WO2016072514A1 - Method for producing polyalkylene glycol, viscosity index improver, lubricating oil composition, and method for producing lubricating oil composition - Google Patents

Method for producing polyalkylene glycol, viscosity index improver, lubricating oil composition, and method for producing lubricating oil composition Download PDF

Info

Publication number
WO2016072514A1
WO2016072514A1 PCT/JP2015/081395 JP2015081395W WO2016072514A1 WO 2016072514 A1 WO2016072514 A1 WO 2016072514A1 JP 2015081395 W JP2015081395 W JP 2015081395W WO 2016072514 A1 WO2016072514 A1 WO 2016072514A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyalkylene glycol
producing
produced
ether
organic solvent
Prior art date
Application number
PCT/JP2015/081395
Other languages
French (fr)
Japanese (ja)
Inventor
妙子 中野
忠 氣仙
Original Assignee
出光興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 出光興産株式会社 filed Critical 出光興産株式会社
Priority to EP15857027.5A priority Critical patent/EP3216816A4/en
Priority to JP2016557833A priority patent/JPWO2016072514A1/en
Priority to CN201580060007.5A priority patent/CN107075107A/en
Priority to US15/523,958 priority patent/US20170355818A1/en
Priority to KR1020177011800A priority patent/KR20170084052A/en
Publication of WO2016072514A1 publication Critical patent/WO2016072514A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/04Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers only
    • C08G65/06Cyclic ethers having no atoms other than carbon and hydrogen outside the ring
    • C08G65/08Saturated oxiranes
    • C08G65/10Saturated oxiranes characterised by the catalysts used
    • C08G65/12Saturated oxiranes characterised by the catalysts used containing organo-metallic compounds or metal hydrides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2642Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the catalyst used
    • C08G65/2645Metals or compounds thereof, e.g. salts
    • C08G65/2663Metal cyanide catalysts, i.e. DMC's
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/02Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
    • C08G65/26Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds
    • C08G65/2696Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring from cyclic ethers and other compounds characterised by the process or apparatus used
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/18Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/24Polyethers
    • C10M145/26Polyoxyalkylenes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/18Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/24Polyethers
    • C10M145/26Polyoxyalkylenes
    • C10M145/28Polyoxyalkylenes of alkylene oxides containing 2 carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M177/00Special methods of preparation of lubricating compositions; Chemical modification by after-treatment of components or of the whole of a lubricating composition, not covered by other classes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/104Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing two carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/10Macromolecular compoundss obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/103Polyethers, i.e. containing di- or higher polyoxyalkylene groups
    • C10M2209/105Polyethers, i.e. containing di- or higher polyoxyalkylene groups of alkylene oxides containing three carbon atoms only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2020/00Specified physical or chemical properties or characteristics, i.e. function, of component of lubricating compositions
    • C10N2020/01Physico-chemical properties
    • C10N2020/04Molecular weight; Molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/02Pour-point; Viscosity index
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/02Bearings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/04Oil-bath; Gear-boxes; Automatic transmissions; Traction drives
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/25Internal-combustion engines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/30Refrigerators lubricants or compressors lubricants

