WO2016080295A1 - Light source device and projector - Google Patents

Light source device and projector Download PDF

Info

Publication number
WO2016080295A1
WO2016080295A1 PCT/JP2015/081930 JP2015081930W WO2016080295A1 WO 2016080295 A1 WO2016080295 A1 WO 2016080295A1 JP 2015081930 W JP2015081930 W JP 2015081930W WO 2016080295 A1 WO2016080295 A1 WO 2016080295A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
red
blue
source device
Prior art date
Application number
PCT/JP2015/081930
Other languages
French (fr)
Japanese (ja)
Inventor
澤井 靖昌
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2016560180A priority Critical patent/JP6717197B2/en
Publication of WO2016080295A1 publication Critical patent/WO2016080295A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/26Reflecting filters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details

Definitions

  • the present invention relates to a light source device and a projector.
  • the light source device disclosed in Patent Literature 1 includes a plurality of solid light sources including a first solid light source and a second solid light source, driving means for independently driving the plurality of solid light sources, and a ring-shaped first phosphor. And a phosphor wheel in which the layer and the second phosphor layer are provided on the same substrate.
  • the excitation light emitted from the first solid state light source is condensed on the first phosphor layer by the first condensing means, whereby the first fluorescence is emitted from the first phosphor layer.
  • the excitation light emitted from the second solid state light source is condensed on the second phosphor layer by the second condensing means different from the first condensing means, so that the first fluorescent light is emitted from the second phosphor layer. Emits second fluorescence having different color light.
  • the light source device disclosed in Patent Document 1 controls the lighting timing and intensity of the plurality of solid-state light sources independently, and rotates the phosphor wheel while rotating the plurality of phosphor layers.
  • the light source device disclosed in Patent Document 1 controls the lighting timing and intensity of the plurality of solid-state light sources independently, and rotates the phosphor wheel while rotating the plurality of phosphor layers.
  • a light source that emits polarized light with the polarization direction aligned in one direction and the polarized light emitted from the light source can be divided into a plurality of polarized lights so that the division ratio can be adjusted.
  • a light splitting member, a plurality of light converting members for converting each of a plurality of polarized lights emitted from the light splitting members into different color lights, and a plurality of light incident by switching and arranging the plurality of light converting members A switching device that simultaneously converts colors of the polarized light according to a predetermined order, and a combining device that combines and outputs a plurality of color lights that have been color-converted to different colors that are simultaneously emitted from the switching device.
  • each of the plurality of polarized lights emitted from the light splitting member is directly incident on the light converting member.
  • the fluorescence that has been color-time-divided by the switching device and emitted from the phosphor layer, which is an optical conversion member is directly incident on a synthesis device such as a lot integrator.
  • the present invention has been made in view of the above-described problems, and an object of the present invention is to provide a light source device and a projector that do not increase etendue, reduce the number of components, and can be downsized. .
  • the light source device includes an excitation light source that emits excitation light for exciting fluorescence and the fluorescence that is disposed on the surface of the substrate and has different wavelength ranges depending on the excitation light emitted from the excitation light source.
  • a plurality of phosphor layers that emit light from the plurality of phosphor layers, and a plurality of the fluorescent lights having different wavelength ranges from each other, and a plurality of parallel lights having different traveling directions, and the traveling Synthesizing means for synthesizing the plurality of parallel lights having different orientations in the same optical path.
  • the projector according to the present invention corresponds to the light source device described above, color separation means for separating a light beam incident from the light source device into a plurality of color lights, and the color lights separated by the color separation means.
  • a plurality of image display elements for displaying images of the respective color lights, and a color composition unit for synthesizing each of the image lights modulated according to the images by the plurality of image display elements on the same optical axis,
  • a projection system for projecting the image light synthesized by the color synthesizing means.
  • a light source device and a projector that do not increase etendue, can reduce the number of parts, and can be miniaturized.
  • FIG. 1 is a diagram schematically showing a configuration of a projector according to Embodiment 1.
  • FIG. It is a figure which shows typically the light source device seen from the direction shown to the II line
  • FIG. 3 is a diagram showing a relationship between wavelengths of P-polarized light and S-polarized light and transmittance in the PBS mirror shown in FIG. 2. It is a figure which shows the relationship between the wavelength in the red reflection mirror shown in FIG. 1, and the transmittance
  • FIG. 6 is a diagram schematically showing a configuration of a projector according to Embodiment 2.
  • FIG. It is a figure which shows the relationship between the wavelength of P polarized light and S polarized light, and the transmittance
  • FIG. 5 schematically shows a configuration of a projector according to a third embodiment. It is a figure which shows the fluorescent substance wheel shown in FIG.
  • FIG. 1 is a diagram schematically showing a configuration of a projector according to the present embodiment.
  • FIG. 2 is a diagram schematically showing a light source device provided in the projector as viewed from the direction indicated by line II shown in FIG. A projector according to the present embodiment will be described with reference to FIGS. 1 and 2.
  • projector 600 includes light source device 100, illumination optical system 200, TIR prism unit 300, color prism unit 400, DMD 450 as an image display element, and projection optical system. 500.
  • the light source device 100 includes an excitation light source 10A, an excitation light source 10B, a collimating means 20, a phosphor wheel 30, a condensing means 40, and a synthesizing means 50.
  • the excitation light source 10 ⁇ / b> A has a plurality of laser light sources 11.
  • the excitation light source 10A is configured, for example, by arranging 8 ⁇ 7 laser light sources 11 on a base in FIG. 1 and electrically connecting them.
  • the laser light source 11 emits ultraviolet light and is arranged to be P-polarized light with respect to a later-described folding mirror group 23 and a PBS mirror.
  • ultraviolet light emitted from two rows of laser light sources 11a from one end side (left side in FIG. 1) of the excitation light source 10A is condensed on a red phosphor layer 33R described later.
  • the ultraviolet light emitted from the three rows of laser light sources 11b located substantially at the center of the excitation light source 10A is collected on a green phosphor layer 33G described later.
  • the ultraviolet light emitted from the two rows of laser light sources 11c from the other end side (left side in FIG. 1) of the excitation light source 10A is collected on a blue phosphor layer 33B described later.
  • the excitation light source 10B has a plurality of laser light sources 12.
  • the excitation light source 10B is configured, for example, by arranging 4 ⁇ 6 laser light sources 12 on a base in FIG. 1 and electrically connecting them.
  • As the laser light source 12 a semiconductor laser that emits ultraviolet light having a wavelength of 370 nm to 380 nm can be employed.
  • the laser light source 12 emits ultraviolet light and is disposed so as to be S-polarized light with respect to a later-described folding mirror group 23 and a PBS mirror.
  • the ultraviolet light emitted from the two rows of laser light sources 12a from one end side (left side in FIG. 1) of the excitation light source 10B is condensed on a red phosphor layer 33R described later.
  • the ultraviolet light emitted from the two rows of laser light sources 12b positioned substantially at the center of the excitation light source 10A is condensed on a green phosphor layer 33G described later.
  • the ultraviolet light emitted from the two rows of laser light sources 12c from the other end side (right side in FIG. 1) of the excitation light source 10B is condensed on a blue phosphor layer 33B described later.
  • the collimating means 20 includes a plurality of collimating lenses 21, a folding mirror group 23, and a PBS mirror 25.
  • the collimating means 20 corresponds to second collimating means for converting the excitation light emitted from the plurality of laser light sources 11 and 12 into a plurality of substantially parallel light flux groups having different traveling directions.
  • Each of the plurality of collimating lenses 21 is arranged corresponding to each of the plurality of laser light sources 11 and 12.
  • the plurality of collimating lenses 21 are arranged so as to face the plurality of laser light sources 11 and 12.
  • 3 to 6 are views showing a first example to a fourth example of the arrangement of the laser light source and the collimating lens.
  • the positional relationship between the laser light source 11 and the collimating lens 21 will be described with reference to FIGS.
  • the laser light source 11 and the collimating lens 21 are arranged in an array.
  • the laser light sources 11a and 11c located on one end side and the other end side of the excitation light source 10A are Are arranged at positions shifted from the center lines of the collimating lenses 21a and 21c corresponding to.
  • the laser light source 11 is arranged on the same plane, and the collimating lens 21 is also arranged on the same plane located away from the laser light source 11.
  • the laser light source 11a when viewed along the center line of the collimating lens 21a, the laser light source 11a is disposed away from the center line of the collimating lens 21a in a direction approaching one end of the excitation light source 10A.
  • the laser light source 11b is arranged so that the center line of the collimating lens 21b and the center of the laser light source 11b overlap.
  • the laser light source 11c is arranged away from the center line of the collimating lens 21c so as to approach the other end side of the excitation light source 10A.
  • the laser light sources 11a and 11c located on one end side and the other end side of the excitation light source 10A correspond to this. It inclines with respect to the collimating lenses 21a and 21c. Specifically, the laser light sources 11a and 11c arranged in each row are inclined so as to face the center line of the excitation light source 10A in each row.
  • collimating lenses 21a and 21c corresponding to the laser light sources 11a and 11c on one end side and the other end side of the excitation light source 10A Is inclined with respect to the laser light sources 11a and 11c. Specifically, the collimating lenses 21a and 21c arranged in each row are inclined so as to face the center line of the excitation light source 10A in each corresponding row.
  • the laser light sources 11a and 11c on one end side and the other end side of the excitation light source 10A and the collimating lens 21a corresponding thereto. , 21c are both inclined.
  • the laser light sources 11a and 11c arranged in each row and the collimating lenses 21a and 21c corresponding to the laser light sources 11a and 11c are inclined so as to face the center line of the excitation light source 10A in each row.
  • the excitation light sources 10A and 10B are emitted from the excitation light sources 10A and 10B by changing the relative positions of the laser light source 11 and the collimating lens 21 on one end side, the center side, and the other end side of the excitation light sources 10A and 10B, respectively.
  • the generated ultraviolet light can be converted into three types of parallel light fluxes having different traveling angles. For example, three kinds of parallel light beams have different traveling directions by 5 °.
  • each of the ultraviolet light emitted from the plurality of laser light sources 11a is converted into a parallel light beam traveling in the traveling direction DR1 by the collimating lens 21a.
  • Each of the ultraviolet light emitted from the plurality of laser light sources 11b is converted into a parallel light beam traveling in the traveling direction DR2 by the collimating lens 21b.
  • Each of the ultraviolet light emitted from the plurality of laser light sources 11c is converted into a parallel light beam traveling in the traveling direction DR3 by the collimating lens 21c.
  • the traveling direction DR2 substantially coincides with the direction orthogonal to the row direction and the column direction in which the plurality of laser light sources 11 are arranged.
  • Each of the traveling direction DR1 and the traveling direction DR3 intersects with the traveling direction DR2 with an intersection angle of 5 °.
  • the traveling direction DR1 and the traveling direction DR3 intersect with an intersection angle of 10 °.
  • the laser light source 12 and the collimating lens 21 are also arranged in the same manner as the arrangement of the laser light source 11 and the collimating lens 21. Thereby, each of the ultraviolet light emitted from the plurality of laser light sources 12a, 12b, and 12c is converted into parallel light fluxes traveling in directions parallel to the traveling directions DR1, DR2, and DR3 by the collimating lenses 21a, 21b, and 21c. .
  • the folding mirror group 23 is configured by arranging a plurality of folding mirrors 22 in a staircase pattern. Since the exit angle in the P-polarization direction from the laser light source 11 is smaller than the exit angle in the S-polarization direction, the width of the light beam becomes narrow. Thus, by arranging the folding mirror 22 in this way, a plurality of parallel light beams converted by the collimator lens 21 are obtained. The interval between them can be narrowed. In this case, it is preferable that there is no interval between the plurality of parallel light beams.
  • the folding mirror group 23 converts the parallel light flux group composed of a plurality of parallel light fluxes into a parallel light flux group with a reduced light beam cross-sectional area, and directs it toward the light collecting means 40. reflect.
  • the ultraviolet light emitted from the plurality of laser light sources 11a is converted into a parallel light beam group L1 having a reduced light beam cross-sectional area.
  • Ultraviolet light emitted from the plurality of laser light sources 11b is converted into a parallel light beam group L2 having a reduced light beam cross-sectional area.
  • the ultraviolet light emitted from the plurality of laser light sources 11c is converted into a parallel light beam group L3 having a reduced light beam cross-sectional area.
  • the plurality of parallel light beam groups L1, L2, and L3 have optical axes C1, C2, and C3, and have different traveling directions.
  • the optical axis C2 coincides with the optical axis of the collimator lens 41 described later.
  • the optical axis C1 and the optical axis C3 intersect with the optical axis C2 with an intersection angle of 5 °.
  • the optical axis C1 and the optical axis C3 intersect with an intersection angle of 10 °.
  • the combining means 50 including the PBS mirror 25 and the red reflecting mirror 51R, the green reflecting mirror 51G, and the blue reflecting mirror 51B is arranged. Yes.
  • the PBS mirror 25 is configured to reflect S-polarized light toward the combining unit 50 and transmit P-polarized light toward the combining unit 50.
  • the PBS mirror 25 intersects the parallel light beam group L2 at 45 ° and the parallel light beam groups L1 and L3 at 45.22 ° at approximately 45 °.
  • the PBS mirror 25 also intersects parallel light beams emitted from the laser light sources 12a, 12b, and 12c and converted so as to travel in different directions by the collimating lenses 21a, 21b, and 21c at approximately 45 °. .
  • FIG. 7 is a diagram showing the relationship between the wavelength and transmittance of P-polarized light and S-polarized light in the PBS mirror shown in FIG.
  • FIG. 7 shows the transmittance characteristics of the PBS mirror 25 when light enters the reflecting surface of the PBS mirror with a 45 ° crossing angle. The transmittance characteristics of the PBS mirror will be described with reference to FIG.
  • the PBS mirror 25 transmits, for example, P-polarized light that intersects at a crossing angle of 45 ° in the wavelength region of 370 nm to 410 nm, and crosses at a crossing angle of 45 ° in the wavelength region of 350 nm to 380 nm. Reflect S-polarized light.
  • PBS mirror 25 can be suitably used when the laser light source 11 emits ultraviolet light having the above-described wavelength.
  • the plurality of parallel light beam groups L1, L2, and L3 emitted from the plurality of laser light sources 11a, 11b, and 11c and converted by the collimating lenses 21a, 21b, and 21c At the time of transmission, it is combined with a parallel light beam emitted from the laser light sources 12a, 12b, and 12c and converted so as to travel in different directions by the collimating lenses 21a, 21b, and 21c.
  • the parallel light beam groups L1, L2, and L3 that have passed through the PBS mirror 25 include both the S-polarized component and the P-polarized component.
  • the red reflecting mirror 51R, the green reflecting mirror 51G, and the blue reflecting mirror 51B are configured by dichroic filters, and transmit light having a predetermined wavelength range, while other predetermined wavelength ranges are set.
  • the light which has is comprised so that reflection is possible.
  • the red reflecting mirror 51R, the green reflecting mirror 51G, and the blue reflecting mirror 51B are collimator lenses in which the respective normal directions of the reflecting surfaces of the red reflecting mirror 51R, the green reflecting mirror 51G, and the blue reflecting mirror 51B are included in the light collecting means 40. It arrange
  • the red reflection mirror 51R, the green reflection mirror 51G, and the blue reflection mirror 51B are arranged in this order from the side close to the collimator lens 41.
  • the parallel light flux groups L1, L2, and L3 transmitted through the PBS mirror 25 are incident on the blue reflection mirror 51B with incident angles of 42.5 °, 47.5 °, and 52.5 °, respectively, and are transmitted therethrough. .
  • the parallel light beam groups L1, L2, and L3 transmitted through the blue reflecting mirror 51B are incident on the green reflecting mirror 51G with incident angles of 40.0 °, 45.0 °, and 50.0 °, respectively, and are transmitted therethrough. To do.
  • the parallel light flux groups L1, L2, and L3 transmitted through the green reflecting mirror 51G are incident on the red reflecting mirror 51R with incident angles of 37.5 °, 42.5 °, and 47.5 °, respectively, and are transmitted therethrough. To do.
  • FIGS. 8 to 10 are diagrams showing the relationship between the wavelength and the transmittance in the red reflection mirror, the blue reflection mirror, and the green reflection mirror.
  • the transmittance characteristics of the red reflecting mirror 51R, the green reflecting mirror 51G, and the blue reflecting mirror 51B will be described with reference to FIGS.
  • the red reflecting mirror 51R substantially transmits light that intersects at intersection angles of 37.5 °, 42.5 °, and 47.5 ° in the wavelength region of 370 nm to 570 nm, and has a wavelength of 620 nm to 670 nm. In the region, light that intersects at intersection angles of 37.5 °, 42.5 °, and 47.5 ° is reflected.
  • the red reflecting mirror 51R Since the red reflecting mirror 51R has such transmittance characteristics, the red reflecting mirror 51R can transmit the plurality of parallel light flux groups L1, L2, and L3 made of ultraviolet light as described above.
  • the green reflecting mirror 51G substantially transmits light that intersects at crossing angles of 40.0 °, 45.0 °, and 50.0 ° in the wavelength region of 370 nm to 480 nm, and has a wavelength of 520 nm to 560 nm. In the region, light that intersects at intersection angles of 40.0 °, 45.0 °, and 50.0 ° is reflected.
  • the green reflection mirror 51G can transmit the plurality of parallel light flux groups L1, L2, and L3 made of ultraviolet light as described above.
  • the blue reflecting mirror 51B substantially transmits light that intersects at crossing angles of 42.5 °, 47.5 °, and 52.5 ° in the wavelength region of 370 nm to 410 nm, and has a wavelength of 430 nm to 470 nm. In the region, light that intersects at intersection angles of 42.5 °, 47.5 °, and 52.5 ° is reflected.
  • the blue reflection mirror 51B can transmit the plurality of parallel light flux groups L1, L2, and L3 made of ultraviolet light as described above.
  • the condensing means 40 includes a collimator lens 41 and a field lens 42.
  • the parallel light flux groups L1, L2, and L3 pass through the collimator lens 41 and the field lens 42 and are condensed at different positions on the phosphor wheel 30 according to the traveling direction. Specifically, the parallel light beam group L1 is collected on a red phosphor layer 33R described later. The parallel light beam group L2 is collected on a green phosphor layer 33G described later. The parallel light flux group L3 is collected on a blue phosphor layer 33B described later.
  • FIG. 11 is a diagram showing the phosphor wheel shown in FIG. The phosphor wheel 30 will be described with reference to FIGS. 1 and 11.
  • the phosphor wheel 30 is of a so-called reflection type, and is configured to emit fluorescence toward the side on which the ultraviolet light is incident.
  • the phosphor wheel 30 includes a rotating plate (substrate) 31 having a reflective film 32 provided on the surface, a red phosphor layer 33R as a plurality of phosphor layers, a green phosphor layer 33G, a blue phosphor layer 33B, and a drive mechanism 35. including.
  • the rotating plate 31 is a part for applying various phosphor layers.
  • a substrate made of various metals and resins can be adopted.
  • a substrate made of aluminum can be adopted as the rotating plate 31.
  • the reflective film 32 for example, a silver coating layer formed by vapor deposition or the like can be employed.
  • the reflection film 32 reflects the fluorescence of each color emitted from the red phosphor layer 33R, the green phosphor layer 33G, and the blue phosphor layer 33B toward the field lens 42.
  • the red phosphor layer 33R, the green phosphor layer 33G, and the blue phosphor layer 33B are provided on the reflective film 32, respectively.
  • the red phosphor layer 33R, the green phosphor layer 33G, and the blue phosphor layer 33B are each provided in a ring shape.
  • the red phosphor layer 33 ⁇ / b> R is provided so as to surround the drive mechanism 35 provided at the center of the rotating plate 31.
  • the green phosphor layer 33G is provided on the outer side in the radial direction of the red phosphor layer 33R so as to be adjacent thereto.
  • the blue phosphor layer 33B is provided on the outer side in the radial direction of the green phosphor layer 33G so as to be adjacent thereto.
  • the red phosphor layer 33R, the green phosphor layer 33G and the blue phosphor layer 33B are desired red phosphor, green phosphor and blue phosphor capable of converting ultraviolet light (excitation light) into red light, green light and blue light. It is formed by applying a synthetic resin solution containing at a concentration of 5 on the reflective film 32.
  • the red phosphor included in the red phosphor layer 33R is excited by the ultraviolet light of the parallel light flux group L1 collected on the red phosphor layer 33R. Thereby, red fluorescence is emitted from the red phosphor layer 33R.
  • the red phosphor contained in the green phosphor layer 33G is excited by the ultraviolet light of the parallel light flux group L2 collected on the green phosphor layer 33G. Thereby, green fluorescence is emitted from the green phosphor layer 33G.
  • the blue phosphor contained in the blue phosphor layer 33B is excited by the ultraviolet light of the parallel light flux group L3 collected on the blue phosphor layer 33B. Thereby, blue fluorescence is emitted from the blue phosphor layer 33B.
  • the drive mechanism 35 includes a motor and rotates the rotating plate 31. By rotating the rotating plate 31, it is possible to irradiate the phosphor that is not always emitting light with ultraviolet light. Thereby, efficient light emission can be maintained.
  • the reflection film 32 as described above, the fluorescence of each color emitted from the red phosphor layer 33R, the green phosphor layer 33G, and the blue phosphor layer 33B is reflected toward the field lens 42 side. Can do. Thereby, the utilization efficiency of light improves.
  • the fluorescence of each color emitted from the phosphor layer of each color is efficiently incident on the collimator lens 41 by the field lens 42.
  • the fluorescence of each color incident on the collimator lens 41 is converted by the collimator lens 41 into a plurality of parallel lights having different traveling directions.
  • the field lens 42 and the collimator lens 41 emit light from the red phosphor layer 33R, the green phosphor layer 33G, and the blue phosphor layer 33B, and emit a plurality of fluorescence having different wavelength ranges from each other in different traveling directions. It also functions as first collimating means for making a plurality of substantially parallel lights.
  • the green fluorescence incident on the collimator lens 41 travels in a direction parallel to the optical axis of the collimator lens 41 (the optical axis C2 direction).
  • Red fluorescence and blue fluorescence incident on the collimator lens 41 travel in directions parallel to the optical axis C1 and the optical axis C3 having crossing angles of + 5 ° and ⁇ 5 ° with respect to the optical axis C2, respectively.
  • the fluorescence of each color converted into substantially parallel light is incident on the synthesis means 50.
  • the synthesizing unit 50 includes a red reflecting mirror 51R, a green reflecting mirror 51G, and a blue reflecting mirror 51B having the above-described transmittance characteristics.
  • the synthesizing unit 50 synthesizes a plurality of substantially parallel lights having different traveling directions into the same optical path.
  • red fluorescence converted into parallel light enters the red reflecting mirror 51R at an incident angle of 47.5 ° and is reflected in a direction perpendicular to the optical axis of the collimator lens 41.
  • the green fluorescence converted into parallel light is incident on the red reflecting mirror 51R at an incident angle of 42.5 ° and transmitted therethrough, and incident on the green reflecting mirror 51G at an incident angle of 45 °. Reflected in a direction perpendicular to the axis.
  • the green fluorescence reflected by the green reflection mirror 51G is incident on the red reflection mirror 51R at an incident angle of 47.5 ° and is transmitted therethrough and synthesized with substantially the same optical axis as the red fluorescence.
