WO2016084121A1 - Compressor - Google Patents

Compressor Download PDF

Info

Publication number
WO2016084121A1
WO2016084121A1 PCT/JP2014/081007 JP2014081007W WO2016084121A1 WO 2016084121 A1 WO2016084121 A1 WO 2016084121A1 JP 2014081007 W JP2014081007 W JP 2014081007W WO 2016084121 A1 WO2016084121 A1 WO 2016084121A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
inclined portion
standing
separation plate
drive shaft
Prior art date
Application number
PCT/JP2014/081007
Other languages
French (fr)
Japanese (ja)
Inventor
下地 美保子
宏樹 長澤
勝俊 辰巳
哲英 横山
啓介 新宮
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2016561104A priority Critical patent/JP6297168B2/en
Priority to CN201480083463.7A priority patent/CN106922163B/en
Priority to CZ2017-240A priority patent/CZ307894B6/en
Priority to PCT/JP2014/081007 priority patent/WO2016084121A1/en
Publication of WO2016084121A1 publication Critical patent/WO2016084121A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0223Lubrication characterised by the compressor type
    • F04B39/023Hermetic compressors
    • F04B39/0238Hermetic compressors with oil distribution channels
    • F04B39/0246Hermetic compressors with oil distribution channels in the rotating shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/04Measures to avoid lubricant contaminating the pumped fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C29/00Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
    • F04C29/02Lubrication; Lubricant separation
    • F04C29/026Lubricant separation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/40Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/60Shafts
    • F04C2240/603Shafts with internal channels for fluid distribution, e.g. hollow shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C2240/00Components
    • F04C2240/80Other components
    • F04C2240/809Lubricant sump