Definitions

  • the present invention relates to a method for producing a polyalkylene glycol (hereinafter also referred to as PAG) using a composite metal catalyst, a viscosity index improver and a lubricating oil composition using the PAG produced by this production method, and a lubricating oil composition
  • PAG polyalkylene glycol
  • the present invention relates to a method for manufacturing a product.
  • PAG is widely used as a raw material for polyurethane products such as elastomers, adhesives and sealants, and functional oils.
  • PAG is produced by addition polymerization of an alkylene oxide such as ethylene oxide and propylene oxide to an initiator having an active hydrogen atom such as various alcohols.
  • Alkali catalysts are widely used as addition polymerization catalysts.
  • an alkali catalyst an unsaturated alcohol is produced by a side reaction, which becomes an initiator, so that it is difficult to produce a PAG having a molecular weight of more than 6500. Therefore, conventionally, as described in Patent Document 1, for example, a method for producing PAG using a double metal cyanide complex as a catalyst has been attempted. When a double metal cyanide complex is used, the production of unsaturated alcohol due to side reactions can be suppressed, and a relatively high molecular weight PAG can be produced.
  • Patent Document 2 discloses that when a double metal cyanide complex is used as a catalyst, an organic solvent is allowed to coexist in the reaction system in order to suppress an increase in viscosity of the obtained PAG.
  • the method disclosed in Patent Document 2 is based on the premise that the organic solvent is removed, the addition of the organic solvent is considered in consideration of the ease of removing the organic solvent and the effect of suppressing the increase in viscosity.
  • the amount is 5% by mass or less.
  • the inventors of the present invention have produced the above-mentioned problem by setting the blending ratio of the organic solvent within a certain range in the method for producing a polyalkylene glycol (PAG) by polymerizing alkylene oxide using a composite metal catalyst.
  • PAG polyalkylene glycol
  • the present invention has been completed. That is, according to one aspect of the present invention, the following [1] to [4] are provided.
  • [1] In a method for producing a polyalkylene glycol by polymerizing an alkylene oxide using a composite metal catalyst, a polymerization reaction is carried out in the presence of 10 to 90% by mass of an organic solvent with respect to the produced polyalkylene glycol. A method for producing alkylene glycol.
  • a lubricating oil composition comprising the polyalkylene glycol produced by the production method according to [1] above.
  • a method for producing a lubricating oil composition which comprises blending a mixture containing the polyalkylene glycol produced by the production method according to [1] and the organic solvent to obtain a lubricating oil composition.
  • a high molecular weight polyalkylene glycol can be efficiently produced by the presence of an organic solvent at a predetermined ratio in the polymerization reaction.
  • the method for producing a polyalkylene glycol (PAG) comprises producing a polyalkylene glycol by polymerizing alkylene oxide using a composite metal catalyst in the presence of an organic solvent.
  • a composite metal cyanide complex catalyst As the composite metal catalyst used in the polymerization reaction, a composite metal cyanide complex catalyst is preferable.
  • the double metal cyanide complex catalyst preferably contains an organic ligand.
  • the organic ligand various compounds described later can be used, but an alcohol compound is preferably used.
  • Specific examples of the double metal cyanide complex catalyst include those having the following general formula (1).
  • M a [M ′ x (CN) y ] b (H 2 O) c (R) d
  • M is Zn (II), Fe (II), Fe (III), Co (II), Ni (II), Al (III), Sr (II), Mn (II), Cr (III), Cu (II), Sn (II), Pb (II), Mo (IV), Mo (VI), W (IV), W (VI), etc.
  • M ′ is Fe (II), Fe (III), Co (II), Co (III), Cr (II), Cr (III), Mn (II), Mn (III), Ni (II), V (IV), V (V), etc.
  • R is It is an organic ligand
  • a, b, x and y are positive integers that vary depending on the metal valence and coordination number
  • c and d are positive numbers that vary depending on the metal coordination number.
  • M is preferably Zn (II), and M ′ is preferably Fe (II), Fe (III), Co (II), Co (III) or the like.
  • the organic ligand include a ketone compound, an ether compound, an aldehyde compound, an ester compound, an alcohol compound, and an amide compound, and an alcohol compound is preferable.
  • the alcohol compound t-butyl alcohol, n-butyl alcohol, sec-butyl alcohol, iso-butyl alcohol, tert-pentyl alcohol, iso-pentyl alcohol, and the like can be used. Alcohol is preferred.
  • the double metal cyanide complex represented by the general formula (1) includes a metal salt MX a (M, a is an anion that forms a salt with M as described above) and a polycyanometalate (salt) Z e [M ' x (CN) y ] f (In this formula, M', x and y are the same as described above. Z is hydrogen, alkali metal, alkaline earth metal, etc., e and f are the valences of Z and M '. (A positive integer determined by the order) of each aqueous solution or a mixed solvent of water and an organic solvent, and the resulting double metal cyanide complex is brought into contact with the compound that forms the organic ligand R.
  • the polycyanometalate (salt) Z e [M ′ x (CN) y ] f may be any of various metals including hydrogen and alkali metals for Z, but lithium salt, sodium salt, potassium salt Magnesium salts and calcium salts are preferred. Particularly preferred are the usual alkali metal salts, i.e. sodium and potassium salts.
  • the double metal cyanide complex represented by the general formula (1) can be made into a slurry by mixing with a part of the initiator described later. Therefore, it may be handled in the form of a slurry by mixing with a part of the initiator while contacting with the compound forming the organic ligand or after contacting with the compound forming the organic ligand.
  • the polymerization reaction is performed in the presence of 10 to 90% by mass of an organic solvent with respect to the produced polyalkylene glycol (PAG).
  • PAG polyalkylene glycol
  • the organic solvent is preferably present in a proportion of 30 to 70% by mass with respect to the produced PAG.
  • Examples of the organic solvent used in this embodiment include ether compounds.
  • an ether compound By using an ether compound, it can be suitably used as a base oil when blended in a lubricating oil composition without removing the organic solvent.
  • Examples of the ether compound include monoether, diether, polyether, polyvinyl ether, and polyalkylene glycol ether.
  • Examples of monoethers include dialkyl ethers in which the alkyl group is a branched or straight chain alkyl group having 1 to 12 carbon atoms, particularly preferably 5 to 12 carbon atoms.
  • di-2-ethylhexyl ether Symmetric ethers such as di-3,5,5-trimethylhexyl ether; and asymmetric ethers such as 2-ethylhexyl-n-octyl ether and 3,5,5-trimethylhexyl-n-nonyl ether.
  • an alkyl group having 5 to 12 carbon atoms it can be more suitably used as a base oil when blended in a lubricating oil composition without removing the organic solvent.
  • dialkyl diether is used, and more specifically, diethers of various diols are used.
  • alkanediols such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, and neopentyl glycol can be used.
  • polyether alkyl ethers of trihydric or higher polyhydric alcohols such as glycerin, trimethylolethane, trimethylolpropane, pentaerythritol and dipentaerythritol can be used.
  • dialkyl ether and the alkyl ether of the polyhydric alcohol are those in which the alkyl group is a branched or straight chain alkyl group having 1 to 12 carbon atoms, particularly preferably 5 to 12 carbon atoms, like the monoether. It can be used.
  • the alkyl group of a diether and a polyether may be used individually or may be used in mixture of several types. By using an alkyl group having 5 to 12 carbon atoms, it can be more suitably used as a base oil when blended in a lubricating oil composition without removing the organic solvent.
  • These monoethers, diethers, and polyethers preferably have a molecular weight of 150 to 5,000, more preferably 200 to 3,000.
  • These organic solvents can be suitably used as a base oil when the produced PAG is blended in a lubricating oil composition without removing the organic solvent as described later by setting the molecular weight in the above range.
  • the polymerization reaction in the embodiment can be appropriately advanced.
  • polyvinyl ether used as the organic solvent examples include polyvinyl ether having a branched or straight chain alkyl group having 1 to 4 carbon atoms in the side chain, and polyvinyl ether having a polyoxyalkylene structure in the side chain.
  • polyvinyl ethers examples include polyvinyl compounds having a structural unit represented by the following general formula (2) as a repeating unit.
  • R 1a in the general formula (2) represents a divalent hydrocarbon group having 2 to 4 carbon atoms. Specific examples include an ethylene group, a propylene group, and a butylene group, with a propylene group being preferred.
  • R 2a is an alkyl group having 1 to 4 carbon atoms, specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert group -A butyl group is exemplified, but an ethyl group and an isobutyl group are preferable.
  • r represents the number of repetitions, and the average value is a number in the range of 0 to 10, preferably 0 to 5.
  • the terminal structure of polyvinyl ether is not particularly limited, but one having no active hydrogen atom such as a hydroxyl group is used so as not to react with alkylene oxide.
  • what is necessary is just to select suitably the repeating number of the structural unit represented by the said General formula (2) according to the molecular weight desired.
  • polyalkylene glycol ether used as the organic solvent a polyalkylene glycol having a terminal hydroxyl group etherified with a linear or branched alkyl group having 1 to 5 carbon atoms is used.
  • the polyalkylene glycol ether can be appropriately used as an organic solvent because the terminal hydroxyl group is etherified with an alkyl group and thus does not react with the alkylene oxide.
  • the polyalkylene glycol ether used as the organic solvent is represented, for example, by the following general formula (3).
  • R 1b [— (OR 2b ) m —OR 3b ] n (3)
  • R 1b is an alkyl group having 1 to 5 carbon atoms, a hydrocarbon group having 1 to 10 carbon atoms having 2 to 6 bonds, or an oxygen-containing hydrocarbon group having 1 to 10 carbon atoms
  • R 2b is An alkylene group having 2 to 4 carbon atoms
  • R 3b is an alkyl group having 1 to 5 carbon atoms
  • n is an integer of 1 to 6
  • m is a number with an average value of m ⁇ n of 6 to 80.
  • the alkyl group in each of R 1b and R 3b specifically includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, various linear or branched butyl groups, various types And a linear or branched pentyl group.
  • R 1b and R 3b are alkyl groups, they may be the same as or different from each other. Further, when n is 2 or more, a plurality of R 3b in one molecule may be the same or different.
  • R 1b is a hydrocarbon group having 1 to 10 carbon atoms having 2 to 6 bonding sites
  • the hydrocarbon group may be a chain or a cyclic one.
  • the hydrocarbon group having two bonding sites is preferably an aliphatic hydrocarbon group, for example, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, decylene group, cyclopentylene group. Examples thereof include a len group and a cyclohexylene group.
  • the hydrocarbon group having 3 to 6 binding sites is preferably an aliphatic hydrocarbon group, for example, trimethylolpropane, glycerin, pentaerythritol, sorbitol, 1,2,3-trihydroxycyclohexane, 1,3,3,
  • examples thereof include a residue obtained by removing a hydroxyl group from a polyhydric alcohol such as 5-trihydroxycyclohexane.
  • examples of the oxygen-containing hydrocarbon group having 1 to 10 carbon atoms in R 1b include a chain aliphatic group having an ether bond and a cyclic aliphatic group (for example, a tetrahydrofurfuryl group).
  • R 2b in the general formula (3) is an alkylene group having 2 to 4 carbon atoms, and examples of the oxyalkylene group of the repeating unit include an oxyethylene group, an oxypropylene group, and an oxybutylene group. Further, n is preferably 1 to 3, and more preferably 1.
  • the organic solvent may be removed after completion of the reaction, but can be used without being removed. If the organic solvent is not removed, for example, when the produced PAG is blended in the lubricating oil composition, the organic solvent is also blended in the lubricating oil composition as a base oil.
  • the organic solvent is preferably polyvinyl ether or polyalkylene glycol ether because it is more suitable as a base oil.
  • polyvinyl ether and polyalkylene glycol ether are preferable from the viewpoint that the produced PAG is easily dissolved as compared with other ethers.
