna system 100, in accordance with some example embodiments.
  • the GPS antenna system 100 may include a single GPS antenna 105 coupled to processing circuitry including amplifiers, such as low noise amplifiers 107A-B coupled to a 90 degree hybrid coupler 110; a switch 120 for selecting between modes; a termination 125 to terminate the LHCP signal while in normal mode; a variable phase shifter 150 to further vary the phase of the RHCP signal, when in a spoof mode or an anti-jam mode; a power combiner 155 (labeled Wilkinson combiner) to combine the RHCP 112B and LHCP signals, when in a spoof mode or an anti-jam mode; and/or a switch 140 to switch between modes.
  • amplifiers such as low noise amplifiers 107A-B coupled to a 90 degree hybrid coupler 110
  • a switch 120 for selecting between modes
  • a termination 125 to terminate the LHCP signal while in normal mode
  • a variable phase shifter 150 to further vary the phase of the RHCP signal, when in a spoof mode or an anti-jam
  • system 100 may include, or be coupled to, a controller 195, a GPS radio 190, and/or a bias T 142.
  • the GPS radio receiver 190 may include detection circuitry 197 configured to detect whether the received signal is likely a genuine GPS signal (which would be received from the heavens where GPS satellites are located) or a jamming/spoofing (which may be located at or below the horizon).
  • FIG. 1A depicts detection circuitry located at the GPS receiver 190, it may be located in other locations as well.
  • the detection circuitry may be configured to process the combined RHCP and LHCP signal provided by combiner 155 to perform detection as disclosed herein.
  • the detection circuitry 197 may compare the magnitudes of the RHCP signal and LHCP signal to determine whether the received signal is likely a genuine GPS signal or a spoofing signal.
  • GPS signals received from a GPS satellite may be primarily RHCP as described further below.
  • the C/N 0 ripple may be indicative of whether the received signal is likely a genuine GPS signal or a spoofing signal.
  • the change of state into spoof detection mode may be triggered according to a deterministic schedule and may thus last for a certain time, such as a predetermined time period.
  • the spoof signal may be implemented to evade detection, so there might not be a readily observable trigger.
  • the spoof mode may include a preemptive scan for the presence of spoof signals in accordance with for example a predetermined schedule.
  • FIG. IB depicts an example process for the multimode GPS antenna system, in accordance with some example embodiments.
  • the antenna system may be in a normal mode at 170, in which the switches 120 couple the hybrid coupler output directly to the GPS radio receiver as noted above. If the AGC inherent in the GPS receiver (for example, as determined by detection circuitry 197) reports an decrease in the AGC 172, then the antenna system may then enter anti-jam mode 174, in which the switches 120 couple the hybrid coupler output to the variable shifter and combiner as noted. At 176, the variable phase shifter 150 may be adjusted until the AGC returns to a baseline value 178 or reaches a local minimum 180.
  • the antenna system may delay for a certain time (for example, 2 seconds although other times may be used) before checking again to see if AGC has returned to a baseline value or a minimum value. If a baseline AGC value has been achieved, then it is likely that the jamming signal is no longer affecting the antenna system at all, in which case a return to normal state 170 occurs.
  • the antenna system may periodically conducts a spoof detection test after a given amount of time has passed 184 (for example, 60 seconds, although other times may be used as well). Alternatively or additionally, the antenna system may constantly conduct spoof detection, in which case the time may be set to 0 delay (or never conduct spoof detection, in which case the delay is very large). If a certain time period elapses without a spoof detection test, we then enter spoof detection mode 186, in which the switches in FIG. 1A 120 will be configured to couple the hybrid output to the variable phase shifter and combiner as noted. As such, the variable phase shifter 150 will be cycled, at 188, through a full 360 degree rotation of phase shifter values.
  • the duration of the cycle may be for example 5 seconds, and one to two cycles may be required. If a spoofer is detected 190 (as noted below), then an alternative state may be triggered. In some instances, the phase shift values may be slowly adjusted while detecting if spoofer is still present (or has been nulled by the phase shifter).
  • the GPS antenna 105 may be implemented in a variety of ways.
  • GPS antenna 105 may include an x-axis feed and a y-axis feed.
  • a GPS patch antenna may be used. This antenna may be in accordance with ARINC 743 form-factor constraints.
  • An example of the GPS patch antenna is shown in FIG. 2.
  • the GPS patch antenna is a 40mm by 40mm substrate with a 30mm by 30mm square copper patch on top, and the substrate, at 1.28mm thick, is a single layer of Rogers RO3010 material that has a dielectric constant of 10.2, although other dimensions and substrates may be used as well.
  • the high dielectric constant permits a relatively small form-factor half wavelength resonant antenna.
  • the GPS patch antenna may include two perpendicular coaxial feeds.
  • a coordinate system may be selected such that one of the feeds can be referred to as an x- axis feed and the other the y-axis feed, as shown in the FIG. 2.
  • the GPS antenna may be configured to be mounted on a large conductive body, such as the fuselage of an airplane, and/or any other vehicle.
  • Signals obtained from a GPS satellite may be right hand circularly polarized (RHCP), and arrive in the upper hemisphere of a standard receive GPS antenna 105.
  • RHCP right hand circularly polarized
  • GPS receive antennas 105 may be configured for sensitivity to RHCP signals in the upper hemisphere.
  • the fuselage may serve as a ground plane. And, this ground plane may enable the antenna system 100 to resolve two phase coherent components from a single incident waveform including the signals of interest.
  • GPS antennas may also have some sensitivity to left hand circularly polarized (LHCP) signals generated to do multi-path, ground-plane effects, and/or the like.
  • LHCP left hand circularly polarized
  • the total sensitivity of the GPS antenna 105 is the sum of the RHCP and LHCP sensitivities.
  • the GPS antenna 105 may be designed to optimize, as noted, cross- polarization discrimination, XPD, in the upper hemisphere (where the GPS RHCP signals are transmitted) as the presence of any upper hemispheric LHCP sensitivity proportionately reduces the antenna's sensitivity to the satellite's RHCP signals.
  • XPD cross- polarization discrimination
  • FIG. 3 depicts an example of a plot of the RHCP gain of antenna 105.
  • the constructive interference radiation patterns are shown, while on the left hand side, the destructive interference radiation patterns.
  • the traces in these plots show two perpendicular 2-D cuts of a single 3-D radiation gain pattern.
  • the solid lines represent a static, baseline 3-D radiation pattern
  • the dashed lines represent the dynamic 3-D radiation pattern that arises when a null has been steered, in accordance with some example embodiments, along the 90 degree azimuthal plane.
  • the dashed lines are referred to as dynamic in the sense that the values may change based on the values of the variable phase shifter. Patterns may be derived from the same simulated data of a standard form-factor GPS antenna on an 800 mm diameter by 1200 mm length cylindrical ground plane, although other patterns may be realized in other ways as well.
  • nulls are relatively deep and over a relatively wide range of elevation angles (comparable to, for example, null depths that could be expected from much larger multi-antenna array systems).
  • nulls will arise in both the +90 and the -90 degree azimuthal angles.
  • Electromagnetic waves can propagate through both free space, such as the space between the GPS satellites and antenna 105, and along conductive structures, such as the coaxial cables that deliver the electromagnetic wave from the antenna 105 to receiver 190.
  • the waves that travel from the GPS satellites to antenna 105 may take the form of transverse electromagnetic plane waves.
  • the electromagnetic plane waves may be RHCP.
  • An RHCP wave can be decomposed into two orthogonal electric field components (for example, an x-axis field and a y-axis field). These two electric field components are not only orthogonal in space, but also in time, so the x-axis field lags the y-axis field by 90 degrees.
  • the two orthogonal electric field components may excite both feeds on the antenna, with a portion of the wave energy lagging by 90 degrees in time.
  • the RHCP wave from a GPS satellite may be directly incident on a GPS antenna mounted on the heavenly facing surface of a vehicle, such as an aircraft.
  • the electromagnetic wave may induce surface currents along the ground plane.
  • a signal that is at or below the horizon of the vehicle may be directly incident on the GPS antenna's ground plane.
  • some of these surface currents may travel along the body of the ground plane until they reach the antenna 105 where they will induce a potential difference between the ground plane and the conductive patch of the antenna. In this case, there may be no 90 degrees time shift between any energy that may excite the two feeds of antenna 105.
  • the energy field may thus be present at both antenna feeds, x and y, at the same time, without the time delay characteristic of circularly polarized fields.
  • the electric field induced by a surface current is electrically similar to that induced by a vertically polarized (VP) electromagnetic plane wave, so herein these signals are referred to as vertically polarized, VP, signals.
  • a signal is vertically polarized, it is unlikely that the signal originated from a GPS satellite (although with some low elevation GPS satellites, the signal waveforms may appear to be largely VP to a patch antenna).
  • antenna 105 is mounted on top of a large ground plane (such as an aircraft, for example)
  • any signals that reach the antenna due to the propagation of surface currents may do so because a direct path to the antenna is blocked by the ground plane.
  • these signals may thus originate from beneath the horizon of the antenna 105.
  • signals having VP fields may generally be considered to originate from elevation angles below the horizon of antenna 105.
  • Detection circuitry 197 may be used to detect the relative presence of the VP signals.
  • a VP signal may be decomposed into an RHCP signal and a LHCP signal, with both signals having substantially equal magnitude and phase coherency.
  • a standard GPS antenna may be configured to provide the LHCP signal in addition to the RHCP signal.
  • This VP signal may have an XPD ratio of about OdB as the RHCP and LHCP components, in the case of VP signals, may have about the same magnitude.
  • Detection circuitry 197 may be used to detect this ratio.
  • the RHCP signal and the LHCP signal may be phase coherent components of the incident, received signal waveform, and may have similar magnitude but shifted in phase.
  • the relative phase shift between these two signals may be a function of azimuthal angle from which the original waveform originated.
  • Detection circuitry 197 may be used to detect the azimuthal angle or phase.
  • a null may be steered toward that azimuthal angle from which the waveform originated.
  • circuit 100 may, in accordance with some example embodiments, induce an additional phase shift. This induced phase shift when added to the relative phase shift yields a 180 degree phase difference between the RHCP and LHCP signals.
  • Circuit 100 may introduce a relative phase shift ⁇ to steer a null toward ⁇ in accordance with the following:
  • Equation 2 2( ⁇ - ⁇ 0 )+90° Equation 2, wherein ⁇ 0 is an azimuthal angle of the x-axis feed (simply to establish a relative coordinate system), ⁇ is the desired azimuthal angle for null.
  • the relative phase shift ⁇ has twice the periodicity of ⁇ . Referring to again to FIG. 3, the symmetry caused a null to appear simultaneously at both the +90 degree and the -90 degree azimuthal angles. Additionally, the fixed term in Equation 2 is equal to 90° to compensate for the additional 90 degrees introduced by the 90 degree hybrid coupler.
  • the shifted versions of the RHCP and LHCP signals may be combined to obtain a destructive interference signal. In this way, the null gets steered in azimuth.
  • the nulls and beams may be fixed to the lower hemisphere, when the received RHCP and LHCP are similar in magnitude (or have an XPD ratio of about OdB). In contrast, most GPS antennas have XPD ratios exceeding 13dB in the majority of the upper hemisphere. And, the RHCP gain in the upper hemisphere is generally at least 20 times stronger than the LHCP gain. As such, the greatest null/beam achieved in upper hemisphere may only cause about 5% reduction/increase in gain.
  • an apparent ripple in carrier-to-noise density, C/N 0 may arise from periodic combinations of constructive and destructive interference described above.
  • This ripple (which may be detected by detection circuitry 197) in dB-Hz for the n th satellite may be calculated as follows:
  • Equation 3 Equation 3, wherein ( ⁇ , ⁇ ) are the elevation and azimuth angles of the n th satellite being tracked and the antenna gain, g, and cross polarization ratio, XPD, are shown in lower case to indicate that we are specifying the linear representation of the term, instead of its dB representation (as is done otherwise herein).
  • Detection circuitry 197 may be used to detect the depth or intensity of the ripples as an indicator that the signal is a spoof signal.
  • an infinitely deep null may be steered towards an azimuthal direction in the lower hemisphere where the XPD ratio equals OdB.
  • each of the feeds may be coupled to an input of an amplifier, such as low noise amplifiers 107A-B.
  • the output of the low noise amplifier 107A may be coupled to an input port of a 90 degree coupler 110
  • the output of the low noise amplifier 107B may be coupled to an input port of a 90 degree coupler 110.
  • the 90 degree hybrid coupler introduces a 90 degree phase shift to the x-axis input signal 11 IB or the y-axis signal 111A.
  • the output signal 112A corresponds to a left hand circular polarized (LHCP) signal
  • output signal 112B corresponds to a right hand circular polarized (RHCP) signal.
  • LHCP left hand circular polarized
  • RHCP right hand circular polarized
  • Power combiner 155 combines the RHCP output signal 112B (which has been shifted in phase by variable phase shifter 150) with the LHCP output signal 112A.
