WO2016078614A1 - 液晶显示装置及其制造方法 - Google Patents

液晶显示装置及其制造方法 Download PDF

Info

Publication number
WO2016078614A1
WO2016078614A1 PCT/CN2015/095192 CN2015095192W WO2016078614A1 WO 2016078614 A1 WO2016078614 A1 WO 2016078614A1 CN 2015095192 W CN2015095192 W CN 2015095192W WO 2016078614 A1 WO2016078614 A1 WO 2016078614A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
display device
nematic liquid
crystal display
substrate
Prior art date
Application number
PCT/CN2015/095192
Other languages
English (en)
French (fr)
Inventor
周晓宸
杨登科
秦广奎
Original Assignee
京东方科技集团股份有限公司
肯特州立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 肯特州立大学 filed Critical 京东方科技集团股份有限公司
Priority to US15/121,475 priority Critical patent/US20160363794A1/en
Publication of WO2016078614A1 publication Critical patent/WO2016078614A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133365Cells in which the active layer comprises a liquid crystalline polymer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1341Filling or closing of cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K2019/0444Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group
    • C09K2019/0448Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit characterized by a linking chain between rings or ring systems, a bridging chain between extensive mesogenic moieties or an end chain group the end chain group being a polymerizable end group, e.g. -Sp-P or acrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/06Non-steroidal liquid crystal compounds
    • C09K19/08Non-steroidal liquid crystal compounds containing at least two non-condensed rings
    • C09K19/10Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings
    • C09K19/20Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers
    • C09K19/2007Non-steroidal liquid crystal compounds containing at least two non-condensed rings containing at least two benzene rings linked by a chain containing carbon and oxygen atoms as chain links, e.g. esters or ethers the chain containing -COO- or -OCO- groups
    • C09K2019/2078Ph-COO-Ph-COO-Ph
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/542Macromolecular compounds
    • C09K2019/546Macromolecular compounds creating a polymeric network
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • G02F1/13345Network or three-dimensional gels
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13775Polymer-stabilized liquid crystal layers