  • the blue fluorescence converted into parallel light is incident on the red reflecting mirror 51R at an incident angle of 37.5 ° and transmitted therethrough, and incident on the green reflecting mirror 51G at an incident angle of 40.0 ° and transmitted therethrough. Then, it is incident on the blue reflecting mirror 51B at an incident angle of 42.5 ° and is reflected in a direction perpendicular to the optical axis of the collimator lens 41.
  • the blue fluorescence reflected by the blue reflecting mirror 51B enters the green reflecting mirror 51G at an incident angle of 45.0 and is transmitted therethrough, and enters the red reflecting mirror 51R at an incident angle of 47.5 ° and is transmitted therethrough. Then, they are synthesized with substantially the same optical axis (substantially the same optical path) as red fluorescence and green fluorescence.
  • the characteristics of the dichroic filters constituting the red reflecting mirror 51R, the green reflecting mirror 51G, and the blue reflecting mirror 51B are changed to the simple characteristics of the shortcut instead of the band pass and the band cut. it can.
  • the red reflecting mirror 51R, the green reflecting mirror 51G, and the blue reflecting mirror 51B can be easily manufactured, and the fluorescence of each color can be efficiently synthesized.
  • the fluorescence of each color synthesized with substantially the same optical axis enters the illumination optical system 200 as white illumination light, and enters the color prism unit 400 through the TIR prism unit 300.
  • the illumination light incident on the color prism unit 400 is color-separated into red, green, and blue color lights and enters a DMD (digital mirror device) 450.
  • Each color light reflected by the DMD 450 passes through the color prism unit 400, the TIR prism unit 300, and the projection optical system 500 in order and is projected onto the screen.
  • the illumination optical system 200 includes a first lens array 201, a second lens array 202, an overlapping lens 203, a folding mirror 204, and an entrance lens 205.
  • the first lens array 201 and the second lens array 202 constitute an integrator optical system.
  • the first lens array 201 has a plurality of lens cells 201a for dividing the combined fluorescence (illumination light) of each color into a number of light beams.
  • the plurality of lens cells 201a are arranged in a matrix in a plane orthogonal to the illumination light.
  • the lens cell 201a has a shape substantially similar to the display unit of the DMD 450.
  • the second lens array 202 has a plurality of lens cells 202a corresponding to the plurality of lens cells 201a of the first lens array 201.
  • the second lens array 202 superimposes the image of the lens cell 201 a on the DMD 450 together with the superimposing lens 203. Thereby, the illuminance distribution on the DMD 450 is made uniform.
  • the entrance lens 205 converts the illumination light into a telecentric light beam and makes it incident on the TIR prism unit 300.
  • the TIR prism unit 300 includes a first prism 310 and a second prism 320 each having a substantially triangular prism shape, and an air gap layer 310g is provided between the slopes of each prism.
  • the TIR prism unit 300 separates illumination light that is input light to the DMD 450 and projection light (image light) that is output light.
  • the illumination light emitted from the illumination optical system 200 is incident on the second prism 320 at an angle satisfying the total reflection condition on the inclined surface forming the air gap layer 311g, and is totally reflected on the inclined surface and incident on the color prism unit 400. .
  • FIG. 12 is a front view showing a color prism unit constituting a part of the projector shown in FIG.
  • the color prism unit 400 will be described with reference to FIG.
  • the color prism unit 400 decomposes illumination light composed of fluorescence of each color into red, green, and blue color lights and combines the image light of each color on the same optical axis as described later. To do. That is, the color prism unit 400 has both a color separation function and a color composition function.
  • the color prism unit 400 is configured by sequentially combining a clear prism 410 having a substantially triangular prism shape, a red prism 420R and a blue prism 420B, and a block-shaped green prism 420G.
  • the red prism 420R has a slope 421R facing the clear prism 410, a red dichroic surface 422R facing the blue prism 420B, and a prism end surface 423R facing red DMD 450R described later.
  • the red dichroic surface 422R is configured to transmit blue light and green light while reflecting red light.
  • the blue prism 420B has a slope 421B facing the red prism 420R, a blue dichroic surface 422B facing the green prism 420G, and a prism end surface 423B facing blue DMD 450B described later.
  • the blue dichroic surface 422B is configured to transmit green light while reflecting blue light.
  • the green prism 420G has a slope 421G facing the blue prism 420B and a prism end surface 423G facing green DMD 450G described later.
  • An air gap layer 411g is provided between the clear prism 410 and the red prism 420R.
  • the air gap layer 411g is inclined with respect to the projection optical axis AX.
  • the plane formed by the normal line of the projection optical axis AX and the air gap layer 411g is orthogonal to the plane including the normal line of the air gap layer 311g of the TIR prism unit 300 and the projection optical axis AX.
  • An air gap layer 412g is provided between the red prism 420R and the blue prism 420B.
  • the air gap layer 412g is inclined with respect to the projection optical axis.
  • the plane formed by the normal line of the projection optical axis AX and the air gap layer 412g is orthogonal to the plane formed by the air gap layer 311g of the TIR prism unit 300 and the projection optical axis AX.
  • the inclination direction of the air gap layer 412g is opposite to the inclination direction of the air gap layer 411g by the clear prism 410 and the red prism 420R.
  • An air gap layer 413g is provided between the blue prism 420B and the green prism 420G.
  • the air gap layer 413g is also inclined with respect to the projection optical axis AX.
  • the plane formed by the normal line of the projection optical axis AX and the air gap layer 413g is orthogonal to the plane including the normal line of the air gap layer 311g of the TIR prism unit 300 and the projection optical axis AX.
  • the inclination direction of the air gap layer 413g is the same as the inclination direction of the air gap layer 411g by the clear prism 410 and the red prism 420R.
  • the illumination light incident from the input / output surface of the clear prism 410 passes through the clear prism 410 and then enters the red prism 420R.
  • red light is reflected by the red dichroic surface 422R, and the other green light and blue light are transmitted therethrough.
  • the red light reflected by the red dichroic surface 422R is totally reflected by the air gap layer 411g on the clear prism 410 side, exits from the prism end surface 423R of the red prism 420R, and enters the red DMD 450R.
  • blue light is reflected by the blue dichroic surface 422B.
  • the blue light reflected by the blue dichroic surface 422B is totally reflected by the air gap layer 412g provided adjacent to the red dichroic surface 422R, is emitted from the prism end surface 423B of the blue prism 420B, and enters the blue DMD 450B.
  • the green light is transmitted through the blue dichroic surface 422B, is emitted from the prism end surface 423G of the green prism 420G, and enters the green DMD 450G.
  • the DMD 450R for red, the DMD 450B for blue, and the DMD 450G for green are composed of reflective display elements.
  • the DMD 450R for red, DMD 450B for blue, and DMD 450G for green include a large number of micromirrors (not shown). Each of a large number of micromirrors constitutes each pixel (one pixel) on the DMD image display surface. The inclination angle or posture of each micromirror can be switched between two states.
  • the micromirror in one of the two states reflects the illumination light through the TIR prism unit 300 so as to become image light (projection light) toward the projection optical system 500 described later.
  • the micromirror in the other state reflects the illumination light so as to be non-projection light traveling in a direction away from the TIR prism unit 300.
  • An image is displayed by switching between two states for each pixel based on desired image information.
  • the illumination light of each color is emitted according to the image and emitted toward the TIR prism unit 300 as image light as described above.
  • the red image light reflected by the red DMD 450R enters the prism end surface 423R of the red prism 420R, is totally reflected by the air gap layer 411g on the clear prism 410 side, and then is reflected by the red dichroic surface 422R.
  • the blue image light reflected by the blue DMD 450B enters the prism end surface 423B of the blue prism 420B, is totally reflected by the air gap layer 412g on the red prism 420R side, and then is reflected by the blue dichroic surface 422B.
  • the image light reflected by the blue dichroic surface 422B further passes through the red dichroic surface 422R.
  • the green image light reflected by the green DMD 450G is incident on the prism end surface 423G of the green prism 420G and passes through the blue dichroic surface 422B and the red dichroic surface 422R.
  • the red, blue and green image lights transmitted through the red dichroic surface 422R are combined on the same optical axis.
  • the light exits from the incident surface 410 a of the clear prism 410 and enters the TIR prism unit 300.
  • the image light incident on the TIR prism unit 300 does not satisfy the total reflection condition here, it passes through the air gap layer 311g and is projected onto the screen by the projection optical system (projection lens) 500.
  • a single phosphor wheel 30 generates a plurality of fluorescence, and these fluorescences travel in a traveling direction with a common collimating means. It can be converted into a plurality of different substantially parallel lights, and these parallel lights can be combined into the same optical path by the combining means 50.
  • the number of the phosphor wheels 30 and the optical path can be reduced while converting the fluorescence emitted from the phosphor wheel 30 into the parallel light.
  • the size is not increased, and the number of parts can be reduced and the size can be reduced.
  • the number of motors that are driving sources is also reduced, so that the light source device 100 can be driven more quietly.
  • the excitation light emitted from the common excitation light source is converted into a plurality of parallel light flux groups having different traveling directions. can do.
  • an excitation light source solid light source
  • the number of components can be further reduced and the size can be reduced.
  • a laser light source it becomes easier to focus on a limited area on the phosphor layer, so that the etendue of the optical system can be reduced.
  • a light collecting means for condensing a plurality of parallel light flux groups having different traveling directions onto the phosphor wheel 30, and fluorescence of each color emitted from the phosphor wheel 30 into a plurality of substantially parallel lights having different traveling directions.
  • the synthesizing means 50 on the optical path of the excitation light from the excitation light source to the phosphor wheel 30, the optical path of the excitation light and the light path of the emitted fluorescence can be shared. Thereby, further miniaturization becomes possible.
  • FIG. 13 is a diagram schematically showing the configuration of the projector according to the present embodiment.
  • a projector 600A according to the present embodiment will be described with reference to FIG.
  • the projector 600A according to the present embodiment is different from the projector 600 according to the first embodiment in the configuration of the light source device 100A. Other configurations are almost the same.
  • the light source device 100A those that emit blue light having a wavelength of 440 nm to 450 nm are employed as the excitation light sources 10A and 10B. Accordingly, the transmittance characteristics of the PBS mirror are different from those of the PBS mirror 25 according to the first embodiment.
  • FIG. 14 is a diagram showing the relationship between the wavelengths of P-polarized light and S-polarized light and the transmittance in the PBS mirror provided in the projector shown in FIG.
  • FIG. 14 shows the transmittance characteristics of the PBS mirror when light enters the reflective surface of the PBS mirror with an angle of 45 °. With reference to FIG. 14, the transmittance characteristics of the PBS mirror will be described.
  • the PBS mirror transmits, for example, P-polarized light that intersects at a crossing angle of 45 ° in the wavelength region of 430 nm to 450 nm and crosses at a crossing angle of 45 ° in the wavelength region of 400 nm to 450 nm. Reflects polarized light.
  • P-polarized light that intersects at a crossing angle of 45 ° in the wavelength region of 430 nm to 450 nm and crosses at a crossing angle of 45 ° in the wavelength region of 400 nm to 450 nm. Reflects polarized light.
  • Such a PBS mirror can be suitably used when the laser light source 11 emits blue light having the above-described wavelength.
  • the parallel light beam groups L1, L2, and L3 that have passed through the PBS mirror include both the S-polarized component and the P-polarized component.
  • These parallel light beam groups L1, L2, and L3 are condensed at different positions on the phosphor wheel 30A by a condenser lens 70 as a condensing unit.
  • the phosphor wheel 30A is a so-called transmission type, and is configured to emit fluorescence toward a side opposite to a side on which blue light is incident.
  • FIG. 15 is a diagram showing the phosphor wheel shown in FIG.
  • the phosphor wheel 30A will be described with reference to FIGS.
  • the phosphor wheel 30A includes a rotating plate 31A having a dichroic film 32A provided on the surface opposite to the side on which blue light is incident, and a red phosphor as a plurality of phosphor layers.
  • the layer 33R, the green phosphor layer 33G, the diffusion portion 33T, and the drive mechanism 35 are included.
  • the rotating plate 31A is configured to transmit blue light.
  • a substrate made of glass, transparent resin, or the like can be adopted.
  • the dichroic film 32A is composed of, for example, a dielectric multilayer film.
  • the dichroic film 32A transmits blue light and reflects red light and green light.
  • the dichroic film 32A is preferably provided in a region where the phosphor layer is formed.
  • the red phosphor layer 33R and the green phosphor layer 33G are provided on the dichroic film 32A, respectively.
  • the red phosphor layer 33R, the green phosphor layer 33G, and the diffusion portion 33T are each provided in a ring shape.
  • the diffusion unit 33T is made of frosted glass or the like.
  • the diffusion unit 33T diffuses blue light while reducing speckles of the collected blue light.
  • the red phosphor layer 33R is provided so as to surround the drive mechanism 35 provided in the center of the rotating plate 31A.
  • the green phosphor layer 33G is provided on the outer side in the radial direction of the red phosphor layer 33R so as to be adjacent thereto.
  • the diffusion portion 33T is provided on the outer side in the radial direction of the green phosphor layer 33G so as to be adjacent thereto. Note that the arrangement of the plurality of phosphor layers that emit fluorescence of each color and the diffusion portion 33T that transmits and diffuses blue light is not limited as described above, and can be changed as appropriate.
  • the parallel light flux groups L1 and L2 that are transmitted through the rotating plate 31A and the dichroic film 32A and are collected on the red phosphor layer 33R and the green phosphor layer 33G are phosphors included in the red phosphor layer 33R and the green phosphor layer 33G. Excited. Thereby, red and green fluorescence is emitted from the red phosphor layer 33R and the green phosphor layer 33G.
  • the parallel light flux group L3 that has passed through the rotating plate 31A and condensed on the diffusing portion 33T passes through the diffusing portion 33T while being diffused.
  • FIG. 16 is a diagram showing the relationship between the wavelength and transmittance of the dichroic film on the surface of the rotating plate of the phosphor wheel shown in FIG. With reference to FIG. 16, the transmittance
  • the red and green fluorescence emitted by the red phosphor layer 33R and the green phosphor layer 33G is efficiently reflected toward the field lens 42 side. Can do. Further, blue light can be guided to the diffusing portion 33T and transmitted toward the field lens 42 side.
  • the red and green fluorescence emitted from the red phosphor layer 33R and the green phosphor layer 33G and the blue light diffused by the diffusing unit 33T are used as a field lens 42 as a first collimating means.
  • the light is converted into parallel light fluxes by the collimator lens 41.
  • the red and green fluorescence and blue light converted into parallel light beams are combined into a light beam having the same optical axis by the combining unit 50 and emitted toward the illumination optical system 200 as illumination light.
  • the illumination light incident on the illumination optical system 200 passes through the TIR prism unit 300 and is color-separated by the color prism unit 400.
  • the illumination light of each color separated by the color prism unit 400 is reflected by the DMD 450 and enters the color prism unit 400 as image light.
  • the image light of each color incident on the color prism unit 400 is synthesized with the same optical axis, passes through the TIR prism unit 300, and is projected onto the screen by the projection optical system 500.
  • only one phosphor wheel 30A is provided, and a plurality of fluorescent lights are generated by the phosphor wheel 30A, and the plurality of substantially different advancing directions are mutually generated by the common collimating means.
  • These light beams can be converted into parallel light, and the parallel light can be combined in the same optical path by the combining means 50.
  • the function of transmitting the excitation light to each mirror of the synthesizing means becomes unnecessary, and it is possible to use a mirror having a simplified configuration that is easier to manufacture.
  • the blue phosphor layer is omitted from the phosphor wheel by using a blue laser light source as the laser light source 12 has been described as an example, but the present invention is not limited to this.
  • An optical laser light source may be used.
  • a blue phosphor layer 33B is provided in place of the diffusing portion 33T, and ultraviolet light is transmitted as the dichroic film 32A, and light having red, green, and blue wavelength ranges is reflected. It is preferable to use one having characteristics.
  • FIG. 17 is a diagram schematically showing the configuration of the projector according to the present embodiment.
  • a projector 600B according to the present embodiment will be described with reference to FIG.
  • projector 600B has a configuration of phosphor wheel 30B of light source device 100B and illumination optical system 200B to projection optical system when compared with projector 600 according to the first embodiment.
  • the configuration up to 500 is different.
  • the projector 600B includes a light source device 100B, an illumination optical system 200B, a color separation optical system 250 as color separation means, liquid crystal panels 470R, 470G, and 470B as image display elements, a cross dichroic prism 480 as color composition means, and a projection.
  • An optical system 500 is provided.
  • the light source device 100B differs from the light source device 100 of the first embodiment in the configuration and position of the phosphor wheel 30B. Other configurations are almost the same.
  • FIG. 18 is a diagram showing the phosphor wheel shown in FIG. The phosphor wheel 30B will be described with reference to FIG.
  • a blue phosphor layer 33 ⁇ / b> B, a green phosphor layer 33 ⁇ / b> G, and a red phosphor layer 33 ⁇ / b> R may be sequentially provided from the center side of the rotating plate 31 toward the radially outer side.
  • the blue phosphor layer 33 ⁇ / b> B is provided so as to surround the drive mechanism 35 provided in the center of the rotating plate 31.
  • the green phosphor layer 33G is provided on the outer side in the radial direction of the blue phosphor layer 33B so as to be adjacent thereto.
  • the red phosphor layer 33R is provided on the outer side in the radial direction of the green phosphor layer 33G so as to be adjacent thereto.
  • center position of the phosphor wheel 30B is located closer to the first lens array 201 than the optical axis of the collimator lens 41.
  • the fluorescence of each color emitted from each phosphor layer is converted into the field lens 42, the collimator lens 41, the red reflecting mirror 51R, the green reflecting mirror 51G, and the like.
  • the blue reflection mirror 51B can be used to synthesize with substantially the same optical axis.
  • the illumination optical system 200B includes a first lens array 201, a second lens array 202, an overlapping lens 203, and a polarization conversion prism array 207.
  • the first lens array 201 and the second lens array 202 constitute an integrator optical system.
  • the first lens array 201 divides a fluorescent light beam into a number of light beams by lens cells having a shape substantially similar to the display portions of the liquid crystal panels 470R, 470G, and 470B, and condenses them into the lens cells of the second lens array 202. .
  • Each lens cell of the second lens array 202 forms an image of the corresponding lens cell of the first lens array 201 on the display unit of the liquid crystal panels 470R, 470G, and 470B, and the image of each lens cell is liquid crystal by the overlapping lens 203. Overlaying on panels 470R, 470G, and 470B. Thereby, the illuminance distribution on the liquid crystal panels 470R, 470G, and 470B can be made uniform.
  • the polarization conversion prism array 207 is manufactured by joining a prism array with a polarization separation coating, and separates these secondary light source images into two linearly polarized light beams having different polarization directions and reflects them as S-polarized light on the polarization separation surface. Transmits P-polarized light.
  • a phase plate attached on the P-polarized light path of the polarization conversion prism array 207 converts the P-polarized light of the secondary light source image to S-polarized light and converts the illumination light into linearly polarized light.
  • the color separation optical system 250 separates the illumination light emitted from the illumination optical system 200B into three color lights of red, green, and blue and makes them enter the liquid crystal panels 470R, 470G, and 470B, respectively.
  • the color separation optical system 250 includes a red transmissive dichroic mirror 251R, a blue transmissive dichroic mirror 251B, reflection mirrors 256, 257, and 258, relay lenses 261 and 262, and field lenses 265R, 265G, and 265B.
  • the red transmissive dichroic mirror 251R transmits red light and reflects green light and blue light.
  • the blue transmissive dichroic mirror 251B transmits blue light and reflects green light.
  • red light is transmitted through the red transmissive dichroic mirror 251R.
  • the red light transmitted through the red transmitting dichroic mirror 251R is reflected by the reflecting mirror 256 and passes through the field lens 265R.
  • the red light that has passed through the field lens 265R enters the display portion of the liquid crystal panel 470R for red light.
  • green light and blue light are reflected by the red transmission dichroic mirror 251R.
  • green light and blue light reflected by the red transmissive dichroic mirror 251R green light is reflected by the blue transmissive dichroic mirror 251B and passes through the field lens 265G.
  • the green light that has passed through the field lens 265G is incident on the display portion of the liquid crystal panel 470G for green light.
  • the blue light is transmitted through the blue transmissive dichroic mirror 251B, and sequentially passes through the relay lens 261, the reflective mirror 257, the relay lens 262, and the reflective mirror 258, and then the field lens. Pass 265B.
  • the blue light that has passed through the field lens 265B is incident on the display portion of the liquid crystal panel 470B for blue light.
  • equal-magnification relay lenses 261 and 262 are arranged so that the conditions are equivalent to those of the other color lights. ing.
  • the field lenses 265R, 265G, and 265B make the illumination light separated into colors into telecentric light beams, and substantially uniform illumination light including incident angle characteristics is incident on the liquid crystal panels 470R, 470G, and 470B. To do.
  • the liquid crystal panels 470R, 470G, and 470B display an image of each color light on the display unit according to the image information.
  • Liquid crystal panels 470R, 470G, and 470B are sandwiched between polarizing plates (not shown).
  • the incident-side polarizing plates, the liquid crystal panels 470R, 470G, and 470B and the outgoing-side polarizing plates modulate the light of each color incident on each pixel, and only light in a specific polarization direction is input to the cross dichroic prism 480 as image light. It is injected towards.
  • the cross dichroic prism 480 combines the image light emitted from the liquid crystal panels 470R, 470G, and 470B with the same optical axis, and emits the combined image light toward the projection optical system 500.
  • the cross dichroic prism 480 is configured by combining four triangular prisms.
  • the cross dichroic prism 480 has a red reflecting surface 481R and a blue reflecting surface 481B.
  • the red reflecting surface 481R and the blue reflecting surface 481B are formed of a dielectric multilayer film.
  • the red image light incident on the cross dichroic prism 480 is reflected by the red reflecting surface 481R and emitted from the emitting surface 480a.
  • the blue image light incident on the cross dichroic prism 480 is reflected by the blue reflecting surface 481B and is emitted from the emission surface 480a.
  • the green image light incident on the cross dichroic prism 480 passes through the red reflecting surface 481R and the blue reflecting surface 481B and is emitted from the exit surface 480a.
  • the red image light, the blue image light, and the green image light are combined and emitted as an image from the emission surface 480 a and projected onto the screen via the projection optical system 500.
  • the light source device 100 can also be applied to the projector 600B using the liquid crystal panels 470R, 470G, and 470B.
  • the phosphor wheel 30, the first lens array 201, the second lens array 202, and the polarization conversion prism array 207 are provided in one set, and since a laser light source is used, the lifetime can be extended.
  • light source device 100B according to the present embodiment is substantially the same as the configuration of light source device 100 according to the first embodiment, the same effects as in the first embodiment can be obtained in the present embodiment. .
  • the order of the phosphor layers used in the phosphor wheel, or the order of the phosphor layers and the diffusing portions are the red reflection mirror 51R, the green reflection mirror 51G, and the blue. It can be changed as appropriate by adjusting the optical system such as the order of the reflection mirrors 51R.
  • the phosphor wheel according to the third embodiment may be used.
  • the phosphor wheel according to the first embodiment is used. Also good.