  • the variable phase shifter 150 may vary the phase of the right hand circular polarized signal output 112B provided by the 90 degree hybrid coupler 110. The amount of phase variance may be under the control of controller 195.
  • the phase shifter may not cycle through all 360 degrees of phase shift values at a speed that approaches the C/N 0 integration period of the receiver. Many receivers use a C/N 0 integration period that equal approximately 400 millisecond (ms) for example. Additionally, the phase shifter may not be configured to cycle too slowly, such that a detection period takes a relatively long period of time. For example, an ideal time period (through which the phase shifter may cycle through all 360 degrees) may be about 5 seconds. Two to four periods of full 360 degree rotations may be required, in some implementations.
  • the controller 195 may control switch 140, such that the combiner 155 output is coupled to the GPS radio (via for example bias T 142).
  • lines 160A-E may be used to provide control and/or power to one or more components of system 100.
  • the circuit 100 When the controller 195 configures the switches for a normal mode, the circuit 100 is configured to provide a normal signal path from the GPS antenna 105 to the GPS receiver 190. As noted, for a genuine GPS signal received at the GPS antenna, the magnitude of the RHCP at 112B is relatively much greater than the magnitude of the LHCP signal at 112A. As such, when system 100 is in a normal mode, the switch 120 couples the RHCP signal 112B to the GPS receiver 190 via for example switch 140, a bias T 142 for example. In the example of FIG. 1A, the switch 120 and 140 is under the control of controller 195 to provide the switching needed for the normal mode.
  • the bias T may be used to provide a bias current to power components, such as the LNAs and the like or may be integrated into the GPS radio receiver 190.
  • the system 100 couples the RHCP signal to the GPS radio receiver for further processing.
  • the LHCP signal at 112 A may be much weaker than the RHCP signal, so it may be terminated into for example a 50 Ohm termination 125.
  • the switch 120 couples the phase shifter RHCP signal output 112B to a variable phase shifter 150 and a combiner 155, and this switch 120 couples the phase shifter LHCP output signal 112A to the combiner 155, which combines, as noted, the LHCP and RHCP signals before being provided to the GPS receiver 190.
  • variable phase shifter 150 in spoof detection mode (or anti-jam mode), provides additional phase shifting of the RHCP signal component to a certain, so-called "ideal" ⁇ value, such that the RHCP signal is 180 degrees out of phase with the LHCP one. After this additional ⁇ phase shift that provides the 180 phase difference, when the RHCP and LHCP signals are combined at combiner 155, a null is generated (for example, steered) in a desired ⁇ direction.
  • variable phase shifter 150 may be controlled in a variety of ways. However, in some implementations, the control may be integrated with the GPS receiver 190, in which case a power minimization protocol running on the receiver in the digital domain may be implemented. This protocol can adapt a DC voltage control signal that is coupled onto the inner conductor of the RF coaxial cable, in order to establish an optimal phase shift.
  • the AGC may be one optimal, low complexity and backward compatible mechanism for implementing the power minimization algorithm.
  • Full receiver integration may include a firmware upgrade that links the output of the AGC to the voltage signal that controls the phase shifter in the antenna, with a feedback loop that will settle at the AGC's default (interference-free) baseline level.
  • the inner conductor of the coaxial cable may also continue to serve in its normal capacity to power the LNAs (and other components) inside the antenna assembly, and thus some simple power smoothing circuitry may be implemented such that the nanosecond duration dips in voltage do not adversely affect the LNAs.
  • a microcontroller serving as controller 175 may likely reside inside the antenna assembly to control predetermined functionality based on the control voltages received.
  • FIG. 4 depicts an example of a spoof signal that can be transmitted to jam or otherwise interfere with the GPS radio receiver 190.
  • This spoof signal is at a center frequency of 1.575GHz with -65dBm to -75dBm of power, although other frequencies and powers may be used as well.
  • the spoof signal may thus serve as both a jamming source and a spoofing source.
  • the amplitude of the ripple in C/No is a function of the XPD, which can be processed and detected by detection circuitry 197.
  • the XPD may be higher for high elevation satellites, but lower for low elevation satellites.
  • the XPD may approach a value of OdB, leading to large amplitude swings.
  • the plots show relatively low amplitude swing for the higher elevation satellites (17, 13, 28 and 30), a larger amplitude swing for the lower elevation satellites (6, 7, 15), and the largest amplitude swing for the spoof signal sources (1, 4, 20, 27, 32).
  • Detection circuitry 197 may be used to detect the relative amplitudes.
  • Each unique satellite may have its own fingerprint comprising swing amplitude and phase offset in the time domain of where the peaks and troughs fall during the 28.8 second cycle. These fingerprints may also be detected by detection circuitry 197. However, the spoof signal sources may be from a single location that shares the same C/No amplitude and time domain offset with one another. The same or similar C/N 0 amplitude and time domain offset feature may also be detected by detection circuitry 197.
  • FIG. 6 shows the C/No values for satellites signals, which were received by the GPS antenna system 100 in accordance with some example embodiments.
  • a null is steered the in direction of the jammer, and, as such, the anti-jam mode C/No performance may be considered superior to that of the normal mode C/N 0 performance.
  • This improvement in C/N 0 performance may indicate that a null has been successfully steered toward the jammer.
  • Any operator of a GPS system may use the C/N 0 performance as a visual indicator, when selecting the proper variable phase shift value.
  • a more desirable implementation may involve integration with a standard GPS receiver to include a power minimization algorithm running on the receiver in the digital domain. This process may adapt the voltage control signal coupled onto the co-axial cable, in order to establish an optimal phase shift that indicates that the null has been successfully steered toward the jammer. The following provides an example implementation for this process.
  • a GPS radio receiver may include an analog-to-digital converter (ADC) that follows the analog radio front-end and precedes the digital acquisition and tracking algorithms. After the ADC, the analog signal captured by the receiver is now a digital sequence of "n" bits, where n is a fixed number of bits corresponding to the ADC during the conversion.
  • a receiver with an ADC where n ⁇ 1 may also contain an automatic gain control (AGC) component.
  • ADCs have a limited dynamic range of power levels under which they can optimally convert the incoming analog signals into their digital counterparts.
  • the average signal power in the middle of the ADC's dynamic range it is desirable to place the average signal power in the middle of the ADC's dynamic range, and this is the job of the AGC.
  • the AGC fails to center the average signal power in middle of this range (and instead lets the signal drift upward)
  • the measured samples may all appear to be of value ⁇ 11 >, without variation.
  • important information may have been "clipped" away and forever lost.
  • the GPS signal power is below the thermal noise floor, it is also the case that the power level of the noise signal is not stable and requires AGC.
  • Some AGCs operate on time constants of microseconds, which may be several orders of magnitude faster than the integration dump period of a standard GPS receiver. As such, loss of carrier lock or other ill effects may not be experienced with the relatively sluggish AGC of this example.
  • the AGC may thus be used as a power minimization (PM) algorithm.
  • Full receiver integration may be implemented via a firmware upgrade that links the output of the AGC to the voltage signal that controls the phase shifter in the antenna, within feedback loop that will settle at the AGC's default (interference- free) baseline level.
  • the inner conductor of the coaxial cable may also continue to serve in its normal capacity to power the LNAs (as is done in standard GPS receivers) and other components inside the antenna assembly.
  • some simple power-smoothing circuitry may be implemented such that the nanosecond duration dips in voltage do not adversely affect the LNAs.
  • a microcontroller may reside inside the antenna assembly to control predetermined functionality based on the control voltages received.
  • FIG. 6 compares expected results for the direct "Normal mode” stream (in green) and the "Anti-jam mode” stream (in red), when the variable phase shifter has been set to a phase shift value that steered a null toward the direction of the jamming signal.
  • FIG. 6 depicts a sky map with a black dotted line to indicate the direction of the x-axis antenna feed and a purple arrow to show the direction of the jamming signal perpendicular to the direction of the x-axis antenna feed.
  • satellite PRN 17 is almost directly overhead
  • satellite PRN28 is in the direction of the jamming signal
  • satellites PRN 15 and PRN 30 are approximately orthogonal to the direction of the spoofed signal
  • satellites PRN 6 and PRN7 are at low elevation angles.
  • the jamming signal increases its elevation angle (from well below the antenna to at the horizon to the antenna).
  • the drop in the green normal mode C/No is correlated with the increase in the elevation angle of the horn transmitting the jamming signal.
  • the jamming signal When the jamming signal is incident upon the "fuselage" at a lower elevation angle, it must propagate along the ground plane for a longer distance before it reaches the antenna, and thus is further attenuated. As the jamming signal increases its elevation angle up to the horizon of the antenna, however, the effective signal strength of the jamming signal increases despite no change in the transmission power level. Consequently, later in the signal recording we are more likely to see a loss of lock on satellite signals. This is particularly the case for the lower-elevation satellites (PRNs 6, 7, and 15), which already had a lower initial normal mode C/NO prior to the introduction of the jamming signal.
  • jam suppression ranging from about 10 decibels to greater than 20 decibels.
  • Anti- jam performance for the high-elevation satellites PRNs 13, 17, and 30, but excluding satellite PRN 28
  • PRNs 13, 17, and 30 High-elevation satellites
  • jam suppression of the lower-elevation satellites (PRNs 6, 7, and 15) as well as PRN 28 is generally 20 decibels or better, avoiding a loss of lock for several satellites (when compared to the normal mode performance).
  • the jamming signal originates from the same direction as satellite PRN 28 (sky plot in lower right-hand corner of FIG.
  • FIG. 7 shows the C/No values for satellites signals, which were received by the GPS antenna system 100 in accordance with some example.
  • the x-axis in the plots shows time progression, modulo 20 seconds.
  • the transmitted spoofed signal originated from an azimuth angle of 180 degrees and an elevation angles of 90 degrees (at the horizon of the antenna), 120 degrees (30 degrees below the horizon of the antenna), and 150 degrees (60 degrees below the horizon of the antenna).
  • FIG. 7 shows that the spoofing signal's effective signal strength is increased as its elevation angle up increases. Because the GPS receiver was tracking both genuine and spoofed signals, FIG. 7 enables a comparison of the characteristic C/N 0 behavior of both signal types.
  • the 4 spoofed satellites signals (PRN 8, 10, 26, 27) display the expected large C/N 0 greater ripple.
  • Detection circuitry 197 may be used to detect this relatively large C/N 0 ripple to classify these 4 signals as spoof signals.
  • Table 1 also shows that the standard deviation in the maximum and minimum C/N 0 values for the five genuine satellites is over 10 times larger than that of the four spoofed satellites. Similarly, the standard deviation of the phase offset for the maximum and minimum C/N 0 values for the five genuine satellites is about 50 times larger than that of the four spoofed satellites.
  • detection circuitry 197 may process the signal to determine the C/No related features noted in Table 1 to detect whether the received signal is a spoof signal.
  • the subject matter described herein may be embodied in a system, apparatus, method, and/or article depending on the desired configuration.
  • the decoder described herein and/or the processes described herein may be implemented using one or more of the following: at least one processor and at least one memory configured to allow the at least one processor to execute program code, an application-specific integrated circuit (ASIC), a digital signal processor (DSP), an embedded processor, a field programmable gate array (FPGA), and/or combinations thereof.
  • ASIC application-specific integrated circuit
  • DSP digital signal processor
  • FPGA field programmable gate array
  • These various implementations may include implementation in one or more computer programs that are executable and/or interpretable on a programmable system including at least one programmable processor, which may be special or general purpose, coupled to receive data and instructions from, and to transmit data and instructions to, a storage system, at least one input device, and at least one output device.
  • These computer programs also known as programs, software, software applications, applications, components, program code, or code
  • machine-readable medium refers to any computer program product, computer-readable medium, computer-readable medium, apparatus and/or device (for example, magnetic discs, optical disks, memory, Programmable Logic Devices (PLDs)) used to provide machine instructions and/or data to a programmable processor, including a machine-readable medium that receives machine instructions.
  • PLDs Programmable Logic Devices
  • systems are also described herein that may include a processor and a memory coupled to the processor.
  • the memory may include one or more programs that cause the processor to perform one or more of the operations described herein.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