Definitions

  • the present invention relates to the field of display technologies, and in particular, to a liquid crystal display device and a method of fabricating the same.
  • liquid crystal display devices are widely used in commercial products such as displays, smart phones, and televisions because of their advantages of low power consumption, light weight, and thin thickness.
  • the liquid crystal display device also has a drawback that the viewing angle is limited and the liquid crystal response speed is slow.
  • the liquid crystal display device in the prior art generally adopts a multi-domain vertical alignment technology or a polymer stable alignment technology, and the above technology can realize a liquid crystal display device with a wide viewing angle, and can improve the liquid crystal display device.
  • the response speed of the liquid crystal is a multi-domain vertical alignment technology or a polymer stable alignment technology
  • a polymer protrusion is formed on an alignment layer of a liquid crystal display device, and a polymer protrusion can pre-tilt liquid crystal molecules.
  • the scattering caused by the refractive index mismatch between the liquid crystal and the polymer causes light leakage in the dark state; and since the alignment in the vicinity of the polymer protrusion is different from the alignment in which the polymer protrusion region is not disposed, dark light leakage occurs. Causes the contrast to drop.
  • An object of the present invention is to provide a liquid crystal display device and a method of fabricating the same for improving contrast.
  • the present invention provides a liquid crystal display device comprising: a first substrate and a second substrate disposed opposite to each other, wherein a nematic liquid crystal layer is disposed between the first substrate and the second substrate,
  • the nematic liquid crystal layer comprises a nematic liquid crystal and a polymer network formed by irradiation polymerization of functional monomers in a nematic liquid crystal mixture comprising nematic liquid crystals and functional monomers.
  • the functional monomer comprises a linearity having an ester group end group at its molecular end Aliphatic chain.
  • the functional monomer comprises a benzene or biphenyl divalent group having a hydrocarbyl or halogen substituent and a at least one methylene group located in the middle of its molecule.
  • the functional monomer comprises at least one benzene or biphenyl divalent group, and a (meth) acrylate end group to which a divalent alkylene group is attached, wherein the benzene or biphenyl divalent group
  • the group may optionally have one or more hydrocarbyl or halogen substituents.
  • the chemical formula of the functional monomer is:
  • a and each b are each independently an integer from 0 to 5
  • each m is independently an integer from 0 to 15
  • X 1 , X 2 and X 3 are each independently a hydrogen atom, a halogen or a methyl group
  • R 1 , R 2 , R 3 and R 4 are each independently an oxygen atom, an ester group or a methylene group, provided that: (i) a and b are not 0 at the same time; and (ii) when R 3 or R 4 is an oxygen atom or In the case of an ester group, the subscript m of -CH 2 - attached thereto is not zero.
  • the functional monomer is a photosensitive monomer
  • the nematic liquid crystal mixture further comprises a photoinitiator
  • the polymer network is formed by subjecting the photosensitive monomer and the photoinitiator to ultraviolet light irradiation to cause a polymerization reaction.
  • the concentration of the photosensitive monomer in the nematic liquid crystal mixture is from 0.01% by weight to 15% by weight.
  • the concentration of the photoinitiator in the nematic liquid crystal mixture is from 0.001% by weight to 2% by weight.
  • the functional monomer has a functionality greater than one.
  • the liquid crystal display device comprises an advanced super-dimensional field conversion technology liquid crystal display device.
  • the first substrate and the second substrate respectively comprise an alignment layer, and the alignment layer is not provided with a polymer protrusion.
  • the present invention provides a method of fabricating a liquid crystal display device, comprising:
  • the nematic liquid crystal mixture comprising a nematic liquid crystal and a functional monomer
  • the irradiating the functional monomer to polymerize the functional monomer to form a polymer network comprises:
  • the functional monomer is irradiated with ultraviolet light to form the polymer network.
  • the functional monomer is a photosensitive monomer
  • the nematic liquid crystal mixture further comprises a photoinitiator
  • the ultraviolet light irradiation of the functional monomer to form the polymer network includes ultraviolet light irradiation of the photosensitive monomer and the photoinitiator to cause polymerization to form the polymer network.
  • a nematic liquid crystal layer is disposed between the first substrate and the second substrate, the nematic liquid crystal layer includes a nematic liquid crystal and a polymer network, and the polymer network is composed of nematic liquid crystal
  • the functional monomer in the mixture is formed by irradiation polymerization, and the polymer network can reduce the scattering phenomenon caused by the refractive index mismatch between the liquid crystal and the polymer in the existing liquid crystal display device, and greatly reduce the darkness.
  • the state leaks light thereby improving the contrast; and in the present invention, no polymer protrusion is provided on the alignment layer, and dark state light leakage caused by the polymer protrusion is avoided, thereby further improving the contrast.
  • FIG. 1 is a schematic structural view of a liquid crystal display device according to an embodiment of the present invention.
  • Figure 2 is a plan view showing the nematic liquid crystal layer of Figure 1;
  • Figure 3 is a schematic view showing the formation of a polymer network
  • FIG. 4 is a flow chart of a method of fabricating a liquid crystal display device according to an embodiment of the present invention.
  • FIG. 1 is a schematic structural view of a liquid crystal display device according to an embodiment of the present invention
  • FIG. 2 is a schematic plan view of the nematic liquid crystal layer of FIG. 1.
  • the liquid crystal display device includes: The first substrate 1 and the second substrate 2 are disposed, and a nematic liquid crystal layer 3 is disposed between the first substrate 1 and the second substrate 2.
  • the nematic liquid crystal layer 3 includes a nematic liquid crystal 31 and a polymer network 32.
  • the liquid crystal display device is an advanced super-dimensional field switching (ADV) Super Dimension Switch (ADS) liquid crystal display device.
  • the first substrate 1 is a color filter substrate
  • the second substrate 2 is an array substrate.
  • the first substrate 1 may include a first substrate substrate 11, a black matrix 12, a color matrix pattern 13 and a first alignment layer 14, the black matrix 12 being formed on the first substrate substrate 11, and the color matrix pattern 13 being located Above the first base substrate 11 and the color matrix pattern 13 covers the area between the black matrices 12, the first alignment layer 14 is located above the color matrix pattern 13.
  • the second substrate 2 includes a second substrate substrate 21, a common electrode 22, a pixel electrode 23, and a second alignment layer 24, the common electrode 22 is located above the second substrate substrate 21, and the pixel electrode 23 is located at the common electrode 22.
  • the second alignment layer 24 is located above the pixel electrode 23, and the insulating layer 25 is formed on the common electrode 22.
  • the pixel electrode 23 is located above the insulating layer 25, and the second alignment layer 24 is over the insulating layer 25.
  • the pixel electrode 23 may be a strip electrode.
  • the alignment direction of the second alignment layer 24 is parallel or non-parallel to the alignment direction of the first alignment layer 14.
  • the second substrate further includes structures such as gate lines, data lines, and thin film transistors, which are not specifically shown in FIG. Twist Nematic (TN) liquid crystal display
  • the ADS liquid crystal display device has an advantage of a wide viewing angle compared to a vertical Alignment (VA) liquid crystal display device. Therefore, the liquid crystal display device is preferably an ADS liquid crystal display device.
  • the polymer network 32 is located between the nematic liquid crystals 31, which can provide a strong alignment anchoring action to tend to stabilize the nematic liquid crystal 31.
  • the polymer network 32 is crosslinked.
  • both the nematic liquid crystal 31 and the polymer network 32 are aligned in the alignment direction.
  • an electric field is generated between the common electrode 22 and the pixel electrode 23, which can drive the nematic liquid crystal 31 to rotate, but due to the size and high crosslink density of the polymer network 32 itself, the polymer Network 32 will remain in its original location and will not move. If the external voltage applied to the liquid crystal display device is cancelled, the nematic liquid crystal 31 is quickly turned back according to the anchoring of the polymer network 32.
  • the polymer network 32 improves the surface alignment effect of the liquid crystal display device, it is difficult to drive the nematic liquid crystal 31 to rotate from the initial orientation, which makes it necessary to increase the driving voltage after forming the polymer network 32. At the rising period when the external voltage is just applied, the driving voltage is also increased to accelerate the rising period.
  • FIG. 3 is a schematic view showing the formation of a polymer network in which the polymer network 32 shown in FIGS. 1 to 2 is formed by irradiation polymerization of the functional monomer 41 in the nematic liquid crystal mixture 4, and the nematic liquid crystal mixture 4 includes a direction.
  • the liquid crystal 31 and the functional monomer 41 are arranged.
  • the term "functional monomer” refers to a monomer having a reactive functional group that allows a functional monomer to undergo polymerization (eg, ultraviolet light or electron beam irradiation) to polymerize to form a polymer network.
  • the "functional monomer” is, in particular, a bifunctional liquid crystal monomer material having both liquid crystal monomer properties and polymerizable properties, and is therefore also referred to as a bifunctional monomer, examples of which include RM257 (1,4-bis-[4- (3-acryloyloxypropoxy)benzoyloxy]-2-methylbenzene) and HNG009 supplied by Jiangsu Synthetic Company, but are not limited thereto, as long as monomers having similar functions can be used in the present invention. in.
  • the term “functionality” refers to the number of such reactive functional groups in each functional monomer.