  • the polyvinyl ether and polyalkylene glycol ether used as the organic solvent described above preferably have a weight average molecular weight of 200 to 5,000, more preferably 200 to 3,000. By setting it as the range of the said molecular weight, these compounds can be used more suitably as base oil, and it becomes possible to advance a polymerization reaction appropriately.
  • the above polymerization reaction is usually allowed to proceed by the presence of a catalyst in a mixture of an alkylene oxide and an initiator in the presence of an organic solvent.
  • the alkylene oxide is a monoepoxide, specifically, an alkylene oxide having 2 to 4 carbon atoms, and more specifically, ethylene oxide, propylene oxide, butylene oxide. Among these, Ethylene oxide and propylene oxide are preferred.
  • the initiator may be a compound having one or more hydroxyl groups, and may be selected according to the structure of the PAG to be produced.
  • the alkyl group is a linear or branched alkyl group having 1 to 10 carbon atoms.
  • Alkanediols Trimethylolpropane, glycerin, pentaerythritol, sorbitol, 1,2,3-trihydroxycyclohexane, 1,3,5-trihydroxycyclohexane, and other trihydric or higher polyhydric alcohols having about 3 to 10 carbon atoms
  • a polyalkylene glycol having a weight average molecular weight lower than that of the PAG produced in this embodiment.
  • Lumpur but hereinafter, also referred to as a low molecular weight PAG
  • low molecular weight PAG may be mentioned. Among them, in that more can be efficiently manufacture of PAG of a high molecular weight, low molecular weight PAG is more preferable.
  • Examples of the low molecular weight PAG used as the initiator include polyalkylene glycols represented by the following general formula (4).
  • k represents a number having an average value of 2 to 80.
  • R 1C represents an alkyl group having 1 to 5 carbon atoms or a hydrogen atom
  • R 2C represents an alkylene group having 2 to 4 carbon atoms
  • examples of the oxyalkylene group of the repeating unit include an oxyethylene group and an oxypropylene group.
  • the weight average molecular weight of the low molecular weight PAG is not particularly limited, but is preferably 1000 to 20000, more preferably 2000 to 20000.
  • the oxyalkylene groups in one molecule may be the same or two or more oxyalkylene groups may be contained, but 50 mol% or more oxypropylene is contained in one molecule. What contains a unit is more preferable, and what contains 75 mol% or more of oxypropylene units is more preferable. More preferably, all of OR 2C are oxypropylene groups. R 1C is preferably a hydrogen atom. Among them, polypropylene glycol (PPG) in which all of OR 2C is an oxypropylene group and R 1C is a hydrogen atom is more preferable.
  • PPG polypropylene glycol
  • the specific method of the said polymerization reaction is not specifically limited, For example, it is preferable to react, gradually adding an alkylene oxide to the reaction container previously charged with the initiator, the catalyst, and the organic solvent. However, a part or all of the organic solvent may be added to the reaction vessel together with the alkylene oxide instead of being charged into the reaction vessel in advance.
  • the reaction temperature is not particularly limited, but is preferably 80 to 150 ° C, more preferably 100 to 130 ° C.
  • the pressure at the time of performing a polymerization reaction is not specifically limited, You may carry out under a normal pressure, and you may carry out under pressure.
  • the method of raising an internal pressure by adding alkylene oxide to the sealed reaction container for example is mentioned.
  • the amount of the catalyst used is not particularly limited, but about 1 to 5000 ppm is appropriate for the initiator used. As described above, the catalyst may be introduced into the reaction vessel all at once as described above, or may be charged in divided portions.
  • the amount of alkylene oxide fed into the reaction vessel is not particularly limited, but is usually 160 to 5000 equivalents, preferably 300 to 5000 equivalents, more preferably 300 to 3500 equivalents, relative to the initiator used. .
  • the polymerization reaction can be stopped, for example, by adding a catalyst deactivator.
  • the catalyst deactivator include alkali metal compounds, and more specifically sodium alkoxides such as sodium methoxide.
  • the reaction solution is neutralized with an acidic substance, and then appropriately post-treated and purified, and the deactivated catalyst component is removed from the reaction solution.
  • the reaction liquid from which the catalyst has been removed consists of a mixture containing PAG produced by the polymerization reaction and an organic solvent. Although the organic solvent may be removed from this mixture, it is preferable not to remove the organic solvent from the viewpoint of production efficiency.
  • the PAG produced by the above polymerization reaction has a hydroxyl group at the terminal, but the terminal hydroxyl group may be further blocked by etherification or esterification depending on the application. Since the terminal hydroxyl group is hardly hydrolyzed, it is preferably blocked by etherification.
  • etherification is preferably performed with a linear or branched alkyl group having 1 to 10 carbon atoms, preferably a linear or branched alkyl group having 1 to 5 carbon atoms.
  • esterification it is preferable to esterify with various fatty acids having about 1 to 10 carbon atoms.
  • the PAG obtained by the above production method can be used for lubricating oil, for example.
  • the PAG produced in the present embodiment is obtained as a mixture with an organic solvent.
  • the PAG is preferably used without removing the organic solvent from the mixture.
  • the organic solvent By using the organic solvent without removing it, it is possible to prevent the PAG from increasing in viscosity and to facilitate handling.
  • the number of steps can be reduced by not removing the organic solvent.
  • the organic solvent becomes a base oil in the lubricating oil composition, the organic solvent can be effectively used.
  • the lubricating oil composition according to one embodiment of the present invention includes the PAG produced above, but the lubricating oil composition is obtained by blending a mixture containing the produced PAG and an organic solvent. Is preferred. In this case, since the organic solvent is not removed as described above, the organic solvent is contained in the mixture in an amount of 10 to 90% by mass, preferably 30 to 70% by mass, based on the produced PAG. It is contained in the ratio.
  • the lubricating oil composition is usually obtained by further blending base oil and various additives other than PAG or the above mixture.
  • the PAG produced above is usually used as a viscosity index improver in a lubricating oil composition.
  • the viscosity index improver is added to the lubricating oil composition to improve the viscosity index of the lubricating oil composition.
  • a high molecular weight PAG (having a weight average molecular weight of preferably 20000 or more, more preferably 30000 or more) has a large effect of improving the viscosity index, and can be more suitably used as a viscosity index improver.
  • a PAG obtained by removing the solvent from the above mixture and purifying may be used as the viscosity index improver. It is preferable to use the mixture (for example, as above-mentioned, the mixture containing PAG and an organic solvent) as a viscosity index improver.
  • the lubricating oil composition is used, for example, as a lubricating oil composition for a refrigerator that is used by being filled in a refrigerator together with a refrigerant. Specifically, a compressor provided in the refrigerator, etc. It is used to lubricate the sliding part.
  • the lubricating oil composition is used in internal combustion engines such as gasoline engines and diesel engines, transmissions, shock absorbers, various gear structures, various bearing mechanisms, and other various industrial devices. May be.
  • the PAG obtained by the above production method can be used in various applications other than the lubricating oil application, and may be used in applications such as a sealant and an adhesive.
  • the produced PAG may be used without removing the organic solvent from the mixture containing the PAG and the organic solvent, or may be used after being removed.
  • the PAG obtained by this production method can be used as a raw material for polymer materials such as urethane constituting elastomers, resins, rubbers, etc., and for applications such as sealants and adhesives, it is a raw material for urethane. It is preferable to be used as
  • the physical properties were determined according to the following procedure.
  • Mw Weight average molecular weight
  • GPC gel permeation chromatography
  • the mixture in the flask was further stirred for 30 minutes, and then a mixture consisting of 80 g of tert-butyl alcohol, 80 g of water, and 0.6 g of polypropylene glycol having a weight average molecular weight of 2000 (both end hydroxyl groups) was further added to the flask. And stirred at 40 ° C. for 30 minutes and then at 60 ° C. for 60 minutes.
  • the mixture thus obtained was subjected to pressure filtration using a circular filter plate having a diameter of 125 mm and a quantitative filter paper for fine particles to separate a slurry-like solid containing a double metal cyanide complex catalyst.
  • the obtained solid was transferred to a flask, a mixture of 36 g of tert-butyl alcohol and 84 g of water was added and stirred for 30 minutes, and then pressure filtration was performed to obtain a slurry-like solid.
  • the obtained solid was transferred to a flask, a mixture of 108 g of tert-butyl alcohol and 12 g of water was further added and stirred for 30 minutes, and a liquid in which the double metal cyanide complex catalyst was dispersed in the tert-butyl alcohol-water mixed solvent was added. Obtained.
  • reaction was continued until the internal temperature was maintained at 130 ° C. and the pressure in the autoclave was 0.1 MPa or less.
  • 1.5 g of sodium methoxide as a catalyst deactivator was added, stirred for 1 hour, 1N sulfuric acid was added in an amount of 1.5 times equivalent to sodium, neutralized at 120 ° C. for 2 hours, and then stirred at 120 ° C. for 2 hours.
  • dehydration for a period of time filtration was performed. After filtration, 2.0 wt% of synthetic magnesium silicate was added as an adsorbent, treated at 120 ° C.
  • Example 2 It implemented similarly to Example 1 except the point which made the quantity of the organic solvent used by a polymerization reaction 65 g, and set the usage-amount to 70 mass% with respect to PAG manufactured. Only the PAG was extracted from the obtained mixture, and the weight average molecular weight Mw of the PAG was measured by the method described above. The Mw was 30000.
  • Example 3 It implemented similarly to Example 1 except the point which made the quantity of the organic solvent used by a polymerization reaction into 46 g, and set the usage-amount to 50 mass% with respect to PAG manufactured. Only the PAG was extracted from the obtained mixture, and the weight average molecular weight Mw of the PAG was measured by the method described above. The Mw was 30000.
  • Example 4 The amount of the organic solvent used in the polymerization reaction was 30 g, the amount used was 30% by mass with respect to the produced PAG, and 15.08 g of a mixture composed of an initiator and a double metal cyanide complex catalyst (polypropylene glycol) : 15 g, double metal cyanide complex catalyst 0.08 g). Only the PAG was extracted from the obtained mixture, and the weight average molecular weight Mw of the PAG was measured by the method described above. The Mw was 20000.
  • Example 1 The polymerization reaction was carried out in the same manner as in Example 1 except that the solvent was not used. Similarly to Example 1, after all the propylene oxide was added, the reaction was carried out while maintaining the internal temperature at 130 ° C., but the stirring blade stopped during the reaction, making it difficult to continue the polymerization reaction.
  • Example 2 The polymerization reaction was carried out in the same manner as in Example 1 except that the amount of the organic solvent used in the polymerization reaction was 4.6 g, so that the amount used was 5% by mass with respect to the produced PAG. . Similarly to Example 1, after all the propylene oxide was added, the reaction was carried out while maintaining the internal temperature at 130 ° C., but the stirring blade stopped during the reaction, and it was difficult to continue the polymerization reaction.
  • Comparative Example 3 It carried out similarly to Example 1 except the point which made the amount of the organic solvent used by a polymerization reaction 88 mass% with respect to PAG manufactured by using 88 g. In Comparative Example 3, the reaction time was long and the polymerization was not completed.
  • the polyalkylene glycol produced in the present invention is blended in a lubricating oil composition used for a refrigerator, an internal combustion engine, a gear structure, a bearing mechanism, a transmission, a shock absorber, and the like, and is used as, for example, a viscosity index improver. Is. It can also be used as a raw material for urethane constituting adhesives, sealants and the like.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Toxicology (AREA)
  • Polyethers (AREA)
  • Lubricants (AREA)