Abstract

This light source device (100) includes: excitation light sources (10A, 10B) that radiate excitation light for exciting fluorescence; a plurality of phosphor layers (33R, 33G, 33B) that are provided on the surface of a substrate (31), and emit fluorescences having different wavelength regions as a result of the excitation light radiated from the excitation light sources; a first collimating means (40) that converts the plurality of fluorescences, which are emitted from the plurality of phosphor layers (33R, 33G, 33B) and have different wavelength regions, into a plurality of substantially parallel light beams having different advancing directions; and a combining means (50) that combines the plurality of substantially parallel light beams having different advancing directions onto substantially the same optical path.

Description

光源装置およびプロジェクタLight source device and projector
 本発明は、光源装置およびプロジェクタに関する。 The present invention relates to a light source device and a projector.
 従来、励起光源から出射された励起光を基板上に設けられた蛍光体層によって色変換し、色変換された各色の光を合成する光源装置が各種開発されている。このような光源装置が開示された文献として、たとえば特開2012-247491号公報(特許文献1)、特開2012-113224号公報(特許文献2)が挙げられる。 Conventionally, various types of light source devices have been developed in which excitation light emitted from an excitation light source is color-converted by a phosphor layer provided on a substrate, and light of each color that has undergone color conversion is synthesized. Documents disclosing such a light source device include, for example, JP 2012-247491 A (Patent Document 1) and JP 2012-113224 A (Patent Document 2).
 特許文献1に開示の光源装置は、第1固体光源および第2固体光源を含む複数の固体光源と、複数の固体光源をそれぞれ独立に駆動するための駆動手段と、輪帯状の第1蛍光体層および第2蛍光体層が同一の基板上に設けられた蛍光体ホイールとを備える。 The light source device disclosed in Patent Literature 1 includes a plurality of solid light sources including a first solid light source and a second solid light source, driving means for independently driving the plurality of solid light sources, and a ring-shaped first phosphor. And a phosphor wheel in which the layer and the second phosphor layer are provided on the same substrate.
 第1固体光源から出射された励起光が、第1集光手段によって第1蛍光体層に集光されることにより、第1蛍光体層から第1の蛍光が発光される。第2固体光源から出射された励起光が、第1集光手段とは異なる第2集光手段によって第2蛍光体層に集光されることにより、第2蛍光体層から第1の蛍光とは異なる色光を有する第2の蛍光が発光される。 The excitation light emitted from the first solid state light source is condensed on the first phosphor layer by the first condensing means, whereby the first fluorescence is emitted from the first phosphor layer. The excitation light emitted from the second solid state light source is condensed on the second phosphor layer by the second condensing means different from the first condensing means, so that the first fluorescent light is emitted from the second phosphor layer. Emits second fluorescence having different color light.
 上述の構成を有することにより、特許文献1に開示の光源装置にあっては、複数の固体光源の点灯タイミングおよび強度を独立して制御し、蛍光体ホイールを回転させながら、複数の蛍光体層のそれぞれに対応する各固体光源からの励起光を集光させることにより、常に波長が同一の各蛍光を得ることができる。このような第1の蛍光および第2の蛍光を合成することにより、高強度の色光を得ることができる。 By having the above-described configuration, the light source device disclosed in Patent Document 1 controls the lighting timing and intensity of the plurality of solid-state light sources independently, and rotates the phosphor wheel while rotating the plurality of phosphor layers. By collecting the excitation light from each solid-state light source corresponding to each, it is possible to always obtain each fluorescence having the same wavelength. By synthesizing the first fluorescence and the second fluorescence, high-intensity color light can be obtained.
 特許文献2に開示の光源装置にあっては、一方向に偏光方向が揃った偏光光を出射する光源と、光源から出された偏光光を、分割比率調整可能に複数の偏光光に分割できる光分割部材と、光分割部材から出射された複数の偏光光のそれぞれを異なる複数の色光に変換するための複数の光変換部材と、複数の光変換部材の配列と切換えにより、入射される複数の偏光光を同時に予め定められた順序に従い色変換する切換装置と、切換装置から同時に出射される異なる色に色変換された複数の色光を合成して出射する合成装置とを備える。 In the light source device disclosed in Patent Document 2, a light source that emits polarized light with the polarization direction aligned in one direction and the polarized light emitted from the light source can be divided into a plurality of polarized lights so that the division ratio can be adjusted. A light splitting member, a plurality of light converting members for converting each of a plurality of polarized lights emitted from the light splitting members into different color lights, and a plurality of light incident by switching and arranging the plurality of light converting members A switching device that simultaneously converts colors of the polarized light according to a predetermined order, and a combining device that combines and outputs a plurality of color lights that have been color-converted to different colors that are simultaneously emitted from the switching device.
 上述の構成を有することにより、特許文献2に開示の光源装置にあっては、偏光光の分割比率を調整することによって出射される照明光の色度を変化させることができる。 By having the above-described configuration, in the light source device disclosed in Patent Document 2, it is possible to change the chromaticity of the emitted illumination light by adjusting the split ratio of the polarized light.
特開2012-247491号公報JP 2012-247491 A 特開2012-113224号公報JP 2012-113224 A
 しかしながら、特許文献1に開示の光源装置にあっては、各蛍光体層に応じて固体光源および集光手段が必要となる。また、各蛍光体層に対応する固体光源から出射される励起光を導光するための光学経路も必要となるため、装置が大型化するとともに、複雑化するという問題がある。 However, in the light source device disclosed in Patent Document 1, a solid light source and a condensing unit are required according to each phosphor layer. In addition, since an optical path for guiding excitation light emitted from the solid-state light source corresponding to each phosphor layer is required, there is a problem that the apparatus becomes large and complicated.
 特許文献2に開示の光源装置にあっては、光分割部材から出射された複数の偏光光のそれぞれは、光変換部材に直接入射される。また、切換装置によって色時分割され、光学変換部材である蛍光体層から発光された蛍光は、直接ロットインテグレータ等の合成装置に直接入射される。 In the light source device disclosed in Patent Document 2, each of the plurality of polarized lights emitted from the light splitting member is directly incident on the light converting member. In addition, the fluorescence that has been color-time-divided by the switching device and emitted from the phosphor layer, which is an optical conversion member, is directly incident on a synthesis device such as a lot integrator.
 このように、特許文献2に開示の光源装置にあっては、蛍光体層に励起光を集光させるための集光手段や、蛍光体層から発光された蛍光を色合成するためのダイクロイックフィルター等が設けられていないため、エタンデューが大きくなる。 As described above, in the light source device disclosed in Patent Document 2, a condensing unit for condensing excitation light on the phosphor layer, and a dichroic filter for color-combining fluorescence emitted from the phosphor layer. Etendue is increased because no etc. are provided.
 本発明は、上記のような問題に鑑みてなされたものであり、本発明の目的は、エタンデューが大きくならず、部品点数を削減し小型化が可能な光源装置およびプロジェクタを提供することにある。 The present invention has been made in view of the above-described problems, and an object of the present invention is to provide a light source device and a projector that do not increase etendue, reduce the number of components, and can be downsized. .
 本発明に基づく光源装置は、蛍光を励起するための励起光を出射する励起光源と、基板の表面上に配置され、上記励起光源から出射された上記励起光によって互いに異なる波長域を有する上記蛍光を発光する複数の蛍光体層と、上記複数の蛍光体層から発光され互いに異なる波長域を有する複数の上記蛍光を、互いに進行方位の異なる複数の平行光にする第1コリメート手段と、上記進行方位の異なる上記複数の平行光を同一光路に合成する合成手段とを、備える。 The light source device according to the present invention includes an excitation light source that emits excitation light for exciting fluorescence and the fluorescence that is disposed on the surface of the substrate and has different wavelength ranges depending on the excitation light emitted from the excitation light source. A plurality of phosphor layers that emit light from the plurality of phosphor layers, and a plurality of the fluorescent lights having different wavelength ranges from each other, and a plurality of parallel lights having different traveling directions, and the traveling Synthesizing means for synthesizing the plurality of parallel lights having different orientations in the same optical path.
 本発明に基づくプロジェクタは、上記に記載の光源装置と、上記光源装置から入射される光束を複数の各色光に分離する色分離手段と、上記色分離手段によって色分離された上記各色光に対応して設けられ、上記各色光の画像を表示する複数の画像表示素子と、上記複数の画像表示素子によって画像に応じて変調された画像光のそれぞれを同一光軸に合成する色合成手段と、上記色合成手段によって合成された画像光を投影する投影系と、を備える。 The projector according to the present invention corresponds to the light source device described above, color separation means for separating a light beam incident from the light source device into a plurality of color lights, and the color lights separated by the color separation means. A plurality of image display elements for displaying images of the respective color lights, and a color composition unit for synthesizing each of the image lights modulated according to the images by the plurality of image display elements on the same optical axis, A projection system for projecting the image light synthesized by the color synthesizing means.
 本発明によれば、エタンデューが大きくならず、部品点数を削減し小型化が可能な光源装置およびプロジェクタを提供することができる。 According to the present invention, it is possible to provide a light source device and a projector that do not increase etendue, can reduce the number of parts, and can be miniaturized.
実施の形態1に係るプロジェクタの構成を模式的に示す図である。1 is a diagram schematically showing a configuration of a projector according to Embodiment 1. FIG. 図1に示すII線に示す方向から見た光源装置を模式的に示す図である。It is a figure which shows typically the light source device seen from the direction shown to the II line | wire shown in FIG. レーザー光源とコリメートレンズとの配置の第1例を示す図である。It is a figure which shows the 1st example of arrangement | positioning of a laser light source and a collimating lens. レーザー光源とコリメートレンズとの配置の第2例を示す図である。It is a figure which shows the 2nd example of arrangement | positioning with a laser light source and a collimating lens. レーザー光源とコリメートレンズとの配置の第3例を示す図である。It is a figure which shows the 3rd example of arrangement | positioning with a laser light source and a collimating lens. レーザー光源とコリメートレンズとの配置の第4例を示す図である。It is a figure which shows the 4th example of arrangement | positioning of a laser light source and a collimating lens. 図2に示すPBSミラーにおいて、P偏光およびS偏光の波長と透過率との関係を示す図である。FIG. 3 is a diagram showing a relationship between wavelengths of P-polarized light and S-polarized light and transmittance in the PBS mirror shown in FIG. 2. 図1に示す赤反射ミラーにおける波長と透過率との関係を示す図である。It is a figure which shows the relationship between the wavelength in the red reflection mirror shown in FIG. 1, and the transmittance | permeability. 図1に示す緑反射ミラーにおける波長と透過率との関係を示す図である。It is a figure which shows the relationship between the wavelength in the green reflective mirror shown in FIG. 1, and the transmittance | permeability. 図1に示す青反射ミラーにおける波長と透過率との関係を示す図である。It is a figure which shows the relationship between the wavelength in the blue reflective mirror shown in FIG. 1, and the transmittance | permeability. 図1に示す蛍光体ホイールを示す図である。It is a figure which shows the fluorescent substance wheel shown in FIG. 図1に示すプロジェクタの一部を構成するカラープリズムユニットを示す正面図である。It is a front view which shows the color prism unit which comprises some projectors shown in FIG. 実施の形態2に係るプロジェクタの構成を模式的に示す図である。6 is a diagram schematically showing a configuration of a projector according to Embodiment 2. FIG. 図13に示すプロジェクタに具備されるPBSミラーにおいて、P偏光およびS偏光の波長と透過率との関係を示す図である。It is a figure which shows the relationship between the wavelength of P polarized light and S polarized light, and the transmittance | permeability in the PBS mirror with which the projector shown in FIG. 13 is equipped. 図13に示す蛍光体ホイールを示す図である。It is a figure which shows the fluorescent substance wheel shown in FIG. 図15に示す蛍光体ホイールの回転板表面におけるダイクロイック膜の波長と透過率との関係を示す図である。It is a figure which shows the relationship between the wavelength of a dichroic film | membrane and the transmittance | permeability in the rotating plate surface of the fluorescent substance wheel shown in FIG. 実施の形態3に係るプロジェクタの構成を模式的に示す図である。FIG. 5 schematically shows a configuration of a projector according to a third embodiment. 図17に示す蛍光体ホイールを示す図である。It is a figure which shows the fluorescent substance wheel shown in FIG.
 以下、本発明の実施の形態について、図を参照して詳細に説明する。なお、以下に示す実施の形態においては、同一のまたは共通する部分について図中同一の符号を付し、その説明は繰り返さない。また、以下に説明する実施の形態において、個数、量などに言及する場合、特に記載がある場合を除き、本発明の範囲は必ずしもその個数、量などに限定されない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the following embodiments, the same or common parts are denoted by the same reference numerals in the drawings, and description thereof will not be repeated. In the embodiments described below, when referring to the number, amount, and the like, the scope of the present invention is not necessarily limited to the number, amount, and the like unless otherwise specified.
 (実施の形態1)
 図1は、本実施の形態に係るプロジェクタの構成を模式的に示す図である。図2は、図1に示すII線に示す方向から見たプロジェクタに具備される光源装置を模式的に示す図である。図1および図2を参照して、本実施の形態に係るプロジェクタについて説明する。
(Embodiment 1)
FIG. 1 is a diagram schematically showing a configuration of a projector according to the present embodiment. FIG. 2 is a diagram schematically showing a light source device provided in the projector as viewed from the direction indicated by line II shown in FIG. A projector according to the present embodiment will be described with reference to FIGS. 1 and 2.
 図1および図2に示すように、本実施の形態に係るプロジェクタ600は、光源装置100と、照明光学系200、TIRプリズムユニット300、カラープリズムユニット400、画像表示素子としてのDMD450および投影光学系500を備える。 As shown in FIGS. 1 and 2, projector 600 according to the present embodiment includes light source device 100, illumination optical system 200, TIR prism unit 300, color prism unit 400, DMD 450 as an image display element, and projection optical system. 500.
 光源装置100は、励起光源10A、励起光源10B、コリメート手段20、蛍光体ホイール30、集光手段40、および合成手段50を含む。 The light source device 100 includes an excitation light source 10A, an excitation light source 10B, a collimating means 20, a phosphor wheel 30, a condensing means 40, and a synthesizing means 50.
 励起光源10Aは、複数のレーザー光源11を有する。励起光源10Aは、たとえば、図1中において基台上に縦8個×横7個のレーザー光源11を並べて、これらを電気的に接続することにより構成される。レーザー光源11としては、370nm~380nmの波長を有する紫外光(励起光)を出射する半導体レーザーを採用することができる。レーザー光源11は、紫外光を出射し、後述の折り返しミラー群23、PBSミラーに対しP偏光となるように配置されている。 The excitation light source 10 </ b> A has a plurality of laser light sources 11. The excitation light source 10A is configured, for example, by arranging 8 × 7 laser light sources 11 on a base in FIG. 1 and electrically connecting them. As the laser light source 11, a semiconductor laser that emits ultraviolet light (excitation light) having a wavelength of 370 nm to 380 nm can be employed. The laser light source 11 emits ultraviolet light and is arranged to be P-polarized light with respect to a later-described folding mirror group 23 and a PBS mirror.
 複数のレーザー光源11のうち、励起光源10Aの一端側(図1中において左側)から2列のレーザー光源11aから出射される紫外光は、後述する赤色蛍光体層33Rに集光される。複数のレーザー光源11のうち、励起光源10Aの略中央部に位置する3列のレーザー光源11bから出射される紫外光は、後述する緑色蛍光体層33Gに集光される。複数のレーザー光源11のうち、励起光源10Aの他端側(図1中において左側)から2列のレーザー光源11cから出射される紫外光は、後述する青色蛍光体層33Bに集光される。 Among the plurality of laser light sources 11, ultraviolet light emitted from two rows of laser light sources 11a from one end side (left side in FIG. 1) of the excitation light source 10A is condensed on a red phosphor layer 33R described later. Among the plurality of laser light sources 11, the ultraviolet light emitted from the three rows of laser light sources 11b located substantially at the center of the excitation light source 10A is collected on a green phosphor layer 33G described later. Among the plurality of laser light sources 11, the ultraviolet light emitted from the two rows of laser light sources 11c from the other end side (left side in FIG. 1) of the excitation light source 10A is collected on a blue phosphor layer 33B described later.
 励起光源10Bは、複数のレーザー光源12を有する。励起光源10Bは、たとえば、図1中において基台上に縦4個×横6個のレーザー光源12を並べて、これらを電気的に接続することにより構成される。レーザー光源12としては、370nm~380nmの波長を有する紫外光を出射する半導体レーザーを採用することができる。レーザー光源12は、紫外光を出射し、後述の折り返しミラー群23、PBSミラーに対しS偏光となるように配置されている。 The excitation light source 10B has a plurality of laser light sources 12. The excitation light source 10B is configured, for example, by arranging 4 × 6 laser light sources 12 on a base in FIG. 1 and electrically connecting them. As the laser light source 12, a semiconductor laser that emits ultraviolet light having a wavelength of 370 nm to 380 nm can be employed. The laser light source 12 emits ultraviolet light and is disposed so as to be S-polarized light with respect to a later-described folding mirror group 23 and a PBS mirror.
 複数のレーザー光源12のうち、励起光源10Bの一端側(図1中において左側)から2列のレーザー光源12aから出射される紫外光は、後述する赤色蛍光体層33Rに集光される。複数のレーザー光源12のうち、励起光源10Aの略中央部に位置する2列のレーザー光源12bから出射される紫外光は、後述する緑色蛍光体層33Gに集光される。複数のレーザー光源12のうち、励起光源10Bの他端側(図1中において右側)から2列のレーザー光源12cから出射される紫外光は、後述する青色蛍光体層33Bに集光される。 Among the plurality of laser light sources 12, the ultraviolet light emitted from the two rows of laser light sources 12a from one end side (left side in FIG. 1) of the excitation light source 10B is condensed on a red phosphor layer 33R described later. Among the plurality of laser light sources 12, the ultraviolet light emitted from the two rows of laser light sources 12b positioned substantially at the center of the excitation light source 10A is condensed on a green phosphor layer 33G described later. Among the plurality of laser light sources 12, the ultraviolet light emitted from the two rows of laser light sources 12c from the other end side (right side in FIG. 1) of the excitation light source 10B is condensed on a blue phosphor layer 33B described later.
 コリメート手段20は、複数のコリメートレンズ21、折り返しミラー群23、PBSミラー25を含む。コリメート手段20は、複数のレーザー光源11,12から出射された励起光を進行方位の異なる複数の略平行光束群に変換する第2コリメート手段に相当する。 The collimating means 20 includes a plurality of collimating lenses 21, a folding mirror group 23, and a PBS mirror 25. The collimating means 20 corresponds to second collimating means for converting the excitation light emitted from the plurality of laser light sources 11 and 12 into a plurality of substantially parallel light flux groups having different traveling directions.
 複数のコリメートレンズ21のそれぞれは、複数のレーザー光源11,12のそれぞれに対応して配置されている。複数のコリメートレンズ21は、複数のレーザー光源11,12と対峙するように配置されている。 Each of the plurality of collimating lenses 21 is arranged corresponding to each of the plurality of laser light sources 11 and 12. The plurality of collimating lenses 21 are arranged so as to face the plurality of laser light sources 11 and 12.
 図3から図6は、レーザー光源とコリメートレンズとの配置の第1例から第4例を示す図である。図3から図6を参照して、レーザー光源11とコリメートレンズ21との位置関係について説明する。レーザー光源とコリメートレンズとの配置の第1例から第4例のいずれにおいても、レーザー光源11およびコリメートレンズ21はアレイ状に配置されている。 3 to 6 are views showing a first example to a fourth example of the arrangement of the laser light source and the collimating lens. The positional relationship between the laser light source 11 and the collimating lens 21 will be described with reference to FIGS. In any of the first to fourth examples of the arrangement of the laser light source and the collimating lens, the laser light source 11 and the collimating lens 21 are arranged in an array.
 図1および図3に示すように、レーザー光源11とコリメートレンズ21との配置の第1例にあっては、励起光源10Aの一端側および他端側に位置するレーザー光源11a,11cが、これに対応するコリメートレンズ21a,21cの中心線からずれた位置に配置されている。この場合においては、レーザー光源11は、同一平面上に配置され、コリメートレンズ21もレーザー光源11から離れて位置する同一平面上に配置される。 As shown in FIGS. 1 and 3, in the first example of the arrangement of the laser light source 11 and the collimating lens 21, the laser light sources 11a and 11c located on one end side and the other end side of the excitation light source 10A are Are arranged at positions shifted from the center lines of the collimating lenses 21a and 21c corresponding to. In this case, the laser light source 11 is arranged on the same plane, and the collimating lens 21 is also arranged on the same plane located away from the laser light source 11.
 具体的には、コリメートレンズ21aの中心線に沿って見た場合に、レーザー光源11aは、励起光源10Aの一端側に近づく方向にコリメートレンズ21aの中心線から離れて配置される。レーザー光源11bは、コリメートレンズ21bの中心線とレーザー光源11bの中心とが重なるように配置されている。レーザー光源11cは、励起光源10Aの他端側に近づくようにコリメートレンズ21cの中心線から離れて配置される。 Specifically, when viewed along the center line of the collimating lens 21a, the laser light source 11a is disposed away from the center line of the collimating lens 21a in a direction approaching one end of the excitation light source 10A. The laser light source 11b is arranged so that the center line of the collimating lens 21b and the center of the laser light source 11b overlap. The laser light source 11c is arranged away from the center line of the collimating lens 21c so as to approach the other end side of the excitation light source 10A.
 図4に示すように、レーザー光源11とコリメートレンズ21との配置の第2例にあっては、励起光源10Aの一端側および他端側に位置するレーザー光源11a,11cが、これに対応するコリメートレンズ21a,21cに対して傾斜している。具体的には、各行に配置されたレーザー光源11a,11cは、各行における励起光源10Aの中心線に向くように傾斜する。 As shown in FIG. 4, in the second example of the arrangement of the laser light source 11 and the collimating lens 21, the laser light sources 11a and 11c located on one end side and the other end side of the excitation light source 10A correspond to this. It inclines with respect to the collimating lenses 21a and 21c. Specifically, the laser light sources 11a and 11c arranged in each row are inclined so as to face the center line of the excitation light source 10A in each row.
 図5に示すように、レーザー光源11とコリメートレンズ21との配置の第3例にあっては、励起光源10Aの一端側および他端側のレーザー光源11a,11cに対応するコリメートレンズ21a,21cが、レーザー光源11a,11cに対して傾斜している。具体的には、各行に配置されたコリメートレンズ21a,21cは、これに対応する各行における励起光源10Aの中心線を向くように傾斜する。 As shown in FIG. 5, in the third example of the arrangement of the laser light source 11 and the collimating lens 21, collimating lenses 21a and 21c corresponding to the laser light sources 11a and 11c on one end side and the other end side of the excitation light source 10A. Is inclined with respect to the laser light sources 11a and 11c. Specifically, the collimating lenses 21a and 21c arranged in each row are inclined so as to face the center line of the excitation light source 10A in each corresponding row.
 図6に示すように、レーザー光源11とコリメートレンズ21との配置の第4例にあっては、励起光源10Aの一端側および他端側のレーザー光源11a,11cおよびこれらに対応するコリメートレンズ21a,21cの両方が傾斜している。 As shown in FIG. 6, in the fourth example of the arrangement of the laser light source 11 and the collimating lens 21, the laser light sources 11a and 11c on one end side and the other end side of the excitation light source 10A and the collimating lens 21a corresponding thereto. , 21c are both inclined.
 具体的には、各行に配置されたレーザー光源11a,11cおよびこれに対応するコリメートレンズ21a,21cは、各行における励起光源10Aの中心線を向くように傾斜する。 Specifically, the laser light sources 11a and 11c arranged in each row and the collimating lenses 21a and 21c corresponding to the laser light sources 11a and 11c are inclined so as to face the center line of the excitation light source 10A in each row.
 図3から図6に示すように、励起光源10A,10Bの一端側、中央側、他端側においてレーザー光源11とコリメートレンズ21の相対位置をそれぞれ変更することにより、励起光源10A,10Bから出射された紫外光を進行角度の異なる3種類の平行光束に変換することができる。たとえば、3種類の平行光束は、5°ずつ進行方位が異なる。 As shown in FIGS. 3 to 6, the excitation light sources 10A and 10B are emitted from the excitation light sources 10A and 10B by changing the relative positions of the laser light source 11 and the collimating lens 21 on one end side, the center side, and the other end side of the excitation light sources 10A and 10B, respectively. The generated ultraviolet light can be converted into three types of parallel light fluxes having different traveling angles. For example, three kinds of parallel light beams have different traveling directions by 5 °.