  • the functional monomer 41 can be polymerized by irradiating the functional monomer 41 to form the polymer network 32.
  • the nematic liquid crystal mixture 4 is located between the first alignment layer 14 and the second alignment layer 24.
  • the chemical structure of the functional monomer 41 has a rod shape similar to that of the nematic liquid crystal 31. The structure is such that the functional monomer 41 can be well dissolved in the nematic liquid crystal 31.
  • the functional monomer 41 is also aligned in the alignment direction as in the nematic phase and in the alignment direction.
  • the liquid crystal display device of FIG. 3 was placed under a UV lamp to effect polymerization of the functional monomer 41 under irradiation of the UV lamp. When the liquid crystal display device of FIG.
  • the UV lamp can illuminate the nematic liquid crystal mixture 4 from the side of the first substrate substrate 11 and the nematic liquid crystal mixture 4 from the side of the second substrate substrate 21 or The first base substrate 11 and the second base substrate 21 simultaneously illuminate the nematic liquid crystal mixture 4.
  • functional monomer 41 polymerizes and separates from nematic liquid crystal mixture 4 to form polymer network 32, which forms a polymer network 32 that conforms to the orientation of nematic liquid crystal 31.
  • the structure of the polymer network 32 can be determined by the chemical formula of the functional monomer 41, the concentration of the functional monomer 41, and the process conditions.
  • the polymer network 32 stabilizes the nematic liquid crystal 31 where the polymer is formed. Since the polymers are crosslinked together throughout the liquid crystal display device, the nematic liquid crystals 31 are oriented along the long axis direction of the polymer network. Therefore, when the driving voltage is turned off, the nematic liquid crystal 31 is more quickly restored to the initial state, so that the response speed can be improved.
  • functional monomer 41 is a rod-shaped molecule having a rigid core and a flexible tail.
  • the functional monomer 41 is a photosensitive monomer
  • the nematic liquid crystal mixture 4 may further include a photoinitiator
  • the polymer network 32 is polymerized by ultraviolet light irradiation of the photosensitive monomer 41 and the photoinitiator. Formed by reaction.
  • the concentration of the photosensitive monomer (or functional monomer) in the nematic liquid crystal mixture 4 is from 0.01 wt% to 15 wt%, for example, 0.01 wt%, 0.05 wt%, 0.1 wt%, 0.5 wt%, 1 wt% 2.5 wt%, 5 wt%, 7.5 wt%, 10 wt%, 12.5 wt%, 15 wt%.
  • the concentration of the photoinitiator in the nematic liquid crystal mixture 4 may be from 0.001 wt% to 2 wt%, for example, 0.001 wt%, 0.005 wt%, 0.01 wt%, 0.05 wt%, 0.1 wt%, 0.5 wt%, 1 wt%, 1.25 wt%, 1.5 wt%, 1.75 wt%, and 2 wt%, depending on the amount of the photosensitive monomer.
  • the kind of the photoinitiator and the nematic liquid crystal are not particularly limited, and those generally used in the art can be used in the present invention.
  • the difference in refractive index between the nematic liquid crystal 31 and the polymer network 32 causes a single scattering, and therefore, in order to reduce the scattering effect of the liquid crystal display device and maintain high contrast, an appropriate function is selected.
  • the chemical formula of the monomer 41 is particularly important, for example, the refractive index difference between the nematic liquid crystal and the polymer network can be between plus and minus 0.3, The difference in refractive index between the nematic liquid crystal and the polymer network is selected to be between plus and minus 0.2.
  • functional monomer 41 comprises a linear aliphatic chain having an ester end group (eg, a (meth) acrylate end group) at its molecular end.
  • the functional monomer 41 comprises a benzene or biphenyl divalent group having a hydrocarbyl or halogen substituent and a at least one methylene group located in the middle of its molecule.
  • the functional monomer 41 comprises at least one benzene or biphenyl divalent group, and a (meth) acrylate end group to which a divalent alkylene group is attached, wherein the benzene or biphenyl divalent group
  • one or more hydrocarbyl or halogen substituents are included.
  • the term "(meth)acrylate” includes both acrylate and methacrylate. Alternatively, the (meth) acrylate may be substituted with a halogen.
  • halogen includes fluoro, chloro, bromo, iodo.
  • biphenyl refers to two or more (eg, 2-5) non-fused benzene rings joined by a covalent bond.
  • hydrocarbyl includes straight-chain or branched, saturated or unsaturated aliphatic hydrocarbon groups, and aromatic hydrocarbon groups, preferably aliphatic hydrocarbon groups, more preferably linear or branched alkane groups, most preferably linear or branched. C1-C6 alkyl.
  • the chemical formula of functional monomer 41 can be:
  • a and each b are each independently an integer from 0 to 5
  • each m is independently an integer from 0 to 15
  • X 1 , X 2 and X 3 are each independently a hydrogen atom, a halogen or a methyl group
  • R 1 , R 2 , R 3 and R 4 are each independently an oxygen atom, an ester group or a methylene group, provided that: (i) a and b are not 0 at the same time; and (ii) when R 3 or R 4 is an oxygen atom or In the case of an ester group, the subscript m of -CH 2 - attached thereto is not zero.
  • the functionality of the functional monomer is greater than 1, such as 2, 3, 4, and the like.
  • a nematic liquid crystal layer is provided between the first substrate and the second substrate, the nematic liquid crystal layer includes a nematic liquid crystal and a polymer network, and the polymer network is composed of a nematic liquid crystal mixture
  • the functional monomer is formed by irradiation polymerization, and the polymer network can reduce the scattering phenomenon caused by the refractive index mismatch between the liquid crystal and the polymer in the existing liquid crystal display device, and greatly reduce the dark state light leakage.
  • No polymer protrusions are provided on the intermediate alignment layer to avoid dark state light leakage caused by polymer protrusions, thereby further improving contrast.
  • providing the polymer network in the nematic liquid crystal layer also improves the response speed of the liquid crystal display device.
  • FIG. 4 is a flow chart of a method of fabricating a liquid crystal display device according to an embodiment of the present invention. As shown in FIG. 4, the method includes steps 101 and 102.
  • a nematic liquid crystal mixture is disposed between the oppositely disposed first substrate and the second substrate, and the nematic liquid crystal mixture includes nematic liquid crystals and functional monomers.
  • the first substrate and the second substrate are as shown in FIG. 3 , wherein the first substrate 1 is a color film substrate, and the second substrate 2 is an array substrate.
  • the first substrate 1 and the second substrate 2 are prepared, the first substrate 1 and the second substrate 2 are disposed opposite to each other and the nematic liquid crystal mixture 4 is filled between the first substrate 1 and the second substrate 2, A detailed description of the nematic liquid crystal mixture 4 can be found in the above embodiments.
  • step 102 the functional monomer is irradiated to polymerize the functional monomer to form a polymer network to form a nematic liquid crystal layer to form a nematic liquid crystal layer, and the nematic liquid crystal layer includes a nematic liquid crystal and a polymer network.
  • this step may specifically include: irradiating the functional monomer 41 with ultraviolet light to form a polymer network 32.
  • the functional monomer 41 when the functional monomer 41 is irradiated with ultraviolet light to form the polymer network 32, the functional monomer 41 is a photosensitive monomer, and the nematic liquid crystal mixture 4 may further include a photoinitiator.
  • the ultraviolet light irradiation of the functional monomer 41 to form the polymer network 32 includes ultraviolet light irradiation of the photosensitive monomer and the photoinitiator to cause polymerization to form the polymer network 32.
  • the liquid crystal display device of FIG. 3 can be placed under a UV lamp to effect polymerization of the functional monomer 41 under irradiation of the UV lamp.
  • the UV lamp can illuminate the nematic liquid crystal mixture 4 from the side of the first substrate substrate 11 and the nematic liquid crystal mixture 4 from the side of the second substrate substrate 21 or The first base substrate 11 and the second base substrate 21 simultaneously illuminate the nematic liquid crystal mixture 4.
  • functional monomer 41 polymerizes and separates from nematic liquid crystal mixture 4 to form polymer network 32, which The complex network 32 replicates the structure of the nematic liquid crystal 31 during polymerization.
  • a nematic liquid crystal layer is provided between the first substrate and the second substrate, the nematic liquid crystal layer includes a nematic liquid crystal and a polymer network, and the polymer network is composed of a nematic
  • the functional monomer in the liquid crystal mixture is formed by irradiation polymerization, and the polymer network can reduce the scattering phenomenon caused by the refractive index mismatch between the liquid crystal and the polymer in the existing liquid crystal display device, and is greatly reduced.
  • the dark state leaks light, thereby improving the contrast; and the present embodiment does not provide a polymer protrusion on the alignment layer, which avoids dark state light leakage caused by the polymer protrusion, thereby further improving the contrast.
  • providing the polymer network in the nematic liquid crystal layer also improves the response speed of the liquid crystal display device.
  • the refractive index is measured using an Abbe refractive index tester.
  • the present invention introduces a polymer network into the nematic liquid crystal layer, which can reduce the scattering phenomenon caused by the refractive index mismatch between the liquid crystal and the polymer in the conventional liquid crystal display device, and greatly reduces The dark state leaks light; and in the present invention, no polymer protrusion is provided on the alignment layer, and dark state light leakage caused by the polymer protrusion is avoided, so that the present invention remarkably improves the contrast.
  • the present invention also provides a polymer network in the nematic liquid crystal layer to improve the response speed of the liquid crystal display device. Similar results were obtained in the case where the difunctional monomer RM257 used in the above Examples 1-4 was replaced with HNG009 from Jiangsu Synthetic Company. In addition, as the concentration of the difunctional monomer increases (for example, 15%), the display device will have a higher response speed while the contrast is somewhat lowered.