In some example embodiments, there is provided an apparatus comprising an antenna configured to receive a signal from a global navigation satellite system, wherein the antenna includes a first feed and a second feed; a hybrid coupler including a first hybrid input, a second hybrid input, a first hybrid output, a second hybrid output, wherein the first hybrid input is coupled to the first feed, the second hybrid input is coupled to the second feed, and wherein the first hybrid output is shifted in phase by 90 degrees relative to the second hybrid output; a variable phase shifter including a shifter input and a shifter output, wherein the shifter input is coupled to the first hybrid output, wherein variable phase shifter is configured to induce an additional phase shift; and a combiner including a first combiner input, a second combiner input, and a combiner output, wherein the first combiner input is coupled to the shifter output, and the second combiner input is coupled to the second hybrid output, and wherein the combiner output represents a combined right hand circularly polarized signal and left hand circularly polarized signal, wherein the combiner output is provided to detection circuitry. Related systems, methods, and articles of manufacture are also disclosed.

Description

SPOOFING DETECTION AND ANTI-JAM MITIGATION FOR GPS ANTENNAS
Cross Reference to Related Applications
[0001] This application claims priority to U.S. Provisional Patent Application 62/046,840 filed September 5, 2014, entitled "Spoofing Detection for GPS/GNSS Antennas," and this application also claims priority to U.S. Provisional Patent Application 62/151,305 filed April 22, 2015, entitled "GPS Antenna for Jam Mitigation," the contents of both provisional applications are hereby incorporated by reference in their entirety.
Statement of Government Sponsored Support
[0002] This invention was made with Government support under contract 12-G- 003 awarded by the FAA William J. Hughes Technical Center. The Government has certain rights in the invention.
Field
[0003] The subject matter described herein relates to navigation systems including global navigation systems and/or the global positioning system.
Background
[0004] Navigation systems today have become ubiquitous. Planes, trains, automobiles, and people often carry some form of navigation or location system that receives signals from global positioning system (GPS) satellites and derives location. As such, when GPS signals are not received due to some form of interference, users may be in a predicament. For example, an aircraft, drone, or vehicle relying on GPS navigation may not be able to operate properly, when there is a GPS signal loss.
Summary
[0005] The subject matter disclosed herein provides methods and apparatus related to detecting whether a signal at an antenna, such as a GPS antenna and/or the like, is a spoofing signal and/or steering a null to enable mitigating the effects of a jamming or other unwanted signal.
[0006] In some example embodiments, there is provided an apparatus comprising an antenna configured to receive a signal from a global navigation satellite system, wherein the antenna includes a first feed and a second feed; a hybrid coupler including a first hybrid input, a second hybrid input, a first hybrid output, a second hybrid output, wherein the first hybrid input is coupled to the first feed, the second hybrid input is coupled to the second feed, and wherein the first hybrid output is shifted in phase by 90 degrees relative to the second hybrid output; a variable phase shifter including a shifter input and a shifter output, wherein the shifter input is coupled to the first hybrid output, wherein variable phase shifter is configured to induce an additional phase shift; and a combiner including a first combiner input, a second combiner input, and a combiner output, wherein the first combiner input is coupled to the shifter output, and the second combiner input is coupled to the second hybrid output, and wherein the combiner output represents a combined right hand circularly polarized signal and left hand circularly polarized signal, wherein the combiner output is provided to detection circuitry. [0007] In some example embodiments, one of more variations may be made as well as described in the detailed description below and/or as described in the following features. The antenna comprises a GPS antenna. The hybrid coupler comprises a 90 degree hybrid coupler. The combiner comprises a power combiner, such as a Wilkinson combiner. The controller circuitry is configured to change an operating mode of the apparatus from a normal mode for receiving signals transmitted by a GPS satellite to at least a second mode to detect a spoof signal. The apparatus of claim 1, the detection circuitry may be configured to detect one or more of the following: a magnitude of the right hand circularly polarized signal, a C/N0 ripple, a maximum C/N0, a minimum C/N0, a phase offset of the maximum C/N0> and/or a phase offset of the minimum C/N0.
[0008] The details of one or more variations of the subject matter described herein are set forth in the accompanying drawings and the description below. Features and advantages of the subject matter described herein will be apparent from the description and drawings, and from the claims.
Description of Drawings
[0009] In the drawings,
[0010] FIG. 1A depicts an example of a GPS antenna system, in accordance with some example embodiments;
[0011] FIG IB depicts an example process for the GPS antenna system, in accordance with some example embodiments;
[0012] FIG. 2 depicts an example of a GPS patch antenna, in accordance with some example embodiments; [0013] FIG. 3 depicts example of antenna patterns, in accordance with some example embodiments;
[0014] FIG. 4 depicts an example plot of spoof signal, in accordance with some example embodiments;
[0015] FIG. 5 plots carrier-to-noise density, C/N0, for normal mode operation and spoof detection mode operation for a GPS antenna system, in accordance with some example embodiments;
[0016] FIG. 6 plots carrier-to-noise density, C/N0, for normal mode operation and anti-jam mode operation for a GPS antenna system, in accordance with some example embodiments; and
[0017] FIG. 7 plots carrier-to-noise density, C/N0, for below the horizon signals, in accordance with some example embodiments.
[0018] Like labels are used to refer to same or similar items in the drawings.
Detailed Description
[0019] In some example embodiments, the subject matter disclosed herein relates to a global positioning system (GPS) antenna system configured to enable the detection of a spoofing signal, such as an unwanted signal meant to interfere with (for example, mislead), a GPS receiver coupled to the GPS antenna system, while avoiding detection.
[0020] In some example embodiments, the subject matter disclosed herein relates to a GPS antenna system configured to enable steering a null to attenuate a signal, such as a jamming signal or other type of unwanted or interfering signal. [0021] Although some of the examples disclosed herein refer to GPS, other types of location-based systems including global navigation satellite systems may be used as well.
[0022] A GPS antenna may receive signals and then provide the received signals to a GPS receiver to enable the GPS receiver to decode and thus generate location information. For example, a vehicle, such as an aircraft, an autonomous car, a drone, and/or any other vehicle, may have a GPS antenna mounted at a location that is in view of heavens where GPS satellites are located. In this way, the aircraft's GPS antenna may receive the GPS signals emanated from the satellite and provide the received signals to a GPS receiver, which generates location information to enable aircraft navigation, for example. In some instances, a transmitter may transmit a spoofing signal to intentionally or unintentionally interfere with or jam the GPS receiver. Unlike genuine GPS satellite signals, the spoofing signals may be transmitted by a transmitter located at or below the horizon, such as at ground level.
[0023] In some example embodiments, there may be provided a GPS antenna system that enables at least the detection of a spoofing signal. In this spoof detection mode, the GPS antenna system, in accordance with some example embodiments, may process the received GPS signals in order to detect whether the received GPS signal is an actual GPS signal received from for example a GPS satellite or a spoof signal received from for example a below-the- horizon, or terrestrial, transmitter. In some example embodiments, this detection may be performed by detection circuitry is configured detect one or more of the following features in a combined right hand circularly polarized (RHCP) and left hand circularly polarized (LHCP) signal: the RHCP signal magnitude relative to the LHCP signal magnitude, a C/No ripple, minimum and maximum phase offset, maximum and minimum C/N0, and/or other measures or statistics obtained from the combined RHCP and LHCP signal. [0024] In some example embodiments, there may be provided a GPS antenna system that enables at least the steering of a null towards an unwanted signal (for example a jamming signal or a spoofing signal) to attenuate the unwanted signal. In this anti-jam mode, the GPS antenna system, in accordance with some example embodiments, may process the received GPS signals and steer a null in the direction of the spoof or jamming signal received from a below-the-horizon, or terrestrial, transmitter.
[0025] In some example embodiments, a GPS antenna system may include a normal mode as well as a spoof detection mode and/or an anti-jam mode (in which a null is steered in the direction of a signal, such as the jamming or spoofing signal). In normal mode, the GPS antenna system may be configured such that it provides GPS signals received from a GPS satellite to a GPS receiver.
[0026] FIG. 1A depicts an example of a GPS antenna system 100, in accordance with some example embodiments.
[0027] The GPS antenna system 100 may include a single GPS antenna 105 coupled to processing circuitry including amplifiers, such as low noise amplifiers 107A-B coupled to a 90 degree hybrid coupler 110; a switch 120 for selecting between modes; a termination 125 to terminate the LHCP signal while in normal mode; a variable phase shifter 150 to further vary the phase of the RHCP signal, when in a spoof mode or an anti-jam mode; a power combiner 155 (labeled Wilkinson combiner) to combine the RHCP 112B and LHCP signals, when in a spoof mode or an anti-jam mode; and/or a switch 140 to switch between modes.
[0028] Moreover, system 100 may include, or be coupled to, a controller 195, a GPS radio 190, and/or a bias T 142. The GPS radio receiver 190 may include detection circuitry 197 configured to detect whether the received signal is likely a genuine GPS signal (which would be received from the heavens where GPS satellites are located) or a jamming/spoofing (which may be located at or below the horizon).
[0029] Although FIG. 1A depicts detection circuitry located at the GPS receiver 190, it may be located in other locations as well. The detection circuitry may be configured to process the combined RHCP and LHCP signal provided by combiner 155 to perform detection as disclosed herein. The detection circuitry 197 may compare the magnitudes of the RHCP signal and LHCP signal to determine whether the received signal is likely a genuine GPS signal or a spoofing signal. For example, GPS signals received from a GPS satellite may be primarily RHCP as described further below. Moreover, the C/N0 ripple may be indicative of whether the received signal is likely a genuine GPS signal or a spoofing signal.