Definitions

  • the present invention relates to a compressor, and more particularly to a compressor including an oil separation plate that separates lubricating oil from a refrigerant mixed with the lubricating oil.
  • a rotary compressor that is one of rotary compressors has been proposed in which a ring-shaped oil separation plate that divides a lower space of an electric motor up and down is provided in a sealed container (see, for example, Patent Document 1). .
  • a rotary compressor has been proposed that includes a ring-shaped oil separation plate that is arranged so as to partition a lower space of an electric motor arranged in an airtight container up and down (see, for example, Patent Document 2). ).
  • a part of the lower end surface of the oil separator plate is fixed on the cylinder, and the fixed portion is bent to form an inclined surface.
  • JP-A-61-879993 (2nd page, lines 9 to 13 and FIG. 2) JP 2013-217281 A (page 5, lines 21 to 27, FIGS. 1 and 3)
  • an electric motor having a rotor and a stator is installed in a sealed container.
  • a rotating flow is formed in the sealed container by the rotation of the rotor. Since the oil separation plate of the rotary compressor described in Patent Document 1 is a flat plate member, there is a problem that it is difficult to efficiently separate the lubricating oil from the swirling refrigerant and the lubricating oil.
  • the rotary compressor described in Patent Document 2 includes an annular oil separation plate in which a part of the lower end surface is fixed on a cylinder. For this reason, this oil separation plate has a form in which a first inclined surface inclined upward from the lower end surface and a second inclined surface inclined downward from the apex of the inclined surface are formed. For this reason, the refrigerant and the lubricating oil swirling in the sealed container collide with one lower surface of the first inclined surface and the second inclined surface, and the lubricating oil is separated. However, with respect to the other of the first inclined surface and the second inclined surface, the refrigerant and the lubricating oil swirling in the sealed container collide with the upper surface. Therefore, in the rotary compressor described in Patent Document 2, only one of the first inclined surface and the second inclined surface can contribute to the separation of the lubricating oil, and it is difficult to efficiently separate the lubricating oil. There is a problem.
  • the present invention has been made in order to solve the above-described problems, and an object of the present invention is to obtain a compressor capable of efficiently separating lubricating oil from a gas containing refrigerant and lubricating oil.
  • a compressor according to the present invention includes a hermetic container having an oil reservoir for storing lubricating oil at the bottom, a stator provided in the hermetic container, and a rotation disposed inside the stator and connected to a drive shaft.
  • An electric motor unit having a child, a compression mechanism unit that is provided in the closed container and connected to the drive shaft, and compresses the refrigerant, and an annular member provided in the sealed container between the electric motor unit and the compression mechanism unit.
  • An oil separation plate having a plurality of inclined portions inclined with respect to the axial direction of the drive shaft, an upper end connected to an upper end of the inclined portion, and a lower end having an inclined portion different from the inclined portion. And a plurality of standing portions connected to the lower end.
  • the rotary compressor according to the present invention has the above-described configuration, it is an object of the present invention to obtain a compressor capable of efficiently separating lubricating oil from a gas containing refrigerant and lubricating oil.
  • FIG. 3 is a developed circumferential sectional view of an oil separation plate according to Embodiment 1 of the present invention. It is principal part sectional drawing of the compressor provided with the conventional oil separation board in the space A under an electric motor. It is a perspective view of the conventional oil separation board shown in FIG.
  • FIG. 7B is a developed sectional view in the circumferential direction of the conventional oil separation plate shown in FIG. 7A.
  • FIG. It is a perspective view of the conventional oil separation board different from FIG. 7A. It is a circumferential direction expanded sectional view of Drawing 8A. It is a perspective view of the conventional oil separation board different from FIG. 7A and FIG. 8A.
  • FIG. 9B is a developed sectional view in the circumferential direction of the oil separation plate shown in FIG. 9A.
  • FIG. 1 is a longitudinal sectional view showing an overall configuration of a compressor 80 according to the first embodiment.
  • FIG. 2 is an enlarged longitudinal sectional view showing the lower part of the sealed container 1 of FIG.
  • FIG. 3 is an enlarged longitudinal sectional view showing the central portion of the sealed container 1 of FIG.
  • FIG. 4 is a perspective view of the oil separation plate 100 according to the first embodiment.
  • the compressor 80 includes a hermetic container 1 having an oil reservoir 1 a that stores the lubricating oil 4 at the bottom. Inside the hermetic container 1, an electric motor unit 2 and a compression mechanism unit 3 driven by the electric motor unit 2 are installed.
  • the sealed container 1 includes, for example, a cylindrical central container 11 and an upper container 12 and a lower container 13 that are fitted in the upper and lower openings of the central container 11 in a sealed state.
  • a suction pipe 6 to which a suction muffler 5 is attached is connected to the central container 11, and a discharge pipe 7 is connected to the upper container 12.
  • the suction pipe 6 is a connection pipe for sending the gas refrigerant (low temperature and low pressure) flowing through the suction muffler 5 into the compression mechanism unit 3.
  • the discharge pipe 7 is a connection pipe for allowing the gas refrigerant (high temperature and high pressure) in the sealed container 1 compressed by the compression mechanism unit 3 to flow into the refrigerant pipe.
  • the electric motor unit 2 includes a stator 21 provided in the hermetic container 1, and a rotatable rotor 22 disposed inside the stator 21 and connected to a drive shaft 23.
  • the stator 21 is fixed to the inner peripheral surface of the central container 11.
  • the outer surface of the rotor 22 is provided to face the inner surface of the stator 21 with a predetermined interval.
  • a drive shaft 23 that extends downward is connected to the rotor 22.
  • the drive shaft 23 is rotatably supported by an upper bearing 34 and a lower bearing 35 which will be described later, and rotates together with the rotor 22.
  • an oil suction hole 23a opened on the bottom side of the sealed container 1 is provided in the shaft center portion of the drive shaft 23, and a spiral centrifugal pump 23b is provided in the oil suction hole 23a.
  • the oil supply pipe 40 has a flat portion 40 a provided at one end thereof fixed between the lower bearing 35 and the lower muffler 37 with a gap with the drive shaft 23. That is, the oil supply pipe 40 is not rotated because it is connected to the oil suction hole 23 a provided in the drive shaft 23 with a gap.
  • the centrifugal pump 23b rotates together with the drive shaft 23
  • the lubricating oil 4 is sucked into the oil supply pipe 40 as indicated by the arrow Z and sucked upward from the oil suction hole 23a.
  • the diameter of the oil supply pipe 40 is adjusted so that optimum oil supply can be performed when the electric motor unit 2 rotates at high speed.
  • the diameter of the oil supply pipe 40 is smaller than the oil suction hole 23 a provided in the drive shaft 23.
  • the amount of the lubricating oil 4 that can be stored at the bottom in 1 can be increased.
  • the compression mechanism unit 3 is, for example, a rotary type, and has a space A below the electric motor unit 2 and is fixed to the central container 11.
  • the compression mechanism part 3 is provided in the airtight container 1, is connected to the drive shaft 23, and has a function which compresses a refrigerant
  • the compression mechanism unit 3 includes a cylindrical cylinder 31, a piston 32, a vane 33, an upper bearing 34, and a lower bearing 35.
  • the upper bearing 34 is provided with an upper muffler 36, and the lower bearing 35 is provided with a lower muffler 37.
  • an oil supply pipe 40 that extends downward through the lower muffler 37 is provided at the lower portion of the compression mechanism portion 3.
  • the cylinder 31 has a central axis that is eccentric with respect to the central axis of the drive shaft 23.
  • the cylinder 31 has a suction port 38 to which the suction pipe 6 described above is connected, and the discharge port 34a and the discharge port 35a provided in the upper bearing 34 and the lower bearing 35, respectively, communicate with the inside of the cylinder 31.
  • the piston 32 is coaxial with the central axis of the drive shaft 23 and is fitted to the drive shaft 23 so as to rotate together with the drive shaft 23.
  • a vane 33 is slidably accommodated in the piston 32.
  • the disk portions of the upper bearing 34 and the lower bearing 35 described above close the upper and lower end surfaces of the cylinder 31.
  • the discharge port 34 a and the discharge port 35 a described above are formed in the disk portions of the upper bearing 34 and the lower bearing 35. That is, the compression mechanism unit 3 is connected to the electric motor unit 2 via the drive shaft 23, and the driving force of the electric motor unit 2 is transmitted to the compression mechanism unit 3 via the drive shaft 23, so that the gas refrigerant is It is configured to compress.
  • the upper muffler 36 is provided on the upper part of the disk part of the upper bearing 34, that is, on the upper part of the compression mechanism part 3 so as to cover the discharge port 34 a.
  • the lower muffler 37 is provided in the lower part of the disk part of the lower bearing 35 so that the discharge outlet 35a may be covered.
  • a muffler discharge hole 36 a is formed in the upper muffler 36.
  • the lubricating oil 4 stored in the bottom portion (oil storage portion 1a) in the hermetic container 1 is sucked into the oil suction hole 23a through the oil supply pipe 40 by the centrifugal pump 23b that rotates together with the drive shaft 23.
  • the lubricating oil 4 sucked into the oil suction hole 23 a flows between the upper bearing 34 and the drive shaft 23 from the upper oil supply port 23 c and flows between the upper bearing 34 and the upper surface of the piston 32.
  • the lubricating oil 4 flows between the lower bearing 35 and the drive shaft 23 from the lower oil supply port 23 d and flows between the lower bearing 35 and the lower surface of the piston 32.
  • the drive shaft 23 and the piston 32 rotate smoothly.
  • the lubricating oil 4 is also supplied to the vane 33 side so that the vane 33 slides smoothly.
  • the space A between the electric motor unit 2 and the compression mechanism unit 3 in the sealed container 1 is used for separating the lubricating oil from the gas mixed with the gas refrigerant and the lubricating oil and returning it to the bottom in the sealed container 1.
  • An oil separation plate 100 is provided.
  • the oil separation plate 100 has a ring shape as shown in FIG. 4 and is installed so as to surround the upper muffler 36.
  • the space A between the electric motor unit 2 and the compression mechanism unit 3 is divided into an upper space A1 of the oil separation plate 100 and a lower space A2 of the oil separation plate 100 by the oil separation plate 100. It is divided into.
  • the oil separation plate 100 is composed of a single plate material as shown in FIG. That is, the oil separation plate 100 is configured by integrally forming the inclined portion 101a, the inclined portion 101b, the standing portion 103a, the standing portion 103b, the flat portion 102a, and the flat portion 102b.
  • the oil separation plate 100 is provided so as to surround the upper muffler 36 through which a large amount of oil droplets flow out, and has a higher oil separation effect.
  • the oil separation plate 100 is provided between the inclined portion 101 a and the inclined portion 101 b that gradually decrease along the rotation direction of the electric motor unit 2, and the inclined portion 101 a and the inclined portion 101 b. Both ends of 101a and the inclined portion 101b have a flat portion 102a and a flat portion 102b that are screwed to the upper surface of the cylinder 31.
  • the oil separation plate 100 includes a standing portion 103a that connects the upper side of the inclined portion 101a and one side of the flat portion 102b, and a standing portion 103b that connects the upper side of the inclined portion 101b and one side of the flat portion 102a. ing.
  • the inclined portion 101a and the inclined portion 101b are arc-shaped members having inclined surfaces that are inclined in a preset direction.
  • the inclined surfaces of the inclined portion 101 a and the inclined portion 101 b are inclined with respect to the axial direction of the drive shaft 23.
  • the inclined surfaces of the inclined portion 101 a and the inclined portion 101 b are inclined so as to follow the rotation direction of the drive shaft 23.
  • the inclined surfaces of the inclined portion 101a and the inclined portion 101b are inclined downward as they travel forward in the circumferential direction of the oil separation plate 100.
  • the inclined portion 101a and the inclined portion 101b have inclined surfaces inclined in the counterclockwise circumferential direction so as to correspond to the gas flow direction.
  • the flat portion 102a has one end connected to the lower end of the inclined portion 101a and the other end connected to the lower end of the standing portion 103b.
  • a flat surface parallel to the upper end surface of the cylinder 31 is formed on the flat portion 102a.
  • One end of the flat portion 102b is connected to the lower end of the inclined portion 101b, and the other end is connected to the lower end of the standing portion 103a.
  • a flat surface parallel to the upper end surface of the cylinder 31 is formed on the flat portion 102b.
  • a screw 50 which is a fixing member, is fastened to the flat portion 102a and the flat portion 102b, and is fixed to the upper end surface of the cylinder 31.
  • the oil separation plate 100 is not fixed to the cylinder 31 at only one location, but two locations on the straight line passing through the center of the oil separation plate 100 (flat portion 102a and flat portion 102b) are fixed to the cylinder 31.
  • a fixing member such as a bolt, a fitting claw, or an adhesive is employed. You can also.
  • the standing portion 103a is formed so that the upper end is connected to the upper end of the inclined portion 101a and extends downward from the connection position with the inclined portion 101a.
  • the standing portion 103a has a vertical surface formed so as to rise perpendicularly to the flat portion 102b.
  • the standing portion 103b is formed so that the upper end is connected to the upper end of the inclined portion 101b, the lower end is connected to the other end of the flat portion 102a, and extends downward from the connection position with the inclined portion 101b.
  • the standing portion 103b has a vertical surface formed so as to rise perpendicularly to the flat portion 102a.
  • the inclined portion 101a corresponds to the first inclined portion
  • the inclined portion 101b corresponds to the second inclined portion
  • the flat portion 102a corresponds to the first flat portion
  • the flat portion 102b corresponds to the second flat portion
  • the standing portion 103a has a configuration corresponding to the first standing portion
  • the standing portion 103b has a configuration corresponding to the second standing portion.
  • the oil separation plate 100 has been described with respect to the aspect in which the inclined portion 101a and the inclined portion 101b have the same length.
  • the length and the length of the inclined portion 101b may be different. The same applies to the length of the flat portion 102a and the length of the flat portion 102b, and the length of the standing portion 103a and the length of the standing portion 103b.
  • the oil separation plate 100 has been described with respect to the aspect in which the inclination angle of the inclined surface of the inclined portion 101a is the same as the inclined angle of the inclined surface of the inclined portion 101b.
  • the present invention is not limited to this. It may be different.
  • the oil separation plate 100 has been described with respect to the aspect in which the two inclined surfaces, that is, the inclined portion 101a and the inclined portion 101b, are formed.
  • the aspect in which the inclined surface was formed may be sufficient. That is, the oil separation plate 100 may be formed with three or more inclined portions. In this case, three or more flat portions and upright portions may be formed on the oil separation plate.
  • the oil separation plate 100 has been described with respect to the aspect including the inclined portion 101a and the inclined portion 101b having a flat inclined surface having a constant inclination angle, but the embodiment is not limited thereto. Absent.
  • the inclined portion 101a and the inclined portion 101b may be inclined in a curved surface shape or may be wavy.
  • the oil separation plate 100 has been described as an example in which the planar view shape is an annular shape, but is not limited thereto.
  • the oil separating plate 100 may have a polygonal shape such as a triangle or a square in plan view.
  • the oil separation plate 100 has been described as having the flat portion 102a and the flat portion 102b.
  • the oil separation plate 100 may not have the flat portion 102a and the flat portion 102b.
  • the standing portion 103a of the oil separation plate 100 has an upper end connected to the upper end of the inclined portion 101a and a lower end connected to the lower end of the inclined portion 101b different from the inclined portion 101a.
  • the upper end may be connected to the upper end of the inclined portion 101b, and the lower end may be connected to the lower end of the inclined portion 101a different from the inclined portion 101b.
  • a gas in which the lubricating oil 4 and the gas refrigerant are mixed passes through a groove communicating with the inside of the cylinder 31 and discharge ports 34a and discharge ports provided in the upper bearing 34 and the lower bearing 35, respectively. It flows into the inner space of the upper muffler 36 and the lower muffler 37 from the outlet 35a.
  • the gas refrigerant that has flowed into the inner space of the lower muffler 37 is guided to the inner space of the upper muffler 36 through a gas hole (not shown) that penetrates the lower bearing 35, the cylinder 31, and the upper bearing 34.
  • the gas refrigerant is discharged from the muffler discharge hole 36a into the space A between the electric motor unit 2 and the compression mechanism unit 3 (in the direction of the arrow X1).
  • a swirling flow is generated by the rotation of the rotor 22 of the electric motor unit 2.
  • the mixed gas in the space A is attracted by the swirling flow and flows in the rotation direction of the rotor 22 (arrow Y direction), and the upper and lower surfaces of the inclined portions 101a and 101b of the oil separation plate 100, the standing portion 103a and the standing portion 103 It circulates around the upper muffler 36 while contacting the installation portion 103b and the like.
  • the mixed gas passes through a gas hole 22a provided in the rotor 22 and an air gap 2a between the stator 21 and the rotor 22 as shown by an arrow X2 in FIG. And is discharged from the discharge pipe 7 to the outside of the sealed container 1.
  • the lubricating oil 4 in the mixed gas collides and adheres to the upper and lower surfaces of the inclined portion 101a and the inclined portion 101b of the oil separation plate 100, flows along the inclined portion 101a and the inclined portion 101b, and is provided in the cylinder 31. It falls from the through hole 31a by its own weight (in the direction of arrow Z) and is collected in the oil reservoir 1a provided at the bottom of the sealed container 1.
  • FIG. 5 is a cross-sectional view of the oil separation plate 100 of the present embodiment developed in the circumferential direction.
  • the broken line indicates the gas flow.
  • the other part of the gas contains lubricating oil, and the lubricating oil collides with the lower surface of the erected portion 103a and the lower surface of the erected portion 103b, decelerates and drops by gravity, and is separated from the mixed gas. Will be. Note that the lubricating oil that has dropped by gravity is collected by the oil reservoir 1a. The gas refrigerant and the lubricating oil 4 that has not fallen due to gravity flow out from the side surface of the oil separation plate 100 (U4).
  • the oil separation plate 100 has a standing portion 103a, a standing portion 103b, an inclined portion 101a, an inclined portion 101b, a flat portion 102a, and a flat portion 102b, and is configured in a ring shape so as not to be interrupted.
  • the oil separator plate 100 has an oil droplet layer containing a large amount of lubricating oil floating in the lower space A2 of the oil separator plate 100 and a gas refrigerant layer containing a large amount of gas refrigerant swirling in the upper space A1 because there is no interruption.
  • the area of the interface can be reduced, and oil droplets are unlikely to flow out into the upper space A1.
  • the oil level of the lubricating oil 4 may reach close to the oil separation plate 100. As in this case, when the oil level of the lubricating oil 4 rises, the distance from the oil level to the rotor 22 decreases accordingly. Then, it becomes easy to be influenced by the gas flow (swirl flow) formed by the rotation of the rotor 22. That is, the oil surface of the lubricating oil 4 is easily disturbed by the gas flow formed by the rotation of the rotor 22. When the oil surface of the lubricating oil 4 is disturbed, oil droplets are generated, and the oil droplets are wound up by the gas flow and flow out of the sealed container 1 through the discharge pipe 7.
  • the oil separation plate 100 has a standing portion 103a and a standing portion 103b. For this reason, the oil separation plate 100 can decelerate the gas efficiently. Therefore, the oil surface of the lubricating oil 4 is not easily disturbed, and the generation of oil droplets is suppressed. For this reason, even if the oil level of the lubricating oil 4 reaches the vicinity of the oil separation plate 100, it is possible to suppress the lubricating oil 4 from flowing out of the sealed container 1 with high efficiency.
  • the oil separation plate 100 has an inclined portion 101a and an inclined portion 101b that are inclined in a preset direction. For this reason, the lubricating oil can be moved downward from the gas in the upper space A ⁇ b> 1 within a range close to the entire circumference of the oil separation plate 100.
  • FIG. 6 is a cross-sectional view of a main part of a compressor 60 provided with a conventional oil separation plate 600 in a space A under the electric motor.
  • FIG. 7A is a perspective view of the conventional oil separation plate 600 shown in FIG.
  • FIG. 7B is a developed sectional view in the circumferential direction of the conventional oil separation plate 600 shown in FIG. 7A.
  • a conventional oil separation plate 600 is formed by bending one side end of a ring-shaped plate to form a flat portion 602 and an inclined portion 601, and the flat portion 602 is fastened by a screw 50.
  • the oil separation plate 600 has an inclined portion 601b that increases along the Y direction and an inclined portion 601a that decreases along the rotational direction. Composed. That is, in the oil separation plate 100 of the compressor 80 according to the first embodiment, the inclined portion 101a and the inclined portion 101b are provided in a range close to the entire circumference so that more lubricating oil 4 is separated from the mixed gas.
  • the conventional oil separation plate 600 has a difference of only a half circumference. *
  • FIG. 8A is a perspective view of a conventional oil separation plate 700 different from FIG. 7A.
  • FIG. 8B is a developed circumferential sectional view of FIG. 8A.
  • the conventional oil separation plate 700 is provided with two fan-shaped inclined plates 702 that gradually lower along the rotation direction of the electric motor unit 2 so as to surround the drive shaft 23 (not shown). It is fixed to the upper surface of a cylinder 31 (not shown).
  • FIG. 9A is a perspective view of a conventional oil separation plate 800 different from FIGS. 7A and 8A.
  • 9B is a developed sectional view in the circumferential direction of the oil separation plate shown in FIG. 9A.
  • the conventional oil separation plate 800 is provided with a plurality of vertical plates 803 radially along the outer edge of the upper surface of the cylinder 31, and one end of the vertical plate 803 is fixed to the upper surface of the cylinder 31.
  • the vertical plate 803 is effective for decelerating the gas flow speed that circulates in a space-saving manner, and is effective for suppressing the ripple of the oil level when the oil level of the lubricating oil 4 is high.
  • the vertical plate 803 is open above the vertical plate 803 like the oil separation plate 700, oil droplets are easily wound up in the gas flow.
  • the conventional oil separation plate 600, oil separation plate 700, and oil separation plate 800 are all inclined plates, and only one end of the vertical plate 803 is fixed in the sealed container 1, and both ends are not fixed. For this reason, the inclined portion 101a and the inclined portion 101b are damaged by the vibration during operation of the compressor, or noise is generated.
  • the oil separation plate 100 of the compressor 80 according to the first embodiment has both ends fixed, specifically, the flat portion 102a and the flat portion 102b are fixed with the screws 50, so that damage is suppressed. In addition, noise can be suppressed.
  • the compressor 80 according to the first embodiment has a plurality of inclined portions (inclined portions 101a and 101b) in which the oil separation plate 100 is inclined in a preset direction. For this reason, since the lubricating oil can be moved downward from the gas in the upper space A1 within a range close to the entire circumference of the oil separating plate 100, the lubricating oil is efficiently separated from the mixed gas containing the refrigerant and the lubricating oil. can do. That is, the compressor 80 according to the first embodiment can efficiently separate the lubricating oil, and the recoverability of the lubricating oil is improved.
  • the compressor 80 according to the first embodiment is connected to the upper end side of each inclined portion (inclined portion 101a and inclined portion 101b) and extends downward from the upper end of each inclined portion (inclined portion 101a and inclined portion 101b).
  • the plurality of standing portions (the standing portion 103a and the standing portion 103b) formed as described above. For this reason, when the mixed gas containing the lubricating oil and the refrigerant collides with the upright portion 103a and the upright portion 103b, the mixed gas is decelerated and then flows under the inclined portion 101a and the inclined portion 101b from the side surface of the oil separation plate 100.
  • the compressor 80 can efficiently separate the lubricating oil from the mixed gas containing the refrigerant and the lubricating oil.
  • the oil separation plate 100 of the compressor 80 includes the standing portion 103a, the standing portion 103b, the inclined portion 101a, the inclined portion 101b, the flat portion 102a, and the flat portion 102b, and is not interrupted. Thus, it is configured in a ring shape. Therefore, the oil separation plate 100 has an oil droplet layer containing a lot of oil droplets floating in the lower space A2 of the oil separation plate 100 and a gas refrigerant layer containing a lot of gas refrigerant swirling in the upper space A1 because there is no interruption. The area of the interface can be reduced.
  • the oil separating plate 100 functions as a fluid resistance even if the lubricating oil 4 is foamed at the time of starting the compressor 80, for example, and prevents the lubricating oil from being taken out of the sealed container 1. Can do. Thereby, the oil separation plate 100 of the compressor 80 according to the first embodiment can suppress the depletion of the lubricating oil 4 stored at the bottom in the sealed container 1.
  • the oil separation plate 100 of the compressor 80 according to the first embodiment is fixed at both ends, specifically, the flat portion 102a and the flat portion 102b are fixed with screws 50. For this reason, even if vibration etc. generate
  • Embodiment 2 The shape of the standing portion of the oil separation plate is not limited to the shape of the first embodiment as long as it forms a ring shape continuously with the inclined portion.
  • the same reference numerals are given to the same parts as those in the first embodiment, and only the parts different from the first embodiment will be described.
  • FIG. 10A is a perspective view showing an oil separation plate 200 according to the second embodiment
  • FIG. 10B is a developed sectional view in the circumferential direction of the oil separation plate shown in FIG. 10A.
  • the oil separation plate 200 according to Embodiment 2 is provided with through holes 204a and 204b in the standing portion 103a and the standing portion 103b.
  • the gas flow (V2) colliding with the lower portions of the standing portion 103a and the standing portion 103b is decelerated and inclined from the side surface 101a as in the first embodiment.
  • the gas flow (V1) colliding with the upper portion is made to flow under the inclined portion 101a and the inclined portion 101b from the through hole 204a and the through hole 204b.
  • the lower part of the standing part 103a and the standing part 103b prevents the oil surface from undulating and decelerates the gas flow, and the upper part of the standing part 103a and the standing part 103b generates an upward flow due to a collision. Since it can be suppressed, there is an overall effect that oil droplets are less scattered and oil outflow from the compressor 80 can be reduced.
  • the through hole 204a and the through hole 204b are formed has been described.
  • the present invention is not limited to this, and is formed by cutting part of the standing portion 103a and the standing portion 103b. Notched cuts may be used.
  • the compressor 80 according to the second embodiment can also obtain the same effects as the compressor 80 according to the first embodiment.
  • Embodiment 3 the shape of the standing portion of the oil separation plate is not limited to the shape of the first embodiment as long as it forms a ring shape continuously with the inclined portion.
  • the same reference numerals are given to the same parts as those in the first embodiment, and only the parts different from the first embodiment will be described.
  • FIG. 11A is a perspective view showing an oil separation plate 300 according to Embodiment 3
  • FIG. 11B is a developed sectional view in the circumferential direction of the oil separation plate shown in FIG. 11A.
  • the standing portion 303a and the standing portion 303b are inclined in the same direction as the inclined portion 101a and the inclined portion 101b.
  • the standing portion 303a is inclined so that the angle formed between the upper end of the inclined portion 101a is an acute angle
  • the standing portion 303b is formed between the upper end of the inclined portion 101b. It is inclined so that the angle is a sharp angle.
  • an oil return hole 305a and an oil return hole 305b are formed in the flat part 102a and the flat part 102b. Further, the cylinder 31 is formed with a through hole 31a that communicates the oil separation plate 300 side and the oil reservoir 1a side. For this reason, the lubricating oil that has passed through the oil return hole 305a and the oil return hole 305b is promptly collected in the oil reservoir 1a through the through hole 31a.
  • the gas refrigerant that has collided with the upper portions of the standing portion 103a and the standing portion 103b is caused to flow downward (V2) and flows into the inclined portion 101a and the inclined portion 101b from the side surface of the oil separation plate 300. Can be made.
  • the effects (rising prevention, reduction of gas flow rate) by the standing portions 303a and 303b were generated in the standing portions 303a and 303b while maintaining the same or better than the first embodiment.
  • the oil droplets can be prevented from scattering due to the upward flow, and the lubricating oil 4 can be separated from the mixed gas including the gas refrigerant and the lubricating oil 4 more efficiently than the first and second embodiments. Therefore, when the oil level of the lubricating oil 4 does not reach the oil return hole 305a and the oil return hole 305b, the gas refrigerant (W2) flows downward into the oil return hole 305a and the oil return hole 305b, and the oil droplets are directly applied. The oil return portion 305a and the oil return hole 305b can be dropped into the oil reservoir 1a, and the recoverability of the lubricating oil 4 is improved.
  • the compressor 80 according to the third embodiment can also obtain the same effects as the compressor 80 according to the first embodiment.
  • Embodiment 4 the oil separation plate is not limited to a configuration in which a single plate as in the first to third embodiments is bent and processed.
  • the oil separation plate 400 can be configured by assembling a plurality of parts as follows.
  • the same reference numerals are given to the same parts as those in the third embodiment, and only the parts different from the third embodiment will be described.
  • FIG. 12 is a perspective view showing an oil separation plate 400 according to the fourth embodiment.
  • the oil separation plate 400 is configured by combining parts having any of a plurality of inclined portions, a plurality of standing portions, and a plurality of flat portions, and has a divided configuration.
  • one component has the inclined portion 101a, the flat portion 102a, and the standing portion 303a
  • the other component has the inclined portion 101b, the flat portion 102b, and the standing portion 303b.
  • a through hole 51 is formed in the oil separation plate 400 so that the screw 50 can be passed therethrough.
  • the processing of inclining the standing portions 303a and 303b as in the third embodiment is facilitated, and the processing cost can be reduced. is there.
  • the compressor 80 according to the fourth embodiment can also obtain the same effects as the compressor 80 according to the first embodiment.