Abstract

提供了一种液晶显示装置及其制造方法。液晶显示装置包括:相对设置的第一基板(1)和第二基板(2),第一基板(1)和第二基板(2)之间设置有向列液晶层(3),向列液晶层(3)包括向列液晶(31)和聚合物网络(32)。聚合物网络(32)由向列液晶混合物(4)中的功能单体(41)经过照射聚合而形成。聚合物网络(32)能够减小现有的液晶显示装置中因液晶和聚合物之间的折射率不匹配而引起的散射现象,减小了暗态漏光,从而提高了对比度;并且配向层上未设置聚合物突起,避免了由聚合物突起导致的暗态漏光,从而进一步提高了对比度。

Description

液晶显示装置及其制造方法 技术领域
本发明涉及显示技术领域,特别涉及一种液晶显示装置及其制造方法。
背景技术
目前,液晶显示装置(Liquid Crystal Display,简称:LCD)因具备低功耗、重量轻和厚度薄的优点而被广泛应用于显示器、智能手机、电视机等商业产品。但是,液晶显示装置也存在视角有限和液晶响应速度慢的缺点。为克服液晶显示装置存在的上述问题,现有技术中的液晶显示装置通常采用多域垂直配向技术或者聚合物稳定配向技术,上述技术可实现广视角的液晶显示装置,并且可以提高液晶显示装置中液晶的响应速度。
通常,液晶显示装置的配向层上形成有聚合物突起,聚合物突起能够使液晶分子预倾。但是,液晶和聚合物之间的折射率不匹配引起的散射会导致暗态漏光;并且由于聚合物突起附近的配向与未设置聚合物突起区域的配向不同,也会造成暗态漏光发生,从而导致对比度下降。
发明内容
本发明的目的是提供一种液晶显示装置及其制造方法,用于提高对比度。
为实现上述目的,本发明提供了一种液晶显示装置,包括:相对设置的第一基板和第二基板,所述第一基板和所述第二基板之间设置有向列液晶层,所述向列液晶层包括向列液晶和聚合物网络,所述聚合物网络由向列液晶混合物中的功能单体经过照射聚合而形成,所述向列液晶混合物包括向列液晶和功能单体。
优选地,所述功能单体包括位于其分子末端的具有酯基端基的线性 脂肪族链。
优选地,所述功能单体包括位于其分子中间的具有烃基或卤素取代基的苯或联苯二价基团以及至少一个亚甲基。
优选地,所述功能单体包括至少一个苯或联苯二价基团、以及通过二价亚烷基与之相连的(甲基)丙烯酸酯端基,其中所述苯或联苯二价基团可任选地具有一个或多个烃基或卤素取代基。
优选地,所述功能单体的化学式为:
Figure PCTCN2015095192-appb-000001
其中,a和各个b分别独立地为0至5的整数,各个m独立地为0至15的整数,X1、X2和X3分别独立地为氢原子、卤素或者甲基,R1、R2、R3和R4分别独立地为氧原子、酯基或者亚甲基,条件是:(i)a和b不同时为0;以及(ii)当R3或R4为氧原子或酯基时,与之相连的-CH2-的下标m不为0。
优选地,所述功能单体为感光性单体,所述向列液晶混合物还包括光引发剂;
所述聚合物网络为通过对所述感光性单体和所述光引发剂进行紫外光照射以发生聚合反应而形成。
优选地,所述感光性单体在所述向列液晶混合物中的浓度为0.01wt%至15wt%。
优选地,所述光引发剂在所述向列液晶混合物中的浓度为0.001wt%至2wt%。
优选地,所述功能单体的官能度大于1。
优选地,所述液晶显示装置包括高级超维场转换技术液晶显示装置。
优选地,所述第一基板和所述第二基板分别包括配向层,所述配向层未设置聚合物突起。
为实现上述目的,本发明提供了一种液晶显示装置的制造方法,包括:
在相对设置的第一基板和第二基板之间设置向列液晶混合物,所述向列液晶混合物包括向列液晶和功能单体;
对所述功能单体进行照射使所述功能单体聚合形成聚合物网络,以使所述向列液晶混合物形成向列液晶层,所述向列液晶层包括所述向列液晶和所述聚合物网络。
优选地,所述对所述功能单体进行照射使所述功能单体聚合形成聚合物网络包括:
对所述功能单体进行紫外光照射以形成所述聚合物网络。
优选地,所述功能单体为感光性单体,所述向列液晶混合物还包括光引发剂;
所述对所述功能单体进行紫外光照射以形成所述聚合物网络包括:对所述感光性单体和所述光引发剂进行紫外光照射以发生聚合反应而形成所述聚合物网络。
本发明具有以下有益效果:
本发明提供的液晶显示装置及其制造方法中,第一基板和第二基板之间设置有向列液晶层,该向列液晶层包括向列液晶和聚合物网络,聚合物网络由向列液晶混合物中的功能单体经过照射聚合而形成,聚合物网络能够减小现有的液晶显示装置中因液晶和聚合物之间的折射率不匹配而引起的散射现象,极大的减小了暗态漏光,从而提高了对比度;并且本发明中配向层上未设置聚合物突起,避免了由聚合物突起导致的暗态漏光,从而进一步提高了对比度。
附图说明
图1为本发明的一个实施方案提供的一种液晶显示装置的结构示意图;
图2为图1中向列液晶层的平面示意图;
图3为形成聚合物网络的示意图;
图4为本发明的一个实施方案提供的一种液晶显示装置的制造方法的流程图。
具体实施方式
为使本领域的技术人员更好地理解本发明的技术方案,下面结合附图对本发明提供的液晶显示装置及其制造方法进行详细描述。
图1为本发明的一个实施方案提供的一种液晶显示装置的结构示意图,图2为图1中向列液晶层的平面示意图,如图1和图2所示,该液晶显示装置包括:相对设置的第一基板1和第二基板2,第一基板1和第二基板2之间设置有向列液晶层3,向列液晶层3包括向列液晶31和聚合物网络32。