[0030] Unlike anti-jam mode, the change of state into spoof detection mode may be triggered according to a deterministic schedule and may thus last for a certain time, such as a predetermined time period.
[0031] Unlike a jamming signal, the spoof signal may be implemented to evade detection, so there might not be a readily observable trigger. As such, the spoof mode may include a preemptive scan for the presence of spoof signals in accordance with for example a predetermined schedule.
[0032] FIG. IB depicts an example process for the multimode GPS antenna system, in accordance with some example embodiments. The antenna system may be in a normal mode at 170, in which the switches 120 couple the hybrid coupler output directly to the GPS radio receiver as noted above. If the AGC inherent in the GPS receiver (for example, as determined by detection circuitry 197) reports an decrease in the AGC 172, then the antenna system may then enter anti-jam mode 174, in which the switches 120 couple the hybrid coupler output to the variable shifter and combiner as noted. At 176, the variable phase shifter 150 may be adjusted until the AGC returns to a baseline value 178 or reaches a local minimum 180. In the case of the a local minimum 180, the antenna system may delay for a certain time (for example, 2 seconds although other times may be used) before checking again to see if AGC has returned to a baseline value or a minimum value. If a baseline AGC value has been achieved, then it is likely that the jamming signal is no longer affecting the antenna system at all, in which case a return to normal state 170 occurs.
[0033] While in the normal state 170, the antenna system may periodically conducts a spoof detection test after a given amount of time has passed 184 (for example, 60 seconds, although other times may be used as well). Alternatively or additionally, the antenna system may constantly conduct spoof detection, in which case the time may be set to 0 delay (or never conduct spoof detection, in which case the delay is very large). If a certain time period elapses without a spoof detection test, we then enter spoof detection mode 186, in which the switches in FIG. 1A 120 will be configured to couple the hybrid output to the variable phase shifter and combiner as noted. As such, the variable phase shifter 150 will be cycled, at 188, through a full 360 degree rotation of phase shifter values. The duration of the cycle may be for example 5 seconds, and one to two cycles may be required. If a spoofer is detected 190 (as noted below), then an alternative state may be triggered. In some instances, the phase shift values may be slowly adjusted while detecting if spoofer is still present (or has been nulled by the phase shifter).
[0034] The GPS antenna 105 may be implemented in a variety of ways. For example, GPS antenna 105 may include an x-axis feed and a y-axis feed. In some example embodiments, a GPS patch antenna may be used. This antenna may be in accordance with ARINC 743 form-factor constraints. An example of the GPS patch antenna is shown in FIG. 2. In the example of FIG. 2, the GPS patch antenna is a 40mm by 40mm substrate with a 30mm by 30mm square copper patch on top, and the substrate, at 1.28mm thick, is a single layer of Rogers RO3010 material that has a dielectric constant of 10.2, although other dimensions and substrates may be used as well. The high dielectric constant permits a relatively small form-factor half wavelength resonant antenna. The GPS patch antenna may include two perpendicular coaxial feeds. A coordinate system may be selected such that one of the feeds can be referred to as an x- axis feed and the other the y-axis feed, as shown in the FIG. 2. The GPS antenna may be configured to be mounted on a large conductive body, such as the fuselage of an airplane, and/or any other vehicle.
[0035] Signals obtained from a GPS satellite may be right hand circularly polarized (RHCP), and arrive in the upper hemisphere of a standard receive GPS antenna 105. Thus, GPS receive antennas 105 may be configured for sensitivity to RHCP signals in the upper hemisphere. Moreover, when the GPS antenna 105 is mounted on a vehicle such as the airplane fuselage, the fuselage may serve as a ground plane. And, this ground plane may enable the antenna system 100 to resolve two phase coherent components from a single incident waveform including the signals of interest. However, GPS antennas may also have some sensitivity to left hand circularly polarized (LHCP) signals generated to do multi-path, ground-plane effects, and/or the like. The total sensitivity of the GPS antenna 105 is the sum of the RHCP and LHCP sensitivities. A performance metric that reflects the GPS antenna's ability to distinguish the RHCP energy from the total energy it receives is referred to as the cross-polarization discrimination (XPD) factor, and is defined in dB units as follows: XPD(0, φ) = GRHCP (θ, φ) - GLHCP (θ, φ) (1) Equation 1, wherein, for each potential signal direction of arrival (DoA(0, φ)) in spherical coordinates, Θ represents elevation angle, φ represents azimuth angle, GRHCP represents the RHCP antenna gain in that given direction, GLHCP represents the LHCP antenna gain in that given direction. Gain and sensitivity may be referred interchangeably due the reciprocal nature of a passive GPS antenna.
[0036] The GPS antenna 105 may be designed to optimize, as noted, cross- polarization discrimination, XPD, in the upper hemisphere (where the GPS RHCP signals are transmitted) as the presence of any upper hemispheric LHCP sensitivity proportionately reduces the antenna's sensitivity to the satellite's RHCP signals.
[0037] FIG. 3 depicts an example of a plot of the RHCP gain of antenna 105. On the right hand side of FIG. 3, the constructive interference radiation patterns are shown, while on the left hand side, the destructive interference radiation patterns. The traces in these plots show two perpendicular 2-D cuts of a single 3-D radiation gain pattern. Specifically, the solid lines represent a static, baseline 3-D radiation pattern, and the dashed lines represent the dynamic 3-D radiation pattern that arises when a null has been steered, in accordance with some example embodiments, along the 90 degree azimuthal plane. The dashed lines are referred to as dynamic in the sense that the values may change based on the values of the variable phase shifter. Patterns may be derived from the same simulated data of a standard form-factor GPS antenna on an 800 mm diameter by 1200 mm length cylindrical ground plane, although other patterns may be realized in other ways as well.
[0038] When comparing the baseline RHCP radiation pattern (solid lines) to the combined (dashed traces/lines) RHCP radiation pattern, there are significant nulls (for example, greater than about lOdB) and modest antenna beams (for example, about 3dB) appearing in the lower hemisphere of the plots for these two azimuthal cuts. The combination antenna pattern (shown by the dashed trace) arises when the baseline pattern is squeezed along one 2-D plane, and thus slightly bulging along the perpendicular plane. As such, the dynamic component of the combination radiation patterns may be considered largely in the lower hemisphere (where one would expect to see spoof/jamming signals and the like), while the upper hemisphere remains unperturbed. Moreover, in the lower hemisphere the nulls are relatively deep and over a relatively wide range of elevation angles (comparable to, for example, null depths that could be expected from much larger multi-antenna array systems). As can also be seen in FIG. 3, due to the symmetry present in our single antenna element, when a null is steered to the 90 degree azimuthal plane, nulls will arise in both the +90 and the -90 degree azimuthal angles.
[0039] Electromagnetic waves can propagate through both free space, such as the space between the GPS satellites and antenna 105, and along conductive structures, such as the coaxial cables that deliver the electromagnetic wave from the antenna 105 to receiver 190. However, certain mediums and geometries only support certain types of electromagnetic fields. The waves that travel from the GPS satellites to antenna 105 may take the form of transverse electromagnetic plane waves. In the case of GPS for example, the electromagnetic plane waves may be RHCP. An RHCP wave can be decomposed into two orthogonal electric field components (for example, an x-axis field and a y-axis field). These two electric field components are not only orthogonal in space, but also in time, so the x-axis field lags the y-axis field by 90 degrees.
[0040] When an RHCP wave is directly incident upon a GPS antenna, the two orthogonal electric field components may excite both feeds on the antenna, with a portion of the wave energy lagging by 90 degrees in time. For example, the RHCP wave from a GPS satellite may be directly incident on a GPS antenna mounted on the heavenly facing surface of a vehicle, such as an aircraft.
[0041] But when an RHCP (or any arbitrarily polarized) wave is directly incident upon the conductive ground plane, the electromagnetic wave may induce surface currents along the ground plane. For example, a signal that is at or below the horizon of the vehicle may be directly incident on the GPS antenna's ground plane. Despite the considerable losses endured in this ground plan transmission mechanism, some of these surface currents may travel along the body of the ground plane until they reach the antenna 105 where they will induce a potential difference between the ground plane and the conductive patch of the antenna. In this case, there may be no 90 degrees time shift between any energy that may excite the two feeds of antenna 105. In other words, the energy field may thus be present at both antenna feeds, x and y, at the same time, without the time delay characteristic of circularly polarized fields. For this reason, the electric field induced by a surface current is electrically similar to that induced by a vertically polarized (VP) electromagnetic plane wave, so herein these signals are referred to as vertically polarized, VP, signals.
[0042] If a signal is vertically polarized, it is unlikely that the signal originated from a GPS satellite (although with some low elevation GPS satellites, the signal waveforms may appear to be largely VP to a patch antenna). Specifically, when antenna 105 is mounted on top of a large ground plane (such as an aircraft, for example), any signals that reach the antenna due to the propagation of surface currents may do so because a direct path to the antenna is blocked by the ground plane. And, these signals may thus originate from beneath the horizon of the antenna 105. As such, signals having VP fields may generally be considered to originate from elevation angles below the horizon of antenna 105. Detection circuitry 197 may be used to detect the relative presence of the VP signals.
[0043] Moreover, a VP signal may be decomposed into an RHCP signal and a LHCP signal, with both signals having substantially equal magnitude and phase coherency. And, as noted, a standard GPS antenna may be configured to provide the LHCP signal in addition to the RHCP signal. This VP signal may have an XPD ratio of about OdB as the RHCP and LHCP components, in the case of VP signals, may have about the same magnitude. Detection circuitry 197 may be used to detect this ratio.