Abstract

A compressor comprises: a closed container having at the bottom thereof an oil sump for containing lubricating oil; an electric motor section having a stator provided within the closed container, the electric motor section also having a rotor disposed inside the stator and having a drive shaft connected thereto; a compression mechanism section which is provided within the closed container, is connected to the drive shaft, and compresses a refrigerant; and an annular oil separation plate provided within the closed container at a position between the electric motor section and the compression mechanism section. The oil separation plate has: a plurality of tilted sections tilted relative to the axial direction of the drive shaft; and a plurality of raised sections having upper ends each connected to the upper end of a tilted section, the plurality of raised sections also having lower ends each connected to the lower end of a tilted section different from the tilted section.

Description

圧縮機Compressor
 本発明は、圧縮機に関し、特に、潤滑油と混ざっている冷媒から潤滑油を分離する油分離板を備えた圧縮機に関するものである。 The present invention relates to a compressor, and more particularly to a compressor including an oil separation plate that separates lubricating oil from a refrigerant mixed with the lubricating oil.
 回転式圧縮機の1つであるロータリ圧縮機には、電動機の下部空間を上下に仕切るリング状の油分離板を密閉容器内に設けたものが提案されている(たとえば、特許文献1参照)。 A rotary compressor that is one of rotary compressors has been proposed in which a ring-shaped oil separation plate that divides a lower space of an electric motor up and down is provided in a sealed container (see, for example, Patent Document 1). .
 また、ロータリ圧縮機には、密閉容器内に配置された電動機の下部空間を上下に仕切るように配置されたリング状の油分離板を備えたものが提案されている(たとえば、特許文献2参照)。特許文献2に記載のロータリ圧縮機の油分離板は、油分離板の下端面の一部がシリンダー上に固定され、この固定された箇所が折り曲げられて傾斜面が形成されている。 In addition, a rotary compressor has been proposed that includes a ring-shaped oil separation plate that is arranged so as to partition a lower space of an electric motor arranged in an airtight container up and down (see, for example, Patent Document 2). ). In the oil separator plate of the rotary compressor described in Patent Document 2, a part of the lower end surface of the oil separator plate is fixed on the cylinder, and the fixed portion is bent to form an inclined surface.
特開昭61-87993号公報(第2頁9~13行及び第2図)JP-A-61-879993 (2nd page, lines 9 to 13 and FIG. 2) 特開2013-217281号公報(第5頁21~27行、第1図及び第図3)JP 2013-217281 A (page 5, lines 21 to 27, FIGS. 1 and 3)
 近年では、回転式圧縮機のインバータ化及び大容量化などにより冷媒の流量が多くなり、これに伴い密閉容器から外への潤滑油の持ち出し量が増加している。潤滑油が密閉容器外に持ち出されると、圧縮機内に設けられた摺動部品の潤滑が不十分になって、圧縮機の信頼性が低下したり、空調機の運転効率が低下したりする。このため、潤滑油が持ち出されないための油分離対策が各種行われている。 In recent years, the flow rate of refrigerant has increased due to the increase in capacity and capacity of rotary compressors, and the amount of lubricating oil taken out from sealed containers has increased accordingly. When the lubricating oil is taken out of the closed container, the sliding parts provided in the compressor are not sufficiently lubricated, so that the reliability of the compressor is lowered and the operating efficiency of the air conditioner is lowered. For this reason, various oil separation measures are taken to prevent the lubricating oil from being taken out.
 一般的に、密閉容器内には回転子及び固定子を備えた電動機が設置されている。そして、回転子が回転することで密閉容器内には旋回流が形成されている。特許文献1に記載のロータリ圧縮機の油分離板は、平板状部材であるため、旋回する冷媒及び潤滑油から、効率的に潤滑油を分離しにくいという課題がある。 Generally, an electric motor having a rotor and a stator is installed in a sealed container. A rotating flow is formed in the sealed container by the rotation of the rotor. Since the oil separation plate of the rotary compressor described in Patent Document 1 is a flat plate member, there is a problem that it is difficult to efficiently separate the lubricating oil from the swirling refrigerant and the lubricating oil.
 特許文献2に記載のロータリ圧縮機は、下端面の一部をシリンダー上に固定した環状の油分離板を備えたものである。このため、この油分離板は、下端面から上側に傾斜した第1の傾斜面と、この傾斜面の頂点から下側に傾斜する第2の傾斜面とが形成された態様となっている。
 このため、密閉容器内を旋回する冷媒及び潤滑油は、第1の傾斜面及び第2の傾斜面のうちの一方の下面に衝突して、潤滑油が分離される。しかし、第1の傾斜面及び第2の傾斜面の他方については、密閉容器内を旋回する冷媒及び潤滑油が、上面に衝突することになる。したがって、特許文献2に記載のロータリ圧縮機では、第1の傾斜面及び第2の傾斜面のうちの一方しか潤滑油の分離に寄与させることができず、効率的に潤滑油を分離しにくいという課題がある。
The rotary compressor described in Patent Document 2 includes an annular oil separation plate in which a part of the lower end surface is fixed on a cylinder. For this reason, this oil separation plate has a form in which a first inclined surface inclined upward from the lower end surface and a second inclined surface inclined downward from the apex of the inclined surface are formed.
For this reason, the refrigerant and the lubricating oil swirling in the sealed container collide with one lower surface of the first inclined surface and the second inclined surface, and the lubricating oil is separated. However, with respect to the other of the first inclined surface and the second inclined surface, the refrigerant and the lubricating oil swirling in the sealed container collide with the upper surface. Therefore, in the rotary compressor described in Patent Document 2, only one of the first inclined surface and the second inclined surface can contribute to the separation of the lubricating oil, and it is difficult to efficiently separate the lubricating oil. There is a problem.
 本発明は、上記のような課題を解決するためになされたもので、冷媒及び潤滑油を含むガスから、潤滑油を効率的に分離することができる圧縮機を得ることを目的としている。 The present invention has been made in order to solve the above-described problems, and an object of the present invention is to obtain a compressor capable of efficiently separating lubricating oil from a gas containing refrigerant and lubricating oil.
 本発明に係る圧縮機は、底部に潤滑油を貯留する油貯留部を有する密閉容器と、密閉容器内に設けられた固定子、及び固定子の内側に配置され、駆動軸が接続された回転子を有する電動機部と、 密閉容器内に設けられ、駆動軸に接続され、冷媒を圧縮する圧縮機構部と、密閉容器内であって電動機部と圧縮機構部との間に設けられた環状の油分離板と、を備え、油分離板は、駆動軸の軸方向に対して傾斜する複数の傾斜部と、上端が傾斜部の上端に接続され、下端が当該傾斜部とは異なる傾斜部の下端に接続されている複数の立設部とを有するものである。 A compressor according to the present invention includes a hermetic container having an oil reservoir for storing lubricating oil at the bottom, a stator provided in the hermetic container, and a rotation disposed inside the stator and connected to a drive shaft. An electric motor unit having a child, a compression mechanism unit that is provided in the closed container and connected to the drive shaft, and compresses the refrigerant, and an annular member provided in the sealed container between the electric motor unit and the compression mechanism unit. An oil separation plate, the oil separation plate having a plurality of inclined portions inclined with respect to the axial direction of the drive shaft, an upper end connected to an upper end of the inclined portion, and a lower end having an inclined portion different from the inclined portion. And a plurality of standing portions connected to the lower end.
 本発明に係るロータリ圧縮機によれば、上記構成を有しているので、冷媒及び潤滑油を含むガスから、潤滑油を効率的に分離することができる圧縮機を得ることを目的としている。 Since the rotary compressor according to the present invention has the above-described configuration, it is an object of the present invention to obtain a compressor capable of efficiently separating lubricating oil from a gas containing refrigerant and lubricating oil.
本発明の実施の形態1に係る圧縮機の全体構成を示す縦断面図である。It is a longitudinal cross-sectional view which shows the whole structure of the compressor which concerns on Embodiment 1 of this invention. 図1の密閉容器の下部を拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands and shows the lower part of the airtight container of FIG. 図1の密閉容器の中央部を拡大して示す縦断面図である。It is a longitudinal cross-sectional view which expands and shows the center part of the airtight container of FIG. 本発明の実施の形態1に係る油分離板の斜視図である。It is a perspective view of the oil separation board concerning Embodiment 1 of the present invention. 本発明の実施の形態1に係る油分離板の周方向展開断面図である。FIG. 3 is a developed circumferential sectional view of an oil separation plate according to Embodiment 1 of the present invention. 従来の油分離板を電動機下の空間Aに備えた圧縮機の要部断面図である。It is principal part sectional drawing of the compressor provided with the conventional oil separation board in the space A under an electric motor. 図6に示す従来の油分離板の斜視図である。It is a perspective view of the conventional oil separation board shown in FIG. 図7Aに示す従来の油分離板の周方向展開断面図である。7B is a developed sectional view in the circumferential direction of the conventional oil separation plate shown in FIG. 7A. FIG. 図7Aとは異なる従来の油分離板の斜視図である。It is a perspective view of the conventional oil separation board different from FIG. 7A. 図8Aの周方向展開断面図である。It is a circumferential direction expanded sectional view of Drawing 8A. 図7A及び図8Aとは異なる従来の油分離板の斜視図である。It is a perspective view of the conventional oil separation board different from FIG. 7A and FIG. 8A. 図9Aに示す油分離板の周方向展開断面図である。FIG. 9B is a developed sectional view in the circumferential direction of the oil separation plate shown in FIG. 9A. 本発明の実施の形態2に係る油分離板の斜視図である。It is a perspective view of the oil separation board concerning Embodiment 2 of the present invention. 本発明の実施の形態2に係る油分離板の周方向展開断面図である。It is a circumferential direction expanded sectional view of an oil separation board concerning Embodiment 2 of the present invention. 本発明の実施の形態3に係る油分離板の斜視図である。It is a perspective view of the oil separation board which concerns on Embodiment 3 of this invention. 本発明の実施の形態3に係る油分離板の周方向展開断面図である。It is a circumferential direction expanded sectional view of an oil separation board concerning Embodiment 3 of the present invention. 本発明の実施の形態4に係る油分離板の斜視図である。It is a perspective view of the oil separation board which concerns on Embodiment 4 of this invention.
 以下、本発明に係る圧縮機の実施の形態について、図面を参照しながら説明する。なお、以下に説明する実施の形態によって本発明が限定されるものではない。また、図1を含め、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。 Hereinafter, embodiments of a compressor according to the present invention will be described with reference to the drawings. The present invention is not limited to the embodiments described below. Moreover, in the following drawings including FIG. 1, the relationship of the size of each component may be different from the actual one.
実施の形態1.
 図1は本実施の形態1に係る圧縮機80の全体構成を示す縦断面図である。図2は、図1の密閉容器1の下部を拡大して示す縦断面図である。図3は、図1の密閉容器1の中央部を拡大して示す縦断面図である。図4は、本実施の形態1に係る油分離板100の斜視図である。
Embodiment 1 FIG.
FIG. 1 is a longitudinal sectional view showing an overall configuration of a compressor 80 according to the first embodiment. FIG. 2 is an enlarged longitudinal sectional view showing the lower part of the sealed container 1 of FIG. FIG. 3 is an enlarged longitudinal sectional view showing the central portion of the sealed container 1 of FIG. FIG. 4 is a perspective view of the oil separation plate 100 according to the first embodiment.
[構成説明]
 本実施の形態1の圧縮機80は、たとえば図1に示すように、底部に潤滑油4を貯留する油貯留部1aを有する密閉容器1を備えている。この密閉容器1の内部には、電動機部2及び電動機部2に駆動される圧縮機構部3が設置されている。密閉容器1は、たとえば、円筒形状の中央容器11と、中央容器11の上下の各開口内に密閉状態で嵌入された上容器12及び下容器13とで構成されている。中央容器11には、サクションマフラ5が取り付けられた吸入管6が接続されており、上容器12には、吐出管7が接続されている。吸入管6は、サクションマフラ5を介して流入するガス冷媒(低温低圧)を圧縮機構部3内に送り込むための接続管である。吐出管7は、圧縮機構部3によって圧縮された密閉容器1内のガス冷媒(高温高圧)を冷媒配管に流入させるための接続管である。
[Description of configuration]
For example, as shown in FIG. 1, the compressor 80 according to the first embodiment includes a hermetic container 1 having an oil reservoir 1 a that stores the lubricating oil 4 at the bottom. Inside the hermetic container 1, an electric motor unit 2 and a compression mechanism unit 3 driven by the electric motor unit 2 are installed. The sealed container 1 includes, for example, a cylindrical central container 11 and an upper container 12 and a lower container 13 that are fitted in the upper and lower openings of the central container 11 in a sealed state. A suction pipe 6 to which a suction muffler 5 is attached is connected to the central container 11, and a discharge pipe 7 is connected to the upper container 12. The suction pipe 6 is a connection pipe for sending the gas refrigerant (low temperature and low pressure) flowing through the suction muffler 5 into the compression mechanism unit 3. The discharge pipe 7 is a connection pipe for allowing the gas refrigerant (high temperature and high pressure) in the sealed container 1 compressed by the compression mechanism unit 3 to flow into the refrigerant pipe.
 電動機部2は、密閉容器1内に設けられた固定子21、及び固定子21の内側に配置され、駆動軸23が接続された回転自在の回転子22を備えている。固定子21は、中央容器11の内周面に固定されている。回転子22は、その外周面が、固定子21の内周面と予め設定された間隔をあけて対向して設けられている。回転子22には、下方に延びる駆動軸23が接続されている。駆動軸23は、後述する上部軸受34及び下部軸受35により回転自在に支持され、回転子22と共に回転する。また、駆動軸23の軸心部には、密閉容器1の底部側に開口した油吸込み穴23aが設けられ、その油吸込み穴23a内には螺旋状の遠心ポンプ23bが設けられている。 The electric motor unit 2 includes a stator 21 provided in the hermetic container 1, and a rotatable rotor 22 disposed inside the stator 21 and connected to a drive shaft 23. The stator 21 is fixed to the inner peripheral surface of the central container 11. The outer surface of the rotor 22 is provided to face the inner surface of the stator 21 with a predetermined interval. A drive shaft 23 that extends downward is connected to the rotor 22. The drive shaft 23 is rotatably supported by an upper bearing 34 and a lower bearing 35 which will be described later, and rotates together with the rotor 22. In addition, an oil suction hole 23a opened on the bottom side of the sealed container 1 is provided in the shaft center portion of the drive shaft 23, and a spiral centrifugal pump 23b is provided in the oil suction hole 23a.
 給油管40は、図2に示すように、一端部に設けられた平面部40aが下部軸受35と下部マフラ37の間に駆動軸23と隙間を有して固定されている。すなわち、給油管40は、駆動軸23に設けられた油吸込み穴23aと間隙を有して連結された状態のため非回転となっている。駆動軸23と共に遠心ポンプ23bが回転すると、潤滑油4が矢印Zのように給油管40内に吸引され、油吸込み穴23aから上方へ吸い上げられる。給油管40の径は、電動機部2の高速回転時に最適な給油が行えるように、調整されている。すなわち、給油管40の径は、駆動軸23内に設けられた油吸込み穴23aより小径となっている。これにより、圧縮機構部3の潤滑性を維持したまま密閉容器1内の空間A、及び電動機部2の上部などへの潤滑油4の持ち出しを最低限にすることができ、これに伴い密閉容器1内の底部に貯留できる潤滑油4の量を多くすることができる。 As shown in FIG. 2, the oil supply pipe 40 has a flat portion 40 a provided at one end thereof fixed between the lower bearing 35 and the lower muffler 37 with a gap with the drive shaft 23. That is, the oil supply pipe 40 is not rotated because it is connected to the oil suction hole 23 a provided in the drive shaft 23 with a gap. When the centrifugal pump 23b rotates together with the drive shaft 23, the lubricating oil 4 is sucked into the oil supply pipe 40 as indicated by the arrow Z and sucked upward from the oil suction hole 23a. The diameter of the oil supply pipe 40 is adjusted so that optimum oil supply can be performed when the electric motor unit 2 rotates at high speed. That is, the diameter of the oil supply pipe 40 is smaller than the oil suction hole 23 a provided in the drive shaft 23. As a result, it is possible to minimize the carry-out of the lubricating oil 4 to the space A in the sealed container 1 and the upper part of the electric motor unit 2 while maintaining the lubricity of the compression mechanism section 3. The amount of the lubricating oil 4 that can be stored at the bottom in 1 can be increased.