本实施方案中,液晶显示装置为高级超维场转换技术(ADvanced Super Dimension Switch,简称:ADS)液晶显示装置。第一基板1为彩膜基板,第二基板2为阵列基板。具体地,第一基板1可包括第一衬底基板11、黑矩阵12、彩色矩阵图形13和第一配向层14,黑矩阵12形成于第一衬底基板11之上,彩色矩阵图形13位于第一衬底基板11之上且彩色矩阵图形13覆盖黑矩阵12之间的区域,第一配向层14位于彩色矩阵图形13之上。具体地,第二基板2包括第二衬底基板21、公共电极22、像素电极23和第二配向层24,公共电极22位于第二衬底基板21之上,像素电极23位于公共电极22的上方,第二配向层24位于像素电极23之上,公共电极22之上形成有绝缘层25,则像素电极23位于绝缘层25之上,第二配向层24覆盖于绝缘层25之上。其中,像素电极23可以为条状电极。第二配向层24的配向方向与第一配向层14的配向方向平行或者不平行。进一步地,第二基板还包括栅线、数据线和薄膜晶体管等结构,图1中不再具体示出。与扭曲向列(Twist Nematic,简称:TN)液晶显 示装置或者垂直配向(Vertical Alignment,简称:VA)液晶显示装置相比,ADS液晶显示装置具有广视角的优点,因此,优选地,液晶显示装置为ADS液晶显示装置。
聚合物网络32位于向列液晶31之间,该聚合物网络32可提供强大的配向锚定作用以趋于稳定向列液晶31。该聚合物网络32为交联的。
如图2所示,向列液晶31与聚合物网络32均沿配向方向被配向。当液晶显示装置上施加外部电压时,公共电极22和像素电极23之间产生电场,该电场可驱动向列液晶31发生旋转,但是由于聚合物网络32本身的尺寸和高交联密度,聚合物网络32会保持原有的位置并且不会发生移动。若液晶显示装置上施加的外部电压撤销时,向列液晶31会根据聚合物网络32的锚定快速转回。另一方面,由于聚合物网络32提高了液晶显示装置的表面配向效果,因此很难驱动向列液晶31从初始取向旋转,这使得在形成聚合物网络32之后需要提高驱动电压。在刚刚施加外部电压时的上升时间段,驱动电压也会增加以加速该上升时间段。
图3为形成聚合物网络的示意图,如图1至图2所示的聚合物网络32是由向列液晶混合物4中的功能单体41经过照射聚合而形成的,向列液晶混合物4包括向列液晶31和功能单体41。
在本文中,术语“功能单体”是指具有反应性官能团的单体,所述反应性官能团使得功能单体经过照射(例如紫外光或电子束照射)可发生聚合反应而形成聚合物网络。“功能单体”尤其为同时具有液晶单体的性质和可聚合性质的双功能的液晶单体材料,因此也称为双官能单体,其实例包括RM257(1,4-双-[4-(3-丙烯酰氧基丙氧基)苯甲酰氧基]-2-甲基苯)和江苏合成公司提供的HNG009,但不限于此,只要具有类似功能的单体都可以用于本发明中。术语“官能度”是指每个功能单体中的所述反应性官能团的个数。
具体地,可通过照射功能单体41使功能单体41发生聚合,以形成聚合物网络32。向列液晶混合物4位于第一配向层14和第二配向层24之间。优选的是,功能单体41的化学结构与向列液晶31具有相似的棒状 结构,因此功能单体41能够很好的溶解于向列液晶31中。功能单体41也在向列相并且和向列液晶31一样沿配向方向配向。将图3中的液晶显示装置放置于UV灯之下,以实现在UV灯的照射下引发功能单体41的聚合。当采用UV灯照射图3中的液晶显示装置时,UV灯可以从第一衬底基板11一侧照射向列液晶混合物4、从第二衬底基板21一侧照射向列液晶混合物4或者从第一衬底基板11和第二衬底基板21同时照射向列液晶混合物4。在聚合过程中,功能单体41发生聚合并且从向列液晶混合物4中分离以形成聚合物网络32,形成的聚合物网络32与向列液晶31的取向一致。聚合物网络32的结构可由功能单体41的化学式、功能单体41的浓度和工艺处理条件决定。聚合反应后,聚合物网络32可在聚合物形成的地方稳定向列液晶31。由于聚合物在整个液晶显示装置内交联在一起,因此向列液晶31会沿着聚合物网络的长轴方向取向。因此当驱动电压关闭时,向列液晶31会更加迅速的恢复到初始状态,从而能提高响应速度。
优选地,功能单体41为棒状分子,该棒状分子具有刚性核心和柔性尾部。
优选地,功能单体41为感光性单体,此时向列液晶混合物4还可包括光引发剂,则聚合物网络32为通过对感光性单体41和光引发剂进行紫外光照射以发生聚合反应而形成。优选地,感光性单体(或功能单体)在向列液晶混合物4中的浓度为0.01wt%至15wt%,例如为0.01wt%、0.05wt%、0.1wt%、0.5wt%、1wt%、2.5wt%、5wt%、7.5wt%、10wt%、12.5wt%、15wt%。光引发剂在向列液晶混合物4中的浓度可为0.001wt%至2wt%,例如为0.001wt%、0.005wt%、0.01wt%、0.05wt%、0.1wt%、0.5wt%、1wt%、1.25wt%、1.5wt%、1.75wt%、2wt%,根据感光性单体的用量而定。对光引发剂和向列液晶的种类没有特别限定,本领域通常所用的那些均可用于本发明中。
在液晶显示装置处于暗态时,向列液晶31和聚合物网络32之间的折射率差异会引起唯一的散射,因此,为了减小液晶显示装置的散射效应以及维持高对比度,选择合适的功能单体41的化学式尤为重要,例如,所述向列液晶和所述聚合物网络之间的折射率差异可在正负0.3之间,优 选使得所述向列液晶和所述聚合物网络之间的折射率差异在正负0.2之间。优选地,功能单体41包括位于其分子末端的具有酯基端基(例如,(甲基)丙烯酸酯端基)的线性脂肪族链。优选地,功能单体41包括位于其分子中间的具有烃基或卤素取代基的苯或联苯二价基团以及至少一个亚甲基。优选地,功能单体41包括至少一个苯或联苯二价基团、以及通过二价亚烷基与之相连的(甲基)丙烯酸酯端基,其中所述苯或联苯二价基团可任选地具有一个或多个烃基或卤素取代基。
在本文中,术语“(甲基)丙烯酸酯”既包括丙烯酸酯,又包括甲基丙烯酸酯,可选地,所述(甲基)丙烯酸酯可被卤素取代。术语“卤素”包括氟、氯、溴、碘。术语“联苯”是指两个以上(例如,2-5个)通过共价键相连的非稠合的苯环。术语“烃基”包括直链或支链的、饱和或不饱和的脂肪烃基、以及芳香烃基,优选为脂肪烃基,更优选为直链或支链的烷烃基,最优选为直链或支链的C1-C6烷基。