[0044] Accordingly, the RHCP signal and the LHCP signal may be phase coherent components of the incident, received signal waveform, and may have similar magnitude but shifted in phase. In some example embodiments, the relative phase shift between these two signals may be a function of azimuthal angle from which the original waveform originated. Detection circuitry 197 may be used to detect the azimuthal angle or phase.
[0045] In some example embodiments, a null may be steered toward that azimuthal angle from which the waveform originated. To achieve the null in the antenna pattern toward that azimuthal angle from which the waveform originated, circuit 100 may, in accordance with some example embodiments, induce an additional phase shift. This induced phase shift when added to the relative phase shift yields a 180 degree phase difference between the RHCP and LHCP signals. Circuit 100 may introduce a relative phase shift ψ to steer a null toward φ in accordance with the following:
ψ = 2(φ-φ0)+90° Equation 2, wherein φ0 is an azimuthal angle of the x-axis feed (simply to establish a relative coordinate system), φ is the desired azimuthal angle for null. The relative phase shift ψ has twice the periodicity of φ. Referring to again to FIG. 3, the symmetry caused a null to appear simultaneously at both the +90 degree and the -90 degree azimuthal angles. Additionally, the fixed term in Equation 2 is equal to 90° to compensate for the additional 90 degrees introduced by the 90 degree hybrid coupler.
[0046] After inducing in the RHCP signal the additional phase shift noted above, the shifted versions of the RHCP and LHCP signals may be combined to obtain a destructive interference signal. In this way, the null gets steered in azimuth.
[0047] With respect to elevation, the nulls and beams may be fixed to the lower hemisphere, when the received RHCP and LHCP are similar in magnitude (or have an XPD ratio of about OdB). In contrast, most GPS antennas have XPD ratios exceeding 13dB in the majority of the upper hemisphere. And, the RHCP gain in the upper hemisphere is generally at least 20 times stronger than the LHCP gain. As such, the greatest null/beam achieved in upper hemisphere may only cause about 5% reduction/increase in gain.
[0048] Upon processing in a GPS receiver, an apparent ripple in carrier-to-noise density, C/N0, may arise from periodic combinations of constructive and destructive interference described above. This ripple (which may be detected by detection circuitry 197) in dB-Hz for the nth satellite may be calculated as follows:
Rn— Construciiven— Destructive,,,
= 10 log (gRHCp (0n, φη ) + gLHCp( n, Φη))
- 10 log (gnHCp(9n, Φη) - guicp^m Φη))
Figure imgf000016_0001
Equation 3, wherein (θη, φη) are the elevation and azimuth angles of the nth satellite being tracked and the antenna gain, g, and cross polarization ratio, XPD, are shown in lower case to indicate that we are specifying the linear representation of the term, instead of its dB representation (as is done otherwise herein). As the magnitudes of the RHCP and LHCP signals may become more similar (or the XPD ratio approaches OdB), the C/N0 ripple may approach infinity. Detection circuitry 197 may be used to detect the depth or intensity of the ripples as an indicator that the signal is a spoof signal. Moreover, an infinitely deep null may be steered towards an azimuthal direction in the lower hemisphere where the XPD ratio equals OdB.
[0049] Referring again to FIG. 1 A, each of the feeds may be coupled to an input of an amplifier, such as low noise amplifiers 107A-B. The output of the low noise amplifier 107A may be coupled to an input port of a 90 degree coupler 110, and the output of the low noise amplifier 107B may be coupled to an input port of a 90 degree coupler 110. The 90 degree hybrid coupler introduces a 90 degree phase shift to the x-axis input signal 11 IB or the y-axis signal 111A. The output signal 112A corresponds to a left hand circular polarized (LHCP) signal, while output signal 112B corresponds to a right hand circular polarized (RHCP) signal.
[0050] Power combiner 155 combines the RHCP output signal 112B (which has been shifted in phase by variable phase shifter 150) with the LHCP output signal 112A. The variable phase shifter 150 may vary the phase of the right hand circular polarized signal output 112B provided by the 90 degree hybrid coupler 110. The amount of phase variance may be under the control of controller 195. The phase shifter may not cycle through all 360 degrees of phase shift values at a speed that approaches the C/N0 integration period of the receiver. Many receivers use a C/N0 integration period that equal approximately 400 millisecond (ms) for example. Additionally, the phase shifter may not be configured to cycle too slowly, such that a detection period takes a relatively long period of time. For example, an ideal time period (through which the phase shifter may cycle through all 360 degrees) may be about 5 seconds. Two to four periods of full 360 degree rotations may be required, in some implementations.
[0051] In the example of FIG. 1A, the controller 195 may control switch 140, such that the combiner 155 output is coupled to the GPS radio (via for example bias T 142). For example, lines 160A-E may be used to provide control and/or power to one or more components of system 100.
[0052] When the controller 195 configures the switches for a normal mode, the circuit 100 is configured to provide a normal signal path from the GPS antenna 105 to the GPS receiver 190. As noted, for a genuine GPS signal received at the GPS antenna, the magnitude of the RHCP at 112B is relatively much greater than the magnitude of the LHCP signal at 112A. As such, when system 100 is in a normal mode, the switch 120 couples the RHCP signal 112B to the GPS receiver 190 via for example switch 140, a bias T 142 for example. In the example of FIG. 1A, the switch 120 and 140 is under the control of controller 195 to provide the switching needed for the normal mode. The bias T may be used to provide a bias current to power components, such as the LNAs and the like or may be integrated into the GPS radio receiver 190. Thus, in the normal mode, the system 100 couples the RHCP signal to the GPS radio receiver for further processing. And, the LHCP signal at 112 A may be much weaker than the RHCP signal, so it may be terminated into for example a 50 Ohm termination 125.
[0053] When the controller 195 configures the switches for a spoof detection mode (or anti-jam mode), the switch 120 couples the phase shifter RHCP signal output 112B to a variable phase shifter 150 and a combiner 155, and this switch 120 couples the phase shifter LHCP output signal 112A to the combiner 155, which combines, as noted, the LHCP and RHCP signals before being provided to the GPS receiver 190. [0054] In some example embodiments, in spoof detection mode (or anti-jam mode), the variable phase shifter 150 (which is under the control of controller 195) provides additional phase shifting of the RHCP signal component to a certain, so-called "ideal" ψ value, such that the RHCP signal is 180 degrees out of phase with the LHCP one. After this additional ψ phase shift that provides the 180 phase difference, when the RHCP and LHCP signals are combined at combiner 155, a null is generated (for example, steered) in a desired φ direction.
[0055] As noted above, there is deterministic mapping between an azimuthal angle of interest, φ, and the ideal phase shift, ψ provided by the variable phase shifter 150. The variable phase shifter 150 may be controlled in a variety of ways. However, in some implementations, the control may be integrated with the GPS receiver 190, in which case a power minimization protocol running on the receiver in the digital domain may be implemented. This protocol can adapt a DC voltage control signal that is coupled onto the inner conductor of the RF coaxial cable, in order to establish an optimal phase shift. The AGC may be one optimal, low complexity and backward compatible mechanism for implementing the power minimization algorithm.
[0056] Full receiver integration may include a firmware upgrade that links the output of the AGC to the voltage signal that controls the phase shifter in the antenna, with a feedback loop that will settle at the AGC's default (interference-free) baseline level. The inner conductor of the coaxial cable may also continue to serve in its normal capacity to power the LNAs (and other components) inside the antenna assembly, and thus some simple power smoothing circuitry may be implemented such that the nanosecond duration dips in voltage do not adversely affect the LNAs. A microcontroller serving as controller 175 may likely reside inside the antenna assembly to control predetermined functionality based on the control voltages received.
[0057] FIG. 4 depicts an example of a spoof signal that can be transmitted to jam or otherwise interfere with the GPS radio receiver 190. This spoof signal is at a center frequency of 1.575GHz with -65dBm to -75dBm of power, although other frequencies and powers may be used as well. The spoof signal may thus serve as both a jamming source and a spoofing source.
[0058] As calculated above, the amplitude of the ripple in C/No (as shown at FIG. 5) is a function of the XPD, which can be processed and detected by detection circuitry 197. The XPD may be higher for high elevation satellites, but lower for low elevation satellites. For the spoof signal originating from below the horizon, the XPD may approach a value of OdB, leading to large amplitude swings. The plots show relatively low amplitude swing for the higher elevation satellites (17, 13, 28 and 30), a larger amplitude swing for the lower elevation satellites (6, 7, 15), and the largest amplitude swing for the spoof signal sources (1, 4, 20, 27, 32). Detection circuitry 197 may be used to detect the relative amplitudes. Each unique satellite may have its own fingerprint comprising swing amplitude and phase offset in the time domain of where the peaks and troughs fall during the 28.8 second cycle. These fingerprints may also be detected by detection circuitry 197. However, the spoof signal sources may be from a single location that shares the same C/No amplitude and time domain offset with one another. The same or similar C/N0 amplitude and time domain offset feature may also be detected by detection circuitry 197.
[0059] FIG. 6 shows the C/No values for satellites signals, which were received by the GPS antenna system 100 in accordance with some example embodiments. In the case of FIG, 6, a null is steered the in direction of the jammer, and, as such, the anti-jam mode C/No performance may be considered superior to that of the normal mode C/N0 performance. This improvement in C/N0 performance may indicate that a null has been successfully steered toward the jammer. Any operator of a GPS system may use the C/N0 performance as a visual indicator, when selecting the proper variable phase shift value. However, a more desirable implementation may involve integration with a standard GPS receiver to include a power minimization algorithm running on the receiver in the digital domain. This process may adapt the voltage control signal coupled onto the co-axial cable, in order to establish an optimal phase shift that indicates that the null has been successfully steered toward the jammer. The following provides an example implementation for this process.