 具体的には、複数のレーザー光源11aから出射された紫外光のそれぞれは、コリメートレンズ21aによって進行方向DR1に進行する平行光束に変換される。複数のレーザー光源11bから出射された紫外光のそれぞれは、コリメートレンズ21bによって進行方向DR2に進行する平行光束に変換される。複数のレーザー光源11cから出射された紫外光のそれぞれは、コリメートレンズ21cによって進行方向DR3に進行する平行光束に変換される。 Specifically, each of the ultraviolet light emitted from the plurality of laser light sources 11a is converted into a parallel light beam traveling in the traveling direction DR1 by the collimating lens 21a. Each of the ultraviolet light emitted from the plurality of laser light sources 11b is converted into a parallel light beam traveling in the traveling direction DR2 by the collimating lens 21b. Each of the ultraviolet light emitted from the plurality of laser light sources 11c is converted into a parallel light beam traveling in the traveling direction DR3 by the collimating lens 21c.
 進行方向DR2は、複数のレーザー光源11が配列される行方向および列方向に直交する方向にほぼ一致する。進行方向DR1および進行方向DR3のそれぞれは、進行方向DR2に対して5°の交差角を持って交差する。進行方向DR1と進行方向DR3とは10°の交差角を持って交差する。 The traveling direction DR2 substantially coincides with the direction orthogonal to the row direction and the column direction in which the plurality of laser light sources 11 are arranged. Each of the traveling direction DR1 and the traveling direction DR3 intersects with the traveling direction DR2 with an intersection angle of 5 °. The traveling direction DR1 and the traveling direction DR3 intersect with an intersection angle of 10 °.
 レーザー光源12およびコリメートレンズ21も、レーザー光源11とコリメートレンズ21との配置と同様に配置される。これにより、複数のレーザー光源12a,12b,12cから出射された紫外光のそれぞれは、コリメートレンズ21a,21b,21cによって進行方向DR1,DR2,DR3に平行な方向に進行する平行光束に変換される。 The laser light source 12 and the collimating lens 21 are also arranged in the same manner as the arrangement of the laser light source 11 and the collimating lens 21. Thereby, each of the ultraviolet light emitted from the plurality of laser light sources 12a, 12b, and 12c is converted into parallel light fluxes traveling in directions parallel to the traveling directions DR1, DR2, and DR3 by the collimating lenses 21a, 21b, and 21c. .
 図2に示すように、折り返しミラー群23は、複数の折り返しミラー22が階段状に配列されることにより構成される。レーザー光源11からのP偏光方向の出射角はS偏光方向の出射角より小さく光束幅が狭くなるため、このように折り返しミラー22を配置することにより、コリメートレンズ21よって変換された複数の平行光束間の間隔を狭めることができる。この場合においては、複数の平行光束間の間隔が無いことが好ましい。 As shown in FIG. 2, the folding mirror group 23 is configured by arranging a plurality of folding mirrors 22 in a staircase pattern. Since the exit angle in the P-polarization direction from the laser light source 11 is smaller than the exit angle in the S-polarization direction, the width of the light beam becomes narrow. Thus, by arranging the folding mirror 22 in this way, a plurality of parallel light beams converted by the collimator lens 21 are obtained. The interval between them can be narrowed. In this case, it is preferable that there is no interval between the plurality of parallel light beams.
 図1および図2に示すように、折り返しミラー群23は、複数の平行光束から成る平行光束群を光束断面積が縮小された平行光束群に変換しつつ、これを集光手段40に向けて反射する。具体的には、複数のレーザー光源11aから出射された紫外光は、光束断面積が縮小された平行光束群L1に変換される。複数のレーザー光源11bから出射された紫外光は、光束断面積が縮小された平行光束群L2に変換される。複数のレーザー光源11cから出射された紫外光は、光束断面積が縮小された平行光束群L3に変換される。これら複数の平行光束群L1,L2,L3は、光軸C1,C2,C3を有し、互いに進行方位が異なる。 As shown in FIG. 1 and FIG. 2, the folding mirror group 23 converts the parallel light flux group composed of a plurality of parallel light fluxes into a parallel light flux group with a reduced light beam cross-sectional area, and directs it toward the light collecting means 40. reflect. Specifically, the ultraviolet light emitted from the plurality of laser light sources 11a is converted into a parallel light beam group L1 having a reduced light beam cross-sectional area. Ultraviolet light emitted from the plurality of laser light sources 11b is converted into a parallel light beam group L2 having a reduced light beam cross-sectional area. The ultraviolet light emitted from the plurality of laser light sources 11c is converted into a parallel light beam group L3 having a reduced light beam cross-sectional area. The plurality of parallel light beam groups L1, L2, and L3 have optical axes C1, C2, and C3, and have different traveling directions.
 光軸C2は、後述するコリメーターレンズ41の光軸と一致する。光軸C1および光軸C3は、光軸C2に対して5°の交差角を持って交差する。光軸C1および光軸C3は、10°の交差角を持って交差する。 The optical axis C2 coincides with the optical axis of the collimator lens 41 described later. The optical axis C1 and the optical axis C3 intersect with the optical axis C2 with an intersection angle of 5 °. The optical axis C1 and the optical axis C3 intersect with an intersection angle of 10 °.
 折り返しミラー群23から集光手段40に至るまでの紫外光の光路上には、PBSミラー25、ならびに、赤反射ミラー51R、緑反射ミラー51Gおよび青反射ミラー51Bを含む合成手段50が配置されている。 On the optical path of the ultraviolet light from the folding mirror group 23 to the condensing means 40, the combining means 50 including the PBS mirror 25 and the red reflecting mirror 51R, the green reflecting mirror 51G, and the blue reflecting mirror 51B is arranged. Yes.
 PBSミラー25は、S偏光を合成手段50に向けて反射して、P偏光を合成手段50に向けて透過させるように構成されている。PBSミラー25は、平行光束群L2に対して45°、平行光束群L1,L3に対して45.22°と略45°で交差する。また、PBSミラー25は、レーザー光源12a,12b,12cから出射され、コリメートレンズ21a,21b,21cによって異なる方位に進行するように変換された平行光束に対しても同様に略45°で交差する。 The PBS mirror 25 is configured to reflect S-polarized light toward the combining unit 50 and transmit P-polarized light toward the combining unit 50. The PBS mirror 25 intersects the parallel light beam group L2 at 45 ° and the parallel light beam groups L1 and L3 at 45.22 ° at approximately 45 °. The PBS mirror 25 also intersects parallel light beams emitted from the laser light sources 12a, 12b, and 12c and converted so as to travel in different directions by the collimating lenses 21a, 21b, and 21c at approximately 45 °. .
 図7は、図2に示すPBSミラーにおいて、P偏光およびS偏光の波長と透過率との関係を示す図である。図7は、PBSミラーの反射面に45°の交差角を持って光を進入させた場合における、PBSミラー25の透過率特性を示している。図7を参照して、PBSミラーの透過率特性について説明する。 FIG. 7 is a diagram showing the relationship between the wavelength and transmittance of P-polarized light and S-polarized light in the PBS mirror shown in FIG. FIG. 7 shows the transmittance characteristics of the PBS mirror 25 when light enters the reflecting surface of the PBS mirror with a 45 ° crossing angle. The transmittance characteristics of the PBS mirror will be described with reference to FIG.
 図7に示すように、PBSミラー25は、たとえば、370nm~410nmの波長域において、交差角45°で交差するP偏光を透過させ、350nm~380nmの波長域において、交差角45°で交差するS偏光を反射させる。このようなPBSミラー25は、レーザー光源11が上述の波長を有する紫外光を出射する場合に好適に用いることができる。 As shown in FIG. 7, the PBS mirror 25 transmits, for example, P-polarized light that intersects at a crossing angle of 45 ° in the wavelength region of 370 nm to 410 nm, and crosses at a crossing angle of 45 ° in the wavelength region of 350 nm to 380 nm. Reflect S-polarized light. Such a PBS mirror 25 can be suitably used when the laser light source 11 emits ultraviolet light having the above-described wavelength.
 上述の特性を有するPBSを用いることにより、複数のレーザー光源11a,11b,11cから出射されコリメートレンズ21a,21b,21cによって変換された複数の平行光束群L1,L2,L3は、PBSミラー25を透過する際に、レーザー光源12a,12b,12cから出射され、コリメートレンズ21a,21b,21cによって異なる方位に進行するように変換された平行光束と合成される。これにより、PBSミラー25を通過した平行光束群L1,L2,L3は、S偏光成分とP偏光成分の両方を含むこととなる。 By using the PBS having the above characteristics, the plurality of parallel light beam groups L1, L2, and L3 emitted from the plurality of laser light sources 11a, 11b, and 11c and converted by the collimating lenses 21a, 21b, and 21c At the time of transmission, it is combined with a parallel light beam emitted from the laser light sources 12a, 12b, and 12c and converted so as to travel in different directions by the collimating lenses 21a, 21b, and 21c. As a result, the parallel light beam groups L1, L2, and L3 that have passed through the PBS mirror 25 include both the S-polarized component and the P-polarized component.
 再び、図1に示すように、赤反射ミラー51R、緑反射ミラー51Gおよび青反射ミラー51Bは、ダイクロイックフィルターによって構成され、所定の波長域を有する光を透過させるとともに、他の所定の波長域を有する光を反射可能に構成されている。 Again, as shown in FIG. 1, the red reflecting mirror 51R, the green reflecting mirror 51G, and the blue reflecting mirror 51B are configured by dichroic filters, and transmit light having a predetermined wavelength range, while other predetermined wavelength ranges are set. The light which has is comprised so that reflection is possible.
 赤反射ミラー51R、緑反射ミラー51Gおよび青反射ミラー51Bは、赤反射ミラー51R、緑反射ミラー51Gおよび青反射ミラー51Bの反射面の法線方向のそれぞれが集光手段40に含まれるコリメーターレンズ41の光軸に対して42.5°、45.0°、47.5°の角度を成すように配置される。赤反射ミラー51R、緑反射ミラー51Gおよび青反射ミラー51Bは、コリメーターレンズ41に近い側からこの順で配置される。 The red reflecting mirror 51R, the green reflecting mirror 51G, and the blue reflecting mirror 51B are collimator lenses in which the respective normal directions of the reflecting surfaces of the red reflecting mirror 51R, the green reflecting mirror 51G, and the blue reflecting mirror 51B are included in the light collecting means 40. It arrange | positions so that the angle of 42.5 degrees, 45.0 degrees, and 47.5 degrees may be made with respect to 41 optical axes. The red reflection mirror 51R, the green reflection mirror 51G, and the blue reflection mirror 51B are arranged in this order from the side close to the collimator lens 41.
 PBSミラー25を透過した平行光束群L1,L2,L3は、青反射ミラー51Bに42.5°、47.5°、52.5°の入射角を持ってそれぞれ入射して、これを透過する。 The parallel light flux groups L1, L2, and L3 transmitted through the PBS mirror 25 are incident on the blue reflection mirror 51B with incident angles of 42.5 °, 47.5 °, and 52.5 °, respectively, and are transmitted therethrough. .
 青反射ミラー51Bを透過した平行光束群L1,L2,L3は、緑反射ミラー51Gに40.0°、45.0°、50.0°の入射角を持ってそれぞれ入射して、これを透過する。 The parallel light beam groups L1, L2, and L3 transmitted through the blue reflecting mirror 51B are incident on the green reflecting mirror 51G with incident angles of 40.0 °, 45.0 °, and 50.0 °, respectively, and are transmitted therethrough. To do.
 緑反射ミラー51Gを透過した平行光束群L1,L2,L3は、赤反射ミラー51Rに37.5°、42.5°、47.5°の入射角を持ってそれぞれ入射して、これを透過する。 The parallel light flux groups L1, L2, and L3 transmitted through the green reflecting mirror 51G are incident on the red reflecting mirror 51R with incident angles of 37.5 °, 42.5 °, and 47.5 °, respectively, and are transmitted therethrough. To do.
 図8から図10は、赤反射ミラー、青反射ミラーおよび緑反射ミラーにおける波長と透過率との関係を示す図である。図8から図10を参照して、赤反射ミラー51R、緑反射ミラー51Gおよび青反射ミラー51Bの透過率特性について説明する。 8 to 10 are diagrams showing the relationship between the wavelength and the transmittance in the red reflection mirror, the blue reflection mirror, and the green reflection mirror. The transmittance characteristics of the red reflecting mirror 51R, the green reflecting mirror 51G, and the blue reflecting mirror 51B will be described with reference to FIGS.
 図8に示すように、赤反射ミラー51Rは、370nm~570nmの波長域において交差角37.5°,42.5°,47.5°で交差する光をほぼ透過させ、620nm~670nmの波長域において、交差角37.5°,42.5°,47.5°で交差する光を反射する。 As shown in FIG. 8, the red reflecting mirror 51R substantially transmits light that intersects at intersection angles of 37.5 °, 42.5 °, and 47.5 ° in the wavelength region of 370 nm to 570 nm, and has a wavelength of 620 nm to 670 nm. In the region, light that intersects at intersection angles of 37.5 °, 42.5 °, and 47.5 ° is reflected.
 赤反射ミラー51Rがこのような透過率特性を有することにより、赤反射ミラー51Rは、紫外光からなる複数の平行光束群L1,L2,L3を上述のように透過させることができる。 Since the red reflecting mirror 51R has such transmittance characteristics, the red reflecting mirror 51R can transmit the plurality of parallel light flux groups L1, L2, and L3 made of ultraviolet light as described above.
 図9に示すように、緑反射ミラー51Gは、370nm~480nmの波長域において交差角40.0°,45.0°,50.0°で交差する光をほぼ透過させ、520nm~560nmの波長域において、交差角40.0°,45.0°,50.0°で交差する光を反射する。 As shown in FIG. 9, the green reflecting mirror 51G substantially transmits light that intersects at crossing angles of 40.0 °, 45.0 °, and 50.0 ° in the wavelength region of 370 nm to 480 nm, and has a wavelength of 520 nm to 560 nm. In the region, light that intersects at intersection angles of 40.0 °, 45.0 °, and 50.0 ° is reflected.
 緑反射ミラー51Gがこのような透過率特性を有することにより、緑反射ミラー51Gは、紫外光からなる複数の平行光束群L1,L2,L3を上述のように透過させることができる。 Since the green reflection mirror 51G has such transmittance characteristics, the green reflection mirror 51G can transmit the plurality of parallel light flux groups L1, L2, and L3 made of ultraviolet light as described above.
 図10に示すように、青反射ミラー51Bは、370nm~410nmの波長域において交差角42.5°,47.5°,52.5°で交差する光をほぼ透過させ、430nm~470nmの波長域において、交差角42.5°,47.5°,52.5°で交差する光を反射する。 As shown in FIG. 10, the blue reflecting mirror 51B substantially transmits light that intersects at crossing angles of 42.5 °, 47.5 °, and 52.5 ° in the wavelength region of 370 nm to 410 nm, and has a wavelength of 430 nm to 470 nm. In the region, light that intersects at intersection angles of 42.5 °, 47.5 °, and 52.5 ° is reflected.
 青反射ミラー51Bがこのような透過率特性を有することにより、青反射ミラー51Bは、紫外光からなる複数の平行光束群L1,L2,L3を上述のように透過させることができる。 Since the blue reflection mirror 51B has such transmittance characteristics, the blue reflection mirror 51B can transmit the plurality of parallel light flux groups L1, L2, and L3 made of ultraviolet light as described above.
 再び図1に示すように、青反射ミラー51B、緑反射ミラー51G、および赤反射ミラー51Rを透過した複数の平行光束群L1,L2,L3は、それぞれ集光手段40に到達する。集光手段40は、コリメーターレンズ41およびフィールドレンズ42を含む。 As shown in FIG. 1 again, the plurality of parallel light flux groups L1, L2, and L3 that have passed through the blue reflecting mirror 51B, the green reflecting mirror 51G, and the red reflecting mirror 51R reach the condensing means 40, respectively. The condensing means 40 includes a collimator lens 41 and a field lens 42.
 平行光束群L1,L2,L3は、コリメーターレンズ41およびフィールドレンズ42を通過し、進行方位に応じて蛍光体ホイール30上のそれぞれ異なる位置に集光される。具体的には、平行光束群L1は、後述する赤色蛍光体層33R上に集光される。平行光束群L2は、後述する緑色蛍光体層33G上に集光される。平行光束群L3は、後述する青色蛍光体層33B上に集光される。 The parallel light flux groups L1, L2, and L3 pass through the collimator lens 41 and the field lens 42 and are condensed at different positions on the phosphor wheel 30 according to the traveling direction. Specifically, the parallel light beam group L1 is collected on a red phosphor layer 33R described later. The parallel light beam group L2 is collected on a green phosphor layer 33G described later. The parallel light flux group L3 is collected on a blue phosphor layer 33B described later.
 図11は、図1に示す蛍光体ホイールを示す図である。図1および図11を参照して、蛍光体ホイール30について説明する。 FIG. 11 is a diagram showing the phosphor wheel shown in FIG. The phosphor wheel 30 will be described with reference to FIGS. 1 and 11.
 図1および図11に示すように、蛍光体ホイール30は、いわゆる反射型のものであり、紫外光が入射する側に向けて蛍光を出射するように構成されている。蛍光体ホイール30は、表面に反射膜32が設けられた回転板(基板)31、複数の蛍光体層としての赤色蛍光体層33R、緑色蛍光体層33G、青色蛍光体層33Bおよび駆動機構35を含む。 As shown in FIGS. 1 and 11, the phosphor wheel 30 is of a so-called reflection type, and is configured to emit fluorescence toward the side on which the ultraviolet light is incident. The phosphor wheel 30 includes a rotating plate (substrate) 31 having a reflective film 32 provided on the surface, a red phosphor layer 33R as a plurality of phosphor layers, a green phosphor layer 33G, a blue phosphor layer 33B, and a drive mechanism 35. including.
 回転板31は、各種の蛍光体層を塗布するための部位である。回転板31としては、各種の金属や樹脂から成る基板を採用することができる。たとえば、回転板31として、アルミニウムから成る基板を採用することができる。 The rotating plate 31 is a part for applying various phosphor layers. As the rotating plate 31, a substrate made of various metals and resins can be adopted. For example, a substrate made of aluminum can be adopted as the rotating plate 31.
 反射膜32としては、たとえば蒸着等によって形成された銀のコーティング層を採用することができる。反射膜32は、赤色蛍光体層33R、緑色蛍光体層33G、青色蛍光体層33Bから発光された各色の蛍光をフィールドレンズ42に向けて反射する。 As the reflective film 32, for example, a silver coating layer formed by vapor deposition or the like can be employed. The reflection film 32 reflects the fluorescence of each color emitted from the red phosphor layer 33R, the green phosphor layer 33G, and the blue phosphor layer 33B toward the field lens 42.
 赤色蛍光体層33R、緑色蛍光体層33Gおよび青色蛍光体層33Bは、それぞれ反射膜32上に設けられている。赤色蛍光体層33R、緑色蛍光体層33Gおよび青色蛍光体層33Bは、それぞれ輪帯状に設けられている。 The red phosphor layer 33R, the green phosphor layer 33G, and the blue phosphor layer 33B are provided on the reflective film 32, respectively. The red phosphor layer 33R, the green phosphor layer 33G, and the blue phosphor layer 33B are each provided in a ring shape.
 赤色蛍光体層33Rは、回転板31の中央に設けられた駆動機構35を囲むように設けられている。緑色蛍光体層33Gは、赤色蛍光体層33Rの径方向外側にてこれに隣接するように設けられている。青色蛍光体層33Bは、緑色蛍光体層33Gの径方向外側にてこれに隣接するように設けられている。 The red phosphor layer 33 </ b> R is provided so as to surround the drive mechanism 35 provided at the center of the rotating plate 31. The green phosphor layer 33G is provided on the outer side in the radial direction of the red phosphor layer 33R so as to be adjacent thereto. The blue phosphor layer 33B is provided on the outer side in the radial direction of the green phosphor layer 33G so as to be adjacent thereto.
 赤色蛍光体層33R、緑色蛍光体層33Gおよび青色蛍光体層33Bは、紫外光(励起光)を赤色光、緑色光および青色光に変換できる赤蛍光体、緑色蛍光体および青色蛍光体を所望の濃度で含む合成樹脂溶液を反射膜32上に塗布することにより形成される。 The red phosphor layer 33R, the green phosphor layer 33G and the blue phosphor layer 33B are desired red phosphor, green phosphor and blue phosphor capable of converting ultraviolet light (excitation light) into red light, green light and blue light. It is formed by applying a synthetic resin solution containing at a concentration of 5 on the reflective film 32.
 赤色蛍光体層33Rに含まる赤色蛍光体は、赤色蛍光体層33Rに集光された平行光束群L1の紫外光によって励起される。これにより、赤色蛍光体層33Rから赤色の蛍光が発光される。 The red phosphor included in the red phosphor layer 33R is excited by the ultraviolet light of the parallel light flux group L1 collected on the red phosphor layer 33R. Thereby, red fluorescence is emitted from the red phosphor layer 33R.
 緑色蛍光体層33Gに含まる赤色蛍光体は、緑色蛍光体層33Gに集光された平行光束群L2の紫外光によって励起される。これにより、緑色蛍光体層33Gから緑色の蛍光が発光される。 The red phosphor contained in the green phosphor layer 33G is excited by the ultraviolet light of the parallel light flux group L2 collected on the green phosphor layer 33G. Thereby, green fluorescence is emitted from the green phosphor layer 33G.
 青色蛍光体層33Bに含まる青色蛍光体は、青色蛍光体層33Bに集光された平行光束群L3の紫外光によって励起される。これにより、青色蛍光体層33Bから青色の蛍光が発光される。 The blue phosphor contained in the blue phosphor layer 33B is excited by the ultraviolet light of the parallel light flux group L3 collected on the blue phosphor layer 33B. Thereby, blue fluorescence is emitted from the blue phosphor layer 33B.
 駆動機構35は、モータを含み、回転板31を回転させる。回転板31が回転することにより、常に発光していない蛍光体に紫外光を照射することができる。これにより、効率の良い発光を維持することができる。 The drive mechanism 35 includes a motor and rotates the rotating plate 31. By rotating the rotating plate 31, it is possible to irradiate the phosphor that is not always emitting light with ultraviolet light. Thereby, efficient light emission can be maintained.
 また、上述のように反射膜32が設けられることにより、赤色蛍光体層33R、緑色蛍光体層33Gおよび青色蛍光体層33Bから発光された各色の蛍光をフィールドレンズ42側に向けて反射することができる。これにより、光の利用効率が向上する。 Further, by providing the reflection film 32 as described above, the fluorescence of each color emitted from the red phosphor layer 33R, the green phosphor layer 33G, and the blue phosphor layer 33B is reflected toward the field lens 42 side. Can do. Thereby, the utilization efficiency of light improves.
 各色の蛍光体層から発光された各色の蛍光は、フィールドレンズ42によってコリメーターレンズ41に効率よく入射される。コリメーターレンズ41に入射した各色の蛍光は、コリメーターレンズ41によって互いに進行方位の異なる複数の平行光に変換される。 The fluorescence of each color emitted from the phosphor layer of each color is efficiently incident on the collimator lens 41 by the field lens 42. The fluorescence of each color incident on the collimator lens 41 is converted by the collimator lens 41 into a plurality of parallel lights having different traveling directions.
 このように、フィールドレンズ42およびコリメーターレンズ41は、赤色蛍光体層33R、緑色蛍光体層33Gおよび青色蛍光体層33Bから発光され、互いに異なる波長域を有する複数の蛍光を互いに進行方位の異なる複数の略平行光にする第1コリメート手段としても機能する。 As described above, the field lens 42 and the collimator lens 41 emit light from the red phosphor layer 33R, the green phosphor layer 33G, and the blue phosphor layer 33B, and emit a plurality of fluorescence having different wavelength ranges from each other in different traveling directions. It also functions as first collimating means for making a plurality of substantially parallel lights.
 コリメーターレンズ41に入射した緑色の蛍光は、コリメーターレンズ41の光軸に平行な方向(光軸C2方向)に進行する。コリメーターレンズ41に入射した赤色の蛍光および青色の蛍光は、それぞれ光軸C2に対して+5°および-5°の交差角を有する光軸C1および光軸C3と平行な方向に進行する。 The green fluorescence incident on the collimator lens 41 travels in a direction parallel to the optical axis of the collimator lens 41 (the optical axis C2 direction). Red fluorescence and blue fluorescence incident on the collimator lens 41 travel in directions parallel to the optical axis C1 and the optical axis C3 having crossing angles of + 5 ° and −5 ° with respect to the optical axis C2, respectively.
 略平行光に変換された各色の蛍光は、合成手段50に入射する。合成手段50は、上述のような透過率特性を有する赤反射ミラー51R、緑反射ミラー51Gおよび青反射ミラー51Bによって構成されている。合成手段50は、進行方位の異なる複数の略平行光を同一光路に合成する。 The fluorescence of each color converted into substantially parallel light is incident on the synthesis means 50. The synthesizing unit 50 includes a red reflecting mirror 51R, a green reflecting mirror 51G, and a blue reflecting mirror 51B having the above-described transmittance characteristics. The synthesizing unit 50 synthesizes a plurality of substantially parallel lights having different traveling directions into the same optical path.
 具体的には、平行光に変換された赤色の蛍光は、赤反射ミラー51Rに入射角47.5°で入射して、コリメーターレンズ41の光軸と直交する方向に反射される。 Specifically, red fluorescence converted into parallel light enters the red reflecting mirror 51R at an incident angle of 47.5 ° and is reflected in a direction perpendicular to the optical axis of the collimator lens 41.
 平行光に変換された緑色の蛍光は、赤反射ミラー51Rに入射角42.5°で入射してこれを透過し、緑反射ミラー51Gに入射角45°で入射してコリメーターレンズ41の光軸と直交する方向に反射される。 The green fluorescence converted into parallel light is incident on the red reflecting mirror 51R at an incident angle of 42.5 ° and transmitted therethrough, and incident on the green reflecting mirror 51G at an incident angle of 45 °. Reflected in a direction perpendicular to the axis.
 緑反射ミラー51Gによって反射された緑色の蛍光は、赤反射ミラー51Rに入射角47.5°で入射してこれを透過し、赤色の蛍光と略同一光軸に合成される。 The green fluorescence reflected by the green reflection mirror 51G is incident on the red reflection mirror 51R at an incident angle of 47.5 ° and is transmitted therethrough and synthesized with substantially the same optical axis as the red fluorescence.
 平行光に変換された青色の蛍光は、赤反射ミラー51Rに入射角37.5°で入射してこれを透過し、緑反射ミラー51Gに入射角40.0°で入射してこれを透過し、青反射ミラー51Bに入射角42.5°で入射してコリメーターレンズ41の光軸と直交する方向に反射される。 The blue fluorescence converted into parallel light is incident on the red reflecting mirror 51R at an incident angle of 37.5 ° and transmitted therethrough, and incident on the green reflecting mirror 51G at an incident angle of 40.0 ° and transmitted therethrough. Then, it is incident on the blue reflecting mirror 51B at an incident angle of 42.5 ° and is reflected in a direction perpendicular to the optical axis of the collimator lens 41.