例如,功能单体41的化学式可以为:
Figure PCTCN2015095192-appb-000002
其中,a和各个b分别独立地为0至5的整数,各个m独立地为0至15的整数,X1、X2和X3分别独立地为氢原子、卤素或者甲基,R1、R2、R3和R4分别独立地为氧原子、酯基或者亚甲基,条件是:(i)a和b不同时为0;以及(ii)当R3或R4为氧原子或酯基时,与之相连的-CH2-的下标m不为0。
优选地,功能单体的官能度大于1,例如为2、3、4等。
在本实施方案提供的液晶显示装置中,第一基板和第二基板之间设置有向列液晶层,该向列液晶层包括向列液晶和聚合物网络,聚合物网络由向列液晶混合物中的功能单体经过照射聚合而形成,聚合物网络能够减小现有的液晶显示装置中因液晶和聚合物之间的折射率不匹配而引起的散射现象,极大的减小了暗态漏光,从而提高了对比度;并且本实施方案 中配向层上未设置聚合物突起,避免了由聚合物突起导致的暗态漏光,从而进一步提高了对比度。此外,向列液晶层中设置聚合物网络还提高了液晶显示装置的响应速度。
图4为本发明的一个实施方案提供的一种液晶显示装置的制造方法的流程图,如图4所示,该方法包括步骤101和步骤102。
在步骤101中,在相对设置的第一基板和第二基板之间设置向列液晶混合物,向列液晶混合物包括向列液晶和功能单体。
所述第一基板和第二基板如图3所示,其中第一基板1为彩膜基板,第二基板2为阵列基板,对第一基板1和第二基板2的具体描述可参见上文实施方案所述。本步骤中,在制备出第一基板1和第二基板2之后,将第一基板1和第二基板2相对设置并在第一基板1和第二基板2之间填充向列液晶混合物4,对向列液晶混合物4的具体描述可参见上文实施方案所述。
在步骤102中,对功能单体进行照射使功能单体聚合形成聚合物网络,以使向列液晶混合物形成向列液晶层,向列液晶层包括向列液晶和聚合物网络。
如图1和图3所示,本步骤具体可包括:对功能单体41进行紫外光照射以形成聚合物网络32。
其中,对功能单体41进行紫外光照射以形成聚合物网络32时,功能单体41为感光性单体,向列液晶混合物4还可包括光引发剂。则对功能单体41进行紫外光照射以形成聚合物网络32包括:对感光性单体和光引发剂进行紫外光照射以发生聚合反应而形成聚合物网络32。
在实际应用中,可将图3中的液晶显示装置放置于UV灯之下,以实现在UV灯的照射下引发功能单体41的聚合。当采用UV灯照射图3中的液晶显示装置时,UV灯可以从第一衬底基板11一侧照射向列液晶混合物4、从第二衬底基板21一侧照射向列液晶混合物4或者从第一衬底基板11和第二衬底基板21同时照射向列液晶混合物4。在聚合过程中,功能单体41发生聚合并且从向列液晶混合物4中分离以形成聚合物网络32,该聚 合物网络32在聚合过程中复制向列液晶31的结构。
在本实施方案提供的液晶显示装置的制造方法中,第一基板和第二基板之间设置有向列液晶层,该向列液晶层包括向列液晶和聚合物网络,聚合物网络由向列液晶混合物中的功能单体经过照射聚合而形成,聚合物网络能够减小现有的液晶显示装置中因液晶和聚合物之间的折射率不匹配而引起的散射现象,极大的减小了暗态漏光,从而提高了对比度;并且本实施方案在配向层上未设置聚合物突起,避免了由聚合物突起导致的暗态漏光,从而进一步提高了对比度。此外,向列液晶层中设置聚合物网络还提高了液晶显示装置的响应速度。
在本说明书和所附的权利要求书中,某一名词前所用的“一种”、“一个”、“该”、“所述”或未指明数量的表述包括所指对象多于一个的情况,除非所述内容明确表示为其它含义。本文所用的词语“或者”通常包括“和/或”的意思,除非所述内容明确表示为其它含义。本文所用的词语“包含”、“具有”、“包括”或“含有”及其相关表述均是开放式的,并不排除还存在其它未述及的要素或方法步骤。
本文中的所有数值都应理解为用词语“约”修饰。由端值表示的数值范围包括该范围内的所有数字和子集(例如,0到5包括0、1、2、3、4和5)。
实施例
分别将下表所列的各种材料按照所示比例(wt%)称重、混合在一起(其中双官能单体为RM257(1,4-双-[4-(3-丙烯酰氧基丙氧基)苯甲酰氧基]-2-甲基苯);MAT-11-575为得自Merk公司的向列液晶;引发剂为得自Merk公司的光引发剂BME),加热直到所有固体完全融化成液态,利用震动或者超声波进行搅拌,然后灌晶,在显微镜下观察确认,并利用得自Melles Griot公司的光源(λ=543nm)进行UV固化,由此制备得到各实施例的样品。
采用以下测试方法对各实施例的样品进行测试,结果见下表。
响应时间和对比度:分别按照中国国家标准GB/T 18910.61-2012 第6-1部分第5.3节、第5.5节所述的标准方法进行测试,其中响应时间测试的是上升时间加下降时间。
折射率是采用阿贝折射率测试仪测量的。
Figure PCTCN2015095192-appb-000003
以上结果表明:本发明在向列液晶层中引入聚合物网络,能够减小现有的液晶显示装置中因液晶和聚合物之间的折射率不匹配而引起的散射现象,极大的减小了暗态漏光;并且本发明中配向层上未设置聚合物突起,避免了由聚合物突起导致的暗态漏光,因此本发明显著提高了对比度。另外,本发明在向列液晶层中设置聚合物网络还提高了液晶显示装置的响应速度。在采用得自江苏合成公司的HNG009替换以上实施例1-4中所用的双官能单体RM257的情况下,得到了类似的结果。另外,随着双官能单体浓度的提高(例如15%),显示装置会具有更高的响应速度,同时对比度有一定下降。
可以理解的是,以上实施方式仅仅是为了说明本发明的原理而采用的示例性实施方式,然而本发明并不局限于此。对于本领域内的普通技术人员而言,在不脱离本发明的精神和实质的情况下,可以做出各种变型和改进,这些变型和改进也视为本发明的保护范围。