Abstract

This method for producing polyalkylene glycol comprises polymerizing an alkylene oxide using a composite metal catalyst and producing a polyalkylene glycol, wherein the polymerization reaction is carried out in the presence of 10-90 mass% of organic solvent relative to the polyalkylene glycol to be produced.

Description

ポリアルキレングリコールの製造方法、粘度指数向上剤、潤滑油組成物及び潤滑油組成物の製造方法Method for producing polyalkylene glycol, viscosity index improver, lubricating oil composition, and method for producing lubricating oil composition
 本発明は、複合金属触媒を用いてポリアルキレングリコール(以下、PAGともいう)を製造する方法、この製造方法で製造されたPAGを使用した粘度指数向上剤及び潤滑油組成物、並びに潤滑油組成物の製造方法に関する。 The present invention relates to a method for producing a polyalkylene glycol (hereinafter also referred to as PAG) using a composite metal catalyst, a viscosity index improver and a lubricating oil composition using the PAG produced by this production method, and a lubricating oil composition The present invention relates to a method for manufacturing a product.
 PAGは、エラストマー、接着剤、シーラント等のポリウレタン製品や、機能性油剤の原料として広く用いられている。一般的に、PAGは、各種アルコール等の活性水素原子を有する開始剤に、例えばエチレンオキシドおよびプロピレンオキシドなどのアルキレンオキシドを付加重合させて製造される。 PAG is widely used as a raw material for polyurethane products such as elastomers, adhesives and sealants, and functional oils. Generally, PAG is produced by addition polymerization of an alkylene oxide such as ethylene oxide and propylene oxide to an initiator having an active hydrogen atom such as various alcohols.
 付加重合の触媒には、アルカリ触媒が広く用いられている。また、アルカリ触媒では、副反応により不飽和アルコールが生成され、これが開始剤となるため、分子量6500を超えるPAGの製造は困難である。そのため、従来、例えば、特許文献1に記載されるように、複合金属シアン化物錯体を触媒として用いてPAGを製造する方法も試みられている。複合金属シアン化物錯体を用いると、副反応による不飽和アルコールの生成が抑制でき、比較的高分子量のPAGが製造可能になる。
 また、例えば、特許文献2には、複合金属シアン化物錯体を触媒とする場合に、得られるPAGの粘度上昇を抑えるために、反応系に有機溶剤を共存させることが開示されている。ここで、特許文献2に開示された方法では、有機溶媒を除去することを前提としたものであるため、有機溶剤の除去のし易さ及び粘度上昇抑制効果を考慮して、有機溶媒の添加量が5質量%以下とされている。
Alkali catalysts are widely used as addition polymerization catalysts. In addition, in the case of an alkali catalyst, an unsaturated alcohol is produced by a side reaction, which becomes an initiator, so that it is difficult to produce a PAG having a molecular weight of more than 6500. Therefore, conventionally, as described in Patent Document 1, for example, a method for producing PAG using a double metal cyanide complex as a catalyst has been attempted. When a double metal cyanide complex is used, the production of unsaturated alcohol due to side reactions can be suppressed, and a relatively high molecular weight PAG can be produced.
For example, Patent Document 2 discloses that when a double metal cyanide complex is used as a catalyst, an organic solvent is allowed to coexist in the reaction system in order to suppress an increase in viscosity of the obtained PAG. Here, since the method disclosed in Patent Document 2 is based on the premise that the organic solvent is removed, the addition of the organic solvent is considered in consideration of the ease of removing the organic solvent and the effect of suppressing the increase in viscosity. The amount is 5% by mass or less.
米国特許第3278458号明細書U.S. Pat. No. 3,278,458 特許第2946580号公報Japanese Patent No. 2946580
 しかしながら、特許文献2に記載の方法を用いて、例えば、分子量10000を超える高分子量のPAGを製造しようとすると、反応後半で反応液の粘度が高くなりすぎて、攪拌が困難になるとともに反応速度も著しく遅くなるため、高分子量のPAGを効率よく製造するという点でさらなる改善の余地があった。
 そこで、本発明は、以上の問題点を鑑みてなされたものであり、高分子量のPAGであっても効率よく製造することができる製造方法を提供することを課題とする。
However, using the method described in Patent Document 2, for example, if an attempt is made to produce a high molecular weight PAG having a molecular weight exceeding 10,000, the reaction solution becomes too viscous in the latter half of the reaction, making stirring difficult and the reaction rate. However, there is room for further improvement in terms of efficiently producing a high molecular weight PAG.
Therefore, the present invention has been made in view of the above problems, and an object of the present invention is to provide a production method capable of efficiently producing even a high molecular weight PAG.
 本発明者らは、鋭意検討の結果、複合金属触媒を用いてアルキレンオキサイドを重合させ、ポリアルキレングリコール(PAG)を製造する方法において、有機溶媒の配合割合を一定範囲とすることで上記課題を解決できることを見出し、本発明を完成した。すなわち、本発明の一態様によれば、以下の[1]~[4]が提供される。
[1]複合金属触媒を用いてアルキレンオキサイドを重合させ、ポリアルキレングリコールを製造する方法において、製造されるポリアルキレングリコールに対して10~90質量%の有機溶媒の存在下で重合反応を行うポリアルキレングリコールの製造方法。
[2]上記[1]に記載の製造方法で得られた、重量平均分子量が20000以上のポリアルキレングリコールを含む粘度指数向上剤。
[3]上記[1]に記載の製造方法により製造された前記ポリアルキレングリコールを含む潤滑油組成物。
[4]上記[1]に記載の製造方法により製造された前記ポリアルキレングリコールと前記有機溶媒を含む混合物を配合して、潤滑油組成物を得る潤滑油組成物の製造方法。
As a result of intensive studies, the inventors of the present invention have produced the above-mentioned problem by setting the blending ratio of the organic solvent within a certain range in the method for producing a polyalkylene glycol (PAG) by polymerizing alkylene oxide using a composite metal catalyst. As a result, the present invention has been completed. That is, according to one aspect of the present invention, the following [1] to [4] are provided.
[1] In a method for producing a polyalkylene glycol by polymerizing an alkylene oxide using a composite metal catalyst, a polymerization reaction is carried out in the presence of 10 to 90% by mass of an organic solvent with respect to the produced polyalkylene glycol. A method for producing alkylene glycol.
[2] A viscosity index improver containing a polyalkylene glycol having a weight average molecular weight of 20000 or more obtained by the production method according to [1].
[3] A lubricating oil composition comprising the polyalkylene glycol produced by the production method according to [1] above.
[4] A method for producing a lubricating oil composition, which comprises blending a mixture containing the polyalkylene glycol produced by the production method according to [1] and the organic solvent to obtain a lubricating oil composition.
 本発明によれば、重合反応において所定の割合で有機溶媒を存在させることで、高分子量のポリアルキレングリコールを効率よく製造することが可能になる。 According to the present invention, a high molecular weight polyalkylene glycol can be efficiently produced by the presence of an organic solvent at a predetermined ratio in the polymerization reaction.
 以下、本発明について、実施形態を用いて説明する。
 本実施形態に係るポリアルキレングリコール(PAG)の製造方法は、有機溶媒の存在下、複合金属触媒を用いてアルキレンオキサイドを重合させ、ポリアルキレングリコールを製造するものである。
Hereinafter, the present invention will be described using embodiments.
The method for producing a polyalkylene glycol (PAG) according to the present embodiment comprises producing a polyalkylene glycol by polymerizing alkylene oxide using a composite metal catalyst in the presence of an organic solvent.
<複合金属触媒>
 上記重合反応で使用する複合金属触媒としては、複合金属シアン化物錯体触媒が好ましい。また、複合金属シアン化物錯体触媒は、有機配位子を含有することが好ましく、有機配位子としては、後述する各種の化合物を使用可能であるが、アルコール化合物を使用することが好ましい。
 複合金属シアン化物錯体触媒は具体的には以下の下記一般式(1)の構造を有するものが挙げられる。
   M[M’(CN)(HO)(R) ・・・(1)
 ただし、MはZn(II)、Fe(II)、Fe(III)、Co(II)、Ni(II)、Al(III)、Sr(II)、Mn(II)、Cr(III)、Cu(II)、Sn(II)、Pb(II)、Mo(IV)、Mo(VI)、W(IV)、W(VI)などであり、M’はFe(II)、Fe(III)、Co(II)、Co(III)、Cr(II)、Cr(III)、Mn(II)、Mn(III)、Ni(II)、V(IV)、V(V)などであり、Rは有機配位子であり、a、b、xおよびyは、金属の原子価と配位数により変わる正の整数であり、cおよびdは金属の配位数により変わる正の数である。
<Composite metal catalyst>
As the composite metal catalyst used in the polymerization reaction, a composite metal cyanide complex catalyst is preferable. The double metal cyanide complex catalyst preferably contains an organic ligand. As the organic ligand, various compounds described later can be used, but an alcohol compound is preferably used.
Specific examples of the double metal cyanide complex catalyst include those having the following general formula (1).
M a [M ′ x (CN) y ] b (H 2 O) c (R) d (1)
However, M is Zn (II), Fe (II), Fe (III), Co (II), Ni (II), Al (III), Sr (II), Mn (II), Cr (III), Cu (II), Sn (II), Pb (II), Mo (IV), Mo (VI), W (IV), W (VI), etc., and M ′ is Fe (II), Fe (III), Co (II), Co (III), Cr (II), Cr (III), Mn (II), Mn (III), Ni (II), V (IV), V (V), etc., and R is It is an organic ligand, a, b, x and y are positive integers that vary depending on the metal valence and coordination number, and c and d are positive numbers that vary depending on the metal coordination number.
 一般式(1)におけるMはZn(II)が好ましく、M’はFe(II)、Fe(III)、Co(II)、Co(III)などが好ましい。有機配位子としては、例えばケトン化合物、エーテル化合物、アルデヒド化合物、エステル化合物、アルコール化合物、アミド化合物などがあるが、アルコール化合物が好ましい。アルコール化合物としては、t-ブチルアルコール、n-ブチルアルコール、sec-ブチルアルコール、iso-ブチルアルコール、tert-ペンチルアルコール、iso-ペンチルアルコール等が使用可能であるが、これらの中では、t-ブチルアルコールが好ましい。 In the general formula (1), M is preferably Zn (II), and M ′ is preferably Fe (II), Fe (III), Co (II), Co (III) or the like. Examples of the organic ligand include a ketone compound, an ether compound, an aldehyde compound, an ester compound, an alcohol compound, and an amide compound, and an alcohol compound is preferable. As the alcohol compound, t-butyl alcohol, n-butyl alcohol, sec-butyl alcohol, iso-butyl alcohol, tert-pentyl alcohol, iso-pentyl alcohol, and the like can be used. Alcohol is preferred.
 一般式(1)で表わされる複合金属シアン化物錯体は、金属塩MX(M、aは上述と同様、XはMと塩を形成するアニオン)とポリシアノメタレート(塩)Z[M’(CN)(この式において、M’、x、yは上述と同様。Zは水素、アルカリ金属、アルカリ土類金属など、e、fはZ、M’の原子価と配位数により決まる正の整数)のそれぞれの水溶液または水と有機溶媒の混合溶媒を混ぜ合わせ、得られた複合金属シアン化物錯体に有機配位子Rを形成する化合物を接触させた後、余分な溶媒および有機配位子Rを形成する化合物を除去することにより製造される。
 上記ポリシアノメタレート(塩)Z[M’(CN)は、Zには水素やアルカリ金属をはじめとする種々の金属を使用しうるが、リチウム塩、ナトリウム塩、カリウム塩、マグネシウム塩、カルシウム塩が好ましい。特に好ましいのは通常のアルカリ金属塩、すなわちナトリウム塩とカリウム塩である。
 また、一般式(1)で表わされる複合金属シアン化物錯体は、後述する開始剤の一部と混合することでスラリー状とすることが可能である。そのため、有機配位子を形成する化合物と接触させながら、または有機配位子を形成する化合物と接触させた後に、開始剤の一部と混合することでスラリー状にして取り扱ってもよい。
The double metal cyanide complex represented by the general formula (1) includes a metal salt MX a (M, a is an anion that forms a salt with M as described above) and a polycyanometalate (salt) Z e [M ' x (CN) y ] f (In this formula, M', x and y are the same as described above. Z is hydrogen, alkali metal, alkaline earth metal, etc., e and f are the valences of Z and M '. (A positive integer determined by the order) of each aqueous solution or a mixed solvent of water and an organic solvent, and the resulting double metal cyanide complex is brought into contact with the compound that forms the organic ligand R. It is produced by removing the solvent and the compound that forms the organic ligand R.
The polycyanometalate (salt) Z e [M ′ x (CN) y ] f may be any of various metals including hydrogen and alkali metals for Z, but lithium salt, sodium salt, potassium salt Magnesium salts and calcium salts are preferred. Particularly preferred are the usual alkali metal salts, i.e. sodium and potassium salts.
Moreover, the double metal cyanide complex represented by the general formula (1) can be made into a slurry by mixing with a part of the initiator described later. Therefore, it may be handled in the form of a slurry by mixing with a part of the initiator while contacting with the compound forming the organic ligand or after contacting with the compound forming the organic ligand.
<有機溶媒>
 本実施形態において、上記重合反応は、製造されるポリアルキレングリコール(PAG)に対して10~90質量%の有機溶媒の存在下で行うものである。本実施形態では、有機溶媒を10質量%以上とすることで、反応中に反応液が高粘度化することを防止でき、製造されるPAGを容易に高分子化することが可能である。また、90質量%以下とすることで、高分子量のPAGを効率よく製造することが可能になる。以上の観点から、有機溶媒は、製造されるPAGに対して30~70質量%の割合で存在させることが好ましい。
<Organic solvent>
In this embodiment, the polymerization reaction is performed in the presence of 10 to 90% by mass of an organic solvent with respect to the produced polyalkylene glycol (PAG). In the present embodiment, by setting the organic solvent to 10% by mass or more, it is possible to prevent the viscosity of the reaction liquid from increasing during the reaction, and it is possible to easily polymerize the produced PAG. Moreover, it becomes possible to manufacture high molecular weight PAG efficiently by setting it as 90 mass% or less. From the above viewpoint, the organic solvent is preferably present in a proportion of 30 to 70% by mass with respect to the produced PAG.