 青反射ミラー51Bによって反射された青色の蛍光は、緑反射ミラー51Gに入射角45.0で入射してこれを透過し、赤反射ミラー51Rに入射角47.5°で入射してこれを透過し、赤色の蛍光および緑色の蛍光と略同一光軸(略同一光路)に合成される。 The blue fluorescence reflected by the blue reflecting mirror 51B enters the green reflecting mirror 51G at an incident angle of 45.0 and is transmitted therethrough, and enters the red reflecting mirror 51R at an incident angle of 47.5 ° and is transmitted therethrough. Then, they are synthesized with substantially the same optical axis (substantially the same optical path) as red fluorescence and green fluorescence.
 このように、長波長側から順次反射させることにより、赤反射ミラー51R、緑反射ミラー51G、青反射ミラー51Bを構成するダイクロイックフィルターの特性をバンドパスやバンドカットではなく、ショートカットの単純な特性にできる。これにより、赤反射ミラー51R、緑反射ミラー51G、青反射ミラー51Bが製造しやすくなるとともに、効率よく各色の蛍光を合成することができる。 As described above, by sequentially reflecting from the long wavelength side, the characteristics of the dichroic filters constituting the red reflecting mirror 51R, the green reflecting mirror 51G, and the blue reflecting mirror 51B are changed to the simple characteristics of the shortcut instead of the band pass and the band cut. it can. Thereby, the red reflecting mirror 51R, the green reflecting mirror 51G, and the blue reflecting mirror 51B can be easily manufactured, and the fluorescence of each color can be efficiently synthesized.
 略同一光軸に合成された各色の蛍光は、白色の照明光として、照明光学系200に入射して、TIRプリズムユニット300を通って、カラープリズムユニット400に入射する。カラープリズムユニット400に入射した照明光は、赤色、緑色、青色の各色光に色分離されて、DMD(デジタルミラーデバイス)450に入射する。DMD450によって反射された各色光は、カラープリズムユニット400、TIRプリズムユニット300および投影光学系500を順に通過してスクリーンに投影される。 The fluorescence of each color synthesized with substantially the same optical axis enters the illumination optical system 200 as white illumination light, and enters the color prism unit 400 through the TIR prism unit 300. The illumination light incident on the color prism unit 400 is color-separated into red, green, and blue color lights and enters a DMD (digital mirror device) 450. Each color light reflected by the DMD 450 passes through the color prism unit 400, the TIR prism unit 300, and the projection optical system 500 in order and is projected onto the screen.
 照明光学系200は、第1レンズアレイ201、第2レンズアレイ202、重ね合わせレンズ203、折り返しミラー204およびエントランスレンズ205を含む。 The illumination optical system 200 includes a first lens array 201, a second lens array 202, an overlapping lens 203, a folding mirror 204, and an entrance lens 205.
 第1レンズアレイ201および第2レンズアレイ202は、インテグレータ光学系を構成する。第1レンズアレイ201は、合成された各色の蛍光(照明光)を多数の光束に分割するための複数のレンズセル201aを有する。複数のレンズセル201aは、照明光と直交する面内にマトリクス状に配置されている。レンズセル201aは、DMD450の表示部と略相似な形状を有する。 The first lens array 201 and the second lens array 202 constitute an integrator optical system. The first lens array 201 has a plurality of lens cells 201a for dividing the combined fluorescence (illumination light) of each color into a number of light beams. The plurality of lens cells 201a are arranged in a matrix in a plane orthogonal to the illumination light. The lens cell 201a has a shape substantially similar to the display unit of the DMD 450.
 第2レンズアレイ202は、第1レンズアレイ201の複数のレンズセル201aに対応する複数のレンズセル202aを有する。第2レンズアレイ202は、重ね合わせレンズ203とともに、レンズセル201aの像をDMD450上に重ね合わせる。これにより、DMD450上での照度分布が均一化する。 The second lens array 202 has a plurality of lens cells 202a corresponding to the plurality of lens cells 201a of the first lens array 201. The second lens array 202 superimposes the image of the lens cell 201 a on the DMD 450 together with the superimposing lens 203. Thereby, the illuminance distribution on the DMD 450 is made uniform.
 エントランスレンズ205は、照明光をテレセントリックな光束にし、これをTIRプリズムユニット300に入射させる。 The entrance lens 205 converts the illumination light into a telecentric light beam and makes it incident on the TIR prism unit 300.
 TIRプリズムユニット300は、それぞれ略三角柱状の第1プリズム310と第2プリズム320とから成っており、各プリズム斜面間にエアギャップ層310gが設けてある。このTIRプリズムユニット300によって、DMD450に対する入力光である照明光と出力光である投影光(画像光)との分離が行なわれる。 The TIR prism unit 300 includes a first prism 310 and a second prism 320 each having a substantially triangular prism shape, and an air gap layer 310g is provided between the slopes of each prism. The TIR prism unit 300 separates illumination light that is input light to the DMD 450 and projection light (image light) that is output light.
 照明光学系200から出射した照明光は、エアギャップ層311gを形成する斜面に全反射条件を満たす角度で第2プリズム320に入射し、当該斜面にて全反射してカラープリズムユニット400に入射する。 The illumination light emitted from the illumination optical system 200 is incident on the second prism 320 at an angle satisfying the total reflection condition on the inclined surface forming the air gap layer 311g, and is totally reflected on the inclined surface and incident on the color prism unit 400. .
 図12は、図1に示すプロジェクタの一部を構成するカラープリズムユニットを示す正面図である。図12を参照して、カラープリズムユニット400について説明する。 FIG. 12 is a front view showing a color prism unit constituting a part of the projector shown in FIG. The color prism unit 400 will be described with reference to FIG.
 図12に示すように、カラープリズムユニット400は、各色の蛍光によって構成される照明光を赤色、緑色、青色の各色光に分解するとともに、後述のように各色の画像光を同一光軸に合成する。すなわち、カラープリズムユニット400は、色分解機能と色合成機能とを兼用する。 As shown in FIG. 12, the color prism unit 400 decomposes illumination light composed of fluorescence of each color into red, green, and blue color lights and combines the image light of each color on the same optical axis as described later. To do. That is, the color prism unit 400 has both a color separation function and a color composition function.
 カラープリズムユニット400は、略三角柱形状を有するクリアプリズム410、赤プリズム420Rおよび青プリズム420B、ならびにブロック状の緑プリズム420Gが順次組み合わされることにより構成される。 The color prism unit 400 is configured by sequentially combining a clear prism 410 having a substantially triangular prism shape, a red prism 420R and a blue prism 420B, and a block-shaped green prism 420G.
 赤プリズム420Rは、クリアプリズム410に対向する斜面421R、青プリズム420Bに対向する赤ダイクロイック面422Rおよび後述する赤用DMD450Rに対向するプリズム端面423Rを有する。赤ダイクロイック面422Rは、赤色光を反射しつつ、青色光、緑色光を透過させるように構成されている。 The red prism 420R has a slope 421R facing the clear prism 410, a red dichroic surface 422R facing the blue prism 420B, and a prism end surface 423R facing red DMD 450R described later. The red dichroic surface 422R is configured to transmit blue light and green light while reflecting red light.
 青プリズム420Bは、赤プリズム420Rに対向する斜面421B、緑プリズム420Gに対向する青ダイクロイック面422Bおよび後述する青用DMD450Bに対向するプリズム端面423Bを有する。青ダイクロイック面422Bは、青色光を反射しつつ、緑色光を透過させるように構成されている。 The blue prism 420B has a slope 421B facing the red prism 420R, a blue dichroic surface 422B facing the green prism 420G, and a prism end surface 423B facing blue DMD 450B described later. The blue dichroic surface 422B is configured to transmit green light while reflecting blue light.
 緑プリズム420Gは、青プリズム420Bに対向する斜面421Gおよび後述する緑用DMD450Gに対向するプリズム端面423Gを有する。 The green prism 420G has a slope 421G facing the blue prism 420B and a prism end surface 423G facing green DMD 450G described later.
 クリアプリズム410と赤プリズム420Rとの間には、エアギャップ層411gが設けられている。このエアギャップ層411gは、投影光軸AXに対して傾斜している。投影光軸AXとエアギャップ層411gの法線からなる面は、TIRプリズムユニット300のエアギャップ層311gの法線と投影光軸AXを含む面と直交している。 An air gap layer 411g is provided between the clear prism 410 and the red prism 420R. The air gap layer 411g is inclined with respect to the projection optical axis AX. The plane formed by the normal line of the projection optical axis AX and the air gap layer 411g is orthogonal to the plane including the normal line of the air gap layer 311g of the TIR prism unit 300 and the projection optical axis AX.
 赤プリズム420Rと青プリズム420Bとの間には、エアギャップ層412gが設けられている。このエアギャップ層412gは、投影光軸に対して傾斜している。投影光軸AXとエアギャップ層412gの法線からなる面は、TIRプリズムユニット300のエアギャップ層311gと投影光軸AXからなる面と直交している。 An air gap layer 412g is provided between the red prism 420R and the blue prism 420B. The air gap layer 412g is inclined with respect to the projection optical axis. The plane formed by the normal line of the projection optical axis AX and the air gap layer 412g is orthogonal to the plane formed by the air gap layer 311g of the TIR prism unit 300 and the projection optical axis AX.
 エアギャップ層412gの傾斜方向は、クリアプリズム410と赤プリズム420Rによるエアギャップ層411gの傾斜方向とは逆方向である。 The inclination direction of the air gap layer 412g is opposite to the inclination direction of the air gap layer 411g by the clear prism 410 and the red prism 420R.
 青プリズム420Bと緑プリズム420Gとの間には、エアギャップ層413gが設けられている。このエアギャップ層413gも投影光軸AXに対して傾斜している。投影光軸AXとエアギャップ層413gの法線からなる面は、TIRプリズムユニット300のエアギャップ層311gの法線と投影光軸AXを含む面と直交している。 An air gap layer 413g is provided between the blue prism 420B and the green prism 420G. The air gap layer 413g is also inclined with respect to the projection optical axis AX. The plane formed by the normal line of the projection optical axis AX and the air gap layer 413g is orthogonal to the plane including the normal line of the air gap layer 311g of the TIR prism unit 300 and the projection optical axis AX.
 エアギャップ層413gの傾斜方向は、クリアプリズム410と赤プリズム420Rによるエアギャップ層411gの傾き方向と同じ方向である。 The inclination direction of the air gap layer 413g is the same as the inclination direction of the air gap layer 411g by the clear prism 410 and the red prism 420R.
 クリアプリズム410の入出射面より入射した照明光は、クリアプリズム410を通過後、赤プリズム420Rに入射する。赤プリズム420Rに入射した照明光のうち、赤色光が赤ダイクロイック面422Rで赤色光が反射され、他の緑色光及び青色光はこれを透過する。 The illumination light incident from the input / output surface of the clear prism 410 passes through the clear prism 410 and then enters the red prism 420R. Of the illumination light incident on the red prism 420R, red light is reflected by the red dichroic surface 422R, and the other green light and blue light are transmitted therethrough.
 赤ダイクロイック面422Rで反射された赤色光は、クリアプリズム410側のエアギャップ層411gにより全反射され、赤プリズム420Rのプリズム端面423Rより射出して赤用DMD450Rに入射する。 The red light reflected by the red dichroic surface 422R is totally reflected by the air gap layer 411g on the clear prism 410 side, exits from the prism end surface 423R of the red prism 420R, and enters the red DMD 450R.
 赤ダイクロイック面422Rを透過した緑色光と青色光のうち青色光は、青ダイクロイック面422Bで反射される。青ダイクロイック面422Bで反射された青色光は、赤ダイクロイック面422Rに隣接して設けられたエアギャップ層412gにより全反射され、青プリズム420Bのプリズム端面423Bより射出して青用DMD450Bに入射する。 Of the green light and blue light transmitted through the red dichroic surface 422R, blue light is reflected by the blue dichroic surface 422B. The blue light reflected by the blue dichroic surface 422B is totally reflected by the air gap layer 412g provided adjacent to the red dichroic surface 422R, is emitted from the prism end surface 423B of the blue prism 420B, and enters the blue DMD 450B.
 赤ダイクロイック面422Rを透過した緑色光と青色光のうち緑色光は、青ダイクロイック面422Bを透過して緑プリズム420Gのプリズム端面423Gより射出して緑用DMD450Gに入射する。 Of the green light and blue light transmitted through the red dichroic surface 422R, the green light is transmitted through the blue dichroic surface 422B, is emitted from the prism end surface 423G of the green prism 420G, and enters the green DMD 450G.
 赤用DMD450R、青用DMD450B、および緑用DMD450Gは、反射型表示素子により構成される。赤用DMD450R、青用DMD450B、および緑用DMD450Gは、多数のマイクロミラー(不図示)を含む。多数のマイクロミラーのそれぞれは、DMDの画像表示面において各画素(1画素)を構成する。個々のマイクロミラーの傾斜角度ないし姿勢は2つの状態に切換可能である。 The DMD 450R for red, the DMD 450B for blue, and the DMD 450G for green are composed of reflective display elements. The DMD 450R for red, DMD 450B for blue, and DMD 450G for green include a large number of micromirrors (not shown). Each of a large number of micromirrors constitutes each pixel (one pixel) on the DMD image display surface. The inclination angle or posture of each micromirror can be switched between two states.
 2つの状態のうちの一方の状態(オン状態)のマイクロミラーは、TIRプリズムユニット300を介して、後述する投影光学系500に向かう画像光(投影光)となるように照明光を反射する。他方の状態(オフ状態)のマイクロミラーは、TIRプリズムユニット300から外れた方向に向かう非投影光となるように照明光を反射する。 The micromirror in one of the two states (on state) reflects the illumination light through the TIR prism unit 300 so as to become image light (projection light) toward the projection optical system 500 described later. The micromirror in the other state (off state) reflects the illumination light so as to be non-projection light traveling in a direction away from the TIR prism unit 300.
 所望の画像情報に基づいて画素ごとに2つの状態を切り換えることにより、画像が表示される。各色の照明光は、当該画像に応じて変調されることにより画像光として上述の用に、TIRプリズムユニット300に向けて射出される。 An image is displayed by switching between two states for each pixel based on desired image information. The illumination light of each color is emitted according to the image and emitted toward the TIR prism unit 300 as image light as described above.
 赤用DMD450Rで反射された赤色の画像光は、赤プリズム420Rのプリズム端面423Rに入射してクリアプリズム410側のエアギャップ層411gで全反射された後、赤ダイクロイック面422Rで反射される。 The red image light reflected by the red DMD 450R enters the prism end surface 423R of the red prism 420R, is totally reflected by the air gap layer 411g on the clear prism 410 side, and then is reflected by the red dichroic surface 422R.
 青用DMD450Bで反射された青色の画像光は、青プリズム420Bのプリズム端面423Bに入射して赤プリズム420R側のエアギャップ層412gで全反射された後、青ダイクロイック面422Bで反射される。青ダイクロイック面422Bで反射された画像光は、さらに赤ダイクロイック面422Rを透過する。 The blue image light reflected by the blue DMD 450B enters the prism end surface 423B of the blue prism 420B, is totally reflected by the air gap layer 412g on the red prism 420R side, and then is reflected by the blue dichroic surface 422B. The image light reflected by the blue dichroic surface 422B further passes through the red dichroic surface 422R.
 緑用DMD450Gで反射された緑色の画像光は、緑プリズム420Gのプリズム端面423Gに入射して、青ダイクロイック面422Bおよび赤ダイクロイック面422Rを透過する。 The green image light reflected by the green DMD 450G is incident on the prism end surface 423G of the green prism 420G and passes through the blue dichroic surface 422B and the red dichroic surface 422R.
 そして、赤ダイクロイック面422Rを透過した赤色、青色、緑色の各色の画像光は、同一光軸に合成される。再び図1に示すように、クリアプリズム410の入射面410aから射出して、TIRプリズムユニット300に入射する。 Then, the red, blue and green image lights transmitted through the red dichroic surface 422R are combined on the same optical axis. As shown in FIG. 1 again, the light exits from the incident surface 410 a of the clear prism 410 and enters the TIR prism unit 300.
 TIRプリズムユニット300に入射した画像光は、ここでは全反射条件を満たさないのでエアギャップ層311gを透過し、投影光学系(投影レンズ)500によってスクリーンに投影される。 Since the image light incident on the TIR prism unit 300 does not satisfy the total reflection condition here, it passes through the air gap layer 311g and is projected onto the screen by the projection optical system (projection lens) 500.
 以上のような構成を有することにより、本実施の形態に係る光源装置100にあっては、1つの蛍光体ホイール30によって複数の蛍光を発生させ、これら蛍光を共通のコリメート手段によって互いに進行方位の異なる複数の略平行光に変換し、これら平行光を合成手段50によって同一光路に合成することができる。 By having the configuration as described above, in the light source device 100 according to the present embodiment, a single phosphor wheel 30 generates a plurality of fluorescence, and these fluorescences travel in a traveling direction with a common collimating means. It can be converted into a plurality of different substantially parallel lights, and these parallel lights can be combined into the same optical path by the combining means 50.
 これにより、光源装置100およびこれを備えたプロジェクタ600にあっては、蛍光体ホイール30から発散する蛍光を平行光に変換しつつ、蛍光体ホイール30の数および光学経路を少なできるため、エタンデューが大きくならず、部品点数を削減し小型化が可能となる。また、蛍光体ホイール30の数が少なくなることにより、駆動源となるモータも少なくなるため、より静かに光源装置100を駆動させることができる。 Thereby, in the light source device 100 and the projector 600 including the light source device 100, the number of the phosphor wheels 30 and the optical path can be reduced while converting the fluorescence emitted from the phosphor wheel 30 into the parallel light. The size is not increased, and the number of parts can be reduced and the size can be reduced. In addition, since the number of phosphor wheels 30 is reduced, the number of motors that are driving sources is also reduced, so that the light source device 100 can be driven more quietly.
 また、本実施の形態においては、レーザー光源11とコリメートレンズ21の相対的な位置関係を変更することにより、共通の励起光源から出射される励起光を進行方位の異なる複数の平行光束群に変換することができる。これにより、平行光束群毎に励起光源(固体光源)を準備する必要がなくなるため、さらに部品点数を削減し小型化が可能となる。また、レーザー光源を使用することにより、蛍光体層上の限定した領域に集光しやすくなるため、光学系のエタンデューを小さくすることができる。 In the present embodiment, by changing the relative positional relationship between the laser light source 11 and the collimating lens 21, the excitation light emitted from the common excitation light source is converted into a plurality of parallel light flux groups having different traveling directions. can do. As a result, there is no need to prepare an excitation light source (solid light source) for each parallel light beam group, so that the number of components can be further reduced and the size can be reduced. Further, by using a laser light source, it becomes easier to focus on a limited area on the phosphor layer, so that the etendue of the optical system can be reduced.
 さらに、進行方位の異なる複数の平行光束群を蛍光体ホイール30に集光するための集光手段と、蛍光体ホイール30から発光された各色の蛍光をそれぞれ進行方位の異なる複数の略平行光に変換するコリメート手段とを共通にすることにより、より一層部品点数を削減し小型化が可能となる。 Further, a light collecting means for condensing a plurality of parallel light flux groups having different traveling directions onto the phosphor wheel 30, and fluorescence of each color emitted from the phosphor wheel 30 into a plurality of substantially parallel lights having different traveling directions. By using the collimating means for conversion in common, the number of parts can be further reduced and the size can be reduced.
 加えて、励起光源から蛍光体ホイール30に至るまでの励起光の光路上に合成手段50を配置する構成とすることにより、励起光の光路と、発光された蛍光の光路の空間を共有できる。これにより、さらに小型化が可能となる。 In addition, by arranging the synthesizing means 50 on the optical path of the excitation light from the excitation light source to the phosphor wheel 30, the optical path of the excitation light and the light path of the emitted fluorescence can be shared. Thereby, further miniaturization becomes possible.
 (実施の形態2)
 図13は、本実施の形態に係るプロジェクタの構成を模式的に示す図である。図13を参照して、本実施の形態に係るプロジェクタ600Aについて説明する。
(Embodiment 2)
FIG. 13 is a diagram schematically showing the configuration of the projector according to the present embodiment. A projector 600A according to the present embodiment will be described with reference to FIG.
 図13に示すように、本実施の形態に係るプロジェクタ600Aは、実施の形態1に係るプロジェクタ600と比較した場合に、光源装置100Aの構成が相違する。その他の構成については、ほぼ同様である。 As shown in FIG. 13, the projector 600A according to the present embodiment is different from the projector 600 according to the first embodiment in the configuration of the light source device 100A. Other configurations are almost the same.
 光源装置100Aにあっては、励起光源10A,10Bとして440nm~450nmの波長の青色光を出射するものが採用されている。これに伴い、PBSミラーの透過率特性が実施の形態1に係るPBSミラー25と相違する。 In the light source device 100A, those that emit blue light having a wavelength of 440 nm to 450 nm are employed as the excitation light sources 10A and 10B. Accordingly, the transmittance characteristics of the PBS mirror are different from those of the PBS mirror 25 according to the first embodiment.
 図14は、図13に示すプロジェクタに具備されるPBSミラーにおいて、P偏光およびS偏光の波長と透過率との関係を示す図である。図14は、PBSミラーの反射面に45°の交差角を持って光を進入させた場合における、PBSミラーの透過率特性を示している。図14を参照して、PBSミラーの透過率特性について説明する。 FIG. 14 is a diagram showing the relationship between the wavelengths of P-polarized light and S-polarized light and the transmittance in the PBS mirror provided in the projector shown in FIG. FIG. 14 shows the transmittance characteristics of the PBS mirror when light enters the reflective surface of the PBS mirror with an angle of 45 °. With reference to FIG. 14, the transmittance characteristics of the PBS mirror will be described.
 図14に示すように、PBSミラーは、たとえば、430nm~450nmの波長域において、交差角45°で交差するP偏光を透過させ、400nm~450nmの波長域において、交差角45°で交差するS偏光を反射させる。このようなPBSミラーは、レーザー光源11が上述の波長を有する青色光を出射する場合に好適に用いることができる。 As shown in FIG. 14, the PBS mirror transmits, for example, P-polarized light that intersects at a crossing angle of 45 ° in the wavelength region of 430 nm to 450 nm and crosses at a crossing angle of 45 ° in the wavelength region of 400 nm to 450 nm. Reflects polarized light. Such a PBS mirror can be suitably used when the laser light source 11 emits blue light having the above-described wavelength.
 このような透過率特性を有するPBSミラーを使用することにより、PBSミラーを通過した平行光束群L1,L2,L3は、S偏光成分とP偏光成分の両方を含むこととなる。これら平行光束群L1,L2,L3は、集光手段としてのコンデンサーレンズ70により、蛍光体ホイール30A上のそれぞれ異なる位置に集光される。 By using the PBS mirror having such transmittance characteristics, the parallel light beam groups L1, L2, and L3 that have passed through the PBS mirror include both the S-polarized component and the P-polarized component. These parallel light beam groups L1, L2, and L3 are condensed at different positions on the phosphor wheel 30A by a condenser lens 70 as a condensing unit.
 また、光源装置100Aにあっては、蛍光体ホイール30Aは、いわゆる透過型のものであり、青色光が入射する側とは反対側に向けて蛍光を出射するように構成されている。 Further, in the light source device 100A, the phosphor wheel 30A is a so-called transmission type, and is configured to emit fluorescence toward a side opposite to a side on which blue light is incident.
 図15は、図13に示す蛍光体ホイールを示す図である。図13および図15を参照して、蛍光体ホイール30Aについて説明する。 FIG. 15 is a diagram showing the phosphor wheel shown in FIG. The phosphor wheel 30A will be described with reference to FIGS.
 図13および図15に示すように、蛍光体ホイール30Aは、青色光が入射する側とは反対側の表面にダイクロイック膜32Aが設けられた回転板31A、複数の蛍光体層としての赤色蛍光体層33R、緑色蛍光体層33Gおよび拡散部33Tおよび駆動機構35を含む。 As shown in FIGS. 13 and 15, the phosphor wheel 30A includes a rotating plate 31A having a dichroic film 32A provided on the surface opposite to the side on which blue light is incident, and a red phosphor as a plurality of phosphor layers. The layer 33R, the green phosphor layer 33G, the diffusion portion 33T, and the drive mechanism 35 are included.
 回転板31Aは、青色光を透過可能に構成されている。回転板31Aは、たとえば、ガラス、透明樹脂等から成る基板を採用することができる。ダイクロイック膜32Aは、たとえば、誘電体多層膜によって構成される。ダイクロイック膜32Aは、青色光を透過し赤色光及び緑色光を反射する。ダイクロイック膜32Aは、蛍光体層が形成される領域に設けられることが好ましい。 The rotating plate 31A is configured to transmit blue light. As the rotating plate 31A, for example, a substrate made of glass, transparent resin, or the like can be adopted. The dichroic film 32A is composed of, for example, a dielectric multilayer film. The dichroic film 32A transmits blue light and reflects red light and green light. The dichroic film 32A is preferably provided in a region where the phosphor layer is formed.
 赤色蛍光体層33R、緑色蛍光体層33Gは、それぞれダイクロイック膜32A上に設けられている。赤色蛍光体層33R、緑色蛍光体層33Gおよび拡散部33Tは、それぞれ輪帯状に設けられている。 The red phosphor layer 33R and the green phosphor layer 33G are provided on the dichroic film 32A, respectively. The red phosphor layer 33R, the green phosphor layer 33G, and the diffusion portion 33T are each provided in a ring shape.
 拡散部33Tは、すりガラス等で構成される。拡散部33Tは、集光された青色光のスペックルを軽減しつつ、青色光を拡散させる。 The diffusion unit 33T is made of frosted glass or the like. The diffusion unit 33T diffuses blue light while reducing speckles of the collected blue light.
 赤色蛍光体層33Rは、回転板31Aの中央に設けられた駆動機構35を囲むように設けられている。緑色蛍光体層33Gは、赤色蛍光体層33Rの径方向外側にてこれに隣接するように設けられている。拡散部33Tは、緑色蛍光体層33Gの径方向外側にてこれに隣接するように設けられている。なお、各色の蛍光を発光する複数の蛍光体層および青色光を透過、拡散させる拡散部33Tの配置は、上述のように限定されず、適宜変更することができる。 The red phosphor layer 33R is provided so as to surround the drive mechanism 35 provided in the center of the rotating plate 31A. The green phosphor layer 33G is provided on the outer side in the radial direction of the red phosphor layer 33R so as to be adjacent thereto. The diffusion portion 33T is provided on the outer side in the radial direction of the green phosphor layer 33G so as to be adjacent thereto. Note that the arrangement of the plurality of phosphor layers that emit fluorescence of each color and the diffusion portion 33T that transmits and diffuses blue light is not limited as described above, and can be changed as appropriate.