 圧縮機構部3は、たとえばロータリ式で、電動機部2の下部に空間Aを有して中央容器11に固定されている。本実施の形態1では、圧縮機構部3が、ロータリ式である場合を一例に説明する。圧縮機構部3は、密閉容器1内に設けられ、駆動軸23に接続され、冷媒を圧縮する機能を有している。圧縮機構部3は、円筒形状のシリンダー31と、ピストン32と、ベーン33と、上部軸受34と、下部軸受35とを備えている。また、上部軸受34には上部マフラ36が、下部軸受35には下部マフラ37がそれぞれ設けられている。また、圧縮機構部3の下部には、下部マフラ37を貫通して下方に延びる給油管40が設けられている。 The compression mechanism unit 3 is, for example, a rotary type, and has a space A below the electric motor unit 2 and is fixed to the central container 11. In the first embodiment, a case where the compression mechanism unit 3 is a rotary type will be described as an example. The compression mechanism part 3 is provided in the airtight container 1, is connected to the drive shaft 23, and has a function which compresses a refrigerant | coolant. The compression mechanism unit 3 includes a cylindrical cylinder 31, a piston 32, a vane 33, an upper bearing 34, and a lower bearing 35. The upper bearing 34 is provided with an upper muffler 36, and the lower bearing 35 is provided with a lower muffler 37. In addition, an oil supply pipe 40 that extends downward through the lower muffler 37 is provided at the lower portion of the compression mechanism portion 3.
 シリンダー31は、その中心軸が駆動軸23の中心軸に対して偏心して配置されている。このシリンダー31には、前述した吸入管6が接続された吸入口38を有し、また、上部軸受34及び下部軸受35にそれぞれ設けられた吐出口34a及び吐出口35aとシリンダー31内とを連通する溝(図示せず)と、シリンダー31上部で分離された潤滑油4を油貯留部1aに返油するための貫通穴31aが設けられている。 The cylinder 31 has a central axis that is eccentric with respect to the central axis of the drive shaft 23. The cylinder 31 has a suction port 38 to which the suction pipe 6 described above is connected, and the discharge port 34a and the discharge port 35a provided in the upper bearing 34 and the lower bearing 35, respectively, communicate with the inside of the cylinder 31. And a through hole 31a for returning the lubricating oil 4 separated at the top of the cylinder 31 to the oil reservoir 1a.
 ピストン32は、駆動軸23の中心軸と同軸線上にあり、駆動軸23と共に回転するように、駆動軸23に嵌合されている。また、ピストン32には、ベーン33が摺動自在に収納されている。前述した上部軸受34及び下部軸受35の円板部は、シリンダー31の上下の両端面を閉塞している。上述の吐出口34a及び吐出口35aは、上部軸受34及び下部軸受35の円板部に形成されている。つまり、圧縮機構部3は、電動機部2に駆動軸23を介して連結されており、電動機部2の駆動力が駆動軸23を介して圧縮機構部3に伝達されることで、ガス冷媒を圧縮する構成となっている。 The piston 32 is coaxial with the central axis of the drive shaft 23 and is fitted to the drive shaft 23 so as to rotate together with the drive shaft 23. A vane 33 is slidably accommodated in the piston 32. The disk portions of the upper bearing 34 and the lower bearing 35 described above close the upper and lower end surfaces of the cylinder 31. The discharge port 34 a and the discharge port 35 a described above are formed in the disk portions of the upper bearing 34 and the lower bearing 35. That is, the compression mechanism unit 3 is connected to the electric motor unit 2 via the drive shaft 23, and the driving force of the electric motor unit 2 is transmitted to the compression mechanism unit 3 via the drive shaft 23, so that the gas refrigerant is It is configured to compress.
 上部マフラ36は、吐出口34aを覆うように、上部軸受34の円板部の上部、つまり圧縮機構部3の上部に設けられている。下部マフラ37は、吐出口35aを覆うように、下部軸受35の円板部の下部に設けられている。また、上部マフラ36には、マフラ吐出穴36aが形成されている。 The upper muffler 36 is provided on the upper part of the disk part of the upper bearing 34, that is, on the upper part of the compression mechanism part 3 so as to cover the discharge port 34 a. The lower muffler 37 is provided in the lower part of the disk part of the lower bearing 35 so that the discharge outlet 35a may be covered. A muffler discharge hole 36 a is formed in the upper muffler 36.
 密閉容器1内の底部(油貯留部1a)に貯留された潤滑油4は、駆動軸23と共に回転する遠心ポンプ23bにより、給油管40を介して油吸込み穴23a内へ吸い上げられる。そして、油吸込み穴23a内へ吸い上げられた潤滑油4は、上部給油口23cから上部軸受34と駆動軸23の間に流入すると共に、上部軸受34とピストン32の上面との間に流入する。また、潤滑油4は、下部給油口23dから下部軸受35と駆動軸23との間に流入すると共に、下部軸受35とピストン32の下面との間に流入する。潤滑油4の供給により、駆動軸23とピストン32が円滑に回転する。また、図示していないが、ベーン33の摺動が円滑に行われるように、ベーン33側にも潤滑油4が供給される。 The lubricating oil 4 stored in the bottom portion (oil storage portion 1a) in the hermetic container 1 is sucked into the oil suction hole 23a through the oil supply pipe 40 by the centrifugal pump 23b that rotates together with the drive shaft 23. The lubricating oil 4 sucked into the oil suction hole 23 a flows between the upper bearing 34 and the drive shaft 23 from the upper oil supply port 23 c and flows between the upper bearing 34 and the upper surface of the piston 32. Further, the lubricating oil 4 flows between the lower bearing 35 and the drive shaft 23 from the lower oil supply port 23 d and flows between the lower bearing 35 and the lower surface of the piston 32. By supplying the lubricating oil 4, the drive shaft 23 and the piston 32 rotate smoothly. Although not shown, the lubricating oil 4 is also supplied to the vane 33 side so that the vane 33 slides smoothly.
 密閉容器1内における電動機部2と圧縮機構部3との間の空間Aには、ガス冷媒及び潤滑油が混合されたガスから潤滑油を分離して密閉容器1内の底部に戻すのに利用される油分離板100が設けられている。この油分離板100は、図4に示すようにリング形状をしており、上部マフラ36の周囲を囲むように設置されている。そして、図3に示すように、電動機部2と圧縮機構部3との間の空間Aは、この油分離板100により、油分離板100の上部空間A1と油分離板100の下部空間A2とに仕切られている。 The space A between the electric motor unit 2 and the compression mechanism unit 3 in the sealed container 1 is used for separating the lubricating oil from the gas mixed with the gas refrigerant and the lubricating oil and returning it to the bottom in the sealed container 1. An oil separation plate 100 is provided. The oil separation plate 100 has a ring shape as shown in FIG. 4 and is installed so as to surround the upper muffler 36. As shown in FIG. 3, the space A between the electric motor unit 2 and the compression mechanism unit 3 is divided into an upper space A1 of the oil separation plate 100 and a lower space A2 of the oil separation plate 100 by the oil separation plate 100. It is divided into.
 油分離板100は、図4に示すように、一枚ものの板材で構成されている。つまり、油分離板100は、傾斜部101a、傾斜部101b、立設部103a、立設部103b、平坦部102a及び平坦部102bが一体形成されて構成されたものである。油分離板100は、多量の油滴が流出する上部マフラ36を囲むように設けられており、油分離効果が一層高いものとなっている。 The oil separation plate 100 is composed of a single plate material as shown in FIG. That is, the oil separation plate 100 is configured by integrally forming the inclined portion 101a, the inclined portion 101b, the standing portion 103a, the standing portion 103b, the flat portion 102a, and the flat portion 102b. The oil separation plate 100 is provided so as to surround the upper muffler 36 through which a large amount of oil droplets flow out, and has a higher oil separation effect.
 油分離板100は、図4に示すように、電動機部2の回転方向に沿って徐々に低くなる傾斜部101a及び傾斜部101bと、傾斜部101a及び傾斜部101bの間に設けられ、傾斜部101a及び傾斜部101bの両端をシリンダー31の上面にネジ締結される平坦部102a及び平坦部102bとを有している。また、油分離板100は、傾斜部101aの上辺と平坦部102bの一辺とを繋ぐ立設部103aと、傾斜部101bの上辺と平坦部102aの一辺とを繋ぐ立設部103bとを有している。 As shown in FIG. 4, the oil separation plate 100 is provided between the inclined portion 101 a and the inclined portion 101 b that gradually decrease along the rotation direction of the electric motor unit 2, and the inclined portion 101 a and the inclined portion 101 b. Both ends of 101a and the inclined portion 101b have a flat portion 102a and a flat portion 102b that are screwed to the upper surface of the cylinder 31. The oil separation plate 100 includes a standing portion 103a that connects the upper side of the inclined portion 101a and one side of the flat portion 102b, and a standing portion 103b that connects the upper side of the inclined portion 101b and one side of the flat portion 102a. ing.
 傾斜部101a及び傾斜部101bは、予め設定された方向に傾斜する傾斜面を有する円弧状部材である。傾斜部101a及び傾斜部101bの傾斜面は、駆動軸23の軸方向に対して傾斜している。また、傾斜部101a及び傾斜部101bの傾斜面は、駆動軸23の回転方向に沿うように傾斜している。すなわち、傾斜部101a及び傾斜部101bの傾斜面は、油分離板100の周方向の前側を進むしたがって、下側に傾斜している。本実施の形態1では、回転子22が反時計回りに回転するため、密閉容器1内のガスの流れも反時計回りとなる。このため、傾斜部101a及び傾斜部101bは、ガスの流れ方向に対応するように、反時計回りの周方向に傾斜した傾斜面を有している。 The inclined portion 101a and the inclined portion 101b are arc-shaped members having inclined surfaces that are inclined in a preset direction. The inclined surfaces of the inclined portion 101 a and the inclined portion 101 b are inclined with respect to the axial direction of the drive shaft 23. In addition, the inclined surfaces of the inclined portion 101 a and the inclined portion 101 b are inclined so as to follow the rotation direction of the drive shaft 23. In other words, the inclined surfaces of the inclined portion 101a and the inclined portion 101b are inclined downward as they travel forward in the circumferential direction of the oil separation plate 100. In the first embodiment, since the rotor 22 rotates counterclockwise, the gas flow in the sealed container 1 is also counterclockwise. For this reason, the inclined portion 101a and the inclined portion 101b have inclined surfaces inclined in the counterclockwise circumferential direction so as to correspond to the gas flow direction.
 平坦部102aは、一端が傾斜部101aの下端に接続され、他端が立設部103bの下端に接続されている。平坦部102aには、シリンダー31の上端面に平行な平坦面が形成されている。平坦部102bは、一端が傾斜部101bの下端に接続され、他端が立設部103aの下端に接続されている。平坦部102bには、シリンダー31の上端面に平行な平坦面が形成されている。平坦部102a及び平坦部102bには、固定部材であるネジ50が締結されており、シリンダー31の上端面に固定されている。つまり、油分離板100は、1カ所だけがシリンダー31に固定されているのではなく、油分離板100の中心を通る直線上の2カ所(平坦部102a及び平坦部102b)がシリンダー31に固定されている。なお、本実施の形態1では、油分離板100がネジで固定された態様について説明したが、それに限定されるものではなく、たとえばボルト、嵌合爪、接着剤などの固定部材を採用することもできる。 The flat portion 102a has one end connected to the lower end of the inclined portion 101a and the other end connected to the lower end of the standing portion 103b. A flat surface parallel to the upper end surface of the cylinder 31 is formed on the flat portion 102a. One end of the flat portion 102b is connected to the lower end of the inclined portion 101b, and the other end is connected to the lower end of the standing portion 103a. A flat surface parallel to the upper end surface of the cylinder 31 is formed on the flat portion 102b. A screw 50, which is a fixing member, is fastened to the flat portion 102a and the flat portion 102b, and is fixed to the upper end surface of the cylinder 31. That is, the oil separation plate 100 is not fixed to the cylinder 31 at only one location, but two locations on the straight line passing through the center of the oil separation plate 100 (flat portion 102a and flat portion 102b) are fixed to the cylinder 31. Has been. In the first embodiment, the aspect in which the oil separation plate 100 is fixed with a screw has been described. However, the present invention is not limited thereto, and for example, a fixing member such as a bolt, a fitting claw, or an adhesive is employed. You can also.
 立設部103aは、上端が傾斜部101aの上端に接続され、傾斜部101aとの接続位置から下側に延びるように形成されている。立設部103aは、平坦部102bに対して垂直に立ち上がるように形成された垂直面が形成されている。立設部103bは、上端が傾斜部101bの上端に接続され、下端が平坦部102aの他端に接続され、傾斜部101bとの接続位置から下側に延びるように形成されている。立設部103bは、平坦部102aに対して垂直に立ち上がるように形成された垂直面が形成されている。 The standing portion 103a is formed so that the upper end is connected to the upper end of the inclined portion 101a and extends downward from the connection position with the inclined portion 101a. The standing portion 103a has a vertical surface formed so as to rise perpendicularly to the flat portion 102b. The standing portion 103b is formed so that the upper end is connected to the upper end of the inclined portion 101b, the lower end is connected to the other end of the flat portion 102a, and extends downward from the connection position with the inclined portion 101b. The standing portion 103b has a vertical surface formed so as to rise perpendicularly to the flat portion 102a.
 ここで、傾斜部101aが第1の傾斜部に対応し、傾斜部101bが第2の傾斜部に対応する構成である。また、平坦部102aが第1の平坦部に対応し、平坦部102bが第2の平坦部に対応する構成である。さらに、立設部103aが第1の立設部に対応する構成であり、立設部103bが第2の立設部に対応する構成である。 Here, the inclined portion 101a corresponds to the first inclined portion, and the inclined portion 101b corresponds to the second inclined portion. The flat portion 102a corresponds to the first flat portion, and the flat portion 102b corresponds to the second flat portion. Further, the standing portion 103a has a configuration corresponding to the first standing portion, and the standing portion 103b has a configuration corresponding to the second standing portion.
 なお、本実施の形態1において、油分離板100は、傾斜部101aと傾斜部101bとの長さが同じ長さである態様について説明したが、それに限定されるものではなく、傾斜部101aの長さと傾斜部101bの長さが異なってもよい。平坦部102aの長さと平坦部102bの長さ、及び、立設部103aの長さと立設部103bの長さについても同様である。 In the first embodiment, the oil separation plate 100 has been described with respect to the aspect in which the inclined portion 101a and the inclined portion 101b have the same length. The length and the length of the inclined portion 101b may be different. The same applies to the length of the flat portion 102a and the length of the flat portion 102b, and the length of the standing portion 103a and the length of the standing portion 103b.
 また、本実施の形態1において、油分離板100は、傾斜部101aの傾斜面の傾斜角度と傾斜部101bの傾斜面の傾斜角度が同じである態様について説明したが、それに限定されるものではなく、異なっていてもよい。 In the first embodiment, the oil separation plate 100 has been described with respect to the aspect in which the inclination angle of the inclined surface of the inclined portion 101a is the same as the inclined angle of the inclined surface of the inclined portion 101b. However, the present invention is not limited to this. It may be different.
 また、本実施の形態1において、油分離板100は、傾斜部101a及び傾斜部101bの計2つの傾斜面が形成された態様について説明したが、それに限定されるものではなく、3つ以上の傾斜面が形成された態様であってもよい。つまり、油分離板100には、3つ以上の傾斜部が形成されていてもよい。この場合には、油分離板に平坦部及び立設部を3つ以上形成すればよい。 Further, in the first embodiment, the oil separation plate 100 has been described with respect to the aspect in which the two inclined surfaces, that is, the inclined portion 101a and the inclined portion 101b, are formed. The aspect in which the inclined surface was formed may be sufficient. That is, the oil separation plate 100 may be formed with three or more inclined portions. In this case, three or more flat portions and upright portions may be formed on the oil separation plate.
 また、本実施の形態1において、油分離板100は、一定の傾斜角度を有する平面状の傾斜面を有する傾斜部101a及び傾斜部101bを備えた態様について説明したが、それに限定されるものではない。たとえば、傾斜部101a及び傾斜部101bは、曲面状に傾斜したものであってもよいし、波打っていてもよい。 Further, in the first embodiment, the oil separation plate 100 has been described with respect to the aspect including the inclined portion 101a and the inclined portion 101b having a flat inclined surface having a constant inclination angle, but the embodiment is not limited thereto. Absent. For example, the inclined portion 101a and the inclined portion 101b may be inclined in a curved surface shape or may be wavy.
 また、本実施の形態1において、油分離板100は、平面視形状が円環状である場合を一例として説明したが、それに限定されるものではない。油分離板100は、平面視形状が、たとえば三角形、正方形などの多角形であってもよい。 Further, in the first embodiment, the oil separation plate 100 has been described as an example in which the planar view shape is an annular shape, but is not limited thereto. The oil separating plate 100 may have a polygonal shape such as a triangle or a square in plan view.
 さらに、本実施の形態1において、油分離板100が、平坦部102a及び平坦部102bを有する態様について説明したが、それに限定されるものではない。油分離板100が平坦部102a及び平坦部102bを有していなくてもよい。具体的には、油分離板100の立設部103aは、上端が傾斜部101aの上端に接続され、下端が傾斜部101aとは異なる傾斜部101bの下端に接続されており、立設部103bは、上端が傾斜部101bの上端に接続され、下端が傾斜部101bとは異なる傾斜部101aの下端に接続されていてもよい。 Furthermore, in Embodiment 1, the oil separation plate 100 has been described as having the flat portion 102a and the flat portion 102b. However, the present invention is not limited to this. The oil separation plate 100 may not have the flat portion 102a and the flat portion 102b. Specifically, the standing portion 103a of the oil separation plate 100 has an upper end connected to the upper end of the inclined portion 101a and a lower end connected to the lower end of the inclined portion 101b different from the inclined portion 101a. The upper end may be connected to the upper end of the inclined portion 101b, and the lower end may be connected to the lower end of the inclined portion 101a different from the inclined portion 101b.
[動作説明]
 次に、本実施の形態1の圧縮機80の動作について説明する。
 電動機部2の駆動により駆動軸23が回転すると、駆動軸23と共にシリンダー31内のピストン32も回転する。このピストン32の回転により、ピストン32に収納されたベーン33がピストン運動しながら偏心的に回転する。この時、ガス冷媒は、吸入管6を介して圧縮機構部3の吸入口38から、シリンダー31の内壁、ピストン32及びベーン33により囲まれた圧縮室内に入る。そして、圧縮室内のガス冷媒は、ピストン32の回転に伴って圧縮室内の容積が小さくなるにつれ圧縮されていく。この時、シリンダー31内に流入した潤滑油4もガス冷媒と共に圧縮され、ガス冷媒に混合された状態となる。