Claims (14)

  1. 一种液晶显示装置,其特征在于,包括:相对设置的第一基板和第二基板,所述第一基板和所述第二基板之间设置有向列液晶层,所述向列液晶层包括向列液晶和聚合物网络,所述聚合物网络由向列液晶混合物中的功能单体经过照射聚合而形成,所述向列液晶混合物包括向列液晶和功能单体。
  2. 根据权利要求1所述的液晶显示装置,其特征在于,所述功能单体包括位于其分子末端的具有酯基端基的线性脂肪族链。
  3. 根据权利要求1所述的液晶显示装置,其特征在于,所述功能单体包括位于其分子中间的具有烃基或卤素取代基的苯或联苯二价基团以及至少一个亚甲基。
  4. 根据权利要求1所述的液晶显示装置,其特征在于,所述功能单体包括至少一个苯或联苯二价基团、以及通过二价亚烷基与之相连的(甲基)丙烯酸酯端基,其中所述苯或联苯二价基团可任选地具有一个或多个烃基或卤素取代基。
  5. 根据权利要求4所述的液晶显示装置,其特征在于,所述功能单体的化学式为:
    Figure PCTCN2015095192-appb-100001
    其中,a和各个b分别独立地为0至5的整数,各个m独立地为0至 15的整数,X1、X2和X3分别独立地为氢原子、卤素或者甲基,R1、R2、R3和R4分别独立地为氧原子、酯基或者亚甲基,条件是:(i)a和b不同时为0;以及(ii)当R3或R4为氧原子或酯基时,与之相连的-CH2-的下标m不为0。
  6. 根据权利要求1所述的液晶显示装置,其特征在于,所述功能单体为感光性单体,所述向列液晶混合物还包括光引发剂;
    所述聚合物网络为通过对所述感光性单体和所述光引发剂进行紫外光照射以发生聚合反应而形成。
  7. 根据权利要求6所述的液晶显示装置,其特征在于,所述感光性单体在所述向列液晶混合物中的浓度为0.01wt%至15wt%。
  8. 根据权利要求6所述的液晶显示装置,其特征在于,所述光引发剂在所述向列液晶混合物中的浓度为0.001wt%至2wt%。
  9. 根据权利要求1所述的液晶显示装置,其特征在于,所述功能单体的官能度大于1。
  10. 根据权利要求1所述的液晶显示装置,其特征在于,所述液晶显示装置包括高级超维场转换技术液晶显示装置。
  11. 根据权利要求1所述的液晶显示装置,其特征在于,所述第一基板和所述第二基板分别包括配向层,所述配向层未设置聚合物突起。
  12. 一种液晶显示装置的制造方法,其特征在于,包括:
    在相对设置的第一基板和第二基板之间设置向列液晶混合物,所述向列液晶混合物包括向列液晶和功能单体;
    对所述功能单体进行照射使所述功能单体聚合形成聚合物网络,以使所述向列液晶混合物形成向列液晶层,所述向列液晶层包括所述向列液晶和所述聚合物网络。
  13. 根据权利要求12所述的液晶显示装置的制造方法,其特征在于,所述对所述功能单体进行照射使所述功能单体聚合形成聚合物网络包括:
    对所述功能单体进行紫外光照射以形成所述聚合物网络。
  14. 根据权利要求13所述的液晶显示装置的制造方法,其特征在于,所述功能单体为感光性单体,所述向列液晶混合物还包括光引发剂;
    所述对所述功能单体进行紫外光照射以形成所述聚合物网络包括:对所述感光性单体和所述光引发剂进行紫外光照射以发生聚合反应而形成所述聚合物网络。
PCT/CN2015/095192 2014-11-20 2015-11-20 液晶显示装置及其制造方法 WO2016078614A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/121,475 US20160363794A1 (en) 2014-11-20 2015-11-20 Liquid Crystal Display Device and Method of Manufacturing the Same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201410671019.9A CN104317093A (zh) 2014-11-20 2014-11-20 液晶显示装置及其制造方法
CN201410671019.9 2014-11-20
CN201510175931.X 2015-04-14
CN201510175931.XA CN104730752B (zh) 2014-11-20 2015-04-14 液晶显示装置及其制造方法

Publications (1)

Publication Number Publication Date
WO2016078614A1 true WO2016078614A1 (zh) 2016-05-26

Family

ID=52372345

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2015/095192 WO2016078614A1 (zh) 2014-11-20 2015-11-20 液晶显示装置及其制造方法

Country Status (3)