 回転板31Aおよびダイクロイック膜32Aと透過して赤色蛍光体層33Rおよび緑色蛍光体層33Gに集光した平行光束群L1,L2は、赤色蛍光体層33Rおよび緑色蛍光体層33Gに含まれる蛍光体を励起する。これにより、赤色蛍光体層33Rおよび緑色蛍光体層33Gから赤色および緑色の蛍光が発光される。 The parallel light flux groups L1 and L2 that are transmitted through the rotating plate 31A and the dichroic film 32A and are collected on the red phosphor layer 33R and the green phosphor layer 33G are phosphors included in the red phosphor layer 33R and the green phosphor layer 33G. Excited. Thereby, red and green fluorescence is emitted from the red phosphor layer 33R and the green phosphor layer 33G.
 回転板31Aを透過して拡散部33Tに集光した平行光束群L3は、拡散部33Tに拡散されながらこれを透過する。 The parallel light flux group L3 that has passed through the rotating plate 31A and condensed on the diffusing portion 33T passes through the diffusing portion 33T while being diffused.
 図16は、図15に示す蛍光体ホイールの回転板表面におけるダイクロイック膜の波長と透過率との関係を示す図である。図16を参照して、回転板表面の透過率特性について説明する。 FIG. 16 is a diagram showing the relationship between the wavelength and transmittance of the dichroic film on the surface of the rotating plate of the phosphor wheel shown in FIG. With reference to FIG. 16, the transmittance | permeability characteristic of the rotating plate surface is demonstrated.
 図16に示すように、ダイクロイック膜32Aが設けられた回転板31の表面にあっては、430nm~470nmの波長域の光をほぼ透過させ、510nm以上の波長を有する光を反射する。 As shown in FIG. 16, on the surface of the rotating plate 31 provided with the dichroic film 32A, light in the wavelength region of 430 nm to 470 nm is almost transmitted and light having a wavelength of 510 nm or more is reflected.
 回転板31Aの表面がこのような透過率特性を有することにより、赤色蛍光体層33Rおよび緑色蛍光体層33Gによって発光された赤色および緑色の蛍光を効率よくフィールドレンズ42側に向けて反射することができる。また、青色光を拡散部33Tに導き、これをフィールドレンズ42側に向けて透過させることができる。 Since the surface of the rotating plate 31A has such transmittance characteristics, the red and green fluorescence emitted by the red phosphor layer 33R and the green phosphor layer 33G is efficiently reflected toward the field lens 42 side. Can do. Further, blue light can be guided to the diffusing portion 33T and transmitted toward the field lens 42 side.
 再び図13に示すように、赤色蛍光体層33Rおよび緑色蛍光体層33Gから発光された赤色および緑色の蛍光、ならびに拡散部33Tによって拡散された青色光は、第1コリメート手段としてのフィールドレンズ42およびコリメーターレンズ41によってそれぞれ平行光束に変換される。 As shown in FIG. 13 again, the red and green fluorescence emitted from the red phosphor layer 33R and the green phosphor layer 33G and the blue light diffused by the diffusing unit 33T are used as a field lens 42 as a first collimating means. The light is converted into parallel light fluxes by the collimator lens 41.
 平行光束に変換された赤色および緑色の蛍光ならびに青色光は、合成手段50によって同一光軸の光束に合成され、照明光として照明光学系200に向けて出射される。照明光学系200に入射された照明光は、TIRプリズムユニット300を通過し、カラープリズムユニット400によって色分解される。 The red and green fluorescence and blue light converted into parallel light beams are combined into a light beam having the same optical axis by the combining unit 50 and emitted toward the illumination optical system 200 as illumination light. The illumination light incident on the illumination optical system 200 passes through the TIR prism unit 300 and is color-separated by the color prism unit 400.
 カラープリズムユニット400によって色分解された各色の照明光は、DMD450によって反射され、画像光としてからカラープリズムユニット400に入射する。カラープリズムユニット400に入射した各色の画像光は、同一光軸に合成され、TIRプリズムユニット300を通過して、投影光学系500によってスクリーンに投影される。 The illumination light of each color separated by the color prism unit 400 is reflected by the DMD 450 and enters the color prism unit 400 as image light. The image light of each color incident on the color prism unit 400 is synthesized with the same optical axis, passes through the TIR prism unit 300, and is projected onto the screen by the projection optical system 500.
 本実施の形態にあっても、蛍光体ホイール30Aは1つのみ設けられており、蛍光体ホイール30Aによって複数の蛍光を発生させ、これら蛍光を共通のコリメート手段によって互いに進行方位の異なる複数の略平行光に変換し、これら平行光を合成手段50によって同一光路に合成することができる。これにより、光源装置100Aおよびこれを備えたプロジェクタ600Aにあっては、エタンデューが大きくならず、部品点数を削減し小型化が可能となる。 Even in the present embodiment, only one phosphor wheel 30A is provided, and a plurality of fluorescent lights are generated by the phosphor wheel 30A, and the plurality of substantially different advancing directions are mutually generated by the common collimating means. These light beams can be converted into parallel light, and the parallel light can be combined in the same optical path by the combining means 50. Thereby, in the light source device 100A and the projector 600A provided with the same, the etendue is not increased, and the number of components can be reduced and the size can be reduced.
 また、励起光が合成手段50を透過しないため、合成手段の各ミラーに励起光を透過させる機能が不要となり、より製造しやく簡素化された構成を有するミラーを使用することができる。 Also, since the excitation light does not pass through the synthesizing means 50, the function of transmitting the excitation light to each mirror of the synthesizing means becomes unnecessary, and it is possible to use a mirror having a simplified configuration that is easier to manufacture.
 なお、本実施の形態においては、レーザー光源12として、青色のレーザー光源を使用することにより蛍光体ホイールにおいて青色蛍光体層を省略する場合を例示して説明したが、これに限定されず、紫外光のレーザー光源を使用してもよい。この場合には、蛍光体ホイール30Aにおいて、拡散部33Tに代えて青色蛍光体層33Bを設けて、ダイクロイック膜32Aとして紫外光を透過し、赤色、緑色、青色の波長域を有する光を反射する特性を有するものを使用することが好ましい。 In the present embodiment, the case where the blue phosphor layer is omitted from the phosphor wheel by using a blue laser light source as the laser light source 12 has been described as an example, but the present invention is not limited to this. An optical laser light source may be used. In this case, in the phosphor wheel 30A, a blue phosphor layer 33B is provided in place of the diffusing portion 33T, and ultraviolet light is transmitted as the dichroic film 32A, and light having red, green, and blue wavelength ranges is reflected. It is preferable to use one having characteristics.
 (実施の形態3)
 図17は、本実施の形態に係るプロジェクタの構成を模式的に示す図である。図17を参照して、本実施の形態に係るプロジェクタ600Bについて説明する。
(Embodiment 3)
FIG. 17 is a diagram schematically showing the configuration of the projector according to the present embodiment. A projector 600B according to the present embodiment will be described with reference to FIG.
 図17に示すように、本実施の形態に係るプロジェクタ600Bは、実施の形態1に係るプロジェクタ600と比較した場合に、光源装置100Bの蛍光体ホイール30Bの構成および照明光学系200Bから投影光学系500までの構成が相違する。 As shown in FIG. 17, projector 600B according to the present embodiment has a configuration of phosphor wheel 30B of light source device 100B and illumination optical system 200B to projection optical system when compared with projector 600 according to the first embodiment. The configuration up to 500 is different.
 プロジェクタ600Bは、光源装置100B、照明光学系200Bと、色分離手段としての色分離光学系250、画像表示素子としての液晶パネル470R,470G,470Bと、色合成手段としてのクロスダイクロイックプリズム480および投影光学系500を備える。 The projector 600B includes a light source device 100B, an illumination optical system 200B, a color separation optical system 250 as color separation means, liquid crystal panels 470R, 470G, and 470B as image display elements, a cross dichroic prism 480 as color composition means, and a projection. An optical system 500 is provided.
 光源装置100Bは、実施の形態1の光源装置100と比較した場合に、蛍光体ホイール30Bの構成および位置が相違する。その他の構成については、ほぼ同様である。 The light source device 100B differs from the light source device 100 of the first embodiment in the configuration and position of the phosphor wheel 30B. Other configurations are almost the same.
 図18は、図17に示す蛍光体ホイールを示す図である。図18を参照して、蛍光体ホイール30Bについて説明する。 FIG. 18 is a diagram showing the phosphor wheel shown in FIG. The phosphor wheel 30B will be described with reference to FIG.
 図18に示すように、回転板31の中央側から径方向外側に向けて、青色蛍光体層33B、緑色蛍光体層33G、赤色蛍光体層33Rが順に設けられていてもよい。この場合においては、青色蛍光体層33Bは、回転板31の中央に設けられた駆動機構35を囲むように設けられる。緑色蛍光体層33Gは、青色蛍光体層33Bの径方向外側にてこれに隣接するように設けられる。赤色蛍光体層33Rは、緑色蛍光体層33Gの径方向外側にてこれに隣接するように設けられる。 As shown in FIG. 18, a blue phosphor layer 33 </ b> B, a green phosphor layer 33 </ b> G, and a red phosphor layer 33 </ b> R may be sequentially provided from the center side of the rotating plate 31 toward the radially outer side. In this case, the blue phosphor layer 33 </ b> B is provided so as to surround the drive mechanism 35 provided in the center of the rotating plate 31. The green phosphor layer 33G is provided on the outer side in the radial direction of the blue phosphor layer 33B so as to be adjacent thereto. The red phosphor layer 33R is provided on the outer side in the radial direction of the green phosphor layer 33G so as to be adjacent thereto.
 また、蛍光体ホイール30Bの中心位置は、コリメーターレンズ41の光軸よりも第1レンズアレイ201側に位置する。 Further, the center position of the phosphor wheel 30B is located closer to the first lens array 201 than the optical axis of the collimator lens 41.
 このように、蛍光体ホイール30Bを構成および配置した場合であっても、各蛍光体層から発光された各色の蛍光を、フィールドレンズ42、コリメーターレンズ41赤反射ミラー51R、緑反射ミラー51Gおよび青反射ミラー51Bを用いて略同一光軸に合成することができる。 Thus, even when the phosphor wheel 30B is configured and arranged, the fluorescence of each color emitted from each phosphor layer is converted into the field lens 42, the collimator lens 41, the red reflecting mirror 51R, the green reflecting mirror 51G, and the like. The blue reflection mirror 51B can be used to synthesize with substantially the same optical axis.
 再び図17に示すように、照明光学系200Bは、第1レンズアレイ201、第2レンズアレイ202、重ね合わせレンズ203、偏光変換プリズムアレイ207を含む。 As shown in FIG. 17 again, the illumination optical system 200B includes a first lens array 201, a second lens array 202, an overlapping lens 203, and a polarization conversion prism array 207.
 第1レンズアレイ201と第2レンズアレイ202とによって、インテグレータ光学系を構成している。第1レンズアレイ201は、液晶パネル470R,470G,470Bの表示部と略相似な形状のレンズセルで蛍光光束を多数の光束に分割し、第2レンズアレイ202のレンズセルに集光させている。 The first lens array 201 and the second lens array 202 constitute an integrator optical system. The first lens array 201 divides a fluorescent light beam into a number of light beams by lens cells having a shape substantially similar to the display portions of the liquid crystal panels 470R, 470G, and 470B, and condenses them into the lens cells of the second lens array 202. .
 第2レンズアレイ202の各レンズセルは、対応する第1レンズアレイ201のレンズセルの像を液晶パネル470R,470G,470Bの表示部に形成し、重ね合わせレンズ203によって各レンズセルの像を液晶パネル470R,470G,470B上で重ね合せている。これにより、液晶パネル470R,470G,470B上での照度分布を均一化することができる。 Each lens cell of the second lens array 202 forms an image of the corresponding lens cell of the first lens array 201 on the display unit of the liquid crystal panels 470R, 470G, and 470B, and the image of each lens cell is liquid crystal by the overlapping lens 203. Overlaying on panels 470R, 470G, and 470B. Thereby, the illuminance distribution on the liquid crystal panels 470R, 470G, and 470B can be made uniform.
 第2レンズアレイ202と蛍光体光源が略共役であるため、第2レンズアレイ202近傍には複数の2次光源像が形成されている。偏光変換プリズムアレイ207は、偏光分離コートがなされたプリズムアレイを接合して製造され、これらの2次光源像を偏光方向の異なる2つの直線偏光に分離し、偏光分離面でS偏光と反射しP偏光を透過させる。そして、偏光変換プリズムアレイ207のP偏光の光路上に貼られた位相板によって、2次光源像のP偏光をS偏光に揃えて照明光を直線偏光へと変換し、色分離光学系250に出射する。 Since the second lens array 202 and the phosphor light source are substantially conjugate, a plurality of secondary light source images are formed in the vicinity of the second lens array 202. The polarization conversion prism array 207 is manufactured by joining a prism array with a polarization separation coating, and separates these secondary light source images into two linearly polarized light beams having different polarization directions and reflects them as S-polarized light on the polarization separation surface. Transmits P-polarized light. A phase plate attached on the P-polarized light path of the polarization conversion prism array 207 converts the P-polarized light of the secondary light source image to S-polarized light and converts the illumination light into linearly polarized light. Exit.
 色分離光学系250は、照明光学系200Bから出射された照明光を赤、緑、青色に3つの色光に分離して、それぞれ液晶パネル470R,470G,470Bに入射させるものである。 The color separation optical system 250 separates the illumination light emitted from the illumination optical system 200B into three color lights of red, green, and blue and makes them enter the liquid crystal panels 470R, 470G, and 470B, respectively.
 色分離光学系250は、赤透過ダイクロイックミラー251R、青透過ダイクロイックミラー251B、反射ミラー256,257,258、リレーレンズ261,262およびフィールドレンズ265R,265G,265Bを含む。 The color separation optical system 250 includes a red transmissive dichroic mirror 251R, a blue transmissive dichroic mirror 251B, reflection mirrors 256, 257, and 258, relay lenses 261 and 262, and field lenses 265R, 265G, and 265B.
 赤透過ダイクロイックミラー251Rは、赤色光を透過させ、緑色光および青色光を反射させる。青透過ダイクロイックミラー251Bは、青色光を透過させ、緑色光を反射させる。 The red transmissive dichroic mirror 251R transmits red light and reflects green light and blue light. The blue transmissive dichroic mirror 251B transmits blue light and reflects green light.
 照明光学系200Bから出射した照明光のうち赤色光は、赤透過ダイクロイックミラー251Rを透過する。赤透過ダイクロイックミラー251Rを透過した赤色光は、反射ミラー256によって反射され、フィールドレンズ265Rを通過する。フィールドレンズ265Rを通過した赤色光は、赤色光用の液晶パネル470Rの表示部に入射する。 Of the illumination light emitted from the illumination optical system 200B, red light is transmitted through the red transmissive dichroic mirror 251R. The red light transmitted through the red transmitting dichroic mirror 251R is reflected by the reflecting mirror 256 and passes through the field lens 265R. The red light that has passed through the field lens 265R enters the display portion of the liquid crystal panel 470R for red light.
 照明光学系200Bから出射した照明光のうち緑色光および青色光は、赤透過ダイクロイックミラー251Rによって反射される。赤透過ダイクロイックミラー251Rによって反射された緑色光および青色光のうち緑色光は、青透過ダイクロイックミラー251Bによって反射され、フィールドレンズ265Gを通過する。フィールドレンズ265Gを通過した緑色光は、緑色光用の液晶パネル470Gの表示部に入射する。 Of the illumination light emitted from the illumination optical system 200B, green light and blue light are reflected by the red transmission dichroic mirror 251R. Of the green light and blue light reflected by the red transmissive dichroic mirror 251R, green light is reflected by the blue transmissive dichroic mirror 251B and passes through the field lens 265G. The green light that has passed through the field lens 265G is incident on the display portion of the liquid crystal panel 470G for green light.
 赤透過ダイクロイックミラー251Rによって反射された緑色光および青色光のうち青色光は、青透過ダイクロイックミラー251Bを透過して、リレーレンズ261、反射ミラー257、リレーレンズ262、反射ミラー258を順に経てフィールドレンズ265Bを通過する。フィールドレンズ265Bを通過した青色光は、青色光用の液晶パネル470Bの表示部に入射する。 Of the green light and blue light reflected by the red transmissive dichroic mirror 251R, the blue light is transmitted through the blue transmissive dichroic mirror 251B, and sequentially passes through the relay lens 261, the reflective mirror 257, the relay lens 262, and the reflective mirror 258, and then the field lens. Pass 265B. The blue light that has passed through the field lens 265B is incident on the display portion of the liquid crystal panel 470B for blue light.
 青色光の光路の長さは、他の色の光路の長さよりも長いため、他の色光と等価な条件になるように、等倍系のリレーレンズ261,262(リレー光学系)を配置している。 Since the optical path length of the blue light is longer than the optical path lengths of the other colors, equal-magnification relay lenses 261 and 262 (relay optical systems) are arranged so that the conditions are equivalent to those of the other color lights. ing.
 また、フィールドレンズ265R,265G,265Bは、各色に分離された照明光をテレセントリックな光束にしており、各液晶パネル470R,470G,470Bへは、入射角度特性も含めてほぼ均質な照明光が入射する。 In addition, the field lenses 265R, 265G, and 265B make the illumination light separated into colors into telecentric light beams, and substantially uniform illumination light including incident angle characteristics is incident on the liquid crystal panels 470R, 470G, and 470B. To do.
 液晶パネル470R,470G,470Bは、画像情報に応じて表示部に各色光の画像を表示する。液晶パネル470R,470G,470Bは、偏光板(不図示)に挟まれている。入射側偏光板、液晶パネル470R,470G,470Bおよび出射側偏光板によって、画素ごとに入射された各色光の光変調が行われ、特定の偏光方向の光のみが画像光としてクロスダイクロイックプリズム480に向けて射出される。 The liquid crystal panels 470R, 470G, and 470B display an image of each color light on the display unit according to the image information. Liquid crystal panels 470R, 470G, and 470B are sandwiched between polarizing plates (not shown). The incident-side polarizing plates, the liquid crystal panels 470R, 470G, and 470B and the outgoing-side polarizing plates modulate the light of each color incident on each pixel, and only light in a specific polarization direction is input to the cross dichroic prism 480 as image light. It is injected towards.
 クロスダイクロイックプリズム480は、各液晶パネル470R,470G,470Bから射出された画像光を同一光軸に合成して、合成した画像光を投影光学系500に向けて射出する。 The cross dichroic prism 480 combines the image light emitted from the liquid crystal panels 470R, 470G, and 470B with the same optical axis, and emits the combined image light toward the projection optical system 500.
 クロスダイクロイックプリズム480は、4つの三角プリズムが組み合わされることにより構成される。クロスダイクロイックプリズム480は、赤色反射面481Rおよび青色反射面481Bを有する。赤色反射面481Rおよび青色反射面481Bは、誘電体多層膜によって構成される。 The cross dichroic prism 480 is configured by combining four triangular prisms. The cross dichroic prism 480 has a red reflecting surface 481R and a blue reflecting surface 481B. The red reflecting surface 481R and the blue reflecting surface 481B are formed of a dielectric multilayer film.
 クロスダイクロイックプリズム480に入射した赤色の画像光は、赤色反射面481Rによって反射され出射面480aから出射される。クロスダイクロイックプリズム480に入射した青色の画像光は、青色反射面481Bによって反射され射出面480aから射出される。クロスダイクロイックプリズム480に入射した緑色の画像光は、赤色反射面481Rおよび青色反射面481Bを透過して射出面480aから射出される。これにより、赤色の画像光、青色の画像光、緑色の画像光が合成されて画像として射出面480aから射出され、投影光学系500を介してスクリーンに投影される。 The red image light incident on the cross dichroic prism 480 is reflected by the red reflecting surface 481R and emitted from the emitting surface 480a. The blue image light incident on the cross dichroic prism 480 is reflected by the blue reflecting surface 481B and is emitted from the emission surface 480a. The green image light incident on the cross dichroic prism 480 passes through the red reflecting surface 481R and the blue reflecting surface 481B and is emitted from the exit surface 480a. As a result, the red image light, the blue image light, and the green image light are combined and emitted as an image from the emission surface 480 a and projected onto the screen via the projection optical system 500.
 以上のように、光源装置100は、液晶パネル470R,470G,470Bを用いたプロジェクタ600Bにも適用することができる。蛍光体ホイール30、第1レンズアレイ201、第2レンズアレイ202および偏光変換プリズムアレイ207を1セット設ける構成であり、レーザー光源を使用していることから、長寿命化を図ることができる。 As described above, the light source device 100 can also be applied to the projector 600B using the liquid crystal panels 470R, 470G, and 470B. The phosphor wheel 30, the first lens array 201, the second lens array 202, and the polarization conversion prism array 207 are provided in one set, and since a laser light source is used, the lifetime can be extended.
 また、本実施の形態に係る光源装置100Bは、実施の形態1に係る光源装置100の構成とほぼ同様であることから、本実施の形態においても実施の形態1とほぼ同様の効果が得られる。 In addition, since light source device 100B according to the present embodiment is substantially the same as the configuration of light source device 100 according to the first embodiment, the same effects as in the first embodiment can be obtained in the present embodiment. .
 なお、実施の形態1から3に係る光源装置においては、蛍光体ホイールに用いられる蛍光体層の順序、または蛍光体層と拡散部との順序は、赤反射ミラー51R,緑反射ミラー51G,青反射ミラー51Rの順序等の光学系を調整することにより、適宜変更することが可能である。 In the light source devices according to the first to third embodiments, the order of the phosphor layers used in the phosphor wheel, or the order of the phosphor layers and the diffusing portions are the red reflection mirror 51R, the green reflection mirror 51G, and the blue. It can be changed as appropriate by adjusting the optical system such as the order of the reflection mirrors 51R.
 また、実施の形態1に係る光源装置において、実施の形態3に係る蛍光体ホイールを用いてもよいし、実施の形態3に係る光源装置において、実施の形態1に係る蛍光体ホイールを用いてもよい。このように、複数の実施の形態が存在する場合は、特に記載がある場合を除き、各々の実施の形態の特徴部分を適宜組み合わせることは、当初から予定されている。 In the light source device according to the first embodiment, the phosphor wheel according to the third embodiment may be used. In the light source device according to the third embodiment, the phosphor wheel according to the first embodiment is used. Also good. Thus, when there are a plurality of embodiments, it is planned from the beginning to appropriately combine the features of each embodiment unless otherwise specified.
 以上、本発明の実施の形態について説明したが、今回開示された実施の形態はすべての点で例示であって制限的なものではない。本発明の範囲は請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれる。 As mentioned above, although embodiment of this invention was described, embodiment disclosed this time is an illustration and restrictive at no points. The scope of the present invention is defined by the terms of the claims, and includes meanings equivalent to the terms of the claims and all changes within the scope.
 10A,10B 励起光源、11,11a,11b,11c,12,12a,12b,12c レーザー光源、20 コリメート手段、21,21a,21b,21c コリメートレンズ、22 折り返しミラー、23 折り返しミラー群、25 PBSミラー、30,30A,30B 蛍光体ホイール、31,31B 回転板、32 反射膜、32B ダイクロイック膜、33B 青色蛍光体層、33G 緑色蛍光体層、33R 赤色蛍光体層、33T 拡散部、35 駆動機構、40 集光手段、41 コリメーターレンズ、42 フィールドレンズ、50 合成手段、51B 青反射ミラー、51G 緑反射ミラー、51R 赤反射ミラー、70 コンデンサーレンズ、100,100A 光源装置、200,200B 照明光学系、201 第1レンズアレイ、201a,202a レンズセル、202 第2レンズアレイ、203 重ね合わせレンズ、204 折り返しミラー、205 エントランスレンズ、207 偏光変換プリズムアレイ、250 色分離光学系、251B 青透過ダイクロイックミラー、251R 赤透過ダイクロイックミラー、256,257,258 反射ミラー、261,262 リレーレンズ、265B,265G,265R フィールドレンズ、300 プリズムユニット、310 第1プリズム、311g エアギャップ層、320 第2プリズム、400 カラープリズムユニット、410 クリアプリズム、410a 入射面、411g,412g,413g エアギャップ層、420R 赤プリズム、420B 青プリズム、420G 緑プリズム、421B,421R 斜面、422B 青ダイクロイック面、422R 赤ダイクロイック面、423B,423G,423R プリズム端面、470B,470G,470R 液晶パネル、480 クロスダイクロイックプリズム、480a 射出面、481B 青色反射面、481R 赤色反射面、500 投影光学系、600,600A,600B プロジェクタ。 10A, 10B excitation light source, 11, 11a, 11b, 11c, 12, 12a, 12b, 12c laser light source, 20 collimating means, 21, 21a, 21b, 21c collimating lens, 22 folding mirror, 23 folding mirror group, 25 PBS mirror , 30, 30A, 30B phosphor wheel, 31, 31B rotating plate, 32 reflective film, 32B dichroic film, 33B blue phosphor layer, 33G green phosphor layer, 33R red phosphor layer, 33T diffuser, 35 drive mechanism, 40 condensing means, 41 collimator lens, 42 field lens, 50 combining means, 51B blue reflecting mirror, 51G green reflecting mirror, 51R red reflecting mirror, 70 condenser lens, 100, 100A light source device, 200, 200B illumination optical system 201 1st lens array, 201a, 202a lens cell, 202 2nd lens array, 203 superposed lens, 204 folding mirror, 205 entrance lens, 207 polarization conversion prism array, 250 color separation optical system, 251B blue transmissive dichroic mirror, 251R Red transmissive dichroic mirror, 256, 257, 258 reflection mirror, 261, 262 relay lens, 265B, 265G, 265R field lens, 300 prism unit, 310 first prism, 311g air gap layer, 320 second prism, 400 color prism unit , 410 clear prism, 410a entrance surface, 411g, 412g, 413g air gap layer, 420R red prism, 420B blue prism 420G green prism, 421B, 421R slope, 422B blue dichroic surface, 422R red dichroic surface, 423B, 423G, 423R prism end surface, 470B, 470G, 470R liquid crystal panel, 480 cross dichroic prism, 480a exit surface, 481B blue reflecting surface, 481R Red reflecting surface, 500 projection optical system, 600, 600A, 600B projector.