[Description of operation]
Next, the operation of the compressor 80 according to the first embodiment will be described.
When the drive shaft 23 is rotated by driving the electric motor unit 2, the piston 32 in the cylinder 31 is also rotated together with the drive shaft 23. The rotation of the piston 32 causes the vane 33 accommodated in the piston 32 to rotate eccentrically while moving the piston. At this time, the gas refrigerant enters the compression chamber surrounded by the inner wall of the cylinder 31, the piston 32, and the vane 33 from the suction port 38 of the compression mechanism unit 3 through the suction pipe 6. The gas refrigerant in the compression chamber is compressed as the volume in the compression chamber decreases as the piston 32 rotates. At this time, the lubricating oil 4 flowing into the cylinder 31 is also compressed together with the gas refrigerant and is mixed with the gas refrigerant.
 潤滑油4及びガス冷媒が混合しているガス(以下、混合ガスとも称する)は、シリンダー31内と連通する溝を介して、上部軸受34と下部軸受35にそれぞれ設けられた吐出口34a及び吐出口35aから上部マフラ36及び下部マフラ37の内部空間に流入する。下部マフラ37の内部空間に流入したガス冷媒は、下部軸受35、シリンダー31及び上部軸受34を貫通するガス穴(図示せず)を通って上部マフラ36の内部空間に導かれ、上部マフラ36内のガス冷媒と共にマフラ吐出穴36aから電動機部2と圧縮機構部3の間の空間Aに吐出される(矢印X1方向)。 A gas in which the lubricating oil 4 and the gas refrigerant are mixed (hereinafter also referred to as a mixed gas) passes through a groove communicating with the inside of the cylinder 31 and discharge ports 34a and discharge ports provided in the upper bearing 34 and the lower bearing 35, respectively. It flows into the inner space of the upper muffler 36 and the lower muffler 37 from the outlet 35a. The gas refrigerant that has flowed into the inner space of the lower muffler 37 is guided to the inner space of the upper muffler 36 through a gas hole (not shown) that penetrates the lower bearing 35, the cylinder 31, and the upper bearing 34. The gas refrigerant is discharged from the muffler discharge hole 36a into the space A between the electric motor unit 2 and the compression mechanism unit 3 (in the direction of the arrow X1).
 空間Aでは、電動機部2の回転子22の回転により旋回流が発生している。空間A内の混合ガスは旋回流に誘引されて、回転子22の回転方向へと流れ(矢印Y方向)、油分離板100の傾斜部101a、101bの上面及び下面、立設部103a及び立設部103bなどに接触しながら上部マフラ36の周囲を周回する。その後、混合ガスは、図3の矢印X2で示すように回転子22に設けられたガス穴22a、固定子21と回転子22との間のエアギャップ2aをそれぞれ通って密閉容器1内の上部に達し、吐出管7から密閉容器1の外へと吐出される。 In space A, a swirling flow is generated by the rotation of the rotor 22 of the electric motor unit 2. The mixed gas in the space A is attracted by the swirling flow and flows in the rotation direction of the rotor 22 (arrow Y direction), and the upper and lower surfaces of the inclined portions 101a and 101b of the oil separation plate 100, the standing portion 103a and the standing portion 103 It circulates around the upper muffler 36 while contacting the installation portion 103b and the like. Thereafter, the mixed gas passes through a gas hole 22a provided in the rotor 22 and an air gap 2a between the stator 21 and the rotor 22 as shown by an arrow X2 in FIG. And is discharged from the discharge pipe 7 to the outside of the sealed container 1.
 この時、混合ガス中の潤滑油4が油分離板100の傾斜部101a及び傾斜部101bの上下面に衝突、付着して、傾斜部101a及び傾斜部101bに沿って流れ、シリンダー31に設けた貫通穴31aから自重によって落下し(矢印Zの方向)、密閉容器1内の底部に設けた油貯留部1aに回収される。 At this time, the lubricating oil 4 in the mixed gas collides and adheres to the upper and lower surfaces of the inclined portion 101a and the inclined portion 101b of the oil separation plate 100, flows along the inclined portion 101a and the inclined portion 101b, and is provided in the cylinder 31. It falls from the through hole 31a by its own weight (in the direction of arrow Z) and is collected in the oil reservoir 1a provided at the bottom of the sealed container 1.
 傾斜部101a及び傾斜部101bの上面と下面のうち、下面側で多くの潤滑油4が混合ガスから分離される。これは、混合ガスが密閉容器1内を周回した際に、混合ガスが傾斜部101a及び傾斜部101bの下面で下向きに流れるように傾斜させているためである。 Of the upper and lower surfaces of the inclined portion 101a and the inclined portion 101b, a large amount of the lubricating oil 4 is separated from the mixed gas on the lower surface side. This is because when the mixed gas circulates in the sealed container 1, the mixed gas is inclined so as to flow downward on the lower surfaces of the inclined portion 101 a and the inclined portion 101 b.
[油分離板100について]
 本実施の形態1に係る圧縮機80の油分離板100は、傾斜部101a及び傾斜部101bを有するため、混合ガスから、潤滑油を効率的に分離することができる構成となっている。以下ではその動作について詳しく説明する。図5は、本実施の形態の油分離板100を周方向に展開した断面図である。図5において破線はガスの流れを示す。
[About oil separation plate 100]
Since the oil separation plate 100 of the compressor 80 according to the first embodiment includes the inclined portion 101a and the inclined portion 101b, the oil separation plate 100 can efficiently separate the lubricating oil from the mixed gas. Hereinafter, the operation will be described in detail. FIG. 5 is a cross-sectional view of the oil separation plate 100 of the present embodiment developed in the circumferential direction. In FIG. 5, the broken line indicates the gas flow.
 図5に示すように、傾斜部101a及び傾斜部101b下に流入するガスの一部(U3破線矢印)は、立設部103a及び立設部103bに衝突する。一部のガスは上昇し(U1)、他部のガスは減速されて油分離板100の側面から傾斜部101a及び傾斜部101bの下に流入する(U2)。このとき、他部のガスには潤滑油が含まれており、潤滑油は、立設部103aの下面及び立設部103bの下面に衝突することで減速して重力落下し、混合ガスから分離されることになる。なお、重力落下した潤滑油は、油貯留部1aにて回収される。ガス冷媒及び重力落下しなかった潤滑油4は、油分離板100の側面から流出する(U4)。 As shown in FIG. 5, a part of the gas (U3 broken line arrow) flowing under the inclined portion 101a and the inclined portion 101b collides with the standing portion 103a and the standing portion 103b. A part of the gas rises (U1), and the other part of the gas is decelerated and flows from the side surface of the oil separation plate 100 under the inclined part 101a and the inclined part 101b (U2). At this time, the other part of the gas contains lubricating oil, and the lubricating oil collides with the lower surface of the erected portion 103a and the lower surface of the erected portion 103b, decelerates and drops by gravity, and is separated from the mixed gas. Will be. Note that the lubricating oil that has dropped by gravity is collected by the oil reservoir 1a. The gas refrigerant and the lubricating oil 4 that has not fallen due to gravity flow out from the side surface of the oil separation plate 100 (U4).
 油分離板100は、立設部103a及び立設部103bと傾斜部101a及び傾斜部101bと平坦部102a及び平坦部102bとを有し、途切れがないようにリング状に構成されたものである。したがって、油分離板100は、途切れがない分、油分離板100の下部空間A2を浮遊する潤滑油が多く含まれる油滴層と、上部空間A1を旋回するガス冷媒が多く含まれるガス冷媒層との界面の面積を小さくすることができ、上部空間A1に油滴が流出しにくくなっている。 The oil separation plate 100 has a standing portion 103a, a standing portion 103b, an inclined portion 101a, an inclined portion 101b, a flat portion 102a, and a flat portion 102b, and is configured in a ring shape so as not to be interrupted. . Accordingly, the oil separator plate 100 has an oil droplet layer containing a large amount of lubricating oil floating in the lower space A2 of the oil separator plate 100 and a gas refrigerant layer containing a large amount of gas refrigerant swirling in the upper space A1 because there is no interruption. The area of the interface can be reduced, and oil droplets are unlikely to flow out into the upper space A1.
 潤滑油4の油面は、油分離板100の近くまで達する場合がある。この場合のように、潤滑油4の油面が上昇すると、その分、油面から回転子22までの距離が近くなる。すると、回転子22の回転によって形成されるガス流(旋回流)の影響を受けやすくなる。つまり、回転子22の回転によって形成されるガス流によって、潤滑油4の油面が乱されやすくなる。潤滑油4の油面が乱されると油滴が発生し、この油滴がガス流によって巻き上げられ、吐出管7を介して密閉容器1から流れ出してしまう。
 また、潤滑油4の油面が上昇すると、その分、潤滑油4の油面から吐出管7までの距離も近くなる。したがって、ガス流によって巻き上げられた油滴が、密閉容器1から流れ出しやすくなる。
 しかし、油分離板100は、立設部103a及び立設部103bを有している。このため、油分離板100は、効率的にガスを減速させることができる。したがって、潤滑油4の油面が乱されにくくなっており、油滴の発生が抑制される。このため、潤滑油4の油面は、油分離板100の近くまで達する場合であっても、潤滑油4が密閉容器1から流れ出してしまうことを高効率に抑制することができる。
The oil level of the lubricating oil 4 may reach close to the oil separation plate 100. As in this case, when the oil level of the lubricating oil 4 rises, the distance from the oil level to the rotor 22 decreases accordingly. Then, it becomes easy to be influenced by the gas flow (swirl flow) formed by the rotation of the rotor 22. That is, the oil surface of the lubricating oil 4 is easily disturbed by the gas flow formed by the rotation of the rotor 22. When the oil surface of the lubricating oil 4 is disturbed, oil droplets are generated, and the oil droplets are wound up by the gas flow and flow out of the sealed container 1 through the discharge pipe 7.
Further, when the oil level of the lubricating oil 4 rises, the distance from the oil level of the lubricating oil 4 to the discharge pipe 7 decreases accordingly. Therefore, the oil droplets wound up by the gas flow can easily flow out of the sealed container 1.
However, the oil separation plate 100 has a standing portion 103a and a standing portion 103b. For this reason, the oil separation plate 100 can decelerate the gas efficiently. Therefore, the oil surface of the lubricating oil 4 is not easily disturbed, and the generation of oil droplets is suppressed. For this reason, even if the oil level of the lubricating oil 4 reaches the vicinity of the oil separation plate 100, it is possible to suppress the lubricating oil 4 from flowing out of the sealed container 1 with high efficiency.
 また、油分離板100は、予め設定された方向に傾斜している傾斜部101a及び傾斜部101bを有している。このため、油分離板100の全周に近い範囲で、上部空間A1のガスから潤滑油を下方に移動させることができる。 Also, the oil separation plate 100 has an inclined portion 101a and an inclined portion 101b that are inclined in a preset direction. For this reason, the lubricating oil can be moved downward from the gas in the upper space A <b> 1 within a range close to the entire circumference of the oil separation plate 100.
[従来の油分離板との比較について]
 次に、従来の油分離板と本実施の形態の動作の違いを説明する。図6は、従来の油分離板600を電動機下の空間Aに備えた圧縮機60の要部断面図である。図7Aは、図6に示す従来の油分離板600の斜視図である。図7Bは、図7Aに示す従来の油分離板600の周方向展開断面図である。
[Comparison with conventional oil separator]
Next, the difference in operation between the conventional oil separation plate and the present embodiment will be described. FIG. 6 is a cross-sectional view of a main part of a compressor 60 provided with a conventional oil separation plate 600 in a space A under the electric motor. FIG. 7A is a perspective view of the conventional oil separation plate 600 shown in FIG. FIG. 7B is a developed sectional view in the circumferential direction of the conventional oil separation plate 600 shown in FIG. 7A.
 従来の油分離板600はリング状の板の一側端を折り曲げて、平坦部602と傾斜部601を構成し、平坦部602がネジ50により締結されている。図7Bで示すように、油分離板600は、平坦部602から半周進んだところで傾斜の方向が変化し、Y方向に沿って高くなる傾斜部601bと回転方向に沿って低くなる傾斜部601aで構成される。すなわち、本実施の形態1に係る圧縮機80の油分離板100では、より多くの潤滑油4が混合ガスから分離されるように、傾斜部101a及び傾斜部101bを全周に近い範囲で設けているのに対し、従来の油分離板600は半周分のみとなっている違いがある。  A conventional oil separation plate 600 is formed by bending one side end of a ring-shaped plate to form a flat portion 602 and an inclined portion 601, and the flat portion 602 is fastened by a screw 50. As shown in FIG. 7B, the oil separation plate 600 has an inclined portion 601b that increases along the Y direction and an inclined portion 601a that decreases along the rotational direction. Composed. That is, in the oil separation plate 100 of the compressor 80 according to the first embodiment, the inclined portion 101a and the inclined portion 101b are provided in a range close to the entire circumference so that more lubricating oil 4 is separated from the mixed gas. On the other hand, the conventional oil separation plate 600 has a difference of only a half circumference. *
 図8Aは、図7Aとは異なる従来の油分離板700の斜視図である。図8Bは、図8Aの周方向展開断面図である。従来の油分離板700は、電動機部2の回転方向に沿って徐々に低くなる扇状の傾斜板702が駆動軸23(図示省略)を囲むように2枚設けており、傾斜板702の一端がシリンダー31(図示省略)の上面に固定されている。 FIG. 8A is a perspective view of a conventional oil separation plate 700 different from FIG. 7A. FIG. 8B is a developed circumferential sectional view of FIG. 8A. The conventional oil separation plate 700 is provided with two fan-shaped inclined plates 702 that gradually lower along the rotation direction of the electric motor unit 2 so as to surround the drive shaft 23 (not shown). It is fixed to the upper surface of a cylinder 31 (not shown).
 本実施の形態1と同様に、油分離板700の全周にわたって配置された傾斜部701a及び傾斜部701bで、多くの潤滑油4が回収される。しかし、傾斜部701a、701b手前に立設部がなく、ガス流が減速されずに傾斜部701a及び傾斜部701b下に流入する。このため、油滴が重力落下しにくい。また、傾斜部701a及び傾斜部701bの一端が上部空間A1に開放されているので油滴が上方に飛散しやすくなっている。 As in the first embodiment, a large amount of the lubricating oil 4 is recovered by the inclined portion 701a and the inclined portion 701b arranged over the entire circumference of the oil separation plate 700. However, there are no standing portions in front of the inclined portions 701a and 701b, and the gas flow flows under the inclined portions 701a and 701b without being decelerated. For this reason, it is difficult for oil droplets to fall by gravity. In addition, since one end of the inclined portion 701a and the inclined portion 701b is open to the upper space A1, oil droplets are easily scattered upward.
 図9Aは、図7A及び図8Aとは異なる従来の油分離板800の斜視図である。図9Bは、図9Aに示す油分離板の周方向展開断面図である。従来の油分離板800は、シリンダー31上面の外縁に沿って放射状に垂直板803を複数設けており、垂直板803の一端はシリンダー31の上面に固定されている。 FIG. 9A is a perspective view of a conventional oil separation plate 800 different from FIGS. 7A and 8A. 9B is a developed sectional view in the circumferential direction of the oil separation plate shown in FIG. 9A. The conventional oil separation plate 800 is provided with a plurality of vertical plates 803 radially along the outer edge of the upper surface of the cylinder 31, and one end of the vertical plate 803 is fixed to the upper surface of the cylinder 31.
 垂直板803は、省スペースで周回するガス流速を減速させるのに有効であり、また、潤滑油4の油面が高い場合に油面の波立ちを抑えるのに有効である。しかし、垂直板803は、油分離板700と同様、垂直板803の上方が開放されているため、油滴がガス流に巻き上げられやすい。 The vertical plate 803 is effective for decelerating the gas flow speed that circulates in a space-saving manner, and is effective for suppressing the ripple of the oil level when the oil level of the lubricating oil 4 is high. However, since the vertical plate 803 is open above the vertical plate 803 like the oil separation plate 700, oil droplets are easily wound up in the gas flow.
 さらに、従来の油分離板600、油分離板700及び油分離板800はいずれも傾斜板、垂直板803の一端のみが密閉容器1内で固定され、両端が固定されていない。そのため、圧縮機運転中に振動によって傾斜部101a及び傾斜部101bが破損したり、騒音を発生したりする。それに対し、本実施の形態1に係る圧縮機80の油分離板100は、両端側が固定されている、具体的には平坦部102a及び平坦部102bがネジ50で固定されているので破損の抑制及び騒音の抑制をすることができる。 Further, the conventional oil separation plate 600, oil separation plate 700, and oil separation plate 800 are all inclined plates, and only one end of the vertical plate 803 is fixed in the sealed container 1, and both ends are not fixed. For this reason, the inclined portion 101a and the inclined portion 101b are damaged by the vibration during operation of the compressor, or noise is generated. On the other hand, the oil separation plate 100 of the compressor 80 according to the first embodiment has both ends fixed, specifically, the flat portion 102a and the flat portion 102b are fixed with the screws 50, so that damage is suppressed. In addition, noise can be suppressed.
[本実施の形態1に係る圧縮機80の有する効果]
 本実施の形態1に係る圧縮機80は、油分離板100が予め設定された方向に傾斜する複数の傾斜部(傾斜部101a及び傾斜部101b)を有している。このため、油分離板100の全周に近い範囲で、上部空間A1のガスから潤滑油を下方に移動させることができるため、冷媒及び潤滑油を含む混合ガスから、潤滑油を効率的に分離することができる。すなわち、本実施の形態1に係る圧縮機80は、潤滑油を効率的に分離することができ潤滑油の回収性が向上している。
[Effects of the compressor 80 according to the first embodiment]