 本実施形態において使用される有機溶媒としてはエーテル化合物が挙げられる。エーテル化合物を使用することで有機溶媒を取り除くことなく潤滑油組成物に配合する場合に基油として好適に使用することが可能である。エーテル化合物としては、モノエーテル、ジエーテル、ポリエーテル、ポリビニルエーテル、ポリアルキレングリコールエーテルが挙げられる。
 モノエーテルとしては、アルキル基が分岐又は直鎖の炭素数1~12、特に好ましくは炭素数5~12のアルキル基であるジアルキルエーテルが挙げられ、具体的には、ジ-2-エチルヘキシルエーテル、ジ-3,5,5-トリメチルヘキシルエーテル等の対称エーテル;2-エチルヘキシル-n-オクチルエーテル、3,5,5-トリメチルヘキシル-n-ノニルエーテル等の非対称エーテルが挙げられる。なお、炭素数5~12のアルキル基を用いることで、有機溶媒を取り除くことなく潤滑油組成物に配合した場合に基油としてより好適に使用することができる。
 ジエーテルとしては、ジアルキルジエーテルが用いられ、より具体的には各種ジオールのジエーテルが用いられる。ジオールとしてはエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコールなどの直鎖又は分岐のアルカンジオール等が使用可能である。ポリエーテルとしてはグリセリン、トリメチロールエタン、トリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等の3価以上の多価アルコールのアルキルエーテルが利用可能である。
 また、上記ジアルキルエーテル及び多価アルコールのアルキルエーテルは、アルキル基が、モノエーテルと同様に、分岐又は直鎖の炭素数1~12、特に好ましくは炭素数5~12のアルキル基であるものが使用可能である。また、ジエーテル、ポリエーテルのアルキル基は単独でも数種類を混合で用いてもよい。なお、炭素数5~12のアルキル基を用いることで、有機溶媒を取り除くことなく潤滑油組成物に配合した場合に基油としてより好適に使用することができる。
Examples of the organic solvent used in this embodiment include ether compounds. By using an ether compound, it can be suitably used as a base oil when blended in a lubricating oil composition without removing the organic solvent. Examples of the ether compound include monoether, diether, polyether, polyvinyl ether, and polyalkylene glycol ether.
Examples of monoethers include dialkyl ethers in which the alkyl group is a branched or straight chain alkyl group having 1 to 12 carbon atoms, particularly preferably 5 to 12 carbon atoms. Specific examples include di-2-ethylhexyl ether, Symmetric ethers such as di-3,5,5-trimethylhexyl ether; and asymmetric ethers such as 2-ethylhexyl-n-octyl ether and 3,5,5-trimethylhexyl-n-nonyl ether. By using an alkyl group having 5 to 12 carbon atoms, it can be more suitably used as a base oil when blended in a lubricating oil composition without removing the organic solvent.
As the diether, dialkyl diether is used, and more specifically, diethers of various diols are used. As the diol, linear or branched alkanediols such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, and neopentyl glycol can be used. As the polyether, alkyl ethers of trihydric or higher polyhydric alcohols such as glycerin, trimethylolethane, trimethylolpropane, pentaerythritol and dipentaerythritol can be used.
In addition, the dialkyl ether and the alkyl ether of the polyhydric alcohol are those in which the alkyl group is a branched or straight chain alkyl group having 1 to 12 carbon atoms, particularly preferably 5 to 12 carbon atoms, like the monoether. It can be used. Moreover, the alkyl group of a diether and a polyether may be used individually or may be used in mixture of several types. By using an alkyl group having 5 to 12 carbon atoms, it can be more suitably used as a base oil when blended in a lubricating oil composition without removing the organic solvent.
 これらモノエーテル、ジエーテル、及びポリエーテルは、分子量が150~5000であることが好ましく、200~3000であることがより好ましい。これら有機溶媒は、以上の分子量の範囲とすることで、製造されたPAGを後述するように有機溶媒を取り除くことなく潤滑油組成物に配合する場合に基油として好適に使用でき、かつ、本実施形態における重合反応を適切に進行させることが可能になる。 These monoethers, diethers, and polyethers preferably have a molecular weight of 150 to 5,000, more preferably 200 to 3,000. These organic solvents can be suitably used as a base oil when the produced PAG is blended in a lubricating oil composition without removing the organic solvent as described later by setting the molecular weight in the above range. The polymerization reaction in the embodiment can be appropriately advanced.
 有機溶媒として使用されるポリビニルエーテルとしては、側鎖に分岐又は直鎖の炭素数1~4のアルキル基を有するポリビニルエーテル、側鎖にポリオキシアルキレン構造を有するポリビニルエーテルが挙げられる。
 これらポリビニルエーテルは、例えば、以下の一般式(2)で表される構成単位を繰り返し単位として有するポリビニル系化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000001
Examples of the polyvinyl ether used as the organic solvent include polyvinyl ether having a branched or straight chain alkyl group having 1 to 4 carbon atoms in the side chain, and polyvinyl ether having a polyoxyalkylene structure in the side chain.
Examples of these polyvinyl ethers include polyvinyl compounds having a structural unit represented by the following general formula (2) as a repeating unit.
Figure JPOXMLDOC01-appb-C000001
 上記一般式(2)におけるR1aは、炭素数2~4の二価の炭化水素基を示す。具体的には、エチレン基、プロピレン基、ブチレン基が挙げられるが、プロピレン基が好ましい。また、R2aは、炭素数1~4のアルキル基であり、具体的には、メチル基,エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基が挙げられるが、エチル基、イソブチル基が好ましい。
 また、一般式(2)におけるrは繰り返し数を示し、その平均値が0~10、好ましくは0~5の範囲の数である。
 なお、ポリビニルエーテルの末端構造は特に限定されないが、アルキレンオキサイドと反応しないように、水酸基等の活性水素原子を有しないものが使用される。
 また、上記一般式(2)で表される構成単位の繰り返し数は、所望する分子量に応じて適宜選択すればよい。
R 1a in the general formula (2) represents a divalent hydrocarbon group having 2 to 4 carbon atoms. Specific examples include an ethylene group, a propylene group, and a butylene group, with a propylene group being preferred. R 2a is an alkyl group having 1 to 4 carbon atoms, specifically, methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert group -A butyl group is exemplified, but an ethyl group and an isobutyl group are preferable.
In the general formula (2), r represents the number of repetitions, and the average value is a number in the range of 0 to 10, preferably 0 to 5.
In addition, the terminal structure of polyvinyl ether is not particularly limited, but one having no active hydrogen atom such as a hydroxyl group is used so as not to react with alkylene oxide.
Moreover, what is necessary is just to select suitably the repeating number of the structural unit represented by the said General formula (2) according to the molecular weight desired.
 また、有機溶媒として使用されるポリアルキレングリコールエーテルは、ポリアルキレングリコールの末端水酸基が、直鎖又は分岐の炭素数1~5のアルキル基でエーテル化されたものが使用される。ポリアルキレングリコールエーテルは、末端水酸基が、アルキル基でエーテル化されることで、アルキレンオキサイドに反応しなくなるので、有機溶媒として適切に使用可能になる。 As the polyalkylene glycol ether used as the organic solvent, a polyalkylene glycol having a terminal hydroxyl group etherified with a linear or branched alkyl group having 1 to 5 carbon atoms is used. The polyalkylene glycol ether can be appropriately used as an organic solvent because the terminal hydroxyl group is etherified with an alkyl group and thus does not react with the alkylene oxide.
 有機溶媒として使用されるポリアルキレングリコールエーテルは、例えば、以下の一般式(3)で表される。
  R1b[-(OR2b-OR3b   (3)
(式中、R1bは炭素数1~5のアルキル基、結合部2~6個を有する炭素数1~10の炭化水素基、又は炭素数1~10の酸素含有炭化水素基、R2bは炭素数2~4のアルキレン基、R3bは炭素数1~5のアルキル基、nは1~6の整数、mはm×nの平均値が6~80となる数を示す。)
The polyalkylene glycol ether used as the organic solvent is represented, for example, by the following general formula (3).
R 1b [— (OR 2b ) m —OR 3b ] n (3)
(Wherein R 1b is an alkyl group having 1 to 5 carbon atoms, a hydrocarbon group having 1 to 10 carbon atoms having 2 to 6 bonds, or an oxygen-containing hydrocarbon group having 1 to 10 carbon atoms, and R 2b is An alkylene group having 2 to 4 carbon atoms, R 3b is an alkyl group having 1 to 5 carbon atoms, n is an integer of 1 to 6, and m is a number with an average value of m × n of 6 to 80.
 上記一般式(3)において、R1b及びR3bの各々におけるアルキル基は、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、各種の直鎖又は分岐のブチル基、各種の直鎖又は分岐のペンチル基が挙げられる。R1b及びR3bがアルキル基である場合、互いに同一であってもよいし、異なっていてもよい。さらにnが2以上の場合には、1分子中の複数のR3bは互いに同一であってもよいし、異なっていてもよい。 In the general formula (3), the alkyl group in each of R 1b and R 3b specifically includes a methyl group, an ethyl group, an n-propyl group, an isopropyl group, various linear or branched butyl groups, various types And a linear or branched pentyl group. When R 1b and R 3b are alkyl groups, they may be the same as or different from each other. Further, when n is 2 or more, a plurality of R 3b in one molecule may be the same or different.
 また、R1bが結合部位2~6個を有する炭素数1~10の炭化水素基である場合、この炭化水素基は鎖状のものであってもよいし、環状のものであってもよい。結合部位2個を有する炭化水素基としては、脂肪族炭化水素基が好ましく、例えばエチレン基、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デシレン基、シクロペンチレン基、シクロヘキシレン基などが挙げられる。
 また、結合部位3~6個を有する炭化水素基としては、脂肪族炭化水素基が好ましく、例えばトリメチロールプロパン、グリセリン、ペンタエリスリトール、ソルビトール、1,2,3-トリヒドロキシシクロヘキサン、1,3,5-トリヒドロキシシクロヘキサンなどの多価アルコールから水酸基を除いた残基を挙げることができる。さらに、R1bにおける炭素数1~10の酸素含有炭化水素基としては、エーテル結合を有する鎖状の脂肪族基や環状の脂肪族基(例えば、テトラヒドロフルフリル基)などを挙げることができる。
 前記一般式(3)中のR2bは炭素数2~4のアルキレン基であり、繰り返し単位のオキシアルキレン基としては、オキシエチレン基、オキシプロピレン基、オキシブチレン基が挙げられる。また、nは1~3が好ましく、1であることがより好ましい。
Further, when R 1b is a hydrocarbon group having 1 to 10 carbon atoms having 2 to 6 bonding sites, the hydrocarbon group may be a chain or a cyclic one. . The hydrocarbon group having two bonding sites is preferably an aliphatic hydrocarbon group, for example, ethylene group, propylene group, butylene group, pentylene group, hexylene group, heptylene group, octylene group, nonylene group, decylene group, cyclopentylene group. Examples thereof include a len group and a cyclohexylene group.
Further, the hydrocarbon group having 3 to 6 binding sites is preferably an aliphatic hydrocarbon group, for example, trimethylolpropane, glycerin, pentaerythritol, sorbitol, 1,2,3-trihydroxycyclohexane, 1,3,3, Examples thereof include a residue obtained by removing a hydroxyl group from a polyhydric alcohol such as 5-trihydroxycyclohexane. Furthermore, examples of the oxygen-containing hydrocarbon group having 1 to 10 carbon atoms in R 1b include a chain aliphatic group having an ether bond and a cyclic aliphatic group (for example, a tetrahydrofurfuryl group).
R 2b in the general formula (3) is an alkylene group having 2 to 4 carbon atoms, and examples of the oxyalkylene group of the repeating unit include an oxyethylene group, an oxypropylene group, and an oxybutylene group. Further, n is preferably 1 to 3, and more preferably 1.
 有機溶媒は、反応終了後に、除去されてもよいが、除去しないで用いることもできる。有機溶媒が除去されないと、製造されたPAGが例えば潤滑油組成物に配合される場合、その有機溶媒も潤滑油組成物に基油として配合されることになる。
 有機溶媒は、上記した中では、基油としてより好適である点から、ポリビニルエーテル、ポリアルキレングリコールエーテルが好ましい。またその他のエーテルと比較し、製造されるPAGが溶解しやすいという点からも、ポリビニルエーテル、ポリアルキレングリコールエーテルが好ましい。
 なお、上記した有機溶媒として使用されるポリビニルエーテル、及びポリアルキレングリコールエーテルは、重量平均分子量が200~5000であることが好ましく、200~3000であることがより好ましい。上記分子量の範囲とすることで、これら化合物は、基油としてより好適に使用でき、かつ、重合反応を適切に進行させることが可能になる。
The organic solvent may be removed after completion of the reaction, but can be used without being removed. If the organic solvent is not removed, for example, when the produced PAG is blended in the lubricating oil composition, the organic solvent is also blended in the lubricating oil composition as a base oil.
Among the above, the organic solvent is preferably polyvinyl ether or polyalkylene glycol ether because it is more suitable as a base oil. In addition, polyvinyl ether and polyalkylene glycol ether are preferable from the viewpoint that the produced PAG is easily dissolved as compared with other ethers.
The polyvinyl ether and polyalkylene glycol ether used as the organic solvent described above preferably have a weight average molecular weight of 200 to 5,000, more preferably 200 to 3,000. By setting it as the range of the said molecular weight, these compounds can be used more suitably as base oil, and it becomes possible to advance a polymerization reaction appropriately.
<アルキレンオキサイド>
 上記重合反応は、通常、有機溶媒共存下で、アルキレンオキサイドと開始剤との混合物に触媒を存在させることで進行させる。
 アルキレンオキサイドは、モノエポキシドであって、具体的には、炭素数2~4のアルキレンオキサイドが挙げられ、より具体的には、エチレンオキサイド、プロピレンオキサイド、ブチレンオキサイドが挙げられるが、これらの中ではエチレンオキサイド、プロピレンオキサイドが好ましい。
<Alkylene oxide>