Claims (10)

  1.  蛍光を励起するための励起光を出射する励起光源と、
     基板の表面上に配置され、前記励起光源から出射された前記励起光によって互いに異なる波長域を有する前記蛍光を発光する複数の蛍光体層と、
     前記複数の蛍光体層から発光され互いに異なる波長域を有する複数の前記蛍光を、互いに進行方位の異なる複数の平行光にする第1コリメート手段と、
     前記進行方位の異なる前記複数の平行光を同一光路に合成する合成手段とを、備えた光源装置。
    An excitation light source that emits excitation light for exciting fluorescence;
    A plurality of phosphor layers arranged on the surface of the substrate and emitting the fluorescence having different wavelength ranges by the excitation light emitted from the excitation light source;
    First collimating means for converting a plurality of the fluorescent lights emitted from the plurality of phosphor layers and having different wavelength ranges into a plurality of parallel lights having different traveling directions;
    A light source apparatus comprising: a combining unit configured to combine the plurality of parallel lights having different traveling directions into the same optical path.
  2.  前記励起光源は複数のレーザー光源であり、
     前記複数のレーザー光源のそれぞれに対応して配置され、前記レーザー光源から出射された前記励起光を進行方位の異なる複数の平行光束群に変換する第2コリメート手段と、
     前記第2コリメート手段によって変換された前記複数の平行光束群のそれぞれを、前記複数の蛍光体層のそれぞれに集光させる集光手段とを、さらに備えた請求項1に記載の光源装置。
    The excitation light source is a plurality of laser light sources;
    Second collimating means arranged corresponding to each of the plurality of laser light sources and converting the excitation light emitted from the laser light sources into a plurality of parallel light flux groups having different traveling directions;
    2. The light source device according to claim 1, further comprising a condensing unit configured to condense each of the plurality of parallel light flux groups converted by the second collimating unit on each of the plurality of phosphor layers.
  3.  前記第1コリメート手段は、前記励起光の光路において前記第2コリメート手段と前記蛍光体層との間に配置され、
     前記第1コリメート手段と前記集光手段とは、同一の部材によって構成されている、請求項2に記載の光源装置。
    The first collimating means is disposed between the second collimating means and the phosphor layer in the optical path of the excitation light,
    The light source device according to claim 2, wherein the first collimating unit and the light collecting unit are configured by the same member.
  4.  前記合成手段は、前記励起光の光路において前記第2コリメート手段と前記集光手段との間に配置され、前記励起光を透過させ、対応する波長域の蛍光を反射する複数のダイクロイックフィルターを含む、請求項2または3に記載の光源装置。 The synthesizing unit includes a plurality of dichroic filters disposed between the second collimating unit and the condensing unit in the optical path of the excitation light and transmitting the excitation light and reflecting fluorescence in a corresponding wavelength range. The light source device according to claim 2 or 3.
  5.  前記複数のダイクロイックフィルターは、異なる波長域を有する前記複数の平行光を長波長側の波長帯域から順次反射するように配置されている、請求項4に記載の光源装置。 The light source device according to claim 4, wherein the plurality of dichroic filters are arranged so as to sequentially reflect the plurality of parallel lights having different wavelength ranges from a wavelength band on a long wavelength side.
  6.  異なる波長域を有する前記複数の平行光は、赤、緑、青の波長域をそれぞれ有し、
     前記励起光の波長は、青の波長域を有する前記平行光よりも短波長である、請求項1から5のいずれか1項に記載の光源装置。
    The plurality of parallel lights having different wavelength ranges have red, green, and blue wavelength ranges,
    The light source device according to claim 1, wherein a wavelength of the excitation light is shorter than that of the parallel light having a blue wavelength region.
  7.  前記基板の前記表面は、前記複数の蛍光体層から発光される前記蛍光を前記第1コリメート手段に向けて反射するように構成されている、請求項1から6のいずれか1項に記載の光源装置。 The surface of the substrate is configured to reflect the fluorescence emitted from the plurality of phosphor layers toward the first collimating means. Light source device.
  8.  前記複数の蛍光体層は、輪帯状に形成され、
     前記基板は、回転可能に構成されている、請求項1から7のいずれか1項に記載の光源装置。
    The plurality of phosphor layers are formed in a ring shape,
    The light source device according to claim 1, wherein the substrate is configured to be rotatable.
  9.  請求項1から8のいずれか1項に記載の光源装置と、
     前記光源装置から入射される光束を複数の各色光に分離する色分離手段と、
     前記色分離手段によって色分離された前記各色光に対応して設けられ、前記各色光の画像を表示する複数の画像表示素子と、
     前記複数の画像表示素子によって画像に応じて変調された画像光のそれぞれを同一光軸に合成する色合成手段と、
     前記色合成手段によって合成された画像光を投影する投影系と、を備えたプロジェクタ。
    The light source device according to any one of claims 1 to 8,
    Color separation means for separating a light beam incident from the light source device into a plurality of color lights;
    A plurality of image display elements that are provided corresponding to the respective color lights separated by the color separation means and display images of the respective color lights;
    Color synthesizing means for synthesizing each of the image light modulated according to the image by the plurality of image display elements on the same optical axis;
    And a projection system for projecting the image light synthesized by the color synthesizing means.
  10.  前記画像表示素子は、反射型の表示素子であり、
     前記色分離手段と前記色合成手段とは、同一の部材によって構成されている、請求項9に記載のプロジェクタ。
    The image display element is a reflective display element,
    The projector according to claim 9, wherein the color separation unit and the color composition unit are configured by the same member.
PCT/JP2015/081930 2014-11-19 2015-11-13 Light source device and projector WO2016080295A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016560180A JP6717197B2 (en) 2014-11-19 2015-11-13 Light source device and projector