The compressor 80 according to the first embodiment has a plurality of inclined portions ( inclined portions 101a and 101b) in which the oil separation plate 100 is inclined in a preset direction. For this reason, since the lubricating oil can be moved downward from the gas in the upper space A1 within a range close to the entire circumference of the oil separating plate 100, the lubricating oil is efficiently separated from the mixed gas containing the refrigerant and the lubricating oil. can do. That is, the compressor 80 according to the first embodiment can efficiently separate the lubricating oil, and the recoverability of the lubricating oil is improved.
 本実施の形態1に係る圧縮機80は、各傾斜部(傾斜部101a及び傾斜部101b)の上端側に接続され、各傾斜部(傾斜部101a及び傾斜部101b)の上端から下側に延びるように形成された複数の立設部(立設部103a及び立設部103b)を有する。 このため、潤滑油及び冷媒を含む混合ガスは、立設部103a及び立設部103bに衝突すると、減速してから油分離板100の側面から傾斜部101a及び傾斜部101bの下に流入する。すなわち、潤滑油は、立設部103aの下面及び立設部103bの下面に衝突することで減速するため、重力落下しやすくなり、その結果、混合ガスから分離されやすい。したがって、本実施の形態1に係る圧縮機80は、冷媒及び潤滑油を含む混合ガスから、潤滑油を効率的に分離することができる。 The compressor 80 according to the first embodiment is connected to the upper end side of each inclined portion (inclined portion 101a and inclined portion 101b) and extends downward from the upper end of each inclined portion (inclined portion 101a and inclined portion 101b). The plurality of standing portions (the standing portion 103a and the standing portion 103b) formed as described above. For this reason, when the mixed gas containing the lubricating oil and the refrigerant collides with the upright portion 103a and the upright portion 103b, the mixed gas is decelerated and then flows under the inclined portion 101a and the inclined portion 101b from the side surface of the oil separation plate 100. That is, since the lubricant is decelerated by colliding with the lower surface of the standing portion 103a and the lower surface of the standing portion 103b, the lubricating oil is easily dropped by gravity, and as a result, is easily separated from the mixed gas. Therefore, the compressor 80 according to the first embodiment can efficiently separate the lubricating oil from the mixed gas containing the refrigerant and the lubricating oil.
 本実施の形態1に係る圧縮機80の油分離板100は、立設部103a及び立設部103bと傾斜部101a及び傾斜部101bと平坦部102a及び平坦部102bとを有し、途切れがないようにリング状に構成されたものである。したがって、油分離板100は、途切れがない分、油分離板100の下部空間A2を浮遊する油滴が多く含まれる油滴層と、上部空間A1を旋回するガス冷媒が多く含まれるガス冷媒層との界面の面積を小さくすることができる。つまり、油分離板100は、たとえば圧縮機80の起動時などにおいて潤滑油4が発泡してしまっても、流体抵抗として働き、密閉容器1外に潤滑油が持ち出されてしまうことを抑制することができる。これにより、本実施の形態1に係る圧縮機80の油分離板100は、密閉容器1内の底部に貯留された潤滑油4の枯渇を抑制することができる。 The oil separation plate 100 of the compressor 80 according to the first embodiment includes the standing portion 103a, the standing portion 103b, the inclined portion 101a, the inclined portion 101b, the flat portion 102a, and the flat portion 102b, and is not interrupted. Thus, it is configured in a ring shape. Therefore, the oil separation plate 100 has an oil droplet layer containing a lot of oil droplets floating in the lower space A2 of the oil separation plate 100 and a gas refrigerant layer containing a lot of gas refrigerant swirling in the upper space A1 because there is no interruption. The area of the interface can be reduced. That is, the oil separating plate 100 functions as a fluid resistance even if the lubricating oil 4 is foamed at the time of starting the compressor 80, for example, and prevents the lubricating oil from being taken out of the sealed container 1. Can do. Thereby, the oil separation plate 100 of the compressor 80 according to the first embodiment can suppress the depletion of the lubricating oil 4 stored at the bottom in the sealed container 1.
 本実施の形態1に係る圧縮機80の油分離板100は、両端側が固定されている、具体的には平坦部102a及び平坦部102bがネジ50で固定されている。このため、圧縮機80において振動などが発生しても、油分離板100が破損してしまうことを抑制することができるとともに、騒音が発生してしまうことを抑制することができ、信頼性が向上している。 The oil separation plate 100 of the compressor 80 according to the first embodiment is fixed at both ends, specifically, the flat portion 102a and the flat portion 102b are fixed with screws 50. For this reason, even if vibration etc. generate | occur | produce in the compressor 80, while being able to suppress that the oil separation board 100 is damaged, it can suppress that noise generate | occur | produces and reliability is improved. It has improved.
実施の形態2.
 油分離板の立設部の形状は、傾斜部に連続してリング状をなしていれば、実施の形態1の形状に限定されるものではない。たとえば、以下のように油分離板を形成してもよい。なお、本実施の形態2においては、実施の形態1と同様の部分には同じ符号を付し、実施の形態1と異なる部分だけを説明する。
Embodiment 2. FIG.
The shape of the standing portion of the oil separation plate is not limited to the shape of the first embodiment as long as it forms a ring shape continuously with the inclined portion. For example, you may form an oil separation board as follows. In the second embodiment, the same reference numerals are given to the same parts as those in the first embodiment, and only the parts different from the first embodiment will be described.
 図10Aは、本実施の形態2に係る油分離板200を示す斜視図、図10Bは図10Aに示す油分離板の周方向展開断面図である。図10A、図10Bに示すように、本実施の形態2に係る油分離板200には、立設部103a及び立設部103bに貫通穴204a及び貫通穴204bを設けている。 FIG. 10A is a perspective view showing an oil separation plate 200 according to the second embodiment, and FIG. 10B is a developed sectional view in the circumferential direction of the oil separation plate shown in FIG. 10A. As shown in FIGS. 10A and 10B, the oil separation plate 200 according to Embodiment 2 is provided with through holes 204a and 204b in the standing portion 103a and the standing portion 103b.
 本実施の形態2においては、図10Bに示すように、立設部103a及び立設部103bの下部に衝突するガス流(V2)は実施の形態1と同様、減速させて側面から傾斜部101a及び傾斜部101bの下に流入させるが、上部に衝突するガス流(V1)については貫通穴204a及び貫通穴204bから傾斜部101a及び傾斜部101b下に流れ込ませるようにした。 In the second embodiment, as shown in FIG. 10B, the gas flow (V2) colliding with the lower portions of the standing portion 103a and the standing portion 103b is decelerated and inclined from the side surface 101a as in the first embodiment. The gas flow (V1) colliding with the upper portion is made to flow under the inclined portion 101a and the inclined portion 101b from the through hole 204a and the through hole 204b.
 本構成により、立設部103a及び立設部103bの下部では、油面の波立ち防止とガス流の減速を行い、立設部103a及び立設部103bの上部では、衝突による上昇流の発生を抑制できるので、総合的に油滴の飛散が少なく、圧縮機80からの油流出を低減できる効果がある。本実施の形態2では、貫通穴204a及び貫通穴204bを形成した態様について説明したが、これに限定されるものではなく、立設部103a及び立設部103bの一部をカットすることで形成した切欠を採用してもよい。 With this configuration, the lower part of the standing part 103a and the standing part 103b prevents the oil surface from undulating and decelerates the gas flow, and the upper part of the standing part 103a and the standing part 103b generates an upward flow due to a collision. Since it can be suppressed, there is an overall effect that oil droplets are less scattered and oil outflow from the compressor 80 can be reduced. In the second embodiment, the aspect in which the through hole 204a and the through hole 204b are formed has been described. However, the present invention is not limited to this, and is formed by cutting part of the standing portion 103a and the standing portion 103b. Notched cuts may be used.
[本実施の形態2に係る圧縮機80の有する効果]
 本実施の形態2に係る圧縮機80も、実施の形態1に係る圧縮機80と同様の効果を得ることができる。
[Effects of the compressor 80 according to the second embodiment]
The compressor 80 according to the second embodiment can also obtain the same effects as the compressor 80 according to the first embodiment.
実施の形態3.
 また、油分離板の立設部の形状は、傾斜部に連続してリング状をなしていれば、実施の形態1の形状に限定されるものではない。たとえば、以下のように油分離板を形成してもよい。なお、本実施の形態3においては、実施の形態1と同様の部分には同じ符号を付し、実施の形態1と異なる部分だけを説明する。
Embodiment 3 FIG.
Further, the shape of the standing portion of the oil separation plate is not limited to the shape of the first embodiment as long as it forms a ring shape continuously with the inclined portion. For example, you may form an oil separation board as follows. In the third embodiment, the same reference numerals are given to the same parts as those in the first embodiment, and only the parts different from the first embodiment will be described.
 図11Aは、本実施の形態3に係る油分離板300を示す斜視図、図11Bは図11Aに示す油分離板の周方向展開断面図である。図11A、図11Bに示すように、本実施の形態3に係る油分離板300は、立設部303a及び立設部303bを傾斜部101a及び傾斜部101bと同じ方向に傾斜させている。具体的には、立設部303aは、傾斜部101aの上端との間に形成される角度が鋭角になるように傾斜し、立設部303bは、傾斜部101bの上端との間に形成される角度が鋭角になるように傾斜している。 FIG. 11A is a perspective view showing an oil separation plate 300 according to Embodiment 3, and FIG. 11B is a developed sectional view in the circumferential direction of the oil separation plate shown in FIG. 11A. As shown in FIGS. 11A and 11B, in the oil separation plate 300 according to the third embodiment, the standing portion 303a and the standing portion 303b are inclined in the same direction as the inclined portion 101a and the inclined portion 101b. Specifically, the standing portion 303a is inclined so that the angle formed between the upper end of the inclined portion 101a is an acute angle, and the standing portion 303b is formed between the upper end of the inclined portion 101b. It is inclined so that the angle is a sharp angle.
 さらに、平坦部102a及び平坦部102bには、返油穴305a及び返油穴305bが形成されている。また、シリンダー31には、油分離板300側と油貯留部1a側とを連通する貫通穴31aが形成されている。このため、返油穴305a及び返油穴305bを通過した潤滑油は、貫通穴31aを介してすみやかに油貯留部1aに回収される。 Furthermore, an oil return hole 305a and an oil return hole 305b are formed in the flat part 102a and the flat part 102b. Further, the cylinder 31 is formed with a through hole 31a that communicates the oil separation plate 300 side and the oil reservoir 1a side. For this reason, the lubricating oil that has passed through the oil return hole 305a and the oil return hole 305b is promptly collected in the oil reservoir 1a through the through hole 31a.
 本実施の形態3によれば、立設部103a及び立設部103bの上部に衝突したガス冷媒を下向きに流して(V2)、油分離板300の側面から傾斜部101a及び傾斜部101bに流入させることができる。 According to the third embodiment, the gas refrigerant that has collided with the upper portions of the standing portion 103a and the standing portion 103b is caused to flow downward (V2) and flows into the inclined portion 101a and the inclined portion 101b from the side surface of the oil separation plate 300. Can be made.
 すなわち、立設部303a及び立設部303bによる効果(波立ち防止、ガス流速の減速)を、実施の形態1と同等以上に維持しながら、立設部303a及び立設部303bで発生していた上昇流による油滴の飛散を防止でき、実施の形態1及び実施の形態2に比べて一層効率よく、ガス冷媒及び潤滑油4を含む混合ガスから潤滑油4を分離することできる。
 よって、潤滑油4の油面が返油穴305a及び返油穴305bに達していない場合には、返油穴305a及び返油穴305bへガス冷媒(W2)が下向きに流れ、油滴を直接返油穴305a及び返油穴305bから油貯留部1aに落下させることができ、潤滑油4の回収性が向上する。
That is, the effects (rising prevention, reduction of gas flow rate) by the standing portions 303a and 303b were generated in the standing portions 303a and 303b while maintaining the same or better than the first embodiment. The oil droplets can be prevented from scattering due to the upward flow, and the lubricating oil 4 can be separated from the mixed gas including the gas refrigerant and the lubricating oil 4 more efficiently than the first and second embodiments.
Therefore, when the oil level of the lubricating oil 4 does not reach the oil return hole 305a and the oil return hole 305b, the gas refrigerant (W2) flows downward into the oil return hole 305a and the oil return hole 305b, and the oil droplets are directly applied. The oil return portion 305a and the oil return hole 305b can be dropped into the oil reservoir 1a, and the recoverability of the lubricating oil 4 is improved.
[本実施の形態3に係る圧縮機80の有する効果]
 本実施の形態3に係る圧縮機80も、実施の形態1に係る圧縮機80と同様の効果を得ることができる。
[Effects of Compressor 80 according to Embodiment 3]
The compressor 80 according to the third embodiment can also obtain the same effects as the compressor 80 according to the first embodiment.
実施の形態4.
 また、油分離板は、実施の形態1から3のような1枚ものの板を折り曲げて加工する構成に限定されるものではない。たとえば、以下のように複数の部品を組み立てて油分離板400を構成することもできる。なお、本実施の形態4においては、実施の形態3と同様の部分には同じ符号を付し、実施の形態3と異なる部分だけを説明する。
Embodiment 4 FIG.
In addition, the oil separation plate is not limited to a configuration in which a single plate as in the first to third embodiments is bent and processed. For example, the oil separation plate 400 can be configured by assembling a plurality of parts as follows. In the fourth embodiment, the same reference numerals are given to the same parts as those in the third embodiment, and only the parts different from the third embodiment will be described.
 図12は、本実施の形態4に係る油分離板400を示す斜視図である。油分離板400は、複数の傾斜部、複数の立設部、及び複数の平坦部のうちのいずれかを有する部品が組み合わせられて構成されたものであり、分割構成となっている。本実施の形態4では、一方の部品が傾斜部101a、平坦部102a及び立設部303aを有し、他方の部品が傾斜部101b、平坦部102b及び立設部303bを有している構成を一例として示している。ここで、油分離板400には、ネジ50を通すことができるように貫通穴51が形成されている。本実施の形態4に示すように、油分離板400を分割構成にすることにより、実施の形態3のように立設部303a、303bを傾斜させる加工が容易となり、加工コストを低減できる効果がある。 FIG. 12 is a perspective view showing an oil separation plate 400 according to the fourth embodiment. The oil separation plate 400 is configured by combining parts having any of a plurality of inclined portions, a plurality of standing portions, and a plurality of flat portions, and has a divided configuration. In the fourth embodiment, one component has the inclined portion 101a, the flat portion 102a, and the standing portion 303a, and the other component has the inclined portion 101b, the flat portion 102b, and the standing portion 303b. It is shown as an example. Here, a through hole 51 is formed in the oil separation plate 400 so that the screw 50 can be passed therethrough. As shown in the fourth embodiment, by dividing the oil separating plate 400, the processing of inclining the standing portions 303a and 303b as in the third embodiment is facilitated, and the processing cost can be reduced. is there.
[本実施の形態4に係る圧縮機80の有する効果]
 本実施の形態4に係る圧縮機80も、実施の形態1に係る圧縮機80と同様の効果を得ることができる。
[Effects of Compressor 80 according to Embodiment 4]
The compressor 80 according to the fourth embodiment can also obtain the same effects as the compressor 80 according to the first embodiment.
 1 密閉容器、1a 油貯留部、2 電動機部、2a エアギャップ、3 圧縮機構部、4 潤滑油、5 サクションマフラ、6 吸入管、7 吐出管、11 中央容器、12 上容器、13 下容器、21 固定子、22 回転子、22a ガス穴、23 駆動軸、23a 油吸込み穴、23b 遠心ポンプ、23c 上部給油口、23d 下部給油口、31 シリンダー、31a 貫通穴、32 ピストン、33 ベーン、34 上部軸受、34a 吐出口、35 下部軸受、35a 吐出口、36 上部マフラ、36a マフラ吐出穴、37 下部マフラ、38 吸入口、40 給油管、40a 平面部、50 ネジ、51 貫通穴、60 圧縮機、80 圧縮機、100 油分離板、101a 傾斜部、101b 傾斜部、102a 平坦部、102b 平坦部、103a 立設部、103b 立設部、200 油分離板、204a 貫通穴、204b 貫通穴、300 油分離板、303a 立設部、303b 立設部、305a 返油穴、305b 返油穴、400 油分離板、600 油分離板、601 傾斜部、601a 傾斜部、601b 傾斜部、602 平坦部、700 油分離板、701a 傾斜部、701b 傾斜部、702 傾斜板、800 油分離板、803 垂直板、A 空間、A1 上部空間、A2 下部空間。 1 closed container, 1a oil storage part, 2 motor part, 2a air gap, 3 compression mechanism part, 4 lubricating oil, 5 suction muffler, 6 suction pipe, 7 discharge pipe, 11 central container, 12 upper container, 13 lower container, 21 Stator, 22 Rotor, 22a Gas hole, 23 Drive shaft, 23a Oil suction hole, 23b Centrifugal pump, 23c Upper oil supply port, 23d Lower oil supply port, 31 Cylinder, 31a Through hole, 32 Piston, 33 Vane, 34 Upper part Bearing, 34a discharge port, 35 lower bearing, 35a discharge port, 36 upper muffler, 36a muffler discharge hole, 37 lower muffler, 38 suction port, 40 oil supply pipe, 40a flat part, 50 screw, 51 through hole, 60 compressor, 80 compressor, 100 oil separation plate, 101a inclined portion, 101b inclined portion, 102 Flat part, 102b Flat part, 103a Standing part, 103b Standing part, 200 Oil separator plate, 204a Through hole, 204b Through hole, 300 Oil separator plate, 303a Standing part, 303b Standing part, 305a Oil return hole, 305b Oil return hole, 400 oil separation plate, 600 oil separation plate, 601 inclined portion, 601a inclined portion, 601b inclined portion, 602 flat portion, 700 oil separation plate, 701a inclined portion, 701b inclined portion, 702 inclined plate, 800 oil Separation plate, 803 vertical plate, A space, A1 upper space, A2 lower space.