Country Link
US (1) US20160363794A1 (zh)
CN (2) CN104317093A (zh)
WO (1) WO2016078614A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104317093A (zh) * 2014-11-20 2015-01-28 京东方科技集团股份有限公司 液晶显示装置及其制造方法
CN106281361B (zh) * 2015-05-29 2019-01-25 江苏和成显示科技有限公司 聚合物网络液晶显示器
JP6811553B2 (ja) * 2015-06-18 2021-01-13 フォトン・ダイナミクス・インコーポレーテッド Tft検査のための高解像度・高速スイッチング電気光学変調器
WO2017026478A1 (ja) * 2015-08-11 2017-02-16 Dic株式会社 液晶表示素子
JP6260747B2 (ja) * 2015-08-11 2018-01-17 Dic株式会社 液晶表示素子
KR20180038516A (ko) * 2015-08-11 2018-04-16 디아이씨 가부시끼가이샤 액정 표시 소자
CN105158984A (zh) * 2015-10-15 2015-12-16 深圳市华星光电技术有限公司 Va型液晶显示面板的制作方法
CN105549254B (zh) * 2016-02-18 2019-08-13 深圳市华星光电技术有限公司 液晶面板及其制造方法
CN107229157A (zh) * 2016-03-25 2017-10-03 京东方科技集团股份有限公司 透明显示装置及其制备方法
CN105954913B (zh) 2016-06-24 2021-02-26 京东方科技集团股份有限公司 一种液晶显示器及显示装置
CN105938280A (zh) * 2016-06-24 2016-09-14 京东方科技集团股份有限公司 一种双面显示器及显示装置
CN105954937B (zh) * 2016-07-13 2019-02-12 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置
CN106281365A (zh) * 2016-08-10 2017-01-04 深圳市华星光电技术有限公司 一种液晶介质混合物及液晶显示面板
CN108859099A (zh) * 2018-05-31 2018-11-23 华南师范大学 基于光响应液晶聚合物材料的三维动态表面及其制备方法
CN109143623B (zh) * 2018-08-27 2021-08-10 华南师范大学 一种红外反射器件及其制备方法
JP2020190675A (ja) * 2019-05-23 2020-11-26 Dic株式会社 液晶表示素子の製造方法、及び液晶表示素子
CN110376787A (zh) * 2019-07-26 2019-10-25 京东方科技集团股份有限公司 显示面板及制造方法、显示装置
CN111748356B (zh) * 2020-07-24 2023-03-14 京东方科技集团股份有限公司 液晶组合材料及显示面板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177972B1 (en) * 1999-02-04 2001-01-23 International Business Machines Corporation Polymer stabilized in-plane switched LCD
US20100245723A1 (en) * 2009-03-31 2010-09-30 Apple Inc. Lcd panel having improved response
CN102629013A (zh) * 2011-09-15 2012-08-08 北京京东方光电科技有限公司 一种液晶显示装置及其制作方法
CN103109230A (zh) * 2010-07-27 2013-05-15 默克专利股份有限公司 液晶显示器及其制备方法
CN103631060A (zh) * 2012-08-20 2014-03-12 乐金显示有限公司 水平电场型液晶显示装置及其制造方法
CN104317093A (zh) * 2014-11-20 2015-01-28 京东方科技集团股份有限公司 液晶显示装置及其制造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524827B2 (ja) * 2000-01-17 2010-08-18 旭硝子株式会社 アクリル酸誘導体化合物
JP5329445B2 (ja) * 2008-02-22 2013-10-30 株式会社Adeka 重合性化合物を含有する液晶組成物及び該液晶組成物を用いた液晶表示素子
TWI378992B (en) * 2008-11-14 2012-12-11 Chimei Innolux Corp Liquid crystal composition for use in liquid crystal display
CN102140351B (zh) * 2010-02-01 2014-09-03 群创光电股份有限公司 用于液晶显示器的液晶组合物
US9376619B2 (en) * 2010-02-18 2016-06-28 Kent State University Fast-switching surface-stabilized liquid crystal cells
KR101989391B1 (ko) * 2011-05-09 2019-06-14 가부시키가이샤 한도오따이 에네루기 켄큐쇼 액정 조성물, 액정 소자 및 액정 표시 장치
JP2012252993A (ja) * 2011-05-10 2012-12-20 Sony Corp 照明装置および表示装置
CN102643387B (zh) * 2011-11-29 2014-09-10 北京京东方光电科技有限公司 一种液晶显示面板及其制备方法
CN103881729B (zh) * 2012-12-21 2016-04-06 北京京东方光电科技有限公司 液晶材料、液晶显示面板及其制造方法
CN103207469B (zh) * 2013-03-18 2016-01-27 北京京东方光电科技有限公司 液晶面板、显示装置及液晶面板的制造方法
CN103254356B (zh) * 2013-04-25 2016-01-13 深圳市华星光电技术有限公司 可聚合混合物及其液晶组合物

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6177972B1 (en) * 1999-02-04 2001-01-23 International Business Machines Corporation Polymer stabilized in-plane switched LCD
US20100245723A1 (en) * 2009-03-31 2010-09-30 Apple Inc. Lcd panel having improved response
CN103109230A (zh) * 2010-07-27 2013-05-15 默克专利股份有限公司 液晶显示器及其制备方法
CN102629013A (zh) * 2011-09-15 2012-08-08 北京京东方光电科技有限公司 一种液晶显示装置及其制作方法
CN103631060A (zh) * 2012-08-20 2014-03-12 乐金显示有限公司 水平电场型液晶显示装置及其制造方法
CN104317093A (zh) * 2014-11-20 2015-01-28 京东方科技集团股份有限公司 液晶显示装置及其制造方法

Also Published As

Publication number Publication date
CN104730752B (zh) 2019-01-29
CN104317093A (zh) 2015-01-28
CN104730752A (zh) 2015-06-24
US20160363794A1 (en) 2016-12-15

Similar Documents

Publication Publication Date Title
WO2016078614A1 (zh) 液晶显示装置及其制造方法
TWI231310B (en) Homeotropic alignment layer
US10042207B2 (en) Liquid crystal display panel and liquid crystal display device
CN104597661B (zh) 垂直配向液晶显示器及其制作方法
KR101725997B1 (ko) 중합된 메조겐을 함유하는 배향 조절막을 구비하는 액정 표시 장치 및 그 제조 방법
CN110577832A (zh) 负介电各向异性液晶组合物、液晶显示元件及液晶显示器
WO2012017883A1 (ja) 液晶表示装置及び液晶表示装置の製造方法
JP6178514B2 (ja) 液晶媒質組成物
WO2012017882A1 (ja) 液晶表示装置及び液晶表示装置の製造方法
WO2012121321A1 (ja) 液晶表示装置及び液晶表示装置の製造方法
CN108192642B (zh) 液晶组合物及应用该组合物的显示器
CN105652499B (zh) 液晶组合物及液晶显示元件或显示器
EP2458431A1 (en) Liquid crystal display panel and process for production thereof
US8411238B2 (en) Liquid crystal display panel and process for production thereof
WO2013166749A1 (zh) 液晶介质组合物
US20140168589A1 (en) Liquid crystal display panel and liquid crystal display device
CN110092875B (zh) 一种基于液晶/高分子复合材料体系的pdlc膜的制备方法
TWI518420B (zh) 液晶顯示元件的製造方法及液晶顯示元件
KR20100114048A (ko) 액정 물질로 침윤된 중합체 나노 입자를 포함하는 위상 보상 필름
WO2012017884A1 (ja) 液晶表示装置及び液晶表示装置の製造方法
WO2014043962A1 (zh) 液晶介质混合物及使用其的液晶显示器
JP3671167B2 (ja) 液晶配向膜用光配向材
WO2012017885A1 (ja) 液晶層形成用組成物、液晶表示装置及び液晶表示装置の製造方法
CN102746855B (zh) 用于液晶显示器的液晶介质混合物
WO2013069487A1 (ja) 液晶表示装置及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 15121475

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15861275

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30.10.2017)

122 Ep: pct application non-entry in european phase

Ref document number: 15861275

Country of ref document: EP

Kind code of ref document: A1