[0060] To illustrate by way of an example implementation, a GPS radio receiver may include an analog-to-digital converter (ADC) that follows the analog radio front-end and precedes the digital acquisition and tracking algorithms. After the ADC, the analog signal captured by the receiver is now a digital sequence of "n" bits, where n is a fixed number of bits corresponding to the ADC during the conversion. A receiver with an ADC where n < 1 may also contain an automatic gain control (AGC) component. ADCs have a limited dynamic range of power levels under which they can optimally convert the incoming analog signals into their digital counterparts. Thus, in order to capture the largest range of incoming signals, it is desirable to place the average signal power in the middle of the ADC's dynamic range, and this is the job of the AGC. For example, with a two bit ADC in which "< 00 >" represents the weakest signal and "< 11 >" represents the strongest, if the AGC fails to center the average signal power in middle of this range (and instead lets the signal drift upward), the measured samples may all appear to be of value < 11 >, without variation. In this example, important information may have been "clipped" away and forever lost. It should also be noted that although the GPS signal power is below the thermal noise floor, it is also the case that the power level of the noise signal is not stable and requires AGC. Some AGCs operate on time constants of microseconds, which may be several orders of magnitude faster than the integration dump period of a standard GPS receiver. As such, loss of carrier lock or other ill effects may not be experienced with the relatively sluggish AGC of this example. The AGC may thus be used as a power minimization (PM) algorithm.
[0061] Full receiver integration may be implemented via a firmware upgrade that links the output of the AGC to the voltage signal that controls the phase shifter in the antenna, within feedback loop that will settle at the AGC's default (interference- free) baseline level. The inner conductor of the coaxial cable may also continue to serve in its normal capacity to power the LNAs (as is done in standard GPS receivers) and other components inside the antenna assembly. Thus some simple power-smoothing circuitry may be implemented such that the nanosecond duration dips in voltage do not adversely affect the LNAs. A microcontroller may reside inside the antenna assembly to control predetermined functionality based on the control voltages received.
[0062] FIG. 6 compares expected results for the direct "Normal mode" stream (in green) and the "Anti-jam mode" stream (in red), when the variable phase shifter has been set to a phase shift value that steered a null toward the direction of the jamming signal. FIG. 6 depicts a sky map with a black dotted line to indicate the direction of the x-axis antenna feed and a purple arrow to show the direction of the jamming signal perpendicular to the direction of the x-axis antenna feed. In this drawing, satellite PRN 17 is almost directly overhead, satellite PRN28 is in the direction of the jamming signal, satellites PRN 15 and PRN 30 are approximately orthogonal to the direction of the spoofed signal, and satellites PRN 6 and PRN7 are at low elevation angles. As times passes (x-axis of FIG. 6), the jamming signal increases its elevation angle (from well below the antenna to at the horizon to the antenna). We can see that the drop in the green normal mode C/No is correlated with the increase in the elevation angle of the horn transmitting the jamming signal. When the jamming signal is incident upon the "fuselage" at a lower elevation angle, it must propagate along the ground plane for a longer distance before it reaches the antenna, and thus is further attenuated. As the jamming signal increases its elevation angle up to the horizon of the antenna, however, the effective signal strength of the jamming signal increases despite no change in the transmission power level. Consequently, later in the signal recording we are more likely to see a loss of lock on satellite signals. This is particularly the case for the lower-elevation satellites (PRNs 6, 7, and 15), which already had a lower initial normal mode C/NO prior to the introduction of the jamming signal. Now, turning to the red anti-jam C/N0 traces, we see jam suppression ranging from about 10 decibels to greater than 20 decibels. Anti- jam performance for the high-elevation satellites (PRNs 13, 17, and 30, but excluding satellite PRN 28) increases to around 10 decibels of jam suppression. Furthermore, jam suppression of the lower-elevation satellites (PRNs 6, 7, and 15) as well as PRN 28 is generally 20 decibels or better, avoiding a loss of lock for several satellites (when compared to the normal mode performance). The jamming signal originates from the same direction as satellite PRN 28 (sky plot in lower right-hand corner of FIG. 6); thus, a radiation pattern null has been formed along a line in the azimuthal plane that is parallel to satellite PRN 28. Simultaneously, a slight radiation pattern beam has been formed along the line perpendicular to the direction of the spoofer in the azimuthal plane (indicated by the black dotted line on the sky plot). This dotted line happens to run between satellites PRN 15 and PRN 7. Thus, in satellite PRN 28 we see a slight reduction in anti- jam mode C/N0 as compared to normal mode C/N0 before the jamming signal has begun to degrade the normal mode C/N0 (and we also see more dramatic jam suppression as the effective signal strength of the jammer increases). By contrast, in satellites PRNs 15 and 7, we see a slight increase in the anti-jam mode C/N0 as compared to normal mode C/N0 even before the jamming signal has begun. This superior performance of anti-jam mode C/N0 as compared to normal mode C/No continues for satellites PRNs 15 and 7 as the effective jamming signal strength increases, because of the compounded effects of the beam steered toward these two satellites and the null steered toward the jammer.
[0063] FIG. 7 shows the C/No values for satellites signals, which were received by the GPS antenna system 100 in accordance with some example. The x-axis in the plots shows time progression, modulo 20 seconds. The transmitted spoofed signal originated from an azimuth angle of 180 degrees and an elevation angles of 90 degrees (at the horizon of the antenna), 120 degrees (30 degrees below the horizon of the antenna), and 150 degrees (60 degrees below the horizon of the antenna). Like FIG. 6, FIG. 7 shows that the spoofing signal's effective signal strength is increased as its elevation angle up increases. Because the GPS receiver was tracking both genuine and spoofed signals, FIG. 7 enables a comparison of the characteristic C/N0 behavior of both signal types. First, focusing on the green and red traces (captured when the spoofed signals was below the horizon of the antenna), the 4 spoofed satellites signals (PRN 8, 10, 26, 27) display the expected large C/N0 greater ripple. Detection circuitry 197 may be used to detect this relatively large C/N0 ripple to classify these 4 signals as spoof signals.
[0064] In the case of the blue trace (captured when the spoofed signals was at the horizon of the antenna), the larger ripple in C/N0 for the spoofed signal case is not present. However, as mentioned previously, the ripple of the maximum and minimum C/N0 values is a function of the elevation angle of the satellite and the time offset at which those max/min values appear as a function of the azimuth angle of the satellite. As such, a unique C/N0 ripple for each satellite in the sky may be found. For the blue traces of FIG. 7, Table 1 below shows the max/min C/N0 values and the relative phase offset (within the 5 second duration) at which those max/min values occurred. Table 1 also shows that the standard deviation in the maximum and minimum C/N0 values for the five genuine satellites is over 10 times larger than that of the four spoofed satellites. Similarly, the standard deviation of the phase offset for the maximum and minimum C/N0 values for the five genuine satellites is about 50 times larger than that of the four spoofed satellites. As noted, detection circuitry 197 may process the signal to determine the C/No related features noted in Table 1 to detect whether the received signal is a spoof signal.
[0065] Table 1
Figure imgf000025_0001
[0066] The absence of a unique C/N0 ripple, for each satellite, may be detected by detection circuitry 197 to indicate that the satellite signals are not originating from unique locations in the sky as would be the case with a GPS signal. This conclusion can be reached regardless of where the spoofed signal may originate.
[0067] The subject matter described herein may be embodied in a system, apparatus, method, and/or article depending on the desired configuration. For example, the decoder described herein and/or the processes described herein may be implemented using one or more of the following: at least one processor and at least one memory configured to allow the at least one processor to execute program code, an application-specific integrated circuit (ASIC), a digital signal processor (DSP), an embedded processor, a field programmable gate array (FPGA), and/or combinations thereof. These various implementations may include implementation in one or more computer programs that are executable and/or interpretable on a programmable system including at least one programmable processor, which may be special or general purpose, coupled to receive data and instructions from, and to transmit data and instructions to, a storage system, at least one input device, and at least one output device. These computer programs (also known as programs, software, software applications, applications, components, program code, or code) may include machine instructions for a programmable processor, and may be implemented in a high-level procedural and/or object-oriented programming language, and/or in assembly/machine language. As used herein, the term "machine-readable medium" refers to any computer program product, computer-readable medium, computer-readable medium, apparatus and/or device (for example, magnetic discs, optical disks, memory, Programmable Logic Devices (PLDs)) used to provide machine instructions and/or data to a programmable processor, including a machine-readable medium that receives machine instructions. Similarly, systems are also described herein that may include a processor and a memory coupled to the processor. The memory may include one or more programs that cause the processor to perform one or more of the operations described herein.
[0068] Although a few variations have been described in detail above, other modifications or additions are possible. In particular, further features and/or variations may be provided in addition to those set forth herein. For example, the implementations described above may be directed to various combinations and subcombinations of the disclosed features and/or combinations and subcombinations of several further features disclosed above. In addition, the logic flow depicted in the accompanying figures and/or described herein does not require the particular order shown, or sequential order, to achieve desirable results. Other embodiments may be within the scope of the following claims.