The above polymerization reaction is usually allowed to proceed by the presence of a catalyst in a mixture of an alkylene oxide and an initiator in the presence of an organic solvent.
The alkylene oxide is a monoepoxide, specifically, an alkylene oxide having 2 to 4 carbon atoms, and more specifically, ethylene oxide, propylene oxide, butylene oxide. Among these, Ethylene oxide and propylene oxide are preferred.
<開始剤>
 開始剤は、1以上の水酸基を有する化合物であればよく、製造されるPAGの構造に応じて選択すればよいが、アルキル基が直鎖又は分岐の炭素数1~10のアルキル基である一価のアルキルアルコール;エチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、ネオペンチルグリコール等で例示される、アルカンの炭素数が2~10程度である分岐又は直鎖のアルカンジオール;トリメチロールプロパン、グリセリン、ペンタエリスリトール、ソルビトール、1,2,3-トリヒドロキシシクロヘキサン、1,3,5-トリヒドロキシシクロヘキサンなどの炭素数が3~10程度の3価以上の多価アルコール;及び本実施形態で製造されるPAGよりも重量平均分子量が低いポリアルキレングリコール(以下、低分子量PAGともいう)が挙げられるが、これらの中では、より高分子量のPAGの製造を効率よく行えるという点で、低分子量PAGがより好ましい。
<Initiator>
The initiator may be a compound having one or more hydroxyl groups, and may be selected according to the structure of the PAG to be produced. The alkyl group is a linear or branched alkyl group having 1 to 10 carbon atoms. Divalent alkyl alcohols; branched or straight chained alkanes having about 2 to 10 carbon atoms, such as ethylene glycol, propylene glycol, 1,3-propanediol, 1,4-butanediol, neopentyl glycol, etc. Alkanediols: Trimethylolpropane, glycerin, pentaerythritol, sorbitol, 1,2,3-trihydroxycyclohexane, 1,3,5-trihydroxycyclohexane, and other trihydric or higher polyhydric alcohols having about 3 to 10 carbon atoms And a polyalkylene glycol having a weight average molecular weight lower than that of the PAG produced in this embodiment. Lumpur but (hereinafter, also referred to as a low molecular weight PAG) may be mentioned. Among them, in that more can be efficiently manufacture of PAG of a high molecular weight, low molecular weight PAG is more preferable.
 開始剤として使用される低分子量PAGとしては、以下の一般式(4)で表されるポリアルキレングリコールが挙げられる。
       R1C-(OR2C-OH     (4)
 上記一般式(4)において、kは平均値が2~80となる数を示す。また、R1Cは、炭素数1~5のアルキル基又は水素原子を示し、R2Cは炭素数2~4のアルキレン基であり、繰り返し単位のオキシアルキレン基としては、オキシエチレン基、オキシプロピレン基、オキシブチレン基が挙げられる。
 低分子量PAGの重量平均分子量は、特に限定されないが、好ましくは1000~20000、より好ましくは2000~20000である。
Examples of the low molecular weight PAG used as the initiator include polyalkylene glycols represented by the following general formula (4).
R 1C- (OR 2C ) k -OH (4)
In the general formula (4), k represents a number having an average value of 2 to 80. R 1C represents an alkyl group having 1 to 5 carbon atoms or a hydrogen atom, R 2C represents an alkylene group having 2 to 4 carbon atoms, and examples of the oxyalkylene group of the repeating unit include an oxyethylene group and an oxypropylene group. And oxybutylene group.
The weight average molecular weight of the low molecular weight PAG is not particularly limited, but is preferably 1000 to 20000, more preferably 2000 to 20000.
 一般式(4)において、1分子中のオキシアルキレン基は同一であってもよいし、2種以上のオキシアルキレン基が含まれていてもよいが、1分子中に50モル%以上のオキシプロピレン単位を含むものがより好ましく、75モル%以上のオキシプロピレン単位を含むものがより好ましい。また、OR2Cの全てがオキシプロピレン基であることがより好ましい。また、R1Cは水素原子であることが好ましい。
 中でも、OR2Cの全てがオキシプロピレン基であり、かつR1Cが水素原子であるポリプロピレングリコール(PPG)がさらに好ましい。
In the general formula (4), the oxyalkylene groups in one molecule may be the same or two or more oxyalkylene groups may be contained, but 50 mol% or more oxypropylene is contained in one molecule. What contains a unit is more preferable, and what contains 75 mol% or more of oxypropylene units is more preferable. More preferably, all of OR 2C are oxypropylene groups. R 1C is preferably a hydrogen atom.
Among them, polypropylene glycol (PPG) in which all of OR 2C is an oxypropylene group and R 1C is a hydrogen atom is more preferable.
 上記重合反応の具体的な手法は、特に限定されないが、例えば、予め開始剤と触媒と有機溶媒とを仕込んだ反応容器に、アルキレンオキサイドを徐々に加えながら反応を行なうことが好ましい。ただし、有機溶媒の一部又は全部は、予め反応容器に仕込む代わりにアルキレンオキサイドと共に反応容器に加えてもよい。
 反応温度は、特に限定されないが、好ましくは80~150℃、より好ましくは100~130℃である。
Although the specific method of the said polymerization reaction is not specifically limited, For example, it is preferable to react, gradually adding an alkylene oxide to the reaction container previously charged with the initiator, the catalyst, and the organic solvent. However, a part or all of the organic solvent may be added to the reaction vessel together with the alkylene oxide instead of being charged into the reaction vessel in advance.
The reaction temperature is not particularly limited, but is preferably 80 to 150 ° C, more preferably 100 to 130 ° C.
 また、重合反応を行う際の圧力は、特に限定されず、常圧下で行ってもよいし、加圧下で行ってもよい。加圧下で行う場合には、例えば密閉された反応容器にアルキレンオキサイドを加えることで、内部圧力を上昇させる方法が挙げられる。
 また、触媒の使用量は、特に限定されないが、使用する開始剤に対して1~5000ppm程度が適当である。触媒の反応容器への導入は、上記したように、初めに一括に反応容器に仕込んでもよいが、順次分割して仕込んでもよい。
 また、反応容器内に供給されるアルキレンオキサイドの量は、特に限定されないが、通常、使用する開始剤に対して160~5000当量、好ましくは300~5000当量、より好ましくは300~3500当量である。
Moreover, the pressure at the time of performing a polymerization reaction is not specifically limited, You may carry out under a normal pressure, and you may carry out under pressure. When performing under pressure, the method of raising an internal pressure by adding alkylene oxide to the sealed reaction container, for example is mentioned.
The amount of the catalyst used is not particularly limited, but about 1 to 5000 ppm is appropriate for the initiator used. As described above, the catalyst may be introduced into the reaction vessel all at once as described above, or may be charged in divided portions.
The amount of alkylene oxide fed into the reaction vessel is not particularly limited, but is usually 160 to 5000 equivalents, preferably 300 to 5000 equivalents, more preferably 300 to 3500 equivalents, relative to the initiator used. .
 上記重合反応は、例えば触媒失活剤を加えることで停止することができる。触媒失活剤としては、アルカリ金属化合物が挙げられ、より具体的にはナトリウムメトキシド等のナトリウムアルコキシドが挙げられる。触媒を失活させた後、反応液は、酸性物質で中和され、その後、適宜後処理されて精製され、失活された触媒成分が反応液から除去される。
 触媒が除去された反応液は、重合反応で製造されたPAGと有機溶媒を含む混合物からなる。この混合物からは有機溶媒を除去してもよいが、製造効率の観点から、有機溶媒は除去しないほうが好ましい。
The polymerization reaction can be stopped, for example, by adding a catalyst deactivator. Examples of the catalyst deactivator include alkali metal compounds, and more specifically sodium alkoxides such as sodium methoxide. After deactivating the catalyst, the reaction solution is neutralized with an acidic substance, and then appropriately post-treated and purified, and the deactivated catalyst component is removed from the reaction solution.
The reaction liquid from which the catalyst has been removed consists of a mixture containing PAG produced by the polymerization reaction and an organic solvent. Although the organic solvent may be removed from this mixture, it is preferable not to remove the organic solvent from the viewpoint of production efficiency.
 また、上記重合反応で製造されたPAGは、末端に水酸基を有することになるが、その末端水酸基は、用途によっては、さらにエーテル化又はエステル化等により封鎖してもよい。末端水酸基が加水分解されにくくなることから、エーテル化により封鎖されることが好ましい。
 例えば、エーテル化により末端封鎖する場合には、直鎖又は分岐の炭素数1~10のアルキル基、好ましくは直鎖又は分岐の炭素数1~5のアルキル基によってエーテル化することが好ましい。また、エステル化する場合には、炭素数1~10程度の各種脂肪酸により、エステル化することが好ましい。
Further, the PAG produced by the above polymerization reaction has a hydroxyl group at the terminal, but the terminal hydroxyl group may be further blocked by etherification or esterification depending on the application. Since the terminal hydroxyl group is hardly hydrolyzed, it is preferably blocked by etherification.
For example, in the case of end-capping by etherification, etherification is preferably performed with a linear or branched alkyl group having 1 to 10 carbon atoms, preferably a linear or branched alkyl group having 1 to 5 carbon atoms. In the case of esterification, it is preferable to esterify with various fatty acids having about 1 to 10 carbon atoms.
 本実施形態では、上記したように、複合金属シアン化物錯体触媒及び有機溶媒を用い、かつ有機溶媒の使用量を一定範囲とすることで、分子量20000以上の高分子量のPAGであっても、効率よく製造できる。 In the present embodiment, as described above, even when a PAG having a molecular weight of 20000 or more is used by using a double metal cyanide complex catalyst and an organic solvent and making the amount of the organic solvent used within a certain range, the efficiency is high. Can be manufactured well.
[製造されたPAGの使用方法]
 上記製造方法により得られたPAGは、例えば、潤滑油用途に使用可能である。本実施形態で製造されたPAGは、上記のように、有機溶媒との混合物として得られるが、潤滑油用途で使用する場合、その混合物から有機溶媒を除去せずに使用することが好ましい。有機溶媒を除去せずに使用することで、PAGの高粘度化が防止でき、ハンドリング性が容易になる。また、有機溶媒を除去しないことで工程数を減らすことが可能である。さらに、有機溶媒は、潤滑油組成物において基油となるので、有機溶媒を有効活用することが可能になる。
 すなわち、本発明の一実施形態に係る潤滑油組成物は、上記で製造されたPAGを含むものであるが、潤滑油組成物は、製造されたPAGと有機溶媒を含む混合物が配合されて得られることが好ましい。この場合、上記したように有機溶媒が除去されないことから、該混合物において、有機溶媒は、製造されたPAGに対して、10~90質量%含有されることになり、好ましくは30~70質量%の割合で含有される。
 なお、潤滑油組成物は、PAG又は上記混合物以外にも、通常、基油や各種添加剤がさらに配合されて得られるものである。
[How to use the manufactured PAG]
The PAG obtained by the above production method can be used for lubricating oil, for example. As described above, the PAG produced in the present embodiment is obtained as a mixture with an organic solvent. However, when used in a lubricating oil application, the PAG is preferably used without removing the organic solvent from the mixture. By using the organic solvent without removing it, it is possible to prevent the PAG from increasing in viscosity and to facilitate handling. In addition, the number of steps can be reduced by not removing the organic solvent. Furthermore, since the organic solvent becomes a base oil in the lubricating oil composition, the organic solvent can be effectively used.
That is, the lubricating oil composition according to one embodiment of the present invention includes the PAG produced above, but the lubricating oil composition is obtained by blending a mixture containing the produced PAG and an organic solvent. Is preferred. In this case, since the organic solvent is not removed as described above, the organic solvent is contained in the mixture in an amount of 10 to 90% by mass, preferably 30 to 70% by mass, based on the produced PAG. It is contained in the ratio.
The lubricating oil composition is usually obtained by further blending base oil and various additives other than PAG or the above mixture.
 また、上記で製造されたPAGは、潤滑油組成物においては、通常、粘度指数向上剤として使用される。粘度指数向上剤は、潤滑油組成物に配合されて潤滑油組成物の粘度指数を向上させるものである。特に、上記したように高分子量のPAG(重量平均分子量が好ましくは20000以上、より好ましくは30000以上)は、粘度指数を向上させる効果が大きく、粘度指数向上剤としてより好適に使用可能である。
 勿論、製造されたPAGを、粘度指数向上剤として使用する場合も、上記混合物から溶媒を除去して精製して得たPAGを粘度指数向上剤として使用してもよいが、製造されたPAGを含む混合物(例えば、上記したように、PAGと、有機溶媒とを含む混合物)を粘度指数向上剤として使用することが好ましい。
In addition, the PAG produced above is usually used as a viscosity index improver in a lubricating oil composition. The viscosity index improver is added to the lubricating oil composition to improve the viscosity index of the lubricating oil composition. In particular, as described above, a high molecular weight PAG (having a weight average molecular weight of preferably 20000 or more, more preferably 30000 or more) has a large effect of improving the viscosity index, and can be more suitably used as a viscosity index improver.
Of course, when the produced PAG is used as a viscosity index improver, a PAG obtained by removing the solvent from the above mixture and purifying may be used as the viscosity index improver. It is preferable to use the mixture (for example, as above-mentioned, the mixture containing PAG and an organic solvent) as a viscosity index improver.
 上記潤滑油組成物は、例えば、冷媒とともに冷凍機内部に充填して使用される冷凍機用潤滑油組成物として使用されるものであり、具体的には、冷凍機に設けられた圧縮機等の摺動部分を潤滑するために使用されるものである。
 また、上記潤滑油組成物は、冷凍機以外にも、ガソリンエンジンやディーゼルエンジン等の内燃機関、変速機、ショックアブソーバー、各種歯車構造、各種軸受機構、その他の各種の工業用装置等において使用されてもよい。
The lubricating oil composition is used, for example, as a lubricating oil composition for a refrigerator that is used by being filled in a refrigerator together with a refrigerant. Specifically, a compressor provided in the refrigerator, etc. It is used to lubricate the sliding part.