Claims (10)

  1.  底部に潤滑油を貯留する油貯留部を有する密閉容器と、
     前記密閉容器内に設けられた固定子、及び前記固定子の内側に配置され、駆動軸が接続された回転子を有する電動機部と、 
     前記密閉容器内に設けられ、前記駆動軸に接続され、冷媒を圧縮する圧縮機構部と、
     前記密閉容器内であって前記電動機部と前記圧縮機構部との間に設けられた環状の油分離板と、
     を備え、
     前記油分離板は、
     前記駆動軸の軸方向に対して傾斜する複数の傾斜部と、
     上端が前記傾斜部の上端に接続され、下端が当該傾斜部とは異なる前記傾斜部の下端に接続されている複数の立設部とを有する
     圧縮機。
    A sealed container having an oil reservoir for storing lubricating oil at the bottom;
    A stator provided in the hermetic container, and an electric motor unit having a rotor disposed inside the stator and connected to a drive shaft;
    A compression mechanism provided in the sealed container, connected to the drive shaft, and compresses the refrigerant;
    An annular oil separation plate provided in the sealed container and between the electric motor unit and the compression mechanism unit;
    With
    The oil separator plate is
    A plurality of inclined portions inclined with respect to the axial direction of the drive shaft;
    A compressor having a plurality of upright portions, each having an upper end connected to an upper end of the inclined portion and a lower end connected to a lower end of the inclined portion different from the inclined portion.
  2.  前記油分離板は、
     前記駆動軸を囲むように配置され、
     複数の前記傾斜部は、
     前記駆動軸の回転方向に沿って傾斜している
     請求項1記載の圧縮機。
    The oil separator plate is
    Arranged to surround the drive shaft,
    The plurality of inclined portions are
    The compressor according to claim 1, wherein the compressor is inclined along a rotation direction of the drive shaft.
  3.  前記立設部には、
     貫通穴が形成されている
     請求項1又は2のいずれか一項に記載の圧縮機。
    In the standing part,
    The compressor according to any one of claims 1 and 2, wherein a through hole is formed.
  4.  前記立設部には、
     切欠が形成されている
     請求項1~3のいずれか一項に記載の圧縮機。
    In the standing part,
    The compressor according to any one of claims 1 to 3, wherein a notch is formed.
  5.  前記立設部は、
     前記傾斜部の上端との間に形成される角度が鋭角になるように傾斜している
     請求項1~4のいずれか一項に記載の圧縮機。
    The standing portion is
    The compressor according to any one of claims 1 to 4, wherein the compressor is inclined so that an angle formed between the upper end of the inclined portion is an acute angle.
  6.  前記圧縮機構部は、
     前記密閉容器内に設けられたシリンダー、及び前記駆動軸に接続され、前記シリンダー内で回転するピストンを有し、
     前記油分離板は、
     前記傾斜部の下端と前記立設部の下端との接続位置に平坦面を有する平坦部が形成され、前記平坦部が前記シリンダー上に固定され、
     前記平坦部には、
     返油穴が形成され、
     前記シリンダーには、
     前記油分離板側と前記油貯留部側とを連通する貫通穴が形成されている
     請求項1~5のいずれか一項に記載の圧縮機。
    The compression mechanism is
    A cylinder provided in the sealed container, and a piston connected to the drive shaft and rotating in the cylinder;
    The oil separator plate is
    A flat portion having a flat surface is formed at a connection position between the lower end of the inclined portion and the lower end of the standing portion, and the flat portion is fixed on the cylinder,
    In the flat part,
    Oil return holes are formed,
    In the cylinder,
    The compressor according to any one of claims 1 to 5, wherein a through hole is formed to communicate the oil separation plate side and the oil storage portion side.
  7.  前記油分離板は、
     複数の前記傾斜部、複数の前記立設部、及び複数の前記平坦部が一体形成されて構成された
     請求項6に記載の圧縮機。
    The oil separator plate is
    The compressor according to claim 6, wherein the plurality of inclined portions, the plurality of standing portions, and the plurality of flat portions are integrally formed.
  8.  前記油分離板は、
     複数の前記傾斜部、複数の前記立設部、及び複数の前記平坦部のうちのいずれかを有する部品が組み合わせられて構成された
     請求項6に記載の圧縮機。
    The oil separator plate is
    The compressor according to claim 6, wherein a part having any one of the plurality of inclined portions, the plurality of standing portions, and the plurality of flat portions is combined.
  9.  前記圧縮機構部に付設され、前記圧縮機構部で圧縮された冷媒を前記密閉容器に吐出するマフラーをさらに備え、
     前記油分離板は、
     前記マフラーを囲むように配置されている
     請求項1~8のいずれか一項に記載の圧縮機。
    A muffler that is attached to the compression mechanism and discharges the refrigerant compressed by the compression mechanism to the sealed container;
    The oil separator plate is
    The compressor according to any one of claims 1 to 8, which is disposed so as to surround the muffler.
  10.  前記油分離板は、
     前記駆動軸の軸方向に対して傾斜する第1の傾斜部と、
     上端が前記第1の傾斜部の上端に接続され、前記第1の傾斜部との接続位置から下側に延びるように形成された第1の立設部と、
     一端が前記第1の傾斜部の下端に接続された第1の平坦部と、
     前記第1の傾斜部と同じ方向に傾斜する第2の傾斜部と、
     上端が前記第2の傾斜部の上端に接続され、下端が前記第1の平坦部の他端に接続され、前記第2の傾斜部との接続位置から下側に延びるように形成された第2の立設部と、
     一端が前記第2の傾斜部の下端に接続され、他端が前記第1の立設部の下端に接続された第2の平坦部とを有する
     請求項1に記載の圧縮機。
    The oil separator plate is
    A first inclined portion inclined with respect to the axial direction of the drive shaft;
    A first standing portion formed such that an upper end is connected to an upper end of the first inclined portion and extends downward from a connection position with the first inclined portion;
    A first flat portion having one end connected to the lower end of the first inclined portion;
    A second inclined portion inclined in the same direction as the first inclined portion;
    The upper end is connected to the upper end of the second inclined portion, the lower end is connected to the other end of the first flat portion, and the second inclined portion is formed to extend downward from the connection position with the second inclined portion. 2 standing parts,
    The compressor according to claim 1, further comprising: a second flat portion having one end connected to the lower end of the second inclined portion and the other end connected to the lower end of the first standing portion.
PCT/JP2014/081007 2014-11-25 2014-11-25 Compressor WO2016084121A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016561104A JP6297168B2 (en) 2014-11-25 2014-11-25 Compressor
CN201480083463.7A CN106922163B (en) 2014-11-25 2014-11-25 Compressor
CZ2017-240A CZ307894B6 (en) 2014-11-25 2014-11-25 Compressor
PCT/JP2014/081007 WO2016084121A1 (en) 2014-11-25 2014-11-25 Compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2014/081007 WO2016084121A1 (en) 2014-11-25 2014-11-25 Compressor