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014234775 2014-11-19
JP2014-234775 2014-11-19

Publications (1)

Publication Number Publication Date
WO2016080295A1 true WO2016080295A1 (en) 2016-05-26

Family

ID=56013836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081930 WO2016080295A1 (en) 2014-11-19 2015-11-13 Light source device and projector

Country Status (2)

Country Link
JP (1) JP6717197B2 (en)
WO (1) WO2016080295A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111157498A (en) * 2019-12-31 2020-05-15 苏州丹宝医疗科技有限公司 Micro-fluidic multi-sample multicolor fluorescence acquisition device
CN113433784A (en) * 2020-03-23 2021-09-24 精工爱普生株式会社 Light source device, illumination device, and projector
WO2021260878A1 (en) * 2020-06-25 2021-12-30 シャープNecディスプレイソリューションズ株式会社 Light source device, projector, control method, and program
WO2021260877A1 (en) * 2020-06-25 2021-12-30 シャープNecディスプレイソリューションズ株式会社 Light source device and projector
CN114585968A (en) * 2019-11-01 2022-06-03 株式会社理光 Light source device, image projection device, and light source optical system

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199075A (en) * 2011-03-22 2012-10-18 Seiko Epson Corp Light source device and projector
JP2013047777A (en) * 2011-07-22 2013-03-07 Ricoh Co Ltd Illumination device, projection device, and control method of projection device
WO2013047542A1 (en) * 2011-09-26 2013-04-04 日立コンシューマエレクトロニクス株式会社 Light source device
JP2013073080A (en) * 2011-09-28 2013-04-22 Casio Comput Co Ltd Light source device and projector
JP2013250494A (en) * 2012-06-04 2013-12-12 Panasonic Corp Light source device and projection type display device
WO2014109333A1 (en) * 2013-01-10 2014-07-17 ゼロラボ株式会社 Wavelength conversion device, lighting optical system, and electronic device using same
WO2014115492A1 (en) * 2013-01-24 2014-07-31 パナソニック株式会社 Solid-state light source device
JP2014186115A (en) * 2013-03-22 2014-10-02 Sony Corp Light source device and display device
JP2015082025A (en) * 2013-10-23 2015-04-27 キヤノン株式会社 Light source device and projection type display device

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012199075A (en) * 2011-03-22 2012-10-18 Seiko Epson Corp Light source device and projector
JP2013047777A (en) * 2011-07-22 2013-03-07 Ricoh Co Ltd Illumination device, projection device, and control method of projection device
WO2013047542A1 (en) * 2011-09-26 2013-04-04 日立コンシューマエレクトロニクス株式会社 Light source device
JP2013073080A (en) * 2011-09-28 2013-04-22 Casio Comput Co Ltd Light source device and projector
JP2013250494A (en) * 2012-06-04 2013-12-12 Panasonic Corp Light source device and projection type display device
WO2014109333A1 (en) * 2013-01-10 2014-07-17 ゼロラボ株式会社 Wavelength conversion device, lighting optical system, and electronic device using same
WO2014115492A1 (en) * 2013-01-24 2014-07-31 パナソニック株式会社 Solid-state light source device
JP2014186115A (en) * 2013-03-22 2014-10-02 Sony Corp Light source device and display device
JP2015082025A (en) * 2013-10-23 2015-04-27 キヤノン株式会社 Light source device and projection type display device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114585968A (en) * 2019-11-01 2022-06-03 株式会社理光 Light source device, image projection device, and light source optical system
CN111157498A (en) * 2019-12-31 2020-05-15 苏州丹宝医疗科技有限公司 Micro-fluidic multi-sample multicolor fluorescence acquisition device
CN113433784A (en) * 2020-03-23 2021-09-24 精工爱普生株式会社 Light source device, illumination device, and projector
JP2021150255A (en) * 2020-03-23 2021-09-27 セイコーエプソン株式会社 Light source device, lighting system, and projector
JP7131580B2 (en) 2020-03-23 2022-09-06 セイコーエプソン株式会社 Light source device, lighting device and projector
US11579519B2 (en) 2020-03-23 2023-02-14 Seiko Epson Corporation Light source device, illumination device, and projector
US11822223B2 (en) 2020-03-23 2023-11-21 Seiko Epson Corporation Light source device, illumination device, and projector
WO2021260878A1 (en) * 2020-06-25 2021-12-30 シャープNecディスプレイソリューションズ株式会社 Light source device, projector, control method, and program
WO2021260877A1 (en) * 2020-06-25 2021-12-30 シャープNecディスプレイソリューションズ株式会社 Light source device and projector

Also Published As

Publication number Publication date
JP6717197B2 (en) 2020-07-01
JPWO2016080295A1 (en) 2017-08-24

Similar Documents

Publication Publication Date Title
JP5574458B2 (en) Illumination device and projection display device using the same
CN107608166B (en) Light source device and projection display device
JP5743240B2 (en) Illumination optical system provided with phosphor, projector, and irradiation method
JP5679358B2 (en) Illumination device and projection display device using the same
EP2015128B1 (en) Wavelength-selective polarization conversion device, illumination optical system, and image projection apparatus
JP2017204357A (en) Light source device and projector
JP6717197B2 (en) Light source device and projector
JP2007025308A (en) Projection type video display apparatus and color separation unit
JP2004070018A (en) Conformation of illumination optical system in projector, and projector
WO2020137749A1 (en) Light source device and protection-type video display device
JP4183663B2 (en) Illumination device and projection display device
CN109324467B (en) Light source device and projection display device
JP2020170064A (en) Light source device and projection type video display device
JP6659061B2 (en) projector
JP6448063B2 (en) Projector and image projection method
CN210835555U (en) Light source device and projection display device
JP2020197621A (en) Light source device and projection type display device
JP2020095105A (en) Lighting unit and projector
JP7188161B2 (en) projector
JP2018004755A (en) Photosynthesis optical element, illumination apparatus and projector
JP2019138940A (en) Light source device, illumination device and projector
JP2017146526A (en) Fluorescent wheel, light source device, and projector
JP2007256679A (en) Projection image display device
JP2021135333A (en) Light source device and projection-type display device
JP2019211561A (en) Polarization conversion element, lighting unit, and projector

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15860802

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016560180

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15860802

Country of ref document: EP

Kind code of ref document: A1