In addition to the refrigerator, the lubricating oil composition is used in internal combustion engines such as gasoline engines and diesel engines, transmissions, shock absorbers, various gear structures, various bearing mechanisms, and other various industrial devices. May be.
 また、上記製造方法により得られたPAGは、潤滑油用途以外にも様々な用途で使用可能であり、例えば、シーラント、接着剤等の用途で使用してもよい。この場合、製造されたPAGは、PAGと有機溶媒を含む混合物から有機溶媒を除去せずに使用してもよいし、除去して使用してもよい。なお、本製造方法で得られたPAGは、エラストマー、樹脂、ゴム等を構成するウレタン等の高分子材料の原料として使用することが可能であり、シーラント、接着剤等の用途では、ウレタンの原料として使用されることが好ましい。 Further, the PAG obtained by the above production method can be used in various applications other than the lubricating oil application, and may be used in applications such as a sealant and an adhesive. In this case, the produced PAG may be used without removing the organic solvent from the mixture containing the PAG and the organic solvent, or may be used after being removed. The PAG obtained by this production method can be used as a raw material for polymer materials such as urethane constituting elastomers, resins, rubbers, etc., and for applications such as sealants and adhesives, it is a raw material for urethane. It is preferable to be used as
 以下に、本発明を、実施例により、さらに具体的に説明するが、本発明は、これらの例によってなんら限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to these examples.
 なお、物性の測定は、以下に示す要領に従って求めた。
(1)重量平均分子量(Mw)
 重量平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)を用いて測定した。GPCは、カラムとして東ソー社製TSKgel SuperMultiporeHZ-M2本を用い、テトラヒドロフランを溶離液として、検出器に屈折率検出器を用いて測定を行い、標準試料ポリスチレンとして重量平均分子量を求めた。
The physical properties were determined according to the following procedure.
(1) Weight average molecular weight (Mw)
The weight average molecular weight was measured using gel permeation chromatography (GPC). GPC was measured using a TSKgel SuperMultipore HZ-M manufactured by Tosoh Corporation as a column, tetrahydrofuran as an eluent, a refractive index detector as a detector, and a weight average molecular weight as a standard sample polystyrene.
[複合金属錯体触媒の調製]
 塩化亜鉛10.2gと水10gからなる水溶液を500mlフラスコに入れた。次いで、フラスコ内を撹拌しかつ40℃で維持しつつ、カリウムヘキサシアノコバルテート4.3gと水75gからなる水溶液を、30分間かけてフラスコ内に滴下して加えた。滴下終了後、フラスコ内の混合物をさらに30分撹拌した後、tert-ブチルアルコール80g、水80g、および重量平均分子量2000のポリプロピレングリコール(両末端水酸基)0.6gからなる混合物をフラスコ内にさらに添加し、40℃で30分間、次いで60℃で60分間撹拌した。こうして得られた混合物を直径125mmの円形濾板と微粒子用の定量ろ紙とを用いて加圧濾過を行い、複合金属シアン化物錯体触媒を含む、スラリー状の固体を分離した。
 次いで、得られた固体をフラスコに移し、tert-ブチルアルコール36gおよび水84gの混合物を添加して30分撹拌後、加圧濾過を行ってスラリー状の固体を得た。得られた固体をフラスコに移し、さらにtert-ブチルアルコール108gおよび水12gの混合物を添加して30分撹拌し、tert-ブチルアルコール-水混合溶媒に複合金属シアン化物錯体触媒が分散された液を得た。この液に開始剤としての重量平均分子量2000のポリプロピレングリコール(両末端水酸基)を120g添加混合した後、減圧下、80℃で3時間、さらに115℃で3時間、揮発性成分を留去して、開始剤と複合金属シアン化物錯体触媒からなる混合物を得た。
[Preparation of composite metal complex catalyst]
An aqueous solution consisting of 10.2 g of zinc chloride and 10 g of water was placed in a 500 ml flask. Next, an aqueous solution composed of 4.3 g of potassium hexacyanocobaltate and 75 g of water was added dropwise to the flask over 30 minutes while the inside of the flask was stirred and maintained at 40 ° C. After completion of the dropwise addition, the mixture in the flask was further stirred for 30 minutes, and then a mixture consisting of 80 g of tert-butyl alcohol, 80 g of water, and 0.6 g of polypropylene glycol having a weight average molecular weight of 2000 (both end hydroxyl groups) was further added to the flask. And stirred at 40 ° C. for 30 minutes and then at 60 ° C. for 60 minutes. The mixture thus obtained was subjected to pressure filtration using a circular filter plate having a diameter of 125 mm and a quantitative filter paper for fine particles to separate a slurry-like solid containing a double metal cyanide complex catalyst.
Next, the obtained solid was transferred to a flask, a mixture of 36 g of tert-butyl alcohol and 84 g of water was added and stirred for 30 minutes, and then pressure filtration was performed to obtain a slurry-like solid. The obtained solid was transferred to a flask, a mixture of 108 g of tert-butyl alcohol and 12 g of water was further added and stirred for 30 minutes, and a liquid in which the double metal cyanide complex catalyst was dispersed in the tert-butyl alcohol-water mixed solvent was added. Obtained. After 120 g of polypropylene glycol having a weight average molecular weight of 2000 (both terminal hydroxyl groups) as an initiator was added to and mixed with this liquid, the volatile components were distilled off under reduced pressure at 80 ° C. for 3 hours and further at 115 ° C. for 3 hours. A mixture comprising an initiator and a double metal cyanide complex catalyst was obtained.
[実施例1]
[PAGの製造]
 200mlオートクレーブに、開始剤と複合金属シアン化物錯体触媒からなる混合物10.05g(ポリプロピレングリコール:10g、複合金属シアン化物錯体触媒0.05g)、及び有機溶媒としてポリエチルビニルエーテル(重量平均分子量:362)を28g(製造されるPAGに対して30質量%)仕込んだ。オートクレーブ内を窒素置換した後、プロピレンオキサイドを40g添加し、内温を130℃まで昇温した。オートクレーブ内の圧力が低下するのを確認後、プロピレンオキサイド43gを流速3ml/minで添加した。添加後、内温を130℃に保ち、オートクレーブ内の圧力が0.1MPa以下になるまで反応を行った。反応後、触媒失活剤としてのナトリウムメトキシドを1.5g添加し、1時間撹拌後、1N硫酸をナトリウムに対し1.5倍当量加え、120℃で2時間中和後、120℃で2時間脱水した後、ろ過を行った。ろ過後、吸着材として合成ケイ酸マグネシウム2.0wt%を加え、120℃で30分処理の後、脱水を20Torrで2時間行った後、ろ過を行い、上記反応で製造されたPAG(92g)と、有機溶媒との混合物120gを得た。得られた混合物からPAGのみ抽出して、上述した方法でPAGの重量平均分子量Mwを測定したところ、Mwは30000であった。
[Example 1]
[Manufacture of PAG]
In a 200 ml autoclave, 10.05 g of a mixture of an initiator and a double metal cyanide complex catalyst (polypropylene glycol: 10 g, double metal cyanide complex catalyst 0.05 g), and polyethyl vinyl ether (weight average molecular weight: 362) as an organic solvent 28 g (30% by mass with respect to the manufactured PAG) was charged. After the inside of the autoclave was purged with nitrogen, 40 g of propylene oxide was added, and the internal temperature was raised to 130 ° C. After confirming that the pressure in the autoclave was lowered, 43 g of propylene oxide was added at a flow rate of 3 ml / min. After the addition, the reaction was continued until the internal temperature was maintained at 130 ° C. and the pressure in the autoclave was 0.1 MPa or less. After the reaction, 1.5 g of sodium methoxide as a catalyst deactivator was added, stirred for 1 hour, 1N sulfuric acid was added in an amount of 1.5 times equivalent to sodium, neutralized at 120 ° C. for 2 hours, and then stirred at 120 ° C. for 2 hours. After dehydration for a period of time, filtration was performed. After filtration, 2.0 wt% of synthetic magnesium silicate was added as an adsorbent, treated at 120 ° C. for 30 minutes, dehydrated at 20 Torr for 2 hours, filtered, and PAG produced by the above reaction (92 g) And 120 g of a mixture with an organic solvent was obtained. Only the PAG was extracted from the obtained mixture, and the weight average molecular weight Mw of the PAG was measured by the method described above. The Mw was 30000.
[実施例2]
 重合反応で使用する有機溶媒の量を65gとし、その使用量を製造されるPAGに対して、70質量%とした点を除いた実施例1と同様に実施した。得られた混合物からPAGのみ抽出して、上述した方法でPAGの重量平均分子量Mwを測定したところ、Mwは30000であった。
[Example 2]
It implemented similarly to Example 1 except the point which made the quantity of the organic solvent used by a polymerization reaction 65 g, and set the usage-amount to 70 mass% with respect to PAG manufactured. Only the PAG was extracted from the obtained mixture, and the weight average molecular weight Mw of the PAG was measured by the method described above. The Mw was 30000.
[実施例3]
 重合反応で使用する有機溶媒の量を46gとし、その使用量を製造されるPAGに対して、50質量%とした点を除いた実施例1と同様に実施した。得られた混合物からPAGのみ抽出して、上述した方法でPAGの重量平均分子量Mwを測定したところ、Mwは30000であった。
[実施例4]
 重合反応で使用する有機溶媒の量を30gとし、その使用量を製造されるPAGに対して30質量%とした点、及び開始剤と複合金属シアン化物錯体触媒からなる混合物15.08g(ポリプロピレングリコール:15g、複合金属シアン化物錯体触媒0.08g)とした点を除いた実施例1と同様に実施した。得られた混合物からPAGのみ抽出して、上述した方法でPAGの重量平均分子量Mwを測定したところ、Mwは20000であった。
[Example 3]
It implemented similarly to Example 1 except the point which made the quantity of the organic solvent used by a polymerization reaction into 46 g, and set the usage-amount to 50 mass% with respect to PAG manufactured. Only the PAG was extracted from the obtained mixture, and the weight average molecular weight Mw of the PAG was measured by the method described above. The Mw was 30000.
[Example 4]
The amount of the organic solvent used in the polymerization reaction was 30 g, the amount used was 30% by mass with respect to the produced PAG, and 15.08 g of a mixture composed of an initiator and a double metal cyanide complex catalyst (polypropylene glycol) : 15 g, double metal cyanide complex catalyst 0.08 g). Only the PAG was extracted from the obtained mixture, and the weight average molecular weight Mw of the PAG was measured by the method described above. The Mw was 20000.
[比較例1]
 溶媒を使用しなかった点を除いて、実施例1と同様に重合反応を実施した。実施例1と同様に、プロピレンオキサイドを全て添加した後、内温を130℃に保ち反応させたが、反応途中で撹拌翼が止まり、重合反応を継続するのが困難となった。
[Comparative Example 1]
The polymerization reaction was carried out in the same manner as in Example 1 except that the solvent was not used. Similarly to Example 1, after all the propylene oxide was added, the reaction was carried out while maintaining the internal temperature at 130 ° C., but the stirring blade stopped during the reaction, making it difficult to continue the polymerization reaction.
[比較例2]
 重合反応で使用する有機溶媒の量を4.6gとすることで、その使用量を製造されるPAGに対して、5質量%とした点を除いた実施例1と同様に重合反応を実施した。
 実施例1と同様に、プロピレンオキサイドを全て添加した後、内温を130℃に保ち反応させたが、反応途中で撹拌翼が止まり、重合反応を継続するのが困難であった。
[Comparative Example 2]
The polymerization reaction was carried out in the same manner as in Example 1 except that the amount of the organic solvent used in the polymerization reaction was 4.6 g, so that the amount used was 5% by mass with respect to the produced PAG. .
Similarly to Example 1, after all the propylene oxide was added, the reaction was carried out while maintaining the internal temperature at 130 ° C., but the stirring blade stopped during the reaction, and it was difficult to continue the polymerization reaction.
[比較例3]
 重合反応で使用する有機溶媒の量を88gとすることで、その使用量を製造されるPAGに対して、95質量%とした点を除いた実施例1と同様に実施した。比較例3では、反応時間が長時間であり、重合が完結しなかった。
[Comparative Example 3]
It carried out similarly to Example 1 except the point which made the amount of the organic solvent used by a polymerization reaction 88 mass% with respect to PAG manufactured by using 88 g. In Comparative Example 3, the reaction time was long and the polymerization was not completed.
 以上のように、各実施例1~3では、重合反応を10~90質量%の有機溶媒存在下で行うことで、高分子量のPAGを効率よく製造することができた。一方で、有機溶媒量が10質量%未満である比較例1、2では、反応途中で高粘度となりすぎて反応が継続できなくなり、高分子量のPAGを効率よく製造することができなかった。また、比較例3のように、有機溶媒量が90質量%を超えると、反応時間を長時間にしても重合が完結せず、高分子量のPAGを効率よく製造することができなかった。 As described above, in each of Examples 1 to 3, a high molecular weight PAG could be efficiently produced by carrying out the polymerization reaction in the presence of 10 to 90% by mass of an organic solvent. On the other hand, in Comparative Examples 1 and 2 in which the amount of the organic solvent was less than 10% by mass, the viscosity became too high during the reaction to stop the reaction, and a high molecular weight PAG could not be produced efficiently. Further, as in Comparative Example 3, when the amount of the organic solvent exceeded 90% by mass, the polymerization was not completed even if the reaction time was prolonged, and a high molecular weight PAG could not be produced efficiently.
 本発明で製造されたポリアルキレングリコールは、冷凍機、内燃機関、歯車構造、軸受機構、変速機、ショックアブソーバ等に使用される潤滑油組成物に配合され、例えば粘度指数向上剤として使用されるものである。また、接着剤、シーラント等を構成するウレタンの原料としても使用可能なものである。
 