Publications (1)

Publication Number Publication Date
WO2016084121A1 true WO2016084121A1 (en) 2016-06-02

Family

ID=56073746

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/081007 WO2016084121A1 (en) 2014-11-25 2014-11-25 Compressor

Country Status (4)

Country Link
JP (1) JP6297168B2 (en)
CN (1) CN106922163B (en)
CZ (1) CZ307894B6 (en)
WO (1) WO2016084121A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022048110A1 (en) * 2020-09-04 2022-03-10 松下·万宝(广州)压缩机有限公司 Compressor and oil deflection mechanism having wire fixing assembly
WO2023148867A1 (en) * 2022-02-03 2023-08-10 三菱電機株式会社 Compressor and refrigeration cycle device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6879395B1 (en) * 2020-01-31 2021-06-02 ダイキン工業株式会社 Scroll compressor with oil separator

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56171684U (en) * 1980-05-21 1981-12-18
JP2010025074A (en) * 2008-07-24 2010-02-04 Panasonic Corp Hermetic compressor
JP2011047355A (en) * 2009-08-28 2011-03-10 Daikin Industries Ltd Compressor
JP2012202253A (en) * 2011-03-24 2012-10-22 Sanyo Electric Co Ltd Scroll compression device
JP2013217281A (en) * 2012-04-09 2013-10-24 Mitsubishi Electric Corp Rotary compressor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH064070Y2 (en) * 1984-11-06 1994-02-02 株式会社東芝 Rotary compressor
JP3788461B2 (en) * 2004-02-06 2006-06-21 ダイキン工業株式会社 Compressor
CN101684814A (en) * 2008-09-27 2010-03-31 乐金电子(天津)电器有限公司 Rotary compressor
JP5427892B2 (en) * 2009-09-18 2014-02-26 三菱重工業株式会社 Multistage compressor
CN102575676B (en) * 2009-10-14 2015-04-22 松下电器产业株式会社 Compressor
JP4964288B2 (en) * 2009-11-18 2012-06-27 三菱電機株式会社 Compressor
JP5686985B2 (en) * 2010-04-05 2015-03-18 三菱重工業株式会社 Oil separation plate and electric compressor provided with the same
DE102011056903B4 (en) * 2011-12-22 2015-07-23 Obrist Engineering Gmbh Reciprocating compressor and method for separating liquids, in particular oil

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56171684U (en) * 1980-05-21 1981-12-18
JP2010025074A (en) * 2008-07-24 2010-02-04 Panasonic Corp Hermetic compressor
JP2011047355A (en) * 2009-08-28 2011-03-10 Daikin Industries Ltd Compressor
JP2012202253A (en) * 2011-03-24 2012-10-22 Sanyo Electric Co Ltd Scroll compression device
JP2013217281A (en) * 2012-04-09 2013-10-24 Mitsubishi Electric Corp Rotary compressor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022048110A1 (en) * 2020-09-04 2022-03-10 松下·万宝(广州)压缩机有限公司 Compressor and oil deflection mechanism having wire fixing assembly
WO2023148867A1 (en) * 2022-02-03 2023-08-10 三菱電機株式会社 Compressor and refrigeration cycle device

Also Published As

Publication number Publication date
CZ2017240A3 (en) 2017-06-21
CN106922163A (en) 2017-07-04
CN106922163B (en) 2019-03-26
CZ307894B6 (en) 2019-07-31
JP6297168B2 (en) 2018-03-20
JPWO2016084121A1 (en) 2017-06-01

Similar Documents

Publication Publication Date Title
JP5868247B2 (en) Rotary compressor
JP2014020306A (en) Compressor
JP2017053285A (en) Compressor
JP6297168B2 (en) Compressor
CN108286522B (en) Compressor with a compressor housing having a plurality of compressor blades
JP2022183232A (en) Rotary mechanism
JP6437294B2 (en) Scroll compressor
US9651047B2 (en) Compressor having a partitioned discharge chamber
JP6479206B2 (en) Rotary compressor
JP6491526B2 (en) Gas compressor
WO2018130134A1 (en) Compressor
KR100802023B1 (en) Rotary compressor
WO2018008368A1 (en) Compressor
JP2006348928A (en) Compressor
US20080101974A1 (en) Rotary compressor
JP6154125B2 (en) Compressor with built-in oil separator
WO2021064945A1 (en) Sealed-type refrigerant compressor
JP6854973B2 (en) Compressor
JP6635672B2 (en) Displacement compressor
US20040126252A1 (en) Compressor and mechanism for separating lubricating liquid
JP2014105672A (en) Scroll compressor
JP4483656B2 (en) Fluid machinery
CN110603381B (en) Scroll compressor having a discharge port
WO2019202682A1 (en) Oil separator, screw compressor, and refrigeration cycle device
JP6695098B2 (en) Electric compressor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14907121

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016561104

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PV2017-240

Country of ref document: CZ

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14907121

Country of ref document: EP

Kind code of ref document: A1