Claims

WHAT IS CLAIMED:
1. An apparatus comprising:
an antenna configured to receive a signal from a global navigation satellite system, wherein the antenna includes a first feed and a second feed;
a hybrid coupler including a first hybrid input, a second hybrid input, a first hybrid output, a second hybrid output, wherein the first hybrid input is coupled to the first feed, the second hybrid input is coupled to the second feed, and wherein the first hybrid output is shifted in phase by 90 degrees relative to the second hybrid output;
a variable phase shifter including a shifter input and a shifter output, wherein the shifter input is coupled to the first hybrid output, wherein variable phase shifter is configured to induce an additional phase shift; and a combiner including a first combiner input, a second combiner input, and a combiner output, wherein the first combiner input is coupled to the shifter output, and the second combiner input is coupled to the second hybrid output, and wherein the combiner output represents a combined right hand circularly polarized signal and left hand circularly polarized signal, wherein the combiner output is provided to detection circuitry.
2. The apparatus of claim 1, wherein the antenna comprises a GPS antenna.
3. The apparatus of claim 1, wherein the hybrid coupler comprises a 90 degree hybrid coupler.
4. The apparatus of claim 1, wherein the combiner comprises at least one of a power combiner and/or a Wilkinson combiner.
5. The apparatus of claim 1 further comprising:
controller circuitry configured to change an operating mode of the apparatus from a normal mode for receiving signals transmitted by a GPS satellite to at least a second mode to detect a spoof signal and/or steer a null.
6. The apparatus of claim 1, wherein the detection circuitry is configured to detect one or more of the following: a magnitude of the right hand circularly polarized signal, a C/N0 ripple, a maximum C/N0, a minimum C/N0, a phase offset of the maximum C/N0> and/or a phase offset of the minimum C/N0.
7. A method comprising:
receiving, at an antenna, a signal from a global navigation satellite system, wherein the antenna includes a first feed and a second feed;
receiving, at a hybrid coupler, the received signal, the hybrid coupler including a first hybrid input, a second hybrid input, a first hybrid output, a second hybrid output, wherein the first hybrid input is coupled to the first feed, the second hybrid input is coupled to the second feed;
providing, by the hybrid coupler including the first hybrid output, an output signal shifted in phase by 90 degrees relative to another output signal at the second hybrid output; inducing, at a variable phase shifter, an additional phase shift, wherein the variable phase shifter includes a shifter input and a shifter output, wherein the shifter input is coupled to the first hybrid output; and
providing, by a combiner, an combiner output signal, wherein the combiner output represents a combined right hand circularly polarized signal and left hand circularly polarized signal.
8. The method of claim 7, wherein the antenna comprises a GPS antenna.
9. The method of claim 7, wherein the hybrid coupler comprises a 90 degree hybrid coupler.
10. The method of claim 7, wherein the combiner comprises at least one of a power combiner and/or a Wilkinson combiner.
11. The method of claim 7 further comprising:
controller circuitry configured to change an operating mode of the apparatus from a normal mode for receiving signals transmitted by a GPS satellite to at least a second mode to detect a spoof signal.
12. The method of claim 7, wherein the combiner output is provided to detection circuitry.
13. The method of claim 7, wherein the combiner includes a first combiner input, a second combiner input, and the combiner output.
14. The method of claim 7, wherein the first combiner input is coupled to the shifter output, and the second combiner input is coupled to the second hybrid output
15. The method of claim 7 further comprising: detecting, by the detection circuitry, one or more of the following: a magnitude of the right hand circularly polarized signal, a C/N0 ripple, a maximum C/N0, a minimum C/N0, a phase offset of the maximum C/N0> and/or a phase offset of the minimum C/N0.
PCT/US2015/048708 2014-09-05 2015-09-04 Spoofing detection and anti-jam mitigation for gps antennas WO2016085554A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/507,860 US10690776B2 (en) 2014-09-05 2015-09-04 Spoofing detection and anti-jam mitigation for GPS antennas

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201462046840P 2014-09-05 2014-09-05
US62/046,840 2014-09-05
US201562151305P 2015-04-22 2015-04-22
US62/151,305 2015-04-22

Publications (2)

Publication Number Publication Date
WO2016085554A2 true WO2016085554A2 (en) 2016-06-02
WO2016085554A3 WO2016085554A3 (en) 2016-06-30

Family

ID=55527618

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2015/048708 WO2016085554A2 (en) 2014-09-05 2015-09-04 Spoofing detection and anti-jam mitigation for gps antennas

Country Status (2)

Country Link
US (1) US10690776B2 (en)
WO (1) WO2016085554A2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107861135A (en) * 2017-10-26 2018-03-30 国家电网公司 A kind of unmanned plane satellite navigation cheat detecting method towards electric inspection process
EP3608692A1 (en) * 2018-08-07 2020-02-12 Diehl Defence GmbH & Co. KG Method for converting an interference protection free gnss receiving installation into a crpa receiving installation
EP3627190A1 (en) 2018-09-21 2020-03-25 Septentrio N.V. System and method for detecting spoofing of gnss signals
US11047990B2 (en) 2018-04-24 2021-06-29 Novatel Inc. Global navigation satellite system (GNSS) antenna data link
CN113141186A (en) * 2020-01-16 2021-07-20 瑞士优北罗股份有限公司 Adaptive single element antenna apparatus and method of operating the same
EP4383597A1 (en) * 2022-12-09 2024-06-12 Harris Global Communications, Inc. Systems and methods for providing an antenna

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10024973B1 (en) 2015-04-03 2018-07-17 Interstate Electronics Corporation Global navigation satellite system spoofer identification technique
US10031234B1 (en) 2015-04-03 2018-07-24 Interstate Electronics Corporation Global navigation satellite system beam based attitude determination
US10545246B1 (en) 2016-07-08 2020-01-28 Interstate Electronics Corporation Global navigation satellite system spoofer identification technique based on carrier to noise ratio signatures
US10725182B2 (en) 2018-01-04 2020-07-28 Interstate Electronics Corporation Systems and methods for providing anti-spoofing capability to a global navigation satellite system receiver
JP6714029B2 (en) * 2018-03-22 2020-06-24 日本電信電話株式会社 Interference power estimation method, interference power estimation device and program
EP3882667A4 (en) * 2018-11-12 2022-08-24 Furuno Electric Co., Ltd. Gnss receiving device
US10873137B2 (en) * 2018-11-13 2020-12-22 Eagle Technology, Llc Triaxial antenna reception and transmission
US11165170B2 (en) * 2018-11-13 2021-11-02 Eagle Technology, Llc Triaxial antenna reception and transmission
US11070307B2 (en) * 2019-02-26 2021-07-20 Bae Systems Information And Electronic Systems Integration Inc. Circular patch array for anti-jam GPS
US11310269B2 (en) * 2019-10-15 2022-04-19 Baidu Usa Llc Methods to detect spoofing attacks on automated driving systems
US11698461B1 (en) 2019-11-20 2023-07-11 Telephonics Corp. GPS denial detection and reporting and mitigation
US11385358B2 (en) * 2019-12-26 2022-07-12 U-Blox Ag Method and apparatus for using dual-polarization antenna

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5712641A (en) * 1996-02-28 1998-01-27 Electro-Radiation Incorporated Interference cancellation system for global positioning satellite receivers
US5872540A (en) 1997-06-26 1999-02-16 Electro-Radiation Incorporated Digital interference suppression system for radio frequency interference cancellation
US5995044A (en) * 1998-05-01 1999-11-30 Novatel, Inc. Method and apparatus for characterizing multipath interference in circularly polarized signals
AU2002353028A1 (en) * 2001-12-04 2003-06-17 Electro-Radiation, Inc. Method and apparatus for reducing electromagnetic interference and jamming in gp equipment operating in rolling environments

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107861135A (en) * 2017-10-26 2018-03-30 国家电网公司 A kind of unmanned plane satellite navigation cheat detecting method towards electric inspection process
CN107861135B (en) * 2017-10-26 2021-06-11 国家电网公司 Unmanned aerial vehicle satellite navigation deception detection method for power inspection
US11047990B2 (en) 2018-04-24 2021-06-29 Novatel Inc. Global navigation satellite system (GNSS) antenna data link
EP3608692A1 (en) * 2018-08-07 2020-02-12 Diehl Defence GmbH & Co. KG Method for converting an interference protection free gnss receiving installation into a crpa receiving installation
EP3627190A1 (en) 2018-09-21 2020-03-25 Septentrio N.V. System and method for detecting spoofing of gnss signals
WO2020058521A1 (en) 2018-09-21 2020-03-26 Septentrio N.V. System and method for detecting spoofing of gnss signals
CN113141186A (en) * 2020-01-16 2021-07-20 瑞士优北罗股份有限公司 Adaptive single element antenna apparatus and method of operating the same
EP3851879A1 (en) * 2020-01-16 2021-07-21 u-blox AG Adaptive single-element antenna apparatus and method of operating same
EP4383597A1 (en) * 2022-12-09 2024-06-12 Harris Global Communications, Inc. Systems and methods for providing an antenna

Also Published As

Publication number Publication date
WO2016085554A3 (en) 2016-06-30
US20180224557A1 (en) 2018-08-09
US10690776B2 (en) 2020-06-23

Similar Documents

Publication Publication Date Title
US10690776B2 (en) Spoofing detection and anti-jam mitigation for GPS antennas
Fernández-Prades et al. Robust GNSS receivers by array signal processing: Theory and implementation
US7577464B2 (en) Compact antenna system for polarization sensitive null steering and direction-finding
US9519062B2 (en) Methods, systems, and computer readable media for mitigation of in-band interference of global positioning system (GPS) signals
US8026839B2 (en) Selective-sampling receiver
US11550062B2 (en) High-gain multibeam GNSS antenna
US8983420B2 (en) Circular antenna array for satellite communication interference rejection
US9766341B2 (en) GNSS positioning system employing a reconfigurable antenna subsystem
US10732291B2 (en) Multipath mitigation in a GNSS radio receiver
US11165170B2 (en) Triaxial antenna reception and transmission
US7386034B2 (en) Anti-jamming method for spread-spectrum radio signal receivers
WO2006078314A2 (en) Selective-sampling receiver
US10873137B2 (en) Triaxial antenna reception and transmission
Kundu et al. Incorporation of anti-jamming techniques in a GPS receiver
US10677878B2 (en) Method for direction finding and direction finding antenna unit
Park et al. Adaptive signal processing method using a single-element dual-polarized antenna for GNSS interference mitigation
US11670848B2 (en) Anti-jamming system
Rezazadeh et al. A controlled reception pattern antenna array with dual-mode circular microstrip antenna elements for increased angular availability
Kataria et al. A single hemispiral antenna for GNSS interference mitigation and direction estimation
Rezazadeh et al. GPS anti-jamming performance of multimode microstrip antennas
Sedighy Null steering GPS array in the presence of mutual coupling
US20240241267A1 (en) Controlled radiation pattern antenna for jamming/spoofing resistant airborne gnss sensors
US12009915B2 (en) Compact receiver system with antijam and antispoof capability
MCMILIN et al. Single antenna, dual use
Park et al. Metamaterial-embedded beamforming phased-array antennas for degradable GPS links

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15843060

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 15507860

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15843060

Country of ref document: EP

Kind code of ref document: A2