The polyalkylene glycol produced in the present invention is blended in a lubricating oil composition used for a refrigerator, an internal combustion engine, a gear structure, a bearing mechanism, a transmission, a shock absorber, and the like, and is used as, for example, a viscosity index improver. Is. It can also be used as a raw material for urethane constituting adhesives, sealants and the like.

Claims (12)

  1.  複合金属触媒を用いてアルキレンオキサイドを重合させ、ポリアルキレングリコールを製造する方法において、製造されるポリアルキレングリコールに対して10~90質量%の有機溶媒の存在下で重合反応を行うポリアルキレングリコールの製造方法。 In a method for producing a polyalkylene glycol by polymerizing alkylene oxide using a composite metal catalyst, a polyalkylene glycol is subjected to a polymerization reaction in the presence of 10 to 90% by mass of an organic solvent with respect to the produced polyalkylene glycol. Production method.
  2.  前記有機溶媒が、エーテル化合物である請求項1に記載されるポリアルキレングリコールの製造方法。 The method for producing a polyalkylene glycol according to claim 1, wherein the organic solvent is an ether compound.
  3.  前記エーテル化合物が、アルキル基が分岐又は直鎖の炭素数5~12のアルキル基であるジアルキルエーテル;アルキル基が分岐又は直鎖の炭素数5~12のアルキル基であるジアルキルジエーテル;アルキル基が分岐又は直鎖の炭素数5~12のアルキル基である3価以上の多価アルコールのアルキルエーテルであるポリエーテル;ポリビニルエーテル;及び、末端水酸基が直鎖又は分岐の炭素数1~5のアルキル基でエーテル化されたポリアルキレングリコールエーテルから選択される請求項2に記載のポリアルキレングリコールの製造方法。 A dialkyl ether in which the ether group is a branched or straight chain alkyl group having 5 to 12 carbon atoms; a dialkyl diether in which the alkyl group is a branched or straight chain alkyl group having 5 to 12 carbon atoms; A polyether which is an alkyl ether of a trihydric or higher polyhydric alcohol which is a branched or linear alkyl group having 5 to 12 carbon atoms; a polyvinyl ether; and a terminal hydroxyl group having a linear or branched carbon number of 1 to 5 The process for producing a polyalkylene glycol according to claim 2, wherein the polyalkylene glycol ether is etherified with an alkyl group.
  4.  前記エーテル化合物が、ポリビニルエーテル;及び末端水酸基が、直鎖又は分岐の炭素数1~5のアルキル基でエーテル化されたポリアルキレングリコールエーテルから選択される請求項3に記載のポリアルキレングリコールの製造方法。 The production of polyalkylene glycol according to claim 3, wherein the ether compound is selected from polyvinyl ether; and a polyalkylene glycol ether in which a terminal hydroxyl group is etherified with a linear or branched alkyl group having 1 to 5 carbon atoms. Method.
  5.  前記複合金属触媒が、複合金属シアン化物錯体触媒である請求項1~4のいずれか1項に記載のポリアルキレングリコールの製造方法。 The method for producing a polyalkylene glycol according to any one of claims 1 to 4, wherein the composite metal catalyst is a composite metal cyanide complex catalyst.
  6.  複合金属シアン化物錯体触媒は、有機配位子としてアルコール化合物を含む請求項5に記載のポリアルキレングリコールの製造方法。 The method for producing a polyalkylene glycol according to claim 5, wherein the double metal cyanide complex catalyst contains an alcohol compound as an organic ligand.
  7.  前記アルキレンオキサイドと開始剤との混合物に複合金属触媒を存在させて重合反応させることで前記ポリアルキレングリコールを製造するとともに、前記開始剤が、1以上の水酸基を有する化合物である請求項1~6のいずれかに記載のポリアルキレングリコールの製造方法。 The polyalkylene glycol is produced by polymerizing the mixture of the alkylene oxide and the initiator in the presence of a composite metal catalyst, and the initiator is a compound having one or more hydroxyl groups. The manufacturing method of the polyalkylene glycol in any one of.
  8.  前記1以上の水酸基を有する化合物が、製造されるポリアルキレングリコールよりも重量平均分子量が低いポリアルキレングリコールである請求項7に記載のポリアルキレングリコールの製造方法。 The method for producing a polyalkylene glycol according to claim 7, wherein the compound having one or more hydroxyl groups is a polyalkylene glycol having a weight average molecular weight lower than that of the produced polyalkylene glycol.
  9.  重量平均分子量が20000以上であるポリアルキレングリコールを製造する請求項1~8のいずれか1項に記載のポリアルキレングリコールの製造方法。 The method for producing a polyalkylene glycol according to any one of claims 1 to 8, wherein a polyalkylene glycol having a weight average molecular weight of 20000 or more is produced.
  10.  請求項9に記載の製造方法によって製造されたポリアルキレングリコールを含む粘度指数向上剤。 A viscosity index improver comprising a polyalkylene glycol produced by the production method according to claim 9.
  11.  請求項1~9のいずれか1項に記載の製造方法により製造されたポリアルキレングリコールを含む潤滑油組成物。 A lubricating oil composition comprising a polyalkylene glycol produced by the production method according to any one of claims 1 to 9.
  12.  請求項1~9のいずれか1項に記載の製造方法により製造された前記ポリアルキレングリコールと前記有機溶媒を含む混合物を配合して、潤滑油組成物を得る潤滑油組成物の製造方法。 A method for producing a lubricating oil composition, wherein a lubricating oil composition is obtained by blending a mixture containing the polyalkylene glycol produced by the production method according to any one of claims 1 to 9 and the organic solvent.
PCT/JP2015/081395 2014-11-07 2015-11-06 Method for producing polyalkylene glycol, viscosity index improver, lubricating oil composition, and method for producing lubricating oil composition WO2016072514A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP15857027.5A EP3216816A4 (en) 2014-11-07 2015-11-06 Method for producing polyalkylene glycol, viscosity index improver, lubricating oil composition, and method for producing lubricating oil composition
JP2016557833A JPWO2016072514A1 (en) 2014-11-07 2015-11-06 Method for producing polyalkylene glycol, viscosity index improver, lubricating oil composition, and method for producing lubricating oil composition
CN201580060007.5A CN107075107A (en) 2014-11-07 2015-11-06 Method for producing polyalkylene glycol, viscosity index improver, lubricating oil composition, and method for producing lubricating oil composition
US15/523,958 US20170355818A1 (en) 2014-11-07 2015-11-06 Method for producing polyalkylene glycol, viscosity index improver, lubricating oil composition, and method for producing lubricating oil composition
KR1020177011800A KR20170084052A (en) 2014-11-07 2015-11-06 Method for producing polyalkylene glycol, viscosity index improver, lubricating oil composition, and method for producing lubricating oil composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014227557 2014-11-07
JP2014-227557 2014-11-07

Publications (1)

Publication Number Publication Date
WO2016072514A1 true WO2016072514A1 (en) 2016-05-12

Family

ID=55909237

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/081395 WO2016072514A1 (en) 2014-11-07 2015-11-06 Method for producing polyalkylene glycol, viscosity index improver, lubricating oil composition, and method for producing lubricating oil composition

Country Status (6)

Country Link
US (1) US20170355818A1 (en)
EP (1) EP3216816A4 (en)
JP (1) JPWO2016072514A1 (en)
KR (1) KR20170084052A (en)
CN (1) CN107075107A (en)
WO (1) WO2016072514A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017057277A (en) * 2015-09-16 2017-03-23 出光興産株式会社 Polyether compound, viscosity index improver, lubricant composition, and method for producing the same
JP2019014854A (en) * 2017-07-11 2019-01-31 日油株式会社 Lubricant composition

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03290430A (en) * 1990-04-06 1991-12-20 Asahi Glass Co Ltd Production of polyoxyalkylene polymer containing fluorinated hydrocarbon group
JP2946580B2 (en) * 1989-12-26 1999-09-06 旭硝子株式会社 Method for producing polyethers
JP2001172661A (en) * 1999-12-20 2001-06-26 Sanyo Chem Ind Ltd Viscosity index improver and lubricating oil composition
JP2002543228A (en) * 1999-04-24 2002-12-17 バイエル アクチェンゲゼルシャフト Long chain polyether polyol containing high primary OH group
JP2013525560A (en) * 2010-04-30 2013-06-20 ビーエーエスエフ ソシエタス・ヨーロピア Polyether polyol, process for producing polyether polyol, and process for using this polyether polyol to produce polyurethane
WO2013157486A1 (en) * 2012-04-18 2013-10-24 旭硝子株式会社 Method for producing polyether
JP2015214605A (en) * 2014-05-07 2015-12-03 旭硝子株式会社 Hydroxyl group-containing polyether production method, hydrolyzable silyl group-containing polyether production method, and urethane prepolymer production method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8557179B2 (en) * 2007-10-31 2013-10-15 Novo Nordisk A/S Non-porous material as sterilization barrier
CN101925631B (en) * 2008-01-25 2013-01-16 株式会社钟化 Process for producing polyalkylene oxide

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2946580B2 (en) * 1989-12-26 1999-09-06 旭硝子株式会社 Method for producing polyethers
JPH03290430A (en) * 1990-04-06 1991-12-20 Asahi Glass Co Ltd Production of polyoxyalkylene polymer containing fluorinated hydrocarbon group
JP2002543228A (en) * 1999-04-24 2002-12-17 バイエル アクチェンゲゼルシャフト Long chain polyether polyol containing high primary OH group
JP2001172661A (en) * 1999-12-20 2001-06-26 Sanyo Chem Ind Ltd Viscosity index improver and lubricating oil composition
JP2013525560A (en) * 2010-04-30 2013-06-20 ビーエーエスエフ ソシエタス・ヨーロピア Polyether polyol, process for producing polyether polyol, and process for using this polyether polyol to produce polyurethane
WO2013157486A1 (en) * 2012-04-18 2013-10-24 旭硝子株式会社 Method for producing polyether
JP2015214605A (en) * 2014-05-07 2015-12-03 旭硝子株式会社 Hydroxyl group-containing polyether production method, hydrolyzable silyl group-containing polyether production method, and urethane prepolymer production method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3216816A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017057277A (en) * 2015-09-16 2017-03-23 出光興産株式会社 Polyether compound, viscosity index improver, lubricant composition, and method for producing the same
WO2017047620A1 (en) * 2015-09-16 2017-03-23 出光興産株式会社 Polyether compound, viscosity index improver, lubricating oil composition, and production methods therefor
JP2019014854A (en) * 2017-07-11 2019-01-31 日油株式会社 Lubricant composition

Also Published As

Publication number Publication date
EP3216816A4 (en) 2018-06-06
CN107075107A (en) 2017-08-18
KR20170084052A (en) 2017-07-19
EP3216816A1 (en) 2017-09-13
US20170355818A1 (en) 2017-12-14
JPWO2016072514A1 (en) 2017-08-17

Similar Documents

Publication Publication Date Title
JP5151480B2 (en) Method for producing polyester ether poly (mono) ol and method for producing polyurethane
MXPA02000298A (en) Polymerization of alkylene oxides using metal cyanide catalysts and unsaturated initiator compounds.
JP4556496B2 (en) Double metal cyanide complex catalyst, production method thereof and use thereof
JP4277541B2 (en) Method for producing polyether monool or polyether polyol
JP4899508B2 (en) Method for producing polyether polyol
CN109970961B (en) Preparation method of terminal alkenyl terminated unsaturated polyether
WO2016072514A1 (en) Method for producing polyalkylene glycol, viscosity index improver, lubricating oil composition, and method for producing lubricating oil composition
JP6628355B2 (en) Polyether compound, viscosity index improver, lubricating oil composition, and production method thereof
CN1129627C (en) Method for fractionating poly(ethylene oxide) formed using metallic cyanide catalyst
JP3068890B2 (en) Method for producing polyethers
WO2018168889A1 (en) Method for producing polyether compound
JP2007217691A (en) Base oil for polyalkylene glycol lubricating oil having narrow molecular weight distribution
JP4273876B2 (en) Polyether monool or polyether polyol and method for producing the same
MXPA04011558A (en) Dmc catalysts, polyether alcohols, and method for the production thereof.
JPWO2017170965A1 (en) Polyether compound and method for producing the same
WO2011136906A1 (en) Oligomerized ester alkoxylate compositions
JP2005179567A (en) Method of producing polyether polyol
JP6190287B2 (en) Water based lubricant
JPH0459825A (en) Production of polyether
JPH03244632A (en) Production of polyether
JP2999798B2 (en) Method for producing polyethers
JPH0517569A (en) Production of polyethers
JP2017141358A (en) Polyalkylene oxide
JP6895066B2 (en) Hydraulic hydraulic oil composition
JP6823813B2 (en) Lubricating oil composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15857027

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016557833

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20177011800

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2015857027

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15523958

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE